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Outline – Lecture 11

Aim: Introduce the idea underlying Markov chain Monte Carlo and

start looking at how the Metropolis Hastings algorithm can be used

for Bayesian inference in dynamical systems.

Outline:

1. Bayesian inference

2. Markov chain Monte Carlo (MCMC)

3. Metropolis Hastings (MH) algorithm

4. Using MH for Bayesian inference in dynamical systems
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Bayesian inference



Bayesian inference

Bayesian inference comes down to computing the target distribution π(x).

More commonly our interest lies in some integral of the form:

Eπ[ϕ(x) | y1:T ] =

∫
ϕ(x)π(x | y1:T ) dx .

Ex. (nonlinear dynamical systems)

Here our interest is often x = θ and π(θ) = p(θ | y1:T )

or x = (x1:T , θ) and π(x1:T , θ) = p(x1:T , θ | y1:T ).

We keep the development general for now and specialize later.
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How?

The two main strategies for the Bayesian inference problem:

1. Variational methods provides an approximation by assuming a

certain functional form containing unknown parameters, which are

found using optimization, where some distance measure is

minimized.

2. Markov chain Monte Carlo (MCMC) works by simulating a

Markov chain which is designed in such a way that its stationary

distribution coincides with the target distribution.
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Markov chain Monte Carlo



Toy illustration – AR(1)

Let us play the game where you are asked to generate samples from

π(x) = N
(
x
∣∣ 0, 1/(1− 0.82)

)
.

One realisation from X [t + 1] = 0.8X [t] + V [t] where V [t] ∼ N (0, 1).

Initialise in X [0] = −40.
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This will eventually generate

samples from the following

stationary distribution:

ps(x) = N
(
x
∣∣ 0, 1/(1− 0.82)

)
as t →∞.
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Toy illustration – AR(1)
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The true stationary distribution is shown in black and the empirical

histogram obtained by simulating the Markov chain

X [t + 1] = 0.8X [t] + V [t] is plotted in gray.

The initial 1 000 samples are discarded (burn-in).
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Metropolis Hastings algorithm

Algorithm 1 Metropolis Hastings (MH)

1. Initialize: Set the initial state of the Markov chain x [1].

2. For m = 1 to M, iterate:

a. Sample x ′ ∼ q(x | x [m]).

b. Sample u ∼ U [0, 1].

c. Compute the acceptance probability

α = min

(
1,

π(x ′)

π(x [m])

q(x [m] | x ′)
q(x ′ | x [m])

)
d. Set the next state x [m + 1] of the Markov chain according to

x [m + 1] =

{
x ′ u ≤ α
x [m] otherwise
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MH – bimodal Gaussian
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Statistical properties of MCMC

The MCMC estimator

ÎM [ϕ] =
1

M

M∑
m=1

ϕ(x [m])

is by the ergodic theorem known to be strongly consistent, i.e.

1

M

M∑
m=1

ϕ(x [m])︸ ︷︷ ︸
ÎM [ϕ]

a.s.−−→
∫
ϕ(x)π(x) dx︸ ︷︷ ︸

I [ϕ]

when M →∞.

Central limit theorem (CLT) stating that

√
M
(
ÎM [ϕ]− I [ϕ]

)
d−→ N (0, σ2

MCMC)

when M →∞.
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Diagnostic tool – autocorrelation function (ACF)

The autocorrelation at lag l of a Markov chain is defined as the

correlation between states X [t] and X [t + l ].
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Using MH for Bayesian inference

in dynamical systems



Bayesian parameter inference in SSMs

Full probabilistic model of a nonlinear parametric SSM:

p(x1:T , θ, y1:T ) = p(y1:T | x1:T , θ) p(x1:T , θ)︸ ︷︷ ︸
prior

=
T∏
t=1

p(yt | xt , θ)︸ ︷︷ ︸
observation

T−1∏
t=1

p(xt+1 | xt , θ)︸ ︷︷ ︸
dynamics

p(x1 | θ)︸ ︷︷ ︸
state

p(θ)︸︷︷︸
param.︸ ︷︷ ︸

prior

Bayesian parameter inference amounts to computing

p(θ | y1:T ) =
p(y1:T | θ)p(θ)

p(y1:T )

or more commonly some integral of the form

E[ϕ(θ) | y1:T ] =

∫
ϕ(θ)p(θ | y1:T ) dθ.
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Using MH for parameter inference in a dynamical system

Algorithm 2 Metropolis Hastings (MH)

1. Initialize: Set the initial state of the Markov chain θ[1].

2. For m = 1 to M, iterate:

a. Sample θ′ ∼ q(θ | θ[m]).

b. Sample u ∼ U [0, 1].

c. Compute the acceptance probability

α = min

(
1,

p(y1:T | θ′)p(θ′)

p(y1:T | θ[m])p(θ[m])

q(θ[m] | θ′)
q(θ′ | θ[m])

)
d. Set the next state θ[m + 1] of the Markov chain according to

θ[m + 1] =

{
θ′ u ≤ α
θ[m] otherwise
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Important question

Problem: We cannot evaluate the acceptance probability α since the

likelihood p(y1:T | θ) is intractable.

We know that SMC provides an estimate of the likelihood.

Important question: Is it possible to use an estimate of the likelihood

in computing the acceptance probability and still end up with a valid

algorithm?

Valid here means that the method converges in the sense of

1

M

M∑
m=1

ϕ(θ[m])
a.s.−−→

∫
ϕ(θ)p(θ | y1:T ) dθ, when M →∞.
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A few concepts to summarize lecture 11

Markov chain Monte Carlo (MCMC): The underlying idea is to

simulate a Markov chain which is designed in such a way that its

stationary distribution coincides with the target distribution.

Metropolis Hastings (MH) constructs a Markov chain with the target

distribution as its stationary distribution. MH operates by first proposing

a candidate sample from a proposal distribution. This candidate sample

is then either accepted or rejected based on a problem-specific

acceptance probability.
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