
Learning of dynamical systems
Particle filters and Markov chain methods

Thomas B. Schön and Fredrik Lindsten

c© Draft date August 23, 2017

2

Contents

1 Introduction 3

1.1 A few words for readers of the early manuscript 3

2 Probabilistic modelling 5

2.1 Representing and modifying uncertainty 6

2.1.1 Marginalization and conditional distributions 7

2.1.2 Basic variable classes . 8

2.1.3 Key probabilistic objects . 8

2.2 Probabilistic autoregressive modelling . 10

2.2.1 Predictive distribution . 12

2.3 Latent variable models . 14

2.4 Markov chains . 14

2.5 State space models . 16

2.5.1 Representation using probability density functions 17

2.5.2 Graphical model representation . 19

2.6 Linear Gaussian state space models . 20

2.7 Conditionally linear Gaussian state space model 22

2.7.1 Switching linear Gaussian state space model 23

2.7.2 Mixed Gaussian state space model 24

2.8 History and further reading . 25

3 Inference and learning strategies 27

3.1 State inference . 28

3.2 Forward computations . 28

3.2.1 Forward filtering . 28

3.2.2 Forward smoothing . 31

3.3 Backward computations . 31

3.3.1 The JSD and the backward kernel 31

3.3.2 Marginal smoothing densities . 32

3.4 Forward and backward computations . 33

3.4.1 Forward filtering backward smoothing 33

3.4.2 Forward filtering backward simulation 34

3.4.3 Two-filter smoothing . 36

3.5 Parameter learning . 36

i

ii CONTENTS

3.5.1 Data distribution . 37

3.5.2 Maximum likelihood learning . 39

3.5.3 Bayesian learning . 40

3.6 History and further reading . 40

4 Monte Carlo 41

4.1 The Monte Carlo idea . 43

4.2 Rejection sampling . 45

4.3 Importance sampling . 49

4.3.1 Derivation and algorithm . 49

4.3.2 A note on practical implementation 54

4.3.3 Convergence and diagnostic tools 54

4.3.4 Sequential importance sampling . 57

4.4 Resampling . 62

4.5 Useful constructions . 64

4.5.1 Conditional Monte Carlo . 64

4.5.2 Monte Carlo with auxiliary variables 66

4.6 History and further reading . 68

5 Sequential Monte Carlo 69

5.1 Introducing the particle filter . 69

5.2 The particle filter – targeting the filtering PDF 73

5.2.1 The marginal and the bootstrap particle filters 73

5.2.2 Using auxiliary variables . 78

5.2.3 The auxiliary particle filter . 79

5.2.4 Adapting the proposal distribution 81

5.3 The particle filter – targeting the smoothing PDF 84

5.3.1 Approximating the forward smoothing strategy 84

5.3.2 Path degeneracy . 87

5.4 Resampling algorithms . 89

5.4.1 Problem formulation . 89

5.4.2 Reducing the variance . 91

5.5 Rao-Blackwellized particle filters . 92

5.5.1 Strategy and key idea . 92

5.5.2 Rao-Blackwellization in CLGSS models 93

5.6 Computing estimates . 99

5.6.1 Likelihood estimates . 99

5.7 Generic sequential Monte Carlo . 100

5.8 Convergence results . 102

5.9 History and further reading . 103

Appendices 105

A Probability/statistics 107

CONTENTS 1

B Probability Distributions 109
B.1 Discrete distributions . 109

B.1.1 Dirac distribution and empirical distribution 109
B.1.2 Categorical distribution . 109

B.2 Univariate continuous distributions . 110
B.2.1 Gaussian . 110
B.2.2 Gamma . 110
B.2.3 Inverse Gamma . 111
B.2.4 Normal inverse Gamma . 111
B.2.5 Student’s t . 111

B.3 Multivariate continuous distributions . 111
B.3.1 Multivariate Gaussian distribution 111

B.4 Matrix valued continuous distributions . 118
B.4.1 Matrix Normal . 118
B.4.2 Wishart . 119
B.4.3 Inverse Wishart . 119
B.4.4 Matrix Normal Inverse Wishart . 119

B.5 Further reading . 119

C Matrix Theory 121
C.1 Matrix Derivatives . 122
C.2 Trace . 122
C.3 Further Reading . 122

2 CONTENTS

Chapter 1

Introduction

1.1 A few words for readers of the early manuscript

The notes that you have in your hand are very much ongoing work. Here are a few
comments and disclaimers concerning this current version:

• This is a rough start and we are very interested in all sort of feedback (including
“high level” comments regarding structure as well as more detailed comments)
on this manuscript. Feel free to provide any feedback/comments/suggestions you
might have to thomas.schon@it.uu.se and/or fredrik.lindsten@it.uu.se.

• Earlier versions of this manuscript have so far been used for courses/tutorials at
the following universities; UC Berkeley (US), Universidad Técnica Federico Santa
Maŕıa (Valparáıso, Chile), UC Santa Barbara (US), Vrije Universiteit (Brussel,
Belgium), University of Sydney (Australia) Royal Institute of Technology (Stock-
holm, Sweden) and Uppsala University (Sweden) and at the following companies;
Sennheiser (US), Autoliv (Sweden) and Saab (Sweden).

Finally, we hope that you will learn interesting new things from these notes and that
you forgive us for handing them to you at this early stage of the writing process.

3

4 CHAPTER 1. INTRODUCTION

Chapter 2

Probabilistic modelling

Probabilistic modelling provides the capability to represent and manipulate uncertainty
in data, models, decisions and predictions. A mathematical model is a compact represent-
ation—set of assumptions—that in a precise mathematical form tries to capture the key
features of the phenomenon we are interested in. The true value of measured data
typically arises once it has been analyzed and some kind of tangible knowledge has
been extracted from the data. By forming the link between the measured data and the
underlying phenomenon, the model takes an important role in performing this analysis.

Dynamical phenomena give rise to temporal measurements (data) arriving as a se-
quence Y1:T = (Y1, Y2, . . . , YT). These measurements are typically corrupted by noise due
to various imperfections in the measurement process and knowledge of this noise is one
source of uncertainty in the model. Uncertainty is also present in several other—often
less obvious—forms in any model. Even if we know that there is noise in the measure-
ment process, there is still uncertainty about its form and at which level it is present.
Furthermore, the structure of the model can be uncertain and there can also be many
unobserved variables Z present. These unobserved variables are sometimes referred to
as hidden variables, missing data/variables or latent variables. The introduction and use
of these uncertain unobserved variables in probabilistic models is one of the key compo-
nents providing the models with interesting and powerful capabilities that would not be
possible without them. Indeed, many of the most successful models owe its usefulness
and expressiveness largely to the incorporation of unobserved variables. Yet another
form of uncertainty in the model comes from the unknown static model parameters θ
that are often present.

The capability to mathematically represent and manipulate uncertainty is provided
by probability theory. It describes how to systematically combine observations with
existing knowledge—in the form of a mathematical model—to solve a new task and
hopefully generate new knowledge as a result. The goal of this chapter is to introduce
the ideas underlying probabilistic modelling in general and also to explain the most
commonly used models when it comes to representing dynamical phenomena.

5

6 CHAPTER 2. PROBABILISTIC MODELLING

2.1 Representing and modifying uncertainty

We represent all our knowledge about the model (both known and unknown variables)
using probability distributions and we use probability as our fundamental measure of
uncertainty. Hence, our mathematical models are mostly built up from various prob-
ability distributions or probability density functions (PDFs). We allow ourselves to
use the words density (short form for probability density function) and distribution
interchangeably. Larger models can be built for example by combining several sim-
ple distributions over a single or a small number of variables. Random variables and
stochastic processes will be instrumental in our development. However, we will also make
use of deterministic—but unknown—variables when we discuss the maximum likelihood
approach to modelling.

The end result of most of our developments in this manuscript will be expressed in
terms of probabilistic statements provided by distributions. For example, if we are given
a set of t measurements Y1:t and are looking for the unknown parameters θ, the solution
is represented by the conditional distribution of the parameters given the measured data
p(θ | y1:t), which is an object that is referred to as the posterior distribution. Sometimes
a point estimate of the unknown object is sufficient, but it is still useful to first compute
a probabilistic representation. The reason being that it can be dangerous to extract a
point estimate without knowledge of the underlying distribution, since there might be
ambiguities if there is too much uncertainty present. For a concrete example of such a
situation we refer to Figure 2.1, which also illustrates what an uncertain representation
can look like in an indoor positioning application example. An indoor positioning system

Figure 2.1: The task is to compute the location xt of a person as time progresses based on a map of
the environment and measurements Y1:t from an inertial sensor attached to the person. The particle
filter (introduced in Chapter 5) solves this problem using a representation including the position of the
person. The filters uncertain representation of the position is visualized using blue crosses, and the true
position is indicated using green circles. From the representation in the leftmost plot we see that the
solution is too uncertain to extract a reliable point estimate. Over time, as more and more measurements
are acquired the uncertainty decrease and in the rightmost plot we have computed a point estimate (the
conditional mean) indicated using black circles.

locates people or objects as they move around indoors using measurements from sensors
such as for example magnetometers (magnetic field), inertial sensors (acceleration and
angular velocity) and cameras (images). These sensors are often available in a standard

2.1. REPRESENTING AND MODIFYING UNCERTAINTY 7

smartphone device. This example indicates the importance of maintaining a solid repre-
sentation of the uncertainty throughout all calculations from the sensor measurements
to the persons’ location.

When it comes to the notation used for densities, we let p(·) denote a generic distri-
bution associated with a model. It is thus the arguments that explains which variable
that is intended as implicitly hinted at above. We will in general not use different
notation for continuous and discrete distributions.

In Appendix B we provide a brief introduction to the distributions that we will make
use of the basic building blocks in our models. The reader is assumed to have basic
experience in using these distributions. There are many different ways in which we
can parameterize various distributions and another important reason for including this
appendix is to clearly describe which parameterizations we make use of.

2.1.1 Marginalization and conditional distributions

The two basic facts of probability theory that are fundamental for most of the devel-
opment in this manuscript are marginalization and conditional distributions. Consider
two random variables A ∈ A and B ∈ B. Marginalization allows us to compute the
marginal distribution p(a) by integrating the joint distribution p(a, b) over the entire
space B where the variable B is defined,

p(a) =

∫
B
p(a, b)db. (2.1)

In doing this we say that the discarded variable B has been marginalized out. If the
random variables are discrete, the integral in the above equation is replaced by a sum.
Marginalization is useful since it allows us to remove the influence of one variable simply
by averaging over all its possible values according to (2.1).

The second basic fact of probability theory that we will make extensive use of is that
the joint distribution of A and B can be factored according to

p(a, b) = p(a | b)p(b) = p(b | a)p(a), (2.2)

where p(a | b) is the conditional distribution of A given B and vice versa for p(b | a). The
conditional distribution p(a | b) encodes what we know about A based on the fact that
we know B. It is now straightforward to make combined use of the conditioning and
marginalization to establish that

p(b | a) =
p(a | b)p(b)

p(a)
=

p(a | b)p(b)∫
B p(a, b)db

, (2.3)

which is commonly referred to as Bayes’ rule. One important application of conditional
probabilities and Bayes’ rule is to transfer information from one variable to another. We
will make extensive use of this in order to transfer information from measurements y1:t

onto various unobserved variables and parameters present in the model. One specific
example of this was provided in Figure 2.1 where it opened up for computing the location
of a person xt based on all the available measurements y1:t, i.e. p(xt | y1:t).

8 CHAPTER 2. PROBABILISTIC MODELLING

2.1.2 Basic variable classes

The most obvious model variable is probably the measured data y obtained from the
phenomenon we are interested in. Most of the phenomena we are considering have
measurements arriving in a sequential fashion, i.e. y1:t = (y1, y2, . . . , yt).

The model often contains unknown (static) parameters θ that are used to describe
the phenomenon. There are quite often unknown model variables xt (changing over
time) that describe the particular state of the phenomenon at time t. In the indoor
positioning example at the beginning of this section a few examples of such unknown
model parameters are the position and velocity of the person at each point in time.

Another class of variables is the so-called explanatory variables u, denoting known
variables that we do not bother to model as stochastic.

2.1.3 Key probabilistic objects

Let us now introduce the key probabilistic objects we are concerned with in models
involving unknown parameters θ and measurements Y . First of all we refer to the joint
distribution p(θ, y) as the full probabilistic model. It constitutes a generative model for
all the variables involved, meaning that it can be used to generate samples from these
model variables. Sampling variables from the full probabilistic model is often a good
way of getting some understanding of what the model’s capabilities are.

Making direct use of the factorization offered by conditional probabilities (2.2) we
can factor the full probabilistic model according to

p(θ, y) = p(y | θ)p(θ), (2.4)

where p(θ) is referred to as the prior distribution. The prior encodes the assumptions
that are made concerning the unknown parameters before any data has arrived. The
distribution p(y | θ) is called the data distribution or the likelihood. Note that this should
not be mistaken for the likelihood function, which is something different. In order
to minimize the risk for confusion we will make the slightly non-standard choice of
referring to p(y | θ) as the data distribution and reserve the name likelihood exclusively
for discussions involving the likelihood function. The data distribution p(y | θ) describes
how the available measurements Y = y relate to the unknown variables θ.

The likelihood function builds on the assumption that we model the unknown param-
eter θ as a deterministic variable, rather than as a random variable. Similarly, the mea-
surements are modelled as one particular realization of the underlying random variables,
Y = y. The likelihood function—denoted by L(θ; y)—is defined as L(θ; y) , p(Y = y | θ).
Hence, it is not a distribution. The likelihood function is the function of the unknown
parameters θ that is obtained when we evaluate the data distribution using the obtained
measurements y. The likelihood function is used to compute various point estimates by
solving various optimization problems. For example, the classic maximum likelihood es-
timator is obtained by selecting the parameters for which the likelihood function attains
its maximum. The likelihood function is also used as one component when we compute
maximum a posteriori estimates and various other regularized point estimates.

2.1. REPRESENTING AND MODIFYING UNCERTAINTY 9

Rather than conditioning p(θ, y) on the parameters as was done in (2.4), let us now
instead condition on the measurements p(y, θ) = p(θ | y)p(y), resulting in the following
expression for the posterior distribution

p(θ | y) =
p(y, θ)

p(y)
=

p(y | θ)p(θ)∫
p(y | θ)p(θ)dθ

. (2.5)

Since p(y) is independent of θ it acts as a normalization constant ensuring that p(θ | y)
is a proper density that integrates to one. We can compute p(y) by averaging p(θ, y)
over all possible parameter values, i.e.

p(y) =

∫
p(y | θ)p(θ)dθ. (2.6)

In this way p(y) can be interpreted as the support or evidence that a particular model
provide for the observed data y, which explains why we will refer to p(y) as the model
evidence. It can for instance be used in comparing various competing model types ability
to represent and explain the measured data. Since it does not depend on the parameters
(they have all been marginalized out) it is the “next level of abstraction” (i.e. the model
type) that it represents.

It is often sufficient to find and work with the unnormalized posterior distribution

p(θ | y) ∝ p(y | θ)p(θ), (2.7)

where we have simply discarded the normalization constant. For most models the nor-
malization constant is challenging to compute, since the integral in (2.6) is intractable.
Due to its importance we will introduce the notation p̃(θ | y) for the unnormalized version
of the p(θ | y).

A prediction or forecast is a statement about a future uncertain event that has
not yet been observed. Making predictions is one of the most common applications
of mathematical models. In making a prediction the model is used together with the
available observed data to compute the predictive distribution p(ȳ | y) representing what
we can say about the currently unseen future measurement Ȳ based on the available
measurements Y = y. Prediction is thus about generalizing from the measurements we
have already observed to what will happen in the future.

Let us first reason intuitively about what sources of information we have available
to us in making a prediction of a future measurement Ȳ . First of all, we have the
information that has been accumulated about the parameters θ based on the measured
data y we already have available. This information is conveniently summarized in the
posterior p(θ | y). However, in order to leverage the information in the posterior we need
a way of connecting this information about the model parameters with the new unseen
measurement Ȳ . This second source of information is provided to us by the model itself,
in that it directly provide the distribution p(ȳ | θ) which establishes the link between Ȳ
and θ that we are looking for. These two sources of information can be combined simply
by marginalizing p(ȳ, θ | y) w.r.t. θ,

p(ȳ | y) =

∫
p(ȳ, θ | y)dθ =

∫
p(ȳ | θ, y)p(θ | y)dθ =

∫
p(ȳ | θ)p(θ | y)dθ, (2.8)

10 CHAPTER 2. PROBABILISTIC MODELLING

where the second equality follows from the conditional independence of Ȳ and Y given θ.
Again it is worth reflecting upon the use of the two basic facts (2.1) and (2.2) from
Section 2.1.1.

We are in this manuscript essentially concerned with various ways of computing
conditional distributions of the full probabilistic model p(θ, z, y) or some of its marginals.
These computations boils down to challenging integration or optimization problems,
where we focus on formulations based on integrals.

2.2 Probabilistic autoregressive modelling

The development has so far been rather abstract. Let us now swing to the other end
of the spectra and instead become very explicit by illustrating the use of a first simple
probabilistic model. The aim of this section it to illustrate how we represent and manip-
ulate uncertainty in mathematical models using a well-known representation that most
readers will probably have seen in one form or another.

The problem we are interested in is that of building a mathematical model that is
capable of describing the observed data Y1:T , {Y1, . . . , YT }. Intuitively the information
from recent observations should contain some information about the current observation.
Based on this intuition we let the current observation Yt be a linear combination of the
previous n observations plus some normally distributed noise Et,

Yt = A1Yt−1 +A2Yt−2 + · · ·+AnYt−n + Et, Et ∼ N (µ, τ−1), (2.9)

where ∼ denotes distributed according to. This gives rise to the autoregressive (AR)
model of order n, denoted by AR(n). It is a linear regression model where the output
variable Yt is explained using a linear combination of its own previous values Yt−n:t−1

and a stochastic noise term et explaining random fluctuations. As already indicated
by the notation used in (2.9) we have chosen to model the noise properties µ and τ as
known explanatory variables (µ = 0, τ 6= 0). There is of course nothing stopping us from
assuming also these parameters to be unknown and include them into the parameter
vector. However, for now we let the unknown parameters be θ = (A1, . . . , An)T and
assign the following prior

θ ∼ N (0, ρ−1In), (2.10)

where the precision ρ is assumed to be known and hence modelled as an explanatory
variable. Based on T observations y1:T of Y1:T we want to learn the model (2.9) that
explains the measured data, i.e. we are looking for the posterior distribution p(θ | y1:T)
(recall (2.5)). The first thing to do is thus to formulate the model in terms of the
full probabilistic model, which is the joint distribution over all observed Y1:T and unob-
served θ model quantities p(θ, y1:T) = p(y1:T | θ)p(θ). The prior is already defined and
the data distribution p(y1:T | θ) can be derived by direct application of the conditional

2.2. PROBABILISTIC AUTOREGRESSIVE MODELLING 11

probability (2.2)

p(y1:T | θ) = p(yT | y1:T−1, θ)p(y1:T−1 | θ) = . . . =
T∏
t=1

p(yt | y1:t−1, θ), (2.11)

with the convention that y1:0 = ∅. According to (2.9) we have p(yt | y1:t−1, θ) = N
(
yt
∣∣ θTzt, τ

−1
)
,

where Zt = (Yt−1, Yt−2, . . . , Yt−n)T, which inserted into (2.11) gives us the data distri-
bution

p(y1:T | θ) =
T∏
t=1

N
(
yt

∣∣∣ θTzt, τ
−1
)

= N
(
y
∣∣ zθ, τ−1IT

)
, (2.12)

where we have made use of y = (y1, y2, . . . , yT)T and z = (z1, z2, . . . , zT)T for the
second equality. The model can now be summarized in terms of the joint distribution of
the parameters and the observations p(θ, y1:T). By making use of the expressions for the
data distribution (2.12) and the prior (2.10), Theorem 9 reveals the following explicit
formulation of the model

p(θ, y1:T) = N
((

θ
y

) ∣∣∣∣ (0
0

)
,

(
ρ−1I2 ρ−1zT

ρ−1z τ−1IT + ρ−1zzT

))
. (2.13)

The parameters θ are still unknown, but there is nothing preventing us from computing
the model evidence p(y1:T) by averaging over all values that the parameters can possibly
attain. This averaging process amounts to integrating out θ from p(θ, y1:T), which can
be done in closed-form using Corollary 1, resulting in

p(y1:T) =

∫
p(θ, y1:T)dθ =

∫
p(y1:T | θ)p(θ)dθ = N

(
y
∣∣∣ 0, τ−1I + ρ−1zzT

)
. (2.14)

There are now several ways for us to compute the posterior, but perhaps the most
straightforward way to once again make use of Corollary 1 to conclude that

p(θ | y1:T) = N (θ |mT , ST) , (2.15a)

where

mT = τSTz
Ty, (2.15b)

ST =
(
ρ−1I2 + σzTz

)T
. (2.15c)

Let us illustrate the development so far using a simulation in Example 2.1.

12 CHAPTER 2. PROBABILISTIC MODELLING

Example 2.1: Bayesian learning of an AR(2) model

Rather than continuing the discussion using the general AR(n) model we will limit
ourself to a particular special case,

Yt = A1Yt−1 +A2Yt−2 + Et = θTZt + Et, Et ∼ N (0, τ−1), (2.16)

where θ = (A1, A2)T and Zt = (Yt−1, Yt−2)T. Let the true values for θ in the AR(2)
model (2.16) be θ? = (0.6, 0.2)T. Furthermore, we treat τ = 5 and ρ = 2 as known
explanatory variables. One advantage with using this low-dimensional example is that
we can visualize the model. In the left panel of Figure 2.2 we see the prior N (0, 1/2I2)
before any measurements have used. The right panel shows 7 samples drawn from this
prior.

-2

-1

0

y
t-2

1

2-2
-1

y
t-1

0
1

2
-8

-6

-4

-2

0

2

4

6

8

y t

Figure 2.2: Illustration of the prior θ ∼ N (0, 1/2I2) used for the Bayesian AR(2) model. The left plot
shows the prior as a contour plot (the x-axis corresponds to a1 and the y-axis corresponds to a2). The
right panel shows 7 samples drawn from this prior. The true parameter value is show by the white dot.

Figure 2.3 show the situations after the information available in the measurements
y1:t has been used, for three different values for t = 1, 2 and t = 20.

2.2.1 Predictive distribution

Predicting the subsequent and yet unseen measurement YT+1 amounts to combining the
information we indirectly have available about YT+1 via the posterior and the model by
solving the following integral (recall (2.8))

p(yT+1 | y1:T) =

∫
p(yT+1 | θ)p(θ | y1:T)dθ. (2.17)

This integral implements a weighted average, where the connection between the new
observation and the model parameters provided by the model p(yT+1 | θ) is weighted with
the information about the parameters that we have available in the posterior p(θ | y1:T).
Recall that the posterior captures all information that is present in the measured data
y1:T about the parameters θ, under the implicit assumption that the model is the one
given in (2.16). This is the way in which the information from the old measurements

2.2. PROBABILISTIC AUTOREGRESSIVE MODELLING 13

-2

-1

0

y
t-2

1

2-2
-1

y
t-1

0
1

2
-8

-6

-4

-2

0

2

4

6

8

y t

-2

-1

0

y
t-2

1

2-2
-1

y
t-1

0
1

2
-8

-6

-4

-2

0

2

4

6

8

y t

-2

-1

0

y
t-2

1

2-2
-1

y
t-1

0
1

2
-8

-6

-4

-2

0

2

4

6

8

y t

Figure 2.3: Illustration of the results from the Bayesian AR(2) model. The plots show the likelihood
(left column), posterior (middle column) and 7 samples drawn from the posterior (right column). The
x-axis corresponds to a1 and the y-axis corresponds to a2 (for the likelihood and posterior plots). The
true parameter value is show by the white dot. The three rows shows the situation after 1 (top), 2
(middle) and 20 (bottom) measurements have been incorporated, respectively.

is used to make predictions about future observations. From the model (2.16), we have
that

p(yT+1 | θ) = N
(
yT+1

∣∣∣ θTzT+1, τ
−1
)
. (2.18)

Inserting (2.18) and the posterior (2.15) into (2.17) allows us to make use of Corollary 1
to conclude that the predictive distribution is given by

p(yT+1 | y1:T) = N
(
yT+1

∣∣∣ zT
T+1mT , z

T
T+1ST zT+1 + τ−1

)
. (2.19)

14 CHAPTER 2. PROBABILISTIC MODELLING

The predictive mean is given by

f(zT+1) = zT
T+1mT = τzT

T+1STZ
TY = τzT

T+1ST

T∑
t=1

ytzt

=
T∑
t=1

τzT
T+1ST ztyt =

T∑
t=1

k(zT+1, zt)yt, (2.20)

where k(z, z′) = τzTST z
′ is referred to as the equivalent kernel. The expression (2.20)

leads to the observation that rather than postulating a parametric model according
to (2.16) (i.e. f(zT+1) = θTzT+1) we can directly make use of the model formulation
offered by the equivalent kernel. This also motivates the term equivalent kernel, since
starting from the formulation (2.20) we obtain exactly the same predictor as we obtain
in starting from (2.16).

2.3 Latent variable models

We refer to model variables that are not observed as latent1 variables. The idea of
introducing latent variables into models is probably one of the most powerful concepts
in probabilistic modelling. These latent variables provides more expressive models that
can capture hidden structures in data that would otherwise not be possible. The price
for the extra flexibility in the representation provided by the latent variables is that the
problem of learning the model from measured data becomes significantly harder. This
manuscript is to a large extent about how to solve makes inference in nonlinear latent
variable models for dynamical phenomena. There will be plenty of examples later on,
but to get an intuitive feeling for the way in which latent variables can provide more
expressive models we give a first illustration in Example 2.2.

Example 2.2: AR model with a latent noise variance

The increased expressiveness that the latent variables offer for a model can be thought
of as an internal memory. For dynamical models this is particularly natural.

The latent variables results in models with a much richer internal structure.
Use this as a basic building block and derive more expressive models. Ex. switching

(combining a discrete and cont. SSM) “add more structure to it”. Provide a forward
reference.

2.4 Markov chains

The Markov chain is a probabilistic model that is used for modelling a sequence of
states (X0, X1, . . . , XT), where the index variable t in our case refers to time, but it

1Other commonly used names for latent variables include hidden variables, missing variables and
unobserved variables.

2.4. MARKOV CHAINS 15

could also simply be thought of as an arbitrary indexing variable for the location within
a sequence. The basic idea underlying a Markov model is that given the present value
of the state Xt, its future evolution {Xt+k}k>0 is conditionally independent of the past
{Xs}s<t. Hence, the current state acts as a memory in that it contains all there is to
know about the phenomenon at this point in time based on what has happened in the
past. The Markov chain is completely specified by an initial value X0 and a transition
model (kernel) p(xt+1 |xt) describing the transition from state Xt to state Xt+1. Let us
properly define the corresponding stochastic process.

Definition 1 (Markov chain). A stochastic process {Xt}t≥0 is referred to as a Markov
chain if, for every k > 0 and t,

p(xt+k |x1, x2, . . . , xt) = p(xt+k |xt). (2.21)

The Markov property (2.21) is highly desirable since it provides a memory efficient
way of keeping track of the evolution of a dynamic phenomenon. Rather than keeping
track of the growing full history of the process {Xs}ts=1, it is sufficient to keep track
of the present state Xt of the process. Hence, in a Markov process the current state
contains everything we need to know about the past and the present in order to predict
the future. Hence, based on Definition 1 we can write the joint distribution of all states
as

p(x0:T) = p(xT |x0:T−1)p(x0:T−1) = p(xT |xT−1)p(x0:T−1) = . . .

= p(x0)

T−1∏
t=0

p(xt+1 |xt). (2.22)

The Markov chain is a stochastic dynamical system and for some models there exist a
so-called stationary distribution which is the distribution characterizing the long-term
behaviour of the chain. If the Markov chain starts with its stationary distribution then
the marginal distribution of all states will always be the stationary distribution.

Example 2.3: Stationary distribution of a simple Markov chain

Consider the Markov chain with initial state X0 = −40 and state dynamics given by

Xt+1 = 0.8Xt + Vt, Vt ∼ N (0, 1), (2.23)

which corresponds to the following transition model p(xt+1 |xt) = N (xt+1 | 0.8xt, 1).
First of all we note that since the Markov chain is defined by a linear transforma-
tion (2.23) of known (X0 = 0) and normally distributed {Vt}t≥1 random variables, its
state Xt must remain Gaussian at all times. As such it is completely described by its
mean value and variance. Let us now study what happens with the state distribution as
t→∞. We start with the mean value

E[Xt] = E[0.8Xt−1 + Vt−1] = 0.8E[Xt−1] = · · · = 0.8tE[X0]→ 0, (2.24)

16 CHAPTER 2. PROBABILISTIC MODELLING

as t→∞ independently of the initial value for that state. For the variance we have

Var[Xt] = E
[
(Xt − E[Xt])

2
]

= E
[
X2
t

]
− (E[Xt])

2 , (2.25)

where we already know that the second term will tend to zero as t → ∞. For the first
term we have

E
[
X2
t

]
= E

[
0.82X2

t + 1.6Xt−1Vt−1 + V 2
t−1

]
= 0.82E

[
X2
t−1

]
+ 1. (2.26)

We can now find the stationary variance by introducing the notation p̄ = limt→∞Var[Xt] =
limt→∞ E

[
X2
t

]
into (2.26), resulting in p̄ = 0.82p̄ + 1 which means that p̄ = 1

1−0.82
. We

have now proved that the stationary distribution of the Markov chain defined in (2.23)
is given by

ps(x) = N
(
x

∣∣∣∣ 0, 1

1− 0.82

)
. (2.27)

In Figure 2.4 we illustrate the result of the above calculations.

0 100 200 300 400 500
−40

−35

−30

−25

−20

−15

−10

−5

0

5

10

Time

x

−8 −6 −4 −2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

0.3

−8 −6 −4 −2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

Figure 2.4: Left: Example realization showing 500 samples from (2.23). Middle: The stationary
distribution (2.27) is shown in black and the empirical histogram obtained by simulating 10 000 samples
from the Markov chain (2.23). The initial 1 000 samples were discarded. Right: Same as the middle
plot, but here 100 000 samples are used.

The Markov chain constitutes a basic ingredient in the Markov chain Monte Carlo
(MCMC) methods that we will develop in Chapter ??, where we will also continue
to more systematically study when there do exist a stationary distribution. In the
subsequent section we will introduce a Markov model where we can only observe the
state indirectly via a measurement that is related to the state.

2.5 State space models

The basic state space model (SSM)2 is a Markov model that makes use of a latent variable
representation to describe dynamical phenomena. It offers a practical representation not

2The state-space model travels under several names. It is sometimes referred as the hidden Markov
model (HMM), clearly indicating that the state is unobserved (hidden) and modelled using a Markov
process. It is worth noting that some authors have reserved the name HMM for the special case where
the state variable is assumed to belong to a finite set of discrete variables. Another name sometimes
used is latent Markov model.

2.5. STATE SPACE MODELS 17

only for modelling, but also for reasoning and doing inference. The SSM consists of two
stochastic processes; an unobserved (the state) process {Xt}t≥1 modelling the dynamics
and an observed process {Yt}t≥1 modelling the measurements and their relationship to
the unobserved state process. There are several different ways of representing the SSM.
We start by describing it using the following functional form

Xt+1 = f(Xt, θ) + Vt, (2.28a)

Yt = g(Xt, θ) + Et, (2.28b)

where the unknown variables are given by the latent state Xt ∈ X describing the system’s
evolution over time and the (static) parameters θ ∈ Θ. The initial state is modelled as
x0 ∼ p(x0 | θ). The known variable is give by the measurement Yt ∈ Y. The uncertain
variables Vt and Et denote noise terms, commonly referred to as the process noise and the
measurement noise, respectively. Finally, the functions f and g denotes the dynamics and
the measurement equation, respectively. Explanatory variables can straightforwardly be
added to the model, but since they will not affect the basic principles we do not include
then explicitly in the interest of a clean notation.

In Section 2.5.1 we will represent (2.28) using probability density functions instead
and an Section 2.5.2 it will be represented as a graphical model. These three represen-
tations are all useful and interesting in their own rights, none of them is generally better
or worse than the other. The choice of representation typically depends on taste and
which task we are currently working with.

2.5.1 Representation using probability density functions

Let us start by noticing that we can express the distribution governing Markov chain’s
transition from Xt to the new state at the next time instant Xt+1 according to

p(xt+1 |xt, θ) = pvt(xt+1 − f(xt, θ)) (2.29)

where pvt denotes the distribution of the process noise vt. Analogously (2.28b) defines
the conditional distribution of the measurement Yt given the current state Xt of the
Markov chain and the parameters θ. Taken together we can express the SSM (2.28) as

Xt+1 | (Xt = xt, θ = θ) ∼ p(xt+1 |xt, θ), (2.30a)

Yt | (Xt = xt, θ = θ) ∼ p(yt |xt, θ), (2.30b)

X0 ∼ p(x0 | θ). (2.30c)

We have so far not made any specific assumptions about the unknown static model pa-
rameters θ other than that they might exist. Implicitly it is then commonly assumed
that the parameters are modelled as deterministic, but unknown, leading us to various
maximum likelihood formulations. On the other hand, when performing Bayesian infer-
ence we need to augment (2.30) with a fourth PDF p(θ) describing the prior stochastic
nature of the static parameters,

θ ∼ p(θ). (2.31)

18 CHAPTER 2. PROBABILISTIC MODELLING

The reasoning below is made under this probabilistic assumption on the parameters. We
can now factor the full probabilistic model p(x0:T , θ, y1:T) according to

p(x0:T , θ, y1:T) = p(y1:T |x0:T , θ)︸ ︷︷ ︸
data distribution

p(x0:T | θ)p(θ)︸ ︷︷ ︸
prior distribution

, (2.32)

where p(y1:T |x0:T , θ) describes the distribution of the data and p(x0:T , θ) = p(x0:T | θ)p(θ)
represents our initial—prior—assumptions about the unknown states and parameters.
Using conditional probabilities we can factor the data distribution according to

p(y1:T |x0:T , θ) = p(yT | y1:T−1, x0:T , θ)p(y1:T−1 |x0:T , θ)

= p(yT |xT , θ)p(y1:T−1 |x0:T−1, θ), (2.33)

where we also made use of the conditional independence of the measurements given the
current state. Similarly we can rewrite the prior distribution of the states by making
use of conditional probabilities and the Markov property, resulting in

p(x0:T | θ) = p(xT |x1:T−1, θ)p(x1:T−1 | θ) = p(xT |xT−1, θ)p(x1:T−1 | θ). (2.34)

From the above reasoning it is clear that that the data distribution is dictated by (2.30b)
and that the prior distribution on the states is given by (2.30a). Repeated use of (2.33)
and (2.34) results in

p(x0:T , θ, y1:T) =

 T∏
t=1

p(yt |xt, θ)︸ ︷︷ ︸
observation


︸ ︷︷ ︸

data distribution

T−1∏
t=0

p(xt+1 |xt, θ)︸ ︷︷ ︸
dynamics

 p(x0 | θ)︸ ︷︷ ︸
initial

p(θ)︸︷︷︸
initial︸ ︷︷ ︸

prior

(2.35)

It is useful to mention two of the most commonly used spaces X; the nx-dimensional
real space Rnx and a finite number of positive integers {1, . . . , K}. In Example 2.4 we
provide an example where X = {1, . . . , K}, which results in the so-called Finite state
space (FSS) model.

Example 2.4: Finite state space (FSS) model

Example 2.5: A nonlinear state space model

2.5. STATE SPACE MODELS 19

2.5.2 Graphical model representation

It is instructive to consider a third representation of the SSM, namely the use of graphical
models. A graphical model is a graph encoding the probabilistic relationships among
the involved random variables. Let us assume that we have T measurements from the
SSM in (2.30), then the relevant variables are the states X0:T , {X0, . . . , XT } and the
measurements Y1:T , {Y1, . . . , YT }. The graphical model can be viewed as a graph
representing the joint distribution p(x0:T , y1:T) of all the involved random variables in
a factorized form, where all the conditional independences inherent in the model are
visualized. Each random variable is represented as a node. If the node is filled (gray), the
corresponding variable is observed and if the node is not filled (white), the corresponding
variable is hidden, i.e. not observed. The probabilistic relationships among the random
variables are encoded using edges.

In representing the SSM as a graphical model we will make use of a specific instance
of the graphical models, commonly referred to as Bayesian networks or belief network.
Such a model corresponds to a directed acyclic graph, where the edges are constituted
by arrows encoding the conditional independence structure among the random variables.
In Figure 2.5 we provide the graphical model corresponding to the SSM. In a graph like
the one in Figure 2.5 we say that node X1 is the child of node X0 and that node X1

is the parent of node X2 and Y1. The arrows pointing to a certain node encodes which
variables the corresponding node are conditioned upon, these variables constitute the
set of parents to that particular variable.

A graphical model directly describes how the joint distribution of all the involved
variables (here p(x0:T , y1:T)) can be decomposed into a product of factors according to

p(x0:T , y1:T) =

T∏
t=0

p(xt |pa(xt))

T∏
t=1

p(yt |pa(yt)), (2.36)

where pa(Xt) denotes the set of parents to Xt. Hence, each factor in (2.36) consists of
the PDF of a random variable conditioned on its parents. Using (2.36), we can decode
the Bayesian network in Figure 2.5 resulting in the following joint distribution for the

X0 X1 X2 X3

. . .
XT

Y1 Y2 Y3 YT

Figure 2.5: Graphical model for the SSM in (2.30). Each random variable is encoded using a node,
where the nodes that are filled (gray) corresponds to variables that are observed and nodes that are not
filled (white) are latent variables. The arrows encode the dependence among the variables.

20 CHAPTER 2. PROBABILISTIC MODELLING

states and the measurements,

p(x0:T , y1:T) = p(x0)
T∏
t=1

p(xt |xt−1)
T∏
t=1

p(yt |xt). (2.37)

Each arrow in Figure 2.5 corresponds to one of the factors in (2.37). The expression (2.37)
for the joint distribution can of course also be derived directly from the underlying model
assumptions.

Already for slightly more complex models, such as the conditionally linear Gaussian
models (introduced in Section 2.7) we will start to see the beauty of making use of
graphical models, in that they quickly reveals the underlying probabilistic structure
inherent in a model. In considering Bayesian SSMs, graphical models are also very
enlightening. Furthermore, the theory surrounding graphical models is well developed
also when it comes to performing inference and this can be useful in considering more
complex models.

2.6 Linear Gaussian state space models

The state is typically not visible (i.e. we cannot measure it directly) and it evolves by
applying linear transformations to it and then adding Gaussian noise according to

Xt+1 = AXt +GVt, Vt ∼ N (0, I) , (2.38a)

where Vt ∈ Rnv and the initial state is modelled as p(x0 | θ) = N (x0 |µ, P0). This
equation is often referred to as the transition dynamics (or just dynamics) since it
encodes the dynamic evolution of the memory (state) over time by encoding exactly
how the state transitions from one time instance to the next. The uncertainty in the
transition is represented by the process noise Ṽ , GVt which is distributed according to
p(ṽ) = N

(
ṽ
∣∣ 0, GGT

)
.

Given the hidden state we get the visible observations Yt by applying another linear
transformation C to the state and adding Gaussian noise Et according to

Yt = CXt + Et, Et ∼ N (0, R) , (2.38b)

where Yt ∈ Rny and Et ∈ Rny . We will refer to (2.38b) as the measurement equation,
since it describes how the measurements are obtained from the states. The fact that any
measurement process is uncertain is modelled by the measurement noise Et. Hence, each
state Xt generates a noisy observation Yt according to (2.38b), where the observations
a conditionally independent given the state.

The linear dynamical model described by (2.38) is called the linear Gaussian state
space model (LG-SSM). It only involves linear transformations of Gaussian random
variables, implying that all random variables involved in the model will be Gaussian.
The LG-SSM has a direct generative interpretation.

From the above model description it is far from obvious which variables that should
be considered as being latent. We need more information in order to make a wise choice

2.6. LINEAR GAUSSIAN STATE SPACE MODELS 21

on this subtle matter. Let us make this more precise by considering a few common
situations.

In the situation where G = 0 the transition equation (2.38a) is given by Xt+1 = AXt.
This means that if we know the initial state X0, then all other states are known as well.
Hence, the latent variable is given by the initial state X0. In models of this kind, without
any process noise (i.e. a deterministic transition equation) are sometimes referred to as
output error (OE) models. The full probability model is given by

p(x1, θ, y1:T) =

(
T∏
t=1

p(yt |xt, θ)

)
p(x0 | θ)p(θ), (2.39)

where the state at time t is a deterministic mapping from the initial state xt = Atx0.

Let us now consider the case where the dimension of the process noise is the same
as the state dimension, nv = nx and that the matrix G is full rank and hence invertible.
For this case we need to keep track of all state variables and the latent variable is thus
given by X1:T .

p(z, θ, y) = p(x1:T , θ, y1:T) =

(
T∏
t=1

p(yt |xt, θ)

)(
T∏
t=1

p(xt+1 |xt, θ)

)
p(x1 | θ)p(θ), (2.40)

where accoding to (2.38a) we have that p(xt+1 |xt, θ) = N
(
xt+1

∣∣Axt, GGT
)
.

As a third case we consider the situation where nw < nx. This corresponds to a
situations where the covariance matrix of the process noise Ṽt = GVt is singular, i.e.
rank

(
GGT

)
< nx.

In this situation it often makes sense to choose the initial state and the process noise
as latent variables, Z0:T = {X0, V1:T }.

p(z, θ, y) = p(x1, w1:T , θ, y1:T) =

T∏
t=1

p(yt |xt, θ)p(v1:T | θ)p(θ), (2.41)

where the states are given by a deterministic mapping from the initial state and the
process noise, Xt+1 = AXt + GVt. An alternative choice of latent variables is provided
by the part of the state vector that is stochastic.

The linear Gaussian state space model is probably the most well-studied and well-
used class of latent variable models when it comes to dynamical phenomena. There are
at least three good reasons for this. First, it is mathematically simple to work with—it is
one of the few model classes that allows for an analytical treatment. Second, it provides
a sufficiently accurate description of many interesting dynamical systems. Third, it is
often used as a component in more complex models. Some concrete examples of this
are provided in Section 2.7, where the so called conditionally linear state space model is
introduced.

22 CHAPTER 2. PROBABILISTIC MODELLING

2.7 Conditionally linear Gaussian state space model

A conditionally linear Gaussian state space (CLGSS) model is an SSM with the property
that conditioned on one part of the state, the remaining part constitutes an LGSS
model. This is an interesting model, since its structure allows for exact inference of the
conditionally linear Gaussian part of the state vector. This is a property that we wish
to exploit when constructing algorithms for this type of models.

Definition 2 (Conditionally linear Gaussian state space (CLGSS) model). Assume that
the state Xt of an SSM can be partitioned according to Xt = (St, Zt). The SSM is a
CLGSS model if the conditional process {(Zt, Yt) |S1:t = s1:t}t≥1 is described by an LGSS
model.

Note that in the above definition we made use of the list notation for the state, i.e.
Xt = (St, Zt) allowing us to work with combinations of discrete and continuous state
spaces. The reason for this rather abstract definition is that there are several different
functional forms (some of which are explicitly introduced below), that all share the same
fundamental property; conditioned on one part of the state, the remaining part behaves
as an LGSS model. The Zt-process is conditionally linear, motivating the name linear
state for Zt whereas St will be referred to as the nonlinear state. An important detail is
that it is necessary to condition on the entire nonlinear trajectory S1:t for the conditional
process Zt to be linear Gaussian, i.e. to condition on just St is not sufficient. This is
thoroughly explained in the following example, where we also introduce one commonly
used instantiation of the CLGSS model, the so called hierarchical CLGSS model.

Example 2.6: Hierarchical CLGSS model

The hierarchical CLGSS model carries its name due to the hierarchical relationship be-
tween the variables St and Zt, where St is at the top of the hierarchy, evolving according
to a Markov kernel p(st+1 | st) independently of Zt. The linear state Zt evolves according
to an LGSS model (parameterized by St). Hence, the model is given by

St+1 | (St = st) ∼ p(st+1 | st), (2.42a)

Zt+1 = ft(St) +A(St)Zt + Vt(St), (2.42b)

Yt = ht(St) + C(St)Zt + Et(St), (2.42c)

with Gaussian noise sources Vt(St) and Et(St). The initial density is defined by S1 ∼
µs(s1) and Z1 | (S1 = s1) ∼ N (z̄1(S1), P (S1)). The corresponding graphical model is
provided in Figure 2.6. We have assumed that the matrices A,C, etc. are functions of
the nonlinear state St. However, for any fixed time t ≥ 1 and conditioned on S1:t, the
sequences {A(Sk)}tk=1, {C(Sk)}tk=1, etc. are known. Hence, conditioned on S1:t, (2.42b) -
(2.42c) constitutes an LGSS model with state Zt. As previously pointed out, to condition
on just St is not sufficient. In that case, the sequence {A(Sk)}tk=1 (for instance) would
consist of random elements, where only the final element is known.

Conditioning the model (2.42) on S1:t means that we can in fact remove the lin-
ear state Zt from the model by marginalizing out the variables Z1:t, effectively reduc-

2.7. CONDITIONALLY LINEAR GAUSSIAN STATE SPACE MODEL 23

S1 S2 S3

. . .
ST

Z1 Z2 Z3

. . .

ZT

Y1 Y2 Y3 YT

Figure 2.6: Graphical model for the hierarchical CLGSS model (2.42).

ing (2.42) to,

St+1 | (St = st) ∼ p(st+1 | st), (2.43a)

Yt | (S1:t = s1:t, Y1:t = y1:t) ∼ p(yt | s1:t, y1:t−1). (2.43b)

This reduced SSM is similar to the “full” SSM (??), save for the fact that the marginal-
ization of the z-process resulted in a measurement model (2.43b) that depends on the
complete history s1:t, y1:t−1.

In Section 2.7.1 and Section 2.7.2 we introduce two commonly studied members of
the CLGSS model family, namely the switching linear Gaussian state space model (which
is a special case of the hierarchical CLGSS model) and the mixed Gaussian state space
model, respectively.

2.7.1 Switching linear Gaussian state space model

A popular special case of the CLGSS model is the so called switching linear Gaussian
state space (SLGSS) model. The SLGSS model consists of a combination of the FSS
model (Example 2.4) and the LG-SSM. Hence, the SLGSS model is constituted by a
finite number (K) of LGSS models and a discrete switching variable St ∈ (1, . . . , K)
indicating which of the K LGSS models that is to be used at time t. The switching
variable itself is modelled as a Markov process on this finite state space, i.e. an FSS
model. Alternatively the SLGSS model can be thought of as a generalization of the
LGSS model, where we rather than making use of one global model instead make use of
several LGSS models. Each model will then capture a specific aspect of the underlying
dynamical system and the switching variable reveals how to switch between the different
models.

Definition 3 (Switching linear Gaussian state space (SLGSS) model). The SLGSS

24 CHAPTER 2. PROBABILISTIC MODELLING

model is defined according to

St+1 | (St = st) ∼ p(st+1 | st), (2.44a)

Zt+1 = A(St)Zt + V (St), (2.44b)

Yt = C(St)Zt + E(St), (2.44c)

where Xt = (St, Zt) and X = (1, . . . , K) × Rnz , i.e. St ∈ (1, . . . , K) and Zt ∈ Rnz .
Furthermore, Yt ∈ Rny denotes the observed measurement and the initial mode variable
S1 is distributed according to p(s1). The initial Z1 and the two white noise sequences
Vt ∈ Rnx and Et ∈ Rny are assumed Gaussian distributed according to Z1 ∼ N (µ, P1)
and (

V (St)
E(St)

)
∼ N

((
v̄(St)
ē(St)

)
,

(
Q(St) S(St)
S(St)

T R(St)

))
. (2.44d)

The state vector (using the list notation) Xt = (St, Zt) consists of both the discrete
valued switching variable St and the continuous valued Zt. The graphical model for
the SLGSS model is the same as the one for the hierarchical CLGSS model provided in
Figure 2.6, which results in the following expression for the joint PDF of all the states
and all the measurements,

p(x1:T , y1:T) = p(s1:T , z1:T , y1:T)

= p(z1)p(s1)
T−1∏
t=1

p(zt+1 | zt, st)p(st+1 | st)
T∏
t=1

p(yt | st, zt)
T∏
t=1

. (2.45)

The SLGSS model is one instance of a more general family of models commonly referred
to as hybrid models. A hybrid model is a model where the state variable consists of
both discrete states and continuous states. Other names used for the SLGSS model and
slight variants thereof are jump Markov linear model and linear jump model.

2.7.2 Mixed Gaussian state space model

The mixed Gaussian state space (MGSS) model is given by

st+1 = fst (st) +Ast (st)zt + V s
t (st), (2.46a)

zt+1 = fzt (st) +Azt (st)zt + V z
t (st), (2.46b)

Yt = ht(st) + Ct(st)zt + Et(st), (2.46c)

where the process noise Vt(st) =
(
V s
t (st)

T V z
t (st)

T
)T

and the measurement noise Et(st)
are mutually independent and they are both white and Gaussian distributed according
to

Vt(st) ∼ N
((

0
0

)
,

(
Qs(st) Qsz(st)

(Qsz(st))
T Qz(st)

))
= N (0, Q(st)) , (2.46d)

et(st) ∼ N (0, R(st)) . (2.46e)

2.8. HISTORY AND FURTHER READING 25

In contrast to the SLGSS model, the MGSS model allows for an intricate cross-dependence
between the linear and the nonlinear parts of the state vector. The result is that the
nonlinear state process {st}t≥1 alone is non-Markovian. This class of models arise, for
instance, when the observations depend nonlinearly on a subset of the states in a system
with linear dynamics.

In Definition 4 we formally define the MGSS model using a more compact notation
compared to (2.46), which will result in clearer equations in the upcoming inference
algorithms, since some of the details are hidden in this form.

Definition 4 (Mixed Gaussian state space (MGSS) model). The MGSS model is defined
according to

Xt+1 = ft(st) +At(st)zt + Vt(st), (2.47a)

Yt = ht(st) + Ct(st)zt + Et(st), (2.47b)

where

Xt =

(
st
zt

)
, ft(st) =

(
fst (st)
fzt (st)

)
, At(st) =

(
Ast (st)
Azt (st)

)
. (2.47c)

The process noise Vt(st) and the measurement noise Et(st) are assumed to be mutually
independent, white and Gaussian distributed according to (2.46d)-(2.46e). The initial
distribution of the state is given by st ∼ p(st) and s1 | (s1 = s1) ∼ N (µ(s1), P1(s1)).

The graphical model for the MGSS model is given in Figure 2.7. The more intricate
cross dependence between the linear parts and the nonlinear parts of the state that is
present in the MGSS model compared to the SLGSS model is graphically illustrated by
comparing Figure 2.6 and Figure 2.7.

S1 S2 S3

. . .
ST

Z1 Z2 Z3

. . .

ZT

Y1 Y2 Y3 YT

Figure 2.7: Graphical model for the mixed Gaussian state space model in Definition 4.

2.8 History and further reading

(Jazwinski, 1970) (Cappé et al., 2005) (Kailath et al., 2000) (Verhaegen and Verdult,
2007). Gelman et al. (2003), (Denison et al., 2002) Koller and Friedman (2009) Jordan
(2004) Cappé et al. (2005), Douc et al. (2014) Rabiner (1989) Fox et al. (2011)

26 CHAPTER 2. PROBABILISTIC MODELLING

Chapter 3

Inference and learning strategies

The aim in this chapter is to provide the basic strategies that will be used throughout
the rest of the manuscript in solving various inference problems in dynamical systems.
These strategies will identify certain key problems that have to be solved. While there
are no analytical solutions to these problems (save for some restrictive special cases),
there are computational methods available allowing us to implement the strategies by
approximately solving these problems. The inference problems we are interested in can
broadly be classified as either state inference or (static) parameter inference.

The state inference problem deals with finding information about the states using the
information available in the measurements. We will throughout this chapter make use
of the SSM introduced in (2.30) to model the dynamical system. The information about
the state is represented using PDFs on the form p(xr:t | y1:s), where y1:s , {y1, y2, . . . , ys}
denotes the set of available measurements. Depending on the relationship between the
time indices r, t and s this problem falls into one of the following three main categories;
filtering, prediction or smoothing. A more detailed description of the most commonly
encountered state inference problems is provided in Table 3.1. Note that whenever we
discuss state inference we will without loss of generality suppress the model’s possible
dependence on an unknown parameter θ in the interest of readability.

We start out in Section 3.2 by explaining how to compute these PDFs by only
traversing the data once in the forward direction, i.e. from t = 1 to t = T , commonly

Table 3.1: Filtering and smoothing densities of particular interest.

PDF

Marginal filtering p(xt | y1:t)
Joint filtering p(x0:t | y1:t), t = 0, 1, . . . , T − 1
Prediction p(xt+1 | y1:t)
k-step prediction p(xt+k | y1:t)
Joint smoothing p(x1:T | y1:T)
Marginal smoothing (t ≤ T) p(xt | y1:T)
Fixed-interval smoothing (s < t ≤ T) p(xs:t | y1:T)
Fixed-lag smoothing (l fixed)a p(xt−l+1:t | y1:t)

27

28 CHAPTER 3. INFERENCE AND LEARNING STRATEGIES

referred to as forward computations. In dynamical systems the future holds information
about the past, which makes it interesting to perform backwards computations, i.e.
traversing the data from t = T to t = 1, which is performed in various ways in Section 3.3.
The strategies derived in Section 3.2 and Section 3.3 are then used throughout the
manuscript as targets for the approximative algorithms that will be derived and analyzed.
Throughout this chapter we will provide several different strategies for computing the
same object. The reason is that different strategies typically opens up for different
algorithms to be derived, which we will see in later chapters.

The task in parameter inference is to find information about the static parameters θ
of the model based on the information provided by the measurements. We place equal
relevance to both the maximum likelihood (Section 3.5.2) approach and the Bayesian
approach (Section 3.5.3) when it comes to inferring static parameters and various mixes
of the two are indeed becoming more and more interesting.

3.1 State inference

3.2 Forward computations

The forward computations amount to computing the densities mentioned in Table 3.1
sequentially in time from t = 0 to t = T .

3.2.1 Forward filtering

The filtering problem amounts to recovering information about the state Xt given the
information present in the measurements y1:t by computing the filtering PDF p(xt | y1:t).
From application of Bayes’ theorem we have

p(xt | y1:t) = p(xt | yt, y1:t−1) =
p(yt |xt, y1:t−1)p(xt | y1:t−1)

p(yt | y1:t−1)
. (3.1)

The measurements from an SSM are conditionally independent, which results in

p(xt | y1:t) =
p(yt |xt)p(xt | y1:t−1)

p(yt | y1:t−1)
. (3.2)

which is commonly referred to as the measurement update. It requires the prediction
PDF p(xt | y1:t−1), which we can find based on objects we have. To see this we start by
considering the joint PDF p(xt, xt−1 | y1:t−1), which can be written as,

p(xt, xt−1 | y1:t−1) = p(xt |xt−1, y1:t−1)p(xt−1 | y1:t−1). (3.3)

The Markov property results in

p(xt, xt−1 | y1:t−1) = p(xt |xt−1)p(xt−1 | y1:t−1). (3.4)

3.2. FORWARD COMPUTATIONS 29

The prediction PDF p(xt | y1:t−1) is now obtained simply by marginalizing (3.4) w.r.t.
Xt−1,

p(xt | y1:t−1) =

∫
p(xt, xt−1 | y1:t−1)dxt−1 =

∫
p(xt |xt−1)p(xt−1 | y1:t−1)dxt−1, (3.5)

which is referred to as the time update. Summarizing the above development we have

p(xt | y1:t) =

measurement︷ ︸︸ ︷
p(yt |xt)

prediction︷ ︸︸ ︷
p(xt | y1:t−1)

p(yt | y1:t−1)
, (Measurement update) (3.6a)

p(xt | y1:t−1) =

∫
p(xt |xt−1)︸ ︷︷ ︸

dynamics

p(xt−1 | y1:t−1)︸ ︷︷ ︸
filtering

dxt−1, (Time update) (3.6b)

Hence, the filtering density at time t can be computed from the filtering density at time
t − 1 via a two-step procedure (3.6). The time update performs a prediction of the
state one step ahead in time. The functional form (3.6b) makes intuitive sense for the
following reasons. The information we have about the state at time t is encapsulated in
the filtering PDF p(xt | y1:t). Furthermore, in the absence of future measurements, the
dynamics p(xt |xt−1) is the only source of information we have about what happens to
the state in the future. Hence, it is natural that these objects are used in computing the
time update.

In order to get some intuition for the measurement update let us first note that the
denominator in (3.6a) is a normalizing factor. By marginalizing p(yt, xt | y1:t−1) w.r.t.
Xt this normalizing factor can be computed according to

p(yt | y1:t−1) =

∫
p(yt |xt)p(xt | y1:t−1)dxt. (3.7)

Hence, in the light of (3.6a) and (3.7) we see that the measurement update is constituted
by a combination of two objects, the measurement model p(yt |xt) and the prediction
PDF p(xt | y1:t−1). Thinking about what we know about the state at time t, this seems
reasonable, since there are two sources of information; the current measurement yt and
all the previous measurements y1:t−1. The relationship between the new measurement
and the state is encoded via the measurement model. Finally, the prediction PDF
p(xt | y1:t−1) efficiently encapsulates everything that is known about the state Xt based
on the information in all the previous measurements y1:t−1.

Let us also note that the k-step prediction PDF p(xt+k | y1:t) is obtained by integrat-
ing p(xt:t+k | y1:t) w.r.t. xt:t+k−1, resulting in

p(xt+k | y1:t) =

∫ t+k∏
l=t

p(xl+1 |xl)p(xt:t+k | y1:t)dxt:t+k−1

=

∫ t+k∏
l=t

p(xl+1 |xl)p(xt | y1:t)dxt:t+k−1. (3.8)

30 CHAPTER 3. INFERENCE AND LEARNING STRATEGIES

The above expression corresponds to iteratively making use of the dynamics in order
to compute the prediction. As mentioned above, without any new measurements, the
only information available about what might happen in the future is provided by the
dynamics. In the subsequent example the general expressions derived above are employed
to solve a particular special case.

Example 3.1: Kalman filter

Let us consider the linear Gaussian special case (2.38), with S = 0 for simplicity.
All densities associated to the LG-SSM are Gaussian, due to the fact that an affine
transformation of a Gaussian variable is still Gaussian. In this example it will be shown
how to compute the filtering PDF p(xt | y1:t) and prediction PDF p(xt+1 | y1:t) simply
by inserting the model (2.38) into (3.6). We will make use of the results on how to
manipulate Gaussian variables provided in Appendix B.3.1.

Let us assume that

p(xt | y1:t−1) = N
(
xt
∣∣ x̂t | t−1, Pt | t−1

)
. (3.9)

The measurement model (2.38b) involves an affine transformation

p(yt |xt, y1:t−1) = N (yt |Cxt +Dut, R) . (3.10)

The measurement update (3.6a) can now be realized by direct use of Corollary 1 (with
xa = xt and xb = yt), resulting in

p(xt | y1:t) = N
(
xt

∣∣∣ x̂t | t−1 +Kt(yt − Cx̂t | t−1 −Dut), Pt | t−1 −KtLtK
T
t

)
(3.11a)

, N
(
xt
∣∣ x̂t | t, Pt | t) , (3.11b)

where Kt = Pt | t−1C
TLt and Lt = (CPt | t−1C

T +R)−1.
The time update amounts to computing the integral (3.6b) for the LG-SSM. Let us

start by noting that the dynamics (2.38a) involve an affine transformation

p(xt+1 |xt) = N (xt+1 |Axt +But, Q) , (3.12)

which together with Theorem 9 allows us to conclude

p(xt, xt+1 | y1:t) = N
((

xt
xt+1

) ∣∣∣∣ (x̂t | t
Ax̂t | t +But

)
,

(
Pt | t Pt | tA

T

APt | t APt | tA
T +Q

))
. (3.13)

Recall that p(xt, xt+1 | y1:t) = p(xt+1 |xt)p(xt | y1:t), which explains why the time up-
date (3.6b) is realized by marginalizing (3.13) w.r.t. xt. Direct use of Corollary 1 results
in

p(xt+1 | y1:t) = N
(
xt+1

∣∣∣Ax̂t | t +But, APt | tA
T +Q

)
, N

(
xt+1

∣∣ x̂t+1 | t, Pt+1 | t
)
.

(3.14)

The measurement update (3.11) and the time update (3.14) are collectively referred to
as Kalman filter (KF) providing the recursions explaining how to compute the filtering
and the prediction PDFs as new measurements arrives.

3.3. BACKWARD COMPUTATIONS 31

As we saw in Example 3.1 it is very natural to structure the derivation of the state
inference algorithm (i.e. the Kalman filter) for the LG-SSM according to the time up-
date (3.6b) and measurement update (3.6a) equations. There are several other models
where it also makes sense to start the derivation of the inference algorithm from (3.6), but
for an arbitrary SSM it can be unnecessarily restrictive to enforce the explicit structure
of a time update and a measurement update in deriving an inference algorithm. Instead
it can for example be beneficial to combine the two equations into one, according to

p(xt | y1:t) =
p(yt |xt)

p(yt | y1:t−1)

∫
p(xt |xt−1)p(xt−1 | y1:t−1)dxt−1. (3.15)

This will for example allow for a more efficient use of the current measurement yt in
deriving sequential Monte Carlo algorithms, as we will see in Chapter 5.

3.2.2 Forward smoothing

The JSD p(x0:t | y1:t) can be computed sequentially according to the following two-step
procedure (obtained using Bayes’ theorem),

p(x0:t | y1:t) =
p(yt |xt)p(x0:t | y1:t−1)

p(yt | y1:t−1)
, (3.16a)

p(x0:t+1 | y1:t) = p(xt+1 |xt)p(x0:t | y1:t). (3.16b)

The above equations will be denoted the forward recursion for the JSD, since they evolve
forward in time. The filtering PDF (3.6a) is the marginal of (3.16a) that is obtained by
integrating over x0:t−1.

3.3 Backward computations

State inference via backward computations amounts to propagating information back-
wards in time from t = T to t = 0. In this section we provide the strategies used in
structuring these computations.

3.3.1 The JSD and the backward kernel

Repeated use of conditional probabilities results in the following representation of the
JSD,

p(x0:T | y1:T) = p(x0 |x1:T , y1:T)p(x1:T | y1:T) = . . .

= p(xT | y1:T)

T−1∏
t=0

p(xt |xt+1:T , y1:T). (3.17)

To clearly see what this product entails, let us study the PDF p(xt |xt+1:T , y1:T) in more
detail. First of all, the Markov property allows us to conclude that p(xt |xt+1:T , y1:T) =

32 CHAPTER 3. INFERENCE AND LEARNING STRATEGIES

p(xt |xt+1, y1:T) . Secondly, the measurements are conditionally independent, given the
state, resulting in p(xt|xt+1, y1:t, yt+1:T) = p(xt|xt+1, y1:t). An interpretation of this is
that given the state at time t+ 1, there is no additional information about the state xt
available in the measurements yt+1:T , nor in the states xt+2:T . To summarize we have
now shown that

p(xt |xt+1:T , y1:T) = p(xt |xt+1, y1:t), (3.18)

which inserted into (3.17) results in the following expression for the JSD

p(x0:T | y1:T) =

(
T−1∏
t=0

p(xt |xt+1, y1:t)

)
p(xT | y1:T). (3.19)

The PDF p(xt |xt+1, y1:t) is often referred to as the backward kernel, since it works
backwards in time. The backward kernel can be computed by noting that

p(xt |xt+1, y1:t) =
p(xt, xt+1 | y1:t)

p(xt+1 | y1:t)
=

p(xt+1 |xt)p(xt | y1:t)∫
p(xt+1 |xt)p(xt | y1:t)dxt

, (3.20)

where all densities on the right hand side are familiar. Inserting (3.20) into (3.19) gives

p(x0:T | y1:T) =
T−1∏
t=0

p(xt+1 |xt)p(xt | y1:t)

p(xt+1 | y1:t)
p(xT | y1:T). (3.21)

Alternatively we can make use of the backward kernel to obtain the following recursion
for the JSD, evolving backward in time,

p(xt:T | y1:T) = p(xt |xt+1, y1:t)p(xt+1:T | y1:T), (3.22)

starting with the filtering density at time T , p(xT | y1:T). This is known as the backward
recursion. At time t = 0, the JSD for the time interval 0, . . . , T is obtained.

3.3.2 Marginal smoothing densities

The marginal smoothing density p(xt | y1:T) can of course be obtained by marginal-
izing (3.21). Yet another strategy for computing the marginal smoothing density is
obtained by starting from the observation that

p(xt | y1:T) =

∫
p(xt, xt+1 | y1:T)dxt+1, (3.23)

where p(xt, xt+1 | y1:T) = p(xt |xt+1, y1:T)p(xt+1 | y1:T). Furthermore, from (3.18) we
know that p(xt |xt+1, y1:T) = p(xt |xt+1, y1:t), which allows us to conclude that

p(xt, xt+1 | y1:T) = p(xt |xt+1, y1:t)p(xt+1 | y1:T). (3.24)

Inserting (3.24) and (3.20) into (3.23) results in the following expression for the marginal
smoothing density

p(xt | y1:T) = p(xt | y1:t)

∫
p(xt+1 |xt)p(xt+1 | y1:T)

p(xt+1 | y1:t)
dxt+1. (3.25)

3.4. FORWARD AND BACKWARD COMPUTATIONS 33

3.4 Forward and backward computations

The backward kernel density (3.20) at time t depends only on the transition density
p(xt+1 |xt) and on the filtering density p(xt | y1:t), a property which is of key relevance.
Hence, to utilise the backward recursion (3.22) for computing the JSD, the filtering
densities must first be computed for t = 1, . . . , T .

3.4.1 Forward filtering backward smoothing

Consequently, this procedure is generally called forward filtering/backward smoothing.

Example 3.2: RTS smoother

The LGSS model only involves linear transformations of Gaussian variables, which im-
plies that all manipulations can be efficiently performed using the properties of Gaussian
variables provided in Appendix B.3.1. More specifically, the strategy we employ is to
marginalise (3.24) w.r.t. xt+1 according to (3.23). In order to do this we start by finding
an expression for the backward kernel p(xt |xt+1, y1:t). Note that

p(xt+1 |xt) = N (xt+1 |Axt +But, Q) , (3.26a)

p(xt | y1:t) = N
(
xt
∣∣ x̂t | t, Pt | t) , (3.26b)

where the last equality is provided by the Kalman filter (recall Example 3.1). Us-
ing (3.26) together with Corollary 1 (with xa = xt, xb = xt+1 and the fact that all
densities are conditioned w.r.t. y1:t) shows that the backward kernel is given by

p(xt |xt+1, y1:t) = N
(
xt
∣∣ x̂t | t + Jt

(
xt+1 −But −Ax̂t | t

)
, Pt | t − JtAPt | t

)
= N

(
xt
∣∣ Jtxt+1 − Jtx̂t+1 | t + x̂t | t, Pt | t − JtAPt | t

)
, (3.27)

where Jt = Pt | tA
T(APt | tA

T+Q)−1. Using (3.27) together with p(xt+1 | y1:T) = N (xt+1 | x̂t+1 |T ,
Pt+1 |T) and Corollary 1 (this time with xa = xt+1, xb = xt) results in

p(xt | y1:T) = N
(
xt

∣∣∣ Jtx̂t+1 |T − Jtx̂t+1 | t + x̂t | t, Pt | t − JtAPt | t + JtPt+1 |TJ
T
t

)
.

(3.28)

This shows that x̂t |T = x̂t | t + Jt
(
x̂t+1 |T − x̂t+1 | t

)
. Furthermore, from (3.28) we have

(assuming that Jt is invertible)

Pt |T = Pt | t + JtPt+1 |TJ
T
t − JtAPt | tJ−T

t JT
t = · · · = Pt | t + Jt

(
Pt+1 |T − Pt+1 | t

)
JT
t ,

(3.29)

which concludes our derivation. To summarize, we have now showed that the marginal
smoothing PDF for the LGSS model is given by p(xt | y1:T) = N

(
xt
∣∣ x̂t |T , Pt |T) , where

x̂t |T = x̂t | t + Jt
(
x̂t+1 |T − x̂t+1 | t

)
, (3.30a)

Pt |T = Pt | t + Jt
(
Pt+1 |T − Pt+1 | t

)
JT
t , (3.30b)

Jt = Pt | tA
T(APt | tA

T +Q)−1 = Pt | tA
TP−1

t+1 | t. (3.30c)

34 CHAPTER 3. INFERENCE AND LEARNING STRATEGIES

This smoother is commonly referred to as the RTS smoother after Rauch, Tung and
Striebel, who back in 1965 were the first to derive this solution.

3.4.2 Forward filtering backward simulation

Backward simulation is a strategy for generating realizations of latent variables in prob-
abilistic models. The strategy is based on the forward-backward idea introduced above.
In the backward pass, the state process is simulated backward in time, i.e. by first sim-
ulating xT , then xT−1 etc., until a complete state trajectory x1:T is generated. This
procedure gives us a tool to address the state smoothing problem in models for which no
closed form solution is available. This is done by simulating multiple backward trajecto-
ries from the smoothing distribution, i.e. conditionally on the observations y1:T . These
samples can then be used for example in Monte Carlo integration.

The backward simulation strategy suggets itself from the following factorization of
the JSD,

p(x0:T | y1:T) =

(
T−1∏
t=0

p(xt |xt+1, y1:t)

)
p(xT | y1:T). (3.31)

previously derived in (3.19). Initially, we generate a sample from the filtering density
at time T ,

x̃T ∼ p(xT | y1:T). (3.32a)

We then, successively, augment this backward trajectory by generating samples from the
backward kernel,

x̃t ∼ p(xt | x̃t+1, y1:t), (3.32b)

for t = T − 1, . . . , 1. After a complete backward sweep, the backward trajectory x̃1:T

is (by construction) a realization from the JSD (3.31). The strategy given by (3.32),
i.e. to sequentially sample (either exactly or approximately) from the backward kernel
to generate a realization from the JSD, is what we collectively refer to as backward
simulation.

An important question that remains to be answered in order to take this from a
strategy to an implementable algorithm is how to generate samples from the backward
kernel. For reasons of illustration let us who how this is done for the LG-SSM, where
the backward kernel is Gaussian enabling exact backward simulation.

3.4. FORWARD AND BACKWARD COMPUTATIONS 35

Example 3.3: Exact backward simulation in LGSS models

For an LG-SSM (2.38) it is possible to generate an exact realization from the JSD using
backward simulation (3.32). To compute the backward kernel, we first run a forward
filter (i.e. the Kalman filter according to Example 3.1) to find the filtering densities
p(xt | y1:t) for t = 1, . . . , T . According to (3.27) the backward kernel is given by

p(xt |xt+1, y1:t) = N (xt |µt, Lt) , (3.33a)

with

µt = x̂t | t + Pt | tA
T(APt | tA

T +Q)−1(xt+1 −Ax̂t | t), (3.33b)

Lt = Pt | t − Pt | tAT(APt | tA
T +Q)−1APt | t. (3.33c)

Note that, if more than one sample is desired, multiple backward trajectories can be
generated independently, without having to rerun the forward Kalman filter. To illus-
trate the possibility of generating samples from the JSD using backward simulation, we
consider a first order LG-SSM,

xt+1 = 0.9xt + vt, vt ∼ N (0, 0.1), (3.34a)

yt = xt + et, et ∼ N (0, 1), (3.34b)

and x1 ∼ N (0, 10). We simulate T = 50 samples y1:T from the model. Since the model
is linear Gaussian, the marginal smoothing densities p(xt | y1:T) can be computed exactly
according to the RTS smoother in Example 3.2. However, we can also generate samples
from the JSD p(x1:T | y1:T) by running a backward simulator. We simulate M = 5 000
independent trajectories {x̃j1:T }Mj=1, according to the above development. Histograms
over the simulated states at three specific time points, t = 1, t = 25 and t = 50, are
given in Figure 3.1. As expected, the histograms are in close agreement with the true
marginal smoothing distributions.

2 4 6 8
x1

−4 −2 0 2 4
x25

−4 −2 0 2 4
x50

Figure 3.1: Histograms of {x̃jt}Mj=1 for t = 1, t = 25 and t = 50 (from left to right). The true marginal
smoothing densities p(xt | y1:T) are shown as black lines.

36 CHAPTER 3. INFERENCE AND LEARNING STRATEGIES

Backward simulation is a powerful strategy when it comes to state inference in general
nonlinear/non-Gaussian SSMs and also for more general non-Markovian latent variable
models. For these models it is no longer possible to perform exact backward simulation.
However, as we will see in later chapters we can make use of SMC and MCMC samplers
to construct interesting and useful approximate backwards simulators.

3.4.3 Two-filter smoothing

The two-filter smoothing strategy is based on one filter working forward in time and
one filter working backwards in time. The smoothing density the then computed by
merging the result from the two (independent) filters. We use the following factorization
of the marginal smoothing density to reveal the structure that is underlying the two-filter
smoothing strategy,

p(xt | y1:T) = p(xt | y1:t−1, yt:T) =
p(xt, yt:T | y1:t−1)

p(yt:T | y1:t−1)
=
p(yt:T |xt, y1:t−1)p(xt | y1:t−1)

p(yt:T | y1:t−1)

=
p(yt:T |xt)p(xt | y1:t−1)

p(yt:T | y1:t−1)
∝ p(xt | y1:t−1)︸ ︷︷ ︸

filer one

p(yt:T |xt)︸ ︷︷ ︸
filer two

, (3.35)

where the proportionality is valid since p(yt:T | y1:t−1) does not depend on xt. Filter one
is provided according to the standard forward filtering recursion (3.6). The backwards
recursion for filter two (sometimes referred to as the backward information filter) is given
by

p(yt:T |xt) = p(yt |xt)
∫
p(yt+1:T |xt+1)p(xt+1 |xt)dxt+1, (3.36)

which advantageously may be decomposed into a two-step procedure according to

p(yt:T |xt) = p(yt+1:T , yt |xt) = p(yt+1:T |xt)p(yt |xt). (3.37a)

where

p(yt+1:T |xt) =

∫
p(yt+1:T , xt+1 |xt)dxt+1 =

∫
p(yt+1:T |xt+1)p(xt+1 |xt)dxt+1.

(3.37b)

The object p(yt:T |xt) computed by filter two is not necessarily a PDF in the argument
xt, implying that the integral over xt is not necessarily finite, which is important to
acknowledge in trying to realize this strategy. For intuition it is worth noting that the
object p(yt:T |xt) is similar to the likelihood with respect to the state.

3.5 Parameter learning

Two commonly used parameter learning formalisms are grounded in frequentistic and
Bayesian statistics, respectively. We will treat both of these formulations in this manuscript,
without making any individual ranking among them.

3.5. PARAMETER LEARNING 37

The frequentistic, or maximum likelihood method is based on the rather natural
idea that the unknown parameters should be chosen in such a way that the observed
measurements becomes as likely as possible. This is achieved by maximizing the observed
data likelihood function w.r.t. the unknown parameters,

θ̂ = arg max
θ∈Θ

p(Y1:T = y1:T | θ) = arg max
θ∈Θ

log p(Y1:T = y1:T | θ). (3.38)

Hence, the maximum likelihood method amounts to computing point estimates θ̂ by
making use of a particular realization of the measurements {yt}Tt=1. Note that an un-
derlying assumption is that the unknown parameters θ are modelled as deterministic
variables.

In the Bayesian formulation, the unknown parameters θ are modeled as a random
variable. The parameter learning problem thus amounts to computing the posterior
distribution of θ condition on the observed measurements. According to Bayes’ theorem,
the posterior distribution is given by,

p(θ | y1:T) =
p(y1:T | θ)p(θ)

p(y1:T)
. (3.39)

The central object in both the frequentistic and Bayesian formulations above is the data
distribution p(y1:T | θ), motivating Section 3.5.1, which examines this object further. The
maximum likelihood formulation is then described in Section 3.5.2 and the Bayesian
formulation in Section 3.5.3.

3.5.1 Data distribution

The data distribution is the PDF of the observed measurements conditioned on the
model parameters θ, i.e. p(y1:T | θ). The data distribution for the general SSM can be
computed by marginalizing the joint distribution of the latent states and the observed
measurements

p(x0:T , y1:T | θ) = p(x0 | θ)
T∏
t=1

pθ(yt |xt)
T∏
t=1

p(xt |xt−1 | θ), (3.40)

w.r.t. the latent state sequence x1:T according to

p(y1:T | θ) =

∫
p(x0:T , y1:T | θ)dx0:T . (3.41)

One interpretation of (3.41) is that the data distribution p(y1:T | θ) is obtained by aver-
aging the joint PDF of the states and the measurements p(x0:T , y1:T | θ) over all possible
state trajectories x0:T .

Alternatively we can note that the data distribution p(y1:T | θ) can be computed via
repeated use of conditional probabilities according to p(yT , y1:T−1 | θ) = p(yT | y1:T−1, θ)p(y1:T−1 | θ),
resulting in,

p(y1:T | θ) =

T∏
t=1

p(yt | y1:t−1 | θ), (3.42)

38 CHAPTER 3. INFERENCE AND LEARNING STRATEGIES

where we have made use of the convention y1:0 , ∅. Hence, the data distribution is
obtained as the product of the one step ahead predictors of the measurements. These
one step ahead predictors can be computed by marginalizing the joint PDF pθ(xt, y1:t) =
pθ(yt |xt)pθ(xt | y1:t−1) w.r.t. the state xt,

pθ(y1:T) =
T∏
t=1

∫
pθ(yt |xt)pθ(xt | y1:t−1)dxt. (3.43)

From the above development we can see that in order to compute the observed data
likelihood we have to solve a state inference problem in order to find information about
the latent states. This also highligts the tight relationship between the parameter learn-
ing problem and the state inference problem. As a further consequence of this we can
also conclude that in general the observed data likelihood is not available in closed form.
One simple special case where there exists a closed form expression for the observed data
likelihood is provided by the LG-SSM.

Example 3.4: The observed data likelihood in an LG-SSM

This example will show how to compute the observed data likelihood for the LG-
SSM (2.38) (with S = 0 for simplicity). Let us start by recalling that according to
Example 3.1 we have that p(xt | y1:t−1) = N

(
xt
∣∣ x̂t | t−1, Pt | t−1

)
, where x̂t | t−1 and Pt | t−1

are provided by the Kalman filter. Inserting this expression into (3.7) provides an explicit
expression for the one step ahead predictor of the measurement

p(yt | y1:t−1.θ) = N
(
yt

∣∣∣Cx̂t | t−1, CPt | t−1C
T +R

)
, (3.44)

which inserted into (3.42) provides the following expression

p(y1:t | θ) =

T∏
t=1

N
(
yt

∣∣∣Cx̂t | t−1, CPt | t−1C
T +R

)
, (3.45)

for the observed data likelihood. Note that the dependence on the matrices A and Q is
implicit via the Kalman filter.

We conclude the example by noting that in case we are interested in the computing
the ML estimate it is often convenient to work with the logarithm of the likelihood. This
is especially true for members of the exponential family, but for numerical reasons it often
holds true for other distributions as well. From (3.45) we have that the log-likelihood is
given by

log pθ(y1:t) =
T∑
t=1

logN
(
yt

∣∣∣Cx̂t | t−1, CPt | t−1C
T +R

)
=
Tnx

2
log 2π +

T∑
t=1

(
−1

2
log det(Λt)−

1

2
‖yt − Cx̂t | t−1‖2Λ−1

t

)
, (3.46)

where Λt = CPt | t−1C
T +R.

3.5. PARAMETER LEARNING 39

For a general SSM it is not possible to derive a closed form expression for the observed
data likelihood as was done for the LG-SSM special case in Example 3.4. This forces us
to numerical approximations, which will be developed throughout this manuscript.

3.5.2 Maximum likelihood learning

In maximum likelihood learning it is assumed that the observed measurements y1:T are
modelled as one particular realization from the random variables Y1:T . This implies
that once the numerical values y1:T are inserted into the data distribution p(y1:T | θ),
it is not a probability distribution anymore, but rather a deterministic function of the
unknown parameters θ. The resulting deterministic object is commonly referred to as
the likelihood function.

Definition 5 ((log-) likelihood function). The likelihood function L(θ; y1:T) is obtained
by inserting the observed measurements y1:T into the PDF modelling the corresponding
random variables Y1:T ,

L(θ; y1:T) , p(Y1:T = y1:T | θ). (3.47)

The corresponding log-likelihood function is give by

`θ = logL(θ; y1:T). (3.48)

Note that the dependence on the specific realisation y1:T has been suppressed in the
definition of the log-likelihood in the interest of a compact notation. We talk about the
likelihood function as the likelihood of the parameters given a particular realization of
data or just the likelihood of the parameters. The end product from maximum likelihood
learning is a point estimate θ̂ that is selected such that it maximizes the joint distribution
of the measurements p(Y1:T = y1:T | θ) w.r.t. θ, i.e. maximizing the likelihood function
according to (3.43).

The logarithm is a monotonically increasing function, which implies that maximizing
the log-likelihood function results in a problem that is equivalent to (3.38). When the
model is assumed to belong to the exponential family, the optimisation problem obtained
in using the log-likelihood rather than the likelihood function is typically simpler (recall
that log ea = a). The exponential family is rather rich and it contains many of the
“standard” densities. Another important reason for why it is convenient to work with the
log-likelihood is that the use of the logarithm results in algorithms that are numerically
more well-behaved.

From (3.38) it is hard to see what maximum likelihood learning entails, since the
problem structure to a large extent is “hidden” within the cost function (i.e. the likeli-
hood function) of the optimization problem. The fact that we have constrained ourselves
to SSMs means that we have an expression for the likelihood function according to (3.43),
which inserted into (3.38) results in

θ̂ = arg max
θ∈Θ

∫
p(x0 | θ)

T∏
t=1

pθ(yt |xt)
T∏
t=1

pθ(xt | y1:t−1)dx0:T . (3.49)

40 CHAPTER 3. INFERENCE AND LEARNING STRATEGIES

From (3.49) it is clear that ML learning of SSMs also involves the state inference problem,
since the one step ahead predictor pθ(xt | y1:t−1) is part of the cost function.

3.5.3 Bayesian learning

In Bayesian modelling the unknown parameters are modelled as random variables.
Hence, all quantities are modelled as random variables with an associated PDF. The
aim in Bayesian learning of unknown parameters is to compute the posterior distribution
of the parameters conditioned on the observed measurements p(θ | y1:T). This posterior
distribution constitutes an object that provide a description of the knowledge that is
present in the observed measurements about those parameters. The description is in-
teresting in the sense that it includes information about the uncertainty inherent in the
observed data, not just a point estimate.

The posterior distribution depends on the model and the observed measurements
according to (3.39).

3.6 History and further reading

Fisher (1912, 1922) Rauch et al. (1965) Kalman (1960) (Jazwinski, 1970) (Cappé et al.,
2005) (Kailath et al., 2000). (Ljung, 1999) Bernado and Smith (2000), Box and Tiao
(1992), Robert (2001) Carter and Kohn (1994), Frühwirth-Schnatter (1994) De Jong and
Shephard (1995), Durbin and Koopman (2002), Wilkinson and Yeung (2002) Bresler
(1986). Peterka (1981) Ninness and Henriksen (2010) Ljung (1999), Söderström and
Stoica (1989).

Chapter 4

Monte Carlo

Assume that you are engaged in a game of solitaire. When laying out the playing cards
on the table, you ask yourself what the probability is of finishing the game successfully.
Rather than engaging in tedious combinatorial calculations, a more practical way to
answer this questions might be to lay out the cards, say, 100 times and observe the
number of successes. The proportion of successes is then a natural estimator of the
success probability.

This is an example of a Monte Carlo method. In using stochastic simulations (here,
shuffling and laying out the deck of cards) we can estimate some quantity which is
otherwise tedious, or intractable, to compute. Clearly, the result of this approach will
be affected by the randomness of the experiment. Indeed, the answer that we provide
will be a random variable in itself! However, as we do more and more trials, we expect
the answer to become increasingly more accurate. This property lies at the heart of
Monte Carlo methods.

Computing probabilities, or more generally1 expected values, is essentially a problem
of integration. Indeed, as noted in Chapter 3, in solving inference problems we are often
faced with various integration problems, typically in high-dimensional spaces. This holds
for both state inference and parameter inference, and for both maximum likelihood and
Bayesian approaches. In order to clarify this, two examples of integration problems that
often arise are given below.

• Expectation. An expected value often provides an interesting and interpretable
point estimate. If the random variable X is distributed according to π(x), then
computing the expectation of ϕ(X) amounts to solving the integral

Eπ[ϕ(X)] =

∫
ϕ(x)π(x)dx, (4.1)

where ϕ : X → Rnϕ is some function of interest (commonly referred to as a
test function). Computing expectations is an important capability in working

1The probability of an event A can be written as P(A) = E[1(A)], with 1(·) being an indicator
function.

41

42 CHAPTER 4. MONTE CARLO

with probabilistic models and a common example of (4.1) is when X = Xt.
More specifically, we want to compute a point estimate of the state Xt based
on measurements obtained from a nonlinear SSM on the form (2.30), x̂t |T =
E[Xt | y1:T] =

∫
xtp(xt | y1:T)dxt. Another example is to compute the variance of

the posterior mean estimate of the parameter θ in a dynamic system, given the
measurements y1:T . This provides a useful measure of uncertainty of the esti-
mate. With θ̂ =

∫
θp(θ | y1:T)dθ being the posterior mean, the variance is given by

σ2
θ =

∫
(θ − θ̂)2p(θ | y1:T)dθ.

• Marginalization. Given the joint density π(x1, x2) of two random variables X1

and X2, we can compute the marginal density of, say, X1 according to

π(x1) =

∫
π(x1, x2)dx2. (4.2)

Marginalization amounts to averaging over one variable, here X2, and focusing
the attention on the remaining variable. Note that X1 and X2 are commonly
multivariate and this is indeed the case in many of the marginalization examples
that we will see in this manuscript. Marginalization often arises when working
with probabilistic models and, indeed, it accounts for one of the main challenges
when doing inference in these models. One example is to compute the marginal
likelihood p(y1:T), i.e. the normalization factor. The integral is in this case given
by

p(y1:T) =

∫
p(y1:T | θ)p(θ)dθ. (4.3)

The above examples serve as a motivation for why it is highly relevant to understand
and be able to solve integration problems when doing inference in dynamical systems.
For the special cases of the LG-SSM and the FSS model there are explicit expressions
available, but for most other cases we are forced to approximate the above integrals in
some way. Methods for computing these approximations can be broadly categorized into
one of the following two classes, where Monte Carlo methods fall in the second class.

1. Deterministic analytical approximation: The methods in this class performs
the approximation by assuming that the posterior density has a particular form or
that it factors in a specific manner. Hence, they somehow assume a certain param-
eterized analytical form for the posterior. The parameters are then inferred from
data, typically in an iterative fashion. Examples of methods falling in this class are
the Laplace approximation, variational Bayes (VB), belief propagation (BP),and
expectation propagation (EP). These are all very useful inference methods, but we
will not work with them in this manuscript.

2. Stochastic simulation approximation:The methods in this class aim at gen-
erating samples from the posterior. These samples can then be used to generate
estimates of any relevant quantity of interest. The developments in this manuscript
are to a large extent geared toward this type of methods.

4.1. THE MONTE CARLO IDEA 43

Monte Carlo methods provide a computational solution to the problems of computing
expectations and performing marginalization, where the obtained accuracy is only lim-
ited to our computational resources. Monte Carlo methods respect the model and the
general solution – the approximation stems from the fact that we are trying to approx-
imate the solution itself and not the model. It is also worth noting that Monte Carlo
methods are more general than this and are indeed used for solving other types of prob-
lems in different fields. Balancing this, it is important to recognize that even though
the approximations underlying the deterministic analytical methods might seem very
restrictive, these methods can provide very good solutions for hard problems. The man-
ageable computational complexity of these algorithms makes them interesting e.g. for
large data sets. There is no single approximation method that is going to outperform
all other methods on all problems. Hence, it is important to understand and be able to
use as many of these methods, both stochastic and deterministic, as possible. Indeed
solutions based on combinations of Monte Carlo methods and analytical approximation
methods are likely to become increasingly important in the future.

We will in this manuscript show how the above problems (expectation and marginal-
ization), and many more, can be solved in the context of dynamical systems using
algorithms based on various Monte Carlo methods. The aim in the present chapter is to
introduce the Monte Carlo idea and the most fundamental Monte Carlo methods. We
will also provide some examples of their use in solving inference problems in dynami-
cal systems. However, these problems will be more thoroughly discussed in Chapter 5
– Chapter ??, which are devoted specifically to state and parameter inference in dy-
namical systems using Monte Carlo methods. For this reason we will only consider the
LG-SSM in this chapter. As we shall see, however, already for linear models, Monte
Carlo samplers open up for interesting inference which is hard to perform without this
theory.

4.1 The Monte Carlo idea

As before, let π(x) be a PDF on X, referred to as the target density. Assume that
we want to compute the expected value of some function ϕ(X) where X is distributed
according to π(x),

I(ϕ) , Eπ[ϕ(X)] =

∫
ϕ(x)π(x)dx. (4.4)

Let us start by making the assumption that we can generate independent samples
{xi}Ni=1, distributed according to π(x). This is in fact a very restrictive assumption and
a large part of this manuscript is concerned with strategies for generating realizations
from random variables with complicated distributions. Nevertheless it is instructive to
make this assumption in order to be able to focus on the key idea underlying all Monte

44 CHAPTER 4. MONTE CARLO

Carlo methods. Based on these samples, we approximate (4.4) by the sample average,

I(ϕ) ≈ 1

N

N∑
i=1

ϕ(xi). (4.5)

This is referred to as the Monte Carlo estimator of (4.4). An equivalent way to ar-
rive at the Monte Carlo estimator, is to let the samples {xi}Ni=1 define an empirical
approximation of the target distribution,

π̂MC(x) =

N∑
i=1

1

N
δxi(x), (4.6)

where δx′(x) denotes a Dirac point-mass located at the point x′ ∈ X. Hence, we
approximate the target distribution (which may be continuous) with a discrete proba-
bility distribution, by placing a point-mass probability of 1/N at each of the generated
samples. Inserting the approximation (4.6) into (4.4) results in

ÎN (ϕ) =

∫
ϕ(x)

N∑
i=1

1

N
δxi(x)dx =

1

N

N∑
i=1

ϕ(xi), (4.7)

i.e. we indeed obtain the Monte Carlo estimator (4.5). The idea of letting a collection of
samples define an empirical point-mass distribution as in (4.6) is very convenient and it
will be frequently used in the sequel. By inserting such a point-mass distribution into,
e.g. (4.1) or (4.2), a previously intractable integral is transformed into a tractable finite
sum.

The Monte Carlo estimator (4.7) comes with many desirable properties, which to a
large extent explains the popularity of the Monte Carlo method. First, the estimator
is unbiased, E[ÎN (ϕ)] = I(ϕ), where the expectation is w.r.t. the random realizations
{xi}Ni=1 in (4.7). Second, the strong law of large numbers (SLLN) implies almost sure
convergence to the true expectation,

ÎN (ϕ)
a.s.−→ I(ϕ), as N →∞. (4.8)

Additionally, if the variance of ϕ(X) is finite, i.e. σ2
ϕ = Var[ϕ(X)] , E

[
ϕ2(X)

]
−I2(ϕ) <

∞, then the central limit theorem (CLT) implies

√
N
(
ÎN (ϕ)− I(ϕ)

)
σϕ

d−→ N (0, 1) , as N →∞. (4.9)

In fact, the variance of the estimator (4.7) is explicitly given by, Var[ÎN (ϕ)] = σ2
ϕ/N .

From (4.9) it follows that the error in the Monte Carlo estimate decreases as O(N−
1
2).

This is a very interesting result, since it means that the convergence rate is independent
of the dimension of the space X. This clearly distinguishes Monte Carlo based integra-
tion methods from deterministic integration methods, where the latter typically have

4.2. REJECTION SAMPLING 45

approximation errors that grow with the dimension of the space in a devastating fash-
ion. We say that these methods suffer from the curse of dimensionality. This is not the
case for Monte Carlo methods, making them particularly suitable for high-dimensional
integration problems. We provide an intuitive explanation of how Monte Carlo can avoid
the curse of dimensionality in Example 4.1 below.

Example 4.1

The assumption that it is possible to generate i.i.d. samples from the target dis-
tribution π(X) is what made all of the above possible. As already stated, this is a
very unrealistic assumption, since for most practical problems π(x) is a complicated
distribution of which we only have partial knowledge. This motivates the rest of this
chapter, which is devoted to strategies for generating samples from complicated target
distributions, effectively rendering the use of the Monte Carlo idea introduced above
possible.

4.2 Rejection sampling

An often encountered difficulty is that the target density π(x) can be evaluated only
up to proportionality. That is, we can write the target density as π(x) = π̃(x)/Z,
where π̃(x) can be evaluated point-wise, but where the normalization constant Z (which
is independent of x) is unknown. The typical setting is when Bayes’ theorem is used
to express a posterior PDF in terms of the prior, the likelihood and the (unknown)
normalizing constant. For instance, consider the measurement update (3.6a) of the
filtering recursion for a general SSM. The unknown normalizing constant is here given by
the density p(yt | y1:t−1). As another example, in Bayesian parameter inference, we seek
the posterior density p(θ | y1:T) = p(y1:T | θ)p(θ)/p(y1:T). Here, the prior and the data
distribution are often directly available from the model, but the normalizing constant
Z = p(y1:T) is typically unknown and intractable.

Rejection sampling is a Monte Carlo method which, under these conditions, can be
used to generate independent samples exactly distributed according to the target density
π(x). Let us introduce the idea underlying rejection sampling by considering a specific
example. Consider the (rather complicated) PDF shown by the gray area in Figure 4.1
(left), and assume that we want to generate samples that are distributed according to
this density. Let (X,U) be a two-dimensional random vector, distributed uniformly over
the gray area; see Figure 4.1 (right). It then holds that X marginally is distributed
according to π(x) (this claim will be verified below). The problem is, of course, that
sampling uniformly over the gray area is just as hard as the original problem, but it leads
us to the following idea. First, let q(x) be a user-chosen PDF which is easy to sample
from. Such a distribution is referred to as a proposal distribution. Second, assume that
there exists a constant B such that

π̃(x) ≤ Bq(x), ∀x ∈ X. (4.10)

46 CHAPTER 4. MONTE CARLO

z̃

π(z̃)

Bq (z̃)

uBq (z̃)

z̃

π(z̃)

Bq (z̃)

uBq (z̃)

Figure 4.1: Illustration of rejection sampling. (Left) The graph of π̃(x) (gray area) is bounded by the
graph of Bq(x) (black curve). A sample is generated uniformly over the area under the black curve. If
the sample falls in the gray area, it is accepted as a draw from π(x), otherwise it is rejected. (Right)
PDF of the two-dimensional random vector (X,U).

Now, if we sample independently and uniformly under the graph of Bq(x), but only keep
the samples that falls under the graph of π̃(x) (i.e. in the gray area in Figure 4.1), then
the surviving draws are i.i.d. samples from the target distribution. The idea outlined
above is formalized in Algorithm 4.1, which allows us to generate N i.i.d. samples from
the target distribution π(x).

Algorithm 4.1: Rejection Sampler (RS)

1 for i = 1 to N do
2 notfound ← 1
3 while notfound do
4 Sample x̃ ∼ q(x).
5 Sample u ∼ U [0, 1].

6 if u ≤ π̃(x̃)
Bq(x̃) then

7 xi = x̃
8 notfound ← 0

9 end

10 end

11 end

This algorithm is sometimes also referred to as acceptance-rejection sampling or
accept-reject sampling. To formally show that Algorithm 4.1 indeed generates i.i.d.
samples from π(z), we first note that, by construction, the samples {xi}Ni=1 are indepen-
dent and identically distributed (since they are all generated in the same way). Now, let

4.2. REJECTION SAMPLING 47

A ⊂ X and consider the distribution of one of the samples, say X1,

P
(
X1 ∈ A

)
= P

(
X̃ ∈ A | X̃ is accepted

)
=

P
(
X̃ ∈ A and X̃ is accepted

)
P
(
Z̃ is accepted

) . (4.11)

Since X̃ is generated from the proposal density q(x) and U is uniform on [0, 1], the
numerator can be expressed as

P
(
X̃ ∈ A and U ≤ π̃(X̃)/Bq(X̃)

)
=

∫
A

(∫ π̃(x)
Bq(x)

0
1du

)
q(x)dx =

∫
A

π̃(x)

Bq(x)
q(x)dx =

Zπ
B

∫
A
π(x)dx. (4.12)

Similarly, the denominator in (4.11) is given by P
(
X̃ is accepted

)
= Zπ/B. Inserting

these expressions into (4.11) results in

P
(
X1 ∈ A

)
=

∫
A
π(x)dx. (4.13)

Since (4.13) holds for any subset A ⊂ X, if follows that x1 (and thus all the samples
produced by Algorithm 4.1) is indeed distributed according to the target density π(x).
It is worth reflecting upon the fact that, due to the rejection procedure, the output from
Algorithm 4.1 are samples drawn from the target distribution, despite the fact that we
internally sample from the proposal distribution.

Example 4.2: Rejection sampling

Let us assume that we wish to generate N i.i.d. samples from the PDF given by,

π(x) =
1

Zπ
e−

1
2
x2
(
sin(6x)2 + 3 cos(x)2 sin(4x)2 + 1

)
, (4.14)

which in Figure 4.1 is visualized as the gray area. This task will be solved using rejection
sampling implemented according to Algorithm 4.1. The proposal distribution is chosen
as q(x) = N (x | 0, 1) and the constant as B = 12, which is visualized using a black line
in Figure 4.1. The resulting empirical distributions

π̂MC(x) =
1

N

N∑
i=1

δxi(x) (4.15)

for N = 10, 100, 10 000 are shown in Figure 4.2 (top left, top right and bottom left,
respectively). The same figure (bottom right) also illustrates Algorithm 4.1 by plotting
the rejected samples in red and the accepted samples in blue for the case when N = 1 000.
This illustrates that using rejection sampling we are indeed capable of sampling uniformly
from the area under the graph of the target distribution.

48 CHAPTER 4. MONTE CARLO

−4 −3 −2 −1 0 1 2 3 4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

−4 −3 −2 −1 0 1 2 3 4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

−4 −3 −2 −1 0 1 2 3 4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

−4 −3 −2 −1 0 1 2 3 4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Figure 4.2: Convergence of the rejection sampler as more and more samples are used. The blue curve
is the target density and the red curve corresponds to the estimate from the rejection sampler using 10
(upper left), 100 (upper right) and 10 000 (lower left) samples, respectively. In the lower right figure we
visualise the rejected samples in red and the accepted samples in blue for the case when N = 1 000.

The choice of the proposal density q(x) and the constant B are very important
from a practical point of view. As noted above, the acceptance probability is given by

P
(
X̃ is accepted

)
= Zπ/B. Consequently, the average number of times that we need

to execute the while-loop in Algorithm 4.1, to generate one sample xi, is B/Zπ. It is
thus imperative that B is not too large. This can be intuitively understood by looking
at Figure 4.2 (lower right) and consider how many red samples there would be if the
area between the proposal density and the target density grows larger. However, for the
algorithm to work, we also require that the graph of π̃(x) is completely below the graph
of Bq(x), i.e. B is at least as large as the largest discrepancy between the proposal q(x)
and the (unnormalized) target π̃(x). Consider, for instance, the same target density
as in (4.14), but assume that we use as proposal density q(x) = N

(
x
∣∣ 0, 102

)
, i.e. we

increase the standard deviation to 10. To ensure π̃(x) ≤ Bq(x), ∀x ∈ X we then need to
take B & 105, leading to many wasted simulations.

Finding a proposal density in close agreement with the target density is easy for
the toy problem considered in Example 4.2. However, as the target density becomes
more complicated and, in particular, as the dimension of X increases, this becomes

4.3. IMPORTANCE SAMPLING 49

harder. For the sake of illustration, assume that we wish to draw samples from the
d-dimensional, standard normal distribution using rejection sampling. As proposal, we
use a d-dimensional, zero-mean normal distribution with covariance matrix σ2

qId. For
the ratio between the target and the proposal densities to be bounded, we require that
σq ≥ 1. Then, the smallest bound on this ratio is given by B = σdq . Hence, the acceptance
probability decays exponentially as we increase the dimension of the problem and the
algorithm is indirectly affected by the curse of dimensionality. In high dimensions, what
appears to be a small discrepancy between the proposal and the target densities, can in
fact have a huge impact, rendering the method impractical.

4.3 Importance sampling

Importance sampling offers a solution to the problem of evaluating integrals of the form
(4.4), but it does not generate exact draws from the target distribution. In the rejection
sampler introduced above, we first generate candidate samples from some proposal den-
sity q(x). These samples are then either accepted or rejected with certain probabilities,
depending on how well they “fit” the target distribution. Importance sampling proceeds
similarly, by generating draws from some proposal distribution. However, rather than
discarding some of the simulated values, all samples are used, but they are assigned
individual weights depending on how well they “fit” the target distribution.

After introducing the importance sampling algorithm in Section 4.3.1 we will justify
the above statement by providing some basic analysis of the importance sampler in
Section 4.3.3. In Section 4.3.4 we thereafter provide a first solution to the nonlinear
filtering problem using the importance sampler.

4.3.1 Derivation and algorithm

Consider the general problem of computing the integral (4.4). Importance sampling can
be used to construct a Monte Carlo estimator of this quantity, without requiring exact
draws from the target density π(x). Similarly to the rejection sampler, the importance
sampler relies on the use of a proposal distribution q(x) (also referred to as the im-
portance distribution or instrumental distribution), which is easy to generate samples
from. Let X ′ ∼ q(x) be an instrumental random variable, distributed according to the
proposal. We can then express (4.4) as,

Eπ[ϕ(X)] =

∫
ϕ(x)π(x)dx =

∫
ϕ(x)

π(x)

q(x)
q(x)dx =

∫
ϕ(x)ω(x)q(x)dx

= Eq
[
ϕ(X ′)ω(X ′)

]
, (4.16)

where we have introduced the weight function ω(x) , π(x)/q(x) and where we have
assumed that q(x) > 0 for all x where π(x) > 0 (that is, supp (π) ⊂ supp (q)). Hence, we
have rewritten the expectation of ϕ(X), as the expectation of the instrumental variable
X ′ mapped through a different function. This provides a feasible way of approximating
Eπ[ϕ(X)]. By construction, it is easy to generate samples from q(x) and we can thus

50 CHAPTER 4. MONTE CARLO

construct a Monte Carlo estimator for (4.16) by sampling independently xi ∼ q(x) for
i = 1, . . . , N and setting,

ĨNIS(ϕ) =
1

N

N∑
i=1

ω(xi)ϕ(xi). (4.17)

This estimator is similar to (4.7), but we see that the samples are weighted by so-called
importance weights, accounting for the discrepancy between the proposal and the target
densities. Intuitively speaking, the importance weights contain information about how
useful each proposed value xi is for computing the integral in (4.4).

Example 4.3: The importance sampling idea

As mentioned in the previous section, it is very common that it is only possible to
evaluate the target distribution up to an unknown normalization constant. That is, we
can write π(x) = π̃(x)/Zπ, where π̃(x) can be evaluated for any x ∈ X but the constant
Zπ is unknown2. We then have,

I(ϕ) = E[ϕ(X)] =

∫
ϕ(x)

π̃(x)

Zπq(x)
q(x)dx =

1

Zπ

∫
ϕ(x)ω(x)q(x)dx, (4.18)

where (with abuse of notation) we have redefined the weight function as

ω(x) ,
π̃(x)

q(x)
. (4.19)

Hence, the importance sampling estimator (4.17) is given by,

ĨNIS(ϕ) =
1

NZπ

N∑
i=1

w̄iϕ(xi), (4.20)

where we have explicitly introduced the weights w̄i = ω(xi) for i = 1, . . . , N . Note
that, since w̄i is given by a transformation of a random variable, it is itself a random
variable. From the above expression it appears as if we have just moved the problem
with the unknown normalization constants from one place to another. However, we can
make use of the samples {xi}Ni=1 generated from the proposal distribution to compute an
approximation of the unknown constant. Indeed, since π(x) is a PDF and thus integrates
to one, we have

Zπ =

∫
π̃(x)dx =

∫
π̃(x)

q(x)
q(x)dx ≈ 1

N

N∑
i=1

w̄i. (4.21)

2Similarly, we may assume that the proposal density can only be evaluated up to proportionality, but
that is less common in practice.

4.3. IMPORTANCE SAMPLING 51

Note that the expression on the right-hand-side of (4.21) is a vanilla Monte Carlo esti-
mator of the normalizing constant Zπ and the properties of such estimators discussed
in Section 4.1 thus apply. Of specific interest is the fact that the estimator is unbiased:

E
[

1
N

∑N
i=1 w̄

i
]

= Zπ.

By inserting the approximation (4.21) into (4.20), we obtain the self-normalized
importance sampling estimator,

ÎNIS(ϕ) ,
N∑
i=1

wiϕ(xi), (4.22)

where {wi}Ni=1 denote the normalized importance weights, defined according to

wi ,
w̄i∑N
j=1 w̄

j
. (4.23)

Analogously to (4.6), an alternative interpretation of the above is that the importance
sampler provides an empirical point-mass approximation of the target distribution, ac-
cording to,

π̂IS(x) =
N∑
i=1

wiδxi(x). (4.24)

Even though the importance sampler does not provide samples from the target distri-
bution, the weighted samples {xi, wi}Ni=1 define an empirical distribution (4.24), which
approximates the target distribution. Furthermore, inserting this empirical distribution
into I(ϕ) =

∫
ϕ(x)π(x)dx straightforwardly results in (4.22). Note that, even if the

constant Zπ is known, the importance weights must be normalized according to (4.23)
for the point-mass approximation (4.24) to be a probability distribution3. Furthermore,
there is a bias-variance trade-off in normalizing the weights, where normalization can
reduce the variance of the estimator, but introduces a bias. .

The above development is summarized in Algorithm 4.2, where each step is carried
out for i = 1, . . . , N . We will make use of this convention throughout the manuscript
in the interest of a clean notation.

Algorithm 4.2: Importance sampler

1 Sample xi ∼ q(x).
2 Compute the importance weights w̄i = π̃(xi)/q(xi).

3 Normalize the importance weights wi = w̄i/
∑N

j=1 w̄
j .

From the discussion on the rejection sampler in Section 4.2, we recall that the choice
of proposal distribution was important in order to obtain a practical algorithm. This

3If the weights are not normalized, we can still construct a point-mass measure as in (4.24), but it
will not be a probability distribution.

52 CHAPTER 4. MONTE CARLO

holds true also for the importance sampler. In Example 4.4 we illustrate this (among
other things) for an importance sampler that is used to solve a parameter estimation
problem in an LG-SSM.

Example 4.4: Learning an LG-SSM using importance sampling

We will in this example show how to make use of the importance sampler provided in
Algorithm 4.2 in order to compute the posterior distribution p(θ | y1:T), where θ is the
unknown parameter in the dynamics of the following Bayesian LG-SSM,

Xt+1 = θXt + Vt, Vt ∼ N (0, 0.1), (4.25a)

Yt = 0.5Xt + Et, Et ∼ N (0, 0.1), (4.25b)

X1 ∼ N (0, 0.1) , (4.25c)

θ ∼ N
(
µθ, σ

2
θ

)
. (4.25d)

Hence, our importance sampler should target

π(θ) = p(θ | y1:T) =
p(y1:T | θ)p(θ)

p(y1:T)
. (4.26)

In order to make use of Algorithm 4.2 we have to choose a proposal distribution. In this
example we choose it to be the same as the prior distribution, i.e. q(θ) = N

(
θ
∣∣µθ, σ2

θ

)
.

The unnormalized target density can be evaluated as π̃(θ) = p(y1:T | θ)p(θ), for any
realization of θ. As usual, we do not have to worry about the normalization constant
Zπ = p(y1:T). Finally, the fact that the proposal distribution and the prior distribution
are the same in this example allows us to compute the importance weights according to
(for i = 1, . . . , N)

w̄i =
π̃(θi)

q(θi)
= p(y1:T | θi). (4.27)

Hence, the importance weights are given by the likelihood evaluated for a specific pa-
rameter value. Intuitively this makes a lot of sense, since the likelihood reveals how
likely the obtained measurements are for a specific θi. For a specific realization of θ the
model (4.25) is a standard LG-SSM and the likelihood is provided by the Kalman filter
according to,

p(y1:T | θ) =

T∏
t=1

p(yt | y1:t−1, θ) =

T∏
t=1

N
(
yt
∣∣ ŷt | t−1(θ), St | t−1(θ)

)
, (4.28a)

ŷt | t−1(θ) = 0.5x̂t | t−1(θ), (4.28b)

St | t−1(θ) = 0.52Pt | t−1(θ) + 0.1, (4.28c)

initialized at ŷ1 | 0 = 0, P1 | 0 = 0.1. Summarizing the above development we obtain the

4.3. IMPORTANCE SAMPLING 53

importance sampler in Algorithm 4.3.

Algorithm 4.3: Importance sampler targeting p(θ | y1:T) in (4.25)

1 Sample θi ∼ N
(
θ
∣∣µθ, σ2

θ

)
.

2 Compute the importance weights w̄i = p(y1:T | θi) according to (4.28).

3 Normalize the importance weights: wi = w̄i/
∑N

j=1 w̄
j .

To illustrate Algorithm 4.3 we generate T = 15 realizations of the measurements y1:15

from the LG-SSM (4.25). The parameters used for the prior distribution in (4.25d) are
µθ = 0 and σθ = 1.5. The result is shown in Figure 4.3, where the blue line is the estimate
from the importance sampler using 10 (upper left), 100 (upper right) and 50 000 (lower
left) samples, respectively. This clearly shows that the importance sampling estimate

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

p
(θ

|
y
1
:T
)

θ

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6
p
(θ

|
y
1
:T
)

θ

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

p
(θ

|
y
1
:T
)

θ

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

p
(θ

|
y
1
:T
)

θ

Figure 4.3: Convergence of the importance sampler (Algorithm 4.3) as more and more samples are used.
The red curve is the true density and the blue curves corresponds to the estimate from the importance
sampler using 10 (upper left), 100 (upper right) and 50 000 (lower left) samples, respectively. In the
lower right figure we provide the result of using 100 000 samples generated from a different proposal
distribution q2(θ) = N (θ | −0.5, 1). This clearly illustrates the importance of having a good proposal
distribution.

converges towards the truth (red curve) as more and more samples are used. The true
PDF is calculated using deterministic numerical integration, which is possible here since
θ is one-dimensional. In the lower right figure we have made use of a different proposal
distribution, q2(θ) = N

(
θ
∣∣−0.5, 12

)
. Even though the estimate visualized in the figure

54 CHAPTER 4. MONTE CARLO

is made up of 100 000 samples, it is a very poor approximation of the truth. This clearly
illustrates the importance of having a good proposal distribution.

When it comes to dynamical systems, a very interesting use of the importance sam-
pling idea arises when we consider inference in nonlinear systems. The reason is simple:
the importance sampling idea provides a concrete and mathematically solid way forward
in approximating the underlying integrals, which do not admit any analytical solutions.
This is the foundation for the particle filter, which is discussed in detail in Chapter 5.

4.3.2 A note on practical implementation

In practical implementations it is not uncommon that direct evaluation of the importance
weights as in (4.19) results in numerical imprecision or execution errors due to division by
zero when normalising the weights. To avoid such issues it is good practice to compute
and work with the log-importance-weights, as described in this section.

Assume that ω(x) = exp(τ(x)) where τ(x) can be robustly evaluated numerically.
We can then compute the log-weights as

ti = τ(xi), i = 1, . . . , N. (4.29)

From these we find the maximum m := maxi t
i and subtract this from all the log-weights:

t̃i = ti − m for i = 1, . . . , N . A simple calculation now shows that the normalized
importance weights (4.23) can be computed as

wi =
exp(t̃i)∑N
j=1 exp(t̃j)

(4.30)

where division by zero is avoided since the sum in the denominator is lower bounded
by 1.

Furthermore, if the estimate of the normalising constant for π̃ is of interest we can
compute the logarithm of the estimator (4.21) directly in a numerically robust way, since

log

{
1

N

N∑
i=1

w̄i

}
= log

{
N∑
i=1

exp(t̃i)

}
+m− logN, (4.31)

where, again, the term in the brackets is bounded away from zero.

4.3.3 Convergence and diagnostic tools

The self-normalized importance sampler differs from a vanilla Monte Carlo method in
the sense the normalized importance weights used to compute the estimator (4.22) are
not independent. Indeed, the normalization depends on all the weights, so it is clear
that the ith normalized weight wi will depend on the values of all the random variables
{w̄i}Ni=1. A relevant question to ask is therefore: how will this affect the theoretical
properties of the estimator?

4.3. IMPORTANCE SAMPLING 55

To answer this question it is instructive to write the estimator (4.22) as a ratio of
two estimators,

ÎNIS(ϕ) =
1
N

∑N
i=1 ω(xi)ϕ(xi)

1
N

∑N
j=1 ω(xj)

=:
ŜN

ẐNπ
. (4.32)

Since {xi}Ni=1 are i.i.d. draws from the proposal distribution q(x), it follows from (4.8)
and (4.9) and the unbiasedness of vanilla Monte Carlo estimators that the following
properties hold for the numerator of this expression:

E
[
ŜN
]

= ZπI(ϕ), (4.33a)

ŜN
a.s.−→ ZπI(ϕ) as N →∞, (4.33b)

√
N
(
ŜN − ZπI(ϕ)

)
d−→ N (0,Varq[ω(x)ϕ(x)]) as N →∞, (4.33c)

where Varq[·] denotes the variance when x ∼ q(x). Analogously, we have for the de-
nominator:

E
[
ẐNπ

]
= Zπ, (4.34a)

ẐNπ
a.s.−→ Zπ as N →∞, (4.34b)

√
N
(
ẐNπ − Cπ

)
d−→ N (0,Varq[ω(x)]) as N →∞. (4.34c)

Consequently, from (4.33a) and (4.34a) we see that the numerator and the denominator,
respectively, are unbiased. Indeed, the fact that ẐNπ is an unbiased estimator of the
normalizing constant Zπ we noted already in Section 4.3.1. However, this does not
imply unbiasedness of ÎNIS(ϕ) since, in general, E[X/Y] 6= E[X] /E[Y]. Hence, the self-
normalized importance sampling estimator is typically biased, contrary to the vanilla
Monte Carlo estimator.

From (4.33b) and (4.34b), however, we can conclude that ÎNIS(ϕ) nevertheless is
strongly consistent (follows the SLLN), i.e.

ÎNIS(ϕ)
a.s.−→ I(ϕ) as N →∞. (4.35)

Furthermore, by using the so-called delta method, equations (4.33c) and (4.34c) can be
used to establish a CLT for ÎNIS(ϕ), as is done below.

Theorem 1 (CLT for the self-normalized importance sampler). Assume that

σ2
IS := Eπ

[
ω(X)

Zπ
(ϕ(X)− I(ϕ))2

]
<∞, (4.36)

where Eπ[·] denotes expectation when X ∼ π(x). Then, the self-normalized importance
sampling estimator is asymptotically normal:

√
N
(
ÎNIS(ϕ)− I(ϕ)

)
d−→ N

(
0, σ2

IS

)
as N →∞. (4.37)

56 CHAPTER 4. MONTE CARLO

Proof. Define V i = ω(Xi)ϕ(Xi) and Y i = ω(Xi) and note that ŜN = 1
N

∑N
i=1 x

i and

ẐNπ = 1
N

∑N
i=1 Y

i. A bivariate CLT for the vector (ŜN , ẐNπ)T reads

√
N

((
ŜN

ẐNπ

)
−
(
µx
µy

))
d−→ N (0,Σ), as N →∞,

where we have defined µx = ZπI(ϕ), µy = Zπ and

Σ =

(
σ2
x ρxyσxσy

ρxyσxσy σ2
y

)
=

(
Var[V] Cov[V, Y]

Cov[V, Y] Var[Y]

)
for convenience. Define g(x, y) = x/y and note that ÎNIS(ϕ) = g(ŜN , ẐNπ). The delta

method can now be used to translate the bivariate CLT above to a CLT for ÎNIS(ϕ).
Specifically, it follows that

√
N
(
ÎNIS(ϕ)− g(µx, µy)

)
d−→ N

(
0,∇g(µx, µy) ·Σ · ∇g(µx, µy)

T
)

as N →∞,

where

∇g(x, y) =
(
∂g
∂x

∂g
∂y

)
=
(

1
y − x

y2

)
.

It remains to show that we obtain the correct mean and variance. For the mean we have,
g(µx, µy) = µx/µy = I(ϕ). For the variance we have

∇g(µx, µy) ·Σ · ∇g(µx, µy)
T =

σ2
x

µ2
y

+
µ2
xσ

2
y

µ4
y

− 2
µxρxyσxσy

µ3
y

=
1

µ2
y

{
σ2
x +

(
µx
µy

)2

σ2
y − 2

µx
µy
ρxyσxσy

}
=

1

µ2
y

E

[(
V − µx

µy
Y

)2
]

=
1

Z2
π

Eq
[
(ω(X)ϕ(X)− I(ϕ)ω(X))2

]
= Eπ

[
ω(X)

Zπ
(ϕ(X)− I(ϕ))2

]
.

Comparing the asymptotic variance of the self-normalized importance sampler, Equa-
tion (4.36), with the asymptotic variance of the vanilla Monte Carlo estimator which is
given by Eπ[(ϕ(X)− I(ϕ))2] we see that the two expressions differ only by the inclusion
of the factor ω(·)/Zπ in the former. This reveals an interesting property of importance
sampling; if ω(x)/Zπ is small when (ϕ(x)− I(ϕ))2 is large, then the importance sampler
can attain lower asymptotic variance than vanilla Monte Carlo estimation. At first this
might seem counterintuitive, but the explanation lies in the fact that variance reduction
is only possible if we have a specific test function ϕ(x) (or a restricted family of test
functions) in mind.

To give a concrete example, assume that we want to estimate the probability of a
rare event, i.e. we seek Pπ(X ∈ A) = Eπ[1A(X)] for some subset A ⊂ X. This probability

4.3. IMPORTANCE SAMPLING 57

can be estimated by vanilla Monte Carlo by simply sampling N i.i.d. draws {xi}Ni=1 from
π(x) and count the proportion which ends up in the set A. However, by assumption the
probability of any xi falling in A is close to zero (we are trying to estimate a rare event)
so the resulting Monte Carlo estimator will have high variance. An importance sampler
can remedy this issue by sampling {xi}Ni=1 from a proposal distribution which assigns a
larger probability to the set A, thus ensuring that the N sampled points are more likely
to be sampled in the region of the space which is most relevant for computing the sought
probability.

In the present manuscript we are primarily interested in methods which are generic
in the sense that they are not specifically targeting a given test function ϕ(x), but rather
the distribution π(x) itself. Specifically, we seek a distributional approximation (4.24)
which can be used to compute expectations of a wide range of test functions. This
function-free viewpoint on Monte Carlo sampling is useful, not only because it avoids
the requirement for specifying the test function a priori, but also because an accurate
approximation of the full distribution π is key in enabling a Sequential Monte Carlo
implementation for inference in dynamical systems (see Chapter 5).

Another interesting property revealed by the asymptotic variance expression (4.36)
is that, if we assume that Varπ[ϕ(X)] < ∞, then a sufficient condition for finiteness of
σ2

IS is that the weight function ω(x) is upper bounded by some constant B. In fact, this
is precisely the same condition that was required for rejection sampling to be applicable;
see Equation (4.10). As was discussed in the context of rejection sampling in Section 4.2,
the bound B will typically grow exponentially with the dimension of the space X. The
aforementioned connection suggests that the curse of dimensionality will therefore also
affect importance sampling

Generally, a mismatch between the proposal distribution and the target distribution
can result in poor estimates (recall Example 4.4). Thus, it is important to be able to
quantify the accuracy of an importance sampling approximation. One possibility is to
estimate the asymptotic variance (4.36) which can be done using the weighted samples
(Exercise ??). However, as mentioned above we are often interested in approximating
the target distribution π itself rather than a specific test function, and it is therefore of
interest to also consider function-free diagnostic tools.

One such diagnostic which is frequently used in the context of importance sampling
is the notion of effective sample size (ESS).

4.3.4 Sequential importance sampling

It is nontrivial to design proposal distributions for high-dimensional problems. One
useful approach is to construct the proposal distribution sequentially, leading to the
so-called sequential importance sampler (SIS). For concreteness, consider the nonlinear
smoothing problem. This involves computing the joint filtering PDF p(x0:t | y1:t) when
the state and measurement processes are modelled according to an SSM. Note that the
dimension of the space Xt grows with t! We will try to solve this problem by deriving an
importance sampler targeting p(x0:t | y1:t) (i.e. in the notation used above, x = x0:t and
π(x) corresponds to p(x0:t | y1:t)), where the computations are performed sequentially in

58 CHAPTER 4. MONTE CARLO

time t. This allows us to exploit the structure present in the model (2.30) by explor-
ing the state space in a systematic fashion. Furthermore, in case we are interested in
computing the joint smoothing densities online, for t = 1, 2 . . . , a direct application of
importance sampling for each p(x0:t | y1:t) would result in a computational complexity
growing quadratically with t. This can be avoided if some of the computations are reused
over time. The key for accomplishing this lies in choosing a proposal density q(x0:t | y1:t)
which factorizes according to,

q(x0:t | y1:t) = q(x0)q(x1 | y1)
t∏

s=2

q(xs |x1:s−1, y1:s) = q(x0)q(x1 | y1)
t∏

s=2

q(xs |xs−1, ys).

(4.38)

Here, the last equality is suggested by the conditional independence properties inherent
in the SSM. That is, we assume that the proposal density respects the conditional
independence structure of the target density, e.g. being Markovian. For instance, from
the model (2.30), we may choose the proposal density according to

q(x0:t | y1:t) = q(x0:t) = p(x0)
t∏

s=1

p(xs |xs−1), (4.39)

corresponding to the prior distribution of the latent states X1:t. Hence, sampling from
the above proposal density corresponds to a pure simulation of the system dynamics,
without taking the observed measurements y1:t into account. In practice this means
that at time t = 0 we sample xi0 ∼ p(x0) and then for time s = 1, . . . , t we sample xis ∼
p(xs |xis−1). Again, note that this is just one of many possible proposal distributions
and below we will make use of the more general expression (4.38).

With the proposal density (4.38) in place, we have completed step 1 in Algorithm 4.2.
It remains to compute the importance weights. The target density can be expressed as,

p(x0:t | y1:t) =
p(x0:t, y1:t)

p(y1:t)
∝ p(x0)

[
t∏

s=1

p(xs |xs−1)

][
t∏

s=1

p(ys |xs)

]
, (4.40)

where the right hand side can be evaluated at any value of x0:t (note that the target
density can be evaluated only up to proportionality, since the normalizing constant
Zπ = p(y1:t) is typically unknown). In principle, the above expression can be used to
compute the importance weights. However, a straightforward evaluation of (4.40) is a
computationally expensive operation, since the computational cost grows with time t.
To avoid this, we again seek to exploit the structure of the model to find a recursive
expression for the importance weights. Analogously to (4.19), the weight function is
here given by

ωt(x0:t) =
p(x0:t, y1:t)

q(x0:t | y1:t)
. (4.41)

4.3. IMPORTANCE SAMPLING 59

For notational convenience, we have suppressed the dependence on y1:t in the weight
function, since the measurements are considered known and fixed. By using the condi-
tional independence properties of the SSM and the assumed structure of the proposal
density (4.38), we can write (4.41) as,

ωt(x0:t) =
p(yt |xt)p(xt |xt−1)

q(xt |xt−1, yt)

p(x1:t−1, y1:t−1)

q(x1:t−1 | y1:t−1)︸ ︷︷ ︸
=ωt−1(x1:t−1)

. (4.42)

It follows that the weight function can be evaluated recursively, initialized with ω0(x0) =
p(x0)/q(x0) and updated according to (4.42). We have thus arrived at a sequential
importance sampler (Algorithm 4.4) where the samples {xi1:t}Ni=1 and the importance
weights {wit}Ni=1 are computed sequentially.

Algorithm 4.4: Sequential importance sampler targeting p(x0:t | y1:t)

1 Sample xi0 ∼ p(x0) and initialize the importance weights, w̄i0 = 1/N .
2 for t = 1, 2 . . . do
3 Sample xit ∼ p(xt |xit−1) and store the new samples xi0:t =

{
xi0:t, x

i
t

}
.

4 Compute the unnormalized importance weights w̄it = p(yt |xit)w̄it−1.

5 Normalize the importance weights wit = w̄it/
∑N

j=1 w̄
j
t .

6 end

As pointed out above, sequential importance sampling is a special case of importance
sampling where the proposal density is chosen as (4.38) to allow for a sequential imple-
mentation. Sequential importance sampling is of interest whenever we are required to
sample in high-dimensional spaces and, in particular, when there is structure present in
the model. The nonlinear smoothing problem under study here is indeed an example
of exactly this kind, where the dimension of the state space is high (t × nx). However,
sequential sampling is not a silver bullet for tackling high-dimensional problems. Indeed,
while SIS provides a practical way of addressing the joint smoothing problem, its per-
formance in practice will degenerate quickly with increasing t. This issue is illustrated
in the example below.

Example 4.5: A sequential importance sampler targeting p(x0:t | y1:t)

In this example we will illustrate the key problem that arises in making use of the
sequential importance sampler derived in Algorithm 4.4. To be concrete we will make
use of Algorithm 4.4 to target the joint filtering distribution p(x0:t | y1:t) for the LGSS
model defined in (4.25), with θ = 0.7. For simplicity we will only study the filtering
marginal p(xt | y1:t), since this is enough to show that the sequential importance sampler
is in fact unable to solve the nonlinear filtering problem. While this is of course a
negative result, the nature of the problem will lead us to a first working particle filter in
the subsequent section.

The estimate of the filtering PDF p(xt | y1:t) produced by Algorithm 4.4 is of the

60 CHAPTER 4. MONTE CARLO

form

p̂N (xt | y1:t) =
N∑
i=1

witδXi
t
(xt). (4.43)

To study the quality of this estimate we will investigate the conditional mean estimate
of the state

x̂SIS
t | t =

∫
xtp̂(xt | y1:t)dxt =

N∑
i=1

witx
i
t (4.44)

We are studying an LG-SSM, which means that the true filtering PDF is Gaussian, with
mean value x̂KF

t | t and covariance PKF
t | t provided by the KF. This allows us to investigate

how close the SIS estimate x̂SIS
t | t produced by Algorithm 4.4 is to the truth. This is

performed by generating 1 000 realisations of data (T = 100) from the model (4.25)
(with θ = 0.7) and then making use of both Algorithm 4.4 and the KF to estimate
the mean value. In Figure 4.4 (upper left) the root-mean-squared-error (RMSE) of
|x̂SIS
t | t − x̂

KF
t | t | is plotted for three different cases, corresponding to N = 500, N = 5 000

and N = 50 000, respectively. From this figure it is clear that the results of Algorithm 4.4
do not appear to be very good, since it provides an error that grows over time. This can
be intuitively understood by studying the importance weights wit used in computing the
estimate (4.43). Figure 4.4 (top right) shows all the 500 weights for each point in time
for a particular realisation using N = 500 samples.

A quick look at this figure reveals that there must be something seriously wrong,
since all but a few weights are zero. This is further illustrated in the two bottom plots
where the 500 importance weights at time t = 100 are shown (left) and histograms of
the weights are shown for times t = 2, 5, 10, 20 and 50 (right), respectively. Again these
three plots clearly show the problem that most of the weights are zero, implying that
the estimate (4.43) only consists of one or a few non-zero terms. This is not a problem
that is specific to just this particular example, but rather this is a well-known problem
inherent in the sequential importance sampler when applied to an SSM. It is referred to
as weight degeneracy.

Unfortunately, the effect experienced in the example above is not a coincidence. In-
deed, for SIS it is a rule, rather than an exception, that the variance of the normalized
importance weights increases over time; see Section 4.6 for references and further discus-
sion. This has the effect that one of the weights tends to one, whereas all the remaining
weights tend to zero, i.e. the ESS goes to one. If we stop to think about it for a moment
this is not a surprising result. As pointed out above, SIS is nothing but a standard
IS with a specific choice of proposal density (4.38), targeting a density in a space of
increasing dimension. As the dimension increases, SIS will be affected by the curse of
dimensionality, i.e. an apparently small discrepancy between the proposal density and

4.3. IMPORTANCE SAMPLING 61

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

Time

20
40

60
80

100

100

200

300

400

500
0

0.2

0.4

0.6

0.8

1

TimeImportance weight index

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

importance weight index

0 0.5 1 1.5 2 2.5 3 3.5

x 10
−3

0

50

100

0 0.002 0.004 0.006 0.008 0.01 0.012
0

200

400

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0

500

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

500

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

500

Figure 4.4: See the text for explanation.

62 CHAPTER 4. MONTE CARLO

the target density gives rise to a large weight variance. This so-called weight degener-
acy problem means that the SIS algorithm is bound to fail in its attempt to solve the
smoothing problem for large enough t (which, in practice, need not be very large).

However, this development motivates how to make progress toward a more practical
algorithm. As some of the samples become negligible due to small weights they can be
discarded and the focus is instead directed towards the samples with larger weights. One
way to accomplish this is through a procedure referred to as resampling. The combination
of SIS and resampling results in the family of sequential Monte Carlo (SMC) methods.
These methods will be discussed in detail in Chapter 5, where we illustrate how they –
among other things – provide a solution to the general nonlinear filtering problem.

4.4 Resampling

Motivated by the problems experienced above with degenerating weights, we are inter-
ested in finding a way of generating an unweighted set of samples from a weighted set.
Let us return to the general problem of sampling from some target density π(x). As in
Section 4.3 we assume that it is not possible to sample directly from π(x), but that it
is possible to target it using importance sampling. The importance sampler generates a
weighted sample {xi, wi}Ni=1 defining a point-mass approximation of π(x) according to
(4.24). Given this approximation, we can proceed to generate an unweighted sample,
approximately distributed according to π(x). The idea is very simple–we draw, say M ,
conditionally independent samples {x̃j}Mj=1 from the point-mass probability distribution
(4.24),

x̃j
i.i.d.∼

N∑
i=1

wiδxi(z), j = 1, . . . , M. (4.45)

Due to the fact that this is a discrete distribution, supported at the points {xi}Ni=1, it is
straightforward to sample from it. More precisely, we set x̃j = xi with probability wi,
i.e.

P
(
x̃j = xi

∣∣ {xi, wi}Ni=1

)
= wi, j = 1, . . . , M. (4.46)

The resulting samples can be used to construct an unweighted point-mass approximation
of the target density π(x),

π̂SIR(x) =
1

M

M∑
j=1

δx̃j (x). (4.47)

The procedure which (randomly) turns a weighted set of samples into an unweighted
one is known as resampling. The method outlined above, i.e. to target π(x) with an

4.4. RESAMPLING 63

importance sampler followed by a resampling step, is referred to as sampling importance
resampling (SIR). The method is summarized in Algorithm 4.5.

Algorithm 4.5: Sampling Importance Resampler (SIR)

1 Sample xi ∼ q(x).
2 Compute the importance weights w̄i = π̃(xi)/q̃(xi).

3 Normalize the importance weights wi = w̄i/
∑N

j=1 w̄
j .

4 Resample {xi, wi}Ni=1 to obtain equally weighted samples {x̃i, 1/N}Ni=1.

It is instructive to think about SIR as a double Monte Carlo approximation. First, we
construct an importance sampling approximation of the target density as in (4.24). We
then make a second (vanilla) Monte Carlo approximation of (4.24), resulting in (4.47).
Contrary to, for instance, rejection sampling, SIR does not produce i.i.d. samples from
the exact target distribution. One aspect of this is that even when the original target
density π(x) is continuous, there is a non-zero probability that there are duplicates
among the samples {x̃j}Mj=1, since these are drawn from the discrete distribution (4.24).

As we will see in the subsequent chapter, it is often natural to set M = N , i.e.
to generate equally many samples in the resampling step as used in the importance
sampler. In this case it is indeed very likely that some of the possible values {xi}Ni=1

will be (randomly) selected more than once in the resampling procedure (4.46), whereas
other values are not selected at all. Indeed, this is how resampling works: the importance
weights are replaced by multiplicity of samples. Resampling is thus in effect a way of
duplicating samples with large importance weights and discarding samples with small
importance weights. This is the key property which makes resampling useful for tackling
the weight degeneracy problem encountered in Section 4.3.4. We will see how this can
be done in the coming chapter.

The resampling step (4.46) can be modeled more explicitly by introducing auxiliary
index variables. From (4.46) it is clear that x̃j = xi for some i ∈ {1, . . . , N}. Hence, we
can introduce the index variables {aj}Mj=1, such that

x̃j = xa
j
, j = 1, . . . , M. (4.48)

Sampling x̃j as in (4.46) thus corresponds to sampling the index variable aj . It follows
that {aj}Mj=1 are i.i.d. categorical random variables (i.e. discrete, see Appendix B.1.2 for
details on the categorical distribution),

aj ∼ C
(
N, {wi}Ni=1

)
, j = 1, . . . , M. (4.49)

Furthermore, since the index variables are i.i.d., the entire resampling step can be inter-
preted as generating a sample from the distribution

r(a |w) ,
M∏
j=1

C
(
aj
∣∣N,w) . (4.50)

Note that we make use of bold face notation to denote all samples of a certain variable,
e.g. w = {w1, . . . , wM}.

64 CHAPTER 4. MONTE CARLO

4.5 Useful constructions

4.5.1 Conditional Monte Carlo

Whenever there is some structure present in a model, it can be exploited in devising
algorithms working with the model. We will in this section provide a useful mechanism
that is applicable whenever there is a certain analytically tractable substructure avail-
able in the model. To be specific, we are concerned with the case where the random
variable X can be partitioned according to X = (A,B), such that the underlying model
has a structure allowing us to compute the conditional density π(a | b) analytically. Ex-
amples of models where this is possible are provided by the conditionally linear Gaussian
SSMs in Section 2.7. Should we choose not to exploit this structure in computing the
estimator (4.4), the result is

I(ϕ) = E[ϕ(A,B)] =

∫ ∫
ϕ(a, b)π(a, b)dadb, (4.51)

where a ∈ A and b ∈ B. On the other hand, the analytically tractable structure π(a | b)
allows us to rewrite the integrals in (4.51) according to

I(ϕ) =

∫ [∫
ϕ(a, b)π(a | b)da

]
π(b)db =

∫
ϕ′(b)π(b)db, (4.52)

where the second equality highlights the fact that the structure allows us to analytically
marginalize (integrate out) the variables A, by defining

ϕ′(b) ,
∫
ϕ(a, b)π(a | b)da. (4.53)

The two expressions for I(ϕ) above opens up for two different ways in which we can
construct Monte Carlo estimators for the function ϕ(A,B). The first alternative is to
target the joint density π(a, b) rendering a set of samples {Am, Bm}Mm=1, which inserted
into (4.51) results in

Î1(ϕ) =
1

M

M∑
m=1

ϕ(Am, Bm). (4.54)

The second and intuitively more appealing alternative is to target the marginal density
π(b) using Monte Carlo and exploit the analytically tractable structure inherent in the
model according to (4.52), resulting in

Î2(ϕ) =
1

M

M∑
m=1

∫
ϕ(a,Bm)π(a |Bm)da =

1

M

M∑
m=1

ϕ′(Bm). (4.55)

We move from a Monte Carlo integration in (4.54) to a partially analytical integration
in (4.55). The marginalized estimator (4.55) should be better due to the fact that the

4.5. USEFUL CONSTRUCTIONS 65

marginal space B is smaller than the original space A×B. This intuition can be formalized
in using the following relationship between conditional and unconditional variance. For
clarity we explicitly state w.r.t. which variables the expected values and variances are
defined.

Theorem 2 (Conditional variance). Let ϕ(A,B) be a scalar function depending on
the two random variables A and B. Then, the variance of ϕ(A,B) can be decomposed
according to

VarAB[ϕ(A,B)] = VarB[EA[ϕ(A,B) |B]] + EB[VarA[ϕ(A,B) |B]] . (4.56)

Proof. �

A direct consequence of Theorem 2 is that

VarB[EA[ϕ(A,B) |B]] ≤ VarAB[ϕ(A,B)] , (4.57)

since VarA[ϕ(A,B) |B] ≥ 0 by definition. The relationship (4.57) is interesting in that
it can be used to compare the variance of the two estimators Î1(ϕ) and Î2(ϕ) introduced
in (4.54) and (4.55), respectively. The result is that whenever π(a | b) is analytically
available it is statistically justified to exploit it, since it improves the quality of the
estimator,

Var
[
Î2(ϕ)

]
≤ Var

[
Î1(ϕ)

]
. (4.58)

We have just showed that by first integrating out the random variable A (i.e. computing
ϕ′(B) according to (4.55)) we will obtain a resulting estimator of better quality in terms
of lower variance. There are in general many different ways in which the partitioning of
Z can be performed and they are not all useful.

The process of marginalizing analytically tractable variables according to (4.53) is
commonly referred to as Rao-Blackwellization, as a direct consequence of the fact that
Theorem 2 is a version of the so-called Rao-Blackwell theorem. Rao-Blackwellization
constitutes an important mechanism when it comes to assembling efficient Monte Carlo
algorithms, since it allows for construction of estimators that are typically better and
never worse (in terms of minimum variance) compared to not using it. It is a constructive
procedure for combining basic algorithms into more complex algorithms. We provide
several highly useful instances of this later in the manuscript; for example in Section ??,
where it is shown how Rao-Blackwellization allows us to combine the particle filter and
the Kalman filter to solve the nonlinear filtering problem when the model has a linear
Gaussian substructure.

66 CHAPTER 4. MONTE CARLO

4.5.2 Monte Carlo with auxiliary variables

Importance sampling for mixture distributions

Assume that the target is given by a mixture distribution, i.e. we wish to sample from

π(x) =
K∑
k=1

vkπk(x), (4.59)

where K is the, possibly large, number of components and {vk}Kk=1 are the mixture

probabilities. Consequently, vk ≥ 0 and
∑K

k=1 vk = 1.

Assume that the individual components of the mixture, i.e. {πk(x)}Kk=1 are com-
plicated distributions which we are unable to sample directly from. To address this
difficulty, one possibility is to make use of importance sampling. Below, an efficient IS
will be constructed for (4.59) by exploiting the auxiliary variable principle. First, how-
ever, consider a direct application of IS to the target distribution (4.59). We do this in
order to understand why this approach can be problematic. Since (4.59) is a special case
of the general target distribution considered in Section 4.3 the importance sampler from
Algorithm ?? can thus be used as it stands. To construct a proposal distribution, one
possibility is to mimic the structure of the target (4.59) and use a mixture distribution

q(x) =
K∑
k=1

vkqk(x), (4.60)

where {qk(x)}Kk=1 are the mixture components for the proposal. This is not the only
possible choice of proposal. Indeed, any proposal density which satisfies the conditions
stated in Section 4.3.1 can be used. However, (4.60) is a useful starting point and we
will use a similar construction when deriving the particle filter in Chapter 5.

Now, let {xi}Ni=1 be i.i.d. draws from (4.60). As in Section 4.3, these samples are
assigned importance weights wi = ω(xi) for i = 1, . . . , N . The weight function is given
by (4.19), i.e.

ω(x) =
π̃(x)

q(x)
=

∑K
k=1 vkπ̃k(x)∑K
`=1 v`q`(x)

, (4.61)

where, to comply with the presentation in Section 4.3, we have assumed that π(x) can
only be evaluated up to proportionality and where π̃(x) is the unnormalized target
density.

The computational complexity of evaluating the weight function (4.61) scales linearly
with the number of components K. Since this has to be done for all the samples {xi}Ni=1,
we thus obtain a method with a computational complexity of O(NK). If the number
of components is large this may be prohibitive. It is therefore of interest to find a more
practical Monte Carlo method for the target distribution (4.59). To accomplish this, we
will make use of auxiliary variables.

4.5. USEFUL CONSTRUCTIONS 67

Consider the process of generating a sample from a mixture density, such as (4.59) or
(4.60). To do this, we would first randomly select one of the components, and then draw
a sample from that specific component. The idea is to introduce the discrete random
variable, which picks out one of the components of the mixture, as an auxiliary variable.
This will not affect the sampling procedure itself. However, it will affect the way in
which the importance weights are computed, which is indeed the source of the high
computational complexity of the IS presented above. To make this more precise, let
K be a discrete random variable, taking values on the set of integers {1, . . . , K} with
probabilities {vk}Kk=1, i.e.

K ∼ C
(
{vk}Kk=1

)
. (4.62)

The auxiliary random variable K can be thought of as a variable selecting one of the
terms in the sum in (4.59). Let us now define a PDF on the product space Z×{1, . . . , K}
according to,

π(x, k) ,
1

Cπ
vkπ̃k(x), (4.63)

where Zπ is a normalization constant, independent of (x, k). This is a slightly non-
standard PDF, since it has one continuous component (assuming that X is a continuous
space) and one discrete component. However, keeping in mind that the PDF of a discrete
distribution is given by the discrete probabilities, this is a perfectly valid construction.

The distribution given by (4.63) is useful since it admits the target distribution (4.59)
as a marginal. More precisely, by marginalizing (4.63) over K we get

K∑
k=1

π(x, k) =
1

Zπ

K∑
k=1

vkπ̃k(x) = π(x). (4.64)

This means that we can use (4.63) as a surrogate for (4.59) in accordance with the
auxiliary variable principle. Note that the definition of (4.63) does not contain any sum-
mation, which is promising since the sum in (4.59) is the source of the high computational
complexity.

Next, we note that the proposal density on the product space X×{1, . . . , K}, implied
by (4.60), is given by

q(x, k) = vkqk(x). (4.65)

To understand the structure of the above PDF, it can be instructive to write it as
q(x, k) = q(x | k)q(k), where

q(x | k) = qk(x), (4.66a)

q(k) = vk. (4.66b)

That is, the variable K follows the categorical distribution (4.62) and, given K = k,
the continuous variable x is distributed according to the kth component of the mixture

68 CHAPTER 4. MONTE CARLO

(4.60). Sampling {(xi, ki)}Ni=1 from the joint proposal (4.65) can thus be done by first
generating {ki}Ni=1 independently from the categorical distribution (4.62) and then gen-
erating {xi}Ni=1 from the corresponding components of the mixture (4.60). As noted
above, this is exactly how one would go about to sample from the mixture proposal
(4.60) in the first place.

As noted above, the advantage of using auxiliary variables lies in the computation of
the importance weights. The weight function, i.e. the ratio between the target density
(4.63) and the proposal density (4.65), is given by,

ω(x, k) =
vkπ̃k(x)

vkqk(x)
=
π̃k(x)

qk(x)
, (4.67)

which can be evaluated in constant time. By computing w̄i = ω(xi, ki) for i = 1, . . . , N
and normalizing, we obtain a weighted sample {(xi, ki), wi}Ni=1 targeting (4.63). How-
ever, since we are only interested in the marginal distribution of X, the indices ki may
be discarded, leaving us with the weighted sample {xi, wi}Ni=1 targeting the mixture
distribution (4.59).

4.6 History and further reading

Metropolis and Ulam (1949) Kahn and Marshall (1953) Geweke (1989) Hammersley and
Morton (1954) Handschin and Mayne (1969) Handschin (1970) Liu (2001). Liu (2001)
Kong et al. (1994) Cappé et al. (2005) Rubin (1987, 1988) Andrieu et al. (2003)

Chapter 5

Sequential Monte Carlo

Sequential Monte Carlo (SMC) methods are constituted by a combination of sequential
importance sampling and resampling, both of which were introduced in Chapter 4. SMC
is used to sequentially sample from a sequence of target densities. The name particle
filter (PF) is often used interchangeably with SMC, though here we reserve it for the
case when the sequence of target densities is given by {p(x0:t | y1:t)}t≥1 or the marginals
{p(xt | y1:t)}t≥1. The basic idea is to leverage sequential importance sampling and re-
sampling to propagate a collection of N weighted random samples {xit, wit}Ni=1 forward
in time. These samples (commonly referred to as particles) constitute an empirical ap-
proximation that converge asymptotically (as N →∞) to the underlying target density
π(xt).

Weighting Resampling Propagation Weighting Resampling

Figure 5.1: Illustrating the three parts making up sequential Monte Carlo.

5.1 Introducing the particle filter

The particle filter (PF) provides an approximate solution to the nonlinear filtering prob-
lem, where the accuracy of the approximation is only limited by our computational
resources. More specifically, the PF can be viewed as a way of realizing the forward
filtering strategy outlined in Section 3.2, i.e. as a way of sequentially approximating the
filtering densities {p(xt | y1:t)}t≥1. The resulting approximation is an empirical distribu-
tion of the form

p̂N (xt | y1:t) =
N∑
i=1

witδxit(xt). (5.1)

69

70 CHAPTER 5. SEQUENTIAL MONTE CARLO

The samples {xit}Ni=1 are often referred to as particles—they are point-masses “spread
out” in the state space, each particle being one hypothesis about the state of the system.
For intuition we can think of each particle xit as a possible system state and the corre-
sponding weight wit contains information about how probable that particular state is.
As a way of illustrating the versatility of using the empirical approximation employed
by the PF we provide Example 5.1, where the PF is used to solve a localization problem
exploiting map information.

Example 5.1: A simple localization problem

Localization is the process of determining the position of an object. Consider a simplified
aircraft localization problem, where the aircraft is moving along a straight line at a
varying altitude, illustrated by the blue trajectory in Figure 5.2 (upper left). From
various onboard sensors the aircraft has knowledge of its velocity vt and its altitude over

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

110

Posit ion x

A
lt
it
u
d
e

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

Posit ion x

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

Posit ion x

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

Posit ion x

Figure 5.2: The upper left plot illustrates the scenario involving an aircraft moving along the x axis
with a varying altitude. The aircraft trajectory is illustrated by the blue curve and the terrain elevation
is shown by the black curve. The aircraft measures the distance to ground using a radar and the first
measurement at time t = 1 is illustrated by the vertical dashed line. The area of the ground that is
illuminated by the radar as the aircraft moves from x = 20 to x = 60 is illustrated by the red curve.
The PF estimates of the filtering PDF p(xt | y1:t) at time t = 1, t = 3 and t = 10 are shown in the
upper right, lower left and lower right plots, respectively. The corresponding true aircraft positions are
indicated with the red dots along the trajectory in the upper left plot. See text for all details.

sea level (0 m). A simple model of the aircraft motion is provided by a (discrete-time)

5.1. INTRODUCING THE PARTICLE FILTER 71

integrator

xt+1 = xt + vt + wt, wt ∼ N (0, 5), (5.2a)

where xt denotes the position and wt denotes process noise. The velocity can only help
in establishing a relative position, which means that additional information is needed
to solve the localization problem. One solution is to make use of a map of the terrain
elevation and a downward-facing radar, measuring the distance between the aircraft
and the ground. Under the assumption that the ground is not entirely flat these radar
measurements together with the terrain elevation map can be used in determining the
position of the aircraft. The corresponding measurement equation is

yt = h(xt) + et, et ∼ N (0, 1), (5.2b)

where yt denotes the distance over ground measured by the radar, h(·) denotes a look-
up in the map encoding the terrain elevation (terrain height over sea level) and et
denote the measurement noise. This is in fact the principle employed to compute the
absolute position in several fighter aircraft. Let us assume that we do not know the initial
position of the aircraft, hence the initial guess encoded via µ(x1) is a uniform distribution
U(0, 100). The localization problem can now be formulated as a state inference problem,
where we want to find p(xt | y1:t) for t = 1, 2, . . . , i.e. as more and more measurements
are acquired.

Let us pause for a moment and think about the nature of this problem. The measure-
ment equation (5.2b) is nonlinear and the function h(·) is only defined in discrete points
(according to the resolution of the map). Furthermore, as already mentioned there are
an unknown and dynamically changing number of modes present in the filtering PDF.
It is a hard problem, but it fits the PF perfectly, since it can deal with nonlinear func-
tions and a varying number of possible hypotheses. Furthermore, the PF provides a
natural representation of the uncertainty inherent in the problem and a principled way
of working with this uncertainty.

The result of using the PF with N = 200 particles is shown in Figure 5.2. At time 1
we have the situation depicted in Figure 5.2 (upper left), where the aircraft is flying at
an altitude of roughly 80 m at position x1 = 22 m, where the terrain elevation is 20 m.
This means that the radar is measuring a distance over ground of roughly 60 m. The
function h(·) will look into the map and return the positions xt in the map that are
consistent with an altitude of 80 m and a distance to ground of 60 m (indicated by the
horizontal dashed line in the figure). Hence, intersecting this horizontal dashed line with
the black curve (representing the map) provides the locations that are consistent with y1.
Now, compare these positions to the PDF p̂N (x1 | y1) provided by the PF after the first
measurement has been received and processed (upper right plot). The conclusion is
that the PF is able to accurately represent the different possible position hypotheses in
a good way, illustrating the PFs capability of representing the uncertainty inherent in
the problem. The more the aircraft moves, the more information is acquired about its
position. Let us study the situation leading up to time t = 3, explaining why it is natural

72 CHAPTER 5. SEQUENTIAL MONTE CARLO

that there are two dominating modes present in p̂N (x3 | y1:3) as shown in the lower left
plot in Figure 5.2.

In studying the terrain elevation for three consecutive samples (the first one being
at 20 m), the map reveals that the most likely positions at time t = 3 are x3 = 25
and x3 = 60. The position x3 = 46 is also relevant, but the slope of the terrain is
significantly steeper there, which the PF has accurately encoded in the PDF by only
assigning a small probability mass around this position. Finally, once 10 measurements
have been obtained the aircraft is localized quite well, illustrated in the lower right plot,
showing p̂N (x10 | y1:10).

The principle illustrated in this example of using a PF to solve the localization
problem by combining the information from sensors and maps has been successfully
used to solve many different localization problems, including for example underwater
vessels, ships, cars and people moving around in both indoor and outdoor environments.

An alternative view of the PF is to derive it as a realization of the forward smooth-
ing strategy, i.e. as a way of sequentially approximating the joint smoothing densities
{p(x1:t | y1:t)}t≥1, again using an empirical distribution, this time in the form

p̂N (x1:t | y1:t) =

N∑
i=1

witδxi1:t
(x1:t). (5.3)

In comparing the two objects (5.1) and (5.3), the most striking difference is that the
dimension of the variable we are estimating is fixed in the former, whereas it increases
without an upper bound for the latter. More specifically, p̂N (xt | y1:t) is defined on the
space X of fixed dimension (independent of t), whereas p̂N (x1:t | y1:t) is defined on a
space Xt of increasing dimension. This will have consequences, which will be precisely
quantified later in this chapter. However, pragmatically we can already now draw the
conclusion that the PF is bound to fail in its attempt of realizing the forward smoothing
strategy, since it is inherently impossible to make use of a finite number of N particles
to represent a distribution of arbitrarily high dimension.

It is important to note that the joint smoothing density p(x1:T | y1:T) (or some of
its marginals) can indeed be approximated using particle methods as well. The result-
ing method relies on particle implementations of not only the forward computational
strategies, but also of the backward computational strategies, which leads to particle
smoothers. However, in the present chapter we offer two different views of the PF,
both interesting in their own way. Firstly, the PF is in Section 5.2 derived as a way
of approximately realizing the forward filtering strategy, i.e. as a way of sequentially
approximating the filtering densities {p(xt | y1:t)}t≥0. Secondly, it is in Section 5.3 de-
rived as an approximate realization of the forward smoothing strategy, i.e. as a way of
sequentially approximating the joint smoothing densities {p(x0:t | y1:t)}t≥0. The filtering
density is of course a marginal of the joint smoothing density obtained by integrating
out x0:t−1. Hence, after this marginalization we would expect the resulting algorithms
to be identical—as we will see, this is indeed the case.

5.2. THE PARTICLE FILTER – TARGETING THE FILTERING PDF 73

5.2 The particle filter – targeting the filtering PDF

In Section 4.3.4, we attempted to solve the nonlinear smoothing problem by using the SIS
algorithm. The attempt failed due to the increasing dimension of the state trajectories
x0:t, leading to the so-called weight degeneracy problem. To make progress, we will
start our exploration of SMC methods by considering a different, but still challenging
problem, namely that of nonlinear filtering (which is of significant importance on its
own). Filtering amounts to computing the filtering PDFs {p(xt | y1:t)} when the state
and measurement processes are modelled according to an SSM (Definition ??). Since
the dimension of the state space X, on which this density is defined, does not depend on
t, we are now in a much better situation.

5.2.1 The marginal and the bootstrap particle filters

The nonlinear filtering problem amounts to computing the filtering PDFs {p(xt | y1:t)}
sequentially in time. A principled solution is provided by the following two recursive
equations (see Section 3.2.1 for details):

p(xt | y1:t) =
p(yt |xt)p(xt | y1:t−1)

p(yt | y1:t−1)
, (5.4a)

p(xt | y1:t−1) =

∫
p(xt |xt−1)p(xt−1 | y1:t−1)dxt−1. (5.4b)

As we saw in the previous chapter, importance sampling offers a way to approximate
a probability distribution of interest by an empirical weighted point-mass distribution.
The problem in designing an importance sampler for p(xt | y1:t), however, is that to eval-
uate (5.4a) even up to proportionality, we need to solve the integral in (5.4b). This is
in general not analytically tractable. However, the integral can in principle be approx-
imated using an importance sampler targeting the filtering distribution at time t − 1.
This motivates us to proceed in an inductive fashion. Hence, assume that we have an
empirical approximation of the filtering distribution at time t − 1, constituted by N
weighted samples, {xit−1, w

i
t−1}Ni=1, i.e.

p̂N (xt−1 | y1:t−1) =
N∑
i=1

wit−1δxit−1
(xt−1). (5.5)

At time t = 1, we can obtain a point-mass approximation according to (5.5), by targeting
p(x1 | y1) ∝ p(y1 |x1)µ(x1) with an importance sampler. Inserting the approximation
p̂N (xt−1 | y1:t−1) into (5.4b), results in

p̂N (xt | y1:t−1) =

∫
p(xt |xt−1)

N∑
i=1

wit−1δxit−1
(xt−1)dxt−1 =

N∑
i=1

wit−1p(xt |xit−1). (5.6)

74 CHAPTER 5. SEQUENTIAL MONTE CARLO

Using (5.6) in (5.4a), we can thus evaluate an approximation of the filtering PDF
p(xt | y1:t) up to proportionality

p(xt | y1:t) ≈
1

p(yt | y1:t−1)

N∑
i=1

wit−1p(yt |xt)p(xt |xit−1). (5.7)

This opens up for targeting p(xt | y1:t) with an importance sampler. Guided by the
structure of (5.7), we choose a similar type of mixture as proposal density, namely

q(xt | y1:t) =
N∑
i=1

wit−1q(xt |xit−1, yt). (5.8)

There are many different options when it comes to choosing the components q(xt |xit−1, yt)
in this mixture. We will investigate some of the most common choices and also explain
their advantages and disadvantages in the sequel. For now, however, we simply assume
that each component in the mixture is chosen in such a way that it is possible to sam-
ple from it. It should be noted that the mixture (5.8) depends on the particle system
{xit−1, w

i
t−1}Ni=1, but this dependence is not explicitly accounted for on the left hand side

of the expression for notational simplicity. However, since (5.8) is to be used at time t of
the algorithm, the particle system {xit−1, w

i
t−1}Ni=1 (which is generated at time t−1) can

be viewed as fixed. Note also that, in general, the proposal density at time t is allowed
to depend on the current observation yt, as indicated by the notation used in (5.8).

Sampling from the proposal density q(xt | y1:t), which is a weighted mixture compris-
ing N components, can be done by the following two-step procedure; first we randomly
select one of the components, and then we generate a sample from that specific compo-
nent. For the first part, the probability of selecting a particular component q(xt |xit−1, yt)
is encoded via the corresponding weight wit−1. Slightly reformulated this amounts to se-
lecting one of the N particles {xit−1}Ni=1 according to

P
(
x̄t−1 = xit−1

∣∣∣ {xjt−1, w
j
t−1}

N
j=1

)
= wit−1, for i = 1, . . . , N, (5.9)

where the selected particle is denoted by x̄t−1. We can then draw xt ∼ q(xt | x̄t−1, yt)
to generate a realization from the proposal distribution (5.8). Since xt is generated
conditionally on x̄t−1, we will refer to x̄t−1 as the ancestor particle of xt.

It is interesting to note that, by repeating (5.9) N times we obtain an unweighted
particle system {x̄it−1, 1/N}Ni=1. This procedure which (randomly) turns a weighted set
of samples into an unweighted set is commonly referred to as resampling. Analogously
to (5.5), these unweighted particles define an empirical point-mass approximation of
p(xt−1 | y1:t−1),

p̄N (xt−1 | y1:t−1) :=
1

N

N∑
i=1

δx̄it−1
(xt−1). (5.10)

5.2. THE PARTICLE FILTER – TARGETING THE FILTERING PDF 75

In (5.5), the weights contain information about how useful each particle is for the ap-
proximation of the target distribution. For the approximation (5.10), this information
is instead encoded via the multiplicity of the particles. Indeed, if some particle in the
approximation (5.5) is associated with a large weight, then this particle is likely to be
selected multiple times when sampling {x̄it−1}Ni=1 according to (5.9).

Based on the resampled particles, we can generate N values from the proposal density
(5.8) by sampling xit ∼ q(xt | x̄it−1, yt) for i = 1, . . . , N . As usual in importance sampling,
the samples are then assigned importance weights to account for the discrepancy between
the target distribution and the proposal distribution, recall (4.19). From (5.7) and (5.8)
it follows that the weight function is given by

ω(xt, yt) =
p(yt |xt)

∑N
j=1w

j
t−1p(xt |x

j
t−1)∑N

j=1w
j
t−1q(xt |x

j
t−1, yt)

. (5.11)

Again, for notational simplicity, we have not made the dependence on the previous parti-
cle system {xit−1, w

i
t−1}Ni=1 explicit on the left-hand-side. By evaluating w̄it = ω(xit, yt) for

i = 1, . . . , N and normalizing the weights, we obtain a new particle system {xit, wit}Ni=1,
constituting an empirical approximation of p(xt | y1:t). This completes the algorithm,
since these weighted particles in turn can be used to approximate the filtering PDF at
time t+ 1, then at time t+ 2 and so on.

The resulting algorithm is referred to as the marginal particle filter since its starting
point is the filtering density p(xt | y1:t), rather than the smoothing density p(x1:t | y1:t)
(the former density is a marginal of the latter). In Section 5.3 we will discuss particle
filtering from the perspective of targeting the smoothing density. While the above de-
velopment indeed results in a working method, we notice a problem with the resulting
algorithm at this point. Due to the sums appearing in (5.11), the computational com-
plexity of evaluating the weight function is O(N). This has to be done for each of the
particles {xit}Ni=1, meaning that the overall computational complexity of the algorithm
will be O(N2). Since N is typically a large number, this quadratic complexity can be
impractical in many applications.

However, from the expression (5.11), we see that there is an easy remedy to the
problem of quadratic computational complexity. A pragmatic solution is to choose the
proposal density according to

q(xt | y1:t) := p̂N (xt | y1:t−1) =
N∑
j=1

wjt−1p(xt |x
j
t−1). (5.12)

With this choice, the sums cancel in (5.11) and the expression for the weight function
reduces to ω(xt, yt) = p(yt |xt). This function can be evaluated in constant time, bringing
the total computational complexity of the algorithm down to O(N).

The PF which uses the predictive distribution (5.12) as proposal distribution is com-
monly referred to as the bootstrap particle filter. It is without doubt the most commonly

76 CHAPTER 5. SEQUENTIAL MONTE CARLO

used implementation in practice, owing to its simplicity and intuitive appeal. We sum-
marize the method in Algorithm 5.1.

Algorithm 5.1: Bootstrap particle filter

1 Initialization (t = 1):
2 Sample xi1 ∼ µ(x1).

3 Compute w̄i1 = p(y1 |xi1) and normalize, wi1 = w̄i1/
∑N

j=1 w̄
j
1.

4 for t = 2 to T do
5 Resampling: Generate the equally weighted particle system {x̄it−1, 1/N}Ni=1

by resampling of {xit−1, w
i
t−1}Ni=1 according to (5.9).

6 Propagation: Sample xit ∼ p(xt | x̄it−1).

7 Weighting: Compute w̄it = p(yt |xit) and normalize, wit = w̄it/
∑N

j=1 w̄
j
t .

8 end

Using the predictive density (5.12) to propose new samples can seem natural, since
it leverages the predictive capabilities of the model. The weight wit carries information
about how well the corresponding sample xit describes the true state of the system.
Hence, computing the weights according to the measurement model p(yt |xit) is natural,
since p(yt |xit) describes how well the state xit explains the current measurement yt.
Nevertheless, as we will see in the subsequent section, it is possible to design more
efficient proposal distributions than (5.12) while still, importantly, retaining the O(N)
computational complexity.

Example 5.2

Consider the following nonlinear time-varying SSM

xt+1 =
1

2
xt +

25xt
1 + x2

t

+ 8 cos(1.2t) + vt, vt ∼ N (0, 0.5), (5.13a)

yt =
1

20
x2
t + et, et ∼ N (0, 0.5), (5.13b)

where the initial state is x1 ∼ N (0, 1). Note that one complication with the model is
that the measurement does not contain any information about the sign of the state, since
the measurement is a function of x2

t . Based on T = 100 measurements y1:100 from (5.13)
the task is now to find an approximation of the filtering PDFs p(xt | y1:t). To solve this
task we make use of the bootstrap PF, which amounts to using Algorithm 5.1 with the
following design choices

q1(x1 | y1) = N (x1 | 0, 1) , (5.14a)

qt (xt |xt−1, y1:t) = N
(
xt

∣∣∣∣ 1

2
xt−1 +

25xt−1

1 + x2
t−1

+ 8 cos(1.2(t− 1)), 0.5

)
. (5.14b)

This results in the weight function,

ω (xt, yt) = g(yt |xt) = N
(
yt
∣∣ 1/20x2

t , 0.5
)
. (5.15)

5.2. THE PARTICLE FILTER – TARGETING THE FILTERING PDF 77

In the simulations N = 10 000 particles are used, which is quite a lot for a one-
dimensional state space. The left plot in Figure 5.3 shows the conditional mean estimate
provided by the PF and the true state. Comparing the particle filter mean estimate to

0 20 40 60 80 100
−20

−15

−10

−5

0

5

10

15

20

Time (s)

−15 −10 −5 0 5 10 15
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

State x
56

Figure 5.3: Left plot: the conditional mean estimate (gray curve) and the true state (black curve).
Right plot: the estimate of the filter PDF at time t = 56, i.e. p̂N (x56 | y1:56).

the true state reveals at least two things. First, this is an inherently hardproblem, es-
pecially due to the squared state in the measurement equation. Second, just looking at
a point estimate can be dangerous and misleading in a complex problem like this. To
understand this we have provided a plot of p̂N (x56 | y1:56) in the right plot in Figure 5.3.
From this plot we can see that the PF is capable of representing the uncertainty of the
sign of xt due to the square in the measurement equation. It seems natural that this
square can result in a bimodal filter PDF.

The bootstrap PF is the simplest possible implementation of SMC, but neverthe-
less, it incorporates the essential methodological ideas that underpin the general SMC
framework. Importance sampling and resampling is used sequentially to approximate
a sequence of probability distributions of interest. A highly valid concern at this point
might therefore be the following:

The approximation of the filtering distribution at time t is used to construct
an approximation of the filtering distribution at time t+ 1. This approxima-
tion is subsequently used at time t+2, then at t+3, and so on. Should we then
not expect that the approximation errors accumulate over time, rendering the
solution useless as t→∞?

The question raised above concerns the stability of the PF approximation. We will
discuss this in more detail in Section 5.8, but somewhat simplified the answer is that the
PF is indeed stable under certain forgetting conditions on the model under study. That
is, if the model is such that the there is a (sufficiently large) decay in the influence of the
past on the present, then there will be no indefinite accumulation of errors in the PF.

78 CHAPTER 5. SEQUENTIAL MONTE CARLO

5.2.2 Using auxiliary variables

Consider again the bootstrap proposal (5.12). While intuitively and computationally
appealing, this choice of proposal distribution is unfortunately also suboptimal. The
reason is as follows. In the propagation step, when simulating the particles {xit}Ni=1 from
the mixture distribution (5.12), the current measurement yt is not taken into account.
However, intuitively, yt contains information about the current state of the system, i.e.
about the shape of the filtering density p(xt | y1:t). Since yt is indeed available at time t,
it would be preferable to make use of this information already when simulating the
particles {xit}Ni=1, to increase the probability of producing samples in the most relevant
parts of the state space. Indeed, this is why we indicate a possible dependence on yt in
the mixture components of the proposal density in (5.8).

In Section 5.2.4 we will be more specific about how it is possible to adapt the proposal
distribution to the available information. To prepare for such a development we will
now—with the above discussion in mind—focus on enabling the use of the proposal
density (5.8), while still enjoying a linear computational cost. This can be accomplished
by making use of auxiliary variables, as discussed in Section 4.5.2. In fact, in Section 4.5.2
the problem of designing an efficient importance sampler for a mixture distribution was
considered in a general setting. We now make use of the same idea specifically in the
context of particle filtering.

As pointed out above, to sample from the mixture proposal (5.8), we would first
randomly select one of the components, and then draw a sample from that specific
component. In (5.9), we noted that selecting one of the mixture components is equivalent
to selecting an ancestor x̄t−1 among the particles {xit−1}Ni=1 at time t− 1. We can then
generate a realization from (5.8) by simulating xt ∼ q(xt | x̄t−1, yt). To make the selection
procedure in (5.9) more explicit, let us introduce an auxiliary variable in the form of a
discrete random variable at which takes values on the set of integers {1, . . . , N}. We
can then express (5.9) as x̄t−1 := xatt−1 where

P
(
At = i

∣∣∣ {xjt−1, w
j
t−1}

N
j=1

)
= wit−1, for i = 1, . . . , N. (5.16)

Hence, At is the index of the ancestor particle at time t−1. Consequently, we will refer to
at as an ancestor index. Introducing such ancestor indices as auxiliary variables is useful,
since it makes the stochasticity of the resampling step explicit. Furthermore, analogously
to the development in Section 4.5.2, it allows us to reduce the computational complexity
of the weight computation from O(N2) to O(N). The key in this development is to
target the joint distribution of (xt, at) with an importance sampler, instead of directly
targeting the marginal distribution of xt as was done in the previous section.

Analogously to above, the mixture proposal (5.8) can be interpreted as a joint pro-
posal distribution for the pair (xt, at), given by

q(xt, at | y1:t) = watt−1q(xt |x
at
t−1, yt). (5.17)

Here, the ancestor index at should be thought of as an index selecting one of the com-
ponents in the sum (5.8). Generating, independently, N realizations from this joint
proposal distribution can be done as follows.

5.2. THE PARTICLE FILTER – TARGETING THE FILTERING PDF 79

1. Sample the ancestor indices {ait}Ni=1 according to (5.16). This corresponds to the

resampling step of the algorithm. The resampled particles are given as x̄it−1 = x
ait
t−1

for i = 1, . . . , N .

2. Propagate the particles to time t by simulating xit ∼ q(xt | x̄it−1, yt) for i = 1, . . . , N .

The advantage of explicitly introducing and using the ancestor indices as auxiliary vari-
ables lies in the computation of the importance weights (cf. Section 4.5.2). From (5.7),
we have that the joint target distribution for (xt, at) is proportional to

watt−1p(yt |xt)p(xt |x
at
t−1). (5.18)

Note that there is no summation over previous particles involved in this expression—the
summation in (5.7) is recovered by marginalizing the aforementioned joint target distri-
bution over the auxiliary variable at. In computing the ratio between the unnormalized
joint target density (5.18) and the joint proposal density (5.17), the factors watt−1 will
cancel:

w
ait
t−1p(yt |xit)p(xit |x

ait
t−1)

w
ait
t−1q(x

i
t |x

ait
t−1, yt)

=
p(yt |xit)p(xit |x

ait
t−1)

q(xit |x
ait
t−1, yt)

=
p(yt |xit)p(xit | x̄it−1)

q(xit | x̄it−1, yt)
.

Hence, we define the weight function ω : X2 × Y 7→ R as,

ω(xt−1, xt, yt) =
p(yt |xt)p(xt |xt−1)

q(xt |xt−1, yt)
. (5.19)

By computing w̄it = ω(x̄it−1, x
i
t, yt) for i = 1, . . . , N and normalizing the weights to sum

to one, we obtain the joint weighted particle system {(xit, ait), wit}Ni=1. However, assuming
that we are only interested in addressing the filtering problem, the auxiliary variables
{ait}Ni=1 may be discarded. This leaves us with the weighted particle system {xit, wit}Ni=1

approximating the (marginal) target density (5.7). Importantly, evaluating (5.19) can be
done in constant time, leading to a total computational complexity of the particle filter
which is linear in N . Note that, contrary to (5.11), the weight function (5.19) depends
not only on the current state xt, but also on the previous state xt−1. This implicitly
encodes the dependence on the ancestor index at through the corresponding ancestor
particle x̄t−1.

Interestingly, if we use the bootstrap proposal q(xt |xt−1, yt) = f(xt |xt−1), the
weight function (5.19) reduces to ω(xt−1, xt, yt) = g(yt |xt) and we recover exactly the
same bootstrap PF algorithm that was derived in the previous section.

5.2.3 The auxiliary particle filter

The introduction of ancestor indices as auxiliary variables opens up for further adaption
of the proposal distribution used in the particle filter. In particular, it is possible to use
the information available in the current observation yt, not only when proposing the new

80 CHAPTER 5. SEQUENTIAL MONTE CARLO

state xt, but also when proposing its ancestor index at. Simulating the ancestor indices
{ait}Ni=1, or equivalently resampling the particles {xit−1}Ni=1, is done to facilitate sampling
of the particles {xit}Ni=1 in the propagation step of the filter. It is natural to attempt to
take as much information as possible into account when sampling the ancestor indices,
and this includes the current observation yt. The idea is that we can thereby increase
the probability of resampling particles at time t − 1 that are in agreement with the
observation yt. This results in what is often referred to as the auxiliary particle filter
(APF).

Recall that we use (5.17) as a joint proposal distribution for the pair (xt, at). In this
expression, it is assumed that at is distributed according to the categorical distribution
induced by the importance weights {wit−1}Ni=1. However, we are free to use any proposal
distribution that we find appropriate, as long as this is compensated for when computing
the importance weights. Specifically, let ν : X× Y 7→ R be a user-specified nonnegative
function that will be used to adapt the proposal distribution for the ancestor indices.
See Example 5.3 below for an illustration of how this function can be chosen. For each
particle, i.e. for i = 1, . . . , N , we then compute the quantities

νit−1 := ν(xit−1, yt), (5.20)

referred to as adjustment multipliers. Importantly, these quantities depend only on the
previous particles and on the current observation, both of which are available when
simulating the ancestor indices (i.e., in the resampling step) in the algorithm at time t.
The adjustment multipliers are used to construct a proposal distribution for the ancestor
index variable at according to (cf. (5.16))

P
(
At = i

∣∣∣ {xjt−1, w
j
t−1}

N
j=1, yt

)
=

wit−1ν
i
t−1∑N

l=1w
l
t−1ν

l
t−1

, for i = 1, . . . , N. (5.21)

From the above expression we see that we can think of ν as adjusting the original weights
w via multiplication, explaining the name adjustment multipliers. As before, once the
ancestor indices are generated, we propagate the particles to time t by simulating xit ∼
q(xt | x̄it−1, yt) for i = 1, . . . , N , where x̄t−1 = xatt−1. As mentioned above, the idea
underlying the use of adjustment multipliers is that by carefully choosing the function
ν in (5.20), we can adapt the sampling of the ancestor indices in (5.21) to make use of
the information available in the current measurement yt. Intuitively, ν(xt−1, yt) should
take a large value if it is likely to observe the measurement yt at time t, given that the
system state is xt−1 at time t. To make this more concrete, we provide an example of
how the adjustment multipliers can be chosen below.

Example 5.3: Computing adjustment multipliers

To compensate for the fact that we use an adjusted proposal distribution (5.21)
for the ancestor index, we have to modify the weight function (5.19) accordingly. The

5.2. THE PARTICLE FILTER – TARGETING THE FILTERING PDF 81

normalization constant in (5.21) can be neglected, since the weights are normalized to
sum to one. We get the following expression for the ith importance weight:

w
ait
t−1p(yt |xit)p(xit |x

ait
t−1)

w
ait
t−1ν

ait
t−1q(x

i
t |x

ait
t−1, yt)

=
p(yt |xit)p(xit | x̄it−1)

ν(x̄it−1, yt)q(x
i
t | x̄it−1, yt)

.

Hence, the weight function is now given by

ω(xt−1, xt, yt) =
p(yt |xt)p(xt |xt−1)

ν(xt−1, yt)q(xt |xt−1, yt)
. (5.22)

The particle filter discussed in the previous section is a special case of the APF with the
choice ν(xt−1, yt) ≡ 1. We summarize the APF in Algorithm 5.2.

Algorithm 5.2: Auxiliary particle filter (APF)

1 Initialization (t = 1):
2 Sample xi1 ∼ q(x1 | y1).
3 Compute the importance weights w̄i1 = p(y1 |xi1)µ(xi1)/q(xi1 | y1) and

normalize, wi1 = w̄i1/
∑N

j=1 w̄
j
1.

4 for t = 2 to T do
5 Compute the adjustment multipliers νit−1 = ν(xit−1, yt)
6 Resampling: Resample {xit−1}Ni=1 with probabilities proportional to

{wit−1ν
i
t−1}Ni=1 to generate the equally weighted particle system

{x̄it−1, 1/N}Ni=1.
7 Propagation: Sample xit ∼ q(xt | x̄it−1, yt).

8 Weighting: Compute w̄it = ω(x̄it−1, x
i
t, yt) and normalize, wit = w̄it/

∑N
j=1 w̄

j
t .

9 end

The APF is sometimes viewed as a look-ahead procedure, since we make use of the
information available in yt when resampling the particles {xit−1}Ni=1. In fact, we can
take this idea even further and adapt the proposal distributions of the particle filter
to, say, the next ` measurements yt:t+`. Of course, the algorithm then needs to run
with a time lag of ` time steps, so that yt:t+` are indeed available to us when proposing
the particles at time t. In practice, however, it can be hard to design a good adaption
scheme, especially when adapting to future observations.

5.2.4 Adapting the proposal distribution

To make the above development more practical, we will in this section discuss specific
choices for the proposal distributions used in the APF. We have argued that it is useful
to adapt the proposals to the information that is available in the current observation yt.
Consider first the proposal for the state xt (we will return to the choice of adjustment
multipliers below). A natural choice is to use

q(xt |xt−1, yt) = p(xt |xt−1, yt), (5.23)

82 CHAPTER 5. SEQUENTIAL MONTE CARLO

Weighting Resampling Propagation Weighting Resampling

yt

Bootstrap

yt

Partially adapted

yt

Fully adapted

Figure 5.4:

i.e. we propose samples according to the posterior distribution of xt, conditionally on
the previous state xt−1 and the current observation yt. This choice is referred to as
the optimal proposal, since it minimizes the variance of the importance weights (see
below). For many models, the optimal proposal distribution is not available in closed
form, though there are some special cases of interest for which it can be computed, as
we illustrate in Example 5.4 below.

Example 5.4: Exploiting the current measurement in the proposal

Let us now consider the effect on the weight function (5.22) by using the optimal
proposal (5.23). From Bayes’ rule, we can write

p(xt |xt−1, yt) =
p(yt |xt)p(xt |xt−1)

p(yt |xt−1)
. (5.24)

Plugging this expression into the denominator of (5.22) we obtain

ω(xt−1, xt, yt) = ω(xt−1, yt) =
p(yt |xt−1)

ν(xt−1, yt)
, (5.25)

which depends only on the previous state and the current observation (which we have
indicated by overloading the function notation ω). Put differently, the proposal distri-
bution for xt is such that the actual values of the particles {xit}Ni=1 do not affect the cor-
responding importance weights. We say that the proposal is adapted to the observation
yt. This also motivates the word optimal—conditionally on the ancestor particle x̄t−1

the choice (5.23) for proposing xt trivially minimizes the variance of wt = ω(x̄t−1, xt, yt),
since it results in zero variance.

The expression (5.25) also suggests how to choose the adjustment multipliers. In
particular, wee see the choice ν(xt−1, yt) = p(yt |xt−1) will result in a weight function
that is identically equal to 1. That is, we obtain particles that are generated in such a way
that, by construction, they are equally informative about the target distribution. We
say that the APF is fully adapted. This choice of adjustment multipliers is in agreement
with the discussion in Section 5.2.3. The function ν(xt−1, yt) should intuitively be large

5.2. THE PARTICLE FILTER – TARGETING THE FILTERING PDF 83

when the state xt−1 at time t − 1 is in agreement with the observation yt at time t;
the one-step predictive likelihood p(yt |xt−1) accomplishes exactly this. A schematic
illustration of the differences between no, partial, or full adaption of the APF is given
in Figure 5.4. We continue to study the ARCH model from Example 5.4 and illustrate
how to construct a fully adapted APF in the example below.

Example 5.5: A fully adapted APF

In the example above we exploited the fact that, conditionally on xt−1, the current
state and observation (xt, yt) are jointly Gaussian. As a result, both the conditional
density p(xt |xt−1, yt) (i.e., the optimal proposal) and the marginal density p(yt |xt−1)
(i.e., the optimal adjustment multiplier function) turned out to be Gaussian and we
could express them on closed form. Using the same technique, we can conclude that full
adaptation is possible whenever (xt, yt) are jointly Gaussian, conditionally on xt−1. This
is the case whenever the transition density f(xt |xt−1) is Gaussian and the measurement
equation is linear and Gaussian: g(yt |xt) = N (yt |Cxt, R) for some parameters C
and R.

For models where the optimal proposals cannot be computed, it is still possible to
make use of the APF to construct a filter which, in many cases, is more efficient than
a simple bootstrap PF. One common approach is to use some approximate method,
for instance an extended Kalman filter , to approximate the optimal proposal (5.23).
Note that the approximation error associated with such an approach will only affect the
(sub-)optimality of the proposal distribution, not the asymptotic consistency of the PF.
Typically, whenever it is possible to adapt q(xt |xt−1, yt), then it is also possible to adapt
ν(xt−1, yt). For instance, if (5.23) is approximated using an EKF, then this will result in
an approximation of p(yt |xt−1) as a byproduct. Hence, if one puts effort into adapting
one part of the proposal then it is usually worthwhile to adapt the other part as well.

Compared to a bootstrap PF, the type of adaption that we have discussed above
amounts to making more efficient use of the information that is available in the ob-
servation yt. This implies that adaption is particularly useful when the observation is
informative. Indeed, if the measurement model p(yt |xt) is “peaky”, then the bootstrap
PF tends to perform poorly. Intuitively, this can be understood by noting that the boot-
strap proposal distribution (5.12) results in particles {xit}Ni=1 that are simulated blindly,
i.e. without taking yt into account. However, if yt is highly informative about the un-
derlying state of the system, then this can result in particles with very small posterior
probability given yt. The result is that the variance of the (normalized) importance
weights will be large, effectively resulting in a small number of useful particles. The
effect of adapting the APF is illustrated in a numerical example below.

84 CHAPTER 5. SEQUENTIAL MONTE CARLO

Example 5.6

5.3 The particle filter – targeting the smoothing PDF

In this section we provide an alternative derivation of the PF. Specifically, we com-
bine SIS and resampling to approximate the sequence of joint smoothing densities
{p(x0:t | y1:t)} sequentially in time. It should be noted that we will not derive a new
set of algorithms. Indeed, from an algorithmic point of view, the methods discussed in
this section are equivalent to the PFs that we have already seen. However, by targeting
the sequence of smoothing densities, rather than the filtering densities, we obtain an
alternative view of the PF. This will help to illuminate certain properties of the method
and, indeed, embracing both viewpoints is necessary in order to truly understand all the
nuances of SMC.

5.3.1 Approximating the forward smoothing strategy

As mentioned above, we will derive the PF as a numerical approximation of the forward
smoothing strategy (see Section 3.2.2 for details), given by the recursion

p(x0:t | y1:t) = p(x0:t−1 | y1:t−1)
p(xt |xt−1)p(yt |xt)

p(yt | y1:t−1)
. (5.26)

Rather than sampling individual states xit we are now sampling entire trajectories xi0:t,
resulting in a representation of the form

p̂N (x0:t | y1:t) =
N∑
i=1

witδxi0:t
(x1:t). (5.27)

The starting point for the derivation is the SIS algorithm, considered already in Sec-
tion 4.3.4. We briefly review the algorithm here for convenience. The SIS algorithm is
a standard importance sampler, albeit with the constraint that the weighted particles
are updated sequentially as new measurements are obtained. This is achieved by using
a proposal density that factorizes as,

q(x0:t | y1:t) = q(x1 | y1)

t∏
s=2

q(xs |xs−1, ys). (5.28)

Hence, we can draw a sample from the proposal xi0:t ∼ q(x0:t | y1:t) by first generating
xi0 ∼ q(x0), then xi1 ∼ q(x1 | y1), etc. It follows that the corresponding importance
weights can be updated sequentially as well. Recall that the weights are given by the

5.3. THE PARTICLE FILTER – TARGETING THE SMOOTHING PDF 85

ratio between the (unnormalized) target density and the proposal density (see (4.19)),
resulting in

ωt(x0:t, yt) =
p(yt |xt)p(xt |xt−1)p(x0:t−1 | y0:t−1)

q(x0:t | y1:t)

=
p(yt |xt)p(xt |xt−1)

q(xt |xt−1, yt)
ωt−1(x0:t−1, yt−1), (5.29)

where (5.28) was used to establish the last equality. The initial weight function at time
t = 1 is given by ω1(x1, y1) = p(y1 |x1)µ(x1)/q(x1 | y1).

In SIS, the N particles (and corresponding importance weights) evolve independently,
i.e. there is no interaction between the particles. The problem with this approach, as
discussed and illustrated empirically in Section 4.3.4, is that the weight update (5.29) is
not stable, in the sense that the variance of the normalized importance weights increases
over time. This has the effect that all but one of the weights decreases to zero, and all
emphasis is thus put on one of the particles (recall that the weights are normalized to
sum to one).

The PF algorithm arises as a way to mitigate this limitation of SIS. The idea is to
rejuvenate the sample by replicating particles with high weights and discarding particles
with low weights. This is done by resampling. To comply with the previous notation, we
study the process of resampling the particle system {xi0:t−1, w

i
t−1}Ni=1 at time t−1. Hence,

we have at hand a weighted particle approximation of the joint smoothing distribution
at time t− 1 (generated by SIS, say),

p̂N (x0:t−1 | y1:t−1) =
N∑
i=1

wit−1δxi0:t−1
(x0:t−1). (5.30)

It is possible to construct a new, unweighted set of particles by sampling independently
from (5.30). That is, we set x̄j0:t−1 = xi0:t−1 with probability wit−1, for j = 1, . . . , N . The

equally weighted particle system {x̄j0:t−1,
1
N }

N
j=1 can be used to construct a point-mass

approximation of p(x0:t−1 | y1:t−1) analogously to (5.30),

p̄N (x0:t−1 | y1:t−1) =
1

N

N∑
i=1

δx̄i0:t−1
(x1:t−1). (5.31)

In fact, this is nothing but a vanilla Monte Carlo approximation of the distribution (5.30).
Based on this insight, we can conclude that resampling will introduce additional Monte
Carlo variance, which implies that the approximation (5.31) will be dominated by (5.30).
However, when applied sequentially, resampling is critical since it ensures that emphasis
is put on the most likely hypotheses about the system state (i.e., particles). It introduces
interactions between the particles by eliminating (with high probability) those particles
that have low weights and duplicating particles with high weights.

Note that the sampling procedure outlined above is exactly the same as the one in
(5.9). There, the interpretation was to select components in the mixture proposal (5.8);

86 CHAPTER 5. SEQUENTIAL MONTE CARLO

here, the motivation was to rejuvenate an unequally weighted particle system. Both
interpretations are correct and algorithmically they are equivalent.

Other concepts introduced in Section 5.2, such as ancestor indices and adjustment
multipliers, can also be used in the present context. In particular, in accordance with
the previous presentation, we can make use of the ancestor indices {ait}Ni=1 to make the
sampling from (5.30) explicit. Indeed, if the discrete random variable at is drawn from a
categorical distribution on {1, . . . , N} with probabilities {wit−1}Ni=1, then x̄1:t−1 := xat0:t−1

is a draw from (5.30). The APF, derived in Section 5.2.3, employs the resampling step
(5.21), in which the weights wt are adjusted with the multipliers νt to obtain the resam-
pling probabilities. This corresponds to replacing the vanilla Monte Carlo approximation
of (5.30) with an importance sampling approximation. Consequently, the APF can also
equivalently be viewed as targeting the sequence of smoothing distributions.

To propagate the resampled particles {x̄it−1}Ni=1 to time t we sample xit ∼ q(xt | x̄it−1, yt)

for i = 1, . . . , N . Consequently, particle xit originates from x̄it−1 = x
ait
t−1. Hence, when

considering the particle trajectory xi0:t, this should be thought of as the “ancestral path”
of the particle xit. That is, xi0:t is defined recursively through the ancestor indices by

xi0:t := (x
ait
0:t−1, x

i
t). Since the concepts of ancestor indices and ancestral paths will be of

importance later on, we illustrate the idea with an example.

Example 5.7: Ancestral paths

Figure 5.5 shows the evolution of three particles for t = 1, 2, 3. At time t = 1, particle
x2

1 is resampled twice and particle x3
1 is resampled once. At time t = 2, the ancestors

are thus given by a1
2 = 2, a2

2 = 2 and a3
2 = 3. Similarly, at time t = 3, the ancestors are

given by a1
3 = 2, a2

3 = 3 and a3
3 = 3. The ancestral path of particle x1

3, which we denote
as x1

1:3, is shown as a thick line in the figure. This path is given recursively from the
ancestor indices,

x1
1:3 = (x

a
a13
2

1 , x
a13
2 , x

1
3) = (x

a22
1 , x

2
2, x

1
3) = (x2

1, x
2
2, x

1
3).

x1
1

x2
1

x3
1

x1
2

x2
2

x3
2

x1
3

x2
3

x3
3

Figure 5.5: Evolution of a particle system. The ancestral path of x13, i.e. x11:3, is shown as a thick line.

5.3. THE PARTICLE FILTER – TARGETING THE SMOOTHING PDF 87

The smoothing view of the PF offers one immediate advantage over the filtering
view: since each particle consists of a complete state trajectory it is possible to let
the proposal distribution depend on the complete history of the state process. That
is, when simulating xit at time t, this can be done from some proposal q(xt | x̄i0:t−1, yt)
which may depend on the complete trajectory x̄i0:t−1. For SSMs, this feature is usually
not particularly useful due to the Markovian dependencies of the model. For other types
of models, however, it can be key to designing an efficient sampler. Relying on the
complete state trajectory for the proposal construction must be done with care, however,
due to the path degeneracy issues that we will discuss in the subsequent section.

5.3.2 Path degeneracy

The SMC algorithm provided in Algorithm ?? is very ambitious in the sense that it is
trying to make use of a representation consisting of a fixed sample size N in approximat-
ing a sequence of densities {p(x1:t | y1:t)}t≥1 of growing dimension. While we can show
that this can be done asymptotically as N →∞, it is inherently impossible to solve this
task using a fixed number of N particles. For any implementation of the PF we are of
course limited to making use of a finite number of particles. Let us now investigate how
this fundamental problem manifests itself, first by a thought experiment and then via a
simulation in Example 5.8.

Assume that we employ a PF to target the joint smoothing density. At time s we
generate N unique particles {xis}Ni=1 from the proposal density and augment these to
the existing particle trajectories, according to step 6 in Algorithm ??. We thus have a
weighted particle system {xi1:s, w

i
s}Ni=1 approximating the joint smoothing density at time

s. Assume that the particle trajectories are then resampled, resulting in an unweighted
particle system {x̄i1:s, 1/N}Ni=1. Recall that the purpose of the resampling step is to
remove particles with small weights and duplicate particles with large weights. This has
the effect of decreasing the number of unique particles. Hence, over time each consecutive
resampling of the particle trajectories will reduce the number of unique particles at time
s. Eventually the particle system at time s will consist of one unique particle copied to
all particle trajectories. This problem is referred to as path degeneracy. In other words,
the resampling step inevitable results in that for any given time s there exists t > s such
that the PF approximation p(x1:t | y1:t) consists of a single particle at time s. This is
illustrated in Example 5.8, where s = 6 and t = 25, see the right plot in Figure 5.6.

Example 5.8: Path degeneracy

Consider a one-dimensional Gaussian random walk process measured in Gaussian noise.
The joint smoothing density p(x1:t | y1:t) is targeted using a bootstrap PF with N = 30
particles. Let us study the path degeneracy problem by plotting the particle trajectories
in Figure 5.6. Note that all particle trajectories {xi1:25}Ni=1 share a common ancestor at
time s = 6 (and consequently for all times prior to s = 6).

Despite the particle degeneracy problem, it is important to note that the PF does
indeed generate weighted samples from the joint smoothing density. The problem that we
face when using these samples for MC integration is that the resampling step introduces

88 CHAPTER 5. SEQUENTIAL MONTE CARLO

5 10 15 20 25
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

Time

S
ta

te

5 10 15 20 25
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

Time

S
ta

te

Figure 5.6: Left plot: At each point in time all N = 30 particles are plotted using a black dot and
each particle is connected with its ancestor using a black line. Right plot: The grey dots represents the
filtering density at each point in time. The black lines shows the particle trajectories {xi1:25}30i=1 at time
t = 25. Hence, the right plot corresponds to the left plot with all trajectories that are not resampled
removed. Note that all particles are still visualized using gray dots.

a dependency among the samples. When the trajectories have degenerated to the extent
that there is only a single sample left, the particle trajectories are perfectly correlated.
Consider for example the result of using the particle system {xi1:25}Ni=1 to compute an
MC estimate of E[x3 | y1:25], resulting in

x̂3 | 25 =
30∑
i=1

wi25x
i
3. (5.32)

This boils down to an MC integration using a single sample, since xi3 are identical for
all i = 1, . . . , N .

The above development brings an interesting perspective on resampling. The resam-
pling step successfully resolves the weight degeneracy problem. However, at the same
time the resampling step results in path degeneracy, which makes it impossible to make
use of SMC in order to obtain a good approximation of the joint smoothing density
p(x1:t | y1:t) for large t using a finite number of particles. However, for many dynami-
cal systems the future is more or less independent of the past. This is quantified using
mixing conditions and ergodic theory. We will return to this in our discussion on conver-
gence results, for now it will suffice with intuition. The ergodicity that is present in most
dynamical systems effectively prevents the accumulation of error over time. The result
is that SMC samplers are often good at approximating the fixed-lag smoothing densities
p(xt−L+1:t | y1:t) for small lags L ≥ 1. A direct consequence of this is that the particle
degeneracy problem will not limit the applicability of the SMC sampler in targeting
the filtering density p(xt | y1:t) (corresponding to L = 1). Looking at the right plot in

5.4. RESAMPLING ALGORITHMS 89

Figure 5.6 this does indeed seem plausible, since the particle system {xi1:25, w
i
25}30

i=1 has
not degenerated close to t = 25.

A relevant question at this stage is to consider if it is somehow possible (at least
partly) to “undo” the path degeneracy. Above we just concluded that the PF is able
to maintain a good representation of the filtering density. One idea is to investigate if
it is somehow possible to initiate a backwards sweep starting from the PF representa-
tion of p(xt | y1:t) and somehow reintroduce diversity among the particles by some form
of backwards computation. Recall the general backward computations derived in Sec-
tion 3.3. This will be explored in quite some detail in Chapter ?? resulting in a family
of algorithms referred to as particle smoothers.

5.4 Resampling algorithms

The resampling step is performed by a randomized algorithm generating an unweighted
particle system from a weighted particle system, in such a way that the resulting un-
weighted representation is as similar to the original weighted representation as possible.
The problem that is solved by resampling is formulated in Section 5.4.1, where we also
derive a first algorithm that can be used to implement resampling. In Section 5.4.2 we
will then derive two improvements to the first algorithms, where the improvements lies
both in reduced computational complexity and a reduced variance.

5.4.1 Problem formulation

Pragmatically speaking resampling amounts to (randomly) eliminating particles with low
probability and duplicating particles with high weights, such that for each l = 1, . . . , N

P
(
x̄l = xi

∣∣∣ {xj , wj}Nj=1

)
= wi. (5.33)

The resampling step is the same for all times, hence we have without loss of generality
removed the time index t throughout this section. According to (5.33) we are generat-
ing samples approximately distributed according to the target distribution by selecting
particle xi with probability wi. In repeating this N times we associate a number of
offspring Oi with each particle xi, i.e. Oi denotes the number of times particle xi was
selected in the resampling step. Hence, O , (O1, . . . , ON) is distributed according to a
categorical distribution with parameters {wi}Ni=1. Resampling allows us to approximate
the weighted distribution π̂(x) =

∑N
i=1w

iδxi(x) by an unweighted distribution

π̄(x) =
N∑
i=1

1

N
δ
xai

(x) =
N∑
i=1

1

N
δx̄i(x) =

N∑
i=1

Oi

N
δxi(x), (5.34)

where we have made use of three equivalent formulations, based on the ancestor indices
{ai}Ni=1, the resampled particles {x̄i}Ni=1 and the offspring {Oi}Ni=1, respectively. The
resampling algorithms takes the weights {wi}Ni=1 as input and generates ancestor indices
{ai}Ni=1 or {Oi}Ni=1 as outputs.

90 CHAPTER 5. SEQUENTIAL MONTE CARLO

In order to derive the multinomial resampling algorithm, let us start by considering
an example consisting of 7 particles with weights {wi}7i=1 illustrated in Figure 5.7 (left
plot), where its cumulative distribution function F (w) is shown.

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M∑

i=1

w
i

Partic le index

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M∑

i=1

w
i

Partic le index

Figure 5.7: Left plot: an example of the cumulative distribution function F (w) for an example con-
sisting of 7 particles with weights {wi}7i=1. Right plot: illustration of multinomial resampling, where
five particles are resampled. In line 1 of Algorithm 5.3, five realizations {ui}5i=1 of U (0, 1] are drawn
and in step 2 the corresponding ancestor indices are computed according to ai = F−1

C (ui) = j for

ui ∈
(∑j−1

l=1 w
l,
∑j
l=1 w

l
]
. The five realizations of the uniform random variables are shown by the thin

dashed lines. Hence, in this particular example we have, a1 = 3, a2 = 5, a3 = 5, a4 = 5, a5 = 2,, which
using the offspring variables corresponds to o1 = 1, o2 = 0, o3 = 1, o4 = 0, o5 = 3.

We can now implement a first realization from (5.33) by first generating a uniform
random variable according to U1 ∼ U (0, 1]. We then make use of the inverse of the
cumulative distribution function of the weights F−1(u1) to figure out which particle this
corresponds to. Alternatively, this corresponds to selecting the ancestor index a1 = j
for which

u1 ∈

[
j−1∑
l=1

wl,

j∑
l=1

wl

)
. (5.35)

This index is then returned and the procedure is repeated. The procedure just described
is referred to as multinomial resampling and it is provided in Algorithm 5.3 and it is
further illustrated and explained for an example in Figure 5.7 (right plot). More formally,
the multinomial resampling algorithm samples ancestor indices ai independently from
the categorical distribution C

(
{wi}Ni=1

)
.

Algorithm 5.3: Multinomial resampling (all operations are for i = 1, . . . , N)

1 Sample U i ∼ U (0, 1].

2 Set ai = F−1
C (U i).

Algorithm 5.3 produces a set of ancestor indices {ai}Ni=1 which we can straight-
forwardly convert into a set of offspring {Oi}Ni=1, where Oi ,

∑N
j=1 I

(
aj = i

)
. The

5.4. RESAMPLING ALGORITHMS 91

multinomial resampling algorithm is unbiased in the sense that

E
[
Oi | {xj , wj}Nj=1

]
= wiN, for i = 1, . . . , N. (5.36)

Furthermore, the corresponding variance is given by Var
[
Oi | {xj , wj}Nj=1

]
= Nwi(1 −

wi). There are ways of producing better resampling algorithms where the variance of
the produced offspring is smaller than Nwi(1−wi), while they still remain ubiased. Two
of these algorithms are introduced in the subsequent section.

5.4.2 Reducing the variance

The key idea in reducing the variance incurred by the resampling algorithm is to enforce
a more uniform selection of the particles to be resampled. Rather than generating
U i ∈ U(0, 1], let us first partition the interval (0, 1] into N equidistant disjoint sets,
(0, 1] = (0, 1/N] ∪ · · · ∪ ((N − 1)/N, 1]. We then draw one uniform random variable
from each of these sets, i.e.

U i ∼ U ((i− 1)/N, i/N] , i = 1, . . . , N. (5.37)

These random variables are then used to select which particles to resample via the same
inversion method employed by the multinomial resampling algorithm, i.e. ai = F−1(U i).
The resulting algorithm is referred to as stratified resampling due to the stratification of
the interval and it is summarized in Algorithm 5.4.

Algorithm 5.4: Stratified resampling (all operations are for i = 1, . . . , N)

1 Sample U i ∼ U ((i− 1)/N, i/N].
2 Set ai = F−1(U i).

The stratification idea (5.37) can be taken one step further by only generating a single
random variabel U1 ∼ U(0, 1/N] and then deterministically assigning the remaining
variables according to

U i =
i− 1

N
+ U = U i−1 +

1

N
, i = 2, . . . , N. (5.38)

Due to the systematic nature of this assignment, the resulting algorithm is referred to
as systematic resampling and it is summarized in Algorithm 5.5. The resulting ancestor
indices are again provided by the inversion method described above, i.e. ai = F−1(U i).

Algorithm 5.5: Systematic resampling

1 Sample U1 ∼ U(0, 1/N].
2 Set U i = (i− 1)/N + U for i = 2, . . . , N .
3 Set ai = F−1(U i), for i = 1, . . . , N .

Figure 5.8 provides a graphical illustration of how the three resampling algorithms
operate in generating an equally weighted particle system.

92 CHAPTER 5. SEQUENTIAL MONTE CARLO

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M∑

i=1

w
i

Partic le index

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M∑

i=1

w
i

Partic le index

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M∑

i=1

w
i

Partic le index

Figure 5.8: Graphical illustration of the three resampling algorithms (from left to right; multinomial,
stratified and systematic) introduced. We use the same five weights as in Figure 5.7 and the values of
the weights are visualized by the lengths of the bars at the bottom of the figures. The short vertical
lines indicate the resampled particles. In multinomial resampling (left) we make use of a uniformly
randomly sampled particle positions, whereas in stratified resampling (middle) we first generate a uniform
deterministic grid (visualized using vertical dashed lines) of the entire interval and we then generate
on random position within each grid cell. In systematic resampling (right) we make use of the same
deterministically assigned grid as was used in the stratified resampler, but rather than using a random
position for each grid cell we use the same offset in each grid cell.

5.5 Rao-Blackwellized particle filters

Let us assume that there is an analytically tractable sub-structure available in the model,
implying that we can solve the filtering problem in closed form for the involved variables.
The Rao-Blackwellized particle filter (RBPF) allows us to make use of this by analytically
marginalizing over the part of the state vector that is conditionally tractable. As a
result the particle filter only needs to be applied in a lower dimensional marginal space,
improving the efficiency. The RBPF is one specific application of the general conditional
Monte Carlo idea (Rao-Blackwellization) introduced in Section 4.5.1.

The strategy underlying the Rao-Blackwellized particle filter is introduced in Sec-
tion 5.5.1. A common and useful example of a model with an analytically tractable
sub-structure is provided by the CLG-SSM (recall Definition 2), where part of the state
vector is conditionally linear and Gaussian. In order to make the development more
concrete we will then derive an RBPF for a specific CLG-SSM in Section 5.5.2.

5.5.1 Strategy and key idea

The problem under consideration is to compute the filtering PDF when the state vector
Xt = (St, Zt) is partitioned into one “linear” state zt and one “nonlinear” state st, such
that the conditional process {(Zt, Yt) | s1:t = s1:t}t≥1 is analytically tractable and hence
encoded in a finite dimensional parameterization. The RBPF exploits this tractable
substructure of the model through the following key factorization of the target density
(with the filtering PDF p(zt, st | y1:t) as one of its marginals),

p(zt, s1:t | y1:t) = p(zt | s1:t, y1:t)p(s1:t | y1:t). (5.39)

The first density in the above factorization is (by assumption) available in closed form.
The second factor p(s1:t | y1:t) is targeted by a PF and it is approximated by a weighted

5.5. RAO-BLACKWELLIZED PARTICLE FILTERS 93

particle system according to

p̂N (s1:t | y1:t) =
N∑
i=1

witδsi1:t
(s1:t). (5.40)

Hence, the RBPF is a PF in which each particle is equipped with a finite dimensional
filter tracking the sufficient statistics for the conditional densities p(zt | s1:t, y1:t).

Equivalently, we can view the marginalization of the z-process as a way to reduce
the original model to

st+1 | (st = st) ∼ p(st+1 | st), (5.41a)

Yt | (st = st) ∼ p(yt | s1:t, y1:t−1). (5.41b)

The RBPF is then simply a PF targeting the sequence of conditional densities p(s1:t | y1:t)
for the reduced SSM in (5.41) coupled with a recursion for the associated sufficient
statistics. The model (5.41) shares many of the properties of the SSM (??). However,
as an effect of the marginalization of the z-process, the measurement model (5.41b)
depends on the complete history s1:t, rendering the model non-Markovian. This is not a
problem when it comes to deriving filtering solutions, but as we shall see in Chapter ??
it makes the corresponding smoothing problem more challenging.

An appealing property inherent in the RBPF is that it allows us to improve the
quality of the filter, in a similar way as we can expect from Rao-Blackwellization. Any
estimator derived from the RBPF will have a lower (or the same) variance when com-
pared to the corresponding estimator derived from the standard PF. Informally, the
reason is that in the RBPF, the particles are spread in a lower dimensional space, yield-
ing a denser point-mass approximation of the target density. The standard PF amounts
to a Monte Carlo solution in the Zt× St space, whereas the RBPF only has to make use
of a Monte Carlo solution in the smaller St space according to (5.40). The remaining
analytically tractable states are computed explicitly.

5.5.2 Rao-Blackwellization in CLGSS models

The construction of the CLGSS model implies that the density p(zt | s1:t, y1:t) is Gaussian
and hence it is completely characterized by its mean and covariance according to

p(zt | s1:t, y1:t) = N
(
zt

∣∣∣ z̄it | t, P it | t) , (5.42)

where z̄it | t = z̄t | t(s
i
1:t) and P it | t = Pt | t(s

i
1:t). Deriving the RBPF now amounts to

finding a recursion for z̄it | t and P it | t and then to properly combine this with the PF

estimate (5.40) of the nonlinear state. The final RBPF approximation is obtained by
inserting (5.40) and (5.42) into (5.39) resulting in the following Gaussian mixture ap-
proximation,

p̂N (zt, s1:t | y1:t) =

N∑
i=1

witN
(
zt
∣∣ z̄t | t(si1:t), Pt | t(s

i
1:t)
)
δsi1:t

(s1:t). (5.43)

94 CHAPTER 5. SEQUENTIAL MONTE CARLO

This means that in the RBPF we run one conditional Kalman filtering type of recursion
per particle trajectory and keep track of the sufficient statistics for the corresponding
conditionally Gaussian density (5.42). The RBPF generates an augmented weighted
particle system defined below.

Definition 6 (Augmented weighted particle system). An augmented weighted particle
system targeting a factorized density p(z | s)p(s) is given by a collection of quadruples
{si, wi, z̄i, P i}Ni=1 such that

i) {si, wi}Ni=1 is a weighted particle system targeting p(s).

ii) The conditional density p(z | s) is Gaussian with p(z | si) = N
(
z
∣∣ z̄i, P i) for i =

1, . . . , N .

Let us now specialize one step further and consider a specific instance of the CLGSS
model class, namely the MGSS model (recall Definition 4),

Xt+1 = ft(st) +At(st)zt + zt(st), (5.44a)

Yt = ht(st) + Ct(st)zt + Et(st), (5.44b)

where

Xt =

(
st
zt

)
, ft(st) =

(
fst (st)
fzt (st)

)
, At(st) =

(
Ast (st)
Azt (st)

)
. (5.44c)

Deriving the RBPF for (5.44) can be divided into two steps. Firstly, we have to se-
quentially compute the sufficient statistics (z̄it | t and P it | t) for the conditionally linear

Gaussian state (5.42). Secondly, in Section 5.5.2 we target p(s1:t | y1:t) using a PF, draw-
ing the nonlinear state trajectories, which generates a sequence of weighted particle
systems (5.40).

Updating the linear states

Let us start the derivation of the RBPF by showing how to obtain the conditional
filtering density p(zt | s1:t, y1:t) sequentially. This density is Gaussian, which implies that
it is described entirely by its first and second moments. The updating formulas will show
great resemblance with the Kalman filter, which is not surprising since the conditional
process {zt, Y1:t | s1:t}t≥1 obeys an LGSS model. The only difference from the standard
Kalman filter is that, in the eyes of the linear zt state, the dynamics of the nonlinear state
will behave like an “extra measurement” that we have to acknowledge in the derivation.

The derivation will be given as a proof by induction. By the end of this section we
shall see that p(z1 | s1, y1) is Gaussian and can thus be written according to p(z1 | s1, y1) =
N
(
z1

∣∣ z̄1 | 1(s1), P1 | 1(s1)
)
, where we have defined z̄1 | 1(s1) and P1 | 1(s1) as the mean and

covariance of the distribution, respectively. Hence, assume that, for t ≥ 2,

p(zt−1 | s1:t−1, y1:t−1) = N
(
zt−1

∣∣ z̄t−1 | t−1(s1:t−1), Pt−1 | t−1(s1:t−1)
)
, (5.45)

5.5. RAO-BLACKWELLIZED PARTICLE FILTERS 95

where the mean and covariance are functions of the nonlinear state trajectory s1:t−1

(naturally, they do also depend on the measurements y1:t−1, but we shall not make that
dependence explicit). We shall now see that this implies

p(zt | s1:t, y1:t) = N
(
zt
∣∣ z̄t | t(s1:t), Pt | t(s1:t)

)
, (5.46)

and show how we can obtain the sufficient statistics for this density. Using the Markov
property and the state transition density given by the model (5.44a), we have,

p(zt, st | zt−1, s1:t−1, y1:t−1) = p(zt, st | zt−1, st−1)

= N (xt | f(st−1) +A(st−1)zt−1, Q(st−1)) , (5.47)

which is affine in zt−1. We know that affine transformations preserves Gaussianity. More
specifically, (5.45) and (5.47) together with Theorem 9 allow us to conclude

p(zt,st | s1:t−1, y1:t−1)

= N

((
st
zt

)
|
(
αt | t−1(s1:t−1)

βt | t−1(s1:t−1)

)
︸ ︷︷ ︸

χt | t−1(s1:t−1)

,

 Σs
t | t−1(s1:t−1) Σsz

t | t−1(s1:t−1)(
Σsz
t | t−1(s1:t−1)

)T
Σz
t | t−1(s1:t−1)


︸ ︷︷ ︸

Σt | t−1(s1:t−1)

)
,

(5.48a)

where

χt | t−1(s1:t−1) = f +Az̄t−1 | t−1, (5.48b)

Σt | t−1(s1:t−1) = Q+APt−1 | t−1A
T. (5.48c)

To keep the notation simple, the dependencies on st−1 and s1:t−1 have been dropped from
the right hand side. Note that (5.48a) is simply a prediction of the state at time t con-
ditioned on s1:t−1 and y1:t−1. In (5.48b), the dynamics (5.44a) is simulated and (5.48c)
shows how the uncertainty depends on the contributions from the process noise and the
prior uncertainty in the linear state.

Marginalizing (5.48a) w.r.t. the linear state zt results in (Theorem 7)

p(st | s1:t−1, y1:t−1) = N
(
st

∣∣∣αt | t−1(s1:t−1), Σs
t | t−1(s1:t−1)

)
, (5.49)

and conditioning (5.48a) on the nonlinear state st (Theorem 8) we get,

p(zt | s1:t, y1:t−1) = N
(
zt
∣∣ z̄t | t−1(s1:t), Pt | t−1(s1:t)

)
, (5.50a)

where

z̄t | t−1(s1:t) = βt | t−1 + Lt
(
st − αt | t−1

)
, (5.50b)

Pt | t−1(s1:t) = Σz
t | t−1 − LtΣ

sz
t | t−1, (5.50c)

Lt(s1:t) =
(

Σsz
t | t−1

)T (
Σs
t | t−1

)−1
. (5.50d)

96 CHAPTER 5. SEQUENTIAL MONTE CARLO

The prediction of the nonlinear state (5.49) is used for sampling new particles in the
bootstrap version of the particle filter. Once the nonlinear state trajectory is augmented
with a new sample we can condition the prediction of the linear state on this sample
according to (5.50). This provides some information about the linear state via the inter-
connections between the linear and the nonlinear parts of the state vector. From (5.50b)
we see that the state is updated accordingly and the covariance is reduced (5.50c). Note
that this update is very similar to a Kalman filter measurement update (3.11), which ex-
plains why it is sometimes referred to as the “extra measurement” update of the RBPF.
We have still not made use of the information that is present in the current measurement
yt. This is what we will do next.

From the measurement model (5.44b) and the conditional independence properties
inherent in the model we have

p(yt | s1:t, zt, y1:t−1) = p(yt | st, zt) = N (yt |h(st) + C(st)zt, R(st)) , (5.51)

which is affine in the linear state zt. Again appealing to Theorem 9 and making use of
the result (5.50) we obtain the measurement prediction density according to

p(yt | s1:t, y1:t−1) = N (yt | ŷt(s1:t), St(s1:t)) , (5.52a)

where

ŷt(s1:t) = h+ Cz̄t | t−1, (5.52b)

St(s1:t) = R+ CPt | t−1C
T. (5.52c)

The posterior of zt conditioned on yt is given by

p(zt | s1:t, y1:t) = N
(
zt
∣∣ z̄t | t(s1:t), Pt | t(s1:t)

)
, (5.53a)

where

z̄t | t(s1:t) = z̄t | t−1 +Kt (yt − ŷt) , (5.53b)

Pt | t(s1:t) = Pt | t−1 −KtCPt | t−1, (5.53c)

Kt(s1:t) = Pt | t−1C
TS−1

t . (5.53d)

This concludes the induction proof for t > 1 and it remains to take care of the start where
t = 1. In order to do so, let us first define y1:0 , ∅, so that p(z1 | s1:1, y1 | 0) = p(z1 | s1)
and analogously for the other densities. From this we see that the expression (5.50a)
coincides with the prior for z1 | (s1 = s1) at time t = 1. The computations in (5.50)
to (5.53) will thus hold at t = 1, which in turn confirms the validity of the induction
assumption, p(z1 | s1, y1) = N

(
z1

∣∣ z̄1 | 1(s1), P1 | 1(s1)
)
.

Sampling the nonlinear state trajectories

In the previous section we obtained closed form expressions for the conditional filtering
density for the linear state p(zt | s1:t, y1:t). However, according to (5.39) it remains to

5.5. RAO-BLACKWELLIZED PARTICLE FILTERS 97

find the smoothing density for the nonlinear state p(s1:t | y1:t). The model involves a
nonlinear dependence on st, implying that there is no closed form expression available
for this density. Instead we target it using a PF.

Let us assume that t ≥ 2. Sampling at time t = 1 is covered at the end of this
section, since it follows from straightforward modifications of the results for t ≥ 2. First,
using Bayes’ theorem we note the following concerning the target density

p(s1:t | y1:t) ∝ p(yt | s1:t, y1:t−1)p(s1:t | y1:t−1)

= p(yt | s1:t, y1:t−1)p(st | s1:t−1, y1:t−1)p(s1:t−1 | y1:t−1). (5.54)

Second, similarly to (5.28) we choose a proposal density which factorizes according to,

qt(s1:t | y1:t) = qt(st | s1:t−1, y1:t) qt−1(s1:t−1 | y1:t−1)︸ ︷︷ ︸
previous proposal

. (5.55)

Given a weighted particle system {sA
i
t

1:t−1, w
i
t−1}Ni=1 at time t−1 targeting p(s1:t−1 | y1:t−1),

sample trajectories are constructed as in step 6 of Algorithm ??,

sit ∼ qt
(
st | s

ait
1:t−1, y1:t

)
, (5.56a)

si1:t =
{
s
ait
1:t−1, s

i
t

}
, (5.56b)

for i = 1, . . . , N . The importance weights are computed according to

w̄it =
p(si1:t | y1:t)

qt(si1:t | y1:t)
∝
p(yt | si1:t, y1:t−1)p(sit | si1:t−1, y1:t−1)

qt(sit | si1:t−1, y1:t)︸ ︷︷ ︸
ω(sit)

p(si1:t−1 | y1:t−1)

qt−1(si1:t−1 | y1:t−1)︸ ︷︷ ︸
=wit−1

. (5.57)

Inserting (5.52a) and (5.49) into (5.57) results in the following weight function

ω(sit) =
N
(
yt
∣∣ ŷt(si1:t), St(s

i
1:t)
)
N
(
st

∣∣∣αt | t−1(si1:t−1), Σs
t | t−1(si1:t−1)

)
q(sit | si1:t−1, y1:t)

. (5.58)

Once the unnormalized weights are computed according to the weight function (5.58)
they are normalized to sum to one. Finally, the particles are resampled similarly to the
standard PF.

An RBPF algorithm

The (bootstrap) RBPF for the MGSS model (5.44) derived above is summarized in
Algorithm 5.6. To simplify the notation; for functions in st or s1:t, e.g. R(st) and
z̄t | t(s1:t) we write Rit = R(sit) and z̄it | t = z̄t | t(s

i
1:t), etc.

The RBPF provided in Algorithm 5.6 is just one example of a working algorithm.
We are free to make use of all the standard embellishments (such as for example adaptive
resampling and auxiliary variables) that are available for the PF to obtain a more efficient
algorithm. The RBPF algorithm is illustrated in Example 5.9.

98 CHAPTER 5. SEQUENTIAL MONTE CARLO

Algorithm 5.6: Rao-Blackwellized particle filter (RBPF) for MGSS models

1 Initialization (t = 1):
2 Sample si1 ∼ q1(s1 | y1) and set

{
z̄i1, P

i
1

}
= {z̄1, P1}.

3 Compute w̄i1 = ω
(
si1
)

and normalize wi1 = w̄i1/
∑N

j=1 w̄
j
1.

4 for t = 2 to T do
5 Resampling: Generate the equally weighted augmented particle system

{s̄i1:t−1, 1/N, z
i
t−1 | t−1, P

i
t−1 | t−1} by resampling.

6 Propagation: Sample sit ∼ q
(
st | si1:t−1, y1:t

)
and store the samples

si1:t =
{
si1:t−1, s

i
t

}
.

7 Predict the state and condition the linear state on the newly drawn particles
sit.

αit | t−1 = fs,it−1 +As,it−1z̄
i
t−1 | t−1,

z̄it | t−1 = fz,it−1 +Az,it−1z̄
i
t−1 | t−1 +

(
Σsz,i
t | t−1

)T (
Σs,i
t | t−1

)−1 (
sit − αit | t−1

)
,

P it | t−1 = Σz,i
t | t−1 −

(
Σsz,i
t | t−1

)T (
Σs,i
t | t−1

)−1
Σsz,i
t | t−1,

where Σi
t | t−1 = Ait−1P

i
t−1 | t−1

(
Ait−1

)T
+Qit−1.

8 Weighting: Compute

w̄it =
N
(
yt
∣∣ ŷt(si1:t), St(s

i
1:t)
)
N
(
st

∣∣∣αt | t−1(si1:t−1), Σs
t | t−1(si1:t−1)

)
q(sit | si1:t−1, y1:t)

,

where ŷit = hit + Cit z̄
i
t | t−1, Sit = Rit + CitP

i
t | t−1(Cit)

T and normalize

wit = w̄it/
∑N

j=1 w̄
j
t .

9 Compute the sufficient statistics for the linear states, given the current
measurement.

z̄it | t = z̄it | t−1 +Ki
t

(
yt − ŷit

)
,

P it | t = P it | t−1 −K
i
tC

i
tP

i
t | t−1,

Ki
t = P it | t−1(Cit)

T(Sit)
−1.

10 end

Example 5.9: Better estimates using the RBPF

5.6. COMPUTING ESTIMATES 99

Consider the following MGSS model

st+1 = arctan st +
(
1 0 0

)
zt + vst , (5.59a)

zt+1 =

1 0.3 0
0 0.92 −0.3
0 0.3 0.92

 zt + vzt , (5.59b)

yt =

(
0.1 sign (st) s

2
t

0

)
+

(
0 0 0
1 −1 1

)
st + et, (5.59c)

where vt =
(
vst vzt

)T ∼ N (0, 0.01I4) , et ∼ N (0, 0.1I2) and sign (st) denotes the sign
function extracting the sign of st. The initial states are given by s1 ∼ N (0, 1) and
z1 ∼ N (03×1, 03×3).

5.6 Computing estimates

5.6.1 Likelihood estimates

The likelihood L(θ) is an important quantity when it comes to learning parameters, both
for maximum likelihood and Bayesian approaches. Using the weighted particle system
generated by an SMC sampler we can compute consistent and unbiased estimate of the
likelihood. Let us show how to do this using the APF introduced in Algorithm 5.2,
similar derivations for other PFs can be carried out analogously.

Recall that the likelihood can be computed via the one-step predicted likelihoods
(cf. (??)), which using marginalization over xt−1:t can be computed according to

pθ(yt | y1:t−1) =

∫
pθ(yt, xt−1:t | y1:t−1)dxt−1:t

=

∫
pθ(yt |xt)pθ(xt |xt−1)pθ(xt−1 | y1:t−1)dxt−1:t

=

∫
ω(xt−1, xt, yt)ν(xt−1, yt)q(xt |xt−1, yt)pθ(xt−1 | y1:t−1)dxt−1:t (5.60)

where the final equality follows from the definition of the weight function provided
in (5.22). The particles {x̄it−1, x

i
t}Ni=1 are by the construction Algorithm 5.2 approxi-

mately distributed according to q(xt |xt−1, yt)pθ(xt−1 | y1:t−1), implying that they can
be used in approximating the integral in (5.60) according to

p̂θ(yt | y1:t−1) =

∫
ω(xt−1, xt, yt)ν(xt−1, yt)

1

N

N∑
i=1

δx̄it−1,x
i
t
(xt−1:t)dxt−1:t

=
1

N

N∑
i=1

ωθ(x̄
i
t−1, x

i
t, yt)νθ(x̄

i
t−1, yt) =

1

N

N∑
i=1

w̄itν
i
t−1. (5.61)

100 CHAPTER 5. SEQUENTIAL MONTE CARLO

Using these estimates of the one-step predicted likelihoods we obtain the following esti-
mate of the likelihood

L̂(θ) = p̂(y1)
T∏
t=2

p̂θ(yt | y1:t−1) =

(
1

N

N∑
i=1

w̄i1

)(
T∏
t=2

1

N

N∑
i=1

w̄itν
i
t−1

)
. (5.62)

5.7 Generic sequential Monte Carlo

In this chapter we have so far been focusing on SSMs and derived the PF as a way of
targeting the filtering density p(xt | y1:t) and the joint smoothing density p(x0:t | y1:t).
One of the strengths of SMC, however, is that it is applicable to a much wider range of
models than what is offered by the SSMs. We will in this section make this more explicit
by deriving a general SMC formulation that is not specialized to the SSM.

Example 5.10: General latent variable model

Let πt(x0:t) for t = 0, . . . , T be a sequence of target densities on some increasing
space Xt. We assume that these densities can be written as

πt(x0:t) =
π̃t(x0:t)

Zt
, (5.63)

where the unnormalized density π̃t(x0:t) can be evaluated point-wise, whereas the nor-
malization constant Zt =

∫
π̃t(x0:t)dx1:t is possibly unknown. SMC can be used to

target any such sequence, in similarly to what was done for the sequence of JSDs ear-
lier in this chapter. For that (important) special case, we had πt(x0:t) = p(x0:t | y1:t),
π̃t(x0:t) = p(x0:t, y1:t) and Zt = p(y1:t). We will continue to refer to the index t as time,
even though it might not at all have any temporal meaning.

To make inference about the latent variables x0:T , as well as to enable learning model
parameter, a useful approach is to construct a Monte Carlo algorithm to draw samples
from πT (x0:T). The SMC method exploits the sequential nature of the problem.

Let {xi0:t−1, w
i
t−1}Ni=1 be a weighted particle system, targeting πt−1(x0:t−1), meaning

that the weighted particles define an empirical point-mass approximation of the target
distribution at t− 1 according to

π̂t−1(x0:t−1) =

N∑
i=1

w̄it−1∑
l w̄

l
t−1

δxi0:t−1
(x0:t−1) (5.64)

This particle system is propagated to time t by resampling and sequential importance
sampling, but we will now take a slightly different view and perform these two sampling
operations at once. The propagation to time t is thus performed by sampling {ait, xit}Ni=1

5.7. GENERIC SEQUENTIAL MONTE CARLO 101

independently, conditionally on the particles generated up to time t−1, from a proposal
kernel on the product space {1, . . . , N} × X,

Mt(at, xt) =
w̄att−1∑
l w̄

l
t−1

qt(xt |xat0:t−1). (5.65)

It should be noted that the kernel Mt depends on all the random variables generated by
the SMC sampler up to time t−1 (i.e. all the particles and all the ancestor indices), but
to avoid a very cumbersome notation we have not made this dependence explicit.

Once we have generated N ancestor indices and particles from the proposal ker-
nel (5.65), the particles are weighted according to w̄it = ωt(x

i
0:t), where the weight

function is given by

ωt(x0:t) =
π̃t(x0:t)

π̃t−1(x0:t−1)qt(xt |x0:t−1)
, (5.66)

for t ≥ 2.
In this formulation, the resampling step is implicit and corresponds to sampling the

ancestor indices {Ait}Ni=1 in (??).
The procedure is initialized by targeting π1(x1) using importance sampling. We thus

sample from some proposal density xi1 ∼ q1(x1) and compute importance weights w̄it =
ω1(x1), where the weight function is given by ω1(x1) = π̃1(x1)/q1(x1). The resulting
SMC sampler is summarized in Algorithm ??.

Algorithm 5.7: Generic SMC (all operations are for i = 1, . . . , N)

1 Initialization (t = 0):
2 Sample xi0 ∼ q0(x0).
3 Compute w̄i0 = ω0(xi0).
4 for t = 1 to T do
5 Sample {ait, xit} ∼Mt(at, xt).

6 Set xi0:t = {xa
i
t

0:t−1, x
i
t}.

7 Compute w̄it = ωt(x
i
0:t).

8 end

Just like any algorithm that is used to generate a realization of random variables,
there is an underlying density encodes the probabilistic properties of the involved random
variables also for the SMC sampler in Algorithm 5.7. This is interesting in its own right,
since it can help in providing a deeper understanding of SMC. Furthermore, it is also
instrumental when it comes to the analysis of SMC and it is highly essential when
deriving the particle MCMC samplers in Chapter ??, where SMC samplers are used as
proposal distributions.

Let

Xt , {x1
t , . . . , x

N
t }, At , {a1

t , . . . , a
N
t }, (5.67)

refer to all the particles and ancestor indices, respectively, generated by the SMC sam-
pler at time t. It follows that the SMC sampler in Algorithm 5.7 generates a single

102 CHAPTER 5. SEQUENTIAL MONTE CARLO

realization of a collection of random variables {X1:T , A2:T } ∈ XNT × {1, . . . , N}N(T−1).
Furthermore, {ait, xit}Ni=1 are drawn independently (conditionally on the weighted parti-
cle system generated up to time t − 1) from the proposal kernel Mt, and similarly at
time t = 1. The joint probability density function of these variables is by construction
given by,

ψ(X1:T , A2:T) ,
N∏
i=1

q1(xi1)

T∏
t=2

N∏
i=1

Mt(a
i
t, x

i
t). (5.68a)

That is, at time t = 1, we sample {xi1}Ni=1 independently from the proposal density
q1(x1). Then, for each time point t = 2, . . . , T , we sample {ait, xit}Ni=1 independently
from the proposal kernel Mt(at, xt).

The fact that SMC is a combination of two sampling operations—resampling and
propagation—is implicit in (5.68). However, we can of course make this more explicit
by breaking the joint proposal apart, resulting in,

ψ(X1:T , A2:T) =

{
N∏
i=1

q1(xi1 | y1)

}
︸ ︷︷ ︸

Initialization


T∏
t=2

N∏
i=1

r(ait |wt−1)︸ ︷︷ ︸
Resampling

qt

(
xit |x

ait
1:t−1, y1:t

)
︸ ︷︷ ︸

Propagation

 (5.68b)

The SMC sampler (and implicitly also all PF) can thus be interpreted as a mechanism
for generating a realization from the 2NT −N random variables X1:T ,A2:T , described
by the PDF (5.68).

5.8 Convergence results

5.9. HISTORY AND FURTHER READING 103

5.9 History and further reading

History: The first paper introducing what is now known as the bootstrap particle filter
was published by Steward and McCarty (1992). This paper has for some reason been
more or less unnoticed. At the same time there were several independent derivations
of the PF. The derivation of the bootstrap PF as a solution to the nonlinear filtering
problem by Gordon et al. (1993) has gained a lot of influence. Kitagawa (1993, 1996)
also introduced the PF at the same time. Other early contributions include Hürzeler and
Künsch (1998), Liu and Chen (1998), where the latter shows that SMC can be used to
any sequence of distributions of increasing dimension. The APF was originally derived
by Pitt and Shephard (1999) using auxiliary variables, which explains the name. Pitt
and Shephard (1999) made use of two resampling steps in deriving the APF, whereas
we only made use of one resampling step according to the derivation of Carpenter et al.
(1999).

Further reading: Textbooks: Douc et al. (2014), Särkkä (2013), Cappé et al. (2005),
Ristic et al. (2004), Del Moral (2013), Liu (2001) Edited book: Doucet et al. (2001a)

Tutorials: Doucet and Johansen (2011), Cappé et al. (2007), Gustafsson (2010),
Arulampalam et al. (2002), Künsch (2013) The first unifying paper Doucet et al. (2000b)
still provides a very nice introduction to the PF.

We have in this chapter derived the PF leveraging sequential importance sampling
and resampling. It is also possible to derive PFs based on the rejection sampler (recall
Algorithm 4.1), which was first done by Hürzeler and Künsch (1998), Tanizaki and
Mariano (1998). Later on Künsch (2005) studied the theoretical properties of this idea
and provided some extensions.

There are many examples of highly relevant latent variable models which are not
given by SSMs for which SMC has been successfully applied, see Del Moral et al. (2006)
for a general introduction. There are also many concrete examples of this, e.g. Dirichlet
process mixture models MacEachern et al. (1999), Fearnhead (2004), phylogenetic trees
Bouchard-Côté et al. (2012), agglomerative clustering models Teh et al. (2008) and
probabilistic graphical models Naesseth et al. (2014), ?, just to mention a few.

Multinomial resampling was used by Gordon et al. (1993) in the bootstrap PF. Kita-
gawa (1996) introduced stratified resampling for the first time and residual resampling
was used by Liu and Chen (1998). The systematic resampling algorithm was introduced
into the particle filter literature by Carpenter et al. (1999). The residual and system-
atic resampling algorithms had previously been introduced by Whitley (1994) under
different names and in a different context. The properties of the resampling algorithms
introduced in this chapter has been thoroughly analysed, see e.g. Douc et al. (2005), Hol
et al. (2006), Murray et al. (2013) As pointed out by Fearnhead and Clifford (2003) and
Chen et al. (2005) resampling algorithm can be taylored for specific model classes. A
specific example of this was provided by the DPF (introduced by Fearnhead (1998)) in
Section 10, which should be used for any model involving discrete variables, for example
the SLG-SSM in Definition 3 (Fearnhead and Clifford, 2003, Fearnhead, 2004, Whiteley
et al., 2010).

104 CHAPTER 5. SEQUENTIAL MONTE CARLO

Convergence: Del Moral (2004), Hu et al. (2008), Crisan and Doucet (2002)
RBPF: Doucet et al. (2000a,b), Schön et al. (2005), Chen and Liu (2000), Doucet

et al. (2001b). Study of the variance improvements (Lindsten et al., 2011, Chopin, 2004).
MPF: Klaas et al. (2005)
APF: Developments by Johansen and Doucet (2008). (Pitt et al., 2011)

Appendices

105

Appendix A

Probability/statistics

Independent stochastic variables

p(xa, xb) = p(xa)p(xb). (A.1)

Conditional PDF is defined as

p(xa |xb) =
p(xa, xb)

p(xb)
. (A.2)

Marginalization

p(xa) =

∫
p(xa, xb)dxb (A.3)

Bayes’ theorem

p(xa |xb) =
p(xb |xa)p(xa)

p(xb)
(A.4)

p(xa |xb, xc) =
p(xb |xa, xc)p(xa |xc)

p(xb |xc)
(A.5)

Theorem 3 (The strong law of large numbers). Assume that z1, z2, . . . are i.i.d. random
variables with finite expectation µ and let SM =

∑M
i=1 zi,M ≥ 1. Then,

lim
M→∞

SM
M

a.s.−→ µ, (A.6)

Theorem 4 (The central limit theorem). Assume that z1, z2, . . . are i.i.d. random vari-
ables with finite expectation µ and finite variance σ2. Let SM =

∑M
i=1 zi,M ≥ 1. Then,

lim
M→∞

SM −Mµ

σ
√
M

d−→ N (0, 1) (A.7)

107

108 APPENDIX A. PROBABILITY/STATISTICS

Appendix B

Probability Distributions

The aim in this appendix is to introduce the distributions that are most commonly
used when it comes to probabilistic modelling of dynamical systems. Besides the mere
definition of the distribution we will provide some useful results related to each. Material
of this sort is available in many books and on the Internet. The reason for still including
it here is as a service to the reader, since we are using the same parameterizations
throughout the manuscript. The notation and parameterizations used are notoriously
different depending on which source is used.

For continuous and discrete random variables we talk about the probability density
function (PDF) and the probability mass function (PMF), respectively.

B.1 Discrete distributions

B.1.1 Dirac distribution and empirical distribution

B.1.2 Categorical distribution

The categorical distribution describes a random event that can take one of K possible
outcomes and it is thus a generalization of the Bernoulli distribution. The support of
a categorically distributed variable x is {1, . . . ,K} and it is parameterized by the event
probabilities α1, . . . , αK , where

∑K
k=1 αk = 1 and αk ≥ 0, ∀k. We use the following

notation to explain that a random variable x is categorically distributed

x ∼ C (α1:K) . (B.1)

The PMF describing x is

p(x = k |α1:K) = αk, (B.2)

stating that the probability of x corresponding to outcome k is given by αk. The no-
tation (B.2) is good for understanding, but it is not suitable for mathematical ma-
nipulations, which motivates the slightly more complicated, but much more practical

109

110 APPENDIX B. PROBABILITY DISTRIBUTIONS

formulation,

p(x |α1:K) =
K∏
k=1

α
Ik(x)
k , (B.3)

where IA(x) denotes the indicator function, defined as

IA(x) ,

{
1 if x ∈ A,
0 if x /∈ A.

(B.4)

This can equivalently be denoted using the so called Iverson bracket, [x ∈ A], i.e. [x ∈
A] = IA(x).

The categorical distribution describes the result of a random event where the result
can be one of N different outcomes. Put in slightly different words, the result of a random
event where one of N different categories is somehow selected, which explains the name
categorical distribution. The probability of each outcome is known and denoted by wi,
where

∑N
i=1wi = 1 and wi ≥ 0,∀i = 1, . . . , N . The parameters of the categorically

distributed random variable x are the probabilities for the categories, wi = P(x = i) , i =
1, . . . , N , denoted

x ∼ C (N,w1:N) . (B.5)

The probability mass function of a categorically distributed random variable x is given
by

p(x = i |w) = wi. (B.6)

In the special case of two categories, the categorical distribution is also referred to
as the Bernoulli distribution. Hence, the categorical distribution is a generalization of
the Bernoulli distribution to more than two categories.

B.2 Univariate continuous distributions

B.2.1 Gaussian

x ∼ N (m, p), p > 0, (B.7)

N (x |m, p) =
1√
2πp

exp

(
− 1

2p
(x−m)2

)
(B.8)

B.2.2 Gamma

x ∼ G(a, b), a > 0, b > 0. (B.9)

PDF

G (x | a, b) =
ba

Γ(a)
xa−1 exp (−bx) (B.10)

B.3. MULTIVARIATE CONTINUOUS DISTRIBUTIONS 111

B.2.3 Inverse Gamma

The inverse gamma distribution is defined on the positive real line and it is characterized
by the so called shape parameter a and the scale parameter b. We write

x ∼ IG(a, b), a > 0, b > 0, (B.11)

and the PDF is given by

IG (x | a, b) =
ba

Γ(a)
x−(a+1) exp

(
− b
x

)
, x > 0, (B.12)

where Γ(a) is the gamma function, i.e. Γ(a) =
∫∞

0 ta−1e−tdt.

B.2.4 Normal inverse Gamma

x, q ∼ NIG(m, c, a, b), q > 0, a > 0, b > 0, (B.13)

The support is given by x ∈ (−∞,∞), q ∈ (0,∞) and the PDF is given by

NIG (x, q |m, c, a, b) = N (x |m, cq) IG (q | a, b) (B.14a)

=
1√
2πc

ba

Γ(a)
q−(a+1/2+1) exp

(
− 1

2q

(
1

c
(x−m)2 + 2b

))
(B.14b)

Interpretation in terms of a Gaussian with its variance scaled by an inverse-Gamma
distributed variable q. This also provides a way of generating variables from the NIG
distribution.

B.2.5 Student’s t

B.3 Multivariate continuous distributions

B.3.1 Multivariate Gaussian distribution

In this section we provide some important properties of the multivariate Gaussian (or
Normal) distribution, which is an important distribution in itself. However, it is also an
important building block in more sophisticated probabilistic models.

The most common way of parameterizing the multivariate Gaussian distribution is
according to

N (x |µ, Σ) ,
1

(2π)n/2
√

det Σ
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(B.15)

where x ∈ Rn denotes a random vector that is Gaussian distributed, with mean value µ ∈
Rn and covariance Σ ∈ Sn++ (i.e. the n-dimensional positive definite cone). Furthermore,
x ∼ N (µ,Σ) states that the random vector x is Gaussian with mean µ and covariance Σ.

112 APPENDIX B. PROBABILITY DISTRIBUTIONS

The parameterizing (B.15) is sometimes referred to as the moment form. An alternative
parameterization of the Gaussian density is provided by the information form, which is
also referred to as the canonical form or the natural form. This parameterization

N−1(x; ν,Λ) ,
exp

(
−1

2ν
TΛ−1ν

)
(2π)n/2

√
det Λ−1

exp

(
−1

2
xTΛx+ xTν

)
, (B.16)

is parameterized by the information vector ν and (Fisher) information matrix Λ. It
is straightforward to see the relationship between the two parameterizations (B.15)
and (B.16),

N (x |µ, Σ) =
1

(2π)n/2
√

det Σ
exp

(
−1

2
xTΣ−1x+ xTΣ−1µ− 1

2
µTΣ−1µ

)
=

exp
(
−1

2µ
TΣ−1µ

)
(2π)n/2

√
det Σ

exp

(
−1

2
xTΣ−1x+ xTΣ−1µ

)
, (B.17)

which also reveals the that the parameters used in the information form are given by a
scaled version of the mean,

ν = Σ−1µ (B.18a)

and the inverse of the covariance matrix (sometimes also called the precision matrix)

Λ = Σ−1. (B.18b)

The moment form (B.15) and the information form (B.16) results in different computa-
tions. It is useful to understand these differences in order to derive efficient algorithms.

Basic Properties

Theorem 5. (Sum of independent Gaussians)

Theorem 6. (Product of Gaussians) The product of two Gaussians is an un-normalized
Gaussian,

N (x | a, A)N (x | b, B) = CN (x | d, D) , (B.19)

where

d = D(A−1a+B−1b), (B.20a)

D = (A−1 +B−1)−1, (B.20b)

C =
1

(2π)nx/2
√

det(A+B)
exp

(
−1

2
(a− b)T(A+B)−1(a− b)

)
. (B.20c)

B.3. MULTIVARIATE CONTINUOUS DISTRIBUTIONS 113

Partitioned Gaussian densities

Let us, without loss of generality, assume that random vector x, its mean µ and its
covariance Σ can be partitioned according to

x =

(
xa
xb

)
, µ =

(
µa
µb

)
, Σ =

(
Σaa Σab

Σba Σbb

)
(B.21)

where for reasons of symmetry Σba = ΣT
ab. It is also useful to write down the partitioned

information matrix

Λ = Σ−1 =

(
Λaa Λab
Λba Λbb

)
, (B.22)

since this form will provide simpler calculations below. Note that, since the inverse of a
symmetric matrix is also symmetric, we have Λab = ΛT

ba.

We will now derive two important and very useful theorems for partitioned Gaussian
densities. These theorems will explain the two operations marginalization and condi-
tioning.

Theorem 7. (Marginalization) Let the random vector x be Gaussian distributed ac-
cording to (B.15) and let it be partitioned according to (B.21), then the marginal density
p(xa) is given by

p(xa) = N (xa |µa, Σaa) . (B.23)

Proof: The marginal density p(xa) is by definition obtained by integrating out the
xb variables from the joint density p(xa, xb) according to

p(xa) =

∫
p(xa, xb)dxb, (B.24)

where

p(xa, xb) =
1

(2π)n/2
√

det Σ
exp(E) (B.25)

and Σ was defined in (B.21) and the exponent E is given by

E = −1

2
(xa − µa)TΛaa(xa − µa)−

1

2
(xa − µa)TΛab(xb − µb)

− 1

2
(xb − µb)TΛba(xa − µa)−

1

2
(xb − µb)TΛbb(xb − µb)

= −1

2

(
xT
b Λbbxb − 2xT

b Λbb(µb − Λ−1
bb Λba(xa − µa))− 2xT

aΛabµb

+ 2µT
aΛabµb + µT

b Λbbµb + xT
aΛaaxa − 2xT

aΛaaµa + µT
aΛaaµa

)
(B.26)

114 APPENDIX B. PROBABILITY DISTRIBUTIONS

Completing the squares in the above expression results in

E = −1

2
(xb − (µb − Λ−1

bb Λba(xa − µa)))TΛbb(xb − (µb − Λ−1
bb Λba(xa − µa)))

+
1

2

(
xT
aΛabΛ

−1
bb Λbaxa − 2xT

aΛabΛ
−1
bb Λbaµa + µaΛabΛ

−1
bb Λbaµa

)
− 1

2

(
xT
aΛaaxa − 2xT

aΛaaµa + µT
aΛaaµa

)
= −1

2
(xb − (µb − Λ−1

bb Λba(xa − µa)))TΛbb(xb − (µb − Λ−1
bb Λba(xa − µa)))

− 1

2
(xa − µa)T(Λaa − ΛabΛ

−1
bb Λba)(xa − µa) (B.27)

Using the block matrix inversion provided in (C.4) we have Σ−1
aa = Λaa − ΛabΛ

−1
bb Λba,

which together with (B.27) results in

p(xa, xb) =
1

(2π)n/2
√

det Σ
exp(E1) exp(E2) (B.28)

where

E1 = −1

2
(xb − (µb − Λ−1

bb Λba(xa − µa)))TΛbb(xb − (µb − Λ−1
bb Λba(xa − µa))), (B.29a)

E2 = −1

2
(xa − µa)T(Λaa − ΛabΛ

−1
bb Λba)(xa − µa). (B.29b)

Now, since E2 is independent of xb we have

p(xa) =
1

(2π)n/2
√

det Σ

∫
exp(E1)dxb exp(E2). (B.30)

Since the integral of a density function is equal to one, we have
∫

exp(E1)dxb = (2π)nb/2
√

det Λ−1
bb ,

which inserted into (B.30) results in

p(xa) =

√
det Λ−1

bb

(2π)na/2
√

det Σ
exp((xa − µa)TΣ−1

aa (xa − µa)). (B.31)

Finally, the determinant property (C.2b) gives

det Σ = det Σaa det(Σbb − ΣbaΣ
−1
aa Σab) (B.32)

and the block matrix inversion property (C.4) provides

Λ−1
bb = Σbb − ΣbaΣ

−1
aa Σab. (B.33)

Now, inserting (B.32) and (B.33) into (B.31) concludes the proof. �

B.3. MULTIVARIATE CONTINUOUS DISTRIBUTIONS 115

Theorem 8. (Conditioning) Let the random vector x be Gaussian distributed accord-
ing to (B.15) and let it be partitioned according to (B.21), then the conditional density
p(xa |xb) is given by

p(xa |xb) = N
(
xa
∣∣µa | b, Σa | b

)
, (B.34a)

where

µa | b = µa + ΣabΣ
−1
bb (xb − µb), (B.34b)

Σa | b = Σaa − ΣabΣ
−1
bb Σba, (B.34c)

which using the information matrix can be written,

µa | b = µa − Λ−1
aa Λab(xb − µb), (B.34d)

Σa | b = Λ−1
aa . (B.34e)

Proof: We will make use of the fact that p(xa |xb) = p(xa, xb)/p(xb), which according
to the definition (B.15) is

p(xa |xb) =

√
det Σbb

(2π)na/2 det Σ
exp(E), (B.35)

where E = −1/2(x − µ)TΣ−1(x − µ) + 1/2(xb − µb)Σ−1
bb (xb − µb). Let us first consider

the constant in front of the exponential in (B.35),√
det Σbb

(2π)na/2 det Σ
. (B.36)

Using the result on determinants given in (C.2b) we have

det Σ = det

(
Σaa Σab

Σba Σbb

)
= det Σbb det(Σaa − ΣabΣ

−1
bb Σba) (B.37)

which inserted into (B.36) results in the following expression for the constant in front of
the exponent

1

(2π)na/2 det(Σaa − ΣabΣ
−1
bb Σba)

(B.38)

Let us now continue by studying the exponent of (B.35), which using the precision
matrix is given by

E = −1

2
(x− µ)TΛ(x− µ) +

1

2
(xb − µb)Σ−1

bb (xb − µb)

= −1

2
(xa − µa)TΛaa(xa − µa)−

1

2
(xa − µa)TΛab(xb − µb)

− 1

2
(xb − µb)TΛba(xa − µa)−

1

2
(xb − µb)T(Λbb − Σ−1

bb)(xb − µb). (B.39)

116 APPENDIX B. PROBABILITY DISTRIBUTIONS

Reordering the terms in (B.39) results in

E = −1

2
xT
aΛaaxa + xT

a (Λaaµa − Λab(xb − µb))

− 1

2
µT
aΛaaµa + µT

aΛab(xb − µb)−
1

2
(xb − µb)T(Λbb − Σ−1

bb)(xb − µb). (B.40)

Using the block matrix inversion result (C.4), we have Σ−1
bb = Λbb − ΛbaΛ

−1
aa Λab, which

inserted into (B.40) results in

E = −1

2
xT
aΛaaxa + xT

a (Λaaµa − Λab(xb − µb))

− 1

2
µT
aΛaaµa + µT

aΛab(xb − µb)−
1

2
(xb − µb)TΛbaΛ

−1
aa Λab(xb − µb). (B.41)

We can now complete the squares, which gives us

E = −1

2

(
xa − (µa − Λ−1

aa Λab(xb − µb))
)T

Λaa
(
xa − (µa − Λ−1

aa Λab(xb − µb))
)
. (B.42)

Finally, combining (B.38) and (B.42) results in

p(xa |xb) =
1

(2π)nx/2 det Λ−1
aa

exp(E) (B.43)

which concludes the proof. �

Affine transformations

In the previous section we dealt with partitioned Gaussian densities, and derived the
expressions for the marginal and conditional densities expressed in terms of the param-
eters of the joint density. We shall now take a different starting point, namely that we
are given the marginal density p(xa) and the conditional density p(xb |xa) (affine in xa)
and derive expressions for the joint density p(xa, xb), the marginal density p(xb) and the
conditional density p(xa |xb).

Theorem 9. (Affine transformation) Assume that xa, as well as xb conditioned on
xa, are Gaussian distributed according to

p(xa) = N (xa |µa, Σa) , (B.44a)

p(xb |xa) = N
(
xb
∣∣Mxa + b, Σb | a

)
, (B.44b)

where M is a matrix (of appropriate dimension) and b is a constant vector. The joint
distribution of xa and xb is then given by

p(xa, xb) = N
((

xa
xb

) ∣∣∣∣ (µa
Mµa + b

)
, R

)
, (B.44c)

with

R =

(
MTΣ−1

b | aM + Σ−1
a −MTΣ−1

b | a
−Σ−1

b | aM Σ−1
b | a

)−1

=

(
Σa ΣaM

T

MΣa Σb | a +MΣaM
T

)
. (B.44d)

B.3. MULTIVARIATE CONTINUOUS DISTRIBUTIONS 117

Proof: We start by introducing the vector

x =

(
xa
xb

)
(B.45)

for which the joint distribution is given by

p(x) = p(xb |xa)p(xa) =
(2π)−(na+nb)/2√
det Σb | a det Σa

e−
1
2
E , (B.46)

where

E = (xb −Mxa − b)TΣ−1
b | a(xb −Mxa − b) + (xa − µa)TΣ−1

a (xa − µa). (B.47)

Introduce the following variables

e = xa − µa, (B.48a)

f = xb −Mµa − b, (B.48b)

which allows us to write the exponent (B.47) as

E = (f −Me)TΣ−1
b | a(f −Me) + eTΣ−1

a e

= eT(MTΣ−1
b | aM + Σ−1

a)e− eTMTΣ−1
b | af − fΣ−1

b | aMe+ fTΣ−1
b | af

=

(
e
f

)T
(
MTΣ−1

b | aM + Σ−1
a −MTΣ−1

b | a
−Σ−1

b | aM Σ−1
b | a

)
︸ ︷︷ ︸

,R−1

(
e
f

)

=

(
xa − µa

xb −Mµa − b

)T

R−1

(
xa − µa

xb −Mµa − b

)
(B.49)

Furthermore, from (C.2b) we have that

1

detR
= detR−1 = det

(
Σ−1
b | a

)
det
(
MTΣ−1

b | aM + Σ−1
a −MTΣ−1

b | aΣb | aΣ
−1
b | aM

)
= det

(
Σ−1
b | a

)
det
(
Σ−1
a

)
=

1

det
(
Σb | a

)
det (Σa)

.
(B.50)

Hence, from (B.46), (B.49) and (B.50) we can write the joint PDF for x as

p(x) =
(2π)−(na+nb)/2

√
detR

exp

(
−1

2

((
xa − µa

xb −Mµa − b

)T

R−1

(
xa − µa

xb −Mµa − b

)))

= N
(
x

∣∣∣∣ (µa
Mµa + b

)
, R

) (B.51)

which concludes the proof. �
Combining the results in Theorems 7, 8 and 9 we also get the following corollary.

118 APPENDIX B. PROBABILITY DISTRIBUTIONS

Corollary 1. (Affine transformation – marginal and conditional) Assume that
xa, as well as xb conditioned on xa, are Gaussian distributed according to

p(xa) = N (xa |µa, Σa) , (B.52a)

p(xb |xa) = N
(
xb
∣∣Mxa + b, Σb | a

)
, (B.52b)

where M is a matrix (of appropriate dimension) and b is a constant vector. The marginal
density of xb is then given by

p(xb) = N (xb |µb, Σb) , (B.52c)

with

µb = Mµa + b, (B.52d)

Σb = Σb | a +MΣaM
T. (B.52e)

The conditional density of xa given xb is

p(xa |xb) = N
(
xa
∣∣µa | b, Σa | b

)
, (B.52f)

with

µa | b = Σa | b

(
MTΣ−1

b | a(xb − b) + Σ−1
a µa

)
= µa + ΣaM

TΣ−1
b (xb − b−Mµa), (B.52g)

Σa | b =
(

Σ−1
a +MTΣ−1

b | aM
)−1

= Σa − ΣaM
TΣ−1

b MΣa. (B.52h)

B.4 Matrix valued continuous distributions

B.4.1 Matrix Normal

The matrix valued normal distribution is a generalization of the vector valued normal
distribution.

Definition 7 (Matrix normal distribution). The stochastic matrix X ∈ Rd×m has a
matrix normal distribution with mean matrix M ∈ Rd×m and covariance matrix Λ−1⊗Σ,
where Λ−1 � 0 ∈ Rm×m and Σ � 0 ∈ Rd×d if

Vec (X) ∼ N
(
X
∣∣Vec (M) , Λ−1 ⊗ Σ

)
. (B.53)

In the above definition the matrix Λ−1 is referred to as the left covariance and the
matrix Σ is referred to as the right covariance. From this definition we can now show
that the PDF of X is given by

MN (X |M,Λ,Σ) =
|Λ|d/2

(2π)dm/2 |Σ|m/2
exp

(
−1

2
Tr
(

(X −M)TΣ−1(X −M)Λ
))

.

(B.54)

B.5. FURTHER READING 119

B.4.2 Wishart

The Wishart distribution is a probability distribution defined over symmetric and nonnegative-
definite random matrices. It is commonly used in modeling random precision (inverse
covariance) matrices and it is the conjugate prior of the precision (inverse covariance)
matrix of a vector valued Normal random variable.

The Wishart distribution also has an interpretation in terms of a generalization of
the gamma distribution or the χ2 distribution for integer valued degrees of freedom.

B.4.3 Inverse Wishart

The inverse Wishart distribution is a matrix valued generalization of the inverse Gamma
distribution. It is commonly used in modeling random covariance matrices and it is the
conjugate prior of the covariance matrix of a vector valued Normal random variable.

Definition 8 (Inverse Wishart distribution). The random matrix Σ ∈ Rd×d has an
inverse Wishart distribution with ν degrees of freedom and parameter matrix S ∈ Rd×d
if its PDF is given by

p(Σ) = IW (Σ | ν, S) =
|S|ν/2

2dν/2Γd(ν/2)
|Σ|−(d+ν+1)/2 exp

(
−1

2
Tr
(
SΣ−1

))
(B.55)

where Γd(ν/2) is the multivariate gamma function,

Γd(ν/2) = πd(d−1)/4
d∏
i=1

Γ

(
ν + 1− i

2

)
(B.56)

B.4.4 Matrix Normal Inverse Wishart

TheMNIW distribution for the matrices A and Σ (p(A,Σ) = p(A |Σ)p(Σ)) consists of
a conditional matrix normal distribution for A, given Σ

p(A |Σ) =MN (A |M,Λ,Σ) (B.57)

and an inverse Wishart distribution for Σ

p(Σ) = IW (Σ | ν, S) . (B.58)

The MNIW distribution is thus a hierarchical distribution.

B.5 Further reading

Muller and Stewart (2006) Gupta and Nagar (2000), Muller and Stewart (2006) Agresti
(2007) Press et al. (2007)

120 APPENDIX B. PROBABILITY DISTRIBUTIONS

Appendix C

Matrix Theory

This appendix provides some useful results from matrix theory.

Consider the following block matrix

M =

(
A B
C D

)
(C.1)

The following results hold for the determinant

det

(
A B
C D

)
= detAdet(D − CA−1B︸ ︷︷ ︸

∆A

), (C.2a)

= detD det(A−BD−1C︸ ︷︷ ︸
∆D

), (C.2b)

where ∆D = A − BD−1C is referred to as the Schur complement of D in M and
∆A = D − CA−1B is referred to as the Schur complement of A in M .

When the block matrix (C.1) is invertible its inverse can be written according to(
A B
C D

)−1

=

(
I −A−1B
0 I

)(
A−1 0

0 ∆−1
A

)(
I 0

−CA−1 I

)
=

(
A−1 +A−1B∆−1

A CA−1 −A−1B∆−1
A

−∆−1
A CA−1 ∆−1

A

)
, (C.3)

where we have made use of the Schur complement of A in M . We can also use the Schur
complement of D in M , resulting in(

A B
C D

)−1

=

(
I 0

−D−1C I

)(
∆−1
D 0
0 D−1

)(
I −BD−1

0 I

)
=

(
∆−1
D −∆−1

D BD−1

−D−1C∆−1
D D−1 +D−1C∆−1

D BD−1

)
. (C.4)

121

122 APPENDIX C. MATRIX THEORY

The matrix inversion lemma

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1, (C.5)

under the assumption that the involved inverses exist. It is worth noting that the
matrix inversion lemma is sometimes also referred to as the Woodbury matrix identity,
the Sherman-Morrison-Woodbury formula or the Woodbury formula.

C.1 Matrix Derivatives

C.2 Trace

A ∈ Rn×n, B ∈ Rn×n

Tr (AB) = Tr (BA) , (C.6)

Tr (A) = Tr
(
AT
)
. (C.7)

C.3 Further Reading

Matrix differential calculus Magnus and Neudecker (1999).

Bibliography

Agresti, A. (2007). An Introduction to Categorical Data Analysis. Wiley, second edition.

Andrieu, C., de Freitas, N., Doucet, A., and Jordan, M. I. (2003). An introduction to
MCMC for machine learning. Machine Learning, 50:5–43.

Arulampalam, M. S., Maskell, S., Gordon, N., and Clapp, T. (2002). A tutorial on par-
ticle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions
on Signal Processing, 50(2):174–188.

Bernado, J. M. and Smith, A. F. M. (2000). Bayesian theory. John Wiley & Sons.

Bouchard-Côté, A., Sankararaman, S., and Jordan, M. I. (2012). Phylogenetic inference
via sequential Monte Carlo. Systematic Biology, 61(4):579–593.

Box, G. E. P. and Tiao, G. C. (1992). Bayesian inference in statistical analysis. John
Wiley & Sons, wiley classics library edition edition.

Bresler, Y. (1986). Two-filter formula for discrete-time non-linear bayesian smoothing.
International Journal of Control, 43(2):626–641.

Cappé, O., Godsill, S., and Moulines, E. (2007). An overview of existing methods and
recent advances in sequential Monte Carlo. Proceedings of the IEEE, 95(5):899–924.

Cappé, O., Moulines, E., and Rydén, T. (2005). Inference in Hidden Markov Models.
Springer Series in Statistics. Springer, New York, USA.

Carpenter, J., Clifford, P., and Fearnhead, P. (1999). Improved particle filter for non-
linear problems. IEE Proceedings – Radar, Sonar and Navigation, 146(1):2–7.

Carter, C. K. and Kohn, R. (1994). On Gibbs sampling for state space models.
Biometrika, 81:541–553.

Chen, R. and Liu, J. S. (2000). Mixture Kalman filters. Journal of the Royal Statistical
Society, 62(3):493–508.

Chen, Y., Xie, J., and Liu, J. S. (2005). Stopping-time resampling for sequential Monte
Carlo methods. Journal of the Royal Statistical Society: Series B (Statistical Method-
ology), 67(2):199–217.

123

124 BIBLIOGRAPHY

Chesney, M. and Scott, L. (1989). Pricing European currency options: A comparison of
the modifies Black-Scholes model and a random variance model. Journal of Financial
and Quantitative Analysis, 24(3):267–284.

Chopin, N. (2004). Central limit theorem for sequential Monte Carlo methods and its
application to Bayesian inference. The Annals of Statistics, 32(6):2385–2411.

Crisan, D. and Doucet, A. (2002). A survey of convergence results on particle filtering
methods for practitioners. IEEE Transactions on Signal Processing, 50(3):736–746.

De Jong, P. and Shephard, N. (1995). The simulation smoother for time series models.
Biometrika, 82(2):339–350.

Del Moral, P. (2004). Feynman-Kac formulae: Genealogical and Interacting Particle
Systems with Applications. Probability and Applications. Springer, New York, USA.

Del Moral, P. (2013). Mean field simulation for Monte Carlo integration. Chapman and
Hall/CRC.

Del Moral, P., Doucet, A., and Jasra, A. (2006). Sequential Monte Carlo samplers.
Journal of the Royal Statistical Society. Series B (Methodological), 63(3):411–436.

Denison, D. G. T., Holmes, C. C., Mallick, B. K., and Smith, A. F. M. (2002). Bayesian
methods for nonlinear classifications and regression. John Wiley & Sons.

Douc, R., Cappé, O., and Moulines, E. (2005). Comparison of resampling schemes for
particle filtering. In Proceedings of the 4th International Symposium on Image and
Signal Processing and Analysis, Zagreb, Croatia.

Douc, R., Moulines, E., and Stoffer, D. (2014). Nonlinear time series: Theory, methods
and applications with R examples. Chapman & Hall/CRC.

Doucet, A., de Freitas, N., and Gordon, N., editors (2001a). Sequential Monte Carlo
Methods in Practice. Springer Verlag, New York, USA.

Doucet, A., de Freitas, N., Murphy, K., and Russell, S. (2000a). Rao-Blackwellised par-
ticle filtering for dynamic Bayesian networks. In In Proceedings of the 16th Conference
on Uncertainty in Artificial Intelligence (UAI), Stanford, CA, USA.

Doucet, A., Godsill, S. J., and Andrieu, C. (2000b). On sequential Monte Carlo sampling
methods for Bayesian filtering. Statistics and Computing, 10(3):197–208.

Doucet, A., Gordon, N., and Krishnamurthy, V. (2001b). Particle filters for state es-
timation of jump Markov linear systems. IEEE Transactions on Signal Processing,
49(3):613–624.

Doucet, A. and Johansen, A. M. (2011). A tutorial on particle filtering and smoothing:
Fifteen years later. In Crisan, D. and Rozovsky, B., editors, Nonlinear Filtering
Handbook. Oxford University Press.

BIBLIOGRAPHY 125

Durbin, J. and Koopman, S. J. (2002). A simple and efficient simulation smoother for
state space time series analysis. Biometrika, 89(3):603–615.

Fearnhead, P. (1998). Sequential Monte Carlo methods in filter theory. PhD thesis,
University of Oxford, Oxford, UK.

Fearnhead, P. (2004). Particle filters for mixture models with an unknown number of
components. Statistics and Computing, 14(1):11–21.

Fearnhead, P. and Clifford, P. (2003). On-line inference for hidden markov models via
particle filters. Journal of the Royal Statistical Society: Series B (Statistical Method-
ology), 65(4):887–899.

Fisher, R. A. (1912). On an absolute criterion for fitting frequency curves. Messenger
of Mathematics, 41:155–160.

Fisher, R. A. (1922). On the mathematical foundations of theoretical statistics. Philo-
sophical Transactions of the Royal Society Series A, 222:309–368.

Fox, E., Sudderth, E., Jordan, M., and Willsky, A. (2011). Bayesian nonparametric
inference of switching dynamic linear models. IEEE Transactions on Signal Processing,
59(4):1569–1585.

Frühwirth-Schnatter, S. (1994). Data augmentation and dynamic linear models. Journal
of Time Series Analysis, 15(2):183–202.

Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2003). Bayesian Data Analysis.
Chapman & Hall/CRC, second edition.

Geweke, J. (1989). Bayesian inference in econometric models using Monte Carlo inte-
gration. Econometrica, 57(6):1317–1339.

Gordon, N. J., Salmond, D. J., and Smith, A. F. M. (1993). Novel approach to
nonlinear/non-Gaussian Bayesian state estimation. In IEE Proceedings on Radar and
Signal Processing, volume 140, pages 107–113.

Gupta, A. K. and Nagar, D. K. (2000). Matrix variate distributions. Monographs and
surveys in pure and applied mathematics. Chapman & Hall/CRC.

Gustafsson, F. (2010). Particle filter theory and practice with positioning applications.
IEEE Aerospace and Electronic Systems Magazine, 25(7):53–82.

Hammersley, J. M. and Morton, K. W. (1954). Poor man’s Monte Carlo. Journal of the
Royal Statistical Society. Series B (Methodological), 16(1):23–38.

Handschin, J. E. (1970). Monte Carlo techniques for prediction and filtering of non-linear
stochastic processes. Automatica, 6:555–563.

126 BIBLIOGRAPHY

Handschin, J. E. and Mayne, D. Q. (1969). Monte Carlo techniques to estimate the
conditional expectation in multi-stage non-linear filtering. International Journal of
Control, 9:547–559.

Hol, J. D., Schön, T. B., and Gustafsson, F. (2006). On resampling algorithms for par-
ticle filters. In Nonlinear Statistical Signal Processing Workshop, Cambridge, United
Kingdom.

Hu, X.-L., Schön, T. B., and Ljung, L. (2008). A basic convergence result for particle
filtering. IEEE Transactions on Signal Processing, 56(4):1337–1348.

Hürzeler, M. and Künsch, H. R. (1998). Monte Carlo approximations for general state-
space models. Journal of Computational and Graphical Statistics, 7(2):175–193.

Jazwinski, A. H. (1970). Stochastic processes and filtering theory. Mathematics in science
and engineering. Academic Press, New York, USA.

Johansen, A. M. and Doucet, A. (2008). A note on auxiliary particle filters. Statistics
and Probability Letters, 78(12):1498–1504.

Jordan, M. I. (2004). Graphical models. Statistical Science, 19(1):140–155.

Kahn, H. and Marshall, A. W. (1953). Methods of reducing sample size in Monte Carlo
computations. Journal of the Operations Research Society of America, 1(5):263–278.

Kailath, T., Sayed, A. H., and Hassibi, B. (2000). Linear Estimation. Information and
System Sciences Series. Prentice Hall, Upper Saddle River, NJ, USA.

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems.
Transactions of the ASME, Journal of Basic Engineering, 82:35–45.

Kitagawa, G. (1993). A Monte Carlo filtering and smoothing method for non-Gaussian
nonlinear state space models. In Proceedings of the 2nd U.S.-Japan joint seminar on
statistical time series analysis, pages 110–131, Honolulu, Hawaii.

Kitagawa, G. (1996). Monte Carlo filter and smoother for non-Gaussian nonlinear state
space models. Journal of Computational and Graphical Statistics, 5(1):1–25.

Klaas, M., de Freitas, N., and Doucet, A. (2005). Toward practical N2 Monte Carlo:
the marginal particle filter. In Proceedings of the 21st conference on Uncertainty in
Artificial Intelligence (UAI), Edinburgh, Scotland.

Koller, D. and Friedman, N. (2009). Probabilistic Graphical Models – Principles and
Techniques. MIT Press, Cambridge, MA, USA.

Kong, A., Liu, J. S., and Wong, W. H. (1994). Sequential imputations and Bayesian
missing data problems. Journal of American Statistical Association, 89(425):278–288.

BIBLIOGRAPHY 127

Künsch, H. R. (2005). Recursive Monte Carlo filters: algorithms and theoretical analysis.
The Annals of Statistics, 33(5):1983–2021.

Künsch, H. R. (2013). Particle filters. Bernoulli, 19(4):1391–1403.

Lindsten, F., Schön, T. B., and Olsson, J. (2011). An explicit variance reduction ex-
pression for the Rao-Blackwellised particle filter. In Proceedings of the 18th World
Congress of the International Federation of Automatic Control (IFAC), Milan, Italy.

Liu, J. S. (2001). Monte Carlo Strategies in Scientific Computing. Springer Series in
Statistics. Springer, New York, USA.

Liu, J. S. and Chen, R. (1998). Sequential Monte Carlo methods for dynamic systems.
Journal of the American Statistical Association, 93(443):1032–1044.

Ljung, L. (1999). System identification, Theory for the user. System sciences series.
Prentice Hall, Upper Saddle River, NJ, USA, second edition.

MacEachern, S. N., Clyde, M., and Liu, J. S. (1999). Sequential importance sampling
for nonparametric Bayes models: The next generation. The Canadian Journal of
Statistics, 27(2):251–267.

Magnus, J. R. and Neudecker, H. (1999). Matrix differential calculus with applications
in statistics and econometrics. Wiley series in probability and statistics. John Wiley
& Sons, second edition.

Melino, A. and Turnbull, S. (1990). Pricing foreign currency options with stochastic
volatility. Journal of Econometrics, 45(1–2):239–265.

Metropolis, N. and Ulam, S. (1949). The Monte Carlo method. Journal of the American
Statistical Association, 44(247):335–341.

Muller, K. E. and Stewart, P. W. (2006). Linear model theory univariate, multivariate
and mixed models. jw.

Murray, L. M., Lee, A., and Jacob, P. E. (2013). Rethinking resampling in the particle
filter on graphics processing units. Technical report, arXiv:1301.4019 [stat.CO].

Naesseth, C. A., Lindsten, F., and Schön, T. B. (2014). Sequential Monte Carlo methods
for graphical models. In Advances in Neural Information Processing Systems (NIPS)
27.

Ninness, B. and Henriksen, S. J. (2010). Bayesian system identification via Markov chain
Monte Carlo techniques. Automatica, 46(1):40–51.

Peterka, V. (1981). Bayesian system identification. Automatica, 17(1):41–53.

Pitt, M. K. and Shephard, N. (1999). Filtering via simulation: Auxiliary particle filters.
Journal of the American Statistical Association, 94(446):590–599.

128 BIBLIOGRAPHY

Pitt, M. K., Silva, R. S., Giordani, P., and Kohn, R. (2011). Auxiliary particle filtering
within adaptive Metropolis-Hastings sampling. Technical report, arXiv:1006.1914.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (2007). Numerical
Recipes: The Art of Scientific Computing. Cambridge University Press, Cambridge,
UK, 3rd edition.

Rabiner, L. (1989). A tutorial on hidden Markov models and selected applications in
speech recognition. Proceedings of the IEEE, 77(2):257–286.

Rauch, H. E., Tung, F., and Striebel, C. T. (1965). Maximum likelihood estimates of
linear dynamic systems. AIAA Journal, 3(8):1445–1450.

Ristic, B., Arulampalam, S., and Gordon, N. (2004). Beyond the Kalman Filter: particle
filters for tracking applications. Artech House, London, UK.

Robert, C. P. (2001). The Bayesian choice. Springer texts in statistics. Springer, New
York, USA, second edition.

Rubin, D. B. (1987). The calculation of posterior distributions by data augmenta-
tion: comment: A noniterative sampling/importance resampling alternative to the
data augmentation algorithm for creating a few imputations when fractions of miss-
ing information are modest: the SIR algorithms. Journal of the American Statistical
Association, 82(398):543–546.

Rubin, D. B. (1988). Using the SIR algorithm to simulate posterior distributions. In
Bernardo, J., DeGroot, M., Lindley, D., and Smith, A., editors, Bayesian Statistics 3,
pages 395–402. Oxford University Press.

Särkkä, S. (2013). Bayesian filtering and smoothing. Cambridge University Press.

Schön, T., Gustafsson, F., and Nordlund, P.-J. (2005). Marginalized particle filters for
mixed linear/nonlinear state-space models. IEEE Transactions on Signal Processing,
53(7):2279–2289.

Söderström, T. and Stoica, P. (1989). System identification. Systems and Control Engi-
neering. Prentice Hall.

Steward, L. and McCarty, P. (1992). The use of Bayesian belief networks to fuse con-
tinuous and discrete information for target recognition and discrete information for
target recognition, tracking, and situation assessment. In Proceedings of SPIE Signal
Processing, Sensor Fusion and Target Recognition, volume 1699, pages 177–185.

Tanizaki, H. and Mariano, R. S. (1998). Nonlinear and non-Gaussian state-space mod-
eling with Monte Carlo simulations. Journal of Econometrics, 83(1–2):263–290.

Teh, Y. W., Daumé III, H., and Roy, D. (2008). Bayesian agglomerative clustering with
coalescents. Advances in Neural Information Processing, pages 1473–1480.

BIBLIOGRAPHY 129

Verhaegen, M. and Verdult, V. (2007). Filtering and System Identification - A Least
Squares Approach. Cambridge University Press.

Whiteley, N., Andrieu, C., and Doucet, A. (2010). Efficient bayesian inference for switch-
ing state-space models using discrete particle Markov chain Monte Carlo methods.
Technical report, arXiv:1011.2437.

Whitley, D. (1994). A genetic algorithm tutorial. Statistics and Computing, 4(2):65–85.

Wilkinson, D. J. and Yeung, S. K. H. (2002). Conditional simulation from highly struc-
tured Gaussian systems, with application to blocking-MCMC for the Bayesian analysis
of very large linear models. Statistics and Computing, 12(3):287–300.

	Introduction
	A few words for readers of the early manuscript

	Probabilistic modelling
	Representing and modifying uncertainty
	Marginalization and conditional distributions
	Basic variable classes
	Key probabilistic objects

	Probabilistic autoregressive modelling
	Predictive distribution

	Latent variable models
	Markov chains
	State space models
	Representation using probability density functions
	Graphical model representation

	Linear Gaussian state space models
	Conditionally linear Gaussian state space model
	Switching linear Gaussian state space model
	Mixed Gaussian state space model

	History and further reading

	Inference and learning strategies
	State inference
	Forward computations
	Forward filtering
	Forward smoothing

	Backward computations
	The JSD and the backward kernel
	Marginal smoothing densities

	Forward and backward computations
	Forward filtering backward smoothing
	Forward filtering backward simulation
	Two-filter smoothing

	Parameter learning
	Data distribution
	Maximum likelihood learning
	Bayesian learning

	History and further reading

	Monte Carlo
	The Monte Carlo idea
	Rejection sampling
	Importance sampling
	Derivation and algorithm
	A note on practical implementation
	Convergence and diagnostic tools
	Sequential importance sampling

	Resampling
	Useful constructions
	Conditional Monte Carlo
	Monte Carlo with auxiliary variables

	History and further reading

	Sequential Monte Carlo
	Introducing the particle filter
	The particle filter – targeting the filtering PDF
	The marginal and the bootstrap particle filters
	Using auxiliary variables
	The auxiliary particle filter
	Adapting the proposal distribution

	The particle filter – targeting the smoothing PDF
	Approximating the forward smoothing strategy
	Path degeneracy

	Resampling algorithms
	Problem formulation
	Reducing the variance

	Rao-Blackwellized particle filters
	Strategy and key idea
	Rao-Blackwellization in CLGSS models

	Computing estimates
	Likelihood estimates

	Generic sequential Monte Carlo
	Convergence results
	History and further reading

	Appendices
	Probability/statistics
	Probability Distributions
	Discrete distributions
	Dirac distribution and empirical distribution
	Categorical distribution

	Univariate continuous distributions
	Gaussian
	Gamma
	Inverse Gamma
	Normal inverse Gamma
	Student's t

	Multivariate continuous distributions
	Multivariate Gaussian distribution

	Matrix valued continuous distributions
	Matrix Normal
	Wishart
	Inverse Wishart
	Matrix Normal Inverse Wishart

	Further reading

	Matrix Theory
	Matrix Derivatives
	Trace
	Further Reading

