# Exercises set II PhD course on Sequential Monte Carlo methods 2021

## Linköping University and Uppsala University

August 17, 2021

This document contains exercises to make you familiar with the content of the course. *The exercises in this document are not mandatory, and you do not need to hand in your solutions.* The mandatory assignment is found in a separate document named "Hand-in". We strongly recommend that you carefully work through these exercises before starting with the mandatory assignments.

#### II.1 Likelihood estimates for the stochastic volatility model

Consider again (cf. I.4) the stochastic volatility model

$$x_t | x_{t-1} \sim \mathcal{N}(x_t; \phi x_{t-1}, \sigma^2), \tag{1a}$$

$$y_t | x_t \sim \mathcal{N}(y_t; 0, \beta^2 \exp(x_t)), \tag{1b}$$

where the parameter vector is given by  $\theta = \{\phi, \sigma, \beta\}$  and the data is found in seOMXlogreturns2012to2014.csv.

(a) Let  $\beta$  be unknown, and assume the other parameters are  $\phi = 0.98$  and  $\sigma = 0.16$ . Make a reasonably coarse grid for  $\beta$  between 0 to 2, and implement the bootstrap particle filter to estimate the likelihood for each of these values of  $\beta$ . Run the particle filter 10 times for every parameter combination, and present the result as a box plot similar to this:



For numerical reasons, it is usually better to consider the log likelihood, i.e., the logarithm of (10)

$$\log \hat{p}(y_{1:T}) = \log \prod_{t=1}^{T} \frac{1}{N} \sum_{i=1}^{N} \underbrace{p(y_t \mid x_t^i)}_{\widetilde{w}_t^i} = \sum_{t=1}^{T} \left( \log \sum_{i=1}^{N} \widetilde{w}_t^i - \log N \right).$$
(2)

It is, however, important to realize that  $\mathbb{E}\left[\hat{p}(y_{1:T})\right] = p(y_{1:T})$  does not imply  $\mathbb{E}\left[\log \hat{p}(y_{1:T})\right] = \log p(y_{1:T})!$ 

- (b) Study how N and T affects the variance in the log likelihood estimate.
- (c) Remove the resampling step from your particle filter algorithm, and study its effect on the variance of the estimator.

### II.2 Fully adapted particle filter

- (a) Motivate for each of these model why it is/is not possible to implement the fully adapted particle filter for it.
  - (i)

$$x_{t+1} = 0.4x_t + v_t,$$
  $v_t \sim \mathcal{N}(0, 1),$  (3)

$$y_t = -0.5x_t + e_t$$
  $e_t \sim \mathcal{U}([-2,2]).$  (4)

(ii)

$$x_{t+1} = \cos(x_t)^2 + v_t,$$
  $v_t \sim \mathcal{N}(0, 1),$  (5)

$$y_t = 2x_t + e_t$$
  $e_t \sim \mathcal{N}(0, 0.01).$  (6)

(iii)

$$x_{t+1} = \cos(x_t + v_t)^2,$$
  $v_t \sim \mathcal{N}(0, 1),$  (7)

$$y_t = 2x_t + e_t$$
  $e_t \sim \mathcal{N}(0, 0.01).$  (8)

(b) Implement the fully adapted particle filter for model (ii), and make a simulation study to compare the variance in the estimates of  $\mathbb{E}[X_t | y_{1:t}]$  to the estimates obtained by a bootstrap particle filter.

#### II.3 Likelihood estimator for the APF.

The particle filter likelihood estimator is given by

$$\widehat{p}(y_{1:T}) = \prod_{t=1}^{T} \left\{ \frac{1}{N} \sum_{i} \widetilde{w}_{t}^{i} \right\}$$
(9)

For the bootstrap particle filter, given in Algorithm 1, a sketchy derivation of this estimator can be done as:

$$p(y_{1:T}) = \prod_{t=1}^{T} p(y_t \mid y_{1:t-1}) = \prod_{t=1}^{T} \int p(y_t \mid x_t) p(x_t \mid y_{1:t-1}) dx_t \approx \prod_{t=1}^{T} \frac{1}{N} \sum_{i=1}^{N} \underbrace{p(y_t \mid x_t^i)}_{\widetilde{w}_t^i}$$
(10)

where the particles  $x_t^i$  sampled at time t in the bootstrap particle filter (before weighting) can be viewed as approximately distributed according to the predictive distribution  $p(x_t | y_{1:t-1})$ .

However, the likelihood estimator (9) is valid for the general auxiliary particle filter, given in Algorithm 2, as well. Derive this estimator for the auxiliary particle filter, in a similar fashion as was done above for the bootstrap particle filter.

*Hint:* You need to take the auxiliary variables into account. That is, write the pdf  $p(y_t | y_{1:t-1})$  as an integral over  $(x_t, a_t)$  (more precisely, an integral over  $x_t$  and sum over  $a_t$ ). Then interpret this integral as an expected value with respect to the joint proposal used in the auxiliary particle filter.

*N.B The expression* (9) assumes that the weights are computed as stated in Algorithm 2, i.e. that the unnormalized weights at time t,  $\tilde{w}_t$ , are expressed in terms of the normalized weights at time t - 1,  $w_{t-1}$ .

**Algorithm 1** Bootstrap particle filter (for i = 1, ..., N)

(a) Initialization (t = 0):

i. Sample x<sub>0</sub><sup>i</sup> ~ p(x<sub>0</sub>).
ii. Set initial weights: w<sub>0</sub><sup>i</sup> = 1/N.

(b) for t = 1 to T do

i. Resample: sample ancestor indices a<sub>t</sub><sup>i</sup> ~ C({w<sub>t-1</sub><sup>j</sup>}<sub>j=1</sub>).
ii. Propagate: sample x<sub>t</sub><sup>i</sup> ~ p(x<sub>t</sub> | x<sub>t-1</sub><sup>a<sub>t</sub><sup>i</sup></sup>).
iii. Weight: compute w<sub>t</sub><sup>i</sup> = p(y<sub>t</sub> | x<sub>t</sub><sup>i</sup>) and normalize w<sub>t</sub><sup>i</sup> = w<sub>t</sub><sup>i</sup>/∑<sub>i=1</sub><sup>N</sup> w<sub>t</sub><sup>j</sup>.

Algorithm 2 Auxiliary particle filter (for i = 1, ..., N)

(a) **Initialization** (t = 0):

i. Sample  $x_0^i \sim p(x_0)$ .

- ii. Set initial weights:  $w_0^i = 1/N$ .
- (b) for t = 1 to T do
  - i. **Resample:** sample ancestor indices  $a_t^i \sim C(\{\nu_{t-1}^j\}_{j=1}^N)$ .
  - ii. **Propagate:** sample  $x_t^i \sim q(x_t | x_{t-1}^{a_t^i}, y_t)$ .
  - iii. Weight: compute

$$\widetilde{w}_{t}^{i} = \frac{w_{t-1}^{a_{t}^{i}}}{\nu_{t-1}^{a_{t}^{i}}} \frac{p(y_{t} \mid x_{t}^{i})p(x_{t}^{i} \mid x_{t-1}^{a_{t}^{i}})}{q(x_{t}^{i} \mid x_{t-1}^{a_{t}^{i}}, y_{t})}$$

and normalize  $w_t^i = \widetilde{w}_t^i / \sum_{j=1}^N \widetilde{w}_t^j$ .

#### **II.4 Forgetting**

Consider the bootstrap particle filter for the LGSS model

$$X_t = 0.7X_{t-1} + V_t,$$
  $V_t \sim \mathcal{N}(0, Q),$  (11a)

$$Y_t = 0.5X_t + E_t,$$
  $E_t \sim \mathcal{N}(0, 1).$  (11b)

Let the initial state be distributed according to  $X_0 \sim \mathcal{N}(0, 1)$ .

but modify the model to Q = 0 instead. What happens to the errors in the particle filter (compared to the Kalman filter, the exact solution) along the time dimension? Specifically, run the particle filter, say, 100 times (using a fixed N) for the same data and compute the mean-squared-error of the test function  $\varphi(x_t) = x_t$  with respect to the Kalman filter solution,

$$\frac{1}{100}\sum_{\ell=1}^{100} \left(\widehat{I}_{t,N}^{\mathrm{PF},\ell}(\varphi) - \mathbb{E}[X_t \,|\, y_{1:t}]\right)^2$$

for each time step t = 1, 2, ..., where  $I_{t,N}^{\text{PF},\ell}(\varphi)$  is the estimate of  $\mathbb{E}[X_t | y_{1:t}]$  obtained from the  $\ell$ th run of the particle filter. Is the particle filter stable?