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Aim of this course

Aim: To provide an introduction to the theory and application of
sequential Monte Carlo (SMC) methods.
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Aim of this course

Aim: To provide an introduction to the theory and application of
sequential Monte Carlo (SMC) methods.

After the course you should be able to derive your own SMC-based
algorithms allowing you to do inference in nonlinear models.

Day 1-3: Focus on state space models (SSMs). How to learning them
from data and how to estimate their hidden states.

Day 4-5: Using SMC for inference in general probabilistic models.
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Ex) Indoor positioning (engineering)

Aim: Compute the position of a person moving around indoors using
variations in the ambient magnetic field and the motion of the
person (acceleration and angular velocities). All of this observed
using sensors in a standard smartphone.
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Ex) Indoor positioning (engineering)

Key ingredients of the solution:

1. The particle filter for computing the position

2. The Gaussian process for building and representing the map of
the ambient magnetic field

3. Inertial sensor signal processing
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Key ingredients of the solution:

1. The particle filter for computing the position

2. The Gaussian process for building and representing the map of
the ambient magnetic field

3. Inertial sensor signal processing

Movie — map making: www.youtube.com/watch?v=enlMiUqPVJo

Movie — indoor positioning result
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Key ingredients of the solution:

1. The particle filter for computing the position

2. The Gaussian process for building and representing the map of
the ambient magnetic field

3. Inertial sensor signal processing

Movie — map making: www.youtube.com/watch?v=enlMiUqPVJo

Movie — indoor positioning result

Arno Solin, Simo Sarkkd, Juho Kannala and Esa Rahtu. Terrain navigation in the magnetic landscape: Particle filtering for indoor
positioning. Proc. of the European Navigation Conf. (ENC), Helsinki, Finland, June, 2016.

Arno Solin, Manon Kok, Niklas Wahlstrom, Thomas B. Schon and Simo Sarkka. Modeling and interpolation of the ambient magnetic
field by Gaussian processes. IEEE Trans. on Robotics, 34(4):1112-1127, 2018.

Carl Jidling, Niklas Wahlstrom, Adrian Wills and Thomas B. Schon. Linearly constrained Gaussian processes. Advances in Neural
@ Information Processing Systems (NIPS), Long Beach, CA, USA, December, 2017.
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Ex) Epidemiological modelling (statistics)

Aim: To learn a model explaining the seasonal influenza epidemics
and then make use of this model to compute predictions.
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Ex) Epidemiological modelling (statistics)

Aim: To learn a model explaining the seasonal influenza epidemics
and then make use of this model to compute predictions.

Susceptible/infected/recovered (SIR) model:

Strar = St + pPdt — pSedt — (14 Fvi) B:SeP et
levge = It — (v + p)ledt + (14 Fve) B:SeP ' ledt,
Ritar = Re + 7ledt — pRedt,

Bt = Ro(y + p)(1+ asin(27t/12)),

Measurements:

Vi = plogit(ly/P) + er,  ex ~N(0,0%).
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Ex) Epidemiological modelling (statistics)

Aim: To learn a model explaining the seasonal influenza epidemics
and then make use of this model to compute predictions.

Susceptible/infected/recovered (SIR) model:

Strar = St + pPdt — pSedt — (14 Fvi) B:SeP et
levge = It — (v + p)ledt + (14 Fve) B:SeP ' ledt,
Ritar = Re + 7ledt — pRedt,

Bt = Ro(y + p)(1+ asin(27t/12)),

Measurements:
Vi = plogit(lp/P) + e, er ~ N(0,07).

Information about the unknown parameters 6 = (v, Ro, o, F, p, o) and
states x; = (St, It, R) has to be learned from measurements.
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Ex) Epidemiological modelling (statistics)

Compute p(é,x1.7 | ya.7), where yi.r = (1, V2, ..., yr) and use it to
compute the predictive distribution.
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Disease activity (number of infected individuals I¢) over an eight year
period.

Fredrik Lindsten, Michael I. Jordan and Thomas B. Schon. Particle Gibbs with ancestor sampling. Journal of Machine Learning Research
(JMLR), 15:2145-2184, June 2014.
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Ex) Probabilistic programming (machine learning)

A probabilistic program encodes a probabilistic model according to
the semantics of a particular probabilistic programming language,
giving rise to a programmatic model.
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A probabilistic program encodes a probabilistic model according to
the semantics of a particular probabilistic programming language,
giving rise to a programmatic model.

The memory state of a running probabilistic program evolves
dynamically and stochastically in time and so is a stochastic process.

SMC is a common inference method for

programmatic model. x - Bernoulli(p);  assume()
if () { value(z)
Creates a clear separation between the y-u©D;  assume(y)

} else {

model and the inference methods. Opens up
for the automation of inference!

y <- 0;
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Ex) Probabilistic programming (machine learning)

A probabilistic program encodes a probabilistic model according to
the semantics of a particular probabilistic programming language,
giving rise to a programmatic model.

The memory state of a running probabilistic program evolves
dynamically and stochastically in time and so is a stochastic process.

SMC is a common inference method for

programmatic model. x - Bernoulli(p);  assume()
if () { value(z)
Creates a clear separation between the y-u©D;  assume(y)

} else {

model and the inference methods. Opens up
for the automation of inference!

y <- 0;

More during lecture 17.
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Course structure — overview

- 17 lectures (45 min. each)
- Credits offered: 6ECTS (Swedish system)
- Practicals (solve exercises and hand-in assignments, discuss
and ask questions)
- Discussions (discuss concepts)
- Hand-in assignments. You can collaborate, but the reports with
the solutions are individual.
- One set to be done between day 2 and 3
- One set to be done after day 5
- Complete course information (including lecture slides) is
available from the course website: https:
//www.ida.liu.se/divisions/stima/fokurser/smc2025/
- Feel free to ask questions at any time!

The only way to really learn something is by
implementing it on your own.
122



https://www.ida.liu.se/divisions/stima/fokurser/smc2025/
https://www.ida.liu.se/divisions/stima/fokurser/smc2025/

Outline - 5 days

Day 1 - Probabilistic modelling and particle filtering basics
a) Probabilistic modelling of dynamical systems and filtering
b) Introduce Monte Carlo and derive the bootstrap particle filter

Day 2 - Particle filtering
a) Auxiliary particle filter, full adaptation and practicalities

Day 3 - Parameter learning
a) Maximum likelihood parameter learning, convergence

Day 4 — Bayesian parameter learning
a) Particle Metropolis Hastings
b) Particle Gibbs

Day 5 - Beyond state space models (outlooks)
a) General target sequences and SMC samplers
b) Diffusion models
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Outline - Lecture 1

Aim: Introduce the course and provide background on probabilistic
modelling.

Outline:

1. Course introduction and practicalities
. Probabilistic modelling
. Key probabilistic objects

B~ W N

. Ex. probabilistic autoregressive modelling (if there is time)
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Probabilistic modelling




Modelling

Mathematical model: A compact representation—set of
assumptions—of the data that in precise mathematical form
captures the key properties of the underlying situation.
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Most of the course (day 1-3) is concerned with dynamical
phenomena. The methods are more general than that and during
the last day we will broaden the scope significantly.

Dynamical phenomena produce temporal measurements (data)
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Modelling

Mathematical model: A compact representation—set of
assumptions—of the data that in precise mathematical form
captures the key properties of the underlying situation.

Most of the course (day 1-3) is concerned with dynamical
phenomena. The methods are more general than that and during
the last day we will broaden the scope significantly.

Dynamical phenomena produce temporal measurements (data)
arriving as a sequence

Vie = (V1. Y2, -, Vi)

Nice introduction to probabilistic modelling in Machine Learning

Ghahramani, Z. Probabilistic machine learning and artificial intelligence. Nature 521:452-459, 2015.
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Representing and modifying uncertainty

It is important to maintain a solid representation of uncertainty in all
mathematical objects and throughout all calculations.
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The two basic rules from probability theory

Let X and Y be continuous random variables’. Let p(-) denote a
general probability density function.

1. Marginalization (integrate out a variable): p(x) = [ p(x, y)dy.
2. Conditional probability: p(x,y) = p(x|y)p(V).

"Notation: Upper-case letters for random variables (rv.) X when we talk about
models. Lower-case letters for realizations of the rv, X = x and in algorithms. We will
not use bold face for vectors.
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The two basic rules from probability theory

Let X and Y be continuous random variables’. Let p(-) denote a
general probability density function.

1. Marginalization (integrate out a variable): p(x) = [ p(x, y)dy.
2. Conditional probability: p(x,y) = p(x|y)p(V).

Combine them into Bayes' rule:

py[x)p(x) — ply[x)p(x)

p(y) I p(y[x)p(x)dx

p(xly) =

"Notation: Upper-case letters for random variables (rv.) X when we talk about
models. Lower-case letters for realizations of the rv, X = x and in algorithms. We will
not use bold face for vectors.

12/22



Basic variables classes

Measurements yy.r = (V1,Y2,...,Y7): The measured data somehow
obtained from the phenomenon we are interested in.
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Basic variables classes

Measurements yy.r = (V1,Y2,...,Y7): The measured data somehow
obtained from the phenomenon we are interested in.

Unknown (static) model parameters 6: Describes the model, but
unknown (or not known well enough) to the user.

Unknown model variables x; (changing over time): Describes the
state of the phenomenon at time t (in the indoor positioning
example above x; includes the unknown position).

Explanatory variables u: Known variables that we do not bother to
model as stochastic.

A key task is often to learn # and/or x; based on the available
measurements yy.1.
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Key probabilistic objects

For models involving measurements Y and unknown static parame-
ter 0
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Key probabilistic objects

For models involving measurements Y and unknown static parame-
ter 0

Full probabilistic model: The joint model of the data and parameters.

p(0,y) = p(y|0)p(9)

Likelihood function: £(6;y) =p(Y =y |0)

Posterior distribution: Condition on y instead of 6.

_po,y) p(y|0)
POY="00) = Tolv|9)p(@)de

Prediction: A statement about a future event y that has not been

observed. 1422
S r r



Computational problems

The problem of learning a model based on data leads to
computational challenges, both
- Integration: e.g. the high-dimensional integrals arising during
marg. (averaging over all possible parameter values 6):

p(yrr) = /P(%:Tl@)p(ﬁ)de.

- Optimization: e.g. when extracting point estimates, for example
by maximizing the posterior or the likelihood

0 = arg max p(yr7|0)
0
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Computational problems

The problem of learning a model based on data leads to
computational challenges, both

- Integration: e.g. the high-dimensional integrals arising during
marg. (averaging over all possible parameter values 6):

p(yrr) = /P(%:Tl@)p(ﬁ)de.

- Optimization: e.g. when extracting point estimates, for example
by maximizing the posterior or the likelihood

0 = arg max p(yr7|0)
0

Typically impossible to compute exactly, use approximate methods

- Monte Carlo (MC), Markov chain MC (MCMC), and sequential MC
(SMCQ).

- Variational inference (VI).
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Probabilistic autoregressive
model




Probabilistic autoregressive model

An autoregressive model of order n is given by
Ye=AMAYiqg + Ao+ o+ AV + B, B~ N(p, 77T

where 1 and 7 are known explanatory variables (i = 0,7 # 0).
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Probabilistic autoregressive model

An autoregressive model of order n is given by
Ye=AMAYiqg + Ao+ o+ AV + B, B~ N(p, 77T

where 1 and 7 are known explanatory variables (i = 0,7 # 0).

The unknown model variables are collected as
0= (A, Az, ..., An)T
with the prior

0~ N(0,p ), where p assumed to be known.

Task: Compute the posterior p(@|yy.7).
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Probabilistic autoregressive model

Full probabilistic model p(8,y1.7) = p(ya.7 | 0)p(0), where the data
distribution is given by

.
p(yrr10) = pyr |Var—1,0)p(yar—10) = --- = [ [ p(ve | V-1, 0
t=1
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Probabilistic autoregressive model

Full probabilistic model p(8,y1.7) = p(ya.7 | 0)p(0), where the data
distribution is given by

—

p(yrr10) = pyr |Var—1,0)p(yar—10) = --- = [ [ p(ve | V-1, 0

t=1
From the model we have that
P(Ve | Vrit—1,0) = N(v: 0"z, 77"),

where Zy = (Ye_1, Ye_2,...,Ye_n)". Hence,

T

par|0) =[N (v |07z, 77") = N (y| 20,77 "r)

t=1

where we have made use of Y = (Y4, Y2, ..., Y7)T and
Z=(Z1, 2o, Z0).
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Probabilistic autoregressive model

p(0,y) =N (y|z0,7 1) N (00,0 "I5)

p(y10) p(6)

_ 0 0\ (p7' p~'z"
B y 0) ' \p7'z 77 +p 'z '
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Probabilistic autoregressive model

p(0,y) =N (y|z0,7 1) N (00,0 "I5)

p(y [ 6) p(6)
_ 0 0\ (p7' p~'z"
B y 0) ' \p7'z 77 +p 'z '

The posterior is given by
p(@ly) =N(0|mr,57),

where
_ T
mr =7S57z'y,

St = (,0_1/2 + O'ZTZ)T.

18/22



Ex) Situation before any data is used

Yt = A1Yt_1 +A2Yt_2 + Eu Et ~ N(O, 02)

Prior 7 samples from the prior

White dot - true value for § = (0.6, 0.2).
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Ex) Situation after y;., and y;.0

7 samples from the

Likelihood Posterior .
posterior
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A few concepts to summarize lecture 1

Mathematical model: A compact representation—set of
assumptions—of some phenomenon of interest.

Probabilistic modelling: Provides the capability to represent and
manipulate uncertainty in data, models, decisions and predictions.

Full probabilistic model: The joint distribution of all observed (here
y1.7) and unobserved (here ) variables.

Data distribution/likelihood: Distribution describing the observed
data conditioned on unobserved variables.

Prior distribution: Encodes initial assumptions on the unobserved
variables.

Posterior distribution: Conditional distribution of the unobserved
variables given the observed variables.
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