
Outline 2 LP Correctness DD Summary

On logic programming

and

locating errors in programs

W lodzimierz Drabent

Institute of Computer Science, Polish Academy of Sciences (IPI PAN);
IDA, Linköpings universitet, Sweden

SaS seminar 2019-11-08
Version 1.0, compiled November 15, 2019

1 / 24

Outline 2 LP Correctness DD Summary

Outline

I Introduction to Logic Programming (LP)

I On proving program correctness (and completeness),
i.e. how to reason about our programs

I Approximate specifications

I Declarative Diagnosis (DD)
Why abandoned; a cure
Inadequacy of Prolog debuggers

I Summary

2 / 24

Outline 2 LP Correctness DD Summary

Outline

Logic Programming (LP) is declarative

We can do declarative programming in Prolog

Debugging should be declarative too

Methods exist:
Declarative Diagnosis (DD), a.k.a. algorithmic debugging

[Shapiro’83,Pereira’86,Naish,...]

Tools do not ··_
We discuss the (possibly) main reason for non-acceptance of DD

3 / 24

Outline 2 LP Correctness DD Summary Ex. ex.program Logic+control

Declarative programming
WHAT to compute

Program – a description of the problem
not a description of computer actions

Logic Programming

Program – a set of axioms
Results – its logical consequences
Computation – proof construction

Main programming language – Prolog

4 / 24

Outline 2 LP Correctness DD Summary Ex. ex.program Logic+control

Logic Programming (LP). The core part

Program – a set of axioms (of the form A0 ← A1, . . . , An

Ai – atoms (atomic formulae)).

Computation – search for logical consequences of the program.

Query Q (of the form A1, . . . , An).

Answers Qθ such that P |= Qθ
(P – the program, θ – substitution).

Any answer Q′ computed for P is a logical consequence of P , P |= Q′.

And conversely
(if P |= Qθ then Qθ is an instance of a computed answer for Q).

Note: untyped logic
5 / 24

Outline 2 LP Correctness DD Summary Ex. ex.program Logic+control

LP, example, puzzle

Build a sequence out of three 1’s, three 2’s, . . . , three 9’s,
so that between each consecutive occurrences of i
there are exactly i elements.

[1,9,1,2,1,8,2,4,6,2,7,9,4,5,8,6,3,4,7,5,3,9,6,8,3,5,7]

[1,8,1,9,1,5,2,6,7,2,8,5,2,9,6,4,7,5,3,8,4,6,3,9,7,4,3]
[1,9,1,6,1,8,2,5,7,2,6,9,2,5,8,4,7,6,3,5,4,9,3,8,7,4,3]
[3,4,7,8,3,9,4,5,3,6,7,4,8,5,2,9,6,2,7,5,2,8,1,6,1,9,1]
[3,4,7,9,3,6,4,8,3,5,7,4,6,9,2,5,8,2,7,6,2,5,1,9,1,8,1]
[7,5,3,8,6,9,3,5,7,4,3,6,8,5,4,9,7,2,6,4,2,8,1,2,1,9,1]

6 / 24

Outline 2 LP Correctness DD Summary Ex. ex.program Logic+control

Notation

Variables in programs – begin with upper case

– anonymous variable (each occurrence of – a distinct variable)

[a1, . . . , an] – list, its elements a1, . . . , an (n ≥ 0)

[] – empty list

[h|t] – the list with head h and tail t

[h1, h2|t] – the list with head h1 and tail [h2|t], i.e. [h1|[h2|t]]

7 / 24

Outline 2 LP Correctness DD Summary Ex. ex.program Logic+control

LP, example, puzzle
solution(S)←

X

Y Z︷ ︸︸ ︷
Y Z︸ ︷︷ ︸

XY Z

H K L︸ ︷︷ ︸
M

sequence27(S),
sublist([1, , 1, , 1], S),
sublist([2, , , 2, , , 2], S),
sublist([3, , , , 3, , , , 3], S),
sublist([4, , , , , 4, , , , , 4], S),
sublist([5, , , , , , 5, , , , , , 5], S),
sublist([6, , , , , , , 6, , , , , , , 6], S),
sublist([7, , , , , , , , 7, , , , , , , , 7], S),
sublist([8, , , , , , , , , 8, , , , , , , , , 8], S),
sublist([9, , , , , , , , , , 9, , , , , , , , , , 9], S).

sublist(Y ,XYZ)← app(,YZ ,XYZ), app(Y , ,YZ).

sequence27([,]).

app([], L, L).
app([H|K], L, [H|M])← app(K,L,M).

8 / 24

Outline 2 LP Correctness DD Summary Ex. ex.program Logic+control

LP. Two levels of reading a program
declarative – a set of axioms,
operational – a description of computations.

ALGORITHM = LOGIC + CONTROL
[Robert Kowalski, 1974]

Operational level (prog. lang. Prolog): control information
(the ordering within the program, some special constructs).

Important:, often neglected:

The two levels can be considered separately.
+ Program correctness is a property of the declarative level.

We do not need to reason in terms of von Neumann machine.
J.Backus, Can programming be liberated from the von Neumann style? CACM, 1978

(One may also program operationally, neglecting the 1st level.)

9 / 24

Outline 2 LP Correctness DD Summary method 1 method 2 Approximate...

Program correctness

How to reason about program results ?

Imperative
programming: partial correctness + termination

LP :
↙ ↘

correctness completeness
full correctness (?)

Correctness –
the program answers compatible with the specification

Completeness – all the required
(by the specification)

answers will be produced

10 / 24

Outline 2 LP Correctness DD Summary method 1 method 2 Approximate...

Reasoning about program correctness

Specification – a set S of ground atoms (a Herbrand interpretation)

Correctness (of P) – each ground answer (of P) ∈ S: MP ⊆ S

Correctness proving method:

S |= P

↑
⇒ P correct w.r.t. S.

For each ground instance H ← B1, . . . , Bn of a clause from P ,
if B1, . . . , Bn ∈ S then H ∈ S.

(Out of atoms ∈S, the rules of P produce only atoms ∈S)

The method has been already informally applied at this presentation.

11 / 24

Outline 2 LP Correctness DD Summary method 1 method 2 Approximate...

Reasoning about program completeness

Completeness (of P w.r.t. S) – each atom ∈ S is an answer of P

S ⊆MP

Completeness proving method

Main part of the sufficient condition – reverse of that for correctness

(∗)
If H ∈ S then
there exists a ground instance H ← B1, . . . , Bn of a clause from P
s.that B1, . . . , Bn ∈ S.

(Each atom of S can be produced by a rule of P from atoms of S.)

The two methods much simpler than those for proving
correctness of imperative programs !

12 / 24

Outline 2 LP Correctness DD Summary method 1 method 2 Approximate...

Important feature

Exact specification – often not known. E.g.

I member(e, t) for a non-list t,

I append(l, t, t′) for non-lists t, t′,

I insert(e, l, y) in insertion sort, for unsorted l,

I a predicate may have distinct semantics in distinct versions
of a program under development!

(see Howe&King SAT solver in [D...,TPLP2018])

13 / 24

Outline 2 LP Correctness DD Summary method 1 method 2 Approximate...

Approximate specifications

Scompl

specification for completeness︷ ︸︸ ︷
required

does not
matter

1

incorrect

︸ ︷︷ ︸
specification for correctness

Scorr

14 / 24

Outline 2 LP Correctness DD Summary method 1 method 2 Approximate...

Approximate specifications, example

Ex.: specification for member/2:

Scorr = Scompl ∪ {member(e, t) | t not a list},

Scompl – the list membership relation, i.e.
Scompl = {member(ti, [t1, . . . , tn]) | 1 ≤ i ≤ n}.

15 / 24

Outline 2 LP Correctness DD Summary
··_ ··̂ Prolog tool

Declarative diagnosis (DD) a.k.a. algorithmic debugging

Methods of locating errors in programs,
based solely on the declarative semantics.

[Shapiro’83,Pereira’86,Naish,...]
[S.Nadjm-Tehrani,W.Drabent,J.Ma luszyński,
H.Nilsson,N.Shahmehri,M.Kamkar,P.Fritzson,
R.Westman,P.Bunus,M.Sjölund]

The methods exist, but are abandoned.

16 / 24

Outline 2 LP Correctness DD Summary
··_ ··̂ Prolog tool

DD (Declarative Diagnosis)

program, symptom
↓

DD algorithm

queries
GGGGGGGGGGGA

DGGGGGGGGGGG

answers

user
(oracle)

↓
located

error

Queries – about the intended declarative semantics of the program

User can locate the error without looking at the program
solely in terms of declarative semantics

17 / 24

Outline 2 LP Correctness DD Summary
··_ ··̂ Prolog tool

Examples – DD of incorrectness

Diagnosis sessions, to be shown after the first two items of the next slide

* A buggy insertion sort program [Shapiro’83]

* An actual bug in a rather big student program (from TDDD08, lab)

18 / 24

Outline 2 LP Correctness DD Summary
··_ ··̂ Prolog tool

Reasons for DD being neglected

I No freedom: Fixed order or queries to answer

I The user cannot change her mind

I · · ·
I Exact specification (intended model) required from the user +

But often she does not know it (and it does not matter)

I member(e, t) for a non-list t,
I append(l, t, t′) for non-lists t, t′,
I insert(e, l, y) in insertion sort, for unsorted l,

I a predicate may have distinct semantics in distinct versions
of a program under development!

(see Howe&King SAT solver in [D...,TPLP2018])

19 / 24

Outline 2 LP Correctness DD Summary
··_ ··̂ Prolog tool

Instead of “the intended model” the user knows

I its certain superset Scorr – what may be computed

I and a subset Scompl – what must be computed

i.e. an approximate specification

The program should be correct w.r.t.Scorr and complete w.r.t.Scompl :
Scompl ⊆MP ⊆ Scorr

The standard Declarative Diagnosis works!
when instead of the intended model we use

I Scorr for incorrectness diagnosis

I Scompl for incompleteness diagnosis

Apparently, this simple fact has been unnoticed

20 / 24

Outline 2 LP Correctness DD Summary
··_ ··̂ Prolog tool

Prolog debuggers

Prolog debugging tools – based solely on operational semantics

Worse, they are “declarative-programmer-unfriendly” ··_
Difficult to obtain info about e.g.

Which answers to a query A have been obtained?

What is the proof tree for a given obtained answer?
(i.e. which “local” answers contributed to a given “top level” answer?)

We need tools for DD for Prolog.

21 / 24

Outline 2 LP Correctness DD Summary
··_ ··̂ Prolog tool

A basic tool for DD of incorrectness

Not an implementation of a DD algorithm,
but a proof tree browser.

A simple prototype.

(Used in the example diagnosis sessions.)

22 / 24

Outline 2 LP Correctness DD Summary

Summary. This work dealt with some basic issues of LP

I Simple method for proving correctness (old [Clark’79], but neglected)

I Proving completeness. (Hardly anybody has dealt with this previously)

I The usefulness of approximate specifications

I Explaining & solving the main (?) problem with DD

I A study when least Herbrand models exactly characterize programs,
a sufficient and necessary condition.

* W. Drabent. “Logic + control: On program construction and verification.” TPLP, 2018
* W. Drabent. “Correctness and Completeness of Logic Programs.” ACM TOCL, 2016
* W. Drabent. ”On definite program answers and least Herbrand models.” TPLP, 2016

23 / 24

Outline 2 LP Correctness DD Summary

Conclusions

Declarative programming in Prolog possible;

reasoning about correctness / completeness
error diagnosis

can be dealt with declaratively (abstracting from operational semantics)

Proof methods for correctness/completeness can be used
more or less formally by programmers

At the informal end

they show how to reason about our programs
in a systematic / orderly way.

To be applied in everyday programming

24 / 24

	Outline2
	Logic Programming
	Example
	Example. The program
	Logic+control

	Program correctness
	Correctness proving method
	Proving completeness
	Approximate specifications

	Declarative diagnosis
	Why neglected
	Solution
	Prolog debugger
	Tool

	Summary

