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This document contains exercises to make you familiar with the content of the course. The exercises in this document
are not mandatory, and you do not need to hand in your solutions. The mandatory assignment is found in a separate
document named "Hand-in". We strongly recommend that you carefully work through these exercises before starting
with the mandatory assignments.

IV.1 Particle Metropolis-Hastings

Consider the following state-space model

xt = cos(θxt−1) + vt, vt ∼ N (0, 1) (1a)
yt = xt + et, et ∼ N (0, 1) (1b)
x0 ∼ N (0, 1). (1c)

Generate T = 50 data points y1:T from this model with θ = 1, and then pretend that you forgot the true value of
θ, but assume that you drew it from N (0, 1). Use particle Metropolis-Hastings to infer the posterior distribution
of θ, p(θ | y1:T ), as follows:

(a) Implement a particle filter of your choice to deliver an estimate ẑθ of the likelihood p(y1:T | θ).

(b) Design a proposal q(θ′ | θ[k − 1]) for θ′ as, e.g., a Gaussian random walk on θ-space.

(c) Implement a Metropolis-Hastings sampler, where the acceptance ratio is computed as

min

(
1,

ẑθ′

ẑθ[k−1]

p(θ′)

p(θ[k − 1])

q(θ[k − 1] | θ′)
q(θ′ | θ[k − 1])

)
(2)

(p(θ) is the prior).

Note: the standard Metropolis-Hastings algorithm requires the target, in this case p(θ | y1:T ) ∝ p(y1:T | θ)p(θ),
to be evaluated exactly (up to proportionality). Here, however, we only have access to estimates ẑθ of p(y1:T | θ),
and the fact that this still works is depending on the so-called pseudo-marginal Metropolis-Hastings. The key
here is the unbiasedness of ẑθ.
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IV.2 Conditional particle filter

Return to any of the particle filter implementations you have done earlier, and turn it into a conditional particle
filter as follows:

• Introduce the concept of a reference state trajectory x1:T [k − 1]

• In each propagation step, use multinomial resampling but replace the propagation of the N :th particle xNt−1
(after resampling) to xNt by just taking xt[k − 1] from the reference state trajectory (instead of sampling
from p(xt |xNt−1)).

• After the final time step, t = T , sample a new reference trajectory x1:T [k] by sampling j from the categor-

ical distribution defined by {wiT }Nj=1, and take xjT and its ancestors xa
j
t

T−1 etc.

This is the particle Gibbs Markov kernel, which maps one reference state trajectory x1:T [k − 1] onto another
x1:T [k], which can be combined with sampling the unknown parameters in a Gibbs fashion (i.e., sample θ condi-
tional on x1:T [k − 1] as θ[k] ∼ p(θ |x1:T [k − 1])).

IV.3 Conditional importance sampling

(a) Implement an MCMC procedure to sample from π(x) = N (x | 1, 1) by using a conditional importance
sampling kernel with proposal q(x) = N (x | 0, 1). Verify that you get samples from the target in the long
run, even using N = 2 particles in the importance sampler.

(b) Consider a general conditional importance sampling kernel κN (x, x?) with target π(x), proposal q(x), and
with N = 2 samples. The method is then very similar to a Metropolis–Hastings sampler, with a proposal
distribution which is independent of the current state of the Markov chain. The reason is that each iteration
of the sampler involves generating a single sample from the proposal x1 ∼ q(x) (since N −1 = 1). The next
state of the Markov chain will either be equal to this proposed sample (acceptance, x? = x1), or the previous
state of the Markov chain is retained (rejection, x? = x).

Compute the “acceptance probability” α(x, x1) = P
(
x? = x1|x, x1

)
of this conditional importance sampler,

and show that the kernel satisfies detailed balance,

α(x, x1)q(x1)π(x) = α(x1, x)q(x)π(x1).

(c) Show that the acceptance probability of conditional importance sampling with N = 2 (computed in the
previous exercise) is bounded from above by the acceptance probability of the independent Metropolis–
Hastings sampler using the same proposal.

Note: This means that Metropolis–Hastings is more efficient (accepts more frequently) than conditional
importance sampling with N = 2. The benefit of conditional importance sampling is that it enables us to use
N > 2 and still obtain a valid MCMC kernel. This means that we can propose many (N − 1, to be specific)
new samples in parallel, and the probability of moving away from the current state of the Markov chain can
be made arbitrarily large by increasing N .

IV.4 Conditional importance sampling: proof of validity The conditional importance sampling kernel κN (x, x?)
has π(x) as its stationary distribution for any N ≥ 1. For N = 1 the result is trivial. For N = 2 it follows from
the detailed balance condition derived above. However, proving the result for arbitrary N requires a different
approach that we will investigate in this exercise.

We will carry out the proof for a slightly different algorithm than the one presented in the lecture, which however
is probabilistically equivalent. This modification makes the proof simpler.

The modified algorithm is as follows: Given x,
Step 1:

• Draw b ∼ U({1, . . . , N})

• Set xb = x (input state)

• Draw xi ∼ q(x), i ∈ {1, . . . , N} \ {b}
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• Compute w̃i = π̃(xi)/q(xi), i = 1, . . . , N and normalize

Step 2:

• Draw b? ∼ C({wi}Ni=1)

• Output x? = xb
?

(a) Make sure that you understand that the procedure above generates a draw from the conditional importance
sampling kernel κN (x, x?)!

(b) To prove that π(x) is a stationary distribution of κN (x, x?) we will treat the “internal” random variables
(b, {xi}i 6=b), generated by the procedure above, as auxiliary variables. Assume that the input state x is
distributed according to π(x). Then, what is the (marginal) distribution of the random variables (x1:N , b)
after completing Step 1 of the procedure above? This distribution, which we can denote by π(x1:N , b), is
often referred to as the extended target.

(c) Verify that Step 2 of the sampling procedure corresponds to a Gibbs step for the extended target, b? ∼
π(b |x1:N ).

(d) Still assuming that x ∼ π(x), what is the (marginal) distribution of the random variables (x1:N , b?) after
completing Steps 1–2 of the sampling procedure above? Specifically, what is the marginal distribution of the
output variable x? = xb

?

?

(e) The conclusion from the exercises above is (hopefully!) that the conditional importance sampling kernel
κN (x, x?) has π(x) as a stationary distribution. However, for it to be a valid MCMC kernel, we also need it
to be ergodic. In this and the next exercise we look into the ergodicity of the kernel.

Let A ⊂ X . Note that we can write
∫
A
κN (x, x?)dx?, i.e. the probability that a draw from the conditional

importance sampling kernel falls in A, as:∫
A

κN (x, x?)dx? = E

[∑N
i=1 1(X

i ∈ A)ω(Xi)∑N
j=1 ω(X

j)

]

Assume that ω(x) ≤ c and verify that

E

[∑N
i=1 1(X

i ∈ A)ω(Xi)∑N
j=1 ω(X

j)

]
≥
(
1− 1

1 + d(N − 1)

)∫
A

π(x)dx

for some constant d.

This is referred to as a minorization of the conditional importance sampling kernel.

(f) Using the minorization condition, show that we can decompose

κN (x, x?) = (1− εN )π(x?) + εNrN (x, x?) (3)

for some constant εN < 1 and Markov kernel rN (x, x?). Furthermore, let xm denote the m’th step of a
Markov chain with kernel κN (x, x?), now prove that

|P(Xm ∈ A)− π(A)| ≤ εmN ,

for arbitrary initial state x.

Hint: Consider runing two copies of the Markov chain with kernel κN . By using (3) one joint step of these
two Markov chains can be done in the following way:

(1) Flip an εN coin, a coin showing head w.pr. εN .

(2) If head, draw independently for each chain a new position using rN .
If tails, draw a position from π and couple the two chains, i.e. in the future the two chains will always
be at the same position.
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Study the individual chains, do they evolve according to κN? What is the probability that the two chains are
different? Use this to prove the bound.

IV.5 An SMC sampler for localization

We want to localize an object positioned at x0 in the world [−12, 12]2, as illustrated in Figure 1. We have access to
a bunch of measurements y1:M of the position, corrupted by heavy-tail noise. As the measurements are corrupted
by heavy-tailed noise from the exponential distribution, we are not really interested in just a point estimate of x0,
but instead we want the entire posterior distribution p(x0|y1:M ) of its position, reflecting the uncertainty inherent
in the problem.

-12,12 12,12

12,-12-12,-12

x0

Figure 1: Illustration of our world [−12, 12]2, with the true position x0 indicated using a red circle.

(a) Prepare code for simulating M independent measurements from the following model

y1t = x10 + n1mb
1
m, (4a)

y2t = x20 + n2mb
2
m, (4b)

for m = 1, . . . ,M , where x10 and x20 are the components of x0, and n1m and n2m are exponentially distributed
with scale parameter 2, and P

(
b1m = 1

)
= P

(
b1m = −1

)
= 1

2 and similarly for b2m.

(b) Prepare code for evaluating the density p(ym |x0) based on the definitions above. This defines the likelihood
in your problem, p(y1:m |x0) =

∏M
m=1 p(ym |x0).

(c) Based on our background knowledge on the problem, you know that a reasonable prior for the position x0 is
the following,

p(x0) = N
(
x0 |

[
0
0

]
,

[
7 0
0 7

])
. (5)

Design a likelihood tempered transition π0, . . . , πP from the prior π0(x0) = p(x0) to the posterior πP (x0) =
p(x0|Y ) ∝ p(x0)

∏T
t=1 p(yt|x0).

(d) Implement a πn-invariant Metropolis-Hastings (MH) kernel based on a random walk proposal.

(e) Put everything together in an SMC sampler .

*There are alternative ways to update the particle weights in an SMC sampler. The easiest is probably to set
the weight of particle xin−1 as πn(xin−1)/πn−1(x

i
n−1) [1, eq. (31)].

(f) Test your algorithm by making sure that it converges to something close to x0 when, say, N = 100 particles
andM = 50 measurements are used. Make plots to follow the evolution of the particles in the SMC sampler,
such as
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The black dots are the particles, the red circle is the true position of x0 and the contours are proportional to
πn, for n = 1, . . . , 10.

(g) Make a comparison between the SMC sampler and simply using the Metropolis-Hastings sampler to sample
from π.

(h) OPTIONAL. To make the problem we are solving more interesting, assume another measurement model.
Instead of measuring the objects absolute position, we are now measuring its relative distance to some sensors
sj ,

yj = ‖x0 − sj‖+ n, (6)

where n still is exponentially distributed, and sj denotes the coordinates for sensor j. That is, the distance
between the sensor and the object is known (except for the noise), but not the angle.

Update your code using this measurement model instead. What does the posterior look like for the case of
only one sensor in the origin? What about multiple sensors with different locations? How well is the SMC
sampler doing in each scenario, respectively?
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