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Abstract

Monotonic regression is a non-parametric method that is designed especially

for applications in which the expected value of a response variable increases or

decreases in one or more explanatory variables. Here, we show how the recently

developed generalised pool-adjacent-violators (GPAV) algorithm can greatly

facilitate the assessment of trends in time series of environmental quality data. In

particular, we present new methods for simultaneous extraction of a monotonic trend

and seasonal components, and for normalisation of environmental quality data that

are influenced by random variation in weather conditions or other forms of natural

variability. The general aim of normalisation is to clarify the human impact on the

environment by suppressing irrelevant variation in the collected data. Our method is

designed for applications that satisfy the following conditions: (i) the response

variable under consideration is a monotonic function of one or more covariates; (ii)

the anthropogenic temporal trend is either increasing or decreasing; (iii) the seasonal

variation over a year can be defined by one increasing and one decreasing function.

Theoretical descriptions of our methodology are accompanied by examples of trend

assessments of water quality data and normalisation of the mercury concentration in

cod muscle in relation to the length of the analysed fish.

Keywords: Monotonic regression, Response surface, Time series decomposition,
Normalisation
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1. Introduction

Monotonic responses and relationships are widespread in all types of environmental

systems. For example, it is common that the rates of chemical and microbial processes

increase with temperature. Also, the concentrations of many contaminants in living

organisms increase with the age or size of the analysed individual, and fluxes of

substances through terrestrial and aquatic systems can increase with the amount and

intensity of precipitation. The simplest forms of monotonic relationships can easily be

described by using an appropriate parametric model, and numerous algorithms have been

developed to fit such models to observed data. However, more complex relationships

involving two or more explanatory variables can require non-parametric modelling. This

is especially true if the response includes a threshold effect or is strongly non-linear in

some other respect.

Monotonic regression is a non-parametric method that is designed for applications

where the expected value of a response variable (y) increases or decreases in one or more

explanatory variables (x1, … , xp). The most commonly used computational method for

this type of regression is the so-called pool-adjacent-violators (PAV) algorithm [1, 2, 3].

When p = 1, this algorithm is computationally efficient, and it provides solutions that are

optimal in the sense that the mean square error is minimised. When p > 1, the PAV

algorithm has proven useful for estimating monotonic responses to explanatory variables

that are varied at only a few levels [4, 5, 6, 7]. However, it was not until Burdakov and

colleagues [8, 9] recently generalised the PAV algorithm from fully to partially ordered

data that it became feasible to handle typical regression data that include one or more

continuous variables. The cited reports also explain the ways in which the generalised

pool-adjacent-violators (GPAV) algorithm is superior to currently used algorithms that

are based on simple averaging techniques [10, 11, 12] or quadratic programming [13, 14].

Here, we show that the GPAV algorithm has important applications in several areas

of environmental science and management. In particular, we illustrate how this algorithm

can be used in the following contexts:

(i) estimation of response surfaces that are known to be monotonic in two or

more variables;
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(ii) simultaneous extraction of seasonal components and a monotonic trend

from a univariate time series;

(iii) normalisation of time series of environmental quality data.

The first of these tasks is also highly relevant in many areas other than

environmental science; for example, monotonic regression is often appropriate for

estimating dose-response curves in experimental studies [6, 7]. The second task entails

time series decomposition, which is a classical undertaking in official statistics (e.g.,

[15]). The method we present takes into account that many seasonal patterns in the

environment can be decomposed into one increasing and one decreasing phase. The third

task, normalisation or adjustment, aims to clarify the human impact on the environment

by removing weather-dependent fluctuations or other natural variability in the collected

data [16].

2. Estimation of a monotonic response in two or more
explanatory variables

As we already pointed out, the GPAV algorithm is particularly useful when the

expected response is monotonic in two or more explanatory variables and at least one of

these variables is continuous. Such situations arise naturally when evaluating time series

of environmental quality data for temporal trends. First, interest is often focused on

monotonic trends. Second, almost all measurements of the state of the environment are

influenced by weather conditions or other covariates, and it is more the rule than the

exception that the relationships between the response variable and the covariates under

consideration are monotonic.

Figure 1 (a and b) illustrates how monotonic regression can be used to describe data

on the concentration of mercury in Atlantic cod (Gadu morhua) in relation to sampling

year and body length. The increase in mercury with increasing size of the fish is obvious

in the two diagrams. In addition, the response surface in Figure 1b indicates a downward

temporal trend.
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Figure 1a. Concentration of mercury in muscle tissue from Atlantic cod (Gadu morhua) caught in
the North Sea (53o 10’ N, 2o 5’ E). The data represent observed concentrations (ng Hg/g ww) in
relation to sampling year and body length length of the analysed fish.

Figure 1b. Concentration of mercury in muscle tissue from Atlantic cod (Gadu morhua) caught in
the North Sea (53o 10’ N, 2o 5’ E). The response surface was obtained by first using the GPAV
algorithm for monotonic regression and then employing locally weighted scatter-plot smoothing to
extrapolate the fitted regression values to a fine grid (see also section 4.3).

Concentration
(ng Hg/g ww)

Year Fish length (cm)

Concentration
(ng Hg/g ww)

Year Fish length (cm)
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3. Simultaneous estimation of a monotonic trend and seasonal

effects

When data are collected over several seasons, monotonic regression models may

appear to be inadequate. However, many seasonal patterns can be decomposed into

increasing and decreasing phases, and this enables the use of various approaches based on

monotonic regression. If we let y1, y2, … , yn denote a time series of data collected over m

seasons, and let iŷ  denote the sum of the trend and seasonal components at time i, it is

possible to determine iŷ  by minimising

∑ −=
i

ii yyS 2)ˆ(

under a set of simple constraints, and we can also introduce these constraints by

employing a monotonic regression model.

Let us, for the sake of clarity, consider a seasonal pattern of the type illustrated in

Figure 2. Let us also assume that we would like to extract a non-increasing trend function

from the collected data. If we then perform a monotonic regression using sampling year

and the variables x1 and x2 as explanatory variables, the fitted values iŷ  must be non-

increasing for each season, i.e.,

.,...,1,ˆˆ mniyy mii −=≥ +

In addition, the fitted values representing different seasons in the same year must

have non-increasing and non-decreasing phases with the same duration as in Figure 2.
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Figure 2. Seasonal pattern comprising increasing and decreasing phases, and a possible coding
of these phases.

Figure 3 (a and b) illustrates a set of monthly flow-weighted concentrations of total

nitrogen in the Elbe River and the monotonic trend and seasonal components that could

be extracted from these data. The goodness-of-fit to observed data reached a maximum

when we let the seasonal effects have a maximum in March and a minimum in August.

Furthermore, it can be noted that the downward trend was particularly strong after the

reunification of Germany in 1990.

Figure 3a. Monthly mean concentrations of total nitrogen (Tot-N) measured in the Elbe River at
Brunsbüttel downstream of Hamburg.
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Figure 3b. Response surface obtained by applying monotonic regression to monthly mean
concentrations of total nitrogen (Tot-N) measured in the Elbe River at Brunsbüttel downstream of
Hamburg.

4. Normalisation of time series of environmental quality data

4.1 Normalisation formulae

The general aim of normalisation is to remove irrelevant variation in the collected

data. The basic idea is simple. If observations of meteorological or other naturally

fluctuating variables make us believe that the studied response variable takes a value that

is c units higher than the average response, then normalisation implies that we subtract

this expected increase c from the observed response. A general probabilistic framework

for normalisation was recently presented by Grimvall and co-workers [16]. Here, we

discuss normalisation based on monotonic regression models.

Let us assume that the observed values of the response variable y have the general

form

nixxfy ipiii ,...,1,),...,( 1 =+= ε

where f is a deterministic function of p explanatory variables x1, … , xp, and εi , i = 1, … ,

n depicts a sequence of independent, identically distributed random errors with mean

zero. We can then normalise the observed responses with respect to x1, … , xq by forming

Fitted Tot-N conc.
(mg/l)

Year Month
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( )),...,,,...,(ˆ),...,,,...,(ˆ~
,11,11 piqqiipiqqiiii xxxxfxxxxfyy ++ −−=

where f̂  denotes an estimate of f and nixx qii ,...,1),...,,( 1 =  is a sequence of given values

of x1, … , xq. Typically, these given values represent averages taken over the entire data

set or subsets thereof. For example, if data are collected over several seasons, we can let

nixx qii ,...,1),,...,( 1 =  represent seasonal means of x1, … , xq.

Regardless of how the normalisation is carried out, we must be able to estimate the

values of f at two sets of points: an estimation set

{ }nixxA pii ,...,1),,...,( 1 ==

for which we have observed response values {yi, i = 1, … , n}, and an evaluation set

{ }mnnixxxxB piiqqii ++== + ,...,1),,...,,,...,( ,11

for which no observations exist. The GPAV algorithm provides estimates of f for all

points in the estimation set. It remains to extrapolate f̂ to the evaluation set under the

constraint that f̂ is monotonic in each of the coordinates.

4.2 Extrapolation of monotonic responses to new points

Let χ = (χ1, … , χp) be a point to which f̂ shall be extrapolated from a given

estimation set A. We can then define two subsets of A. The first subset

{ }pkxAxxL kkipii ,...,1,;),...,( 1 =≤∈= χχ

contains all points in A that are dominated by χ. The second subset

{ }pkxAxxU kkipii ,...,1,;),...,( 1 =≥∈= χχ

comprises all points in A that dominate χ.

Let us also for the moment assume that both Lχ and Uχ are nonempty. Then the

expression

{ }χLxxxxfy piipiiL ∈= ),...,(;),...,(ˆmax 11
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provides a lower limit for the values of )(ˆ χf  that can render f̂ monotonic on the set

{ }χ∪A . Furthermore, we can identify a point χχ LL ∈  that minimises the distance to χ

under the constraint that LL yf =)(ˆ χ . Likewise,

{ }χUxxxxfy piipiiU ∈= ),...,(;),...,(ˆmin 11

defines an upper limit for the permissible values of )(ˆ χf , and we can select a point

χχ UU ∈  that minimises the distance to χ under the constraint that .)(ˆ
UU yf =χ

If χ is on the straight line between χL and χU, it would be natural to use linear

interpolation to assign a value to )(ˆ χf , in other words to set

)()(ˆ
LU

LU

L
L yyyf −

−
−

+=
χχ

χχ
χ .

where u denotes the length of the vector u. Regardless of the location of χ we can set

( )
( ) )(

,

,
)(ˆ

UU

U
LU

LL

LL
L yyyf −

−−
−−+=

χχχχ
χχχχχ

where (u,v) denotes the scalar product of the vectors u and v.

If Lx or Ux is empty, we assign values to )(ˆ χf  as follows:








=

emptyareandbothif,

nonemptyisandemptyisif,

nonempty isandemptyisif,

)(ˆ

χχ

χχ

χχ

ULy

LUy

ULy

f L

U

where y is the mean response for the elements in the entire estimation set or a subset of

elements within a fixed distance to χ.

The procedure described above can be repeated for an arbitrary set of points.

However, it is important to note that the estimation set A must be updated from A to

{ }χ∪A  each time f̂  has been extrapolated to a new point χ. Otherwise, there may be

pairs of extrapolated values for which the monotonicity is violated.

If the evaluation set is large, the above-mentioned procedure can be

computationally cumbersome. Hence there is also a need for extrapolation procedures

that can provide an approximately monotonic response surface over a large set of points.



10

For example, it can be convenient to use kernel smoothing or locally weighted scatter-

plot smoothing [17] to extrapolate the fitted responses in a monotonic regression to a fine

grid of values of the explanatory variables (see Figure 1b).

4.3 Normalisation of contaminants in fish

Simple time series plots of observed concentrations of mercury in Atlantic cod

caught in the middle of the North Sea (53o 10’ N, 2o 5’ E) indicate a downward trend

(Figure 4a). However, this may, at least in part, be a spurious trend caused by temporal

changes in the lengths of the analysed fish. Hence, it is of great interest to normalise the

observed mercury concentrations with respect to fish length. Figure 4b illustrates the

results obtained by using the normalisation procedure described in sections 4.1 and 4.2.

Apparently, the mercury trend after normalisation is considerably smaller than in the raw

data.

Figure 4a. Observed concentrations of mercury in muscle tissue from Atlantic cod (Gadu morhua)
caught in the North Sea (53o 10’ N, 2o 5’ E ).
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Figure 4b. Concentration of mercury in Atlantic cod (Gadu morhua) normalised to a body length
of 49.6 cm.

5. Discussion

In this article, we demonstrate that the recently developed GPAV algorithm for

monotonic regression has a great potential for applications in environmental science and

management. In many cases, the assumption of monotonic response has a solid

foundation in process-based modelling or strong empirical evidence, whereas in other

cases, such as trend assessment of environmental quality data, it can be more correct to

regard monotonicity as a reasonable simplification. In either case, monotonic regression

is convenient to use because issues concerning model selection are reduced to a

minimum. Conventional parametric modelling of non-linear responses to two or more

variables is usually more demanding, and the fit to observed data can be unsatisfactory

even if a large number of models are tested. Kernel smoothing, locally weighted scatter-

plot smoothing, and other non-parametric regression techniques are often more viable

alternatives to monotonic regression. However, the latter methods may produce very odd

results if the set of points for which responses have been observed is very unevenly

distributed. In addition, it may be unsatisfactory to obtain a non-monotonic response

surface when there is theoretical support for monotonicity.

The calculations that were undertaken to simultaneously extract a monotonic trend and

seasonal components from a time series of water quality data illustrate that monotonic
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regression usually produces a relatively smooth response surface. In this respect, our

method is similar to the currently used procedures for time series decomposition (e.g.,

[15]). However, the estimated seasonal effects can be different, because, in contrast to

other techniques, our method includes constraints on how such effects can vary from one

season to the next.

The normalisation in section 4 represents a type of statistical analysis that has attracted

increasing interest in environmental monitoring. Most of the methods presently in use are

based on linear regression models for the removal of irrelevant variation in collected data

[18], and model selection studies have shown that such models can perform well even if

some of the underlying processes are non-linear [19]. However, it has also been

demonstrated that non-linear features of a normalisation model can improve the

performance if there is a strong, non-linear trend in the analysed data [20]. The

monotonic regression described in this article provides yet another tool for normalisation

that can be particularly useful if the natural fluctuations in collected data include non-

linear responses to one or more covariates.
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