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Aim of this course

Aim: To provide an introduction to the theory and application of
sequential Monte Carlo (SMC) methods.

After the course you should be able to derive your own SMC-based
algorithms allowing you to do inference in nonlinear models.

Day 1-3: Focus on state space models (SSMs). How to learning them
from data and how to estimate their hidden states.

Day 4-5: Using SMC for inference in general probabilistic models.
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Ex) Indoor positioning (engineering)

Aim: Compute the position of a person moving around indoors using
variations in the ambient magnetic field and the motion of the
person (acceleration and angular velocities). All of this observed
using sensors in a standard smartphone.

Fig. 1: Principle of magnetic terrain navigation. Here a pre-generated magnetic map is overlaid on top of a picture of the space.

The map depicts a vector field with both a direction (the arrows indicate the direction based on the x and y components)

and magnitude (warm colours indicate stronger values, cool colours weaker). During positioning, the vector valued (three-

component) measurement track obtained by the smartphone magnetometer is matched to the magnetic landscape.

II. METHODS

An illustration of the general concept of magnetic terrain

navigation is shown in Figure 1. The magnetic terrain naviga-

tion setup in this paper boils down to three distinctive parts:

• The positioning is overseen by a particle filter, which is a

sequential Monte Carlo approach for proposing different

state histories and finding which one matches the data the

best.

• The magnetic terrain which the observations are matched

against. The map is constructed by a Gaussian process

model which is able to return a magnetic field estimate

and its variance for any spatial location in the building.

• A model for the movement of the person being tracked,

often referred to as a pedestrian dead reckoning model.

The following sections will explain these components of the

map matching algorithm in detail.

A. Particle filtering

Particle filtering [12, 22, 23] is a general methodology for

probabilistic statistical inference (i.e., Bayesian filtering and

smoothing) on state space models of the form

xk+1 ∼ p(xk+1 | xk),

yk ∼ p(yk | xk),
(1)

where p(xk+1 | xk) defines a vector-Markov model for the

dynamics of the state xk ∈ R
dx , and p(yk | xk) defines

the model for the measurements yk ∈ R
dy in the form of

conditional distribution of the measurements given the state.

For example, in (magnetic) terrain navigation, the dynamic

model tells how the target moves according to a (pedestrian)

dead reckoning and the (Markovian) randomness is used

for modeling the errors and uncertainty in the dynamics.

In conventional terrain navigation, the measurement model

tells what distribution of height we would measure at each

position, and in magnetic terrain navigation it tells what is the

distribution of magnetic field measurements we could observe

at a given position and orientation.

A particle filter aims at computing the (Bayesian) filtering

distribution, which refers to the conditional distribution of the

current state vector given the observations up to the current

time step p(xk | y1:k). Particle filtering uses a weighted

Monte Carlo approximation of n particles to approximate this

distribution. The approximation has the form

p(xk | y1:k) ≈
n∑

i=1

w
(i)
k δ(xk − x

(i)
k ), (2)

where δ(·) stands for the Dirac delta distribution and w
(i)
k

are non-negative weights such that
∑

i w
(i)
k = 1. Under this
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Ex) Indoor positioning (engineering)

Key ingredients of the solution:

1. The particle filter for computing the position
2. The Gaussian process for building and representing the map of
the ambient magnetic field

3. Inertial sensor signal processing

Movie – map making: www.youtube.com/watch?v=enlMiUqPVJo

Movie – indoor positioning result

Arno Solin, Simo Särkkä, Juho Kannala and Esa Rahtu. Terrain navigation in the magnetic landscape: Particle filtering for indoor
positioning. Proc. of the European Navigation Conf. (ENC), Helsinki, Finland, June, 2016.

Arno Solin, Manon Kok, Niklas Wahlström, Thomas B. Schön and Simo Särkkä. Modeling and interpolation of the ambient magnetic
field by Gaussian processes. IEEE Trans. on Robotics, 34(4):1112–1127, 2018.

Carl Jidling, Niklas Wahlström, Adrian Wills and Thomas B. Schön. Linearly constrained Gaussian processes. Advances in Neural
Information Processing Systems (NIPS), Long Beach, CA, USA, December, 2017.
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Ex) Epidemiological modelling (statistics)

Aim: To learn a model explaining the seasonal influenza epidemics
and then make use of this model to compute predictions.

Susceptible/infected/recovered (SIR) model:

St+dt = St + µPdt − µStdt − (1+ Fvt)βtStP−1Itdt,
It+dt = It − (γ + µ)Itdt + (1+ Fvt)βtStP−1Itdt,
Rt+dt = Rt + γItdt − µRtdt,

βt = R0(γ + µ)(1+ α sin(2πt/12)),

Measurements:

yk = ρlogit(̄Ik/P) + ek, ek ∼ N (0, σ2).

Information about the unknown parameters θ = (γ,R0, α, F, ρ, σ) and
states xt = (St, It,Rt) has to be learned from measurements.
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Ex) Epidemiological modelling (statistics)

Compute p(θ, x1:T | y1:T), where y1:T = (y1, y2, . . . , yT) and use it to
compute the predictive distribution.

Particle Gibbs with Ancestor Sampling
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Figure 7: Disease activity (number of infected individuals It) over an eight year period.
The first four years are used as estimation data, to find the unknown parameters
of the model. For the consecutive four years, one-month-ahead predictions are
computed using the estimated model.

worth pointing out that while the sampler effectively targets the collapsed model (28), it
is most straightforwardly implemented using the original state variables from (26). With
xk = (S∆k, I∆k, R∆k)

T we can simulate xk+1 given xk according to (26) which is used in the
underlying particle filter. The innovation variables Vk need only be taken into account for
the AS step. Let V ′1:T be the reference innovation trajectory. To compute the AS weights
(3) we need to evaluate the ratios,

pθ((V
i

1:k−1, V
′
k:T ), y1:T )

pθ(V
i

1:k−1, y1:k−1)
∝

T∏
`=k

gθ(y` | V i
1:k−1, V

′
k:`).

Using (27), the observation likelihood can be written as

gθ(y` | V i
1:k−1, V

′
k:`) = N (y` | ρ logit(Ī`{xik−1, V

′
k:`}/P), σ2), (29)

where I`{xik−1, V
′
k:`} is obtained by simulating the system (26) from time ∆(k − 1) to time

∆`, initialized at xik−1 and using the innovation sequence V ′k:`.

We run PGAS with N = 10 particles for 50 000 iterations (discarding the first 10 000).
For sampling θ, we use MH steps with a Gaussian random walk proposal, tuned according
to an initial trial run. The innovation variables V1:T are sampled from the PGAS kernel
by Algorithm 2. Since the latter step is the computational bottleneck of the algorithm,
we execute ten MH steps for θ, for each draw from the PGAS kernel. No truncation is
used for the AS weights; instead we investigate the effect of using the strategy proposed
in (20). That is, to reduce the computational cost we execute the AS step only with some
probability η, otherwise we keep the current ancestry of the reference trajectory.

In Figure 8 we report the ACFs for the six parameters of the model, for η ranging from
0 to 1. As a comparison, we also provide the results for a run of the PMMH algorithm
with N = 1 000 particles and a random walk proposal distribution tuned according to an
initial trial run. For most parameters, PMMH achieves better mixing than PGAS (however,

2173

Disease activity (number of infected individuals It) over an eight year
period.

Fredrik Lindsten, Michael I. Jordan and Thomas B. Schön. Particle Gibbs with ancestor sampling. Journal of Machine Learning Research
(JMLR), 15:2145-2184, June 2014.
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Ex) Probabilistic programming (machine learning)

A probabilistic program encodes a probabilistic model according to
the semantics of a particular probabilistic programming language,
giving rise to a programmatic model.

The memory state of a running probabilistic program evolves
dynamically and stochastically in time and so is a stochastic process.

SMC is a common inference method for
programmatic model.

Creates a clear separation between the
model and the inference methods. Opens up
for the automation of inference!

Program Checkpoint Local operations Commentary
x ~ N(0,1); assume(x) INITIALIZE(x) Named delay_triplet in supplementary

material.y ~ N(x,1); assume(y) INITIALIZE(y)

z ~ N(y,1); observe(z) INITIALIZE(z)

MARGINALIZE(y) No MARGINALIZE(x) is necessary: x, as a
root node, is initialized in the marginalized
state.

MARGINALIZE(z)

OBSERVE(z)

print(x); value(x) SAMPLE(y) Samples y ∼ p(dy | z).
SAMPLE(x) Samples x ∼ p(dx | y, z).

print(y); A value for y is already known.

x ~ N(0,1); assume(x) INITIALIZE(x)
Named delay_iid in supplementary
material. It encodes multiple i.i.d.
observations with a conjugate prior
distribution over their mean.

for (t in 1..T) {

y[t] ~ N(x,1); observe(y[t]) INITIALIZE(y[t])

MARGINALIZE(y[t])

OBSERVE(y[t])

}

print(x); value(x) SAMPLE(x) Samples x ∼ p(dx | y[1], . . . , y[T ]).
x ~ Bernoulli(p); assume(x) INITIALIZE(x) Named delay_spike_and_slab in

supplementary material. It encodes a
spike-and-slab prior [Mitchell1988] often
used in Bayesian linear regression.

if (x) { value(x) SAMPLE(x)

y ~ N(0,1); assume(y) INITIALIZE(y)

} else {

y <- 0; y is used as a regular variable, no graph
operations are triggered.

} y is marginalized or realized by the end,
according to the stochastic branch.

x[1] ~ N(0,1); assume(x[1]) INITIALIZE(x) Named delay_kalman in supplementary
material. It encodes a linear-Gaussian
state-space model, for which delayed
sampling yields a forward Kalman filter and
backward sample.

y[1] ~ N(x[1],1); observe(y[1]) INITIALIZE(y[1])

MARGINALIZE(y[1])

OBSERVE(y[1])

for (t in 2..T) {

After each tth iteration of this loop, the
distribution p(x[t] | y[1], . . . , y[t]) is
obtained; the behavior corresponds to a
Kalman filter.

x[t] ~ N(a*x[t-1],1); assume(x[t]) INITIALIZE(x[t])

y[t] ~ N(x[t],1); observe(y[t]) INITIALIZE(y[t])

MARGINALIZE(x[t])

MARGINALIZE(y[t])

OBSERVE(y[t])

}

print(x[1]); value(x[1]) SAMPLE(x[T ]) Samples x[T ] ∼ p(dx[T ] | y[1], . . . , y[T ]).
. . . Recursively samples

x[t] ∼ p(dx[t] | x[t+ 1], y[1], . . . , y[t])
and conditions x[t− 1].

SAMPLE(x[1]) Samples x[1] ∼ p(dx[1] | x[2], y[1]).

Table 2: Pedagogical examples of delayed sampling applied to four probabilistic programs, showing
the programs themselves (first column), the checkpoints reached as they execute linearly from top
to bottom (second column), the sequence of local operations that these trigger on the graph (third
column), and commentary (fourth column). The programs use a Birch-like syntax. Random variables
with given values (from earlier assignment) are annotated by underlining. The function print is
assumed to accept real-valued arguments only, so may trigger a value checkpoint when used.

7

More during lecture 17.
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SAMPLE(x) Samples x ∼ p(dx | y, z).

print(y); A value for y is already known.

x ~ N(0,1); assume(x) INITIALIZE(x)
Named delay_iid in supplementary
material. It encodes multiple i.i.d.
observations with a conjugate prior
distribution over their mean.

for (t in 1..T) {

y[t] ~ N(x,1); observe(y[t]) INITIALIZE(y[t])

MARGINALIZE(y[t])

OBSERVE(y[t])

}

print(x); value(x) SAMPLE(x) Samples x ∼ p(dx | y[1], . . . , y[T ]).
x ~ Bernoulli(p); assume(x) INITIALIZE(x) Named delay_spike_and_slab in

supplementary material. It encodes a
spike-and-slab prior [Mitchell1988] often
used in Bayesian linear regression.

if (x) { value(x) SAMPLE(x)

y ~ N(0,1); assume(y) INITIALIZE(y)

} else {

y <- 0; y is used as a regular variable, no graph
operations are triggered.

} y is marginalized or realized by the end,
according to the stochastic branch.

x[1] ~ N(0,1); assume(x[1]) INITIALIZE(x) Named delay_kalman in supplementary
material. It encodes a linear-Gaussian
state-space model, for which delayed
sampling yields a forward Kalman filter and
backward sample.

y[1] ~ N(x[1],1); observe(y[1]) INITIALIZE(y[1])

MARGINALIZE(y[1])

OBSERVE(y[1])

for (t in 2..T) {

After each tth iteration of this loop, the
distribution p(x[t] | y[1], . . . , y[t]) is
obtained; the behavior corresponds to a
Kalman filter.

x[t] ~ N(a*x[t-1],1); assume(x[t]) INITIALIZE(x[t])

y[t] ~ N(x[t],1); observe(y[t]) INITIALIZE(y[t])

MARGINALIZE(x[t])

MARGINALIZE(y[t])

OBSERVE(y[t])

}

print(x[1]); value(x[1]) SAMPLE(x[T ]) Samples x[T ] ∼ p(dx[T ] | y[1], . . . , y[T ]).
. . . Recursively samples

x[t] ∼ p(dx[t] | x[t+ 1], y[1], . . . , y[t])
and conditions x[t− 1].

SAMPLE(x[1]) Samples x[1] ∼ p(dx[1] | x[2], y[1]).

Table 2: Pedagogical examples of delayed sampling applied to four probabilistic programs, showing
the programs themselves (first column), the checkpoints reached as they execute linearly from top
to bottom (second column), the sequence of local operations that these trigger on the graph (third
column), and commentary (fourth column). The programs use a Birch-like syntax. Random variables
with given values (from earlier assignment) are annotated by underlining. The function print is
assumed to accept real-valued arguments only, so may trigger a value checkpoint when used.
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More during lecture 17.
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Course structure – overview

• 17 lectures (45 min. each)
• Credits offered: 6ECTS (Swedish system)
• Practicals (solve exercises and hand-in assignments, discuss
and ask questions)

• Discussions (discuss concepts)
• Hand-in assignments. You can collaborate, but the reports with
the solutions are individual.

• One set to be done between day 2 and 3
• One set to be done after day 5

• Complete course information (including lecture slides) is
available from the course website: https:
//www.ida.liu.se/divisions/stima/fokurser/smc2025/

• Feel free to ask questions at any time!

The only way to really learn something is by
implementing it on your own.
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Outline – 5 days

Day 1 – Probabilistic modelling and particle filtering basics
a) Probabilistic modelling of dynamical systems and filtering
b) Introduce Monte Carlo and derive the bootstrap particle filter

Day 2 – Particle filtering
a) Auxiliary particle filter, full adaptation and practicalities

Day 3 – Parameter learning
a) Maximum likelihood parameter learning, convergence

Day 4 – Bayesian parameter learning
a) Particle Metropolis Hastings
b) Particle Gibbs

Day 5 – Beyond state space models (outlooks)
a) General target sequences and SMC samplers
b) Diffusion models
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Outline – Lecture 1

Aim: Introduce the course and provide background on probabilistic
modelling.

Outline:

1. Course introduction and practicalities
2. Probabilistic modelling
3. Key probabilistic objects
4. Ex. probabilistic autoregressive modelling (if there is time)
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Probabilistic modelling



Modelling

Mathematical model: A compact representation—set of
assumptions—of the data that in precise mathematical form
captures the key properties of the underlying situation.

Most of the course (day 1-3) is concerned with dynamical
phenomena. The methods are more general than that and during
the last day we will broaden the scope significantly.

Dynamical phenomena produce temporal measurements (data)
arriving as a sequence

y1:t = (y1, y2, . . . , yt).

Nice introduction to probabilistic modelling in Machine Learning
Ghahramani, Z. Probabilistic machine learning and artificial intelligence. Nature 521:452-459, 2015.
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Representing and modifying uncertainty

It is important to maintain a solid representation of uncertainty in all
mathematical objects and throughout all calculations.

11/22



The two basic rules from probability theory

Let X and Y be continuous random variables1. Let p(·) denote a
general probability density function.

1. Marginalization (integrate out a variable): p(x) =
∫
p(x, y)dy.

2. Conditional probability: p(x, y) = p(x | y)p(y).

Combine them into Bayes’ rule:

p(x | y) = p(y | x)p(x)
p(y)

=
p(y | x)p(x)∫
p(y | x)p(x)dx

.

1Notation: Upper-case letters for random variables (r.v.) X when we talk about
models. Lower-case letters for realizations of the r.v., X = x and in algorithms. We will
not use bold face for vectors.

12/22



The two basic rules from probability theory

Let X and Y be continuous random variables1. Let p(·) denote a
general probability density function.

1. Marginalization (integrate out a variable): p(x) =
∫
p(x, y)dy.

2. Conditional probability: p(x, y) = p(x | y)p(y).

Combine them into Bayes’ rule:

p(x | y) = p(y | x)p(x)
p(y)

=
p(y | x)p(x)∫
p(y | x)p(x)dx

.

1Notation: Upper-case letters for random variables (r.v.) X when we talk about
models. Lower-case letters for realizations of the r.v., X = x and in algorithms. We will
not use bold face for vectors.

12/22



Basic variables classes

Measurements y1:T = (y1, y2, . . . , yT): The measured data somehow
obtained from the phenomenon we are interested in.

Unknown (static) model parameters θ: Describes the model, but
unknown (or not known well enough) to the user.

Unknown model variables xt (changing over time): Describes the
state of the phenomenon at time t (in the indoor positioning
example above xt includes the unknown position).

Explanatory variables u: Known variables that we do not bother to
model as stochastic.

A key task is often to learn θ and/or xt based on the available
measurements y1:T .
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Key probabilistic objects

For models involving measurements Y and unknown static parame-
ter θ

Full probabilistic model: The joint model of the data and parameters.

p(θ, y) = p(y | θ)p(θ)

Likelihood function: L(θ; y) = p(Y = y | θ)

Posterior distribution: Condition on y instead of θ.

p(θ | y) = p(θ, y)
p(y)

=
p(y | θ)∫

p(y | θ)p(θ)dθ

Prediction: A statement about a future event ȳ that has not been
observed.

p(ȳ | y) =
∫
p(ȳ, θ | y)dθ =

∫
p(ȳ | θ)p(θ | y)dθ
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Computational problems

The problem of learning a model based on data leads to
computational challenges, both
• Integration: e.g. the high-dimensional integrals arising during
marg. (averaging over all possible parameter values θ):

p(y1:T) =
∫
p(y1:T | θ)p(θ)dθ.

• Optimization: e.g. when extracting point estimates, for example
by maximizing the posterior or the likelihood

θ̂ = arg max
θ

p(y1:T | θ)

Typically impossible to compute exactly, use approximate methods
• Monte Carlo (MC), Markov chain MC (MCMC), and sequential MC
(SMC).

• Variational inference (VI).
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Probabilistic autoregressive
model



Probabilistic autoregressive model

An autoregressive model of order n is given by

Yt = A1Yt−1 + A2Yt−2 + · · ·+ AnYt−n + Et, Et ∼ N (µ, τ−1)

where µ and τ are known explanatory variables (µ = 0, τ 6= 0).

The unknown model variables are collected as

θ = (A1,A2, . . . ,An)T

with the prior

θ ∼ N (0, ρ−1In), where ρ assumed to be known.

Task: Compute the posterior p(θ | y1:T).
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Probabilistic autoregressive model

Full probabilistic model p(θ, y1:T) = p(y1:T | θ)p(θ), where the data
distribution is given by

p(y1:T | θ) = p(yT | y1:T−1, θ)p(y1:T−1 | θ) = · · · =
T∏
t=1

p(yt | y1:t−1, θ).

From the model we have that

p(yt | y1:t−1, θ) = N (yt | θTzt, τ−1),

where Zt = (Yt−1, Yt−2, . . . , Yt−n)T. Hence,

p(y1:T | θ) =
T∏
t=1

N
(
yt
∣∣ θTzt, τ−1) = N

(
y
∣∣ zθ, τ−1IT) ,

where we have made use of Y = (Y1, Y2, . . . , YT)T and
Z = (Z1, Z2, . . . , ZT)T.
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Probabilistic autoregressive model

p(θ, y) = N
(
y
∣∣ zθ, τ−1IT)︸ ︷︷ ︸
p(y | θ)

N
(
θ
∣∣ 0, ρ−1In)︸ ︷︷ ︸
p(θ)

= N

((
θ

y

)∣∣∣∣∣
(
0
0

)
,

(
ρ−1I2 ρ−1zT

ρ−1z τ−1IT + ρ−1zzT

))
.

The posterior is given by

p(θ | y) = N (θ |mT , ST) ,

where

mT = τSTzTy,

ST =
(
ρ−1I2 + σzTz

)T
.
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Ex) Situation before any data is used

Yt = A1Yt−1 + A2Yt−2 + Et, Et ∼ N (0, 0.2).
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Prior 7 samples from the prior

White dot – true value for θ = (0.6, 0.2).
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Ex) Situation after y1 is obtained
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Ex) Situation after y1:2 and y1:20
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A few concepts to summarize lecture 1

Mathematical model: A compact representation—set of
assumptions—of some phenomenon of interest.

Probabilistic modelling: Provides the capability to represent and
manipulate uncertainty in data, models, decisions and predictions.

Full probabilistic model: The joint distribution of all observed (here
y1:T ) and unobserved (here θ) variables.

Data distribution/likelihood: Distribution describing the observed
data conditioned on unobserved variables.

Prior distribution: Encodes initial assumptions on the unobserved
variables.

Posterior distribution: Conditional distribution of the unobserved
variables given the observed variables.
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