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Outline – Lecture 10

Aim: Provide a better understanding for the properties of the parti-
cle filter likelihood estimator.

Outline:

1. The particle filter sampling distribution
2. Unbiasedness of the likelihood estimator
3. Central limit theorems
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ex) Numerical illustration

Simple LG-SSM,

Xt = θXt−1 + Vt, Vt ∼ N (0, 1),
Yt = Xt + Et, Et ∼ N (0, 1).

Task: estimate p(y1:100 | θ) for a simulated data set. True θ? = 0.9.
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Black line – true likelihood computed
using the Kalman filter.

Blue thin lines – 5 different likelihood
estimates p̂N(y1:100 | θ) computed using a
bootstrap particle filter with N = 100
particles.
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Bootstrap PF likelihood estimator

The particle filter likelihood estimator,

Ẑ =
T∏
t=1

{
1
N

N∑
i=1

W̃i
t

}
is a random variable.

If we run the PF algorithmmultiple times (with the same data y1:T ) we
will get different realizations of this random variable, ẑ[1], ẑ[2], . . . , all
of which estimate p(y1:T | θ).

What can be said about the distribution and properties of the ran-
dom variable Ẑ?

N.B. From now on we consider the likelihood estimate for a fixed
value of θ and thus drop θ from the notation⇒ task is to estimate
p(y1:T).
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The particle filter sampling
distribution



Use of random numbers in the particle filter

The particle filter uses random numbers to

1. initialize

2. resample

3. propagate

the particles.

The weights, and thus also the likelihood estimator, are determin-
istic functions of these random numbers.
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Particle filter sampling distribution

A particle filter that is run for time steps t = 0, . . . , T samples the
random variables

Xt = {Xit}Ni=1, t = 0, . . . , T,
At = {Ait}Ni=1, t = 1, . . . , T,

with distributions (for the bootstrap PF):

X0 ∼
N∏
i=1

p(xi0) (Initialization)

At | (Xt−1 = xt−1) ∼
N∏
i=1

wa
i
t
t−1 (Resampling)

Xt | (Xt−1 = xt−1,At = at) ∼
N∏
i=1

p(xit | x
ait
t−1) (Propagation)
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Particle filter sampling distribution

Let X0:T = (X0, . . . XT) and A1:T = (A1, . . .AT).

The distribution of all the random variables sampled by the
bootstrap PF is thus,

ψN,T(x0:T , a1:T) =
{ N∏
i=1

p(xi0)
} T∏

t=1

{ N∏
i=1

wa
i
t
t−1p(x

i
t | x

ait
t−1)

}
,

with domain X N(T+1) × {1, . . . ,N}NT .

Executing the particle filter algorithm can be viewed as a way of
generating one sample from this distribution!
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Distribution of the likelihood estimator

The likelihood estimator Ẑ is a function of the random variables X0:T
and A1:T .

The distribution ψN,T(x0:T , a1:T) induces a distribution for Ẑ which we
also denote by ψN,T(z)

Ẑ ∼ ψN,T(z), z ∈ R+.

Theorem: Unbiasedness of the likelihood estimator

The likelihood estimator Ẑ is unbiased, i.e.

EψN,T
[
Ẑ
]
= p(y1:T)

for any number of particles N ≥ 1.

(Holds for the general auxiliary particle filter, though we have only
discussed the bootstrap particle filter here.)
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Proof
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ex) Numerical illustration

Simple LG-SSM,

Xt = 0.9Xt−1 + Vt, Vt ∼ N (0, 1),
Yt = Xt + Et, Et ∼ N (0, 1).

Task: estimate p(y1:T) for a small simulated data set consisting of
T = 20 measurements.

Note that the “ground truth” can be computed using a Kalman filter.
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ex) Numerical illustration

Histogram based on 10 000 independent realizations of Ẑ ∼ ψN,T(z)
using N = 100 particles.
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Average of 10 000
realizations of Ẑ/p(y1:T)
is 0.9983.



Central limit theorems



Central limit theorem

Theorem: CLT for likelihood estimator
The likelihood estimator of the bootstrap particle filter satisfies a
central limit theorem: With Ẑ ∼ ψN,T(z),

√
N
(

Ẑ
p(y1:T)

− 1
)

d−→ N

(
0,

T∑
t=0

{∫ p(xt | y1:T)2

p(xt | y1:t−1)
dxt − 1

})

as N→ ∞.

Under certain exponential forgetting conditions (recall lecture 5),
one can show that the variance is

VarψN,T

[
Ẑ

p(y1:T)

]
≈ CT

N

for some constant C <∞.
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ex) Numerical illustration, cont’d

Histogram based on 10 000 independent realizations of Ẑ ∼ ψN,T(z)
using N = 20 particles.
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ex) Numerical illustration, cont’d

Histogram based on 10 000 independent realizations of Ẑ ∼ ψN,T(z)
using N = 500 particles.
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ex) Numerical illustration, cont’d

Histogram based on 10 000 independent realizations of Ẑ ∼ ψN,T(z)
using N = 1000 particles.
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Log-likelihood estimator

Alternatively, express the CLT in terms of log Ẑ.

Bias:

EψN,T
[
log Ẑ − log{p(y1:T)}

]
≈ − 1

2N

T∑
t=0

{∫ p(xt | y1:T)2

p(xt | y1:t−1)
dxt − 1

}
Variance:

VarψN,T

[
log Ẑ

]
≈ 1
N

T∑
t=0

{∫ p(xt | y1:T)2

p(xt | y1:t−1)
dxt − 1

}

Note that the asymptotic variance is the same for Ẑ/p(y1:T) and log Ẑ.
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ex) Numerical illustration, cont’d

Histogram based on 10 000 independent realizations of Ẑ ∼ ψN,T(z)
using N = 20 particles.
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ex) Numerical illustration, cont’d
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ex) Numerical illustration, cont’d
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ex) Numerical illustration, cont’d

What happens if we increase T but keep N fixed?

Using N = 100 and T = 1000 (before: T = 20).
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Note that E
[
Ẑ/p(y1:T)

]
= 1

but
P
(
Ẑ/p(y1:T) < 1

)
≈ 0.999!



Short history of SMC

• Bootstrap particle filter invented around 1992–1993
• Auxiliary particle filter, 1999
• Convergence theory: many results in the early 2000 but still an
active research area

• SMC Samplers, 2006 (similar ideas going back to at least 2002)
• Particle Markov chain Monte Carlo, around 2010
• SMC for PPL, graphical models, etc. 2010–present
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A few concepts to summarize lecture 10

Particle filter sampling distribution: The joint distribution of all the
random variables generated when running the particle filter.

Unbiasedness of the likelihood estimator: The expected value of the
likelihood estimator, with respect to the randomness of the particle
filter algorithm, is precisely the data likelihood. This property holds
for any number of particles N.

Log-likelihood estimator: For numerical stability it is better to work
with the logarithm of the likelihood estimator. The distribution of the
log-likelihood estimator tends to converge more quickly to a
Gaussian than that of the likelihood estimator.
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