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Abstract

The impact of some errors associated with a national road traffic survey is
examined in this thesis. The current survey aims to evaluate efforts to reduce
the speed of traffic on Swedish roads; it covers both state and urban roads,
though the thesis considers only urban roads. In the survey, observational
sites are selected by a three-stage sampling procedure. A measurement device
installed on the road is used to collect data, from which the average speed of
traffic on the roads is estimated.

This thesis focuses on errors in the frames used in the final sampling stage,
and on errors due to missing data. The impact of these errors on the total
error of the survey estimators is investigated. Also explored are possibilities
for reducing the total error by weighting adjustments for missing data and
by reallocating the sample over the three sampling stages. The problems are
approached partly theoretically, by use of various error models; partly empir-
ically, by collecting data on the errors. Throughout, the sampling design of
the survey is taken properly into account. Our conclusion is that the frame
error under consideration probably does not bias the estimator of average
speed, and it only implies a minor increase of its variance. It remains un-
clear whether the estimator needs to be adjusted for missing data: however, a
theoretical framework for further investigations is provided. For unchanged
total sample size, the precision of the estimator is likely to improve if the
sample sizes in the third stage are increased, and the sampling sizes in the

first stage are decreased correspondingly.

Key words: Frame error, missing data, error model, optimum allocation,

total error.
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Chapter 1

Introduction

By decision of the Swedish government, since 1997, the official lodestar for
Swedish traffic safety work has been ‘Vision Zero’: an image of a desirable
future society in which no one is killed or seriously injured in road traffic.
The overall responsibility for the traffic safety work is held by the Swedish
National Road Administration (SNRA). In 1994, a programme of how SNRA
and other actors should turn vision into reality was launched: the National
Road Traffic Safety Programme for 1995-2000 [31]. In 1999, the program
was succeeded by the government’s 11-Point Programme for Improving Road
Traffic Safety [30]. A common denominator of both programmes has been
the emphasis put on road-user responsibility, including compliance with speed
limits. Current measures to reduce speeds include physical changes of the
traffic environment (for instance, converting intersections into roundabouts)
and campaigns directed towards the public. In order to assess the results
of these measures, the SNRA has conducted since 1996 an annual survey of
vehicle speeds. It is generally wise to evaluate the design and performance
of a recurrent survey such as this from time to time, thereby making it
possible to maintain and improve the standard of the survey over time. This
thesis constitutes the first (but hopefully not the last) evaluation of the speed

survey.

In brief, the annual survey is conducted as follows. The roads are thought
of as partitioned into one-meter road sites, which are the population elements.

In selected sites, during a random 24-hour period, data are collected by use of



1. Introduction

a measurement device installed on the road. The device records the number
of passing vehicles, and the total time they take to pass the site. From these
data, the average speed on the roads is estimated.

Although the survey is conducted on both state and urban roads, in
this thesis we restrict our attention to the part of the survey that concerns
the urban roads. For these roads, a three-stage sampling design is used for
selecting sites. The primary sampling units are population centers, and the
secondary sampling units are small areas. For each selected small area, a
frame of the road network is used. The frame units are road links, and the
frame contains information on the length of each link. From the frame, road

sites are randomly selected for observation.

1.1 Problems treated in the thesis

The speed survey estimates receive much attention and serve as a basis for
decisions on future traffic safety measures. Of course, the estimates need
to be reliable. Different users of the results, however, have different needs,
and their assessments of an adequate level of reliability are likely to differ
accordingly. This raises an urgent need to account for the uncertainty in the
results. The sampling error, that is, the uncertainty due to the fact that
only a subset of all roads (and of the whole study period) is observed, is
presently quantified by conventional 95 percent confidence intervals. Such
intervals do not, however, give the full picture if there are additional errors
present. In this thesis, the additional uncertainties due to imperfect sampling
frames and missing data are investigated. Besides looking at the isolated
impact of each type of error, we adopt a comprehensive view towards them,
by formulating survey models for the estimators in use. More precisely, we
derive the estimators’ expectations and variances with respect jointly to the
sampling design and to models for errors due to frame imperfections and
missing data.

The speed survey is a resource-demanding undertaking, both financially
and in terms of personnel. The survey management estimates the cost of
the last survey round (in summer 2002) at 5.3 million Swedish kronor (about

0.6 million euros). A large field staff is needed to instal the measurement
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1.2. Approaches to the problems

equipment in selected sites. Above all, it is in the SNRA’s (and the Swedish
taxpayers) best interest to render the conduct of the survey more effective, if
possible. To support this aim, this thesis also investigates the possibility of
reducing the sampling error by reallocating the total sample over sampling

stages.

1.2 Approaches to the problems

In this section we take a brief look at each identified problem and how we
chose to approach them. For a summary of the results of our efforts, the

reader is referred to Chapter 7.

1.2.1 The frame error problem

Since road sites are selected by a three-stage sampling procedure, several
sampling frames are in use in the speed survey. Each of them may suffer from
various types of errors. Attention has been restricted in this thesis, however,
to a particular error associated with the frames of road links used in the
final sampling stage. When these frames were constructed, the link lengths
were determined manually from maps. Hence, the lengths may be subject to
measurement errors. By use of a simple error model, we examined the impact
of this frame error on the bias and variance of employed estimators. In our
model, the total frame road length for a small area is viewed as a function
of the true length and a random error. Data from an empirical study were

used to evaluate the model and estimate the error parameters.

1.2.2 The missing data problem

At each selected site, a measurement device is used to collect data. The device
consists of two pneumatic tubes stretched across the road and connected
to a traffic analyzer. When a wheel of a passing vehicle crosses a tube,
this action gives rise to a pulse in the equipment. From these registered
pulses, ‘vehicles’ are created. Typically, a number of the passing vehicles

will remain unobserved. The failure to observe some vehicles is indicated on
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one hand by imputations automatically created by the device, on the other
by the measurement efficiency (ME) — the proportion of registered pulses
successfully combined into vehicles — being small. To adjust for missing

data, we suggest dividing the traffic passing a site into weighting classes.

Consider the problem of adjusting the observed flow upwards. Within
class, one proposal is to add the number of imputed vehicles; another is to
weight the observed flow by an estimated probability of registration (assumed
to be constant within class). The ME is put forward as estimator of the regis-
tration probability. Models for the errors in the number of imputed vehicles,
and in the estimated registration probabilities, are used for theoretical eval-
uations. The models are evaluated, and the suggested estimation strategies

compared, by use of some empirical data.

1.2.3 The allocation problem

The allocation of the total sample over the three sampling stages was decided
at an early stage of the survey and without the benefit of much evidence.
Thus, very likely, there is room for improvement. In order to evaluate the
allocation, we have estimated the components, arising from each sampling
stage, of the total variances of the employed estimators. We also present

formulae for determination of optimum sampling sizes in each sampling stage.

In all but the first sampling stage, only one sampling unit per stratum is
selected. This makes estimation of the variance contributions from each sam-
pling stage impossible. We have circumvented this problem by using a ‘ficti-
tious’ sampling design, which resembles the actual design but is conditioned

by the set of distinct units selected in stage one, and some experimental data.

1.2.4 The development of survey models

Finally, we derive the expectations and variances of the employed estimators,
taking into account both the sampling design and our models for errors due

to frame errors and missing data.



1.3. Thesis goal

1.3 Thesis goal

The main goal of this thesis is to guide evaluation and improvement of the
quality of the speed survey. We do not strive to deliver final solutions on how
to make the speed survey better, but rather to aid the SNRA in its revision
of the survey. More specifically, we want to

e provide the speed survey management with theoretical tools for assess-
ing the impact of frame errors and missing data on the survey results;

e demonstrate how experiments can be designed to support the theoret-

ical results; and

e make some preliminary statements on the impact and importance of
the errors under consideration, and on the possibility of reducing the

sampling error by reallocating the total sample over sampling stages.

The time and budget frames of this thesis work have only allowed exper-
iments to be performed on a limited scale. This limitation means that the

practical results reported in the thesis must be considered as preliminary.

1.4 Contributions of the thesis

The nonsampling errors considered in this thesis are not unfamiliar to the
speed survey management. Quite the opposite: The errors have both been
recognized and caused uneasiness for quite some time. It is, however, one
thing to note the failings of a sampling frame, or the incapacity to obtain
complete observational data from selected road sites — but quite another
matter to estimate the importance of such findings. This thesis demonstrates
ways of dealing statistically with these problems by use of random error
models. Despite the simplicity of our models, they do enable us to investigate,
both theoretically and practically, the impact of the errors on the bias and
variance of the estimators in use. The model assumptions are clearly stated,
and we show how to design experiments for evaluating them. Beside this, we
also explore the possibility of reducing the sampling error by changing the

current sample allocation over sampling stages. In summary, the primary

9



1. Introduction

contribution of the thesis is the support it provides for rational decision
making regarding the distribution of available survey resources.

Our ways of attacking the errors due to imperfect sampling frames and
missing data draw inspiration mainly from approaches to measurement errors
in surveys discussed in [2] and [29, Chapter 16]. Throughout the thesis,
we make a point of taking the sampling design of the survey properly into
account. We thus illustrate the use (and usefulness) of the statistical theory
both on nonsampling errors and on sampling. In our experience, these lines
of theory have still not been accepted by traffic surveyors, and we hope that
the thesis can contribute to changing this situation.

The statistical journals and conferences devoted to survey methodology
are, in our experience, dominated by approaches to methodological problems
connected with surveys of human populations. As this thesis illustrates, to
fit other fields of applications, available approaches may need modification
or expansion. In particular, we find it useful to model both frame errors and
missing data problems as ‘measurement errors.” Also, although the sampling
design of the speed survey is of standard type, due to small sampling sizes,
available formulae for estimating variance components do not apply. We
thus need to be imaginative, and to try using a ‘fictitious’ sampling design
to estimate the components. This is an approach we have not seen in the

literature.

1.5 Outline of the thesis

The thesis is outlined as follows. In Chapter 2, the main methodological fea-
tures of the speed survey are described. The impact of erroneous frame road
lengths on the survey estimators is analyzed in Chapter 3. In Chapter 4,
we investigate the impact of missing data on the survey estimators. Two
strategies for adjusting for missing data in the estimation stage of the survey
are also introduced and evaluated. In Chapter 5, we turn our attention to
the sampling error. We evaluate the current allocation of the total sample
over sampling stages, and present formulae for determination of optimum
sampling sizes. Survey models for the estimators in use are formulated in

Chapter 6. A brief summary of our findings, finally, is given in Chapter 7.
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1.5. Outline of the thesis

The thesis is based on earlier work by the author: Chapter 2 is based on
[18, Chapter 2] and Chapter 3 on [18, Chapters 3 and 4], Chapter 4 is based
on [21], Chapter 5 on [19] and Chapter 6, finally, on [20].

Versions of Chapter 3 were presented at the 3rd Finnish Sampling Sym-
posium, University of Jyviskylid, Finland, 15-18 May 2000, and at the 4th
Conference on Methodological Issues in Official Statistics, Statistics Swe-
den, 12-13 October 2000. Versions of Chapter 4 were presented at the Joint
Statistical Meeting, New York City, USA, 11-15 August 2002, and at the
International Conference on Improving Surveys, University of Copenhagen,
Denmark, 25-28 August 2002. Our efforts to develop survey models for the
speed survey have also been shared at the Young Researchers Invited Poster
Session of the Conference in Celebration of Wayne A. Fuller’s 70th Birthday,
Ames, Iowa, USA, 21-22 June 2001.

A revised version of Chapter 4 has been submitted for publication in the
Journal of Official Statistics.

11
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Chapter 2

The speed survey

2.1 Background and survey objectives

The initial model for SNRA’s traffic safety work was the National Road Traf-
fic Safety Programme for 1995-2000 [31]. In line with this programme, the
work was organized in focus areas, called road traffic safety reforms, such
as ‘reduction in speeding offences,” ‘use of cycle helmets,” and ‘use of safety
equipment in cars.” Operational goals were stated for each reform, and it was
assumed that if a reform goal was reached, this should contribute to a reduc-
tion in traffic deaths and injuries. In order to assess whether development
was heading toward the reform goals, starting in 1996, the SNRA launched
several observational sample surveys; for instance, of helmet usage among
cyclists, of usage of luminous tapes or tags among pedestrians, of seat-belt
usage among motorists, and of motorists who drive against red lights. The

largest initiative, however, was the survey on vehicle speeds.

Currently, the traffic safety work is modeled on the 11-Point Programme
for Improving Road Traffic Safety [30]. It has proved difficult to change
people’s behaviors and attitudes, and therefore more attention is now paid
to safety improvements of the physical road environment. The sole surviving
observational traffic safety survey conducted by the SNRA is the survey of

vehicle speeds.
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2. The speed survey

2.2 Population

The target population is the entire Swedish road network except rural private
roads. It is divided into two subpopulations of special interest — state roads
and ‘urban’ roads (local authority roads and private roads in built-up areas) —
which also serve as strata when the sampling is conducted. In this thesis, we
restrict our attention to the part of the survey that concerns the urban roads,
and refer throughout to the urban road network as the target population.
This road network is considered as partitioned into one-meter road sites,
which are the population elements.

From the target population, the following road sections are excluded:

e From major roads: 100 meters before and after each intersection with
traffic lights.

e From non-major roads: 100 meters before and after each intersection.

The main reason for excluding road sections close to intersections is to
avoid observational difficulties. In the speed survey, observations are car-
ried out by measurement equipment installed on the road (see Section 2.5).
Certain traffic situations, such as vehicles lining up, accelerating, or decel-
erating, have the potential to cause measurement problems. Such situations
frequently occur close to intersections.

Survey results are demanded not only for the whole target population,
but also for specific subpopulations or ‘domains.” One important goal of the
survey is to provide results for each SNRA region. The SNRA organization
includes seven regional road management directorates (Figure 2.1), which
are responsible for the SNRA’s regional management, including traffic safety
work within their geographic areas.

The definition of the target population is not complete without some re-
striction in time. The survey is always conducted during the summer months,
but the exact period of study changes somewhat from year to year. In the last
survey round, in 2002, the study period was May 27 to September 30. The
period of study is thought of as a population in time, with 24-hour periods

as population elements.

14



2.3. Variables and parameters

Regional Road

Management Directorates

Northern Region

BD Norrbotten county
AC Viasterbotten county

Ceniral Region

2 Jamtland county

Y \Visternorriand county
X Gévieborg county

W Dalarna county

Western Reglon
§ Warmland county

Lulei

Milardalen Region

G Uppsala county
D $dodermanland county
T Orehro county
I Vastmanland county

Slockhoim Region
AB Stockholm county

0 Vastra Gitaland county | Gotland county
N Halland county

Souln-Eastern Region
E Ostergiitiand county
F Jionkiping county
G Kronoberg county
H Kalmar county

K Blekinge county

Skine Region Gitebory

M Skane county

M kristianstad

Figure 2.1: The SNRA Regional Road Management Directorates. (Source:
SNRA)

2.3 Variables and parameters

The primary study variable is the traffic flow, y. In general, for a given point
on a road and a specified period of time, the traffic flow is defined as the
number of passing vehicles. Since in this survey a road is viewed as made up
of one-meter sections, a ‘point’ is interpreted as a one-meter section (a road
site). From the total flow, other study variables of interest can be derived;

some examples include:

e Flow above a certain speed limit
e Flow with less than a certain headway

e Flow by a certain type of vehicle (e.g., by cars with trailers)

The second main study variable is the travel time, z. For a given traffic
flow, the travel time is the total time all vehicles take to pass the road point.
Let U denote the target population ‘in space’ — the set of road sites that

make up the urban road network — and Uy the target population ‘in time’

15



2. The speed survey

— the set of 24-hour periods that make up the time period of study. The
population total of the study variable y, the ‘total vehicle mileage’ for the
road network and time under study, is ZUT Y v Y, where yp equals the
traffic flow in site £ € U during 24-hour period v € Uy. Correspondingly,
the population total of z, the ‘total travel time,” is given by >/, >/ 2}
Since the total vehicle mileage is a measure of distance, and the total travel
time a measure of time, their ratio is a measure of speed.

Throughout this thesis, we ignore possible time variability in y and z.
That is, we consider only the special case when y; = y;, and z; = 2, for all
v € Uy, k € U. Therefore, we will hereafter drop the time index and refer
simply to the parameters t, = >, Yk, t. = >y z and R = t,/t,. It follows
that the sampling in time will not be treated (nor its consequences to the
estimation). Some aspects of sampling in time are investigated in [17].

Instead of treating population totals for various study variables as sepa-
rate cases, we usually find it sufficient to refer to ¢,: the population total for
an arbitrary study variable a.

2.4 Sampling design

2.4.1 Use of a master frame

The speed survey was launched together with a number of other observational
traffic safety surveys (see Section 2.1). To keep the money and time spent
on frame construction down, the surveys shared the same sampling in the
first and second stages. In each survey, the final sample then consisted of
locations selected from a master frame of roads. Depending on the nature
of the survey, the locations could be, for instance, intersections with traffic
lights (suitable for observing motorists who drive through red lights) or, as
in the speed survey, one-meter sections of the road. Today, the only traffic
safety survey still utilizing the master frame is the vehicle speed survey.
The frame was used for a survey on the conditions of various types of road
equipment (road signs, road fences, and lamp posts) in 2001, and other fields
of application may be brought to the fore in the future.

The method of using a master frame is discussed in the literature by,

16



2.4. Sampling design

among others, Kish [23, pp. 478-480], and can briefly be described as follows.
Initially, a ‘master sample’ of sampling units is selected. For each sampled
unit, a frame is prepared. The sample for a particular survey is then selected
from these frames, which serve for a longer time period.

The SNRA’s master sample was selected during 1995-96 by a two-stage
sampling design. The primary sampling units (PSUs) are population centers,

and the secondary sampling units (SSUs) are small areas.

2.4.2 Frames

When the master sample was selected, the frame used in the first stage
was a list, supplied by Statistics Sweden (SCB), of the Swedish population
centers in 1990. The list contained auxiliary information on the number
of inhabitants in each population center, which served as a size measure
for probability-proportional-to-size sampling with replacement (pps). The
frames used in the second stage were lists of the small areas within selected
population centers. In all essentials, these small areas correspond to SCB’s
small area market statistics (SAMS) regions. Various population statistics
collected by SCB are tied to developed properties. In co-operation with
the local governments, SCB has grouped similar adjacent properties. By
a special technique called ‘register generated borders,” geographic borders
between the groups have been fixed. The resulting nationwide area division
is called SAMS. There are about 9,200 SAMS regions; their main use is for
statistical presentations.

For each selected small area, a list frame of road links was prepared at the
SNRA from city maps. Using the intersections as breakpoints, the road-map
network was partitioned into links, and the link lengths were determined

manually by the use of map measurers.

2.4.3 Sample selection

In the first stage of sample selection, the population centers are stratified
according to SNRA region (see Figure 2.1) and three size classes:

e Large major population center of a municipality

17



2. The speed survey

e Other major population center of a municipality

e Other population center

In the second stage, the small areas within a selected population center

are stratified according to four development types:
e City
e Industrial
e Residential

e Other type

In the final stage, the road sites within a selected small area are stratified

according to three road types:

e Major roads with a speed limit of 70 km/h (M70)
e Major roads with a speed limit of 50 km/h (M50)

o Other roads

To simplify, the stratification in each stage is hereafter generally ignored,
and all stated sample sizes will refer to one stratum. We also ignore the fact
that in stage one, the three largest PSUs (Stockholm, Géteborg, and Malmd)
define a take-all stratum [29, p. 465]. The subsequent sampling stages in the
take-all stratum differ somewhat from those described below.

Selection of the master sample

The PSUs are the N; population centers in Sweden, labeled i = 1, ..., N;. For
simplicity, we represent the ith PSU by its label ¢. Thus, we denote the set
of PSUs as Uy = {1, ..., i, ..., N }. Population center i € Uj is partitioned into
Nrp; small areas, labeled g = 1, ..., Nyy;, that represent the SSUs. Again we
represent the sampling units by their labels; hence, the set of SSUs formed
by the partitioning of i is denoted U;;; = {1, ..., ¢, ..., Ni5:}-

The master sample of small areas was selected in the following way:

18



2.4. Sampling design

Stage I A pps sample of PSUs was drawn with probability proportional to
the number of inhabitants. At every draw, p; was the probability of
selecting the ith PSU. Let i, denote the PSU selected in the vth draw,
v =1,...,my, where m; is the number of draws. The probability of
selecting i, is denoted p; . For v = 1,...,m; and i € Uy, if the ith PSU
was selected in the vth draw, then p;, = p;. The vector of selected

PSUs, (i1, ..., 0y, ..., im, ), is the resulting ordered sample os;.

Stage II For every i, that is a component of osy, simple random sampling
without replacement (SI) was used to draw a sample srz;, of SSUs of

size Nrri, .1

In practice, the sample sizes in each stage were m; = 10 and nrp, = 1.
The resulting sample of SSUs is the master sample.

In general, the use of a multi-stage sampling design may imply some quite
laborious variance estimation formulae. Sampling with replacement in the
first sampling stage, however, makes variance estimation an easy matter.

Possibly, the simplicity is gained at the cost of a larger variance.

Selection of the final-stage sample for the speed survey

The road network in small area ¢ in population center ¢ is viewed as parti-
tioned into V;, one-meter road sites which represent the tertiary sampling
units (TSUs). This set of TSUs is denoted by Uj,. In the speed survey, the

final sampling stage is as follows:

Stage III An SI sample s;,, of TSUs of size n;,4 is drawn for every small

area q € ST, -

In practice, the sample sizes in the third sampling stage are n;,, = 1. The
sample of road sites finally obtained is denoted s.

1SSUs were actually selected with pps within one stratum (Residential areas). In this

thesis, for simplicity, this exception is generally ignored.
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2. The speed survey

2.5 Data collection and processing

A sampled road site is positioned a certain number of meters into a road
link. The field staff search out the site and install measurement equipment
to collect data during a selected 24-hour period. The equipment consists of
two pneumatic tubes stretched across the road in parallel, a fixed distance
apart, and connected to a traffic analyzer. When a wheel crosses a tube, this
changes the air pressure in the tube. The times of such events, or pulses,
are registered by the traffic analyzer. From the resulting pulse stream, the
analyzer creates vehicles and assigns speeds to them. The variables of interest

are later calculated from the vehicle data produced by the traffic analyzer.

2.6 Estimation in the absence of nonsampling

errors

Here, an estimator ¢, of the population total

te = ZU ap = ZUI toi = ZUI ZUI” taiqa

where t,; = ZUI” taig and gy = ZUiq ay, will be presented, along with an
estimator R of R. The variances of ¢, and R, and the components of these
variances due to each sampling stage, will also be given.

In the speed survey, PSUs are selected with replacement and SSUs and
TSUs without replacement. In order to construct estimators which are unbi-
ased with respect to all three sampling stages, the ‘p-expanded with replace-
ment’ estimation principle (first used by Hansen and Hurwitz [15]; treated
for instance in [29, Section 2.9]), and the Horvitz-Thompson estimation prin-
ciple (usually ascribed to Horvitz and Thompson [16]; treated extensively
in [29]) are combined. Throughout this thesis, estimators of population en-
tities are denoted by a hat, and the subscripts ‘pwr’ and ‘7’ used to indicate
‘p-expanded with replacement’ estimators and Horvitz-Thompson estima-
tors, respectively.

In the ideal situation, in which a; are known for all k£ € s, the parameter
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2.6. Estimation in the absence of nonsampling errors

t, would be estimated by
> 1 — f‘/rai
to=— — 2.1
mr ; Di, ( )
Where fﬂ'a’iy = (NIIiv/n’IIiV) ZSIHV tAﬂ'aiuq a'nd tAﬂ'aiuq = (Niuq/niuq> Zsiyq ak' If
1 € Ur was selected in the vth draw, then fmi, = tre; and fwaiyq = fmz-q. The
estimator of R would be

R=-L (2.2)

isbﬂvd >

We call £, and R the ‘prototype’ estimators of ¢, and R, respectively. The
randomness in these estimators stems solely from the sample selection.

Let E, and V, denote expectation and variance with respect to the sam-
pling design p described in Section 2.4. For nonlinear estimators, such as the
ratio of two estimated population totals, it is the practice to use the vari-
ance of a linearized statistic as an approximation to the exact variance. Let
AV, denote such an approximative variance, again with respect to p. (For
details on the linearization technique, see [29, Section 5.5].) In some parts
of the thesis, we need to refine the notation regarding the sampling design.
Expectations and variances are then indicated by subscript I if taken with
respect to the design used in stage one; by I if taken with respect to the
design used in stage two (given osy); and by II1 if taken with respect to the
design used in stage three (given os; and s;p;, ).

The properties of t, and R will now be investigated.

From [29, Result 4.5.1], t, is unbiased for ¢,. The variance of £, is given
by

LA S WA v
Vp(ta) = — pz-(ﬂ—t)+— . 2.3
p( a) mr ; i ¢ my ; Di ( )
where V,; is the variance of ¢, with respect to the last two sampling stages:
Nrir1i
Vi = Varri + - Ui Vaiq (2.4)
where
L — fin

2 2 . _ .
Varri = N, 14 Stan, fm = nm/ Nrri;
ITi

2
St =D, (taig = tai/Ni1)* / (N1 = 1)
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2. The speed survey

for ¢ € Uy, and
1—f;
2 2
Vaiq = Niq . quanq; fiq = niq/Niq;
iq

SgUiq = ZU, (ar — taiq/Niq)Z / (Nig — 1)

2q

for ¢ € Uypi;i € Uy
Similarly as in [29, Result 4.4.11], the variance \/;,(fa) can be written
as the sum of three components, mirroring the variation arising from each

sampling stage:

Vy(ta) = Vesu (ta) + Visu (fa) + Vasu (a) (2.5)
where
Ny
iy L LN |
Visy (fa) = o ; e 2 gy, Vi (2.6)

expresses the variance due to the third-stage sampling of T'SUs,

Ny

. 1 Varri
Vs (fa) = — D =5 (2.7)

m .
I i—1 bi

the variance due to the second-stage sampling of SSUs, and

the variance due to the first-stage sampling of PSUs.
Now consider the estimator R. From [27, Section 6.8.2], R is approxi-
mately unbiased for R. Define the new study variable £ = y — Rz. The

approximate variance of R is given by

NAQEEA

z

NI 2 NI
1|1 tgi ) 1 Vi
= -_— —_— i —_— —t —_—
tg mr ; ( 5 L my Zl Di
NI 2 N[
1 1 Uhi 1 Vi
I E S T — E 2.9
£ (ml = Pi Tt Di > (29)



2.6. Estimation in the absence of nonsampling errors

where the last equality holds since ti = 0. The variance Vj; is obtained from
Equation (2.4) by letting the variable a equal E.
Like Vp(fa), the approximate variance of R can be decomposed by sam-

pling stage:
AVP <R> = AVPSU <]%> + AVSSU (]%) + AVTSU (}?)
_ Visu (fE) + Vssu (fE) n Vesu (tAE)

12 12 12

z z

(2.10)

where Vrgy (fE), Vasu (fE) and Vpgu (fE) are obtained from Equations (2.6)
to (2.8) by (again) letting a equal E.

23



24

2. The speed survey



Chapter 3

Frame errors

3.1 Introduction

The construction of small area frames was described in Section 2.4.2. This
chapter is concerned with the link lengths being subject to measurement
errors. By use of a simple error model, the impact of erroneous frame link
lengths on the bias and variance of the survey estimators is examined. In our
model, the total frame road length for a small area is viewed as a function
of the true length and a random error. Data from an empirical study of the
errors in the frame are used to evaluate the model and estimate the error
parameters.

All possible nonsampling errors aside from erroneous frame link lengths
(including all other possible frame imperfections) are here ignored. In par-
ticular, we assume that the small area frames list all the links in the areas

correctly.

3.2 The frame error problem

It is not quite obvious how the problem of erroneous frame link lengths should
be examined. One may say that the frame suffers from coverage errors, or
that, due to faulty auxiliary information in the frame, incorrect element-

inclusion probabilities are used.

The coverage error view Apart from rounding errors, a link length cor-
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3. Frame errors

responds to a geographically ordered vector of population elements. If
a road link is shorter in the frame than in reality, this corresponds to
an undercoverage of target elements. Correspondingly, if a frame link
is too long, the frame suffers from overcoverage.

The incorrect inclusion probabilities view The length is known for each
frame unit (road link) prior to sampling; thus, length can be thought of
as an auxiliary variable. If a road link is shorter or longer in the frame
than in reality, this corresponds to an incorrect auxiliary variable value.
For a given small area, the sum of all link lengths in the frame is sup-
posed to be the number of road sites that make up the road network
(the population). If this summed length is in error, but the sample of
road sites actually is selected from the target population, the inclusion

probabilities that are used for sampled road sites are incorrect.

The latter view is somewhat more general, since incorrect inclusion prob-
abilities may arise for other reasons in other types of surveys. However, for
our purposes, it does not really matter how we decide to entitle the problem.

Discrepancies between measured and actual link lengths have implications
on the data collection stage of the survey. This follows since, in the presence
of erroneous frame link lengths, the instructions to the field staff may no
longer hold. Field staff are told to seek out a sampled road site located a
certain number of meters into a specified link. In reality, the site may simply
not exist if the link is shorter than what the frame indicates. If the link
in reality is much longer than what the frame indicates, the site will indeed
exist, but at different places depending on the direction from which the link is
entered. In each case, the field staff adjust to real-life conditions by observing
the traffic ‘somewhere’ along the designated link.

As far as we know, most studies of traffic characteristics are based on
nonprobability samples. Instead of choosing road sites at random from a
frame, efforts are made (by visual inspection of the road) to pick ‘represen-
tative’ sites for observation. It is therefore not very surprising that we have
not seen this frame problem treated in the traffic research literature. The
statistical literature on frame errors, on the other hand, mainly deals with

errors in sampling frames used in surveys of individuals or households. The
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3.3. A frame error model

conditions of such surveys differ substantially from those in the speed survey,
so the methods suggested for evaluating the impact of coverage errors are not
quite applicable to our problem.

Our work is, however, inspired by the approaches to measurement errors
discussed by, among others, Biemer and Stokes [2] and Sirndal et al. [29,
Chapter 16]. In this field of research, a survey is viewed as a two-stage
process such that each stage contributes with randomness to the estimators.
The first stage, the sample selection, determines what part of the population
to observe. The second stage is the measurement procedure, which generates
an observation for each element in the sample. Unlike traditional sampling
theory, the observations are not presupposed to coincide with the true values,
but assumed to be subject to random errors. In order to evaluate the impact
of measurement errors on the estimators, the relation between observed and

true values is modeled.

3.3 A frame error model

If the road lengths in the final-stage frames are in error, the actual sampling
procedure differs from the one described in Section 2.4.3. Let Up;, denote the
set of road sites (of size Npyq) in (i, q) according to the frame. For every small
area ¢ € Srr;,, an SI sample sg;, , of sites (of size n;, ) is drawn from Up;,.
In the data-collection stage, the field staff adjust to the real road network
when installing the measurement equipment. Consequently, the set of sites
actually observed may differ from sp;,,. We do not, however, introduce any
special notation to distinguish between these sets. The sample of sites finally
obtained (as well as the sample finally observed) is denoted by sp.

Our frame error model, which we denote by my, is formulated as follows:

(1) The sample sp;, is an SI sample from Uj,. In mathematical terms, we

assume that sp;q = s;4.

(2) The frame road length Ny, is a function of the true length N;, and a

random error (;,.
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3. Frame errors

(3) All Npy;'s are independent random variables with expected values p,,

and variances o7,.

In cases of unclear instructions due to frame errors, the field staff place the
measurement equipment ‘somewhere’ along designated links. Then, Assump-
tion (1) holds if the road sections within the link can be considered ‘randomly
ordered,’ or if the field staff randomly choose a road section within the desig-
nated link for measurement. The field staff’s choice of a road section within
the link is probably more adequately described as haphazard than as ran-
dom. This follows since, when deciding upon a location, they pay regard to
the road environment (e.g., by avoiding locations where cars parked by the
roadside may obstruct the installation of the equipment). A ‘random order-
ing’ of the road sections is however, for the following reason, quite likely. As
described in Section 2.2, only road sections located more than one hundred
meters from an intersection are included in the target population. Results
from a pilot study [3] suggest that, within a link, the remaining road sections
are reasonably similar with respect to the study variables. Consequently, it
is not crucial which road section within a link is actually measured — the

result will be about the same anyway.

3.4 Estimation with frame errors

We now investigate the influence of the road length error on the estimation
of t, and R.

3.4.1 The estimators tr, and I%F

Define the population totals tpg,, = ZUpiq ak, tpai = ZUm tFaiq and tp, =

ZUI tFai- Further, let RF = tFy/tha tFEiq = tFyiq - RFthiq and tFEi
tpyi — Ritra.
The estimator of ¢, obtained by replacing N;, with Ng;, in Equation (2.1)

is given by
T 1 — fFTrai
tpg = — — 3.1
Fa mr ; i ( )
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3.4. Estimation with frame errors

where £F7r(u,, = (NIIZ,,/nIh,,) ZSHz 7€F‘frazyq and tAF1raz,,q = (NFz,,q/ni,,q) ZSquq Q.

If i € U; was selected in the vth draw, then ¢ Frai, = = tpnai and ¢ Fraivg = =1 Fraig-

The corresponding estimator of R is
.t
Rp=2

th '

(3.2)

Consider the special case when, for every small area ¢ included in the master
sample, the frame road length Np;, equals the true length N;,, and sp;q is
an SI sample from U;,. Then, the estimators tAme tpmai and £y, are design-
unbiased for ¢,;, 14 and t,, respectively, and the index F'is no longer needed.

Let expectations and variances be indicated by subscript m; if taken with
respect to model my; by subscript pm; if taken with respect jointly to the
sampling design p and model m;. The statistical properties of trq and ]:EF
are investigated in the following theorem:

Theorem 3.4.1 Jointly under sampling design p in Section 2.4 and model
ma, the expected value of tp, is given by

;D"l1 tFa Z Ep1111 tqu) (33)

where Ep,,, (tpmi) = ZUI” (,uiq /Niq) taig- The variance of tra is given by

2
H;
‘/p’”l tFa = Zpl ( ZUIH zq Z ZUIM :;tmq)

NI
1 ‘/pml (tFTrm')
+ — — 3.4
my ; bi ( )
where
° 1 — fin 1 M 1 Ky :
V'm trrai) = NQ i —thai T —thai
P '1( F ) i nr N —1 ZUIH (qu 1 Nrri ZUIU ijq 1
Nrri Hig ?
Vai
+ Nrri ZUIH (qu 4
Nrri Oiq 2 2
+ Nrri ZU{U (N_lq (V:liq + tm’q) ’
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3. Frame errors
The estimator }?F is approximately unbiased for Ey,,, (fpy) /Epm, (fpz), with
the approrimate variance

Ny 2 N1 3
A 1 (1 1 s 1 Vom (tFwEi)
A‘/pml (RF> = —g {E Z; —Z ZUI” (N:I) t%}iq + E z plT}

B (3.5)

where Vi, (fpm-) is obtained from Vi, (mez') by replacing the variable a
with E.

The proof is given in Appendix B.1.2.

From Theorem 3.4.1, results can be derived for various situations of in-
terest. An important special case is when the frame road lengths Np;, are
‘unbiased’ — that is, if in a (hypothetical) long run of repeated length mea-
surements on the same small area road network, the average of the obtained
values will equal the true value N;,. This seems to us a quite likely situa-
tion. The major sources of errors in the measurements are probably the map
measurer tool producing ‘shaky’ results and the haste under which the mea-
surements were performed. We have no reason to believe that these errors
have a systematic influence on the measurement values.

The case of unbiased frame road lengths is treated in the following corol-
lary (which is easily derived from Theorem 3.4.1 by replacing j,, with Ny,):

Corollary 3.4.1 If the frame road lengths Np;q have expected value N;g, the
estimator tr, is unbiased for t., and ]:ZF 1s approximately unbiased for R.

The use of tp, instead of t, as estimator of t, increases the variance by

V;voml (I?Fa) - V;o(ta)

Ny 9
— 1 1 NIIZ' Oiq 9
B m_I Z D N ZUI” (N—“Z) (‘/:”'q + taiq) . (36)

N7
i=1 Pi Nrri

The variance increase due to the use of Ry instead of R as estimator of R

is obtained from Equation (3.6) by multiplying by t;? and letting a = E.
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3.4. Estimation with frame errors

3.4.2 Results for specific error structures

Under Assumption (1) of the frame error model (see Section 3.3), the only
remaining difference between fmz-q and the error-prone estimator t Fraiq 15 that
the latter is weighted by Ny, instead of N;;. A random error model for Ny,
is stated in Assumptions (2) and (3), but to be really useful the model needs
further specification. The two most simple error structures are the additive

error model,

Nrig = Nig + (44 (3.7)
and the multiplicative error model,
Nrig = NigCiy- (3.8)

We denote the expected value and variance of the random error (;, with 0y,

and qu, respectively. Then, under the additive error model, p,, = Nj; + 0;,
2

2 _
and o7, = Tj,,

and o3, = N7 77 . Note that, depending on the assumed error structure, 6,

and qu are expected to take quite different numerical values. Consider, for

whereas under the multiplicative error model, p,, = Ny0;,

instance, the case when the road length measurements are rather accurate,
so that p,, approximately equals N;. Under the additive error model, this
occurs when 6,, is close to zero; under the multiplicative error model when
0;q is close to one.

It is straightforward to adapt Theorem 3.4.1 to various error structures of

2
iq?

for the additive error model in (3.7), whereas by replacing p,, with N;,0;,

interest. By replacing y,;, with N;,+6;, and (rfq with 7; , results are obtained

and o}, with N2 77,, we get results for the multiplicative error model in (3.8).

In the remainder of this section, we will only look at the model we a priori
believe to be the most realistic: the multiplicative error model with equal
error expectations @ and variances 72. The multiplicative error model means
that the error associated with Np;, depends on the true length N;, — a view we
regard as intuitively appealing. For example, it is probably harder to obtain
accurate measurements for areas with extensive road networks, since such
networks usually are partitioned into a large number of links. (Remember

that each link length was measured separately.) Further, we have no reason
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3. Frame errors

to believe the error expectations and variances to differ between population
centers or small areas. The same tool, a map measurer, was used everywhere,
and the staff performing the measurements were given the same training.
An important objective for the multiplicative model is that it states that
the variances of the frame road lengths, qu, are proportional to the squared
true lengths. It is not obvious that this assumption holds; an equally natural
assumption is that the variances are proportional to the (unsquared) lengths.

For the assumed model, the following corollary applies:

Corollary 3.4.2 If the frame road lengths Np;; have expected value N,q40,
the bias of tr, as estimator of t, is given by t, (0 — 1).

Corollary 3.4.2 is easily derived from Theorem 3.4.1 by replacing p,, with
N;,0. Note that if § equals one, 5, and Ry are unbiased and approximately
unbiased, respectively, for their true counterparts.

Let us proceed by investigating the variances when 6 equals one.

Corollary 3.4.3 If the frame road lengths Npiq have expected value N,y and
variance quTQ, the use of tpq instead of t, as estimator of t, increases the

variance by

Ny
i : 1 L1 Ny
Vi (Era) = Vp(fa) = T2m1 i mlj
i=1 £ 3

ZUIU (‘/;H'q + tiiq) . (39)

The approximate variance increase due to the use of Ry instead of R as

estimator of R is given by
AV, (RF) — AV, (R) = 124V, (R) . (3.10)

The proof of Corollary 3.4.3 is given in Appendix B.2.

3.4.3 Summary of theoretical findings

We have argued for our belief that the measured link lengths are unbiased
for the corresponding true lengths. If our expectation is correct, the length

error does not introduce bias in the estimators — a very encouraging result.

32



3.5. Empirical study

Of course, there will still be a loss of precision due to the variability of the
frame lengths.

The length of a small area road network may be viewed as a measure of
the degree of difficulty of the measurement task. With this view, the multi-
plicative error model makes sense. Analytically, things get especially simple
if these errors have the same expectations and variances; this also seems like
a realistic assumption. For this case, ‘unbiased’ road length measurements
corresponds to an error expectation equal to one. If this is fulfilled, the
length error implies a relative variance increase in the estimator of average
speed that is simply equal to the error variance. This variance is likely to be

numerically small, since the multiplicative errors are ‘relative.’

3.5 Empirical study

3.5.1 Study objectives

In Chapter 3.4, by use of an error model, we investigated theoretically the
impact of erroneous frame road lengths on the estimators t Fy and R . Hence
a theoretical foundation is laid, but it needs to be complemented by knowl-
edge about the real road length errors in the frame. Then, a choice of a
realistic error structure can be made, the constant error expectations and
variances assumption can be evaluated and, if proved to hold, 6 and 72 can
be estimated. To gain this knowledge, we conducted an experiment, the

design and analysis of which we now present.

3.5.2 Design of the study

Data on the frame road length errors were collected in the following way.
From the 469 small areas included in the master sample, 70 small areas were
selected. A controller measured all the links in selected areas and fed the
results into computer files. In the course of the work, the controller had
access only to the originally used maps with the intersections numbered.
Hence, for a small area, she started by making a list of all the links found on

the map (using the existing numbering) and then measured them one after
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the other.

In the selection of small areas for the experiment, we wanted areas from
different SNRA regions and from population centers of various sizes. Fur-
thermore, we wanted the areas to represent different development types.

Note that SNRA region, population center size class, and development
type were all used as stratification variables in the sample selection (see
Section 2.4.3). An SNRA region effect was possible since, when the frame
was constructed, each regional office was responsible for the work in its region,
including the length measurements. Population center size and development
type may correlate with the quality of available maps. To accomplish the
desired dispersion of small areas, they were randomly selected within SNRA
region, population center size class, and small area stratum.

For at least two reasons, the measurement values obtained in the study
are probably more accurate than the frame values. Above all, when the
frame was constructed, the road length measurements were made hurriedly
(the entire construction work was behind schedule). Our controller was not
put under time pressure; on the contrary, she was encouraged to give priority
to carefulness and to take her time. Also, when the frame was constructed,
the road lengths were determined by use of a digital map measurer. This tool
is convenient to use, since it can be programmed to produce length data in
meters for a map with a specified scale. In our experience, however, the tool
is over-sensitive to the user’s hand movements. The controller used a less
sophisticated instrument, a common ruler, which we believe is less subject

to measurement errors.

3.5.3 Data processing

For five of the chosen areas, the available maps were of such poor quality
that the links could not be identified or measured properly. Therefore, those
areas were entirely omitted from the analysis. From each remaining area, we
excluded the links known to be administered by the state, as well as road
links that did not occur both in the frame and in the controller’s list. In

practice, we applied (in turn) the following rules for excluding road links:
1. Road links, found in control, that are missing in the frame.
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Percent of

Number original no.

Links in original data set 4123 100

Left after rule 1 applied 4013 97.3

Left after rule 2 applied 3762 91.2

Left after rule 3 applied 3618 87.8

Table 3.1: Exclusion of road links.

Population center size class 1 2 3
Small area development type 1 2 3 4|1 2 3 4|1 2 3 4
Central Region 111 10 1 1 1|1 0 1 1
Mailardalen Region 110111 01 1}- 1 11
Northern Region 101 111 1 0 1(- 1 21
Skane Region 111 0101 1}- - 21
Stockholm Region 02001 11 1]- 111
South-Eastern Region 2001|111 0}- - 4 -
Western Region 111 1)1 10 1}|- - 1 -

Table 3.2: Number of small areas included in the analysis, by SNRA region,
population center size class and small area development type. Non-existing

strata are indicated by hyphens.

2. Road links that, according to the frame, are state authority roads.

3. Road links included in the frame that, according to the control, do not

exist.

The resulting gradual reduction of the original data set (the set of all links
occurring either in the frames or in the controller’s lists) is shown in Table 3.1.
The allocation of the 65 small areas over SNRA regions, population center
size classes and small area development types is shown in Table 3.2. In the
table, the following numbering of size classes is used: ‘1’ for large major
population center of a municipality, ‘2’ for other major population center
of a municipality, and ‘3’ for other population center. Also, the small area
development types are assigned the numbers ‘1’ for city, ‘2’ for industrial, ‘3’

for residential, and ‘4’ for other areas.
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In the data processing, we encountered several frame quality problems
other than erroneous road lengths. First, remember that we had to give up
five chosen areas because of bad maps. Most likely, the frames in use for these
areas are not, in general, very reliable. Second, we see in Table 3.1 that 110
links turned out to be missing in the frame and that 144 urban road links
that were included in the frame could not be found by the controller. We
take these figures as a warning signal that the frame may suffer from some
serious coverage errors regarding road links. Finally, as a result of incorrect
frame link lengths, some links may erroneously be excluded from or included
in the target population. Among the non-major road links in our reduced
data set, 42 links were shorter than 200 meters in the frame but longer than
200 meters in the control, while 34 links were longer than 200 meters in the
frame but shorter than 200 meters in the control.

Like erroneous frame road lengths, all the frame imperfections discussed
above may lower the quality of the survey estimates. In this thesis, we restrict
our attention solely to the length problem. An expanded study would be
needed in order to judge the influence and relative importance of all frame

imperfections on the total error of the estimates.

3.5.4 Analysis

Assume that the road link lengths according to the control are the true
lengths. Then, by summing the frame link lengths for a small area (i, q), we
get an observation on Np;, and by summing the link lengths according to
the control, we get N;,. Under the additive error model in Equation (3.7),
the error in the frame road length Ny, is given by Cig = Nriqg— Nig, whereas
under the multiplicative error model in Equation (3.8), the error is given
by (iy = Nrig/Nig- For the 65 small areas comprised by our analysis, the
errors were calculated under both the additive and the multiplicative error
model (see Figure 3.1). We see that in the additive case, the points scatter
around an imaginary horizontal line placed at a level close to zero, whereas
in the multiplicative case, the scatter is around a line at a level close to one.
Hence, under both error models, data suggest that the frame road lengths,

on the average, are correct. In the additive case, the variance for the scatter
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3. Frame errors

of points seems constant, exactly as we had hoped for. In the multiplicative
case however, the point scatter shows a tendency to narrow with the true
length. This is a sign that the variance of the frame road lengths rather is
proportional to the true length than to the squared true length (as the model
states). However, due to the shortage of observations for large values of the
true length, it is hard to draw any certain conclusions.

In our study design, population center size classes are nested under the
SNRA regions, and small area strata are nested under the size class levels.
Thus, it is a three-stage nested design (see, e.g., [25]). To account for the
design, we introduce some new notation. Consider again the length error
for small area (7,q), (;,- Let (;, = (., if population center i is included in
SNRA region r and size class s, and small area ¢ is included in small area
stratum (development type) t. The analysis of variance (ANOVA) model for
our design is

C'rstq =a+ ﬂr + Ws('r) + (St(r.s) + 6(rst)q (311)

where a is an overall mean, 3, is the random effect of the rth region, v,
is the random effect of size class s within the rth region, 6. is the random
effect of small area stratum t within size class s within the rth region, and
€(rst)q 18 @ random error.

Each of the factors — region, size class, and small area stratum — has a
small number of possible levels (7, 3, and 4, respectively). Nevertheless we
consider these factors as random. Regarding the regional factor, we are not
interested in the administrative division in itself, but rather in potential dif-
ferences in the behavior of the staff. Hence, we view the seven SNRA regions
as a selection of levels from a population of behavior levels. Correspondingly,
we are not interested in the divisions in size classes or small area strata, but
in potential differences in the quality of the maps.

Assume that 3, Vs(rys bi(rs) and €(,41)4 are independent, with variances 0‘%,
03, o? and o2, respectively. We would like to test if these variances are zero.
That is, we want to know whether variability exists in the length errors that
is due to SNRA region, population center size class, or small area stratum.
We do not have enough data to perform such tests ‘by the book,” but use

instead a simplified (approximative) test procedure. To put it briefly, we
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3.5. Empirical study

Error Sample statistics 95% c.i. 95% c.i.
structure ¢ 5% for 6 for 72
Additive 18262 85481.915 [—89.340,52.816] [0, 115296.998]
Multiplicative  1.00209  0.00629 [0.98281,1.02137]  [0,0.00848]

Table 3.3: Sample statistics and confidence intervals (c.i.). The intervals for

72 are upper-bounded.

look only at one effect at the time and ignore the nesting. This was done for
each of the three effects and for the observed errors under both the additive
and the multiplicative error model. The relevant ANOVA tables are given
in Appendix E.1. In no case is the hypothesis of zero variance rejected. We

take this as an indication that the variances 03, 02, and o3 are all zero.

We proceed by viewing the observed length errors {C Z-q} simply as inde-
pendent and identically distributed (iid) random variables with mean 6 = «
and variance 72 = 0¢. As unbiased estimators of § and 7%, we use the sample
mean ¢ and the sample variance sg, respectively. The resulting estimates are
given in Table 3.3. The confidence intervals shown in the table hold under
the added assumption of normally distributed errors. We see that under the
additive error model, the hypothesis of § = 0 cannot be rejected. If in fact
the hypothesis is true, Corollary 3.4.1 applies and the length error does not
bias ¢ Fy OT Rp. Under the multiplicative error model, the hypothesis of = 1
cannot be rejected. If this hypothesis is true, Corollary 3.4.2 tells us that
the length error does not bias the estimators. We conclude that irrespective
of which error structure we look at, our data do not suggest that the length

error will cause bias in the estimators.

We are also interested in the possible variance increase due to the length
error. Although the additive error model with equal error expectations and
variances seems to fit the data somewhat better than the multiplicative coun-
terpart (according to Figure 3.1), we choose the multiplicative model. The
reason for this is simply that if the errors are multiplicative, Corollary 3.4.3
applies and we can easily estimate the approximate variance increase due to
the use of Ry instead of R. Since the observed errors are numerically quite

small, the choice of model is not so crucial. If our point estimate of 72 in
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3. Frame errors

Table 3.3 coincides with the true parameter value, the relative variance in-
crease is only about 0.6 percent. Hence, at least for the ratio, the variance

increase seems negligible.

3.5.5 Summary of empirical findings

For the 65 small areas comprised by the analysis, we calculated the errors
in Np;, under the additive and the multiplicative error model. Under both
models, data suggested that the frame road lengths, on the average, were
correct. In the additive case, the error variance seemed constant as function
of Nj, (as the model states). In the multiplicative case, we saw some tendency
of the error variance to decrease as NV;, increased: a sign that the variance is
proportional to N;, rather than to NZ%I (as the model states). Our tests did not
suggest variability in the length error due to any stratification variables used
in stages I and II. Irrespective of error model, our data did not suggest that
the length error would bias the estimators of ¢, or R. Under the multiplicative
error model, for the estimator of the ratio, the variance increase due to the

length error seemed negligible.

3.6 Summary

If the road lengths in the frames used in the final stage of sample selection
are in error, how are the statistical properties of the estimators affected? Our
theoretical derivations, supported by an error model, resulted in expressions
for the effects of the length error on the bias and variance of the estimators. In
particular, we showed that if the errors were multiplicative with expectation
of one and constant variance, the length error had no bias effect on the
estimator of average speed, and the relative (approximate) variance increase
for this estimator simply equalled the error variance. We also collected some
data on the real errors in the frames. The observed errors were found to be
quite small, and for simplicity we chose the multiplicative model, although
the additive model actually had a slightly better fit. The multiplicative
errors were found to have an expectation close to one, and their variance was

estimated to less than one percent. Putting all this together, our investigation
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3.6. Summary

led us to reach the following conclusions. First, neither the estimator of
average speed nor the estimator of a total seems to be biased by the length
error. Second, the variance increase due to the length error, for the average
speed estimator, seems to be negligible.

It should be noted that our results are useful only if one trusts our model,
since the entire investigation relies heavily upon it. The employed error
model includes a very strong assumption: that the actual final-stage samples
are selected by simple random sampling from the true road networks. For
the future, we recommend that the data-collection instructions be given an
overhaul. Improved instructions would increase the chances that the model
assumption really holds. It should also be noted that the only frame imper-
fection considered in this study was the length error. The empirical study
exposed several other imperfections associated with the last-stage frames
which need to be addressed.
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Chapter 4

Missing data

4.1 Introduction

The data collection procedure described in Section 2.5 is not unproblem-
atic. In fact, a number of the vehicles passing a chosen site typically remain
unobserved. If a large amount of data is missing, the site is likely to be re-
measured at a later date. The most common situation, and the one of interest
here, however, is that some data are missing but not to the extent that the
measurement is disqualified. Currently, data are subsequently used in the
estimation without any special action being taken. Attention is restricted
here to incompleteness due to occasional loss of vehicles, thus ignoring cases
of lost time periods. Possible nonsampling errors aside from missing data are
also ignored.

In this chapter, two strategies for adjusting for missing data in the es-
timation stage of the survey are introduced. Both are designed for easy
implementation: they do not require simulations, or collection of new auxil-
iary data, but only minor modifications of the computer programs presently
used for estimation. The failure to observe some vehicles is indicated on one
hand by imputations automatically created by the measurement device, on
the other by the ME being small. One suggested strategy uses the impu-
tations for adjustments; the other uses the ME for the same purpose. The
two strategies rest, however, on a common model for the vehicle registra-

tion mechanism. By use of empirical data, the models are evaluated and the
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4. Missing data

suggested strategies compared.

4.2 The missing data problem

Missing data arise when the traffic analyzer fails to translate arrived pulses
unambiguously into vehicles. The ambiguity may be caused, for instance,
by vehicles simultaneously crossing the tubes (due to meetings or passings)
or by a dense traffic situation. An undercount of vehicles is bound to bias
the estimators of the totals, whereas the impact on the estimator of R is
unclear. It is possible, but far from certain, that (in practice) the biases in
the estimators of the totals ‘cancel out’ when their ratio is taken.

The notation from Section 2.3 will now be slightly expanded. Let the
set of vehicles passing road site k (during a given time period) consist of yy
vehicles labeled v = 1, ..., y;. For simplicity, the vth vehicle is represented by
its label v. Hence, the (finite) population of passing vehicles is denoted as
Up ={1,...,v,...,yx}. The travel time z; for site k is given by z, = ZUk Ty
where x, is the time vehicle v takes to travel the site.! The successfully
observed subset of Uy, is denoted 7y, of size n,, .

The present ‘do nothing’ approach to missing data is henceforth referred
to as Strategy 0. The estimators of y, and z; under Strategy 0 are g,(f) =Ny,
and 73,20) = >, Tv, respectively.

4.3 Proposals for missing data adjustments

Both our proposals for missing data adjustments involve the estimation of
registration probabilities for vehicles passing an observational site. We see
no practicable way of estimating the probabilities for individual vehicles, but
need some simplifying assumptions. It would be unreasonable to assume
a constant registration probability for all vehicles, but it may make sense
for groups of vehicles. This motivates the use of the registration model in

Section 4.3.1 as a common starting point for our proposals.

'In practice, the z,’s are calculated as the inverses of the registered vehicle speeds.
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4.3. Proposals for missing data adjustments

4.3.1 A model of the registration mechanism

The true registration distribution, which generates the set of registered ve-
hicles r; for an observed road site k, is of course unknown. Our ambition
here is only to formulate some reasonable model assumptions about this dis-
tribution. If we succeed, we will possess a useful tool for constructing (and
evaluating) estimators that adjust for unregistered vehicles.

In all essentials, our registration model coincides with the response homo-
geneity group (RHG) model formulated in [28, Eq. (8.1)] or [29, Eq. (15.6.6)].
In brief, the model states that a realized sample can be partitioned into
groups such that, conditional on the sample, the individual response proba-
bilities are the same for all group members. The conditioning is motivated
by the fact that elements of a given sample are exposed to a specific set of
survey operations. The RHG model has a quite general formulation, and
many weighting class adjustment methods rely on special cases of this model
(for an overview of adjustment methods, see [24, Chapter 8]).

Our model has three special features, when contrasted with the RHG
model. First, in the speed survey, data are collected by observing (register-
ing) vehicles. Hence, instead of probability of response, our concern is about
probability of registration. Second, road sites are selected for observation by
a multi-stage procedure. Hence, our model is conditioned on the final-stage
samples s;, of sites. Finally, we are not interested in observing a sample of
the vehicles passing the site, but rather all of them.

Our registration model, which we denote by m,., is summarized below.

The registration model, m,
Assume that the vehicles passing road site k € s, during a selected day are
partitioned into Hy, groups Uy, (h =1, ..., Hy) such that, given s,

e all vehicles in group Uy, have the same (unknown) probability 6, > 0
of being registered, and

e the registration of one vehicle is independent of all others.

The independent registrations assumption is made solely to simplify the
model. In reality, dependencies in the registrations of successive vehicles are

likely to occur.
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4. Missing data

The theoretical part of this chapter is applicable to any groups of traffic.
In our experiment, however, we presume partitioning of the traffic by time
intervals (see Section 4.5). This partitioning is easy to make and corresponds
roughly to a partitioning by flow level. The shortest time unit considered is
watch-hour. One reason for this is the common advice (see, e.g., [22]) to avoid
too small weighting classes when estimating (response) probabilities 0y, by
class response rates. The response rates (in our case, the registration rates)
for small classes tend to be unstable, and this may produce large variation in
the weights. A second reason for our choice of smallest time unit is that we
also try to estimate 0y, by use of the ME, which is only known at watch-hour
level.

The set of registered vehicles in group Uy, is denoted 7y, of size n,,,,
and the vector of all n,,,’s is denoted n,, = (7., ..., ", ...nrka>. Ex-
pectation and variance taken with respect to the registration distribution
m,, conditional on s,,, is denoted E.,, (- |siy) and Vi, (- |siq), respectively. In
Section 4.4.2, we make use also of the conditional expectation and variance
with respect to all realizations n,, obeying S0, n,,, = 7y, ; En,, (+]8ig) and
Va,, (+sig). Then,

Elllr(' "Siq) = Enmc le(' "Siq’ nrk)
‘/;ur(' ’Siq) =F V;uT(' ‘Siqa nrk) + Vi Elur(' |Siq7 nrk) .

Nry, Nry,

The conditional mean and variance of n,,, given s;, are denoted p,,, =
2 .
B, (N, |8iq) and o, = Vi, (0, |5iq), Tespectively.
For future reference, some implications of the registration model will be

stated:
1. Under model m,, given s;g,
(Nryy, |8ig) ~ binomial(ygs, Okn)

where yg; is the true number of vehicles in group Ug,. Hence, Py =

Yenbrn and (T%kh = Yenbin (1 — Opp).

2. If the vector n,, is conditioned upon as well, the set 7, behaves as
selected by stratified sampling with SI sampling in each stratum (STSI)

from Uj.

46



4.3. Proposals for missing data adjustments

4.3.2 Strategy 1

We are now ready for our first proposal for missing data adjustments. The
idea here is to make use of the procedure for handling missing data which
is already built into the traffic analyzer. From excess pulses, vehicles are
created or imputed. The imputed vehicles are also assigned speeds, based on
those of previously registered vehicles. For details on the stepwise, basically

non-random imputation procedure, see [1].

At present, the survey management chooses to discard all imputed vehi-
cles in the estimation. Why? The traffic analyzer, including its imputation
algorithm, was developed back in the 1970s in order to meet the demands
of that time: flow measurements on state roads. Today’s speed survey is
conducted on urban roads, where the traffic situation (and hence the ‘pat-
terns’ of arriving pulses) is far more complicated. The performance of the
imputation procedure under the new conditions has not yet been completely
evaluated and is therefore distrusted. In particular, the imputed speeds are
believed to be undependable.

The Strategy 1 estimators, now to be presented, put some trust in the
number of imputed vehicles, but none in the imputed speeds.

Estimator of flow

As estimator of the flow in site k, y, we propose

Hj, Hy,

~(1 ~(1

yl(c )= Z (nﬁch + nI}ch) = Z ylE:h) (4‘1)
h=1 h=1

where ny,, is the number of imputed vehicles in homogeneity group Uy, and
nn = Zf:ﬁ LI

The estimator g],(;) is a function of the n,,,’s, whose stochastic properties
are regulated by model m,, and of the n;,, ’s, which in principle are fix entities.
To simplify, we will treat the latter also as random variables. A random model

for ny,, is stated in Section 4.3.2.

47



4. Missing data

Estimator of travel time

As estimator of the travel time in site k, zx, we suggest using

Hy, Hy, Hy,
~(1 Z'r Ly Zr Ly _
gl =) S =y S =Y () Ty, (42)

h=1 kh =1 M/ Uk

where Z,,, = > %,/n,,. In words, the registered travel times are simply
weighted by the corresponding inverse estimated registration probabilities.

If we had a choice, we would estimate 6, by the true registration rate
Ny, /Yin, instead of 9,(:,3 Then, the estimator 2,(;) would be the census ver-
sion (the special case when the ambition is to observe all members of the
population, and thus missing data is the sole source of randomness) of the
direct weighting estimator ( [28, Equation (4.10)], [29, Equation (15.6.8)])
of z;. Conditional on s, and provided that the probability of an empty
homogeneity group is negligible, 2,(;) would then be unbiased for z; under
model m,.

However, we do not know the denominator g, of the registration rate,
but use Q,SL) Since the Q,SL)’S are random, the statistical properties of 2,9)

remain to be investigated.

A model of the imputation mechanism

The traffic analyzer’s procedure for creating imputed vehicles is not easy
to penetrate or describe. A flow chart facilitates the understanding, but
the procedure is still hard to handle formally. We therefore enter upon an
easier (simplified) course and treat the number of imputed vehicles, ny,, , as
random.

In [29, Section 16.3], a simple measurement model is formulated, in which
measurements on elements of a sample are modeled as random variables.
An observed value is viewed as composed of the true value and a random
measurement error. The model is ‘simple’ since the model moments do not
depend on the realized sample. Our imputation model, denoted m;, is formu-
lated in the same spirit as the simple measurement model. The observations
considered are the imputed numbers n;,,. An n,,, is viewed as composed of

the true number of unregistered vehicles, yiy, —n,,, and a random error ey,
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4.3. Proposals for missing data adjustments

The model moments are assumed to be independent of the sample. The mo-
ments are, however, allowed to depend on the number of registered vehicles,
Nr,,- This makes sense since the imputed vehicles are created from surplus

pulses.

The imputation model, m;

Given s, and n,,,

e the number nj,, of imputed vehicles in homogeneity group Uy, (h =
1,...,Hi, k € s,4), has the mean By, = E..,(ng,, |8ig, Ny, ) and vari-

2 —
ance oy, = Vi (N1, [Sigs T ),

e the n;,’s are independent, and

2 .
e the model moments py,) ~and o(;,) —are independent of sig.
The conditional expectation and variance of nj,, given s, with respect

jointly to model m, and m, are, respectively,

Hry = Elll'ruli (nIIch |3iq) = EmrEnu (nIkh ‘Siq’ nrkh)
2

Ol = ‘/1“’"1“1' (nlkh |Siq) = Elllr‘/llli (nIkh ’Si(b nTIch) + ‘/nmEuu(nlkh |SiQ7 Ny, ) .

In its present form, the imputation model is quite vague: it does not say
how ny,, is connected with yx, —n,,, and ex,. The model is further specified
in Section 4.4.2.

4.3.3 Strategy 2

Our second proposal for missing data adjustments, Strategy 2, rests on the
use of the auxiliary variable ME for estimating registration probabilities.

Estimator of flow

If we do not use the imputed vehicles, we have few options left for adjusting
the flow for missing data. One remaining possibility, however, is to weight
the numbers of registered vehicles in a suitable manner. The (estimated)
registration rates used in Equation (4.2) are no longer an option, but other

estimates of the registration probabilities are needed.
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The possibility of estimating (response) probabilities from auxiliary data
is quite sparsely discussed in the literature. The idea is put forward in [5,
Section 9]; other references include [8], [9] and [6, Section 3.5]. In [10], re-
sponse probabilities are modeled by logistic regression and estimated from the
fitted model. Nonparametric estimation methods are discussed for instance
in [14].

We do not want to introduce model parameters into our adjusted estima-
tor (we do not know how to estimate them from sample data), and therefore
choose a very simple approach: we try to find an auxiliary variable with
roughly a one-to-one relationship with the unknown registration probability.
Within our limited supply of variables, the ME is the one we hope fits the
description best. Thus, our second proposal for estimator of the flow in site k
relies on the use of (M E),,, the ME for homogeneity group Uy, as estimator
of Oyp:

/\(2) _ nrkh _ nmh _ /\(2)
I N L (1
h=1 Upp h=1 =

In order to evaluate the statistical properties of y,(f% we need to specify

the relationship between 60y, and @,(fh) A model for this relationship is stated
in Section 4.3.3.

Estimator of travel time

As estimator of the travel time in site k, z;, we suggest using

Hk Hk
A(Q)_ZZT l’v_zzr Lo
h=1 Uy h=1 kh

The estimator 21(;) is constructed according to the same principles as 21(91) in

Equation (4.2), only with 0, estimated by é,(fh) instead of 9,(:,3

An error model for @(2)

Our error model for 9,(62,3 = (ME),, as estimator of 6y, has very much in

common with the imputation model in Section 4.3.2 (and thus also with the
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4.4. Estimation with missing data

simple measurement model in [29, Section 16.3]). Again, an observed value
is viewed as composed of the true value and a random measurement error,
and the model is ‘simple.” The observations considered here are the mea-
surement efficiencies (M E),,. In the role as estimator of O, the (ME),,
is viewed as random; or, more precisely, as composed of the true registration
probability, 0x,, and a random error €. The model moments are assumed
to be independent of the sample and of the number of registered vehicles,

Ny -

The error model for 9,(5}3, my

(2
e The estimator 9,(6,3 = (ME),,, of Oy, (h = 1,...,H, k € s;4), has the
mean fi, and variance 0;(2),
kh kh

(2
e the 9,2,3’5 are independent, and

e the model moments N0 and 0;(2) are independent of s;, and n,,, .
kh kh

(2

The error model does not specify how G,Eh) is connected with 65, and ey,.
Two possible relationships, the additive and the multiplicative, are consid-
ered in Section 4.4.2.

4.4 Estimation with missing data

A more realistic situation than the one dealt with in Section 2.6 is that some
observational data are missing. Then, the true a;’s are unknown.

4.4.1 The estimators f&@ and R

Let d,(:), k € siq, be the estimator of aj under Strategy ¢ (¢ =0,1,2). The
joint probability distribution (conditional on s;,) of the random variables
d,(:) is called model my. The estimator of ¢, obtained by replacing a by
a® in Equation (2.1) is denoted #,; the corresponding estimator of R is

R(C) - fg(c) /'Eé(c) .
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Let expectations and variances be indicated by subscript ms, if taken with
respect to model my; by subscript pm, if taken with respect jointly to the
sampling design p and model my. In order to shorten the formulae, we de-
note E,,, (CAL,(:) |Siq) and V,, (d,(:) |siq> by 7(€L(C)) . and 6 (d@) L respectively.
The population entities t(a@ )ig» o(a)ir ta(a) va(&(c))m, 83(&(3))Uiq7 Vy(a@ )i
V. (@) 11 and V’y(&(”))iq for 7(&(0)) are defined in the same manner as the cor-
responding entities for a in Section 2.6.

The statistical properties of £4.) are investigated in the following theorem:

Theorem 4.4.1 Jointly under the sampling design p in Section 2.4 and
model my, the expected value of ty. is given by

ZE wa0:) = ta0) (4.5)

where Ep,nz( m(c)z) = t’y(d(c))i' The variance of tye is given by

Ny t . . 2 Ny I
~ ]_ ale))q ]_ V m t7|'ﬁ, )i
V;ng (ta(c)) = Zpl ( ’Y( ) — t'y((ﬁ@)) + E Z e marn) 2( © ) (46)

I Di

where

~ N i N’i ~(c
V},,H,Q (t‘rrd(c)i) = V'y(&(c))i + 1I Z +Vig ZU 5(a( ))k

nrri Urri Ny iq

The proof of Theorem 4.4.1 is given in Appendix B.1.3.

From Theorem 4.4.1, the bias of f&(c) as estimator of ¢, is

Eplu2 a(c) t = Z ZUH Z — (lk) . (4.7)

In general, the sign of the bias is unknown. This is also true of the sign of
the variance change due to the use of fa(c) instead of ,, Vie (f&(c)) — V;,(fm).

If the estimators d,(f) are unbiased for ay, the following corollary applies:

Corollary 4.4.1 Assume that 7(&(0))k equals ay, (k € s). Then, the estima-
tor tye is unbiased for t,. The use of tye instead of t, as estimator of t,

wncreases the variance by

‘/;77"2 (td(C)) - V;j(fa) = — Z 1 Nipi Z

Di Nrri

Z cs(a@),c . (48)

Urri Mg
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4.4. Estimation with missing data
The statistical properties of R© are investigated in Theorem 4.4.2:

Theorem 4.4.2 Jointly under the sampling design p in Section 2.4 and

model my, the estimator R© s approzimately unbiased for

RO — Epm, (zi@(c)) _ t”(@(c))_ (4.9)
Epmg (té(ﬂ)) ty(é(c))

The approximate variance of R© s given by

b 2 ) my — D my Di .

where tv( 5); and Vi, (fﬂﬁ(c)i) correspond to tv(&@)i and Vo, (t}d(c)i), re-
spectively; v and § are however functions of E© = §© — R©2©) instead of
5
a\?.

The proof of Theorem 4.4.2 follows by a slight generalization of the results
in [27, Section 6.8.2.].

From Theorem 4.4.2, the sign of the bias of R as estimator of R, as well
as the sign of the variance change due to using R© instead of the prototype
estimator R, is in general unknown.

The following corollary applies if g),(f) and 2,(;) are unbiased for y, and z,

respectively:

Corollary 4.4.2 Assume that V(Q(C))k = Yy, and 7(2(0))k = z; (k€s).
Then, the estimator R© s approzimately unbiased for R. The approrimate
variance increase due to the use of R instead of R as estimator of R is

given by

AV, (RO) = AV, (R)

Ny

11 1 Nip; N; .
_ N2 i 6(E(C)> 411
tz mr 1 Di NI ZUIH Nig ZUi k ( )

where B©) = 79 — R3),
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4.4.2 Results for present and proposed estimators

In Section 4.4.1, the general statistical properties of f, and R were de-
rived. Here, specific results for the estimators under Strategies 0, 1, and 2
are derived. This implies presenting the explicit v and 6 expressions.

When dealing with the Strategy 1 and 2 estimators, only the special case
with a single homogeneity group is considered. Subscript A is then no longer
needed. The sole reason for this demarcation is to keep the notation simple;
expansion of the results to the case Hy > 1 is straightforward.

Strategy 0

Model my is here interpreted as the registration model m,. When applying
Theorem 4.4.1 on the estimators f@<o) and 52(0), we use

(aka &](90)> = (ykagl(90)> = (ykanrk)

for t;0), and

(ak,&,go)) = (zk,i,go)) = (Zk, Ny, Ty, )

for t;(o) .

2
TR

For i), the model moments are simply 7 (§*), = p,, and 6(3(?), =0
whereas for ¢, they are

NONEL
< =l 4.12
VEY) = (4.12)
£ (0) o L= 10 /Y o 2\,
6(z )k = Eu, | ny, — Seu, siq | +{— | o7, (4.13)
Tk Yk

where

1 2k 2
o o —— ] .
= 5, (5= )

The first term on the right-hand side of Equation (4.13) simplifies to

1— Ty, /yk 1
B, (ngkn—kS-EUk |8i‘1) = |:Nrk B z (u?“k + O—ik):| S:%Uk' (4.14)

Tk
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4.4. Estimation with missing data

Equations (4.12) and (4.13) are derived by use of Proposition C.1 with
(A, B) = (n,,, %, ). We also use the fact that
_ 2k
By, (xm |n7'k7 siq) = (4'15)
Yk
1- 'r
1= /e ge (4.16)

‘/lnr (:E"'k |n7”k7 Siq) = n
‘T

k

which follows from implication number 2 of the registration model — see
Section 4.3.1. (The moments in Equations (4.15) and (4.16) are in fact con-
ditional also on the event that n,, > 1. For details, see [29, Section 7.10.1].)

When applying Theorem 4.4.2 on the estimator RO we use

E’Igo) =Ny, — R(O)nrki’Tk =N, (1 — R(O)iTk)

where RO =" u,. />, (2k/Yk) ttr,- The model moments are

20\ _ (1 _ pO?Zk
7<E )k (1 R )/m (4.17)

Yk
. 2 1
(B, = (RO | = - 12, +03) | 82,
Yk
2
2k
+ (1 - R(O)%) ol . (4.18)

Equations (4.17) and (4.18) are derived by use of Proposition C.1 with
(A, B) = (ny,,1 — Rz,,) and by applying Equation (4.14).

We now make an attempt to simplify the results for the Strategy 0 estima-
tors. From implication number 1 of the registration model in Section 4.3.1,
ty, = Yebr and afk = Yk (1 — 0x). It follows that for fgm), the model mo-
ments are 7 (§?), = yxy and §(§0), = yrbi (1 — 04); for t.0), they are

v(2?), = 210k (4.19)
2
§(29), = 0x (1 — 6x) [? + (yp — 1) 55,4
k
=0, (1 —0y) ZUk z? (4.20)
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4. Missing data

and for R, they are

7( E(O)>k — 0 (yx — RO z) (4.21)
2
6(E™) =00 (1= 60) |(RO)" (g — 1) S2, + (1 - Rw)ﬁ) yk]
k Yk
=0, (1—6,) [(R(O))Q >, o= 2ROz + yk} (4.22)

where R(O) = ZU ykgk/ ZU zkﬁk.
Assume that the registration probabilities 8, = 6 for all £k € U. Then,
RO coincides with R, and 7<E<0>) — 0E,. Tt follows that
k

gy = Ot (429
Vi (b = Vil + 20 S Nt dagesy,
Niz N, A
o Lo e 2, (),
= 02V, (brpi) + ]:I’II ZU,” ]:q ZUM 5<E<0>)k. (4.24)

By insertion of Equations (4.23) and (4.24) into Equation (4.10), and com-
parison of the resulting variance expression with the one in Equation (2.9),

we see that

AV, (RO) = 024V, (R)
Ny

T R SR Tl o

2 .
tsmy p— i Ny Urri Nygq

X ZU (}32 >, T 2R+ yk) . (4.25)

Strategy 1

Expectations and variances with respect to model my are here interpreted as
taken with respect jointly to model m, and m;, and are indicated by subscript
m,m;. When applying Theorem 4.4.1 on fﬁ(l) and f2(1>, we use

<ak,d,(gl)> = (?/kaﬁz(cl)> = (ymnrk + nIk)

o6



4.4. Estimation with missing data

for 50y, and

(ak’ &I(cl)> - (Zk’ él(ﬂl)) = (Zkv (nTk + nfk) ‘TTk)

for #1). When applying Theorem 4.4.2 on RV, we use
B _ _ R T 1 - RWz
k (nﬁg + nIk) (nTk + nIk) Lry, (nrk + nfk) ( ka) :

The v and 6 expressions will first be presented for the general imputation
model m in Section 4.3.2 (‘general’ in the sense that it does not say how np,

is connected with y, — n,, and e); then for a more specified model.

k

Under general imputation model assumptions The model moments

for £;a) are

V(G = b + b (4.26)
6(@(1))k =07 407 +2Couv,, <mk, K1), |sz-q) (4.27)

where Couv,,, (nrk, (1ir), \siq) is the conditional covariance of n,, and )

given s,,, with respect to model m,. For ¢;u), the moments are

y(2W), = %7(@”% (4.28)

and

A 1 — n’r‘
6(2(1)) = Emei l:(nrk + nfk)2 Tk/yksglfk |Siqj|

k
Ly

s(5M), - (4.29)

2 1-— Ty /yk :
= Elm{ |:(77T1« + /'L(Il"')k) + U%Ir)k:| —ksjUk ’Siq}
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4. Missing data

Equations (4.28) and (4.29) are derived by use of Proposition C.1 with
(A, B) = (n,, +ny,,Z,,), and the equalities

Eron; (Tr [y, + 11,5 Sig) = By B, (B, [0, + 01y s i)

= EnEr(Try [0y, 8iq) = Er(Tr [0y, i)
Vi (Zry [Ny, + 1015 8iq) = B, Vi, (T, 1y, + g 115 8ig)

+ Vi,

i

== Emi ‘/m,« (frk |n7“ka Siq) + ‘/miEmr (frk |7’er, Siq)

Emr (i‘rk ’nrk + NN, Siq)

= ‘/le (‘frk |n7‘k78iq)

which hold since Z,, and nj, are independent.

Finally, the model moments for RW are

A z .
V(BV) = (1 - R“y—z) (5), (4.30)

A~ 2 s /yk
6(E(1))k — (R(l)) Eonpm, [(nrk + n’Ik)Q nikaUk ] }

Zun

2
N I_Rmﬁ) s(a)
Ve (¥ )Ic

2 2 Ny [ Yk
= (R(l)) EmT{ |:(ﬂrk + ‘UJ(I\T)k) * U%““)k:| 7kS§Uk ’Siq}

Ty
+(1-RrWE )6(Q<1))k. (4.31)

Equations (4.30) and (4.31) are obtained by use of Proposition C.1 with
(A,B) = (nrk +ng,,1— R(l)frk).

Consider the desirable case where, given n,,, the number of imputed
vehicles ‘on the average’ equals the number of unregistered vehicles (that is,
K(tlr), = Yk —ny,.) Then, pt; = yp—p,, , and consequently, 'y(y(l))k =y, and
7(2(1))k = zg. From Corollary 4.4.1, fg(l) and t;u) are unbiased for ¢, and ¢,

respectively, and from Corollary 4.4.2, RO is approximately unbiased for R.

Under a multiplicative imputation error model The size of the error
associated with ny, is likely to depend on the number of unregistered vehicles.
The more vehicles that are not registered, the more complicated the impu-
tation task apparently is, and the higher the risk of large errors arising. For

o8



4.4. Estimation with missing data

this reason, let us assume that the number of imputed vehicles n;, consists
of the number of unregistered vehicle times a random error:

ng, = (Yk — Ny, Ek- (4.32)

Let the conditional mean and variance of €, given s;; and n,, be denoted
pe = B, (ek |8igynr, ) and 02 = Vi, (ek Sig, iy, ), TeSpectively. As the nota-
tion suggests, the conditional moments p. and o2 are assumed to depend
neither on s;, or n,, nor on the road site k. This makes sense since the same
imputation software is used throughout the survey.

Under the multiplicative error model,

try, = Wk = nny) e (4.33)
ey, = (e = nr,)" 07 (4.34)
and
P, = B, [k — 1) e |5ig) = (g — 1) e (4.35)
Ui = B, [y — nr,) o2 |Siq] + Vi (U — 1) 12 |534]
= [ = p)" 02| o2+ oLt (4.36)

We now modify the v and 6 expressions presented earlier (Equations (4.26)
to (4.31)) in compliance with Equations (4.33) to (4.36). The resulting model

moments for ¢;q) are

Y(GN) =ty (1= 1) + g (4.37)
6(g(1))k = 0-72“1@ [(1 - /"LE)Q + 0?] + (yk - /'LTIC)Q 0’?. (438)

In the derivation of Equation (4.38), we use the fact that

Covy, [n"'k7 (yk - nrk) He |3iq] = —p: Vi, (nrk ‘Siq) = —,ugafk.

For t;1), the moments are

y(2W), = %V@(U)k (4.39)
5(2(1))19 = Elllr{ [(T’rk (1 - Ma) + yk:ue)Q + (yk - nTk)Z Ug]
1—n./y 2\,
X T, £S20, |5iq} + (y_i) 8(5), (4.40)
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and for RO,

(), = (1- 1% 55, )

Yk
6<E(1))k = (]Db(l))2 EmT{ [(nrk (1 - /1’5) + Z/kﬂa)Q + (yk - n’Tlc)Q Ug]
2
i+ (1-ROE) 6G"),

Ny K yk

0 — ol A p) fyepe] (L= ) Yy, + ety

zZ _ Z=k .
v {ﬁ [y (1= p2) + ks } (1= 1) Do 4y, + it

Let us now revisit the favorable case of pi(7,), = yr—ny,. We have already
concluded that in this case, the estimators fyu), t}m and R® are unbiased,
or approximately unbiased, for their true counterparts. But how about the
variance increases due to not using the complete-data estimators? For the
multiplicative imputation error model, this case corresponds to a conditional
error mean equal to unity (p, = 1). The associated 6 expressions for £, and
t:0) (to be inserted in Equation (4.8)) are

63") = [ — 1)+ 0] o (4.43)

and

5(29), = Emr{ Wi + (g — n,)” 02 1_”—”%/%53% |sz-q}

Ny,

N (ﬁ)Q(g@(n)k (4.44)

Yk

respectively. The 6 expression for R (to be inserted in Equation (4.11)) is

. 1—n,
o(BV) = RE{ [+ (g — mp ) 0?] LDl Ve g2 |}

Ny,

+ (1 . Rﬁ>25(g<1>)k. (4.45)

Yk

The expectation occurring in Equations (4.44) and (4.45) can be worked out.
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4.4. Estimation with missing data

Some straightforward algebra gives

1 —ne Yk
Elnv‘{ [yi + (yk - nm)Q Ug] =kS§Uk |5iq}

nm
1 ol +
= {on () o, (I ) 1] + 02 (3, -2 - T2 ) b,
Ny, Yk
0.2 + 2
~ {yk (1+0?) <% - 1) + 02 (3% — 2y — ky—k”k) } S, (4.46)
Tk

where the approximate equality arises from the (first order) Taylor approxi-
mation B, (1/ny, |Siq) & 1/Ew, (N, [Siq)-

Can Equations (4.43) and (4.46) be additionally simplified? From impli-
cation number 1 of the registration model in Section 4.3.1, , = yty and
02 = yrbx (1 — 0x). Insertion in Equation (4.43) gives

8(5M), = v (1= 0x) [0k (1 — yi) + ] o (4.47)

and in Equation (4.46)

1- Nry [ Yk
.&{m+@wmm%ﬂ——ﬂ2ﬁw%}

Ny

1 1
~ {yk |:(0_k - 1) + o2 (G_k —3+30, — 9%)] — 020, (1 —ek)}sg,]k.

(4.48)

Strategy 2

Expectations and variances with respect to model my are here interpreted as
taken with respect jointly to model m, and m;, and are indicated by subscript
m,m;. When applying Theorem 4.4.1 on the estimators f@(z) and t;(z), we use

~ A Ny
(CLka (L,(f)) = (?le yl(cQ)) = <yk7 T;)
0

k

for fﬁ<g) , and



4. Missing data

for £.2. Finally, when applying Theorem 4.4.2 on R® | we use

~(2) ny 2) Npy, _ o Ny 2) —
By =5 — R®5an = 5y (1- R¥%,,).

The v and 6 expressions will first be presented by use of the general error

~(2

model ¢ in Section 4.3.3 (‘general’ in the sense that it does not say how 9; )
is connected with 6y and €), then two special cases will be treated.

1@ is theo-

Under general error model assumptions The estimator g,
retically complicated, being a ratio of random variables. By use of Taylor’s
theorem (see, e.g., [4, Theorem 7.4.1]), we are however able to approximate
its moments. The first-order Taylor approximations of the model moments

for tAQ(z) are given by

TC) 4.49
v(5?), s (4.49)
2 9 0.2
P oy b
5(1?), ~ B kg k) (4.50)
( )k 'uéff) ,u%k le(f)

The model moments for fg(z) are obtained by also using Proposition C.1 with
(A,B) = (nrk/Q,C ,:Um>, and the equalities

Emrmy, (frk nrk/é](f)7 Sz'q) EnuEmr (xrk Ny, /9 592)7 qu)
= Emt Emr ('Trk ’n'r'ka Siq) = Emr (jrk ‘nrku Siq)
~(2 ~(2) ~(2
V;nrmt (jrk n’f‘k/el(c )7 siq) = Emt ‘/mT (frk ’n’rk/el(c )7 Hl(c )7 3iq)

2
+ V;nf,Emr < ’I‘ ’r‘k /ek ’ ek ’ 8“1)

= Emt V;uT (3_37';c |nrk7 Siq) + V;ntEmr (z'rk |nrk; Siq)

= V;llr (i‘hc |n’7“1c ’ Siq)

A (2
which hold since z,, and 02 ) are independent. The resulting moments are

52)) o Pk M 4.51
Y\Z ~ .
( )k Yk M@I(f) ( )
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4.4. Estimation with missing data

2
X Nr, \ 1 =7 /Yr
(S(Z(Z))k ~ Emet (é(_;)> —kSEUk ‘qu

n
k Tk

+ (ﬁf&(g(”)k. (4.52)

The second equality for 6 is derived using the independency of n,, and 9,(92),
and Equation (4.14). The final equality arises from the (first-order) Taylor
approximation

1| 1
()| E. [(éff))z} |

The model moments for R® are

(2 ~ 2) Pk (2
7<E( >>k ~ (1 RO )’y(y( ), (4.54)

~(2 - 9 Ny ]- ny /yk 2
6(E( ))k ~ (R( )) MMy ( k) —— SzUk ‘

Ew, (4.53)

+ (1 (Q)Zk) 5( )k
— (R®)* E,, (2) ] urk—— (u2, +02)| Sa,
(1 Y Sk ) §(5),
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(R2)? [ 1, .,
A /"L’r‘ - /"L'r + U’I‘ SHQ?
O.;@) I ‘u;@) oy ( k k) Uk
k k
2
+ (1 = R@)ﬁ) 5(5?), . (4.55)
Yk

Equations (4.54) and (4.55) are derived by use of Proposition C.1 with
52
(4.B) = (s, /0

9(2)

11— R(Q)ivrk>, and (for ¢) the independency of n,, and

, Equation (4.14), and the approximation in Equation (4.53).
Under the registration model, y,, = ypbp and o7, = ypfy (1 —0;). It
follows that Equations (4.49) and (4.50) simplify to

. 6
V(@) = (4.56)
Ha®
Ok i 1 — 0 02(2)
5(9@), = y? + = | 4.57
( )k g ,ugl(f) YOk /J;l(f) ( )
Equations (4.51) and (4.52) to
. 0
V(z(Q))k ~ 2t (4.58)
Ho®
@) o 2
6(,2 )kN 2 2 Ok (1 — 0x) (yk_l)SxUk
Ty T oo
k k
2
Zk ~(2
+( =) 6(u@
(yk) (¥ )k
1 22
=———F50(1-6 — —k>
‘7;(2) + N;@) s « (ZUk Yk
k k
2
z
+ (y—i) 5(5%), ; (4.59)
and Equations (4.54) and (4.55) to
. 6
7(E<2)> ~ Y (1 - R@)ﬁ) —k (4.60)
k Yk %g)
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s T e Uk Ye
5 2
+ (1 — R(Z)y—’;> §(9%), (4.61)

where R® =37,y (9k/#9§f>> /2vz <9k/#é§f>>'
Assume that 9; is an unbiased estimator of the true registration prob-
ability (p;e = k). Then, from Equations (4.56) and (4.58), Y(5?), = vk
k
and 7(2(2)) = 2k It follows from Corollary 4.4.1 that f@(z) and f2(2> then are
unbiased for ¢, and ¢,, respectively. Furthermore, from Corollary 4.4.2, R®

is approximately unbiased for R.

Under some special cases of the error model for @,(f) Consider the
(2
error model m; for 912) stated in Section 4.3.3. Two possible functional

relationships between @,(f) and 6, are the additive error model,
91(3) = ch + €k (462)

and the multiplicative error model,

A2
00 = Oper. (4.63)
Let the mean and variance of ¢, be denoted y, and o2, respectively. Ac-
cording to model m;, these moments are independent of s;, and n, . In
addition, we now assume that the error moments are independent of the site
k as well. In Equations (4.62) and (4.63), by letting ;) = 0 + . and
k

03(2) = o2, results are obtained for the additive model. In the same manner,
k

by letting 1, = Opp. and 0;(2) = 0202, we get results for the multiplicative
k k

model. Consider in particular the latter model. For this, Equations (4.56)
and (4.57) modify to

v(5?), = % (4.64)
2
1-4 o’
5(6?) = (%> ( k +_€>; 4.65
). e gkl (469
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Equations (4.58) and (4.59) to

v(2®), ~ % (4.66)

. 1 16 %
), gt (3, 22— )

N (ﬁ)gé(gm)k; (4.67)

Yk

and Equations (4.60) and (4.61) to

y(E<2>)k ~ I (1 - Rﬁ) (4.68)

He Yk
) R? 1-40, 2
6(E(2)) ~ 2_Zk
k 0'? + ,u? O ZUk T Yk
2
+ (1 = R@) 5(5), . (4.69)
Yk

For the multiplicative model, the propitious case pry@ = O, for which fﬂ(z)
k

and £, are unbiased and R® approximately unbiased, corresponds to an
error mean equal to unity (p, = 1).

4.4.3 Summary of theoretical findings

We investigated the statistical properties of various estimators of the param-
eters t,, t, and R. The estimators are all based on estimates, rather than
the true values, of y and z for sampled sites. In general, for each estimator,
the sign of its possible bias (as estimator of the true population entity) is un-
known. Further, the sign of the difference between the estimator’s variance
and that of the corresponding prototype estimator is unknown. A key issue
is whether the estimators of the values of y and z are unbiased or not. If
they are, the estimators of ¢, and ¢, are unbiased as well, and the estimator
of R approximately unbiased. The variances of the estimators of ¢,, ¢, and R
are then surely larger than those of the corresponding prototype estimators.

Under Strategy 0, the values of both y and z are always underestimated,
and so are t, and ¢,. In what direction (if any) missing data bias the esti-

mator of R remains unknown. If, by chance, the registration probabilities 6
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are equal for all sites, the Strategy 0 estimator of R is, however, not biased
by missing data. Under Strategy 1, the estimators of the y and z values
are unbiased if the (conditional) expected number of imputed vehicles, and
the number of missing vehicles, coincide. If the error in the number of im-
puted vehicles is multiplicative, the variance expressions slightly simplify.
Still, they contain a number of unknown model parameters: the registration
probabilities 0 as well as the error variance. Finally, under Strategy 2, the
estimators of y and z are (approximately) unbiased if the estimator of 6y, is.
If the error in the estimator of 6 is multiplicative, as under Strategy 1, this
allows us to simplify the variance expressions somewhat.

The investigation provided us with formulae for a number of cases and
special cases. The expressions are, however, typically quite complicated and
include several unknown entities, which make the expressions hard to eval-
uate theoretically. Detailed experiments would be needed to complete the

picture.

4.5 Empirical study

4.5.1 Study objectives

In Section 4.4, the statistical properties of the various estimators were inves-
tigated. The results, however, relied on model assumptions which may not
reflect reality. Also, the results did not allow us to draw general conclusions
on which strategy that is preferable. The need for model evaluations and fur-
ther guidance in the choice of estimation strategy motivated the collection
of empirical data.

The main objectives of this study were to investigate:

e The forming of registration homogeneity groups. For reasons
stated in Section 4.3.1, the smallest groups considered are watch-hours.
We would, however, like to evaluate the option to join several hours into
larger groups. Can unnecessarily large variation in group registration
rates be avoided this way?

e The assumptions of the multiplicative imputation error model. Is
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Site no. Street name Street characteristics

1 Nygardsvigen Feeding lane for suburban area

2 G:a Tanneforsviigen Part of major route encircling the city

3 Drottninggatan Inner city street

4 Kaserngatan Part of major route encircling central city
) Bergsvigen Throughfare

Table 4.1: Selected road sites in the city of Linkoping, Sweden.

the error in the number of imputed vehicles multiplicative (as suggested
in Section 4.4.2)7 Is the number of imputed vehicles conditionally
unbiased for the true number of missing vehicles (conditional on the

number of registered vehicles)?

e The assumptions of the error model for @(2). Is the functional rela-
tionship between 9,({,2) and 0 additive or multiplicative (or neither of
them)? Is the estimator 9,&2) unbiased for the true registration proba-
bility?

Finally, we are interested in the empirical behavior of the proposed esti-
mators of flow and travel time for a road site.

Note the limited scope of the study. We did not attempt to perform an
experiment detailed enough to estimate all unknown entities included in the
formulae in Section 4.4, and additional work would be needed to make full

use of our theoretical results.

4.5.2 Design of the study

Data were collected for five road sites in the city of Linkoping, Sweden. The
sites were purposively chosen to represent different types of traffic environ-
ments. However, to simplify, the study was limited to two-way, two-lane
streets with a speed limit of 50 kilometers per hour — a typical road design
and speed limit for Swedish urban roads. For details on selected sites, see
Table 4.1.

In each site, data collection went on for 24 successive hours by use of two

pairs of pneumatic tubes and three traffic analyzers. The installation of the
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Figure 4.1: Installation of the measurement equipment. (Illustration: Bjérn
Boke)

equipment is outlined in Figure 4.1. One pair of tubes (Ao, By) connected
to a traffic analyzer T, was used for simultaneous observation of vehicles
on both street lanes. The second pair of tubes (A, By) was installed in
parallel with the first, only with a slight lateral displacement. The length of
the displacement, about 30 centimeters, was chosen to satisfy two criteria:
(1) sufficiently long to prevent the tubes from disturbing each other, yet
(2) sufficiently short to ensure that passing vehicles keep the same speed as
while passing (Ag, Bg). By use of valves, the tubes (A, B;) were plugged
at the centerline marking of the street. This procedure enables separate
measurement of the traffic on each lane. The tube ends on each side of
the valves were connected to a traffic analyzer. In Figure 4.1, lane 1 is

measured by the tube parts (A1, B11) connected to traffic analyzer T7; lane 2
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by (Aiz, B12) connected to traffic analyzer Ts.

The plugging method has been developed at the SNRA as a means of
improving data quality. The registration task facing T; and 75 is much easier
(and hence less subject to measurement errors) than that of Tp: vehicles do
not meet while passing the tubes, fewer vehicles pass, and their direction
is known beforehand. Despite this, the method is rarely used in the speed
survey. The main reason is that it is more time-consuming to use than the
unplugged alternative; the valves need to be mounted in the tubes, and the
laying out of the tubes demands greater care. Another drawback of the
method is the vulnerability of the valves. If a valve, for instance, becomes
filled with rain water, or squeezed by a vehicle wheel, it may quit working.
According to plan, all experimental data were to be collected August 21-22,
2001. Due to valve malfunctioning, however, sites 1, 3 and 4 were remeasured
September 24-25, 2001.

In the experiment, the data set produced by Tj is intended to represent the
output one would expect from a measurement performed within the regular
survey. The data set produced jointly by T} and 75, on the other hand, is
intended to represent the ‘truth.’

4.5.3 Data processing

We start by introducing some notation. Consider site k& during hour h as
measured by traffic analyzer Ty;k = 1,...,5;h = 1,...,24;d = 0,1,2. For
(k,h,Ty), let Ny a0d 1y, o denote the number of registered and imputed
vehicles, respectively, and (ME) kh(a) the measurement efficiency. The corre-
sponding numbers of vehicles for a 24-hour period are n,, , = 24:1 Nrna)
and np,, = 224:1 Nl - The measurement efficiency for a 24-hour period
is not available from the analyzer, but we calculate an approximate value as
2

(ME)k(d) = Zh:l Mg ay (ME)kh(d) /nrk(d)'

The observational data from M, are to be compared with the joint data

from M; and M,. To simplify, let Nrinirzy = Prny + Mrence) and Nryryey =
24
h=1 nrkh(1+2)7

ingly. For the set ryp142) of size Mrin142) of vehicles registered during hour A
by M; or M, the total travel time is )

and let the entities ny, , , and g, be defined correspond-

Z,. The total travel time for
Tkh(142)
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To T T
Site Ny ng MEFE n, ng MFE T, ng ME
1 5690 69 98.3 2976 13 99.5 2763 13 99.3
14314 747 94.7 7924 249 96.9 6989 58 98.6
10850 2856 83.9 5772 2038 81.0 6546 527 93.2
10948 181 97.8 5363 47 98.6 5730 80 98.3
11259 338 96.6 5660 8 99.8 5907 66 98.3

T W N

Table 4.2: The number of registered vehicles (n,) and imputed vehicles (n;),

and the measurement efficiency (M E) in percent, by site and traffic analyzer.

a 24-hour period is Zrk(1+2) Ty =30, renies) Tv-

A summary of the outcome of the measurements is given in Table 4.2. If
the data collection had turned out perfectly, the table would have contained
nothing but zeroes in the n; columns for analyzer T} and T (the MEs for
Ty and T had then also been 100 percent.) Table 4.2 exposes, however,
that even though the use of valves reduced the need for imputations, it did
not succeed in eliminating it. Site 3 is our real ‘problem child’; on this busy
inner city street, all three analyzers encountered difficulties. In particular, on
lane 1, the traffic approaches a traffic signal. The signal causes the vehicles
to either move slowly with short time gaps or to stand in line — an especially
difficult measurement situation. We judge that the resulting large number of
imputations, and low ME, makes the T data useless for our purposes. For
this reason, only the lane 2 part of the Ty data, and the T5 data, are used in
the coming analysis of site 3.

In certain cases, imputations in the T} or T, data can be matched with
vehicles properly registered by Ty. These situations are most likely to occur
when passing vehicles straddle the valves. For each site, we compared the
data files from Ty, T} and T5, looking for imputations in 77 and 75 which, with
reasonable certainty, could be matched with registered vehicles in Tj. These
imputations were then substituted by the registered vehicles. Table 4.3 shows
the number of imputed vehicles that were substituted, how many registered
vehicles they were substituted by, and how many unsubstituted vehicles were
left in the adjusted data files. We see that the number of substituted vehi-
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4. Missing data

Ty T,
Site n} ng nr—nj ny ng ny—nj
1 4 3 9 2 1 11
2 46 30 203 23 20 35
3 - - - 62 50 465
4 34 23 13 47 29 33
5 0 0 8 42 33 24

Table 4.3: The number of imputed vehicles that were substituted (n}), how
many registered vehicles they were substituted by (ng), and the remaining
number of imputations (n; — nj), by site and analyzer. For site 3, only data

from M, were examined.

cles is consistently larger than the number of substitutes. This makes sense
since a vehicle straddling the valves typically produces two ore more imputed

vehicles, distributed among T and T5.

4.5.4 Estimation

In the estimation, for 71 and 73, the number of registered vehicles n,,, , , .

and their associated total travel time Y Zy, 18 calculated from the

adjusted data set ry;(142) (see Section 4.5.3) I;:rli(arlz)no distinction made between
‘truly registered’ and ‘substitute’ vehicles. From Table 4.3, after adjustments,
the sets 74n(142) still contain imputed vehicles. Some of these imputations
are probably correct, whereas others ought to be removed. For each selected
site and each measured hour, to form a basis of later analysis, we calculate
a number of estimates. Since there is no way for us to know how to treat
each imputation case, our estimates are calculated both with the imputations
in 7gn(142) retained and removed. Estimates for which the imputations are
retained are indexed by ‘wi’; estimates for which they are removed by ‘woi’.

For site k£ and hour A, the following estimates are calculated.

Estimates of registration probability The registration probability 6
for (k,h) is estimated by
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4.5. Empirical study

2 nTlch,(o)
ekh,woi = (470)
nTkh(1+2)
A nrkh(o)
Orhi = (4.71)

"Tkh(142) + N ini42) .
In both Equation (4.70) and (4.71), the denominator is intended to
represent the true flow.

Estimates of multiplicative imputation error Consider the multiplica-
tive imputation error model in Section 4.4.2. For (k, h), the multiplica-

tive error e, is estimated by

A N0
Ekh,woi — (472)
N2y — ringo)

A Ny,
Ekhywi = o . (4.73)
Mryn42) + Nnar2) — Mo

In both Equation (4.72) and (4.73), the denominator is intended to

represent the number of vehicles missing in the T data.

Estimates of error in 9(2) Consider the additive error model for 9(2) in
Equation (4.62). For (k,h), the error €, is estimated by

%kh,woi = (ME)kh(O) — ékh,woi (474)
Ekh,wi = (ME)kh(O) - ékh,wi' (475)

Further consider the multiplicative model for § in Equation (4.63).

Under this model, the error €, is estimated by

ME
Ekh,woi = 7( 5 Jinto) (4.76)
chh,woi
ME
gkh,wi = ( ~ )kh(O)- (477)
ekh,wi

The resulting estimates are presented, by site, in graphs in [21, Ap-
pendix CJ. In the next section (Section 4.5.5), our analysis is illustrated with
selected graphs from site 4.

For each selected site, we also calculate the following estimates:
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4. Missing data

Estimates of flow and travel time For site k, the traffic flow y; and
travel time zp are estimated by use of the formulae in Section 4.3.
The resulting estimates under Strategy ¢ (¢ = 0,1,2) are denoted 39/(:()0)
and 2,(;(2)), respectively, where subscript (0) indicates that only Tj data
are used for the calculations. For easy evaluation of the estimates, we
continue by standardizing them. For site k and Strategy c, the stan-

dardized flow estimates without and with imputations are

5 Y
Nl(c,x)voi = u (478)
nT“k(1+2)
~(c)
¢ Y
s = =0 (4.79)
Nry(142) + Ninas2)
whereas the standardized estimate of travel time is
5(c)
~(c zk 0
D= = — (4.80)

Zrk(1+2) Ly

We choose to standardize the travel time estimates only by the sum of
travel times for vehicles registered in the valve measurements (that is, the
imputations in the latter are ignored). The reason is that we do not trust

the travel times of imputed vehicles.

Estimates of average speed For site k, define the average speed (also
known as the space mean speed or harmonic mean speed [13, Sec-

tion 2.2.2])
1 Yk
Yk V=1 uy k

where u, is the speed at which vehicle v passes the site. Under Strat-
egy ¢ (¢ =0,1,2), ug is estimated by the ratio
()
o U
a9 = 20 (4.82)

)
Z(0)

Again for easy evaluation, the estimates are standardized. For site k

and Strategy c, the standardized average speed estimates without and
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with imputations are

- ()

~(c) U,
U’Ic,woi = (483)
’n/?"k(1+2)/ ZT‘k(1+2) xv
N
i = il . (4.84)

(nrk(1+2) + n’Ikh(l+2)) / ZT‘IC(1+2) Ty

In both Equation (4.83) and (4.84), the denominator is intended to

represent the true average speed.

The standardized estimates of y, and z; are presented in Table 4.6 and 4.7,

respectively, whereas the standardized estimates of uy are given in Table 4.8.

4.5.5 Analysis

The forming of registration homogeneity groups

When the estimated registration probabilities 04, are plotted against the
‘true’ flows, the probability estimates are often fairly constant for adjacent
flow levels — see Figure 4.2 — which speaks in favor of merging hours into
larger homogeneity groups by flow. It is, however, not obvious where to draw
the lines between groups: in Figure 4.2, the relationship between registration
probability and flow is quite smooth. (In practice, the true flows are obviously
not available, but a grouping of hours would need to be based on registered
flows.)

Evaluation of the multiplicative imputation error model

If the multiplicative imputation error model is correct, the estimated errors
Ekhwoi and Egp i should not reveal any obvious patterns if plotted against
other variables. However, when we plot the errors against the number of
missing vehicles, for some sites, we discern a tendency of the error variance
to decrease as the number of missing vehicles increases (see Figure 4.3).
Due to the scarcity of observations for large numbers of missing vehicles,
it is nevertheless hard to draw any certain conclusions. When the errors
are plotted against the number of registered vehicles, on the other hand, no

unusual structures are apparent.
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Figure 4.2: Estimated registration probabilities versus ‘true’ flows for site 4.

One data point corresponds to one hour. Dots indicate 9kh,woi plotted against

Nrgnasa)’ plus signs indicate 0y, wi plotted against Nirgprye) T Mg,
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Figure 4.3: Estimated imputation errors versus ‘true’ numbers of missing
vehicles for site 4. One data point corresponds to one hour. Dots indicate

Ekxnwoi Plotted against Mrn142) plus signs indicate &y;wi plotted

~ Moy

agalnSt n""kh(l+2) + nfkh(1+2) - nrkh(o)'
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4.5. Empirical study

To investigate whether the variance of the errors is independent of the
site (as the model states), we formulate an ANOVA model:

k=1,2,..,b

4.85
h=12..c ( )

ékhzoé-i-ﬁk-f-ekh{
where &5, may be either g, woi OF Expwi, b is the number of experiment sites,
and ¢ the number of observed hours within site. In practice, b = 5 and
¢ = 24. The parameter « is an overall mean, (3, is the random effect of the
kth site, and egy, is a random error. We assume that the §,’s are normally and
independently distributed (NID) with mean zero and variance o3, the egs’s
NID (0,0?), and that 3, and ey, are independent. This random effects model
(see, for instance, [25, Section 3-7], [26, Chapter 24]) actually presupposes
that our experiment sites were selected randomly from all possible sites (all
urban road meters in Sweden). Then, inference could be made about all
sites. In our case, since the sites were chosen purposively, we must interpret
our results with caution.

We start by testing the hypothesis Hy : 0'% = 0 versus H; : O'% > 0.
The ANOVA’s for our data are shown in Appendix E.2.1. We see that our
conclusions differ for different treatments of the imputations in the valve
measurements. If the imputations are removed, the null hypothesis is not
rejected at the 0.05 level of significance. If, on the other hand, the imputa-
tions are retained, the null hypothesis is rejected. Hence, we do not get a
clear indication as to whether there is a variability between sites or not.

We are further interested in estimating the mean p. = o of &gp,. From [26,

Eq. (24.15)], a 100(1 — «) percent confidence interval on p; is given by

MSsitc
be

Zt ity a/se (4.86)

where & = 22:1 > n_y Ekn and M S is the mean square due to sites. By
use of Equation (4.86) and the ANOVA’s in Appendix E.2.1, the interval
estimates of p. in Table 4.4 are obtained. Again, our conclusions differ for
different treatments of the imputations in the valve measurements. If the
imputations are removed, the hypothesis of p, = 1 is not rejected at the 0.05

level of significance. If, on the other hand, the imputations are retained,
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4. Missing data

Imputation 95% confidence

€rror interval for p.
Ekhwoi 1.10398 £ 0.22136
Ekh,wi 0.80832 + 0.16808

Table 4.4: Confidence intervals for y., calculated with the imputations in the

valve measurements removed and retained, respectively.

the hypothesis is rejected. Thus, it remains an open question whether the
number of imputed vehicles is conditionally unbiased for the true number of

missing vehicles or not.

Evaluation of the error model for 9(2)

~(2
No matter if the additive or the multiplicative error model for 9,(“3 is con-
A (2
sidered; if the model is correct, the observed errors in 9,(6,3 should not reveal

any obvious patterns if plotted against O, or the registered flows Moy - FOT

the estimator @,(fh) to be unbiased for 6, (and thus, hopefully, for the true
registration probability 0x;) the errors, when plotted against 9kh, ought to
scatter around the relevant reference line (placed at level zero for the additive
errors; level one for the multiplicative errors).

We start by the observed errors under the additive model (Equations (4.74)
and (4.75)). In Figure 4.4, we see a tendency for the plus signs to scatter
above the reference line, and for the dots to scatter below the line. These
point swarms represent the two extremes in terms of treatment of imputa-
tions in the valve measurements — the location of the ‘true’ swarm ought
to be somewhere in between. We do not see a strong tendency of the error
variance to change with the size of 8;,. The scarcity of observations for small
values of 9kh makes it hard though to draw any certain conclusions. When
the errors are plotted against the number of registered vehicles — see Fig-
ure 4.5 — we see signs of dependency between the errors and the registered
flows. It seems that the true probability is overestimated for low flows, but
underestimated for high flows.

Now consider the observed errors under the multiplicative model (Equa-
tions (4.76) and (4.77)). In Figure 4.6, we see again the tendency of the two
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Additive
error
0.015 N

0.010 *
0.005

0.000————————— ————— T — = -
—0.005 -~ * .
-=0.010
-=0.015
=0.020 | T
0.960 0965 0970 0975 0980 0985  0.990 0.995 1.000
Estimated registration probability

Figure 4.4: Estimated errors in é,(fh) under the additive error model, versus
estimated registration probabilities, for site 4. One data point corresponds
to one hour. Dots indicate € woi plotted against 9khvw(,i; plus signs indicate
€xn,wi Plotted against @kh,wi. A horizontal reference line indicates the desired
expected value of the errors. The diagonal pattern in the observations is a
result of the MEs (used in the calculations of the errors) only being available

as integers.
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Additive
error
0.015 N

oo, -
0.005
0,000 s — —— ————— = —— — — S .

—0.005 . . ta

-0010 .

-0015

—=0.020

0 100 200 300 400 500 600 700 800 900 1000
Number of registered vehicles

Figure 4.5: Estimated errors in @,(62}3 under the additive error model, versus
registered flow, for site 4. One data point corresponds to one hour. Dots
indicate €, woi plotted against Moy’ plus signs indicate €, wi plotted against
o) - A horizontal reference line indicates the desired expected value of the
€rTors.

point swarms to lie above and below the reference line. And again, as far
as we can tell, the error variance seems to be independent of 9,%. When the
errors are plotted against the number of registered vehicles — see Figure 4.7
— we see, however, signs of dependency between the variables. The pattern
is the same as in Figure 4.5.

Both the additive and the multiplicative error model states that the vari-
ance of the errors is independent of the site. To investigate this, we use
the same ANOVA model as in Equation (4.85) — only with &, replaced
by €, (which may represent either €z, woi in Equation (4.74) or (4.76), or
€rhwi in Equation (4.75) or (4.77)). Again, the aim is to test the hypothesis
Hy : 0 = 0 versus H; : 03 > 0. The corresponding ANOVA tables are given
in Appendices E.2.2 and E.2.3. We see that throughout, the null hypothesis
is rejected at 0.05 level of significance. In other words, contrary to what our
models state, there seems to be a variability due to site in the error in 9,(;)

We proceed by estimating the mean u, = « of &y. By use of Equa-
tion (4.86) with &g, replaced by €, and the ANOVA’s in Appendices E.2.2
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Multiplicative
error
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0.985
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0960 0965 0970 0975 0980 0985 0990 0995

Estimated registration probability

Figure 4.6: Estimated errors in é,(fh) under the multiplicative error model,
versus estimated registration probabilities, for site 4. One data point corre-
sponds to one hour. Dots indicate €xp woi plotted against ékh’wai; plus signs
indicate €gy, i plotted against ékh,wi~ A horizontal reference line indicates the
desired expected value of the errors. The diagonal pattern in the observa-

tions is a result of the MEs (used in the calculations of the errors) only being

available as integers.
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Multiplicative
error
1.015 +

1010 *

1.005 .
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0.995 . . T
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Figure 4.7: Estimated errors in 9,(53 under the multiplicative error model,
versus registered flow, for site 4. One data point corresponds to one hour.
Dots indicate €y, woi plotted against o)’ plus signs indicate €y, wi plotted
against 1, . A horizontal reference line indicates the desired expected

value of the errors.

and E.2.3, the interval estimates of y, in Table 4.5 are obtained. At the 0.05
level of significance, for the additive error model, the hypothesis of y, = 0
is not rejected. Also, for the multiplicative model, the hypothesis of p, = 1
is not rejected. These results stand, no matter how the imputations in the

valve measurements are treated.

Empirical behavior of proposed estimators

Obviously, our limited data material does not allow us to study the long-run
performances of the estimators of flow and travel time, but can only give
some indication of the same. In Tables 4.6 and 4.7, as expected, the Strat-
egy 0 estimates all fall below one. The missing data adjusted estimates under
Strategy 1 and 2, on the other hand, look quite well. Depending on what
entity is used to standardize the flow estimates, for both strategies, their av-
erages land slightly below or above one (with the true average expected to be
somewhere in between). The averages of the standardized travel estimates

under Strategy 1 and 2 land slightly above one. However, most likely, the
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Error model ~ Imputation 95% confidence

for @(2> error interval for pu,
Additive €kh,woi —0.00743 £ 0.00911
Additive €k, wi 0.00796 £ 0.01706
Multiplicative € woi 0.99103 £ 0.01301
Multiplicative &g wi 1.00963 £ 0.02105

Table 4.5: Confidence intervals for p, by error model, calculated with the

imputations in the valve measurements removed and retained, respectively.

Site fo Gwo Gee | G G G

1 0.99077 1.00279 1.00783 | 0.98733 0.99931 1.00429
2 0.95656 1.00648 1.01129 | 0.94165 0.99079 0.99550
3 (one dir.) 0.82990 1.05230 1.04836 | 0.77524 0.98301 0.97928
4 0.98232 0.99856 1.00476 | 0.97846 0.99464 1.00079
) 0.97052 0.99966 1.00440 | 0.96793 0.99699 1.00171
Mean 0.94601 1.01196 1.01530 | 0.93012 0.99295 0.99631

Table 4.6: Standardized estimates of flow, by site. (For site 3, only data from

T, are used.)

Site 5\2231 5\(vlo)i Z\Exi)i

1 0.98854 1.00051 1.00550
2 0.94958 1.00097 1.00570
3 (one dir.) 0.81594 1.04619 1.04157
4 0.98234 0.99864 1.00483
5 0.96555 0.99475 0.99947
Mean 0.94039 1.00821 1.01142

Table 4.7: Standardized estimates of travel time, by site. (For site 3, only

data from 7% are used.)
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4. Missing data

Site ﬂl(cox)voi ﬂl(cl\)voi al(f\)voi {L/E:O\)ﬁ ﬁl(clv)u ~l(<:1\)u

1 1.00226 1.00227 1.00227 | 0.99878 0.99879 0.99879
2 1.00735 1.00551 1.00554 | 0.99165 0.98983 0.98986
3 (one dir.) 1.01711 1.00584 1.00647 | 0.95013 0.93960 0.94019
4 0.99999 0.99992 0.99991 | 0.99605 0.99599 0.99598
5 1.00515 1.00493 1.00492 | 1.00247 1.00225 1.00224
Mean 1.01308 1.00146 1.00199 | 0.99720 0.98576 0.98629

Table 4.8: Standardized estimates of average speed, by site. (For site 3, only

data from Ty are used.)

travel time estimates are standardized with too small a value (since the im-
putations are ignored). In all, from Tables 4.6 and 4.7, it is far from obvious
which adjustment strategy (1 or 2) ought to be recommended.

Now consider the standardized estimates of average speed in Table 4.8.
Formally, we can not use these estimates to evaluate the performances of
present or proposed estimators of R. Still, the average speed uy is the coun-
terpart on ‘element-level’ to the average speed R for all roads. The estimates
in Table 4.8, including the Strategy 0 estimates, are very close to one. We
take this as a small hint that missing data adjustments are not a necessity
when estimating R.

4.5.6 Summary of empirical findings

Since we could not calculate registration probabilities for individual vehicles,
but only by hour, we were not able to check the assumptions of the regis-
tration model. However, we seized the opportunity to see whether the data
indicated in favor of merging hours into larger homogeneity groups. This
seemed to be the case, but it did not appear immediately clear where the
borders should be drawn.

Under the multiplicative imputation error model, the conditional expec-
tation and variance of the errors are independent of the number of registered
vehicles and of the site. Our data gave us no obvious reason to reject inde-
pendency between the errors and the number of registered vehicles. We were

not able to establish whether the errors are site-independent or not, since
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4.6. Summary

the result of our (approximative) ANOVA test proved to be sensitive to how
imputations in the valve measurements were treated. For the same reason,
we did not get a clear-cut answer on whether the error expectation is equal
to one (and hence are not able to say whether the Strategy 1 estimators are
unbiased or not).

Under both the additive and the multiplicative error models for the esti-
mator of the registration probability, the errors seemed independent of the
‘true’ probability. We noted, however, some alarming signs of dependencies
between errors and registered flow. It seemed as if the true probability might
be overestimated for low flows, while underestimated for high flows. Both
error models state that the errors are site independent. Throughout our
ANOVA tests, however, the null hypothesis of zero variance due to site was
rejected. This objection to the models requires further investigation. The
Strategy 2 estimators are unbiased if the estimated registration probabilities
are unbiased for their true counterparts. We tested for this too, and obtained
results that suggest that unbiasedness is in fact attained, no matter if the
errors are additive or multiplicative.

For our five experimental sites, we estimated the flow, travel time, and
average speed, then compared the estimates with the ‘true’ values. Under
Strategy 0, as expected, the flow and travel time were clearly underestimated.
Under both Strategy 1 and 2, on the other hand, the estimates of flow and
travel time ended up reasonably close to the ‘truth.” Under all strategies, the
estimates of average speed came quite close to the ‘truth.” The last result
is far from concluding evidence. Still, we take it as a small hint that the

present estimator of average speed is not overly sensitive to missing data.

4.6 Summary

Our suggested strategies for missing data adjustments are easy to implement.
Still, the implementation is only of value if the adjustment estimators are
likely to remove bias due to missing data. Whether they really get the job
done is not that easy to establish. In fact, it is not even a matter of course
that adjustments are at all necessary. Some of our empirical findings hint

that the present unadjusted estimator of average speed may be surprisingly

85



4. Missing data

resistant to bias due to missing data.

In our investigation of the estimators’ theoretical properties, we made
use of several models. We did not build complicated models, trying to get
as close to reality as possible, but strived instead for simplicity. Despite
this, the expressions for the estimators’ expectations and variances turned
out a bit messy. We were privileged to be able to supplement the theoretical
analysis by use of some empirical data. Most of our model assumptions
seemed to agree reasonably well with these data. In addition, the adjustment
estimators seemed to produce better (less biased) estimates of the totals ¢,
and ¢, than the current unadjusted estimators. We were not able to tell
how their variances stood in comparison. None of the adjustment strategies
showed its clear superiority to the other. Also, as already mentioned, it
remains an open question whether the estimator of average speed really needs
any missing data adjustments.
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Chapter 5

Allocation problems

5.1 Introduction

In this chapter, we turn our attention to the sampling error of the survey
estimates. More precisely, we are interested in evaluating the current alloca-
tion of the total sample over sampling stages. Our method of doing this is to
estimate the components of the total variance of the estimator of R arising
from each sampling stage and then analyze their relative sizes. As means for
a possible reallocation of the sample, we also present formulae for optimum
sampling sizes. Possible nonsampling errors, which may bias and increase
the variance of the survey estimators, are here ignored.

At present, in all but the first sampling stage, only one sampling unit per
stratum is selected. Since units are drawn with replacement in stage one,
the total variances of the estimators can still be estimated. The variance
contributions from each sampling stage are, however, inseparable. We cir-
cumvent this problem by making use of a fictitious sampling design and some
experimental data. In this way, the required variance component estimates

are calculated for a domain of study.

5.2 Estimation of variance components

This section addresses the problem of estimating sampling stage variance

components for the speed survey. By way of introduction, we present the
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estimators which would have been applicable if the sampling sizes had ex-
ceeded one in each sampling stage. We continue by considering a situation
where the sample sizes exceed one in the first and third sampling stages, but
are equal to one in stage two. Under these circumstances, not all components
can be estimated (more precisely, the variance contributions from the first
and second sampling stages cannot be separated). We show how to make use
of a fictitious design to enable estimation of all components. Finally, these
formulae are used to calculate variance component estimates from a set of

experimental data.

5.2.1 At least two observations in each sampling stage

Assume that two or more units have been selected from each stratum in
each sampling stage in the speed survey. For this situation, estimators of
the components of V},(fa) and AV, (ﬁ’) are available. Although in reality we
do not face this favorable situation, an investigation of the estimators that
ideally could have been used still serves as the natural starting point for our

work.

Estimation of the components of V},(tAa)

In order to estimate the variance Vp(fa) of fa, it is not necessary to esti-
mate each of its components separately. From [29, Result 4.5.1], V,(Z,) is
unbiasedly estimated by

my ~ 2
o 7 1 t‘/rai,, T
- () e

The computationally simple formula is due to the fact that sampling with
replacement is used at the first sampling stage. We are, however, inter-
ested in estimating each variance component separately. By slight modifica-
tion of [29, Result 4.4.3], unbiased estimators of the variance components
Vrsu (fa), Vasu (fa) and Vpsy (fa) are given, respectively, by

VTSU(tA):iii Niri, QZ . 5.
k ‘ m% v=1 p?y Nrri, SITiy vl ’
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5.2. Estimation of variance components

where

) 1-
_ 2 wqd Q2 . _ .
‘/:li,,q - Niuq Sasi‘,q7 fivq - niuq/Niuq7

Niyq

2
2 1 tm'uq
SCLS' = 1 E g — ——
ivg Nj,q — 1 Sivgq Ni,q

for ¢ € 7, and every i, that is a component of osy,

L 1 A Vs o 2
Vssu(fa) = —5 > —5* = Vasu (fa) (5:3)
my v=1 pi"
where
- 1 — fru Ny >
Vo = N, 2w ge  Niri Vi
aty, 113, nIIi,, taSITiy, 77/[11',, srriy ai, qs

frri, = N1, / Nririy;
2
5’2 _ 1 E f tﬂ'ai,,
n L Tai,q
taSITiy, nrri, — 1 s11i, vq .

for every i, that is a component of osy, and

VPSU (fa) = V3st (Lta) - ‘7SSU (fa) - VTSU( a

>
SN—

(5.4)

Estimation of the components of AV, <IA%>

Define a new variable e = y — Rz. From [27, Section 6.8.2], an estimator of
the variance AV, (]A%) of R is given by

N A 1~ A

Vist (R) = tA_dest (te)
1 1 A (s, )2
N t2my (my — 1) Di, ‘

where the last equality holds since £, = 0.
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5. Allocation problems

Estimators of the variance components AVrgy (]%) , AVssy (R) and AVpgy (R)
are given, respectively, by

oo () = 0.y, () = Vol

5 5
R . Vosu (£
Vosu (1) = ”:72() (5.6)

where Vrgy (fe), Vesu (fe) and Vpsy (fe) are obtained from Equations (5.2) to
(5.4) by letting a = e.

5.2.2 One observation in the second stage

We now turn to a design with greater likeness to the real speed survey design
than the one described in Section 5.2.1. It is still assumed that two or more
units are selected from each stratum in the first and third sampling stages;
the sample size is, however, now equal to one within stratum in the second
stage.

A sample of size one in stage two does not prevent us from estimating the
total variance of t,, or the last-stage component Vigy (fa), as in Section 5.2.1.
Hence, we are also still able to estimate Vpgy (fa) + Vssu (fa). The small
sample size does, however, preclude us from estimating Vpgy (fa) and Vsgu (fa)
separately. The corresponding estimation problem holds for R. We choose
to tackle the problem as follows. First we note that for Vssy (fa) #0,

Vosu (ta) + Vsu (fa) = Vasu (fa) (C(ta) +1) (5.7)

where C(fa) = Vpgu (fa) /Vissu (fa). In the same manner, for AVsgy (f%) #0,
AVisu (R) + AVisy (R) — AVisu (R) (C (1—?) n 1) (5.8)

where C' (f%) = AVpsy <1%> /AVssu (]:2) Next, we formulate a fictitious sam-
pling design, formulated so as to fulfil the criteria

o closely related to the one actually in use, and

e admitting separate estimation of each sampling stage component.
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5.2. Estimation of variance components

Finally, we derive estimators of (the closest equivalents to) the ratios
C (fa) and C' (R) under the fictitious design and use those to estimate Vpsy (fa)

and Vsgu (fa), AVpsy (1:2) and AVsqy <]:2), separately.

Formulation of a fictitious sampling design

Under our fictitious design, PSUs and T'SUs are selected without replacement;

SSUs with replacement, as follows.

Stage I’ First, the ordered sample os; is drawn as in stage I in Section 2.4.
The set of distinct PSUs which occur at least twice in os; then make

up the stage I’ set-sample s, of PSUs of size ny.

Stage ITI’ For every i € sy, a sample of SSUs is drawn with simple random
sampling with replacement (SIR). At every draw, p, = 1/Nyy; is the
probability of selecting the qth SSU. Let ¢,» denote the SSU selected
in the v'th draw, v/ = 1, ..., mp;, where myp; is the number of draws.
The probability of selecting g,/ is denoted p, ,. If the qth SSU is se-
lected in the v'th draw, then p, , = p,. The vector of selected SSUs,

(qy, s Gty e qm”,i), is the resulting ordered sample osjy;.

Stage III’ For every g, that is a component of os;r;, an SI sample s, , of

TSUs of size ny, , is selected.

Note the resemblance to the actual design in Section 2.4. What we have
done here is to transform the ordered sample in stage I into a set sample, and
‘move’ the with-replacement sampling one step down the stage hierarchy from
the first to the second sampling stage. The main advantage of this procedure
is that we gain access to more than one SSU drawing.

The sampling method specified for the first stage is not of standard type.
Hence, for estimation purposes, the relevant first and second order inclusion
probabilities 7; and 7p;; need to be derived. As shown in Appendix D, the

probability 7; that PSU 4 will be included in sp;i € Uy, is given by
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5. Allocation problems

and the probability 7;,;; that both PSU ¢ and j will be included in s34, j €
UI7 by

g =1—(1—p)™ (1+m1 bi )(1pj)m1 (1+m1 Pi )
1 1 —pj

— Vi

—(L—p;—py)™ 'my [pi +pj+ (my — 1) 1%] . (5.10)
—Di — Py

Use of the fictitious design

For the sake of completeness, we start by presenting the estimators of %,
and R and their variances under the fictitious design, and continue by giving
the estimators of the variances and their sampling stage components. The
impatient reader is encouraged to proceed directly to subsection ‘Estimation
of the components of V,, (fa) and AV, (1%) ', where our proposal for estimation

of the components of V},(tAa) and AV, (]fi) by help of the fictitious design is

summarized.

The estimator ¢, of , Under the fictitious design, from [29, Result 4.4.1],
an unbiased estimator of ¢, is given by

N t

t = pwrar 5.11

a ZS[! T ( )
where t;mlaz - (Nfli/mff'i) 2371:111 f;raiql,n tA;TaquI = ( 1q, //nlqy ) Zsiq ak, and
Nig,, is the number of one-meter road sites in small area g,s. (If the qth SSU
was selected in the v/th draw, then t;mq L= t}m-q = (Nig/Miq) st a.)

The variance of #. is given by

=> ZU, Apij

v,
Jai 12
LD s (5.12)

T T
where Ay = mpij — wpimpj, Vo, is the variance of t;mm with respect to the
last two sampling stages:
Nippi
NH
Vo=V - Vi 5.13
ai aIIl mrp; Z arq ( )

92



5.2. Estimation of variance components

where

— Nrri (Nrri — 1)52

IIi — toU;*
alli My aU;

Equivalently, the variance V), (tl) can be written as

Vi (fla) = Visy (tA:z) + Visy (gfz) + Visu (731) (5.14)
where
! 7 1 NHz o
VTSU (ta) = ZU[ P — Z%zqa (515)
!
Visu (t;) = ZU, ﬁv (5.16)
and

Vesu (ta) ZZ AJ'” (5.17)

T Tr§

The estimator B of R Under the fictitious design, from [29, Result 5.6.2],
an approximately unbiased estimator of R is given by

~ oo
D D
R = t—f’ ==L Tr (5.18)

L 121
Z ZSI/ I7'I'I/i
The estimator R’ has the approximate (Taylor) variance
D! 1 o1
AVy (R) = Vi (i)
tpi tgi Vi
A2 2B ZEi
<Z ZUI " 1 " ZUI T
tyi — Rtuity; — Rt.; %8
— A2 Sl = L 5.19
B (DX, ant a5 ) Gs)

Ur T

w

| = ] -

IS}

where V. is obtained from Equation (5.13) by letting the variable a equal
E.
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The approximate variance AV, (R’ ) can equivalently be written as

AV, (R') — AV, (R') + AVl (R’) + AVigy (R’) (5.20)
_ V};S[tIg(tASE‘) + VS/S[;%(EIE) + fSI;g(ESE) (5'21)

where Vigy (¢);), Visy (t);) and Vig (£);) are obtained from Equations (5.15)
to (5.17) by letting a = E.

Estimation of the components of V,, (fg) From [29, Result 4.4.1], under
the fictitious design, an unbiased estimator of V,, (f,) is given by

o it orai Towrad
‘/S/St (t;) _ ZZ AI 7 ‘pwrat pvuaj' (522)

Sy1 7'['[/1']' It 7T1’j

By slight modification of [29, Result 4.4.3], unbiased estimators of Vigy (%),
Vigu (f,) and Vigy (£,) are given, respectively, by

N 1/ Ni \* =mums
Visu(t) =2, =2 ( ) >0, Vaia, (5.23)
I'i

mrri
where
N 1—f;
I a2 iq, o2 _ .
Vvaiq,,/ - Nz’q,,/ niq Sasiqu,v fiqul - n’iqy, /Niqu,7
l/’
2
2 1 § : ta’iqu/
SGSi = 7 a/k -
ayr n. —1 Siq n,
iq, v iq,,
for every ¢,, that is a component of osrp; and ¢ € s/,
. . v .
/ T\ ai / 4
‘/SSU (ta) - E o 2 - VTSU (ta) (524)
1 Ty
where
2
Vo — Niti oo .
ai — 08 10
m[]’i a®“2I11'i
N 2
mH/-
S2 o 1 Myt tA , . Zyl:f twaiql,/
f{losllli - L 1 =1 7ra1qy/ ]
myy; = myy;
for i € s, and
7l N X 7l ] ¥ g
VPSU (ta) - Vzist (ta) - ‘/SSU (ta) - VTSU (ta) . (525)
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5.2. Estimation of variance components

Estimation of the components of AVPI(R’) Define the variable ¢’ =

y — R'z. Under the fictitious design, from [29, Result 5.6.2], an estimator of
AV (]:2’ ) is given by

Vi (R) = Vi (2)

(%)
1 A 'ij tAl)wre’i tA’)wl‘e’ j
:WZZ 9 Py (5.26)

Sy 7T1’ij T 7'[']/]'

Estimators of the variance components AV, (]:Z’ ) , AVisu (JA%’ ) and AV{qy (R’ )

are given, respectively, by

Vso (R/) =3 (5.27)

where Vg, (), Visu (t.,) and Vibsu (.,) are obtained from Equations (5.23)
to (5.25) by letting a = ¢€’.
Estimation of the components of Vp(fa) and AV, (R) As estimators

of C(fa) and C (]%), we suggest using the estimators of the corresponding
population entities under the fictitious design. That is, estimate C' (fa) by

C'(ta) = VPL(” (5.28)
Visu ()
and C(]%) by
A VPI’SU R Vieu (2,
C’(R) S <> - }’ISU(j). (5.29)
Visu (R) Visu (ter)
The resulting estimators of Vssy (fa) and Vpsy (fa) are
o Via(Ea) = Visu (fa
Vasu (fa) = i (fa) = Visu (fa) (5.30)

Cr(t.) +1
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5. Allocation problems

and
Vosu (ta) = Vist (ta) — Visu (ta) — Visu (ta) (5.31)

respectively, where Visu (fa) is given by Equation (5.2) and Vit (fa) by Equa-

tion (5.1). In the same manner, our suggested estimators of AVssy (R) and

AVpsy (R) are given by

Vi () = Vasu (R)

Cr(R)+1

Vasu (1) = (5.32)

and
Vosu (fa) = Vi (R) = Vasu (R) = Vasu (/) (5.33)

respectively (with Visy <]A?> as in Equation (5.6) and Vast (R) as in Equa-
tion (5.5)).

There is no guarantee for Vi, () or Visu (,) to take on positive values.
In case any of them is negative, it does not make sense to calculate C (fa) , and
the variance component estimators in Equations (5.30) and (5.31) must be
abandoned. Correspondingly, the estimators in Equations (5.32) and (5.33)
should not be used if VéSU (R) or ‘7S’SU (R) is negative.

5.2.3 Calculation of variance component estimates from

real data

In the speed survey, the sample size within stratum is one in both the second
and the third sampling stage. To render variance component estimation
possible, in accordance with Section 5.2.2, within the frame of the main 2001
survey, some experimental data were collected. Here, we present the design

and outcome of this experiment.

Data collection and processing

The collection of experimental data was restricted to one PSU stratum: the
South-Eastern SNRA region and the size class ‘Large major population cen-

ter of a municipality.” From this set of population centers, as part of the
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5.2. Estimation of variance components

Development Road Number

type type  of pairs

City MT0 10
City M50

City Other

Industrial M70 8
Industrial M50 3
Industrial Other 10
Residential M70 )
Residential M50 2
Residential Other 8
Other MT0 7
Other M50 1
Other Other 9

Table 5.1: The number of observation pairs, for each combination of SSU
and TSU stratum.

main survey, a sample of 75 road sites was selected. Our plan was to double
this number by selecting an additional road site from each chosen small area
(within PSU drawing). For various reasons (such as missing data problems),
for six chosen small areas, data were obtained from only one site. We de-
cided to exclude these small areas from the experiment, which left us with
69 x 2 observations on traffic flow and travel time. These 69 observation
pairs are distributed among the four SSU strata and three TSU strata (see
Section 2.4.3) as shown in Table 5.1. We see that, throughout, we have very
few observations on M50 roads. Therefore, this stratum is left out of further

consideration.

For the strata thus comprised by the experiment, the sample sizes accord-
ing to the fictitious design are: ny = 3 in the first stage; m;;; = 2, 4 and 4,

respectively, in the second stage; and ny, , = 2 in the final sampling stage.
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Development Road

type type  Vig (R> Visu (}?> Visu (E) Vosu <}?>
City MT70 5.6367 7.5538 —

City Other 10.8389 11.2937 — —
Industrial M70 1.2929 1.1497 * *
Industrial Other 2.1851 5.9771 — —
Residential MT70 9.4960 3.0601 6.4359 *
Residential Other 9.4112 13.1166 — —
Other MT70 5.9345 1.3650 4.5695 *
Other Other  6.6365 5.6771 0.9594 *

Table 5.2: Estimates (in km/h) of the approximate variance of R and its

components, for various combinations of SSU and TSU strata.

Results

For each combination of SSU and T'SU stratum, variances and variance com-
ponents are estimated in accordance with Section 5.2.2. The estimates for
R are presented in Table 5.2; the corresponding estimates for fy and £, in
Appendix F. To simplify the estimation task, a few shortcuts are taken. As
mentioned in Section 2.4.3, SSUs are really selected with pps rather than SI
sampling within stratum Residential areas. This exception is disregarded,
and the estimates for residential areas calculated as if SI sampling was used.
Also, our estimates refer to a single (arbitrary) 24-hour period within the
time period of study, rather than the whole period.

In Table 5.2 and Appendix F, there are many hyphens and asterisks
replacing numbers. The hyphens are used for cases where the difference
Vi — Visy s negative; then, we do not attempt to estimate Vasu or Vpsu.
The asterisks are used when Vig — Vigy is positive but VéSU or VS’SU is
negative. If VéSU is negative, %SU is calculated as %St — VTSU whereas VPSU
is marked with an asterisk. Correspondingly, if Vig, is negative, Vpgy is
calculated as %St —VTSU whereas VSSU is marked with an asterisk. If VéSU and
Vs’su are negative (occurs only once), VPSU and %SU are both marked with
asterisks. We take the many negative variance estimates as a manifestation

of the uncertainty in the estimates due to small sample sizes. A much larger

98



5.3. Optimum allocation over sampling stages

experiment is needed to reduce this uncertainty.

Since R is the most important parameter, we focus on Table 5.2. Typ-
ically, Visu <R) is nearly as large as (or even larger than) Vit (R) Thus,
our main conclusion is that AVygy (]%) seems to predominate among the

components of the variance of R.

5.3 Optimum allocation over sampling stages

In this section, formulae for determination of optimum sampling sizes in each
sampling stage are presented. Asin most parts of this thesis, the stratification
in each sampling stage is ignored. Extension of the theory presented here to
the stratified case is, nevertheless, straightforward.

5.3.1 Conditions and general solution

The conditions for allocation are the following. The variance of t, and the

approximate variance of R both fit into the general variance expression

Al AIIZ
V= X1 Z ZZUIM xzj (534)

x
i—1 11

where the z's are given by

T =my (535)
Trri = MMy, 1€ Ur (536)
T, = mmirNig; g S U]]l';i S U[, (537)

and the A’s are constants with respect to the z’s.

Let C; denote the cost of conducting one PSU drawing. Within PSU
i € Uy, the listing cost per SSU, and the cost of selecting one SSU, are
denoted C!;;, and Cf;, respectively. In the same manner, within selected
SSU g € Uy and PSU 4 € Uy, the listing cost per TSU and the cost of
observing a selected TSU are denoted C’l and C?

i respectively. The variable
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costs of the survey can now be described by the linear function

mr mr mr
VC = ’I’I’L]C] + Z NIIiuC}Ii,, + ZTL[HVC;”V + Z Z N,,,qCZIVq
v=1 v=1

SITi,

+ZZ e (5.38)

SIIiy

If PSU i € U; was selected in the vth draw, then C},, = C},., C5,, = Cjp,,
Cl,=Ci,and C; , = Cj,.

In practice, the listing and selection costs C!;; and C%;; may be approx-
imately constant over PSUs. The listing costs qu are, however, certain to
vary substantially between SSUs. For each chosen small area, as described in
Section 2.4.2, the list of PSUs is prepared from a city map. This procedure
can be very time-consuming in areas with complex road networks, whilst
quite fast in areas containing only a few roads. (The differences in listing
costs are mitigated, but hardly removed, by the stratification of SSUs.)

Since VC' is a random variable (it depends on the random samples os;
and s;y;,), we do not want to base an optimization problem directly upon it.
Instead, we follow established practice and use its expectation. Under the

sampling design described in Section 2.4, the expected value of V' is given
by

Ny 1
EVC =m;Cr+mg ZpiNmCﬂi +my ZpinIIiC;Ii
i=1 i=1
Nj n
, I Ar o
e Z pi ZUII-L N[]Z' quCZq
nrri
+my Z Py ~nigCl. (5.39)
Equivalently, the expected variable cost can be expressed as

Ny Ny
EVC =xa1 + meam + Z ZU TiqQiq (540)
I1:
i=1 =1
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with the z's as in Equations (5.35) to (5.40), and the a's given by

Ny

a; =Cr+ ZpiNmem (5.41)
i-1

ari =p; | C3 &Cl~'U 5.42

11i = Pi ”H—ZU,” Ny i) ve U (5.42)

s
o iq
Gig = Pi ZUI“ N 1€ Ui € Uy (5.43)

The allocation problem has two possible formulations:

e Minimize the variance V' in Equation (5.34) with respect to xi, xrp;

and x;, under the expected cost constraint
EVC = Cy
where EVC' is given by Equation (5.40), or

e minimize the expected cost EVC in Equation (5.40) with respect to

x1, z15; and z,;, under the variance constraint
V=W
where V' is given by Equation (5.34).

We restrict our attention here to the second case. If the A’s are all greater
than zero, from [7, p. 15], this minimization problem has the analytical so-

lution
=K 12—11 (5.44)
2 =K ’;111[’ i€ Ur (5.45)
Tiq = ’3; qe UpysieU (5.46)

where

1 N; N;
K= 70 (\/ a1 A + Z variAmn + Z ZUH_ vV aiinq> :
i=1 i=1 ‘
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The resulting optimum sampling sizes are given by

A
= K\[— (5.47)
a
Ajrian
11 ; U 5.48
nH arriAq <Y ( )
Aiqarp .
Nig = az‘qqu; q€ Ui e U (5.49)

(For a solution of the minimization problem if the A’s are not all greater
than zero, see [7, p. 15].)

5.3.2 Solutions for f, and R

The general variance expression in Equation (5.34) turns into the variance
of t, if the A’s are defined as

ol tai 2 X Nisi o
Alzzm ;—ta -3 o St (5.50)

i=1
N i )
A]H Ll (N[h tal, Z NiqSZUiq) ; 1€ U[ (551)
A NIIz N2 SQ .
iq = by Ui ;o q€UnpieUr. (5.52)

Insertion in Equations (5.47) to (5.49) gives the solution for ¢, (if the A’s are
all greater than zero). Similarly, in order to transform Equation (5.34) into
the approximate variance of R, define the A’s as

1 [ & L S Niri
7 1 Q2
A= 2 Zpi (p_ - tE) B Z Di Stpu; (5.53)

z Li=1 ! i=1
1 Nir .

A = 2 <NII'LSt2EUl Z Niqs}%m) ;o 1eUr (5.54)
11

Aig = 2pi NHINQ SEU ;g€ UnsielUr. (5.55)

If the A’s are all greater than zero, the solution for R is obtained from
Equations (5.47) to (5.49).
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5.3.3 On use of the solutions

The formulae for optimum sample sizes in Equations (5.47) to (5.49) are not
very complicated. The real problems start when they are to be used. Since R
is the parameter of main interest, it ought to govern the allocation. But let us
take a second glance at Equations (5.53) to (5.55). Among several unknown
population entities, the A’s include the population variances of ¢z, StQEU'N for
all PSUs, as well as the population variances of F, S%Uiq, for all SSUs. Use
of Equations (5.47) to (5.49) thus require estimates of all these variances.
The survey data will not suffice for calculating the demanded estimates, but
large amounts of additional data need to be collected.

5.4 Summary

Is the current allocation of s over sampling stages the most efficient, or is there
room for improvement? In order to answer this question, we pursued the
theoretical work of Sections 5.2.1 and 5.2.2, and conducted the experiment
reported in Section 5.2.3. Our efforts resulted in the variance component
estimates for R presented in Table 5.2. From this table, it looks as if the final
sampling stage contributes the most to the total variance of R. We conclude
that, for unchanged size of s, the precision of R would probably improve if
the sample sizes in stage three were increased, and the number of drawings
in stage one decreased correspondingly (there is no room for decreasing the
sample sizes in stage two, since they are already at minimum).

Our advice on reallocation of the total sample is, by necessity, quite vague.
The theoretical tools for choosing the sampling sizes in an optimum manner
are provided in Section 5.3. However, the formulae presented there involve
many unknown population quantities and hence may be hard to use in prac-

tice.
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Chapter 6

Survey models

6.1 Introduction

In previous chapters, the isolated impact of some different sources of error on
the survey estimators has been investigated. Here, we adopt a comprehensive
view towards those errors by formulating survey models for the estimators of
t, and R.

Generally speaking, a survey model (mixed error model, total error model)
is a model that accommodates several sources of error and possible interre-
lationships among them. Knowledge of the relative importance of different
sources of errors can be used as an aid in making decisions on how available
survey resources should be allocated. Since attempts to reduce or control
errors of one type may have adverse effects on some other component of the
total error, knowledge of interrelationships among different sources of error is
important. Research on survey models date from the 1940s and was initially
dominated by work performed at the U.S. Census Bureau. A review of model
development before 1970 is given in [11]; for later development, see [12]. For
examples of some general models, see [24, Chapter 12] and [29, Chapter 16].

6.2 The estimators ¢ ol and }A%;f)

Due to the frame errors discussed in Chapter 3 and the missing data problem

treated in Chapter 4, instead of the prototype estimator t,, we can only
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observe
. 1 & 1 Ny .
tpae = — ) ——— tFrate)s 6.1
F my gt Di, NIli, ZSUW F vq ( )
where
7 NFi,, ~(c
tFwd(C)z’,,q = . Y
Ni,q SFiyg
Also, we do not have access to R but only to
- 5(0)
R = I (6.2)

Lpste)

The statistical properties of 4 and }?Ef) are investigated in Section 6.3.

6.3 Survey models for ¢ a0 and R;f)

In order to derive the expectations and variances of # ) and f?;f), we need
to take several sources of randomness into account: three stages of sampling
as well as the procedures that generate Np;, and &,(:). An error model m; for
Nriq was formulated in Section 3.3; an error model m, for &](:) in Section 4.4.2.
We have no reason to believe that the two types of error are somehow related,
but assume that the mechanism that generates &,(:) is unconfounded with the
one that generates Ng;,. That is, the probability of a certain outcome of d,(f)
is assumed to be unaffected by Np;q.

In the following, expectations and variances are indicated by subscript
pmims if taken with respect jointly to the sampling design p and model m;
and my. Conditional expectations and variances are indicated by ‘|’; for
instance, Fn,m, denotes expectation with respect to model ms, conditional

on model mj.

6.3.1 Properties of ;. and R}C)

Consider first the estimator 4 of t,. By use of conditioning, the expected

value of 5, can be written as

Epmlmz (tAFd(C)) = EpE’ml\pEmﬂpnu (I?F&(C)) (63)
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and its total variance as

‘/;711111112 (tAFd(C)) = VpElnﬂpEmg\pml (tAFd(C)) + Ep‘/lnﬂpEmﬂpml (de(C))
+ EpEml\p‘/;uﬂpml (tAFd(C))
=W (fFa(c)) + Vs (EF{;(C)) + V3 (tAFa(c)) . (6.4)

The Vl(f Fa(c)) term is due to the sample selection: in a total enumeration
of all road sites, V4 = 0. The VQ(de(c)) term arises from variability in
iF‘/ry(&(C))i,,q due to different realisations of Np;,q: if all o7, = 0, then V, = 0.
The Vg,(tf Fa(c)) term, finally, arises from variability in a; for individual road
sites: if all ¢ (&(C))k = 0, then V3 = 0. If the speed survey did not suffer
from any frame errors, V3 would correspond to the ‘measurement variance’
in [24, Equation (12.9)] or the ‘simple measurement variance’ in [29, Equa-
tion (16.4.5)].

By additional use of conditioning, the Vl(de(c)) term can be written as
the sum of three components, representing the variation contribution due to
each sampling stage:

Vi (EFa(C)) = ‘/IEIIEIIIEmlmQ\p (fFa(C)) + EIVIIEIIIE11111112|p (fFa(C))
+ EIEI[VIIIE11111112|p (fFa(C))
= Vipsu (tra@) + Vissu (trae) + Virsu (frae) (6.5)

where Vi psu (fFa(c)) is due to the initial sampling of PSUs, Vj gsu (de(c))
to the second-stage sampling of SSUs, and Vi rgu (fF&(c)) to the final-stage
sampling of TSUs.

We are now ready for the following theorem:

Theorem 6.3.1 Jointly under the sampling design p in Section 2.4, the er-
ror model my in Section 3.3, and error model my in Section 4.4.2, the expected

value of L, is given by

Ny
Epmlmg (tAFa(C)) = Z Epmlmg (tAFﬂ'a(C)i) (66)
i=1

where Eppm, (me(c)l-) = ZUm (uiq/Nz-q) tv(&@)iq. The variance of fF&(c) 18
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given by

V;?mlmz (de(C)) = ‘/1 (fFa(C)) + ‘/2 (tAF&(C)) + ‘/3 (tAF&(C))
= Vi,psu(trae ) + Vissu(traeo) + Vi, rsu(trae)
+ Vs (fFa(c)) + V3 (fFa(c)) (6.7)

where

2
t (©); o
Vi PSU tFa(C) sz ( pmlm? I ) - Epm1 mo (tFa(C))> (68)

—fi 1 Hig
Vi,ssu tFa(C) Z . IIz nis N —1 ZUI” Ny, t'y(&(c))z'q
1 /‘l’iq 2
N ZU Ny 257(&“’)iq> (6.9)

1 Niri tig \
(i) = 2518 (RaY 'y, e

Di Nrri

1 <41 Ny o2
A _ b 1 i T 5
‘/Q(th(C)) B my ; Di Nyri ZUIH NZ (Vﬂy(&(c))iq + tﬂ’(a(C))iq) (611)
and
~ 1 Nt 1NIIi ,LL,LQ +(7'12 (c
Vi(traw) = - Zl - > 7&%; >, 0@, (612)

The proof of Theorem 6.3.1 is given in Appendix B.1.4.

Having come this far, it is an easy matter to derive the statistical prop-
erties of Rgﬁ) The following theorem is proven by a slight generalization of
the results in [27, Section 6.8.2.]:

Theorem 6.3.2 Jointly under the sampling design p in Section 2.4, the er-
ror model my in Section 3.3, and error model my in Section 4.4.2, the esti-

mator Rgf) is approzimately unbiased for

R(C) — . ]
" Epwmng (tFé(c))

(6.13)
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The approximate variance of R%C) s given by

AV <RE§)) =W (R%C)) + Vs (REVC)) + Vs (REWC)>

o Vi (waE<c) ) Va (waE<c) ) Vs (AF‘frE‘(C) )
B 12 12 12

(6.14)

where the variances of t Frafio are obtained from the corresponding variances
of tpae in Theorem 6.3.1 by replacing @' with El(ﬁ) =gl — R%c)i(c).

For both # 45 and R;f), it is tempting to call V; the sampling variance,
V5 the frame errors variance, and V3 the variance due to missing data. These
interpretations are, however, somewhat misleading. The errors due to missing
data and frame imperfections are entwined closely together, and both have
the potential to influence all components of the model. This follows since
V1 includes expected values of both Ny, and d,(:); V5 expected values of &,(f);

and V3 both expected values and variances of Np;,.

6.3.2 Simplifications and connections with earlier work

The expectations and variances of ., and R;f), as presented in Theo-
rems 6.3.1 and 6.3.2, are quite complicated and thus hard to evaluate. We

now try to simplify the expressions by making two assumptions:

e The frame road lengths are unbiased for the true road lengths.

e The missing data adjusted estimators d,(gl) and &,(f) are unbiased for a.

The first assumption, which receives some confirmation in our frame er-
rors investigation in Section 3.5, implies that we can replace p,, by N, Our
results in Section 4.5 give some support for the second assumption, which
means that we can substitute v(d(c))k by a; if c=1 or 2.

Under the two assumptions, if estimation strategy ¢ = 1 or 2 is employed
to adjust for missing data, the following holds.

The estimator £, is unbiased for ,, }A%;f) is approximately unbiased
for R, and V; equals the sampling variance of the estimator in question

(that is, the variance of the corresponding prototype estimator). Then, since
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the components V; psu, Vi ssu and Vi psy now solely represent the variation
contribution due to each sampling stage, our investigation in Chapter 5 of
their relative sizes applies. The investigation suggests that, for E’gf), the
Vi,rsu component prevails among the three.
Furthermore, for £,
. N1 . o2
Vallraco) = mi ' gN— 3, 5 Vet i) (619

2

I Niri i
i t ) —’1
Fa( ) Z pl n[[l ZUlh (nzq Niqniq)
o Z (c) . (6.16)

(The terms V5 and V3 for R%) are simplified correspondingly.) We see that
all errors no longer affect all components. Besides Vi being equal to the
sampling variance, V> does not include expected values of &,(CC) (which may
differ from the true values) but the a;’s themselves. Hence, the V5 term now
truly deserves to be called the frame errors variance. The V3 term, however,
is still not a pure missing data variance.

Assume further, as in the multiplicative error model for Np;, in Chapter 3,
that o}, = 7N, (where 7 is constant as function of Nj;). Then,

e from Corollary 3.4.3, the V5 term for ]:2;5) can be written as
Vs (Rf;‘)) = 124V, (R) . (6.17)
According to Table 3.3, a 95 percent upper-bounded confidence interval
for 72 is given by [0,0.00848].

e the V3 term for }:{Eﬁ) is given by

" 11 &1 N,
Va(RY) = (14 72) —ng — ZUM "y

Pi Nrri

x> 6(E(C))k (6.18)

where £ = §(© — Rz In Section 4.4.2, the variance §<E’§f)) is
k

derived for the adjustment strategies ¢ = 1 and 2 and various spe-

cial cases of those. (Unfortunately, the resulting expressions are quite

complicated and involve several unknown population entities.)
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6.4. Summary

6.3.3 Decompositions of MSE

In the literature, a survey model for an estimator is often formulated as
a decomposition of its mean square error (MSE) — see for instance [24,
Section 12.2] or [29, Chapter 16]. Consider again the estimator 4 of t,.
By definition, the MSE of # .5 , with respect jointly to the sampling design p
in Section 2.4 and the error models m; in Section 3.3 and ms in Section 4.4.2,

is given by

MSEp11111112 (fFa(C)) - Epmlmg (tAFa(C) - ta) 2
= V;;mlmz (tAFa(C)) + (Bpmlmz (tAFa,(C)))2 (619)

where B m, (f F&(C)) = Epnims (f Fa@) — tg is the bias of fFa(c) as estimator
of t,. The total variance is, in turn, composed of variances arising from
different sources. The relevant components are derived in Theorem 6.3.1, as
is the expectation of £ .4 . Hence, in this theorem, all the tools for making an
MSE decomposition for # ) are provided. Likewise, an MSE decomposition
for R;f) can be made by use of Theorem 6.3.2.

6.4 Summary

In this chapter, we tried to take a comprehensive view of the impact of some
error sources on the speed survey estimators. We derived the expectations
and variances of the estimators, taking both the sampling design and mod-
els for the procedures that generate Np;, and &,(CC) into account. In order to
evaluate the resulting expressions, it would be necessary to design (and con-
duct) experiments in such a way that the various errors were simultaneously
controlled for. Neither the time nor the resources were available to perform
such experiments, but we noted some special cases under which results from

earlier chapters applied.
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Chapter 7

Summary and final remarks

Within the framework of this thesis, it would have been impracticable for
us to inspect all possible quality problems associated with the speed survey.
Instead, we restricted our attention to two selected nonsampling errors and

an allocation aspect of the sampling error.

A problem with erroneous road lengths in the frames used in the final
sampling stage was analyzed in Chapter 3. The analysis rested on a frame
error model, in which the frame road length for a small area was described
as a function of the true length and a random error. Two special cases of the
model were the subjects of particular attention: an additive and a multiplica-
tive relationship, respectively, between the true length and the random error.
Our investigation revealed that, theoretically, if the errors in the frame road
lengths were multiplicative with an expectation of one and constant variance,
the length error had no bias effect on the survey estimators. Also, for the
estimator of average speed, its relative (approximate) variance increase due
to the length error was simply equal to the error variance. According to our
experiment, the additive model described the errors in the frame road lengths
slightly better than the multiplicative model did. The choice of model may,
however, not be crucial since the errors, at any rate, appeared to be quite
small. Our observed multiplicative errors showed a mean close to one, and
a variance of less than one percent. Thus, it seems as if the speed survey
estimators are not biased by the length error, and that the variance increase

due to the length error, for the average speed estimator, was small. The
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7. Summary and final remarks

conclusion was based on limited data and, ideally, should be verified by a

larger experiment.

Chapter 4 dealt with the problem that, currently, a number of the vehi-
cles passing a selected site often remain unobserved. For site k, the plan is to
observe the number of passing vehicles, y;, and the sum of their travel times
(the times they take to pass the site), z;. If some vehicles are not noted,
yx and z; must be estimated. The current estimates are obtained by simply
ignoring the missing data. We suggested dividing the traffic into weighting
classes and adjusting the observed traffic flow (within class) either by adding
to it the number of imputed vehicles, or by weighting it by an estimated
registration probability. In both cases, the adjusted flow figure is then mul-
tiplied with the mean of observed travel times to arrive at an estimate of
2. A key issue is whether the estimators of g, and z; are unbiased or not.
If they are, missing data have no bias effect on any survey estimator. The
variances of the survey estimators are then surely larger than those of the
corresponding prototype estimators (i.e., the estimators which would be used
in the absence of nonsampling errors). We suspect, but cannot theoretically
say with certainty, that biased estimators of y; and z; will create bias in the
estimator of average speed.

Our evaluation of the current strategy for handling missing data, as well
as of our two counter-proposals, rested on several models. First, we modeled
the registration distribution, which generates the set of observed vehicles.
In addition, we formulated models for the errors in the number of imputed
vehicles, and for the errors in the estimated registration probabilities. We
investigated theoretically the statistical properties of the survey estimators
obtained by replacing the true y;’s and z;’s by estimates. We presented both
general expressions for the expectations and variances of the resulting estima-
tors, and detailed results for each considered strategy for handling missing
data. In our experiment, most of the model assumptions we were able to
check seemed to agree reasonably well with data, though we did encounter
some model objections that still require further investigation. When we es-
timated yx and 2, the missing data adjusted estimates came closer to the
true values than the unadjusted estimates did. A measure of the average

speed in site k is given by the ratio uy = yx/z,. When we estimated uy by
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the ratio of estimated values on y; and zx, the unadjusted estimates came as
close to the true values as the estimates adjusted for missing data did. Since
ug is the counterpart on ‘element-level’ to the average speed for all roads,
our study thus hints that the estimator of average speed does not need to be
adjusted for missing data. Still, our main accomplishment in Chapter 4 was
the building of a theoretical framework for further evaluations of present and
proposed estimation strategies. More experiments or simulations, however,

are needed to make full use of the theoretical results.

In Chapter 5, we shifted our attention to the sampling error. Our primary
goal was to evaluate the current allocation of the total sample over sampling
stages, by estimating the variance components mirroring the variation arising
from each sampling stage. This was not a trivial task, since at present the
sampling sizes (within stratum) equal one in all sampling stages but the
first. We developed the relevant formulae for using a ‘fictitious’ sampling
design to estimate the variance components. The approach presupposes that
two or more units are selected in the first and second stages. In order to
get access to samples of size two from the final stage, we followed up by
performing an experiment. In the experiment, for the estimator of average
speed, the variance component due to the final sampling stage seemed to
dominate. This result indicates that for unchanged total sample size, the
precision of the estimator of average speed is likely to improve if the sample
sizes in the third stage are increased, and the number of drawings in the
first stage decreased correspondingly. Our variance component estimates are,
however, quite uncertain (a sign of this being that they often take on negative
values), and the conclusion needs confirmation by a larger experiment. As
a support for reallocation of the sample, we gave formulae for choices of
optimum sample sizes in different sampling stages.

In Chapter 6, we summarized part of our theoretical work by formulating
survey models for the estimators. That is, we derived their expectations and
variances, taking into account both the three-stage sampling design and our
models for errors due to frame errors and missing data. We learnt that in
general, the errors due to missing data and frame imperfections are entwined
closely and may influence all components of the model. Results from earlier

chapters apply, but only as important special cases. New experiments are
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7. Summary and final remarks

needed to evaluate the full survey models.

In this thesis, we have provided the survey management with theoretical
tools for assessing the impact of frame errors and missing data; for evalu-
ating proposals for missing data adjustments; and for reallocating the total
sample over sampling stages. We have also reported results from several ex-
periments. The experiments were performed on a small scale and did not
cover all relevant aspects of the problems. Our hope is that the speed survey
management, given sufficient resources being available, is willing to finish
our work by collecting additional data. Also, we wish to call attention to the
fact that there are still several research problems associated with the speed
survey that remain to be addressed. Among these, we note the effect of the
person installing the equipment on the road (the analogue to the ‘interviewer
effect” known from interviewer surveys) and problems associated with an ag-
ing master frame. Furthermore, other missing data problems remain: the
effect of incomplete observational data for connected time periods is yet to
be investigated, as are the present procedures for handling complete loss of
data from a road site (including hot-deck imputation and field substitution
in space, time, or both).
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A. Abbreviations

Appendix A

Abbreviations

Abbre- Section where
viation  Explanation introduced
ANOVA  Analysis of variance 3.54
EVC Expected variable cost 5.3.1
iid Independent and identically distributed 3.5.4
M50 Major road with a speed limit of 50 km/h 2.4.3
MT70 Major road with a speed limit of 70 km/h 243
ME Measurement efficiency 1.2
MSE Mean square error 6.3.3
NID Normally and independently distributed 4.5.5
pPps Probability-proportional-to-size sampling

with replacement 2.4.2
PSU Primary sampling unit 24.1
RHG Response homogeneity group 4.3.1
SAMS Small area market statistics 2.4.2
SCB Statistics Sweden 2.4.2
SI Simple random sampling without replacement 2.4.3
SIR Simple random sampling with replacement 5.2.2
SNRA Swedish National Road Administration 1
SSU Secondary sampling unit 2.4.1
STSI Stratified sampling with SI sampling in each

stratum 4.3.1
TSU Tertiary sampling unit 2.4.3
VC Variable cost 5.3.1
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Appendix B

Proofs

B.1 Proofs of Theorems 3.4.1, 4.4.1 and 6.3.1

B.1.1 Preparatory lemmas

We start by noting that the sampling design p of the speed survey is such
that:

i. The PSUs are selected with replacement.

ii. Independent subsampling is conducted from every selection of a PSU
(whether a repetition or not).

Also, the principal appearances of the prototype estimators of ¢, and R

are

. 1 X iy

fy= — Z (B.1)
mr v=1 Pi,

and R = fy/fz, respectively. The expected values and variances of these

estimators are investigated in the following lemma:

Lemma B.1.1 Under a sampling design p satisfying the specifications (i)-
(ii), the expected value of t, is E, (fa) = Zf\fl E, (fm-), The variance of tq

18

Vi) = (M -y Ep(fm-)) Ly Blla)

i=1



B. Proofs

The estimator R has the approximate expected value F, ( ) /E,p ( z), and the

approzrimate variance

) L [By(tms LV, (i)
O e N

The part of Lemma B.1.1 that refers to £, is a slight generalization of
Result 4.5.1 in [29] or Theorem 6.4 in [27]; the part that refers to R a slight
generalization of results presented in [27, Section 6.8.2.]. Unlike the cited
sources, we do not presuppose that the estimators t,; and iz; are unbiased
for t,; and tg;, respectively.

Now assume that some fix entity &, included in ¢, and R and associated
with the subsampling from selected PSUs, is unknown. Instead of x, we only
have access to a substitute value 4~ which is impaired by a random error. Let
the estimator of ¢, based on & instead of x be denoted £*; the corresponding
estimator of R is R* = t;j /t:. The stochastic properties of & are regulated by
model &.

Let expectations and variances be indicated by subscript £ if taken with
respect to model &; by p¢ if taken with respect jointly to the sampling de-
sign p and model £. The following lemma is a straightforward expansion of
Lemma B.1.1:

Lemma B.1.2 Jointly under a sampling design p satisfying the specifica-
tions (i)-(ii), and model &, the expected value of t: is given by Epe (f;) =
ngl Epe (f;l) The variance of t* is given by

% 1 all E §23 (E();z) N1 Ik :
Vie(ts) = P sz' T Zi:l Epe(ta;)
i=1 ¢

= f: Voe(ler) (B.4)

m .
I i—1 Di

The estimator R* has the approzimate expected value Epe (t2) /Epe (t2), and

the approrimate variance

* 1 1 - [Epﬁ (%)]2 1 o Ve (52%)
Avpg(R) tZ{_ZlTJrE;T . (B5)
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Now consider the speed survey sampling design p as described in detail in
Section 2.4. Let conditional expectations and variances be indicated by ‘|;
for instance, E¢, denotes expectation with respect to model £, conditional

on the sampling design p. By the use of conditioning, we can write

Epe (1?:1) = EnFErmFep (le) = FE; (B.6)
Vie(ts) = EnBruVey (ty) + ErVine, ()
Vi (th) = Vi + Via + Vis (B.7)

which turns out to be useful in the proofs which follow.

B.1.2 Proof of Theorem 3.4.1

If we interpret x as Njq, & as Npiq, model £ as the frame error model my,
and the estimators £ and R* as tp, and Rp, respectively, Lemma B.1.2
is applicable. Hence it suffices to show that FEp,,, (tAsz-) and Vpu, (f sz')
equal the stated expressions. To do this, we make use of the conditioning in
Equations (B.6) and (B.7).

We start with the expectation:

B, = EIIEIIIEmllp (lz qus. ak)

Nrr; S1riy - Mg
Nrri i
_ q
= Eulbm — Qg
nrr; SIIiy T),Z'q Siq
_ Niri Hiq
- 17 taiq
nrri SIIiy, NZ

M
- ZUIH Niq taiq.

which equals the stated expression for E,,, (f qu‘)-

Now we turn to the variance. First,

Vit = ErrnVmp (JZ - Z . a’“)

Nnrr; srri Nyg Siq
2 2 2
Nrri 0.
2 Ak
Nrr; SIr1i le-q Siq
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Second,

and finally,

Vis =

B. Proofs

2

Ni 2 Uiq
(i) > 7 (Vaig + 12,,)

= EII

nrri

Nrri o’
- — ZUII-L Ni;q (Vaiq + t?liq) :

nrri

Niri
Vie = ErnVirFu,p (JZ

Nesy 5 ak)

nrr; S11iy - Mg
_ Nrri Hiq
= Vi — Qg
nrr; S11i Nig Siq

= EII

Nrri 2 Hig 2
—i Rz
(n][i ) ZSIU (Nl 1
Nrri Hiq ?
= Vas
ZUIH (Nl 1

nrri

N i Ni
VHEHIEmlp( d Z nF : Z . ak)
iq

Nnrri SITiy, Siq
Niri i
Villrr ( WIIIIz Zsmy z—iz ZSiq ak)
V(T2 Y R,
2
NIQIi = ;Ij:”i N[Iil— 1 ZUI” (]lifzq taiq - Nlnl ZUI” ]/j\zq taiq) .

Addition of Vj1, Vj2 and V3 gives the stated expression for Vj,, (f qu‘)-

B.1.3 Proof of Theorem 4.4.1

~(©)

If we interpret s as ay, & as @, ', model ¢ as model m,, and the estimators

t* and R

as t4 and R, respectively, Lemma B.1.2 is again applicable.

Hence it suffices to show that E,,, (fmi(c)i) and Vi, (fﬂa(c)i) equal the stated
expressions. To do this, we make use of the conditioning in Equations (B.6)

and (B.7).
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We start with the expectation:

Nir; N; ~(c)
E;, = FErFEmF. — a
THYITE glp( nir ZSMV Nig Zsiq k

N N; .
= EIIEIII|:nII Z =qz ’Y(Q(C))k:|

1Ii s11i Nig Siq

NIIz'
=m0, )

Nrri
= tny(a(C))z“
which equals the stated expression for Epmz( @Z)

Now we turn to the variance. First,

Nrri N; .
‘/il = EIIEIII‘/mz‘P < IIIIZ ZSIH,, n—uj Zsiq a’l(c))
— NIIi % 2 "
= il (ﬂllli ) Zs[u (niq ) ZSM (5(@ )k
NIIZ f e
- (m) > mqq (@) ]
. Nir Nig o
B nrri ZUIH Nig ZUiq 6(0’ )k .

Second,

N 7 Nz ~(c
Vie = EIJVIIIE1112|p( - Z _ qz al(ﬂ))
siq

nrri 511iv Mg
Nllz z
q c
= EnVin > (@),
Nnrri s1ri Mg

Niri
(”/Hi ) Esm VW(d(C))iq]

and finally,
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nrri 8113y, Mg
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Addition of V;, and V3 gives V. %a(c))i? addition of V. (a@)i and Vj; gives the

stated expression for Vi, (tA,ra(C)Z-).

B.1.4 Proof of Theorem 6.3.1

We now have two fixed but unknown entities: N;;, and a;. Lemma B.1.2
however still applies, if « is interpreted as the vector (N, ax) and & as
<N Figs &;ﬁ), and if expectations and variances with respect to model £ are

taken with respect jointly to model m; and my. The estimators £ and R*
now correspond to %4 and ]:Zg,f), respectively. In the following, we make
use of slightly expanded versions of Equations (B.6) and (B.7):

Epmims (tpra@i) = ErErrEmpEmsm, (Erraes) = E; (B.8)
Vomsia (frna01) = BBV pBusipm, (Erra)
+EE 1 im, 1pVins jpm: (wa&(E)i)
+E1Vi1Bm pBmstpm, (Eprae;)
Vi iEn, pEns pm, (EFwa(c)z')
= Vinn+Viz+ Vi + Vis (B.9)

We start by deriving the model expectations and variances. First,

E1111 \pEmQ [pmy ( F‘/rd(c)i)

N[I’i NFi ~(c
== Elul\pEmQ\pml (n— Z 4 Z al(f ))

IIi s1ri Thig Siq
- E Niri Z Nrig Z - (c)
= milp |\ T v ((L ) k
nrri S1ri Mg Siq
N Hig ~ ()
- ’y a Kk
Nrri S11i Nyg Siq

second,

~—

V;nl \pEmg |pm; (tFwa(C)i

NIIi NFi ~(c
= MnﬂpEmganl (7’1_ Z — Z a](c)

280 511i Mg Siq

128



B.1. Proofs of Theorems 3.4.1, 4.4.1 and 6.3.1

Nipi N ~(c
‘/1111\17 <iz . n};qq Z X "}’(CL( ))k)

nrr; SIri Siq

Nii\? Uz'2q ~(c 2
- < II») Zslu n? <Z ) ’y(a( ))k)
iq

nrri Siq

and finally

Emﬂp‘/;nz\pml (t Frale )i)

5oV Nmz NFiqZ 4©
my|pYmo|pmy o Mg siq k

ITi SIIi

()5, (2 5, 6,

= E1111|p

nrr Siq

2 2 2
_ (Nﬂf) Yo et G0)

nrr SIIi ’n/iq Siq

Now, the expectation is given by

E;, = EiFin (NHZ Z iy ZS (C) )
iq

5118 Mig
- B NIIz N‘zq Mgy
- 11 g N a(c)
nrri SI1ri iq

which equals the stated expression for E,,, ., (f Fﬂ&(c)i).

Now we turn to the variance:

Nii\* % o
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g RV S
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B. Proofs

‘/;12 = EIIEIII

(Nm)zz MZqZ 5(a©) ]
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N\ M .
(’n/[h') an;, Niqniq ZUiqé(a’ )k

2 2
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11 nrri NIIZ' —1 ZUIH ’y(a( ))lq NIIZ' ZU}H N. 'y(a( ))zq

iq
Addition of Vj11, Vire, Vie and Viz gives Viuim, (tAFﬂa(c)l-). An expression for
Vomime (t Fm(c)i) is not explicitly stated in Theorem 6.3.1. Note however that

i - 1 Vi .
_I Z Vi = V2(tFa(c)) ) Z = = tFa(C))
i=1 pi i=1

my

Ly Vo i 1 & Vis .
2 = Vasultrae)s = ) 5 = Vissu(trae) -
mr ; i l,TSU( Fa())? mr ; ; I,SSU( Fa())

B.2 Proof of Corollary 3.4.3

The variance increase due to the use of ¢, instead of ¢, as estimator of ¢,

is immediately obtained from Corollary 3.4.1 by replacing qu with NZ%T2 in
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B.2. Proof of Corollary 3.4.3

Equation (3.6). In the same manner, we obtain
Vi, (B ) = AV, (1) = 727

where

Ny

11 N 1N,

=——
tzmy <= pi Nri

A

ZUI” (VEiq + t%zq) .

It remains to show that A = AV, (]:2) From Section 2.6,

Nr o Ny
~ 1 1 t4.. 1 1 NIIi
av(R) = |- Ly S
’ t‘z [ml i1 Pi i mp 5 Pi wiri nrr; Urri Big

We note that Vgrr; can be written as

v, i Nrr; 42 Nrringr — 1 42 1 Nrp—nrp 42
EIli = E = _ E e N
n U P npp Ny — 1 4=um P9 nppy Ny — 179

Hence,
AV ( fg) N = 11 i thi L (Ning—1 Z .2
'  2mp &= i\ N — 1 4o 7

N —nrrn
+ Ir nrr t2Ez):|
nrr; (Nm - 1)
11 adl [t%i (1 Niri —nini )
t2mg —Lpi nrri (N — 1)
1 Nppsngp — 1
S e DO
Pi nrri Nppi — 1 Urri
11 &

_ 11 l%”m‘_—l(ﬂ_z t?.)
tZmy =1 Pi i N —1\# Urre B1)

Since, in practice, nyy; equals one for all 4, the derived expression is zero, and

we are ready.
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Appendix C

A useful proposition

The derivations of v and ¢ in Section 4.4.2 are facilitated by the following
proposition (which is easily proven):

Proposition C.1 For any random variables A and B such that the expected
value of B given A is constant; E(B|A) = «, the expected value of AB s
given by

E(AB) =aE(A),
and the variance of AB by
V(AB) = E[A’V(B|A)] + o*V(A)

where E(A) and V(A) is the expectation and variance of A, respectively, and
V(B |A) is the variance of B given A.
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Appendix D

Derivations of fictitious
first-stage inclusion

probabilities

The fictitious inclusion probabilities stated in Section 5.2.2 are here derived.

Let r; denote the number of times PSU i occurs in the ordered sample
osr;i € Ur. Note that r; is a binomial(my, p;)-distributed variable. Since
only PSUs which occur at least twice in os; are included in sy, the first-

order inclusion probability 7; in Equation (5.9) is derived as

wpy = Pr(i€sp)=Pr(r;>2)=1—Pr(r;=0)—Pr(r;=1)

ml! 0 m mI! 1 mr—1
= 1—- (1 —p)™ — ————pr (1 —p))™
O!mﬂpl( pi) Ty — 1)!171( pi)

m Di
— 1-(1—p)™ (1
(1-p) (+m11_pl_)

and the second-order inclusion probability 7;;; in Equation (5.10) as

iy = Pr(i&jesp)=Pr((i €sp)N(j€ sy
— 1-Pr [(z’ €s)N(je s[,)}
L= Prl(i ¢ s) UG ¢ 1)
L {Pr(ig )+ Pr(j ¢ se)— Prll ¢ 500 ¢ s}
= 1—{Pr(r;<2)+Pr(r; <2)—Pri(r <2)N(r; <2)}
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D. Derivations of fictitious first-stage inclusion probabilities

= 1—-{Pr(r;=0)+Pr(r;=1)+Pr(r;=0)+Pr(r;=1)
—Pr(r;,=0,r;=0)—Pr(r;=0,r;, =1)
—Pr(r,=1,r;=0)—-Pr(ri=1,1r=1)}

— mI! 0 my 0 ™I
_1_{mmﬂ@“Lﬂw (L= p)"]

m;! mr—1 mr—1
Ty 1 )™ ()™ ]
mil o, m
~Ol0t, 1P (L P )™
4m1! 0,1 mz—1 1,0 mr—1
_0!1!(m[—1)! [pipj (1—pi—pj) +pip; (1 —pi — pj) ]
my! 1.1 my—2
" T (my —2)P P (1= pi —pj)
m Di m bj
= ]._ 1— A 1 ]_ — 1_ . 1 1
(1) ( L ) (1-p) ( +m11_pj)
my— DbiPj
- =pi—p, IlWI[ﬁH‘P'*’ ml_l—:|-
( ]) ! ( )1_pi_pj
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Appendix E

ANOVA tables

E.1 Based on the frame error experiment

E.1.1 Under the additive error model for Np;,

Test for SNRA region effect:

Source of Sum of  Degrees of Mean

Variation Squares Freedom  Square Fy, P-value
SNRA region  416735.9 6 69456.0 0.80 0.5761
Error 5054106.6 58 87139.8

Total 5470842.6 64

Test for population center size class effect:

Source of  Sum of  Degrees of Mean
Variation  Squares Freedom  Square Fy  P-value

Size class 89074.4 2 44537.2 0.51 0.6012
Error 5381768.1 62 86802.7
Total 5470842.6 64
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Test for small area stratum effect:

E. ANOVA tables

Source of Sum of  Degrees of Mean
Variation Squares  Freedom  Square Fy  P-value
Small area

stratum  101240.4 3 33746.8 0.38  0.7653
Error 5369602.2 61 88026.3
Total 5470842.6 64

E.1.2 Under the multiplicative error model for Ng;,

Test for SNRA region effect:

Source of Sum of Degrees of Mean
Variation Squares  Freedom Square Fy  P-value
SNRA region  0.0341 6 0.0057 0.90 0.5036
Error 0.3683 58  0.0063
Total 0.4024 64
Test for population center size class effect:
Source of Sum of Degrees of Mean
Variation Squares Freedom Square Fp P-value
Size class  0.0238 2 0.0119 1.95 0.1507
Error 0.3786 62 0.0061
Total 0.4024 64
Test for small area stratum effect:
Source of  Sum of Degrees of Mean
Variation  Squares Freedom Square Fy P-value
Small area
stratum  0.0169 3 0.0056 0.89 0.4508
Error 0.3855 61 0.0063
Total 0.4024 64
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E.2. Based on the missing data experiment
E.2 Based on the missing data experiment

E.2.1 Under the multiplicative error model for n

Test for site effect with imputations in the valve measurements removed

(ékh = ékh,woi) :

Source of Sum of Degrees of Mean
Variation Squares  Freedom  Square Fy  P-value

Site 3.04343 4 0.76086 2.33  0.0603
Error 37.58069 115 0.32679
Total 40.62412 119

Test for site effect with imputations in the valve measurements retained

(é‘kh = é‘kh,wi)i

Source of Sum of  Degrees of Mean

Variation Squares Freedom — Square Fy — P-value

Site 1.75452 4 0.43863 4.30 0.0028
Error 11.74024 115 0.10209
Total 13.49476 119

E.2.2 Under the additive error model for @,(f)

Test for site effect with imputations in the valve measurements removed

(ekh = ékh,woi) :

Source of Sum of Degrees of Mean

Variation Squares Freedom  Square Fy  P-value

Site 0.00518 4 0.00129 9.38 < 0.0001
Error 0.01587 115 0.00014
Total 0.02104 119
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E. ANOVA tables

Test for site effect with imputations in the valve measurements retained

(€xh = €knywi):

Source of Sum of Degrees of Mean

Variation Squares Freedom  Square Fy  P-value
Site 0.01809 4 0.00452 8.52 < 0.0001
Error 0.06107 115 0.00053

Total 0.07916 119

E.2.3 Under the multiplicative error model for @;2,3

Test for site effect with imputations in valve measurements removed (€g, =

ék:h,woi):

Source of Sum of Degrees of Mean

Variation Squares Freedom  Square Fy  P-value
Site 0.01050 4 0.00263 9.45 < 0.0001
Error 0.03198 115 0.00028

Total 0.04248 119

Test for site effect with imputations in valve measurements retained (€, =

gkh,wi):

Source of Sum of Degrees of Mean

Variation Squares Freedom — Square Fy;  P-value
Site 0.02750 4 0.00688 7.96 < 0.0001
Error 0.09933 115 0.00086

Total 0.12683 119
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Appendix F

Variance component estimates

for fy and .,

In the following tables, estimates of the approximate variances of fy and £,
and their components, for various combinations of SSU and TSU strata, are
presented. The estimates for fy are given in thousands of kilometers; the

estimates for ¢, in thousands of hours.

Development Road

type type Vit (ty) Visu (t,) Visu () Vosu (ty)

City MT70 2005.9518  562.4455 *  1443.5063
City Other 6.8357 5.8788 0.9569 *
Industrial MT70 600.3100  384.2024 x  216.1076
Industrial Other  4245.1520 4564.1312 — —
Residential MT70 17167.6676  606.4022 16561.2654 *
Residential Other 28.8047 5.3361 23.4686 *
Other M70 672.9285 72.2111 600.7174 *
Other Other 0.4747 0.2510 0.2237 *
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F. Variance component estimates for ¢, and ¢,

Development Road

type type  Viw(£.) Visu(f.) Vasu(f) Vesu(t.)
City MT70 0.9143 0.2054 * 0.7089
City Other  0.0039 0.0032 0.0007 *
Industrial MT70 0.2697 0.1963 * 0.0734
Industrial Other  1.4209 1.3942 * 0.0267
Residential M70 6.5975 0.1195 6.4780 *
Residential Other  0.0215 0.0019 0.0196 *
Other M70 0.3748 0.0291 0.3457 *
Other Other  0.0003 0.0002 0.0001 *
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