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This document contains exercises to make you familiar with the content of the course. The exercises in this document
are not mandatory, and you do not need to hand in your solutions. The mandatory assignment is found in a separate
document named "Hand-in". We strongly recommend that you carefully work through these exercises before starting
with the mandatory assignments.

II.1 Likelihood estimates for the stochastic volatility model

Consider again (cf. I.4) the stochastic volatility model

xt|xt−1 ∼ N (xt;φxt−1, σ
2), (1a)

yt|xt ∼ N (yt; 0, β
2 exp(xt)), (1b)

where the parameter vector is given by θ = {φ, σ, β} and the data is found in seOMXlogreturns2012to2014.csv.

(a) Let β be unknown, and assume the other parameters are φ = 0.98 and σ = 0.16. Make a reasonably coarse
grid for β between 0 to 2, and implement the bootstrap particle filter to estimate the likelihood for each of
these values of β. Run the particle filter 10 times for every parameter combination, and present the result as a
box plot similar to this:

For numerical reasons, it is usually better to consider the log likelihood, i.e., the logarithm of (10)

log p̂(y1:T ) = log

T∏
t=1

1

N

N∑
i=1

p(yt |xit)︸ ︷︷ ︸
w̃i

t

=

T∑
t=1

(
log

N∑
i=1

w̃i
t − logN

)
. (2)

It is, however, important to realize that E [p̂(y1:T )] = p(y1:T ) does not imply E [log p̂(y1:T )] = log p(y1:T )!

(b) Study how N and T affects the variance in the log likelihood estimate.

(c) Remove the resampling step from your particle filter algorithm, and study its effect on the variance of the
estimator.
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II.2 Fully adapted particle filter

(a) Motivate for each of these model why it is/is not possible to implement the fully adapted particle filter for it.

(i)

xt+1 = 0.4xt + vt, vt ∼ N (0, 1), (3)
yt = −0.5xt + et et ∼ U([−2, 2]). (4)

(ii)

xt+1 = cos(xt)
2 + vt, vt ∼ N (0, 1), (5)

yt = 2xt + et et ∼ N (0, 0.01). (6)

(iii)

xt+1 = cos(xt + vt)
2, vt ∼ N (0, 1), (7)

yt = 2xt + et et ∼ N (0, 0.01). (8)

(b) Implement the fully adapted particle filter for model (ii), and make a simulation study to compare the variance
in the estimates of E[Xt | y1:t] to the estimates obtained by a bootstrap particle filter.

II.3 Likelihood estimator for the APF.

The particle filter likelihood estimator is given by

p̂(y1:T ) =

T∏
t=1

{
1

N

∑
i

w̃i
t

}
(9)

For the bootstrap particle filter, given in Algorithm 1, a sketchy derivation of this estimator can be done as:

p(y1:T ) =

T∏
t=1

p(yt | y1:t−1) =

T∏
t=1

∫
p(yt |xt)p(xt | y1:t−1)dxt ≈

T∏
t=1

1

N

N∑
i=1

p(yt |xit)︸ ︷︷ ︸
w̃i

t

(10)

where the particles xit sampled at time t in the bootstrap particle filter (before weighting) can be viewed as ap-
proximately distributed according to the predictive distribution p(xt | y1:t−1).

However, the likelihood estimator (9) is valid for the general auxiliary particle filter, given in Algorithm 2, as
well. Derive this estimator for the auxiliary particle filter, in a similar fashion as was done above for the bootstrap
particle filter.

Hint: You need to take the auxiliary variables into account. That is, write the pdf p(yt | y1:t−1) as an integral over
(xt, at) (more precisely, an integral over xt and sum over at). Then interpret this integral as an expected value
with respect to the joint proposal used in the auxiliary particle filter.

N.B The expression (9) assumes that the weights are computed as stated in Algorithm 2, i.e. that the unnormalized
weights at time t, w̃t, are expressed in terms of the normalized weights at time t− 1, wt−1.
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Algorithm 1 Bootstrap particle filter (for i = 1, . . . , N )
(a) Initialization (t = 0):

i. Sample xi0 ∼ p(x0).
ii. Set initial weights: wi

0 = 1/N .
(b) for t = 1 to T do

i. Resample: sample ancestor indices ait ∼ C({w
j
t−1}Nj=1).

ii. Propagate: sample xit ∼ p(xt |x
ai
t

t−1).
iii. Weight: compute w̃i

t = p(yt |xit) and normalize wi
t = w̃i

t/
∑N

j=1 w̃
j
t .

Algorithm 2 Auxiliary particle filter (for i = 1, . . . , N )
(a) Initialization (t = 0):

i. Sample xi0 ∼ p(x0).
ii. Set initial weights: wi

0 = 1/N .
(b) for t = 1 to T do

i. Resample: sample ancestor indices ait ∼ C({ν
j
t−1}Nj=1).

ii. Propagate: sample xit ∼ q(xt |x
ai
t

t−1, yt).
iii. Weight: compute

w̃i
t =

w
ai
t

t−1

ν
ai
t

t−1

p(yt |xit)p(xit |x
ai
t

t−1)

q(xit |x
ai
t

t−1, yt)

and normalize wi
t = w̃i

t/
∑N

j=1 w̃
j
t .

II.4 Forgetting

Consider the bootstrap particle filter for the LGSS model

Xt = 0.7Xt−1 + Vt, Vt ∼ N (0, Q), (11a)
Yt = 0.5Xt + Et, Et ∼ N (0, 1). (11b)

Let the initial state be distributed according to X0 ∼ N (0, 1).

but modify the model to Q = 0 instead. What happens to the errors in the particle filter (compared to the Kalman
filter, the exact solution) along the time dimension? Specifically, run the particle filter, say, 100 times (using a
fixed N ) for the same data and compute the mean-squared-error of the test function ϕ(xt) = xt with respect to
the Kalman filter solution,

1

100

100∑
`=1

(
ÎPF,`
t,N (ϕ)− E[Xt | y1:t]

)2
for each time step t = 1, 2, . . . , where IPF,`

t,N (ϕ) is the estimate of E[Xt | y1:t] obtained from the `th run of the
particle filter. Is the particle filter stable?
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