
Hand-in assignments
PhD course on Sequential Monte Carlo methods 2025

Linköping University

February 3, 2025

Deadline (in order for to get your course certificate on time): 31 March 2025.

Before 26/2 You should have tried to solve exercise H.2 before 26/2.

Instructions: Hand in your solutions (including plots etc) to all problems in this document compiled as one PDF
to johan.alenlov@liu.se, with topic SMC2025:Homework. You should also append your implementation
(written in a suitable language of your choice, e.g., Matlab, R, Python or Julia) as a zip-file (or similar) to the e-mail.
There should, however, be no need to read the code in order to grade your solution, i.e. the pdf should contain all
important derivations and results, as well as important design choices made in the implementation. (You should not
hand in solutions to the exercise problems in the documents named "Exercises".)

H.1 Importance sampling theory

(a) Consider importance sampling with proposal q(x) and target π(x) = π̃(x)
Z . Show that Ẑ = 1

N

∑N
i=1

π̃(Xi)
q(Xi)

(where Xi are independent random variables distributed according to q) is an unbiased estimator of the nor-
malizing constant Z. [2p]

(b) Under appropriate conditions, the importance sampling normalization constant estimator will satisfy a central
limit theorem,

√
N

(
Ẑ

Z
− 1

)
d−→ N

(
0,

∫
π(x)2

q(x)
dx− 1

)
.

Consider importance sampling with target π(x) = N (x | 0, 1) and proposal q(x) = N (x | 0, λ−1). What is
the condition on λ for the asymptotic variance of the normalization constant estimator to be finite? Interpret
the result. [3p]

H.2 Particle filter for a linear Gaussian state-space model

Consider the following scalar linear Gaussian state-space model

Xt = 0.5Xt−1 + Vt, Vt ∼ N (0, 1), (1a)
Yt = 1.3Xt + Et, Et ∼ N (0, 0.1). (1b)

Let the initial state be distributed according to X0 ∼ N (0, 1).

(a) Write this model in the form

Xt | (Xt−1 = xt−1) ∼ p(xt |xt−1), (2a)
Yt | (Xt = xt) ∼ p(yt |xt). (2b)

In other words, find the probability density functions p(xt |xt−1) and p(yt |xt) in (2) corresponding to the
model (1). Simulate the model to produce T = 2000 synthetic measurements y1:T . [1p]

1

johan.alenlov@liu.se

(b) Since this is a linear Gaussian state-space model, an analytical solution for p(xt | y1:t) (t = 1, . . . , T) exists
and is given by the Kalman filter. The Kalman filter for a model

Xt = AXt−1 + Vt, Vt ∼ N (0, Q), (3a)
Yt = CXt + Et, Et ∼ N (0, R), (3b)
X0 ∼ N (0, P0). (3c)

is given by the recursions

x̂t | t = Ax̂t−1 | t−1 +Kt(yt − CAx̂t−1 | t−1), (4a)

P̂t | t = P̂t | t−1 −KtCP̂t | t−1, (4b)
with

P̂t | t−1 = AP̂t−1 | t−1A
T +Q, (4c)

Kt = P̂t | t−1C
T (CP̂t | t−1C

T +R)−1, (4d)

P̂0 | 0 = P0, (4e)
x̂0 | 0 = 0, (4f)

from which the filtering density is given by p(xt | y1:t) = N (xt | x̂t | t, P̂t | t). Implement this recursion, and
compare the mean of p(xt | y1:t) against the “true” state trajectory (which is available since you have simulated
the data yourself) in a plot. Can you in general expect the mean of the particle filter estimate of p(xt | y1:t) to
be closer to the "true" trajectory than the Kalman filter? Why/why not? [2p]

(c) Implement the bootstrap particle filter (with multinomial resampling) and compare its mean and variance
estimates to the Kalman filter results. (Compare the mean and variance of p(xt | y1:t) for each time step
t = 1, . . . , T , and report the average absolute difference.) Report the results for N = 10, 50, 100, 2000, 5000
numbers of particles in the form of a table. [4p]

Hint: For a correct particle filter implementation, you can expect the error to vanish as N → ∞.

(d) Derive the expressions for the locally optimal proposals

νit−1 = p(yt |xi
t−1), i = 1, . . . , N, (resampling weights)

q(xt |xt−1, yt) = p(xt |xt−1, yt), (propagation proposal)

for the model given in (1). Implement the fully adapted particle filter and run it on the same simulated data
as above. Compute the errors compared to the Kalman filter (as you did for the bootstrap particle filter), and
compare it to the errors for the bootstrap particle filter (using the same number of particles N). Which method
seems better? [3p]

(e) Run the fully adapted particle filter using N = 100 particles. Compute the trajectories {xi
0:T }Ni=1 by tracing

the particle genealogy from time T back to time1 0. Plot all the N = 100 trajectories in one figure. [2p]

(f) Change the resampling method to systematic resampling, rerun the method and plot the particle genealogy
again. Do you see any changes, and if so, why? [2p]

(g) Add adaptive resampling with an ESS trigger of N/2 = 50. Rerun the method and plot the particle genealogy
and NESS/N as a function of time. Comment on the result. [2p]

1The plot might be hard to read if you plot from 0 to T = 2000. If you prefer, you can plot only a certain interval, as long as the path degeneracy
situation is clear from your plot.

2

H.3 Parameter estimation in the stochastic volatility model

Consider the so-called stochastic volatility model

Xt|(Xt−1 = xt−1) ∼ N (xt |φxt−1, σ
2), (5a)

Yt|(Xt = xt) ∼ N (yt | 0, β2 exp(xt)), (5b)

where the parameter vector is given by θ = {φ, σ, β}. Here, Xt denotes the underlying latent volatility (the
variations in the asset price) and Yt denotes the observed scaled log-returns from some financial asset. The
T = 500 observations that we consider in this task are log-returns from the NASDAQ OMX Stockholm 30 Index
during a two year period between January 2, 2012 and January 2, 2014. We have calculated the log-returns by
yt = 100[log(st) − log(st−1)], where st denotes the closing price of the index at day t. The data is found in
seOMXlogreturns2012to2014.csv. For more details on stochastic volatility models, see e.g. [1, 2].

(a) Let φ be unknown, and assume the other parameters are σ = 0.16 and β = 0.70. Make a reasonably coarse
grid for φ between 0 and 1, and use the bootstrap particle filter to estimate the log-likelihood for each of these
values of φ. Compute 10 estimates for each grid point and plot all of them in one figure as, e.g., boxplots (φ
on the horizontal axis, log-likelihood estimates on the vertical axis). [3p]

(b) Assume now instead that the variance parameters σ2 and β2 are unknown, whereas φ = 0.985 is assumed to
be known. We consider a Bayesian setting and place inverse Gamma priors on the parameters:

σ2 ∼ IG(a = 0.01, b = 0.01), (6a)

β2 ∼ IG(a = 0.01, b = 0.01), (6b)

where the inverse Gamma pdf with parameters (a, b) is given by

IG(x | a, b) = ba

Γ(a)
x−a−1 exp

(
− b

x

)
(7)

and where Γ(·) is the Gamma function.

Implement the PMH algorithm to compute the posterior distribution p(σ2, β2 | y1:T), using a Gaussian random
walk proposal. Report the marginal distributions (e.g., histograms) for the two parameters. [4p]

Hint: The priors are only supported on the positive real line. Thus, if a negative value is proposed for any
of the two parameters, this can be rejected without having to compute a likelihood estimate. There are better
ways of handling parameter constraints, but for simplicity we will not consider them here.

Note: Be aware that the parametrization of the Gamma and inverse Gamma distribution is not completely
standardized, and different software packages use different conventions.

Note: The priors are rather vague (in fact, they do not even have a finite variance), and samples from the
prior can take quite large values. Not, however, that you never have to sample from the prior!

(c) Implement a particle Gibbs sampler for the same task as in the previous problem. Note that the inverse Gamma
prior is conjugate to the model (5). Thus, the full conditional distributions for the parameters are available in
closed form:

p(σ2 |x0:T , y1:T) = p(σ2 |x0:T) = IG

(
σ2 | a+

T

2
, b+

1

2

T∑
t=1

(xt − φxt−1)
2

)
, (8a)

p(β2 |x0:T , y1:T) = IG

(
β2 | a+

T

2
, b+

1

2

T∑
t=1

exp(−xt)y
2
t

)
(8b)

[4p]

Hint: Both PMH and particle Gibbs are consistent MCMC samplers. Thus, as a sanity check you should make
sure that both algorithms find the same posterior distributions if run for a large number of MCMC iterations.

Hint: Don’t forget to discard the transient phase (the “burn-in”) of the MCMC chains.

3

H.4 SMC sampler

Consider a pdf2 on the unit square in R2,

π(x) =
1

Z
1(−1 ≤ x1 ≤ 1)1(−1 ≤ x2 ≤ 1) sin2(x1π) cos

8(x22π) exp(−5(x2
1 + x2

2)) (9)

where x = (x1, x2). Implement an SMC sampler to sample from π(x) and to estimate the normalizing constant
Z. Use N = 100 particles and an appropriately chosen annealing sequence of K steps, such that it is possible
to sample exactly from the initial distribution in the sequence. Use ESS-triggered resampling (threshold 0.7N)
and select the annealing sequence in such a way that the average number of SMC iterations between consecu-
tive resampling steps is in the order of 10. As a proposal in Metropolis-Hastings, use a Gaussian random walk
independent in each dimension with variance 0.022, or similar. Report the results by:

(a) Plotting the locations of the particles at initialization, at the final iteration, and at two arbitrarily chosen
intermediate iterations (or, if you prefer, make an animation over k). [4p]

(b) Plot the ESS as a function of iteration number k. What happens with the ESS when a resampling is triggered?
[2p]

(c) Reporting the estimate of the normalizing constant Z. [2p]

References
[1] Marc Chesney and Louis Scottt. “Pricing European currency options: A comparison of the modified Black-

Scholes model and a random variance model”. In: Journal of financial and quantitative analysis 24.3 (1989),
pp. 267–284.

[2] Angelo Melino and Stuart M. Turnbull. “Pricing foreign currency options with stochastic volatility”. In: Journal
of Econometrics 45.1–2 (1990), pp. 239–265.

2The symbol π used in the argument to the trigonometric functions is the constant 3.14 . . . , not the target distribution.

4

