
Industrial Strength C++

Mats Henricson

Erik Nyquist

Prentice-Hall PTR

Copyright ©1997 Mats Henricson, Erik Nyquist and Ellemtel Utvecklings AB
Published by Prentice Hall PTR

All rights reserved.

ISBN 0-13-120965-5

Contents
Naming 1

Meaningful names 2
Names that collide 5
Illegal naming 8

Organizing the code 11

Comments 19

Control flow 25

Object Life Cycle 31

Initialization of variables and constants 32
Constructor initializer lists 35
Copying of objects 38

Conversions 47

The class interface 55

Inline functions 56
Argument passing and return values 58
Const Correctness 66
Overloading and default arguments 74
i

Conversion functions 81

new and delete 87

Static Objects 95

Object-oriented programming 103

Encapsulation 104
Dynamic binding 106
Inheritance 110
The Class Interface 115

Assertions 129

Error handling 133

Different ways to report errors 134
When to throw exceptions 137
Exception-safe code 143
Exception types 149
Error recovery 153
Exception specifications 155

Parts of C++ to avoid 157

Library functions to avoid 157
Language constructs to avoid 161
ii Industrial Strength C++

Size of executables 167

Portability 171

General aspects of portability 172
Including files 175
The size and layout of objects 177
Unsupported language features 181
Other compiler differences 184

Style 191

General Aspects of Style 192
Naming conventions 193
File-name extensions 196
Lexical style 197

AppendixTerminology 203

Rules and recommendations 207

Index 215
iii

iv Industrial Strength C++

Examples
EXAMPLE 1.1 Naming a variable 2

EXAMPLE 1.2 Different ways to print an object 3

EXAMPLE 1.3 Naming accessors and modifiers 4

EXAMPLE 1.4 Names used by a template function 4

EXAMPLE 1.5 Namespace 6

EXAMPLE 1.6 Accessing names from namespace 6

EXAMPLE 1.7 Class as namespace 7

EXAMPLE 1.8 Class names with prefixes 7

EXAMPLE 1.9 Names of include files 8

EXAMPLE 1.10 Use of underscores in names 9

EXAMPLE 2.1 Testing for self-containment 12

EXAMPLE 2.2 Data member of class type 13

EXAMPLE 2.3 Forward declaration 14

EXAMPLE 2.4 Include guard 15

EXAMPLE 2.5 Disable inlining by using inline definition files 15

EXAMPLE 2.6 Function template 17

EXAMPLE 2.7 Class template 17

EXAMPLE 2.8 Template header file 18

EXAMPLE 3.1 Static string identifying the file 22

EXAMPLE 3.2 Comments in C++ 22

EXAMPLE 3.3 Nested C-style comment 22

EXAMPLE 4.1 Block after for -loop 27

EXAMPLE 4.2 Blocks in switch -statement 28

EXAMPLE 4.3 How to write switch statements 28

EXAMPLE 4.4 How to break out of a loop 29

EXAMPLE 5.1 Initializing variables 32
v

EXAMPLE 5.2 Initialization instead of assignment 33

EXAMPLE 5.3 Assignment instead of initialization 33

EXAMPLE 5.4 Declaring multiple variables 34

EXAMPLE 5.5 Correct use of “magic” number 34

EXAMPLE 5.6 Constructor initialization lists 36

EXAMPLE 5.7 Order of initializers 37

EXAMPLE 5.8 Returning dangling pointers and references 39

EXAMPLE 5.9 Non-copyable class 41

EXAMPLE 5.10 Copyable class that manages memory 42

EXAMPLE 5.11 Self-assignment 43

EXAMPLE 5.12 Implementing a copy assignment operator 43

EXAMPLE 6.1 Explicit conversions 48

EXAMPLE 6.2 Conversion of string object to const char* 49

EXAMPLE 6.3 Using static_cast 51

EXAMPLE 6.4 New style casts 51

EXAMPLE 6.5 Casting away const 52

EXAMPLE 6.6 Object in write-protected memory 52

EXAMPLE 6.7 Class with mutable data member 53

EXAMPLE 7.1 A class with inline member functions 57

EXAMPLE 7.2 Different types of function parameters 59

EXAMPLE 7.3 Passing parameters by value 60

EXAMPLE 7.4 Pointer and reference arguments 61

EXAMPLE 7.5 Passing arguments of unknown type 63

EXAMPLE 7.6 Passing base class reference 64

EXAMPLE 7.7 Passing base class object by value 65

EXAMPLE 7.8 Return value from assignment operators 65

EXAMPLE 7.9 const -declared parameter 67

EXAMPLE 7.10 Using parameter as a local variable 67

EXAMPLE 7.11 Copyable type parameter 68

EXAMPLE 7.12 Accessing string literals 69

EXAMPLE 7.13 Implications of const 70
vi Industrial Strength C++

1

0

3

5

EXAMPLE 7.14 Accessing objects inside const member function 7

EXAMPLE 7.15 Accessing characters in a string 72

EXAMPLE 7.16 Overloaded member functions 75

EXAMPLE 7.17 Operator overloading 76

EXAMPLE 7.18 Implementation of closely related operators 76

EXAMPLE 7.19 Hiding member functions 77

EXAMPLE 7.20 Inheriting overloaded virtual member functions 79

EXAMPLE 7.21 Adding default arguments 80

EXAMPLE 7.22 Default arguments for member function 80

EXAMPLE 7.23 One-argument constructor 82

EXAMPLE 7.24 How to avoid conversion operator function 82

EXAMPLE 8.1 Allocate and deallocate free store object 89

EXAMPLE 8.2 Dangerous access to deleted object 9

EXAMPLE 8.3 Objects that commit suicide 90

EXAMPLE 8.4 Placement new 91

EXAMPLE 8.5 Class with customized memory management 9

EXAMPLE 9.1 Function local static object 97

EXAMPLE 9.2 Static data member 97

EXAMPLE 9.3 Unnamed namespace 98

EXAMPLE 9.4 Static objects in file scope 98

EXAMPLE 9.5 Access to static object inside constructor 98

EXAMPLE 9.6 Initialization order of static objects 100

EXAMPLE 9.7 Initialization object 100

EXAMPLE 10.1 Returning non-const reference to object 10

EXAMPLE 10.2 Assigning to string element 106

EXAMPLE 10.3 Factory class 107

EXAMPLE 10.4 Dynamic binding 109

EXAMPLE 10.5 Deleting a derived class object 111

EXAMPLE 10.6 Virtual base class 112

EXAMPLE 10.7 Pre- and postconditions 116

EXAMPLE 10.8 Using member function with precondition 117

EXAMPLE 10.9 Class with invariant 118
vii

8

EXAMPLE 10.10 Using comments to specify class template 119

EXAMPLE 10.11 Checking precondition 120

EXAMPLE 10.12 Substitutability 121

EXAMPLE 10.13 Specification of overriden member function 121

EXAMPLE 10.14 Describing template argument requirements 123

EXAMPLE 10.15 Checking type constraints 124

EXAMPLE 10.16 Performance characteristics of types 125

EXAMPLE 11.1 Standard assert macro 130

EXAMPLE 11.2 Assertions and exceptions 131

EXAMPLE 12.1 Checking status value 135

EXAMPLE 12.2 Throwing an exception 136

EXAMPLE 12.3 Member function with precondition 138

EXAMPLE 12.4 Returning special value to report failure 139

EXAMPLE 12.5 Preventing exceptions inside destructors 141

EXAMPLE 12.6 Exception class constructor 142

EXAMPLE 12.7 Unsafe memory allocation 145

EXAMPLE 12.8 Having a try -block to manage memory 146

EXAMPLE 12.9 Exception safe allocation of free store objects 146

EXAMPLE 12.10 Exception safe copy assignment operator 14

EXAMPLE 12.11 Throwing object of built-in type 150

EXAMPLE 12.12 Inheritance of exception classes 151

EXAMPLE 12.13 Handling many exceptions with one handler 153

EXAMPLE 12.14 Exception specification 155

EXAMPLE 13.1 C-style I/O is not adequate for objects 159

EXAMPLE 13.2 Passing objects to printf() 160

EXAMPLE 13.3 Overloading of operator<< 160

EXAMPLE 13.4 Macros do not obey scope rules 161

EXAMPLE 13.5 Recommended way to define constants 162

EXAMPLE 13.6 Using an enum instead of static const int 162

EXAMPLE 13.7 Function-like macro, SQUARE 162

EXAMPLE 13.8 Inline function, square 163
viii Industrial Strength C++

EXAMPLE 13.9 Function-like macros are not type safe 163

EXAMPLE 13.10 How to define synonyms for a type 163

EXAMPLE 13.11 Passing array to function 164

EXAMPLE 15.1 Implementation-defined behavior 172

EXAMPLE 15.2 Unspecified behavior 173

EXAMPLE 15.3 Undefined behavior 173

EXAMPLE 15.4 Language extension 174

EXAMPLE 15.5 Type of fixed size 174

EXAMPLE 15.6 Good and bad way of including files 175

EXAMPLE 15.7 Directory names in include directives 176

EXAMPLE 15.8 Case-sensitivity of header file name 176

EXAMPLE 15.9 Offset of data member 178

EXAMPLE 15.10 Cast must obey alignment rules 178

EXAMPLE 15.11 Mixing signed and unsigned integers 179

EXAMPLE 15.12 char s can be signed or unsigned 179

EXAMPLE 15.13 OS-specific typedef 180

EXAMPLE 15.14 Prefixed name 181

EXAMPLE 15.15 Unsupported keyword as empty macro 183

EXAMPLE 15.16 Forward-compatibility macros 183

EXAMPLE 15.17 Reusing a loop variable 184

EXAMPLE 15.18 Using a template 185

EXAMPLE 15.19 Template header file 186

EXAMPLE 15.20 Temporary objects 187

EXAMPLE 15.21 A pragma-directive 188

EXAMPLE 15.22 How to declare main() 189

EXAMPLE 15.23 Evaluation order of arguments 189

EXAMPLE 15.24 Evaluation order of subexpressions 189

EXAMPLE 16.1 How to separate words in an identifier 193

EXAMPLE 16.2 Naming style 194

EXAMPLE 16.3 Data member suffix 194

EXAMPLE 16.4 Names of macros 195

EXAMPLE 16.5 Names of include guards 195
ix

EXAMPLE 16.6 Integral suffixes 195

EXAMPLE 16.7 Specifying parameter names 197

EXAMPLE 16.8 Implicitly given access specifiers 198

EXAMPLE 16.9 Explicitly given access specifiers 198

EXAMPLE 16.10 Where to implement inline member functions 199

EXAMPLE 16.11 How to write unary operators 200

EXAMPLE 16.12 How to write access operators 200

EXAMPLE 16.13 How to access static members 200
x Industrial Strength C++

ress
 been
f the
pecial
ledge
eoff

alled
anne,
 Justin
Björn
ase for-

tems
least I

 and
f all I
Acknowledgements

We would like to thank Paul Becker, our editor, for believing in seemingly imaginary prog
from Sweden. Without his cheering support, year after year, this book would never have
finished. We would also like to thank Scott Meyers for reading a very rough first version o
book and giving us the comments it deserved. Other reviewers that we would like to give s
thanks to are Sean Corfield, which has enlightened us numerous times from his vast know
of both C and C++, Kevlin A P Henney for tons and tons of excellent comments, and G
Kuenning for his patient corrections of our shaky handling of the quite weird language c
English. Other reviewers that we would like to thank are, in no particular order, Dean Qu
Peter Dickson, Per Andersson, Les Hatton, Johan Bengtsson, John Kewley, Karl Dickson,
Forder, Stefan Frennemo, Mats Lidell, Eric Turesson, Peter Cederqvist, Michael Olsson,
Strihagen, Ulf Santesson, Roger Persson, Sven Tapper, Lars Petrus and Staffan Blau. Ple
give us if anyone is forgotten!

Special thanks from Mats: I would also like to thank Ellemtel Telecommunications Sys
Labs, Ericsson and PostNet for their support in the development of the book. Last but not
would like to thank Åsa for her patience and support.

Special thanks from Erik: I would also like to thank Ericsson Radio Messaging, ENEA Data
Svenska Handelsbanken for their support in the development of the book. But most o
would like to thank Ulrika for her patience and support.
xi

xii Industrial Strength C++

gram-
ards
rd is,
. In
ny or
any. If

book as
rduous

s. This
ys of

 have
-mil-
on of
 really
it is to
train-

e writ-
 code
Preface

This book defines a C++ coding standard that should be valid and usable for almost all pro
mers. ISO 9000 as well as the Capability Maturity Model (CMM) states that coding stand
are mandatory for any company with quality ambitions. Developing such a coding standa
however, a non-trivial task, particularly for a complex multi- paradigm language like C++
this book we give you a good start for a programming standard for a particular compa
project. Such a standard is often written by the most experienced programmers in a comp
a quality manager responsible for the development of such a standard instead select this
the base for the coding standard, experienced programmers can be relieved from this a
task and instead continue to do what they prefer to do, designing the company product
book should also be of great interest for quality aware C++ programmers trying to find wa
improving their code.

Since 1992, when our public domain "Ellemtel" C++ coding standard was released, we
greatly expanded our material with insights from many years of C++ development in multi
lion dollar projects, as well as inside knowledge of what is going on in the standardizati
C++. We have carefully selected and concisely formulated the guidelines we believe are
important, and divided them into rules and recommendations, based upon how serious
deviate from the standard. This is how we can give novices good advice while still not res
ing experts from using the full power of the language. Most rules and recommendations ar
ten so that it should be possible to check with a tool if they are broken or not. Text and
examples explain each individual rule and recommendation.
xiii

xiv Industrial Strength C++

cations
 pro-
ed by
 about
ing the
initial
en in
se to
’s e-
ailable
d rec-
ailable

ersities
writ-
s have
rd tem-
e way
xam-
ajor
Introduction

In early 1990, C++ was chosen as the implementation language for a huge telecommuni
project at Ellemtel Telecommunications Systems Laboratories in Stockholm, Sweden. A
gramming standard for the project was written by Erik, a document that was later maintain
the two of us, working as the C++ support group. Then, in 1991, there was a discussion
programming standards in the news group comp.lang.c++. Mats wrote a message describ
structure of our document. Suddenly we received an e-mail from Bjarne Stroustrup, the
inventor of C++, asking if he could have a look at the document. The fact that it was writt
Swedish was no problem to him, since he was born in Denmark, and Danish is fairly clo
Swedish. The document was initially only meant for internal use, but shortly after Bjarne
mail we convinced our managers that it would be a good idea to make the document av
to the public. By doing that we could use the Internet to review and improve our rules an
ommendations. A few months later the document was translated into English and made av
for anonymous ftp.

This document is now in use at many hundreds of companies, research centers and univ
all over the world, from Chile and India to France, Australia and the USA. However, it was
ten a long time ago. C++ has changed in quite many ways since 1992. Many new feature
been added to the language, like RTTI and namespaces, as well as a very powerful standa
plate library, but C++ is now stable and very close to become an international standard. Th
C++ is used has changed a lot. What was previously looked upon with suspicion, like for e
ple multiple inheritance, is now rather accepted. With this as background it is time for a m
xv

 Hall.

erving

 This is
nes
recom-
nd. This
if they

e in a

in this
 alter-

 of C++

chosen,

iles.

y, orga-
r.

perly,

e best

ke some

terface.
t, oper-
revision of the “C++ Rules and Recommendations” document, now as a book from Prentice

What we have done is to rewrite our rules and recommendations from scratch, while pres
the structure that made it so popular.

Programming standards must be valid both for newcomers and experts at the same time.
sometimes very difficult to fulfill. We have solved this problem by differentiating our guideli
into rules and recommendations. Rules should almost never be broken by anyone, while
mendations are supposed to be followed most of the time, unless a good reason was at ha
division gives experts the possibility to break a recommendation, or even sometimes a rule,
badly need to.

We are explicitly listing all rules and recommendations, instead of having them somewher
block of text, entangled within discussions and code examples.

We have been very careful with the formulations of rules and recommendations included
book, to find the shortest and most accurate formulation possible. We also try to give helpful
natives instead of just warning for dangerous practices.

The book consists of 15 chapters and one appendix, each discussing a particular aspect
programming.

Chapter 1 is about naming. We discuss how names of classes and functions should be
written and administrated to get programs that are easy to understand, read and maintain.

Chapter 2 is about the organization of code. We discuss how code should be organized in f

Chapter 3 discusses how comments should be used to add whatever information a compan
nization or individual needs. Well written comments are often the sign of a good programme

Chapter 4 is about control flow statements, such as for, while, switch and if. If used impro
they can increase the complexity of a program.

Chapter 5 is a long chapter about the life cycle of objects. We discuss how objects ar
declared, created, initialized, copied, assigned and destroyed.

Chapter 6 discusses conversions. We suggest a few rules and recommendations that can ta
of the dangers out of this tricky part of C++.

Chapter 7 is a long chapter discussing rules and recommendations concerning the class in
Among the topics discussed are inline functions, argument passing and return values, cons
ator and function overloading, default arguments and conversion operators.
xvi Industrial Strength C++

ers, file

ogram-

s and
ts you

fe, and

e stan-

 perfor-

iscuss
 avoid
ted by

hich is
e dis-

course
ifferent
dge is
t dis-
 trans-
ntrated

 in this
eeds
s book
Chapter 8 discusses how to best use new and delete.

Chapter 9 discusses problems related to static objects, i.e. global objects, static data memb
scope objects and local variables declared static.

Chapter 10 is also a long chapter, since it discusses fundamental parts of object oriented pr
ming, namely encapsulation, dynamic binding, inheritance, and software contracts.

Chapter 11 is a short chapter about assertions.

Chapter 12 is long since it discusses error handling, particularly exception handling. Rule
recommendations are presented for when exceptions should be thrown, what kind of objec
should throw, how you can recover from errors, how you can make your code exception- sa
how exceptions are best documented.

Chapter 13 explains what parts of C++ you should avoid. Parts of both the language and th
dard library are so error prone that they should be avoided.

Chapter 14 is about the size of executables, i.e. how program size often can be traded for
mance, and vice versa.

Chapter 15 is a large chapter devoted entirely to the issue of Portability. Questions we will d
include how non-portable code best should handled, how files should be included, how you
depending on the size or layout of objects, and how you best avoid features only suppor
some compilers.

The Appendix discusses programming Style. Style issues can often start heated debates, w
the reason to why we put all this into an appendix instead of making it a normal chapter. W
cuss, among other things, naming conventions and lexical style.

We believe this book presents the best C++ programming standard you can get, but it is of
not enough. You also need experienced system architects and programmers well aware of d
design practices, as well as the problem domain in which your company exists. Such knowle
generally not C++ specific and therefore not within the scope of this book. Other areas no
cussed in this book are testing, metrics, procedures for code reviews, prototyping, or how to
form requirements into design ideas (object oriented analysis and design). We have conce
on C++ specific issues that will improve the quality of your code.

It would surprise us a lot if you agreed with us on each and every rule and recommendation
book. If you would like to remove, add or modify a rule or recommendation for the specific n
of your company or project, do not despair. This can easily be done since the source of thi
can be bought from Prentice-Hall. Please contact XXX@prenhall.com for details.
xvii

ecom-

991.

2-7.

-

hat
aper”
rdiza-
om-

-

ept
tions

ddress:
We assume the reader knows the basics of C++. If you need an introduction to C++, we r
mend the following books:

• Bjarne Stroustrup. The C++ Programming Language, Second Edition. Addison-Wesley, 1
ISBN 0-201-53992-6.

• Marshall P. Cline and Greg A. Lomow. C++ FAQs. Addison Wesley, 1995, ISBN 0-201-
58958-3.

• Robert B. Murray. C++ Strategies and Tactics. Addison Wesley, 1993. ISBN 0-201-5638

For the latest details on the language definition, we have used this document:

• Working Paper for Draft Proposed International Standard for Information Systems - Pro
gramming Language C++.

The document with this extraordinary long title (often called just the “Working Paper”) is w
defines the current status of the proposed C++ standard. A new version of the “Working P
comes every four months, but it is usually only accessible to people involved in the standa
tion of C++. Therefore, if you would like to look at some of the inner details of C++, we rec
mend this highly interesting book:

• Bjarne Stroustrup. The Design and Evolution of C++. Addison-Wesley, 1994. ISBN 0-201
54330-3.

All code examples in this book try to follow the “Working Paper” description of C++. Exc
when explicitly stated differently, all code should also follow the rules and recommenda
described in this book.

You are encouraged to contact us with questions and comments. Please use this email a
rules@henricson.se

Erik Nyquist and Mats Henricson, Stockholm, June 1996
xviii Industrial Strength C++

C h a p t e r O n e
ou
-

Naming

If names are not chosen, written and administrated with care, then y
will end up with a program that is hard to understand, read and main
tain.

ss or
rac-
trac-
 and

re all
g the

to
h as

).

 not
your
Meaningful names

Names must be chosen with care. There is little chance that a cla
a function will be used more than once if the names of the abst
tions they represent are not understood by the user. Good abs
tions are essential for low maintenance costs, high level of reuse
traceability from requirements to program code.

RULES
AND

RECOMMENDATIONS

Rec 1.1 Use meaningful names.
Rec 1.2 Use English names for identifiers.
Rec 1.3 Be consistent when naming functions, types, vari-

ables and constants.

See Also Rule 1.8 – Rule 1.9, some identifiers are not legal.

Rec 3.5 All comments should be written in English.

Style 1.2 – Style 1.8, how identifiers should be written.

Rec 1.1 Use meaningful
names.

Classes, typedefs, functions, variables, namespaces and files a
given names. Suitable names are meaningful to the person usin
abstractions provided, and do not have to change if:

• the implementation changes,

• a program is ported to another environment, or if

• source code is used in a new context.

Abbreviations are not always meaningful and can be difficult
understand. It is recommended to avoid abbreviations as muc
possible. Only use commonly accepted abbreviations (as e.g. IBM

EXAMPLE 1.1 Naming a variable

int strL; // Not recommended
int stringLength: // Recommended

Rec 1.2 Use English names
for identifiers.

Do not use names that are difficult to understand. Especially do
use names that are only understood by those who understand
2 Industrial Strength C++

 or
 for

e it
on-
 and
native language. What does the word “Bil” mean to an English
Japanese programmer? Not many know it is the Swedish word
“car”.

Rec 1.3 Be consistent when
naming functions, types, vari-

ables and constants.

Be consistent when giving names to member functions to mak
possible to reuse both code and existing knowledge. By being c
sistent, the user of a class will have to know less about the class
it will be considered more easy to use.

EXAMPLE 1.2 Different ways to print an object

Many objects are printed by using the <<-operator (left-shift) with an ostream and
the object as arguments.

ostream& operator<<(ostream&, const EmcString&);

EmcString s("printing");
cout << s << endl;

Other classes also provide member functions for the same purpose.

class EmcFruit
{
 public:
 // ...
 virtual ostream& print(ostream&) const = 0;
};

class EmcApple : public EmcFruit
{
 public:
 // ...
 virtual ostream& print(ostream&) const;
};

Such member functions are often virtual and only meant to be called indirectly by
the base class implementation.

// Works for all classes derived from EmcFruit

inline ostream& operator<<(ostream& s, const EmcFruit& f)
{
 return f.print(s); // calls virtual member function
}

3

rent

mber
alue

pro-

y the
Each
 to it,
 nam-

 use
xam-

xing

s an
By not using them directly, the code will be more readable since objects of diffe
classes are printed the same way.

EmcFruit* fp = new EmcApple;

cout << *fp << endl;

EXAMPLE 1.3 Naming accessors and modifiers

Some naming conventions are more indirect, for example, if a class has a me
function that returns a value, how should a member function that modifies the v
be named?

In general it is a bad idea to always provide a corresponding modifier, but if it is
vided, we recommend that it has the same name as the corresponding accessor.

For example, the class Point has two data members, xM and yM, with appropriate
accessors and modifiers as shown below.

Point p(0,0); // a point in a 2-dimensional space
p.x(1); // set X-coordinate
cout << p.x() << endl; // prints X-coordinate, "1"

There are many more such naming conventions, some of which are covered b
Style-appendix at the end of this book. Style-rules are optional, not mandatory.
organization may have their own set of preferences. Choose one style and stick
and make certain that the recommendations are followed. That is what consistent
ing is about.

EXAMPLE 1.4 Names used by a template function

If templates are used in your application, consistent naming makes it possible to
the same source code for a number of unrelated but similar types. Many good e
ples on this are found in the standard template library for C++.

The following template function can be used with any array type that has an inde
operator, a size() member function and a type, Index , defined such that objects of
the type T can be assigned to the return value of the indexing operator. This i
example of the benefits of consistent naming.

// typename to mark a qualified name as a type name.

template <class Array, class T>
void check_assign(Array& a, typename Array::Index i, T t)
{
 if (i < a.size())
 {
 a[i] = t;
 }
}

4 Industrial Strength C++

ali-
ember

tro-
en-
ass

col-

 Two
ses
ame
link

 glo-
 be
The qualifier typename is a recent addition to the language. When a name is qu
fied with a template parameter, the name is by default treated as the name of a m
and the qualifier typename must be used for those names that are type names.

Names that collide

There are many global names in a C++ program. Before the in
duction of namespaces it was sometimes quite difficult to avoid id
tical identifiers in the global scope. Particularly when several cl
libraries were combined.

A related issue is how to prevent names of macros and files from
liding.

RULES
AND

RECOMMENDATIONS:

Rec 1.4 Only namespace names should be global.
Rec 1.5 Do not use global using declarations and using

directives inside header files.
Rec 1.6 Prefixes should be used to group macros.
Rec 1.7 Group related files by using a common prefix in

the file name.

See Also Rec 15.5 – Rec 15.6, how to include header files.

Rec 15.13, if namespaces are not supported by your compiler.

Rec 1.4 Only namespace
names should be global.

A name clash is when a name is defined in more than one place.
different class libraries could, for example, give two different clas
the same name. If you try to use many class libraries at the s
time, then there is a fair chance that you neither can compile nor
the program because of name clashes.

We recommended that you have as few names as possible in the
bal scope. In C++ this means that names that would otherwise
global should be declared and defined inside namespaces.
5

ants
mes
pt that

s a
mon

we
 this

plates

xisting

.

t the
It is no longer necessary to have global types, variables, const
and functions if namespaces are supported by your compiler. Na
inside namespaces are as easy to use as global names, exce
you sometimes must use the scope operator.

Without namespaces it is common to add a common identifier a
prefix to the name of each class in a set of related classes. A com
identifier is usually a combination of 2 to 6 letters.

Since only a few compilers of today implement namespaces,
have chosen that approach when writing our example classes for
book.

EXAMPLE 1.5 Namespace

A namespace is a declarative region in which classes, functions, types and tem
can be defined.

namespace Emc
{
 class String { ... };
 // ...
}

A namespace is open, which means that new names can be added to an e
namespace.

// previous definition of Emc exists

namespace Emc
{
 template <class T>
 class DynamicArray
 {
 // ...
 };
}

EXAMPLE 1.6 Accessing names from namespace

A name qualified with a namespace name refers to a member of the namespace

Emc::String s;

A using declaration makes it possible to use a name from a namespace withou
scope-operator.

using Emc::String; String s1;
6 Industrial Strength C++

er and

obal
tion
ct. A

ine.
red

that the
ss to

t
ally
 are

 rec-
mes
he
It is possible to make all names from a namespace accessible with a using directive.

using namespace Emc; // using-directive
String s; // Emc::String s;
DynamicArray<String> a; // Emc::DynamicArray<Emc::String>
a;

EXAMPLE 1.7 Class as namespace

Syntactically, namespaces are similar to classes, since declarations and definitions can
also be nested inside classes. Semantically, there are a few differences howev
some of them are worth pointing out.

If a declaration or definition of a function is put inside a namespace, only the gl
name of the function changes. On the other hand, if you put a function declara
inside a class, it becomes a member function that can only be called with an obje
member function must be declared static in order to make it possible to call it as a
free function.

If a function definition is put inside a class, the function automatically becomes inl
A global function or a function inside a namespace must be explicitly decla
inline .

Classes are sometimes used as namespaces though. The recommendation is
static member functions and nested types should be strongly related to the cla
which they belong.

EXAMPLE 1.8 Class names with prefixes

EmcString s1; // Belongs to the Emc Class Library
OtherString s2; // Belongs to the Other Class Library

Rec 1.5 Do not use global
using declarations and using
directives inside header files.

A using declaration or a using directive in the global scope is no
recommended inside header files, since it will make names glob
accessible to all files that include that header, which is what we
trying to avoid.

Inside an implementation file, using declarations and using direc-
tives are less dangerous and sometimes very convenient.

On the other hand, too-frequent use of the scope operator is not
ommended. The difference between local names and other na
will be more explicit, but more code needs be rewritten if t
namespaces are reorganized.
7

e are
uch
pre-

en-
an-
ften
s

s it
 are
d in

piler,
 safe
an
Rec 1.6 Prefixes should be
used to group macros.

Rec 1.7 Group related files by
using a common prefix in the

file name.

There are no namespaces for file names and macros, since thes
part of the language environment, rather than the language. S
names should therefore always include a common identifier as a
fix.

For file names there is one important exception. If the common id
tifier makes the file name too long for the operating system to h
dle, it may be necessary to use directories to group files. This is o
the case when writing code for DOS (TM) or Microsoft Window
(TM).

EXAMPLE 1.9 Names of include files

#include "RWCstring.h" /* Recommended */
#include "rw/cstring.h" /* Sometimes needed */

Illegal naming

It is quite irrelevant which naming convention you use, as long a
is consistent. But there are actually a few kinds of names that
rather confusing, or plain wrong. Such names should be avoide
all naming conventions.

RULES
AND

RECOMMENDATIONS

Rule 1.8 Do not use identifiers that contain two or more
underscores in a row.

Rule 1.9 Do not use identifiers that begin with an under-
score.

See Also Style 1.2 – Style 1.5, names of identifiers.

Rule 1.8 Do not use identifiers
that contain two or more

underscores in a row.

Rule 1.9 Do not use identifiers
that begin with an underscore.

Identifiers containing a double underscore (“__”) or beginning with
an underscore and an upper-case letter are reserved by the com
and should therefore not be used by programmers. To be on the
side it is best to avoid the use of all identifiers beginning with
underscore.
8 Industrial Strength C++

EXAMPLE 1.10 Use of underscores in names

const int i__j = 11; // Illegal
const int _K = 22; // Illegal
const int _m = 33; // Not recommended
9

10 Industrial Strength C++

C h a p t e r Tw o
nvi-
a-
 is
Organizing
the code

Code is most often stored in files, even though some development e
ronments also have other, more efficient representations as an altern
tive (for example precompiled headers). Guidelines for how the code
organized in files are needed to make the code easy to compile.

ons
 the
full
e a
ader

got-
 is
s.
RULES
AND

RECOMMENDATIONS

Rule 2.1 Each header file should be self-contained.
Rule 2.2 Avoid unnecessary inclusion.
Rule 2.3 Enclose all code in header files within include

guards.
Rec 2.4 Definitions for inline member functions should be

placed in a separate file.
Rec 2.5 Definitions for all template functions of a class

should be placed in a separate file.

See Also Style 1.6 – Style 1.7, how include guards are written.

Style 1.9 – Style 1.10, how file names are chosen.

Style 1.15, where inline functions are defined.

Rule 2.1 Each header file
should be self-contained.

The purpose of a header file is to group type definitions, declarati
and macros. It should be self-contained so that nothing more than
inclusion of a single header file should be needed to use the
interface of a class. A rather common error is to forget to includ
necessary header file. This could happen for example when a he
file has not been tested in isolation. By pure coincidence, the for
ten file is included by another file. One way to test your header file
to always include it first in the corresponding implementation file
For this to work, the header file must be self-contained.

EXAMPLE 2.1 Testing for self-containment

// EmcArray.cc

#include "EmcArray.hh"
#include <iostream.h>
// ...

// The rest of the EmcArray.cc file
12 Industrial Strength C++

ten
fer-
 is

t size
 of
iable
efi-

 to
tant
m-
 be

nta-
n-
f a
ters
tions
lass
d-
for-

es,
ntial
ugh
it-
ther
Rule 2.2 Avoid unnecessary
inclusion.

The opposite, too much inclusion, is even more common. Very of
a file is included more than once, since it is required to make dif
ent header files self-contained. It is also common that a file
included even though it is not needed at all.

Before an object can be created, its size must be known and tha
can only be found by inspecting the class definition. If an object
the class is used as return value, argument, data member or var
with static storage duration, the header file containing the class d
nition must be included.

It should be enough to forward-declare a class if it is only referred
by pointer or reference in the header file. There are some impor
exceptions however. The class definition must be included if a me
ber function is called or a pointer is dereferenced. It should also
included if a pointer or reference is cast to another type.

Remember that the inclusion of a header file makes the impleme
tion of inline member functions visible to the user. If the impleme
tation of an inline member function operates upon an object o
class, that class definition must be visible even though only poin
or references are used. The presence of inline member func
increases the number of files that must be recompiled when a c
definition is modified. You can shorten your compile time by avoi
ing inline functions, but that may instead reduce the run time per
mance of your program.

If an inline function contains casts between forward-declared typ
no inclusion is needed, but such an implementation has a pote
bug. If two classes are forward-declared and they are related thro
inheritance, a cast will not give the correct result if multiple inher
ance is used and pointer-adjustments are required. This is ano
case that requires the class definitions to be visible.

EXAMPLE 2.2 Data member of class type

#include "A.hh"

class X
{
 public:
 A returnA(); // A.hh must be #included
 void withAParameter(A a); // A.hh must be #included
 private:
13

ard
ot
the
ard,
d so
 the

ve,
ces-
ader

iles,
l be
nti-
n the

ping
y is

h
 file,
con-
MS-
 A aM; // A.hh must be #included
};

EXAMPLE 2.3 Forward declaration

// Forward declaration

class B;

class Y
{
 public:
 B* returnBPtr();
 void withConstBRefParameter(const B& b);
 private:
 B* bM;
};

Rule 2.3 Enclose all code in
header files within include

guards.

Header files are often included many times in a program. A stand
header such as string.h is a good example. Since C++ does n
allow multiple definitions of a class, it is necessary to prevent
compiler from reading the definitions more than once. The stand
as well as the only portable technique is to use an include guar
that the source code is only seen the first time the compiler reads
file. By defining a macro inside a conditional preprocessor directi
which is only true if the macro has not been defined, the prepro
sor prevents the compiler from seeing the source code in a he
file more than once.

It is important to have unique macros among the set of header f
or only one of the header files using the same macro name wil
seen by the compiler. If there are no files in your system with ide
cal names, and you have a one-to-one correspondence betwee
macro name and the file name, this should not be a problem.

Life as a programmer is much easier if there is a sensible map
between the name of a file and its content. For example, nobod
going to like you if you do a senseless thing like putting the String
class in the file Stack.hh . The ideal is to have one file for eac
class, since that makes it very easy to give a good name to the
but quite often this is not possible. One such reason is if you are
strained to use very short file names by an operating system like
DOS.
14 Industrial Strength C++

 the
uch

 they
hat

era-
less
tor
 will
rate
ven
at-

nc-
ing
tion
nc-

-
fini-
t is
n-

 be
In such cases it is reasonable to put several class definitions in
same header file, but only if the classes are closely related. It is m
easier to give a good name to such a collection of classes than if
are grouped arbitrarily. But what is more important is the fact t
there is less risk that classes are included without reason.

A classic example is a list class, which often provides a special it
tor class for iteration over the list. Because the iterator is use
without the list it is natural to put both the list class and the itera
class in the same file. An advantage of doing so is that the user
only need to include one file to use the list abstraction. With sepa
header files for each class you need to find unique names for e
more files, which can be difficult if you are constrained by an oper
ing system like MS-DOS.

EXAMPLE 2.4 Include guard

#ifndef EMCQUEUE_HH
#define EMCQUEUE_HH

// Rest of header file

#endif

Rec 2.4 Definitions for inline
member functions should be

placed in a separate file.

In the Style appendix we recommend that all inline member fu
tions should be defined outside of the class definition. By hav
definitions of inline functions outside the class, the class declara
will be much easier to read. The best place to put such inline fu
tions is in a separate file, an inline definition file.

An inline definition file should normally be included by the corre
sponding header file. Sometimes frequent changes to inline de
tion files make the compilation times unnecessary long, and if tha
a problem, inline definition files are best included by the impleme
tation file. It is necessary to remove all inline keywords first, oth-
erwise you will get link errors. With macros, such changes can
made without changing the source code.

EXAMPLE 2.5 Disable inlining by using inline definition files

EmcString.icc #include <string.h>
// ...

// Do not include anything after this point
15

No
tem-
ded.
#ifdef DISABLE_INLINE
#define inline
#endif

// Definitions of inline functions

inline
const char* EmcString::cStr() const
{
 return cpM;
}

// ...

#ifdef DISABLE_INLINE
#undef inline
#endif

EmcString.hh // Class declaration

// ...

// Always include at end

#ifndef DISABLE_INLINE
#include "EmcString.icc"
#endif

EmcString.cc #include "EmcString.hh"

// Definitions of non-inline functions

// ...

// Always include at end

#ifdef DISABLE_INLINE
#include "EmcString.icc"
#endif

Rec 2.5 Definitions for all
template functions of a class

should be placed in a separate
file.

Templates are in one respect very similar to an inline function.
code is generated when the compiler sees the declaration of a
plate; code is generated only when a template instantiation is nee
16 Industrial Strength C++

 is
n is

ared.

ses
em-
en-
dant
lu-

ys-

em-
 not
late
an-

rit-
 the
late
er
not
you

red
A function template instantiation is needed when the template
called or its address is taken and a class template instantiatio
needed when an object of the template instantiation class is decl

A big problem is that there is no standard for how code that u
templates is compiled. The compilers that require the complete t
plate definition to be visible usually instantiate the template wh
ever it is needed and then use a flexible linker to remove redun
instantiations of the template member function. However, this so
tion is not possible on all systems; the linkers on most UNIX-s
tems cannot do this.

A big problem is that even though there is a standard for how t
plates should be compiled, there are still many compilers that do
follow the standard. Some compilers require the complete temp
definition to be visible, even though that is not required by the st
dard.

This means that we have a potential portability problem when w
ing code that uses templates. We recommend that you to put
implementation of template functions in a separate file, a temp
definition file, and use conditional compilation to control wheth
that file is included by the header file. A macro is either set or
depending on what compiler you use. An inconvenience is that
now have to manage more files.

There could also a file with template functions that are decla
inline . These should not be put in a template definition file.

EXAMPLE 2.6 Function template

template <class T>
T max(T x, T y)
{
 return (x > y) ? x : y;
}

void function(int i, int j)
{
 int m = max(i,j); // must instantiate max(int,int)
 // ...
}

EXAMPLE 2.7 Class template

template <class T>
class EmcQueue
17

{
 public:
 EmcQueue();
 // ...
 void insert(const T& t);
};

EmcQueue<int> q; // instantiate EmcQueue<int>
q.insert(42); // instantiate EmcQueue<int>::insert

EXAMPLE 2.8 Template header file

EmcQueue.hh template <class T>
class EmcQueue
{
 // ...
};

#ifndef DISABLE_INLINE
#include "EmcQueue.icc"
#endif

#ifndef EXTERNAL_TEMPLATE_DEFINITION
#include "EmcQueue.cc"
#endif
18 Industrial Strength C++

C h a p t e r T h r e e
at-

ey
elf.

ols
ide-
at.

out
n
 a
Comments

A comment is an information carrier that makes it possible to add wh
ever information a company, organization or individual needs. Com-
ments are unfortunately hard to maintain, so with a few exceptions th
should only explain what is not obvious from reading the program its

If you have a standard format on all your comments, you can write to
to extract useful information from comments. Such techniques are w
spread in the industry, but currently there is no de facto standard form

Well written comments are the sign of a good programmer. Code with
comments can be very hard to maintain, but too many comments ca
also be a hindrance. A fairly good balance can be found by following
few fairly simple recommendations.

ther
es a

otect
our

s a
e. It
f a

sup-
rson
ssary
ech-
 all
d. In
ess of
ns.
RULES
AND

RECOMMENDATIONS

Rec 3.1 Each file should contain a copyright comment.
Rec 3.2 Each file should contain a comment with a short

description of the file content.
Rec 3.3 Every file should declare a local constant string

that identifies the file.
Rec 3.4 Use // for comments.
Rec 3.5 All comments should be written in English.

See Also Rec 1.2, use English for identifiers.

Rec 1.4, how to define a local constant string.

Rec 10.7, Rec 10.9, documenting classes and templates

Rec 3.1 Each file should con-
tain a copyright comment.

Many projects have decided to copyright their code to prevent o
companies or persons from using it without permission. Sometim
comment like this can be sufficient:

Short copyright comment // Copyright <company> <years>. All Rights Reserved.

In some countries such comments may not be necessary to pr
your code. It is however a good idea to put such a comment into y
code anyway. If nothing else, the copyright notice serves a
reminder, and it says where the code came from in the first plac
can sometimes also be useful to know who is the author(s) o
source file. Suppose you have found a bug in some externally
plied code. Without a name and/or contacting address of the pe
responsible you cannot report this bug. The address is also nece
if you need to ask him or her questions in order to understand a t
nical detail. Also make sure that not just the original author but
programmers who have written and maintained the code are liste
some cases the names of the author(s) are replaced by the addr
a support organization that takes care of bug reports and questio

The following comment has been used by many projects:

Long copyright comment // Copyright <company> <years>. All Rights Reserved.
// <company address>
20 Industrial Strength C++

tain,
ent,

iate
ent

uld
 up-

ther
py-
do

not
me
ten
sily

are
ion
//
// The copyright to the computer program(s) herein
// is the property of <company>, <country>. The
// program(s) may be used and/or copied only with the
// written permission of <company> or in accordance
// with the terms and conditions stipulated in the
// agreement/contract under which the program(s) have
// been supplied. This copyright notice must not be
// removed.

Choose a style and stick to it. Long comments are harder to main
so unless there is a reason not to, use a one-line copyright-comm
but first make sure the copyright text you intend to use is appropr
for the country where you work. Either consult the legal departm
at your company, or contact a lawyer.

Copyright comments could be added automatically. This wo
relieve the individual programmer from keeping these comments
to-date with the company standard.

Rec 3.2 Each file should con-
tain a comment with a short

description of the file content.

The best thing a programmer can do to avoid questions from o
programmers is to write clear code, but a comment after the co
right comment with a short description of the file content can
wonders.

Comment describing the
file content

// File Description:
// - <text>
//
// Authors: <name1> <address1>
// <name2> <address2>

Rec 3.3 Every file should
declare a local constant string

that identifies the file.

Comments are only visible in source files, so this information is
available if a class library is delivered without the source. So
information that otherwise would be in a comment is instead of
provided in implementation files as static strings, which can ea
be extracted by tools. Many version control programs, such as rcs
and sccs , allows you to have variables in these static strings that
automatically expanded when the file is checked out. The vers
number is useful information when the client reports errors.
21

ake
 code

,
e. If
word

 not
be a
s well

hat
ob-
t is
ue.

ur

or
By using such version handling systems you let the computer m
sure comments are not outdated if someone else takes over the
for maintenance and forgets to update the list of authors.

EXAMPLE 3.1 Static string identifying the file

static const char rcsid[] = "$Id: $";

When using rcs, the variable $Id: $ is expanded with file name, version identity
date for last check-in and the user identity for the person who last modified the fil
your compiler supports namespaces, you should consider removing the static key
and to instead have the definition inside an unnamed namespace.

Rec 3.4 Use // for comments. C++ style comments are superior to C style comments. They do
span multiple lines and are easy to add or remove. This may
weak argument compared to more personal aesthetic reasons, a
as the fact that hardened C programmers may want to stay with w
they got with their mother's milk, but C comments also have a pr
lem in that they do not nest. Since the end of a C++ commen
always the end of the line, nested comments are no longer an iss

EXAMPLE 3.2 Comments in C++

char* cpM; // A pointer to the characters
int lenM; /* The length of the character array */

EXAMPLE 3.3 Nested C-style comment

/* No: this nesting of C-style comments will not work !!!

char* cpM; // A pointer to the characters
int lenM; /* The length of the character array */

*/

Rec 3.5 All comments should
be written in English.

All comments should be written in English, even if Swedish is yo
natural language. There are many reasons to why:

• At large companies code may be shipped to another country f
maintenance, and English is the language most likely to be
understood by a randomly selected C++ programmer.
22 Industrial Strength C++

ier

ort
ey

e

-

• You may think that the code will only be viewed by your group
of programmers, but before you know it the sales department
may have sold access to the source code to a customer.

• You may have to send the source code to you compiler suppl
(or third-party library supplier) in order to make it possible for
them to hunt down bugs in their code (or to give you the supp
you have paid a lot to get). If they can read your comments, th
may be able to help you faster.

• Comments written in other languages may be supported by th
upcoming ISO C++ standard, but it will take quite some time
before your compiler will support such comments, since it con
tains characters outside the basic source character set.
23

24 Industrial Strength C++

C h a p t e r F o u r
Control flow

It is important to use the control statements (for, while, do-
while, switch, case, if, else and goto) correctly and
in a consistent way so that they are easy to understand.

-

ro-
ons
oid
ant

o
 the

ow
ich

ra-
s

RULES
AND

RECOMMENDATIONS

Rule 4.1 Do not change a loop variable inside a for -loop
block.

Rec 4.2 Update loop variables close to where the loop-con
dition is specified.

Rec 4.3 All flow control primitives (if, else, while,
for, do, switch and case) should be followed
by a block, even if it is empty.

Rec 4.4 Statements following a case label should be ter-
minated by a statement that exits the switch
statement.

Rec 4.5 All switch statements should have a default
clause.

Rule 4.6 Use break and continue instead of goto .
Rec 4.7 Do not have too complex functions.

See Also Rec 10.3, when to use selection statements.

Rec 15.15, for -loop variables.

Rule 4.1 Do not change a loop
variable inside a for-loop

block.

Iteration statements are common in C++. The standard library p
vides a large number of algorithms that iterates through collecti
of objects. If you use the standard library you will be able to av
many mistakes related to iteration, but we still consider it import
that you know how to write for , do-while and while statements
correctly.

When you write a for loop, it is highly confusing and error-prone t
change the loop variable within the loop body, rather than inside
expression executed after each iteration.

In order to be sure that the loop terminates, you will need to kn
how the loop index is updated after each iteration and under wh
conditions the loop terminates. Perhaps the best feature of the for
loop is that if it is used correctly, you can know the number of ite
tions by studying the for loop header. In general avoid loop indexe
26 Industrial Strength C++

es

ame

 it
ent.

f

pe
e as

read
 if
that are modified in more than one place. Only modify loop index
once, either before or after each iteration.

Rec 4.2 Update loop variables
close to where the loop-condi-

tion is specified.

It is important to consistently use the same method to solve the s
problem. Your code will be hard to understand if do-while ,
while , and for loops are used in many different ways. Therefore
is better to have a preferred way for selecting an iteration statem
We recommend you to follow these rules of thumb:

1. Use a for loop if the loop variable is updated on exit from the
block AFTER the loop condition has been checked.

2. Use a do-while loop if the loop will execute at least once and i
the loop variable is updated BEFORE the condition is checked.

3. Use a while loop if the loop variable is updated on entry to the
block AFTER the loop condition has been checked.

The thumb rule will be easy to follow if you always choose the ty
of loop that makes it possible to update the loop variables as clos
possible to where the loop condition is specified.

Rec 4.3 All flow control primi-
tives (if, else, while, for, do,

switch and case) should be fol-
lowed by a block, even if it is

empty.

Another issue that makes code much more reliable and easy to
is to enclose all code after flow control primitives in a block, even
it is empty.

EXAMPLE 4.1 Block after for -loop

const int numberOfObjects = 42;
EmcArray<EmcString> a(numberOfObjects);

for (int i = 0; i < numberOfObjects; i++)
{ // Recommended

 char buf[3];
 ostrstream os(buf, sizeof buf);
 os << i << ends;
 a[i] = buf;
}

27

in

-

gh
 rare
rly
EXAMPLE 4.2 Blocks in switch -statement

cout << "Enter value: ";
int value;
cin >> value;

switch (value) // OK with block
{
 case 1: // OK
 case 2: // OK
 {
 cout << "1 or 2: " << a[value] << endl;
 break;
 }
 default:
 {
 if (value > 2 && value < numberOfObjects)
 {
 cout << "Not 1 or 2: " << a[value] << endl;
 }
 break;
 }
}

Note that it is OK to group several case labels after each other if the statements
the grouped cases do the same thing.

Rec 4.4 Statements following
a case label should be termi-

nated by a statement that exits
the switch statement.

Statements following a case label should be terminated by a state
ment that exits the switch statement, such as return or break .
Leaving out such termination means you have a fall-throu
between different cases, which in many cases is a bug. In some
situations, fall-through is intentional, but then this should be clea
documented in the code.

EXAMPLE 4.3 How to write switch statements

enum Status
{
 red,
 green
};

EmcString convertStatus(Status status)
{
 switch (status)
 {
 case red:
 {
28 Industrial Strength C++

e
there

uch
di-

tify
d.
ro-

s

uite

s

 return EmcString("Red"); // OK, exits switch
 }
 case green:
 {
 return EmcString("Green"); // OK, exits switch
 }
 default:
 {
 return EmcString("Illegal value");
 }
 }
}

Rec 4.5 All switch statements
should have a default clause.

We also recommend that all switch statements should always hav
a default clause. In some cases it can never be reached since
are case labels for all possible enum values in the switch state-
ment, but by having such an unreachable default clause you show
a potential reader that you know what you are doing. By having s
a default clause, you also provide for future changes. If an ad
tional enum value is added, the switch statement should not just
silently ignore the new value. Instead, it should in some way no
the programmer that the switch statement needs to be change
You could, for example, throw an exception or terminate the p
gram.

Rule 4.6 Use break and con-
tinue instead of goto.

We are also banning the use of goto . Yes, there might be case
where it can be believed that the use of goto could make a program
easier to maintain or understand, but in most cases this is q
unlikely.

Rethink your design and do your best to avoid goto . In most cases
the code can be rewritten by instead using break or continue . If
you do not use goto , your code will be less sensitive to change
since it is illegal to jump with goto past an initialization of a vari-
able.

EXAMPLE 4.4 How to break out of a loop

const int max = 10;
bool errorflag = false;

for(int i = 0; i < max; i++)
29

one
any
r of
ible
h a
-

ore
mi-
{
 // ...
 if (someCondition())
 {
 errorflag = true;
 break; // leaves loop
 }
}
// no goto needed
if (errorflag)
{
 abort();
}

Rec 4.7 Do not have too com-
plex functions.

Everyone that has ever had to take over code written by some
else knows that complex code is hard to maintain. There are m
ways in which a function can be complex, such as the numbe
lines of code, the number of parameters, or the number of poss
paths through a function. The number of possible paths throug
function, which is the result from the use of many control flow prim
itives, is the main reason to why functions are complex. Theref
you should be aware of the fact that heavy use of control flow pri
tives will make your code more difficult to maintain.
30 Industrial Strength C++

C h a p t e r F i v e
-

ove
 of

nd

Object Life
Cycle

There are a few thing you should think about when declaring, initializ
ing and copying objects.

• You should have as few variables as possible, since that can impr
performance. This also means that you should not create a copy
an object unless you have to.

• You should not have to browse through many pages of code to fi
the declaration of a variable.

• You should not have to modify many pages of code if you want to
change the value of a literal.

• Copying and initialization should always create objects with valid
states.

n-
 and

rove

wise
le
ore

 will

alue
Initialization of variables and
constants

A little discipline when declaring and initializing variables and co
stants can do wonders to make your code easier to understand
maintain. What may come as a surprise is that you can also imp
the performance of your program.

RULES
AND

RECOMMENDATIONS

Rec 5.1 Declare and initialize variables close to where
they are used.

Rec 5.2 If possible, initialize variables at the point of dec-
laration.

Rec 5.3 Declare each variable in a separate declaration
statement.

Rec 5.4 Literals should only be used in the definition of
constants and enumerations.

See Also Rec 1.2, Style 1.4, variable names.

Rule 7.10, how to access string literals

Rec 5.1 Declare and initialize
variables close to where they

are used.

It is best to declare variables close to where they are used. Other
you may have trouble finding out what type a particular variab
have. Another advantage with localized variable declarations is m
efficient code, since only those objects that are actually needed
be initialized.

EXAMPLE 5.1 Initializing variables

Instead of declaring the variable at the beginning of a code block and giving it a v
much later:

int i;

// 20 lines of code not using i

i = 10; // No
32 Industrial Strength C++

c-
tion
sign-
 an

ctor,
t a

 be

en-
ect

 no
ng.
 to,

n as

 can
, for
rence
try to declare and initialize the variable close to its first use:

int j = 10; // Better

Rec 5.2 If possible, initialize
variables at the point of decla-

ration.

Try to initialize a variable to a well-defined value at the point of de
laration. The main reason is to avoid redundant member func
calls. Suppose you have a class with both a constructor and a as
ment operator taking the same type of argument. If you assign
object of that class instead of using the corresponding constru
then two member function calls are needed to give the objec
proper value. The first call is to a default constructor that must
provided when an object is declared without an initializer.

EXAMPLE 5.2 Initialization instead of assignment

// Not recommended
EmcString string1; // calls default constructor
string1 = "hello"; // calls assignment operator

// Better
EmcString string2("hello"); // calls constructor

Initialization at the point of declaration can also remove many pot
tial bugs in your code, since the risk of using an uninitialized obj
will be reduced.

Variables of built-in types are a special case, since they have
default constructors that are called when an initializer is missi
Instead such variables remain uninitialized until they are assigned
so if you do not initialize them, you should assign to them as soo
possible.

The reason that such variables are not always initialized, is that it
sometimes be very difficult or even impossible to do so. Suppose
example, that the variable must be passed to a function as a refe
argument to be initialized.

EXAMPLE 5.3 Assignment instead of initialization

int i; // no reason to initialize i
cin >> i; // modifies both cin and i
33

ed.

sier to

hen
-

he

der-
ning
any

ce
Rec 5.3 Declare each variable
in a separate declaration

statement.

Declaring multiple variables on the same line is not recommend
The code will be difficult to read and understand.

Separate declarations also make the code more readable and ea
comment, if you want to attach a comment to each variable.

Some common mistakes are also avoided. Remember that w
declaring a pointer, unary * is only bound to the variable that imme
diately follows.

EXAMPLE 5.4 Declaring multiple variables

int i, *ip, ia[100], (*ifp)(); // Not recommended

LoadModule* oldLm = 0; // pointer to the old object
LoadModule* newLm = 0; // pointer to the new object

// declares one int*, m, and one int, n.
int* m, n; // Not recommended

Rec 5.4 Literals should only
be used in the definition of

constants and enumerations.

Literals (often called “magic numbers”) should only be used in t
definition of constants and enumerations.

One reason is that literals need an additional comment to be un
stood. Some integers like 0 and 1 are exceptions since their mea
can often be deduced from the context in which they are used. M
of them can now be replaced by the new bool values, true and
false .

Code with magic numbers is also more difficult to maintain, sin
their use may be sprinkled all over the code.

EXAMPLE 5.5 Correct use of “magic” number

// Literal in definition of const,
const size_t charMapSize = 256;

// but not to specify array size!
char charMap[charMapSize];

// Or for comparison!
for (int i = 0; i < charMapSize; i++)
{
 // ...
}

34 Industrial Strength C++

n the
n-

and
 data
con-
th
e. If

e
con-
l-
ot
 be

d of
 it

the
ata
ake
 ini-
Constructor initializer lists

Base classes and non-static data members should be initialized i
constructor initializer list since it is more efficient than to use assig
ment inside the body of the constructor.

RULES
AND

RECOMMENDATIONS

Rec 5.5 Initialize all data members.
Rule 5.6 Let the order in the initializer list be the same as

the order of declaration in the header file. First
base classes, then data members.

Rec 5.7 Do not use or pass this in constructor initializer
lists.

See Also Rec 1.2 – Style 1.5, names of data members.

Rule 10.1, access to data members.

Rec 5.5 Initialize all data
members.

Initialization is the recommended way to give data members
base classes proper values. All direct base classes, non-static
members and virtual base classes can have initializers in the
structor initializer list. If the object to be initialized is a class wi
constructors, the expression determines what constructor to us
not, the expression could be a value to copy.

If you do not specify an initializer, the default constructor will b
used to initialize the data member or the base class, if such a
structor exists. Data members of a built-in type will not be initia
ized, which is potentially very dangerous. Clearly this is n
desirable. Initializing integers to a value like zero can sometimes
a good idea.

It is possible to give data members values inside the body instea
in the initialization list. We do not recommend this practice, since
is less efficient to first call the default constructor and then
assignment operator, than to call only one constructor. For d
members of built-in types there is no such difference, but for the s
of consistency, even these should be initialized in the constructor
tialization list.
35

d by
, it is
on-
 to

 list,
tor,
There are some exceptions. If a data member must be initialize
an expression that in any way must access the containing object
sometimes necessary to defer initialization to the body of the c
structor. Another situation is when an expression is too complex
appear in the initialization list.

Base classes are treated as data members in the initialization
which means that they are also initialized by the default construc
if no initializer is provided.

EXAMPLE 5.6 Constructor initialization lists

class Base
{
 public:
 explicit Base(int i);
 Base();
 private:
 int iM;
};

Base::Base(int i) : iM(i) // iM must be initialized
{
 // Empty
}

Base::Base() : iM(0) // iM must be initialized
{
 // Empty
}

class Derived : public Base
{
 public:
 explicit Derived(int i);
 Derived();
 private:
 int jM;
 Base bM;
};
Derived::Derived(int i) // jM must be initialized
: Base(i), jM(i) // Default constructor used for
bM
{
 // Empty
}
Derived::Derived() // jM must be initialized
: jM(0), bM(1) // Default constructor used for
Base
{

36 Industrial Strength C++

re
d.

 of
ses
re

ssed

ses,
ved

em-
 a
afe.
 // Empty
}

Rule 5.6 Let the order in the
initializer list be the same as

the order of declaration in the
header file. First base classes,

then data members.

It is legal C++ to list initializers in any order you wish, but you a
recommended to list them in the same order as they will be calle

The order in the initializer list is irrelevant to the execution order
the initializers. Putting initializers for data members and base clas
in any other order than their actual initialization order is therefo
highly confusing and error-prone. A data member could be acce
before it is initialized if the order in the initializer list is incorrect.

Virtual base classes are always initialized first. Then base clas
data members and finally the constructor body for the most deri
class is run.

EXAMPLE 5.7 Order of initializers

class Derived : public Base // Base is number 1
{
 public:
 explicit Derived(int i);
 Derived();
 private:
 int jM; // jM is number 2
 Base bM; // bM is number 3
};

Derived::Derived(int i) : Base(i), jM(i), bM(i)
// Recommended order 1 2 3
{
 // Empty
}

Rec 5.7 Do not use or pass
this in constructor initializer

lists.

Another unsafe practice is to use or pass this in the initializer list.
The object pointed at by this is not fully constructed until the body
of the constructor is being run.

The object is not fully constructed when base classes and data m
bers are initialized. Calling a virtual member function through
pointer or reference to the partially constructed object is not s
Doing so is probably wrong and the program is likely to crash.
37

lly
nini-

d

t is
n. It

.

 by
u

cor-

ign-
t to

Calling a member function in a member initializer list can be equa
dangerous, since such a member function could try to access u
tialized members of the class.

Passing this to base class and member initializers, or using this
implicitly by calling a member function in the initializer list, shoul
therefore be avoided as much as possible.

Copying of objects

A general rule is to avoid copying as much as possible, but i
sometimes necessary to copy objects and you need to know whe
is equally important to understand when copying is inappropriate

Copying can be done by initialization or by assignment. Copying
assignment is similar to initialization but is more difficult since yo
modify an existing object that may hold resources that must be
rectly managed.

The compiler will generate a copy constructor and a copy ass
ment operator if the class does not declare one. It is importan
understand when the compiler-generated ones are appropriate.

RULES
AND

RECOMMENDATIONS

Rec 5.8 Avoid unnecessary copying of objects that are
costly to copy.

Rule 5.9 A function must never return, or in any other way
give access to, references or pointers to local vari-
ables outside the scope in which they are declared.

Rec 5.10 If objects of a class should never be copied, then
the copy constructor and the copy assignment
operator should be declared private and not
implemented.

Rec 5.11 A class that manages resources should declare a
copy constructor, a copy assignment operator, and
a destructor.
38 Industrial Strength C++

ent

f its

ys

con-
ould
ses,

. To
ec-

 to
 of
ject

ng
t no
t the
rn
Rule 5.12 Copy assignment operators should be protected
from doing destructive actions if an object is
assigned to itself.

See Also Rec 7.3 – Rec 7.5, Rule 7.6, argument passing.

Rule 7.7, return value of copy assignment operator.

Rule 7.9, parameter type for copy constructor and copy assignm
operator.

Rec 12.7, Rule 12.8, resource management.

Rec 5.8 Avoid unnecessary
copying of objects that are

costly to copy.

Copying an object is not the same as making a bitwise copy o
storage. Bitwise copying, for example through the use of memcpy() ,
only works for a limited number of objects and should almost alwa
be avoided.

For most objects, copying is the same as calling either the copy
structor or the assignment operator for the class. Since a class c
have other objects as data members or inherit from other clas
many member function calls would be needed to copy the object
improve performance, you should not copy an object unless it is n
essary.

It is possible to avoid copying by using pointers and references
objects, but then you will instead have to worry about the lifetime
objects. You must understand when it is necessary to copy an ob
and when it is not.

Rule 5.9 A function must
never return, or in any other

way give access to, references
or pointers to local variables

outside the scope in which they
are declared.

Returning a pointer or reference to a local variable is always wro
since it gives the user a pointer or reference to an object tha
longer exists. Such pointer or reference cannot be used withou
risk of overwriting the caller's stack space. Most compilers wa
about this, but mistakes are still possible to make.

EXAMPLE 5.8 Returning dangling pointers and references

int& dangerous()
{
 int i = 5;
 return i; // NO: Reference to local returned
39

to
ith a
rbage

opy
lass

ble to
stion
opy-
quite
cts,

tu-
s on
}

int& j = dangerous(); // NO: j is dangerous to use

// much later:

cout << j; // Crash, boom, bang, program dies

There are less obvious ways of making the same mistake, as in this example:

struct MyStruct
{
 char *p;
 // ...
};

MyStruct ms;

void alsoDangerous()
{
 const char str[100] = "Bad news up ahead";
 ms.p = str; // No: address of local stored
}

alsoDangerous();

cout << ms.p << endl; // Garbage printed

The function alsoDangerous() does not explicitly pass any pointer or reference
any local object, but it lets such a pointer leak through by assigning it to a struct w
scope larger than the local data in the function. The result in this case is that ga
will be printed since the memory pointed at is likely to be overwritten.

Rec 5.10 If objects of a class
should never be copied, then
the copy constructor and the

copy assignment operator
should be declared private and

not implemented.

Before you go ahead and implement copy constructors and c
assignment operators for a class, you should ask yourself if the c
has a reasonable copy semantics or not. Is it reasonable to be a
copy an object of the class? Sometimes this is a very simple que
to answer, such as for a string class which of course should be c
able. In many other cases the question about copying can be
hard to answer. But remember that even if you cannot copy obje
you can still copy pointers and that is often sufficient.

Hopefully the question of copy semantics or not for a class will na
rally come out of the design process. Do not push copy semantic
a class that should not have it.
40 Industrial Strength C++

r as
ons
te a
 for
not

only

opy
 has
func-

ory
e
nce

iza-
em-

string
cop-
rac-
ore
gen-
By declaring the copy constructor and copy assignment operato
private , a class is made non-copyable. These member functi
must be declared, since the compiler would otherwise genera
public copy constructor and a public copy assignment operator
the class. The two privately declared member functions should
be called, which means they do not have to be implemented,
declared.

EXAMPLE 5.9 Non-copyable class

class CommunicationPort
{
 public:
 explicit CommunicationPort(int port);
 ~CommunicationPort();
 // ...
 private:
 CommunicationPort(const CommunicationPort& cp);
 CommunicationPort&
 operator=(const CommunicationPort& cp);
 // ...
};

Rec 5.11 A class that manages
resources should declare a

copy constructor, a copy
assignment operator, and a

destructor.

As said before, the compiler will generate a copy constructor, a c
assignment operator and a destructor if these member functions
not been declared. For many classes, the generated member
tions have the wrong behavior.

A good example is a string object that stores a pointer to mem
allocated with new. If we implement a destructor that deletes th
pointer, but do not provide a copy constructor, there is a good cha
that some pointers will be deleted twice.

A compiler generated copy constructor does memberwise initial
tion and a compiler generated copy assignment operator does m
berwise assignment of data members and base classes. For a
class, this would mean that the pointer, not the character array is
ied. If the class has been written with the assumption that the cha
ter array is owned by the object, the bug is that two objects will st
a pointer to the same character array after a call to the compiler
erated copy constructor or copy assignment operator.
41

ctor,
rated
 a
ent

s are
ble

ve to

 we
nment
If a class should be copyable, we must implement a copy constru
a copy assignment operator and a destructor when the ones gene
by the compiler will not work correctly. This means that there is
large category of classes that should both declare and implem
these three member functions. An even larger category of classe
those that declare them, since that would include all non-copya
classes as well.

Classes that manage resources belong to this category. We ha
make sure that a resource is only acquired and released once.

EXAMPLE 5.10 Copyable class that manages memory

EmcIntStack is a simple stack class that manages an array of integers. Since
want to be able to copy stack objects, we declare the copy constructor, the assig
operator and the destructor as public members of the class.

// EmcIntStack is copyable

class EmcIntStack
{
 public:
 EmcIntStack(unsigned allocated = defaultSizeM);
 EmcIntStack(const EmcIntStack& s, unsigned ex = 0);
 ~EmcIntStack();
 EmcIntStack& operator=(const EmcIntStack& s);
 // ...
 private:
 enum { defaultSizeM = 100 };
 unsigned allocatedM;
 int* vectorM;
 int topM;
};

EmcIntStack::EmcIntStack(unsigned allocated)
: allocatedM(allocated),
 vectorM(new int[allocatedM]),
 topM(0)
{
}

EmcIntStack::EmcIntStack(const EmcIntStack& s,
 unsigned extra)
: allocatedM(s.topM+extra),
 vectorM(new int[allocatedM]),
 topM(s.topM)
{
 copy(vectorM, s.vectorM, s.topM);
}

42 Industrial Strength C++

ake
ject.
em-

ct to
ays
ers
the
ct. If
pera-

ry
 new
EmcIntStack::~EmcIntStack()
{
 delete [] vectorM;
}

We will study the assignment operator when explaining the next rule.

Rule 5.12 Copy assignment
operators should be protected
from doing destructive actions

if an object is assigned to
itself.

When implementing the copy assignment operator we must m
sure that self-assignment does not corrupt the state of the ob
There is a risk that you delete pointers and then assign them to th
selves. To prevent that, you could copy the new state of the obje
local variables before assigning to the data members. This alw
works, but is less efficient than assigning to the data memb
directly. The most common solution is to check the address of
object passed as argument before modifying the state of the obje
the current object is passed as argument, the copy assignment o
tor simply returns without modifying the object.

EXAMPLE 5.11 Self-assignment

EmcString s = "Aguirre";
s = s; // Self assignment
cout << s << endl; // Should print "Aguirre"

EXAMPLE 5.12 Implementing a copy assignment operator

When implementing the copy assignment operator for the EmcIntStack described
above, we check the this -pointer before modifying the object. This is necessa
since we want to be able to reuse already allocated memory instead of allocating
memory after each assignment.

EmcIntStack& EmcIntStack::operator=(const EmcIntStack& s)
{
 if (this != &s)
 {
 int* newVector = vectorM;
 if (allocatedM < s.topM)
 {
 // operator new may throw bad_alloc
 newVector = new int[s.topM];
 allocatedM = s.topM;
 }
 // copy elements
 copy(newVector, s.vectorM, s.topM);
 if (vectorM != newVector)
 {
43

e

or-
 the
the
t is not
ry

xam-
 // release memory
 delete [] vectorM;
 vectorM = newVector;
 }
 // assign to object last to avoid changing state
 // if the assignment fails due to bad_alloc
 topM = s.topM;
 }
 return *this;
}

Another similar class is our string class, EmcString . Like most other string classes,
objects of this class have a character array to store the value of the string. EmcString
has two data members, cpM and lengthM . When assigning to a string, we simple
deallocate the character array pointed at by cpM and create a new one of appropriat
size before copying the string.

class EmcString
{
 public:
 // ...
 EmcString& operator=(const EmcString& s);
 size_t length() const;
 // ...
 private:
 size_t lengthM;
 char* cpM;
};

Instead of checking the this -pointer, we make sure that self-assignment does not c
rupt the state of the object by making a copy of the argument before modifying
string. This will be slightly more efficient except when the parameter string is
same object as the one assigned to. This could be considered a special case tha
worth to optimize for. An even more efficient solution would be to avoid memo
allocation altogether when the existing string is big enough as in the previous e
ple.

EmcString& EmcString::operator=(const EmcString& s)
{
 // Not optimized for self-assignment
 char* tmp = new char[s.length() + 1];
 strcpy(tmp, s.cpM);
 delete [] cpM;
 cpM = tmp;
 lengthM = s.lengthM;

 return *this;
}

44 Industrial Strength C++

45

46 Industrial Strength C++

C h a p t e r S i x
-
 can
ous

Conversions

It can be difficult to understand C++-code that uses implicit type con
versions between otherwise unrelated types. A number of techniques
be used to prevent such problems. Some conversions are so danger
that most compilers will give you a warning. We will show you how to
avoid the dangers involved by providing a few guidelines.

 less
t to
st

 be
ese

er-

 its
ment
uch
nver-
em-
RULES
AND

RECOMMENDATIONS

Rec 6.1 Prefer explicit to implicit type conversions.
Rec 6.2 Use the new cast operators (dynamic_cast,

const_cast, reinterpret_cast and
static_cast) instead of the old-style casts,
unless portability is an issue.

Rec 6.3 Do not cast away const.
Rule 6.4 Declare a data member as mutable if it must be

modified by a const member function.

See Also Rec 7.18 – Rec 7.19, conversion functions.

Rec 6.1 Prefer explicit to
implicit type conversions.

Most conversions are bad in some way. They can make the code
portable, less robust and less readable. It is therefore importan
only use explicit conversions. Implicit conversions are almo
always bad.

It is common to use different integral types in a program. It can
dangerous to mix different types, since the size and layout of th
types varies. A value that may fit in e.g. a short on one platform, is
truncated on another platform. By always having explicit conv
sions, it is much easier to find potentially dangerous code.

It is also common that a class provides an implicit conversion to
representation. This makes it possible to pass an object as argu
to functions expecting direct access to the representation. If s
conversions are needed, we do not recommend you to have a co
sion operator function to do the job. You should instead have a m
ber function that does the conversion for you.

EXAMPLE 6.1 Explicit conversions

const unsigned large = 456789;

// Potentially dangerous conversion
const int size = (int)large;
48 Industrial Strength C++

 such

ordi-
rator

cast
wo
ast
EXAMPLE 6.2 Conversion of string object to const char*

It is common that a string class provides an implicit conversion to a const char* .
This makes it possible to pass a string object as argument to functions expecting
a pointer.

class DangerousString
{
 public:
 // ...
 DangerousString(const char* cp);
 // ...
 operator const char*() const; // Not recommended
 const char* cStr() const; // Recommended
 // ...
};

If your string class provide both a conversion operator member function and an
nary member function, you should always use the latter. If only a conversion ope
function is provided, you should only use explicit conversions.

EmcStack<const char*> stack;
stack.push("one");

DangerousString two("two");

// Not recommended to store the result of a conversion.
// Implicit conversion is not recommended.
stack.push(two); // Implicit conversion

DangerousString three("three");
// Explicit conversion is better than
// implicit conversion.
stack.push((const char*)three); // Explicit conversion

DangerousString four("four");
// Member function call is better than
// conversion operator function call.
stack.push(four.cStr()); // Member function call

Rec 6.2 Use the new cast
operators (dynamic_cast,

const_cast, reinterpret_cast
and static_cast) instead of the

old-style casts, unless porta-
bility is an issue.

There are many ways to convert values in C++; the traditional C
notation, the functional notation and new-style casts. The first t
are explained in most introductory C++ books. A new-style c
means that one of the four new cast operators:

• static_cast ,

• reinterpret_cast ,

• dynamic_cast and
49

you
they
s.

ell-
de-
ers
di-

m is

w
u can

 to

ions

n

-

 at
es.
 vir-

-

d by
to
rta-
• const_cast

is being used. If your compiler supports the new cast operators
should use them instead of the traditional cast operators, since
give the user a way to distinguish between different types of cast

A good thing about these operators is that their behavior is w
defined in situations where the behavior of an ordinary cast is un
fined, or at least ambiguous. They cannot remove all dang
involved in type conversions, but they are far better than the tra
tional cast syntax.

In order to use them, you must understand when each one of the
appropriate.

A static cast is similar to an ordinary cast except that it will not allo
you to cast away constness or cast between unrelated types. Yo
replace all implicit conversions with static_cast expressions.

Whenever you can make an implicit conversion from one type
another, you can make a static_cast in the opposite direction.
You can, for example, use static casts for base to derived convers
if the base class is non-virtual.

The operator const_cast is solely used for casting away const.

The operator reinterpret_cast is used when casting betwee
unrelated types, e.g. when casting an int* to a char* .

The operator dynamic_cast checks the type of its operand at run
time. It is similar to a static_cast , but it is more safe. It can only
be used for types with run-time type information, i.e. classes with
least one virtual member function, also called polymorphic class
It also allows base to derived conversions when the base class is
tual. Since there is a run-time penalty for using dynamic_cast
instead of static_cast , you should only use it when it is abso
lutely necessary.

A problem with these operators is that they are not yet supporte
all compilers. Therefore, if you anticipate porting your code
another environment, you should consider avoiding them for po
bility reasons.
50 Industrial Strength C++

EXAMPLE 6.3 Using static_cast

unsigned large = 456789;
int size = static_cast<int>(large);

EmcStack<const char*> stack;
EmcString three("three");

// Not recommended to store the result of a conversion.
// static_cast is better than old-style cast.
stack.push(static_cast<const char*>(three));

EXAMPLE 6.4 New style casts

class B
{
 public:
 // ...
 virtual ~B();
};

class D : virtual public B
{
 public:
 // ...
 virtual ~D();
};

class E
{
 public:
 // ...
 virtual ~E();
};

D* dynamicCast(B* b)
{
 // Must use dynamic_cast when base class is virtual.
 return dynamic_cast<D*>(b);
}

D* constCast(const D* d1)
{
 // Should use const_cast when casting away const.
 return const_cast<D*>(d1);
}

E* reinterpretCast(D* d)
{
 // Should use reinterpret_cast when casting pointer
 // to pointer of unrelated type.
51

ow-
itted,
fied
ve
hich
oose
ou
nly
lem
nst-
se.

 fact
de-
 the
 return reinterpret_cast<E*>(d);
}

Rec 6.3 Do not cast away
const.

You should not cast away the constness of objects. There are h
ever a few rare cases where casting away constness is perm
such as if you need to use a function which has incorrectly speci
a parameter as non-const even if it does not modify it. If you ha
been passed a const object, and need to pass it to the function w
takes a non-const object as parameter, then you are forced to ch
between two evils. Either you modify your own function so that y
will be passed a non-const object. This is not fair, since this will o
pass the problem to your user. Instead you should solve the prob
by maintaining your const correct interface and cast away the co
ness of the object before you pass it to the function you need to u

There are other problems with casting away const, such as the
that const objects might reside in write protected memory. It is un
fined what happens if you change such an object, but probably
run-time system will report an error.

EXAMPLE 6.5 Casting away const

// NOT RECOMMENDED
// Parameter should be of type const EmcString&
void addToFileList(EmcString& s); // does not modify s

void addFiles(const EmcArray<EmcString>& s)
{
 size_t max = s.size();
 for(size_t i = 0; i < max; i++)
 {
 // casting away const is NOT RECOMMENDED
 // s[i] returns const EmcString&
 addToFileList((EmcString&) s[i]);
 // ...
 }
}

EXAMPLE 6.6 Object in write-protected memory

// ci may be in write-protected memory
const int ci = 22;

int* pi = (int*) &ci; // NO: Const cast away

// reading write-protected memory?
52 Industrial Strength C++

uch

mbers

to
of the
int i = *pi; // OK

// writing into write-protected memory?
*pi = 7; // NO: This MAY fail!!!

Rule 6.4 Declare a data mem-
ber as mutable if it must be

modified by a const member
function.

If an object caches computed values for the sake of efficiency, s
data members should be declared mutable since that makes them
modifiable inside const member functions.

EXAMPLE 6.7 Class with mutable data member

class EmcMatrix
{
 public:
 double determinant() const;
 // ...
 private:
 mutable bool isDirtyM; // mutable
 mutable double detM; // mutable
 double calculateDeterminant() const;
 // ...
};

double EmcMatrix::determinant() const
{
 if(isDirtyM)
 {
 // OK, access to mutable data members
 detM = calculateDeterminant();
 isDirtyM = false;
 }
 return detM;
}

The member function determinant() was declared const even though it changed
data members of the class. This was made possible by declaring these data me
as mutable .

If your compiler does not support mutable data members, then the best solution is
cast away const inside the function, and add a comment to show other readers
code that you had no other option in order to keep the interface const-correct.
53

54 Industrial Strength C++

C h a p t e r S e v e n
d
ts
The class
interface

The class interface is the most important part of a class. Sophisticate
algorithms will not help if the class interface is wrong. Different aspec
of the class interface are discussed in this chapter.

• inline functions

• argument passing

• constness

• operator and function overloading

• conversion operator functions

his
as

r by
e

n is
ction
will
or-
 it is

 the
l is
ally

cess
 for

 not
tions
line
Inline functions

Inline functions can improve the performance of your program. T
chapter will discuss which functions that should be specified
inline, and which should not.

RULES
AND

RECOMMENDATIONS

Rec 7.1 Make simple functions inline.
Rule 7.2 Do not declare virtual member functions as

inline .

See Also Rec 14.1, the danger of having too many inline functions.

Rule 14.2, how to avoid making a virtual destructor inline.

EXAMPLE 2.5, how to temporarily disable inlining.

Rec 7.1 Make simple functions
inline.

It is possible to improve performance and make programs smalle
declaring functions inline . The opposite is also true if you us
inlining in the wrong places.

Fewer machine instructions are executed when an inline functio
called, since there is no need to prepare a stack frame for the fun
call. As long as the program does not grow so that the code
reside on different pages in memory, this is likely to improve perf
mance. Too large executables should be avoided and that is why
difficult to give an exact advice on when to use inline functions.

It may come as a surprise that inline expansion could decrease
overall size of the program, but if the overhead of a function cal
larger than the total size of the inline-expanded code this is actu
true.

If you have member functions whose sole purpose is to give ac
to data members, those member functions are likely candidates
inlining. This is a consequence of the rule that a class should
have any public or protected data members. Since member func
should be used instead, it is likely that you want to make them in
for the reasons explained above.
56 Industrial Strength C++

our
hat

li-
tion
ny
tion,

ine

g,
It can be hard to know exactly when inlining is appropriate, so
advice is to be cautious. Consider inlining only when you know t
the code generated for the function is small.

EXAMPLE 7.1 A class with inline member functions

class Point
{
 public:
 Point(double x, double y);
 // ...
 // accessors
 double x() const;
 double y() const;

 // modifiers
 void x(double x);
 void y(double y);

 private:
 double xM;
 double yM;
};

inline
double Point::x() const
{
 return xM;
}

// ...

Point operator+(const Point& p1, const Point& p2)
{
 return Point(p1.x() + p2.x(), p1.y() + p2.y());
}

A negative effect of making a member function inline is that all c
ent code must be recompiled each time the member func
changes. This is especially annoying in larger projects with ma
unstable classes that are used in many places. If this is your situa
consider having all member functions as non-inline. By using inl
definition files, you can do that without much effort.

Rule 7.2 Do not declare vir-
tual member functions as

inline.

Virtual member functions could often be simple enough for inlinin
but they should unfortunately not be declared inline . If a class
57

ire
are
tual
lly
tual

an
n

n-
n a
 be

ble
om-
ble

les.
def-
l
er
ule

em
v-

pen
ode
lues
with virtual member functions is used, some compilers will requ
that all virtual member functions have implementations that
linked with the program. The reason is that the address of a vir
member function is needed when a function call is dynamica
bound. Most compilers generate a table with the address of all vir
member functions, also called the virtual table.

Since inline functions are inline-expanded, they do not have
implementation by default. However if we make an inline functio
virtual, it must have a definition. Such a definition will then be ge
erated by the compiler and since the inline function is defined i
header file, there is no obvious place to put it. A good place could
in the same object file that contains the definition of the virtual ta
for the class. What makes things complicated is the fact that the c
piler does not always have an obvious place for the virtual ta
either.

The virtual table needs to be allocated in one of the object modu
Some compilers allocate it in the object module that contains the
inition of the first virtual function of the class. If the first virtua
function is inline, the virtual table + code for all virtual memb
functions that are inline could be generated in each object mod
that uses the class.

All this may seem complicated and it is. This may not be a probl
in the future, but with the compilers of today you should avoid ha
ing virtual functions that are inline.

Argument passing and return
values

Calling member functions is the normal way to make things hap
in a C++ program, but ordinary functions are also used. Your c
will be easier to understand if function parameters and return va
58 Industrial Strength C++

 can

.

ber

inter

s are
nces,
if an
ject

ec-
are declared in a consistent way. The performance of your code
also be improved.

RULES
AND

RECOMMENDATIONS

Rec 7.3 Pass arguments of built-in types by value, unless
the function should modify them.

Rec 7.4 Only use a parameter of pointer type if the func-
tion stores the address, or passes it to a function
that does.

Rec 7.5 Pass arguments of class types by reference or
pointer.

Rule 7.6 Pass arguments of class types by reference or
pointer, if the class is meant as a public base class

Rule 7.7 The copy assignment operator should return a
non-const reference to the object assigned to.

See Also Rule 5.12, how to implement copy assignment operator.

Rule 7.8 – Rule 7.9, constness of pointer or reference argument.

Rec 10.2, validity of pointers and references returned from mem
functions.

Rec 15.9, passing integers.

Rec 7.3 Pass arguments of
built-in types by value, unless

the function should modify
them.

Arguments to functions can be passed in 3 ways: by value, by po
and by reference.

EXAMPLE 7.2 Different types of function parameters

void valueFunc(T t); // By value
void pointerFunc(T* tp); // By pointer
void referenceFunc(T& tr); // By reference

Passing arguments by value means that the function parameter
copies of the arguments. If the parameters are pointers or refere
the function has access to the arguments. But remember that
argument is a temporary created by an implicit type cast, the ob
used to create that temporary will not by modified.

A good rule of thumb is to pass built-in types like char , int and
double by value, since it is cheap to copy such variables. This r
59

heap
ilt-in
hich

 also
be

w a
ter
it to

nd if
ject,
func-
ent

re
res-
pli-

one
ore

how

 be
ng

ter
ght
ommendation is also valid for some objects of classes that are c
to copy, such as simple aggregates of a very small number of bu
types, for example a class that represents complex numbers w
often just consists of two double s as data members.

If a function needs access to an argument, then you must pass
built-in types by reference or pointer. This should otherwise
avoided.

EXAMPLE 7.3 Passing parameters by value

void func(char c); // OK
void func(int i); // OK
void func(double d); // OK
void func(complex<float> c); // OK

Rec 7.4 Only use a parameter
of pointer type if the function

stores the address, or passes it
to a function that does.

Reference and pointer parameters are similar in that both allo
function to modify the arguments. We only recommend poin
parameters if a function stores the pointer value, or if it passes
another function that does.

Some programmers argue that the code is easier to understa
pointer arguments are used when the function modifies an ob
since then you must take the addresses of objects when such
tions are called. This would make it obvious, from reading the cli
code, when a function modifies an argument.

Unfortunately, the implementation of a function will often be mo
difficult to read if pointer parameters are dereferenced inside exp
sions. Local references make it easier to understand such com
cated expressions. What is not good with this solution is that
more local variable is needed. This makes the function slightly m
complex.

Pointer parameters also force the implementation to consider
null-pointers are handled, since dereferencing a 0-pointer is a fatal
error that certainly will crash your program. References cannot
null, which relieves the implementation of the problem of checki
if it is null or not.

The implementation of a function taking a pointer as parame
might pass it to some other function, which in its case also mi
60 Industrial Strength C++

 to
.

 the
 for
with
 cli-
uch a
t is

da-
cal

used
ter
ce,
ters
consider the possibility of being passed a null-pointer. It is easy
see that all this easily cascades to endless tests of pointer values

Therefore we recommend pointers only as a way of showing to
user that the address of the argument is stored by the function
later use, or is passed to a function that does so. Functions
pointer parameters must therefore be treated specially since the
ent must not delete objects whose addresses are passed to s
function. You should be suspicious if the address of a local objec
passed to a function. One benefit with following this recommen
tion to avoid pointer parameters is that dangling pointers to lo
objects are easier to detect.

Unless you are careful, pointer parameters may end up being
everywhere within a system with the motivation that “I use a poin
in my interface because internally I have to call that other interfa
which takes a pointer as argument”. The use of pointer parame
can this way easily spread over a complete program system.

EXAMPLE 7.4 Pointer and reference arguments

EmcMathVector represents a 2-dimensional vector.

class EmcMathVector
{
 public:
 EmcMathVector(double x, double y);
 EmcMathVector& operator*=(double factor);

 double x() const;
 double y() const;
 void x(double x);
 void y(double y);
 // ...
 private:
 double xM;
 double yM;
};

EmcMathVector::EmcMathVector(double x, double y)
: xM(x), yM(y)
{
 // empty
}

EmcMathVector& EmcMathVector::operator*=(double factor)
{
 xM *= factor;
61

tion

end
rably
t the

nce,
 yM *= factor;

 return *this;
}

The question is how we implement a function that modifies the state of a EmcMath-
Vector -object. We could either pass a pointer or reference.

EmcMathVector v(1.2, 3.4);

// Not recommended
magnify(&v, 4.0); // passing pointer

// Recommended
magnify(v, 4.0); // passing reference

By looking at the implementation, we can see that the implementation of the func
taking a pointer will be slightly more complex.

// Pointer argument

void magnify(EmcMathVector* v, double factor)
// Not recommended to pass pointer
{
 if (v) // Pointers might be 0
 {
 *v *= factor; // scalar multiplication of vector
 }
 // Handle null pointers here in some way:
 // assert or exception
}

// Reference argument

void magnify(EmcMathVector& v, double factor)
// Recommended to pass reference
{
 v *= factor; // scalar multiplication of vector
}

Rec 7.5 Pass arguments of
class types by reference or

pointer.

Arguments of class type are often costly to copy, so we recomm
that you pass a reference (or in some cases a pointer), prefe
declared const, to such objects. Const access guarantees tha
function will not change the argument, and by passing a refere
the argument is not copied.

void func(const EmcString& s); // const reference
62 Industrial Strength C++

t the
 const
r the
or by

tem-
s a
 of
late
then
.

of

 point-
is
when

y the
e the
them
anti-

ber
Small objects are sometimes more efficient to pass by value, bu
default is to assume that arguments of class types are passed as
references. It is a good idea to always read the documentation fo
class to make sure whether an object should be passed by value
const reference.

Template parameters are a problem here, since when declaring
plate functions you can in many cases not know if a user will pas
built-in or a class type. The thing to do then is to select a way
passing parameters by looking at how costly copying of a temp
parameter is expected to be. If you anticipate cheap copying,
you should pass parameters by value. Otherwise use references

EXAMPLE 7.5 Passing arguments of unknown type

A simplified version of the vector class in the standard library is a good example
what assumptions about instantiation-bound types can be made. InputIterator is
an argument to a member template and is expected to behave as a pointer. Since
ers should be cheap to copy, InputIterator parameters are passed by value. T
the type of the object stored in the vector, and since the class should work even
T is expensive to copy, T parameters are passed as references. T pointers, on the other
hand, are passed by value.

template <class T>
class vector
{
 public:
 template <class InputIterator>
 vector(InputIterator first,
 InputIterator last);
 T* begin();
 T& operator[](size_t n);
 void push_back(const T& x);
 T* insert(T* position, const T& x = T());
 // ...
};

Footnote:

Member templates are a recent addition to the language. They are motivated b
fact that it is impossible to create smart pointer templates that smoothly replac
ordinary pointers without this new language feature, but there are other uses for
as well. With member template constructors, it is possible to allow a template inst
ation to provide a conversion from an otherwise unrelated type to itself. Remem
that two template instantiations are different types.
63

or

plate.

ays
sly

here
inter
 argu-
lass

n is

lue,
at is
ng
te or
opied
You can instantiate vector<T>::vector with any type that behaves as an
InputIterator . This means that it is up to the client to decide if built-in arrays
iterator classes are used to initialize the vector<T> object. Without member tem-
plates, it would have been necessary to make a decision when designing the tem

Rule 7.6 Pass arguments of
class types by reference or

pointer, if the class is meant as
a public base class.

If a class is meant to be a public base class, then you should alw
pass such objects by pointer or reference. This will as previou
described in almost all cases give you better performance, but t
are other reasons as well. If a function takes a reference or a po
to a base class, objects of derived classes can also be used as
ments, since C++ allows a pointer of reference to a public base c
to be bound to a derived class object. This is what most ofte
called polymorphism.

You should never attempt to pass objects of these types by va
since what happens in such cases is that you will encounter wh
usually called slicing. You can avoid that problem by only havi
abstract base classes, or by making the copy constructor priva
protected. Since an object of an abstract base class cannot be c
and thus created, the compiler will catch errors of this kind.

EXAMPLE 7.6 Passing base class reference

// basic_ostream<charT, traits> is a public base class

template <class charT, class traits = file_traits<charT> >
class basic_ofstream
 : public basic_ostream<charT, traits>
{
 public:
 explicit basic_ofstream(const char* s,
 openmode mode = out | trunc);
 // ...
};

typedef basic_ostream<char> ostream;
typedef basic_ofstream<char> ofstream;

ostream& operator<<(ostream& o, const EmcMathVector& v)
{
 o << v.x() << ", " << v.y();
 return o;
}

int main()
{

64 Industrial Strength C++

ays
any

gen-
rit-
 the
copy
tors

behav-
 ofstream out("hello.txt");
 EmcMathVector v(1.2, 5.5);

 out << v << endl;
 // operator<<(ostream&, const EmcMathVector&) called
 return 0;
}

In this case an ofstream object is passed to the operator<< taking a reference to
its base class ostream .

EXAMPLE 7.7 Passing base class object by value

It is not possible to pass an object of the class ostream by value, since an ostream
object cannot be copied.

void uselessPrint(ostream o, const EmcMathVector& v)
// NO: Compile error
{
 o << v.x() << ", " << v.y();
}

Rule 7.7 The copy assignment
operator should return a non-

const reference to the object
assigned to.

The return value from the copy assignment operator should alw
be a non-const reference to the object assigned to. There are m
reasons to this. One is that this is the return value of a compiler
erated copy assignment operator. It could be confusing if hand-w
ten copy assignment operators had a different signature than
compiler generated ones. Another reason is that all classes with
semantics in the standard library have copy assignment opera
with non-const return values.

EXAMPLE 7.8 Return value from assignment operators

The following expression is legal when using an int* to access an int array.

int* array = new char[3];
// ... set values
int* arrayPointer;
// assign to first element
*(arrayPointer = array) = 42

If we instead use a smart pointer class to access the array, we want to keep this
ior for objects of that class.

EmcAutoArrayPtr<int> smartArrayPointer;
// assign to first element
*(arrayPointer = array) = 42
65

r and

is
ari-

rs to
od
u-
ke,
This requires that the smart pointer class provides the copy assignment operato
that it returns a non-const reference to this .

Const Correctness

Being “const correct” is important when writing code in C++. It
about correctly declaring function parameters, return values, v
ables and member functions as const or not.

RULES
AND

RECOMMENDATIONS

Rule 7.8 A pointer or reference parameter should be
declared const if the function does not change
the object bound to it.

Rule 7.9 The copy constructor and copy assignment opera-
tor should always have a const reference as
parameter.

Rule 7.10 Only use const char -pointers to access string
literals.

Rule 7.11 A member function that does not change the state
of the program should be declared const .

Rule 7.12 A member function that gives non-const access to
the representation of an object must not be
declared const .

Rec 7.13 Do not let const member functions change the
state of the program.

See Also Rule 5.12, how to implement copy assignment operator.

Rule 7.7, return value of copy assignment operator.

Rule 7.8 A pointer or refer-
ence parameter should be

declared const if the function
does not change the object

bound to it.

Functions often have const reference or const pointer paramete
indicate that an argument is not modified by the function. A go
thing with const declared parameters is that the compiler will act
ally give you an error if you modify such a parameter by mista
thus helping you to avoid bugs in the implementation.
66 Industrial Strength C++

nc-
r is
alled

 tak-
p,
 puts

 the

 by

-

the
ould
s it is
ing
EXAMPLE 7.9 const -declared parameter

// operator<< does not modify the EmcString parameter
ostream& operator<<(ostream& out, const EmcString& s);

When an argument is passed by value, it is used to initialize a fu
tion parameter that will be a copy of the argument. The calle
therefore immune to changes made to that parameter by the c
function. If you declare the parameter as const in these circum-
stances you will just be preventing any change to the parameter
ing place in the body of the function. This would be of little hel
since not being able to change a parameter passed by value only
unnecessary constraints upon the programmer implementing
function. If a parameter passed by value is declared const , the value
must be copied to a local variable if the value is to be modified
the function.

By not declaring the parameter const , it is possible to use the argu
ment value without first copying the value.

EXAMPLE 7.10 Using parameter as a local variable

template <class T>
T arraySum(const EmcArray<T>& array,
 size_t first,
 size_t last)
{
 assert(last <= array.length());

 T sum = 0;

 for(;first < last; first++)
 {
 // It is possible to update first since
 // it has not been declared const.
 sum += array[first];
 }

 return sum;
}

Rule 7.9 The copy constructor
and copy assignment operator

should always have a const
reference as parameter.

Two particularly important examples of const parameters are
copy constructors and the copy assignment operators, which sh
always have a const reference as parameter. In almost all case
evident that they should not change the object copied from. Be
67

 will
const

 this
onst
e a
onst
lass is

nnot
hese
plate

py is
This
ge, is
cop-
sloppy in this respect can have drastic consequences, since it
force derived classes and containing classes to also take non-
references as parameters.

If a class inherits another class and provides a copy constructor,
only works if that class has a copy constructor that accepts a c
reference parameter. If not, the compiler will report an error, sinc
const object is passed to a copy constructor taking a non-c
parameter. The same problem applies to the case when such a c
used as a data member.

If a class does not allow constant objects to be copied, then it ca
be used in many situations where the programmer expects t
properties to hold. It could be when the class is used as a tem
argument, base class or data member.

There are a few rare exceptions to this rule, such as when the co
destructive; the new object takes over the state of the old object.
is for example the case if a resource or token, such as a messa
passed from an old object to a new object when the old object is
ied.

EXAMPLE 7.11 Copyable type parameter

The following template assumes that the type argument T is copyable.

// Interface

// T is Copyable
template<class T>
class EmcStack
{
 public:
 // ...
 void push(const T& t);
 // ...
 private:
 size_t allocatedM;
 size_t topM;
 T* repM;
};

// Implementation

// EmcAutoArrayPtr manages arrays of objects

template <class T>
void EmcStack<T>::push(const T& t)
68 Industrial Strength C++

ple
ays
t
he

 the

to a
{
 if (topM == allocatedM) // allocate more memory
 {
 size_t newSize = 2 * allocatedM;
 EmcAutoArrayPtr<T> newRep(new T[newSize]);
 for(size_t i = 0; i < topM; i++)
 {
 newRep[i] = repM[i];
 }
 repM = newRep.release();
 allocatedM = newSize;
 }

 // Only works if T is of a type that allows copying
 // of constants.
 repM[topM] = t;
 topM++;
}

Rule 7.10 Only use const
char-pointers to access string

literals.

Constness is not always as enforced by the language. A very sim
example is string literals that are non-const. It is best to alw
access such strings through const char -pointers, so that they canno
be modified. What is not commonly known is that according to t
language definition they are of non-const type.

When using a const char* instead, the compiler will prevent you
from modifying the string literal through the pointer.

Unfortunately this does not guard you from direct assignment to
pointer itself. It is therefore better to either const declare the
pointer, or use array notation, since it is not possible to assign
built-in array.

EXAMPLE 7.12 Accessing string literals

// NOT RECOMMENDED
char* message1 = "Calling Orson";

// Better
const char* message2 = "Ice Hockey";

// Even better
const char* const message3 = "Terminator";

// Best
const char message4[] = "I like candy";
69

tate

ss
ts to
nt-

nge
inter
ject
ject
Rule 7.11 A member function
that does not change the state

of the program should be
declared const.

You should declare all member functions that do not modify the s
of the program as const . Declaring a member function as const
has two important implications:

1. Only const member functions can be called for const objects.

2. A const member function will not change data members.

It is a common error to forget to const declare member functions
that should be const. If you forget this, then it will be difficult to pa
const references or pointers to objects of that class as argumen
functions. It would also be difficult to use const references or poi
ers returned from functions.

Please note that it is possible for a const member function to cha
static data members, global data, as well as the objects that po
data members are pointing at. It is even possible to modify the ob
operated upon if a non-const pointer or reference to that ob
exists.

EXAMPLE 7.13 Implications of const

UselessString is a class that has not declared any const member functions.

class UselessString
{
 public:
 UselessString();
 UselessString(char* cp);
 UselessString(UselessString& u);

 ~UselessString();

 UselessString& operator=(UselessString& u);

 char* cStr();
 size_t length();
 char& operator[](size_t index);
 char& at(size_t index);

 friend ostream& operator<<(ostream& o,
 UselessString& u);

 private:
 // ...
};
70 Industrial Strength C++

 not

tion
ts

-
ber

ation

er-
ith
A consequence is that the following code, that you would expect to be legal, will
compile:

void print(const UselessString& s)
{
 // Should be possible o print a const object
 cout << s << endl; // Will not compile
}

EXAMPLE 7.14 Accessing objects inside const member function

class Silly
{
 public:
 explicit Silly(int val);
 void me(Silly& s) const; // Odd function
 private:
 int valM;
};

Silly::Silly(int val) : valM(val)
{
 // ...
}

The odd thing about the declaration of the function me() is that it takes a non-const
parameter, which indicates that it might be changed by the function, while the func
itself is declared as const . If we look at its implementation we can easily see i
peculiarity.

void Silly::me(Silly& s) const
{
 // valM = 42; // Error: cannot modify valM
 s.valM = 42; // OK but odd: s is not const
}

If you call the const member function me() with the object operated upon as argu
ment, the object will be modified by the member function call despite the mem
function's constness.

Silly s(7);
s.me(s); // s.valM == 42, not 7

Rule 7.12 A member function
that gives non-const access to
the representation of an object

must not be declared const.

A member function that gives non-const access to the represent
of an object must not be declared const , since the object has no
control over possible modifications through such pointers or ref
ences. The solution is to properly overload member functions w
respect to constness.
71

er-

tation
odi-

-

rn a
dex is

r-
 per-
sier it
EXAMPLE 7.15 Accessing characters in a string

The following piece of code allows a string to be modified by using the indexing op
ator to access individual characters.

EmcString name = "John Bauer";
name[0] = 'B'; // OK

The implementation returns a reference to a character that is part of the represen
for the string and that can be assigned to. Here, the indexing operator indirectly m
fies the object.

The EmcString class has overloaded operator[] with respect to constness to pre
vent const objects to be indirectly modified this way.

class EmcString
{
 public:
 EmcString(const char* cp);
 size_t length() const;
 // ...
 // Non-const version
 char& operator[](size_t index);
 // Const version
 char operator[](size_t index) const;
 // ...
 private:
 size_t lengthM; // Length of string
 char* cpM; // A pointer to the characters
};

The string is represented by two data members cpM, the character array, and
lengthM , the length of the string.

The implementation of the indexing operators are straightforward. They just retu
reference to the character specified by the index parameter, as long as the in
within bounds.

char& EmcString::operator[](size_t index)
{
 assert(index < lengthM);
 return cpM[index];
}

The compiler would not complain if this indexing operator is declared const , since it
is not the pointer cpM that is modified, only what it points at. By doing that, one ope
ator member function would have been enough, which would be a benefit for the
son maintaining the class. since the fewer member functions the class has, the ea
is to maintain.
72 Industrial Strength C++

tring

,
with
so the

nge
 as a
any
am.
ins

ects
ome
 data
ctor,
rt of
t for

n an

ate
s a
tent
ing
nst
From the user's perspective it would be wrong to const declare the indexing operator
returning a reference, since that would open up the possibility that a constant s
could change value. Here, the compiler's interpretation of const would not be the
same as the programmer's.

const EmcString pioneer = "Roald Amundsen";
// pioneer[0] = 'M'; Should NOT be legal!!

We want to allow each individual character of a const declared string to be accessed
but not modified. The correct way to do that is to overload the indexing operator
respect to constness. The const member function does not return a reference
string cannot be modified through assignment to the return value.

const EmcString s = "hello";

size_t length = s.length();

for (size_t j = 0; j < length; j++)
{
 // OK: Read only
 cout << "char " << j << ": " << s[j] << endl;
}

Rec 7.13 Do not let const
member functions change the

state of the program.

A const member function promises, unless cheating, not to cha
any of the data members of the object. Usually this is not enough
promise. A const member function should be possible to call
number of times without affecting the state of the complete progr
It is therefore also important that a const member function refra
from changing static data members, global data, or other obj
which the object has a pointer or reference to. Objects often put s
parts of their representation in separate objects and instead have
members that are pointers to these objects. As a complicating fa
it may also be the case that the value of a data member is not pa
the state of the object. It could be a value, such as the determinan
a matrix, that was very costly to calculate and therefore cached i
internal data member for efficiency reasons.

If const member functions fulfil their promise not to change the st
of the program, then that make them very useful for example a
reliable tool in assertions that checks if the program is in a consis
state. Assertions should be possible to switch off without chang
the behavior of the program, which makes it obvious that co
member functions must behave as promised.
73

is a
 is
tate
 of
gi-

ard
an

fied
There are many subtleties involved in this issue. What if there
log attached to the program, that is used when the program
debugged? Writing to such a log does in some ways affect the s
of the program, since it will affect output buffers and the number
open files. The only possible thing to do is to appeal to good en
neering judgement.

Overloading and default arguments

Overloading and default arguments in C++ are two straightforw
but powerful extensions to C. By avoiding a few pitfalls they c
greatly reduce the complexity of a system.

RULES
AND

RECOMMENDATIONS

Rule 7.14 All variants of an overloaded member function
should be used for the same purpose and have
similar behavior.

Rec 7.15 If you overload one out of a closely-related set of
operators, then you should overload the whole set
and preserve the same invariants that exist for
built-in types.

Rule 7.16 If, in a derived class, you need to override one out
of a set of the base class' overloaded virtual mem-
ber functions, then you should override the whole
set, or use using-declarations to bring all of the
functions in the base class into the scope of the
derived class.

Rule 7.17 Supply default arguments with the function's dec-
laration in the header file, not with the function's
definition in the implementation file.

See Also Rec 13.4, overloaded functions replace functions with an unspeci
number of arguments.

Rec 10.6 – Rec 10.7, specifying behavior of member functions.
74 Industrial Strength C++

pur-
n be
me

 to
and

of a

since

 of
atical
lace

ated

ed as
Rule 7.14 All variants of an
overloaded member function
should be used for the same

purpose and have similar
behavior.

Different member functions can be used for essentially the same
pose. By giving all member functions the same name, this fact ca
made explicit to the user of a class. This is called function na
overloading.

Using function name overloading for any other purpose than
group closely related member functions is not recommended
would be very confusing.

EXAMPLE 7.16 Overloaded member functions

When working with strings, we sometimes want to know how many occurrences
character or a substring it contains. The string class EmcString overloads the name
contains for both these operations.

EmcString cosmonaut("Juri Gagarin");

char c = 'a';
bool cValue = cosmonaut.contains(c);
// cValue == true

EmcString uri("uri");
bool uriValue = cosmonaut.contains(uri);
// uriValue == true

By giving the member functions the same name, the code will be more readable
only one name, contains, must be remembered by the programmer.

Different versions of contains should also have the same behavior.

Rec 7.15 If you overload one
out of a closely-related set of

operators, then you should
overload the whole set and

preserve the same invariants
that exist for built-in types.

If used correctly, operator overloading can improve the readability
the code. This is the case for classes that represent mathem
quantities such as complex numbers and for classes that rep
arrays or pointers.

C++ programmers expect that all operators in a set of closely rel
operators are available.

For example, if a class provides == for comparing two objects of
the class, it should also provide != .

In general, many relationships between operators can be describ
a set of invariants.
75

pro-
erve

ave a
era-

n the
 say
ator
For example, if a and b are int s and if a != b is true, this implies
that !(a == b) is also true. The same property should hold if a and
b are objects of a class.

The general recommendation is that if you overload operators,
vide all operators in a closely related set of operators and pres
the invariants that are valid for built-in types.

EXAMPLE 7.17 Operator overloading

If a class provides copy assignment and operator==() , two objects are expected to
be equal after assigning one of them to the other.

Int x = 42;
Int y = 0;
x = y;
// x == y should be true

If a class provides the comparison operators, <, <=, > and >=, we expect that an object
can either be lesser, greater or equal to another object. For example, if we h
function max that returns the largest of two operands, it should not matter what op
tor is used in the implementation.

Int max(Int x, Int y)
{
 if (x > y) // could use: < instead
 {
 // We also expect that:
 // y < x
 return x;
 }
 else
 {
 // We also expect that:
 // x <= y
 return y;
 }
}

It can be useful to preserve an invariant by using an operator member function i
implementation of another closely related operator member function. You could
the invariant is the implementation, since it defines how to implement an oper
function in terms of another overloaded operator function.

EXAMPLE 7.18 Implementation of closely related operators

EmcString overloads operator ==() and operator !=() . The implementation
of operator!=() compares two strings and returns true if they are not equal.

bool EmcString::operator!=(const EmcString& s) const
{

76 Industrial Strength C++

at
ual
l be

id-
ssed

to
ings

ust
e of
oth
 if (lengthM != s.lengthM)
 // Different lengths means that strings are different
 {
 return true;
 }
 else
 {
 return (strcmp(cpM, s.cpM) != 0);
 }
}

To check if two strings are equal, we can simply negate the result of operator
!=() . By doing that, less code is needed to implement operator ==() .

bool EmcString::operator==(const EmcString& s) const
{
 return !(*this != s); // operator!= used here
}

Rule 7.16 If, in a derived
class, you need to override one

out of a set of the base class'
overloaded virtual member
functions, then you should

override the whole set, or use
using-declarations to bring all

of the functions in the base
class into the scope of the

derived class.

Mixing overloading and inheritance can be tricky. A problem is th
if you in a derived class override only one of the overloaded virt
functions in the base class, then the functions not overridden wil
hidden for all users of the derived class.

Both virtual and non-virtual member functions can be hidden. A h
den member function can only be called when the object is acce
through a base class pointer or reference, but not directly.

Hidden member functions will make the code more difficult
understand. The same expression could mean different th
depending on how the object is accessed. Implicit conversions m
be taken in consideration and the programmer must be of awar
what versions of the overloaded function that are hidden for b
base classes and the actual class.

EXAMPLE 7.19 Hiding member functions

class Base
{
 public:
 // ...
 void f(char);
 void f(int);
 virtual void v(char);
 virtual void v(int);
};
77

 is
e to
s of
he
ed
ou
it is

ver-

ase
 The
c-
Derived inherits Base and provides some of the overloaded functions.

// NOT RECOMMENDED

class Derived : public Base
{
 public:
 Derived();
 // ...
 void f(int);
 virtual void v(char);
};

Different member functions will be called depending on how Derived is accessed.
For example, if v uses f for its implementation, the result could be surprising.

void Derived::v(char c)
{
 f(c); // calls Derived::f(int), not Base::f(char)
 v((int)c); // recursive call to Derived::v(char)
}

If the object is accessed within the scope of Base or through a Base pointer or refer-
ence, the result of overload resolution will be different.

Derived d;
Base& bref = d;
char c = 'a';

bref.f(c); // calls Base::f(char)
bref.v(c); // calls Derived::v(char)
bref.v((int)c); // calls Base::v(int)

It is not always wrong to hide member functions. A good example
a non-virtual comparison member function that takes a referenc
another object as argument. It can be difficult to compare object
different types. You will need run-time type checking or define t
comparison entirely in terms of virtual functions. If you in a deriv
class know how to compare two objects of that class efficiently, y
may want to hide the more general comparison function so that
only used when operating on base class pointers or references.

If the member function would have been declared virtual , the
derived class could instead have replaced it with a more efficient
sion.

A virtual member function should be overridden to replace the b
class implementation, not to hide any names in the base class.
natural thing is to always make all inherited virtual member fun
78 Industrial Strength C++

 the
er

 to

ntly
func-
class
tions that are accessible in the base class also accessible in
derived class. It would be very strange if different virtual memb
functions are called depending on how the object is accessed.

If your compiler does not implement namespaces, you will have
reimplement the member function.

EXAMPLE 7.20 Inheriting overloaded virtual member functions

Suppose the template EmcBoundedCollection<T> inherits from EmcCollec-
tion<T> . Objects of the same derived class are possible to compare more efficie
than if the objects are of different classes. This is the reason to why the member
tion isEqual is overloaded in the derived class, but to avoid surprises the base
version is also made accessible.

// Stores any number of values

template <class T>
class EmcCollection
{
 public:
 // ...
 virtual bool isEqual(const EmcCollection<T>&) const;
 bool operator==(const EmcCollection<T>&) const;
};

In a derived class it is OK to hide the non-virtual operator==() , but not
isEqual().

// Stores a limited number of values

template <class T>
class EmcBoundedCollection : public EmcCollection<T>
{
 public:
 // ...
 using EmcCollection<T>::isEqual;
 virtual bool
 isEqual(const EmcBoundedCollection<T>&) const;
 bool
 operator==(const EmcBoundedCollection<T>&) const;
};
79

For
dif-
se

he
ta-
er-

.

Rule 7.17 Supply default argu-
ments with the function's dec-
laration in the header file, not

with the function's definition in
the implementation file.

Default arguments are a surprisingly complex area of C++.
example, it is possible to redeclare a function several times with
ferent default arguments. We firmly believe that it is best to u
default arguments only with the declaration of a function in t
header file, not to make functions simpler to call in the implemen
tion file. Such tricks tend to make the code more difficult to und
stand.

EXAMPLE 7.21 Adding default arguments

void f(int x, int y = 2);

// 50 lines of declarations later

void f(int x = 1, int y); // NOT RECOMMENDED

If you call f without specifying any arguments, the default arguments will be used

f(); // calls f(1,2)

EXAMPLE 7.22 Default arguments for member function

// operator() returns 0 if a generated internal
// random double between [0,1) is > limit.
// Else return 1.

class RanDraw
{
 public:
 enum RanType {Fast, Good};
 RanDraw(double limit, int seed, RanType t = Good);
 // Default argument for t in class definition

 // ...
};

RanDraw::RanDraw(double limit, int seed, RanType t)
// No default arguments outside class definition
// ...
{
 // ...
}

80 Industrial Strength C++

pe
n be

truc-

.

ode
icult

tural

ro-
gu-
d.
er-

r-

licit
 be

.
e

Conversion functions

It can be difficult to understand C++-code that uses implicit ty
conversions between otherwise unrelated types. Your classes ca
designed to prevent such code by removing one-argument cons
tors and conversion functions.

RULES
AND

RECOMMENDATIONS

Rec 7.18 One-argument constructors should be declared
explicit .

Rec 7.19 Do not use conversion functions.

See Also Rec 6.1 – Rec 6.3, a more general discussion about conversions

Rec 15.14, if your compiler does not support explicit.

Rec 7.18 One-argument con-
structors should be declared

explicit.

Implicit type conversions are bad since the behavior of existing c
can change when new such conversions are added, and it is diff
to know what function that is called when looking at the code.

If an object of a type is passed as argument to a function, it is na
to expect to find a function taking that type as parameter.

If implicit type conversions are used, it is no longer that easy. A p
grammer must also check all implicit type conversions for the ar
ment type in order to find out which function that actually is calle
This search can be quite difficult to do manually since some conv
sions might be defined by an otherwise unrelated class.

A good way to improve the situation is to avoid implicit type conve
sions and to prevent the client from depending on them.

By default, all one argument constructors can be used for imp
type conversions. All one-argument constructors should therefore
declared as explicit to prevent them from being called implicitly
The keyword “explicit ” is a recent addition to the C++-languag
and may not yet be supported by your compiler.
81

ss
ary
EXAMPLE 7.23 One-argument constructor

class Other
{
 public:
 explicit Other(const Any& a);
 // No implicit conversion from Any
 // ...
};

Since the class Other declares the constructor as explicit , the type must be speci-
fied when using an Any object instead of a Other object.

void foo(const Other& o);

Any any;
// foo(any); // Would not compile
foo(Other(any)); // OK

Rec 7.19 Do not use conver-
sion functions.

Conversion functions introduce an implicit conversion from a cla
to another type. You should avoid them and instead use ordin
functions to get a value of another type.

EXAMPLE 7.24 How to avoid conversion operator function

Our string class EmcString provides a member function cStr() for the purpose of
returning the string representation as a const char *.

class EmcString
{
 public:
 // ...
 const char* cStr() const;
 // conversion to const char*
 // ...
};

void log(const char* cp);

EmcString magicPlace("Ngoro-Ngoro crater at dusk");

log(magicPlace.cStr());
// Explicit conversion from String to const char*
82 Industrial Strength C++

83

84 Industrial Strength C++

85

86 Industrial Strength C++

C h a p t e r E i g h t
c-
new and
delete

The operators new and delete are the C++ way of allocating and
deallocating memory for objects. Their use is quite error prone, but
many problems can be avoided by following a few basic rules and re
ommendations.

ou

:

he

 is

s
RULES
AND

RECOMMENDATIONS

Rule 8.1 delete should only be used with new.
Rule 8.2 delete [] should only be used with new [] .
Rule 8.3 Do not access a pointer or reference to a deleted

object.
Rec 8.4 Do not delete this .
Rec 8.5 If you overload operator new for a class, you

should have a corresponding overloaded opera-
tor delete .

Rec 8.6 Customize the memory management for a class if
memory management is an unacceptably-large
part of the allocation and deallocation of free
store objects of that class.

See Also Rule 10.4, base class destructor.

Rule 12.5, exceptions thrown inside destructors.

Rec 12.9, using the stack instead of the free store.

Rule 8.1 delete should only be
used with new.

Rule 8.2 delete [] should only
be used with new [].

It is important to understand how memory is managed in C++. Y
should understand what happens when an object is created withnew
and what happens when the delete operator ends its lifetime.

Allocation and deallocation of free store objects are done in steps

• If a single object is allocated, operator new is called to allo-
cate memory, and then the constructor is called to initialize t
object.

• If an array of objects is allocated, operator new[] is called to
allocate memory for the whole array, and then the constructor
called for each element of the array.

• When a single object is deleted, the destructor for the object i
called first, and then operator delete is called to free the
memory occupied by the object.
88 Industrial Strength C++

le-

 of
rect
nc-

os-
ited

not
ram

ted
nt to
ave
ould
 the
”

• When an array of objects is deleted, the destructor for each e
ment of the array object is called first, and then operator
delete[] is called to free the memory occupied by the array.

Since different functions are used for allocation and deallocation
single objects and arrays of objects, you must use the cor
delete expression when a pointer is deleted. If not, the wrong fu
tion will be called to release the memory occupied by the object.

The reason that different functions are called is that it should be p
sible for an implementation to use the algorithms that are best su
for either case. If different algorithms are used, the memory will
be properly released if the wrong function is called, and the prog
will probably crash.

EXAMPLE 8.1 Allocate and deallocate free store object

Since EmcString does not overload neither operator new nor operator
delete , the default functions for memory allocation will be called.

EmcString* sp = new EmcString("Hello");
// Calls ::operator new
delete sp;
// Calls ::operator delete()

const size_t arraySize = 5;

EmcString* sa = new EmcString[arraySize];
// Calls ::operator new[]()
delete [] sa;
// Calls ::operator delete[]()

Rule 8.3 Do not access a
pointer or reference to a

deleted object.

You must decide what to do with your pointer after you have dele
the object assigned to it. A pointer that has been used as argume
a delete expression should not be used again unless you h
given it a new value, since the language does not define what sh
happen if you access a deleted object. You could either assign
pointer to 0 or a new valid object. Otherwise you get a “dangling
pointer.
89

er-

ber

ith
ctor
k

r.
of the
e

EXAMPLE 8.2 Dangerous access to deleted object

The following code is legal, but the behavior is undefined.

EmcString* sp = new EmcString("Hello");
delete sp;
cout << *sp << endl; // No: Undefined behavior !!

Rec 8.4 Do not delete this. You should also avoid deleting the this pointer. It is potentially
dangerous to do so, and your code will be more difficult to und
stand.

If a class provides a member function that deletes this , it can be
dangerous to make such a member function an ordinary mem
function, since it is possible that the this pointer must be accessed
when returning from the function.

You should not try to delete an object allocated on the stack w
such a member function. A common trick is to declare the destru
as either private or protected to prevent objects on the stac
from being created.

EXAMPLE 8.3 Objects that commit suicide

class W
{
 public:
 W();
 void goAway();
 static void foo();
 void bar();
 // ...
 protected:
 ~W();
};

Objects of the class W can only be created with new since it has a protected destructo
For that reason, it is also not possible to delete the object outside the scope
class. Instead the member function goAway() has been provided that deletes th
object.

void W::goAway()
{
 delete this; // No!!
}

90 Industrial Strength C++

t.

n
en
erly
 the
ing
eans

gu-
for

ory

uctor
y in
W* w = new W;
w->goAway();

After the call to goAway() , it is undefined what happens if you try to use the objec

w->foo(); // May crash !!!
w->bar(); // May crash !!!

Rec 8.5 If you overload opera-
tor new for a class, you should

have a corresponding over-
loaded operator delete.

Objects can be allocated with many different new expressions. The
result of a new-expression is either a null-pointer or a pointer to a
object with a lifetime that is determined by the programmer. Wh
the object is no longer needed, some code is needed to prop
return the memory and perhaps other resources allocated by
object. To delete a pointer to the object is not always the right th
to do, since memory could have been allocated by some other m
than operator new(size_t) .

For example, it is possible to provide additional placement ar
ments in a new-expression. The function that allocates storage
such an object is also called a placement operator new.

EXAMPLE 8.4 Placement new

A common form of placement new, that is part of the standard library, takes a mem
address as argument.

const int maxSize = 100;

// get storage for object
// assumption: sizeof(A) < 100
void* storage = (void*)new char[maxSize];

// call placement new to create object
A* ap1 = new (storage) A();

To delete a pointer pointing to such an object is not recommended, but the destr
should always be called. It is possible and correct to call the destructor explicitl
this situation.

// Use ap1
ap1->~A(); // call destructor, not delete

// reuse storage: sizeof(B) < 100
B* bp1 = new ((void*)storage) B();
// ...
delete [] storage;
91

rrect

ory
s.

ith
ory
e a
lly
 to

types
the
d

 to

 if a
uld
 the

ure,
ca-
nc-

dif-
are
It is possible to overload operator new, operator delete,
operator new[] and operator delete [] for a class. If we
want to customize memory management for a class this is the co
thing to do.

The interaction between exception handling and customized mem
management must be understood to avoid memory-related error

If an exception is thrown by a constructor for an object created w
new, the run-time system is responsible for returning the mem
allocated for the object. The client has no way of doing this, sinc
pointer to the object is not available until the object has been fu
constructed. For this to work, the run-time system must know how
correctly deallocate objects created by different new-expressions.

The scope of the operator new used by the new-expression is
searched for a matching operator delete . A declaration of an
operator delete matches the declaration of a operator new
when it has the same number of parameters and all parameter
except the first are identical. The run-time system will then call
matching operator delete to deallocate a partially constructe
object.

Until recently it was not possible to provide additional arguments
operator delete and operator delete[] , but now it is both
possible and recommended to overload these member functions
class has its own memory management. If not, the program co
crash before an exception handler is given the chance to handle
exception and there is also the risk of getting memory leaks.

If the compiler does not support this rather new language feat
one deallocation function that can be used with all different allo
tion functions is an alternative to an overloaded deallocation fu
tion, but then additional arguments to the new-expression will not be
available when the deallocation function is called. This makes it
ficult to customize memory management when only exceptions
supported by the compiler.
92 Industrial Strength C++

ent

rrect
EXAMPLE 8.5 Class with customized memory management

The class A has customized memory management. An additional placement argum
is provided to allow the client to control where in memory objects are placed.

class BadArgument
{
 public:
 explicit BadArgument(int);
 // ...
};

class A
{
 public:
 A();
 A(int) throw (BadArgument);
 ~A();
 // ...
 void* operator new(size_t size);
 void* operator new[](size_t size);
 void* operator new(size_t size, const Pool<A>& p);
 void* operator new[](size_t size, const Pool<A>& p);

 void operator delete(void* vp);
 void operator delete[](void* vp);
 void operator delete(void* vp, const Pool<A>& p);
 void operator delete[](void* vp, const Pool<A>& p);
 // ...
};

A has a constructor that throws an exception. If an exception is thrown the co
operator delete() will be called.

A::A(int i) throw (BadArgument)
{
 // ...
 if (i == 42) throw BadArgument(42);
}

A* createA(int i)
{
 // throws exception if i == 42
 return new A(i);
 // if exception is thrown, call
 // A::operator delete(void*)
}

A* createA(int i, const Pool<A>& memoryPool)
{
 // throws exception if i == 42
 return new (memoryPool) A(i);
93

rent
rac-
tion
. A
ize,

free
 be a
. In
ory

times
 can
pt-
 // if exception is thrown, call
 // A::operator delete(void*, const Pool<A>& p)
}

Rec 8.6 Customize the mem-
ory management for a class if

memory management is an
unacceptably-large part of the
allocation and deallocation of
free store objects of that class.

When should a class customize its memory management? Diffe
memory management algorithms have different performance cha
teristics. When using a general algorithm, both the size and loca
of memory blocks must be stored and updated by the functions
customized allocator, that only manage memory blocks of one s
can do less book-keeping and is therefore faster.

Some objects are very often created in large numbers on the
store. Sometimes the memory management of such objects can
large part of the overall time spent on allocation of such objects
these cases it can be very well spent effort to customize the mem
management for such a class. Programs can be made to run 5
faster by such customized memory management. Therefore this
be a good option for improvement if your programs runs unacce
ably slow.
94 Industrial Strength C++

C h a p t e r N i n e
i-
Static Objects

Global objects, static data members, file scope objects and local var
ables declared static are variables with static storage duration. A
strategy for initialization of objects with static storage duration is
needed to avoid the risk of accessing uninitialized objects.

tion
ny
inter
code

Any
eans
tic

e it
 not

s, a
e to

u can
uch
e of

ithin
ve is
ut
RULES
AND

RECOMMENDATIONS

Rec 9.1 Objects with static storage duration should only
be declared within the scope of a class, function or
anonymous namespace.

Rec 9.2 Document how static objects are initialized.

See Also Rec 1.4 – Rec 1.5, namespaces

Rec 9.1 Objects with static
storage duration should only

be declared within the scope of
a class, function or anonymous

namespace.

Static objects make it possible to access an object inside a func
without having to pass along a pointer or reference to it. Ma
objects can use the same object without each object storing a po
to the object, which can save space and sometimes make the
less complex.

There are also many disadvantages of having static objects.
function that has access to a static object could use it, which m
that it can be costly and difficult to maintain code with many sta
objects.

In addition they can complicate multi-threaded applications, sinc
is necessary to protect static objects so that their states do
become invalid if two threads modify an object at the same time.

We recommend you to limit the scope of a static object to a clas
function or an unnamed namespace. By doing so, it is possibl
know in advance where a static object is accessed.

Encapsulate access to static objects as much as possible. If yo
declare a static object within a function, you should do that. S
objects are guaranteed to have been initialized before the first us
the function.

The choice between a static data member and a static object w
an unnamed namespace is not as obvious. The latter alternati
more flexible regarding scope, but the first choice allow you to p
the implementation of a class in many files.
96 Industrial Strength C++

y dif-
m-
t a

ed
 has
 file

 data
have

ccess
Unnamed namespaces allow you to use the same name for man
ferent objects with static storage duration. For example, it is co
mon to have a static string to identify each implementation file tha
program uses.

Old C++-programmers should know that objects within unnam
namespaces replace static objects in file scope. The language
changed, and there is now no guarantee that static objects in
scope will be supported in the future.

EXAMPLE 9.1 Function local static object

int randomValue(int seed)
{
 static int oldValue = seed;
 // calculate new value
 return oldValue;
}

EXAMPLE 9.2 Static data member

A singleton class is a class with only one instance. It is common to store a static
member that is a pointer to that object. By doing so static member functions can
access to the object.

The pointer is not local to a function since many static member functions need a
to the object.

class EmcSingleton
{
 public:
 static EmcSingleton* instance();
 static void create(int i = 0);
 // ...
 private:
 // private constructors
 EmcSingleton(int i);
 // ...
 static auto_ptr<EmcSingleton> instanceM;
};

EmcSingleton* EmcSingleton::instanceM = 0;

void EmcSingleton::create(int i)
{
 instanceM = new EmcSingleton(i);
}

EmcSingleton* EmcSingleton::instance()
{

97

ed

used
rtic-
 To
 if (! instanceM) create();
 return instanceM;
}

EXAMPLE 9.3 Unnamed namespace

// myfile.cc

namespace
{
 // sccsid is not visible to other files
 const char sccsid[] = "@(#)myfile.cc ...";
}

// ...

EXAMPLE 9.4 Static objects in file scope

// Not recommended if your compiler allows you to
// have unnamed namespaces

static const char sccsid[] = "@(#)myfile.cc ...";

Rec 9.2 Document how static
objects are initialized.

Static objects defined in different implementation files are initializ
in an order that is not specified by the language.

This is a problem when static objects are used by constructors
to initialize other static objects. Programs that depend on any pa
ular order could work on one platform and crash on another.
ignore the problem is to ask for trouble.

EXAMPLE 9.5 Access to static object inside constructor

Suppose a constructor writes a message to cout . If the iostream library would not
have provided a method for safe initialization of cout , such constructors would be
dangerous to use for static objects.

#include <iostream.h>

class EmcLog
{
 public:
 EmcLog(ostream& out);
 // ...
};

EmcLog::EmcLog(ostream& out)
// ...
{

98 Industrial Strength C++

 cir-
nd on
der-

ial-

n-
jects
 ini-
e.

fore

tatic
 the
nc-
jects,

ple-
er

za-

n
By
ram-
al-

unit
ns-
n

 out << "Creating log" << endl;
 // ...
}

// cout must have been initialized before initializing
// theLog.

EmcLog theLog(cout); // static object

To avoid surprises, the programmer should document under what
cumstances static objects, and/or function and classes that depe
them, can be used. In order to do that, the programmer must un
stand how static objects are initialized and how to control the init
ization order.

You should always try to declare static objects initialized by co
structors inside their corresponding access functions. These ob
are guaranteed to be initialized before first use, because they are
tialized when control passes through the function for the first tim
This solution does not require the client to do anything special be
using the function.

If using such access functions is not possible, consider using s
pointers instead of objects, since that allows you to control how
objects are initialized. The simple rule is that before you use a fu
tion or a class that needs to use the static pointers to access ob
you must call a function that creates the objects bound to them.

In what way can that help? Since you do not depend on any im
mentation-defined order, your program will more portable. Anoth
desirable property is that the client can control when the initiali
tion function is called.

An initialization function often has a corresponding finalizatio
function that should be called before terminating the program.
having an initialization class that manage the resources, the prog
mer can automatically get finalization by putting a call to the fin
ization function inside the destructor.

There are rules for how static objects within the same translation
are initialized. If two static objects are defined within the same tra
lation unit, but outside the scope of a function, their initializatio
order will be the same as the order of their definitions.
99

ata
ers,

ions
l-
ses

and
ore
ber

For
uch

t
tion
d be

a

re-
FOOTNOTE: This is the opposite to the rules for non-static d
members where the declaration order, not the order of initializ
determines initialization order.

EXAMPLE 9.6 Initialization order of static objects

// sccsid initialized before release.

namespace
{
 const char sccsid[] = "@(#)myfile.cc ...";
 const char release[] = "@(#)Emc Class Library, 1.2";
};

You can take advantage of this order when classes and funct
require initialization. Many class libraries provides file local initia
ization objects within its header files to make sure that the clas
can be used without trouble. This is what the iostream library
does. This solution is safe, but costly in terms of performance
memory. Many small objects with constructors will be created bef
entering main and the number of objects will increase as the num
of implementation files used to build the program gets bigger.
some applications this is not acceptable, so you should avoid s
general solutions.

If you, before entering main() , want to access functions tha
depends on static objects, you must declare a static initializa
object before first use of the class. Where to put that object shoul
your own responsibility.

EXAMPLE 9.7 Initialization object

Suppose you have a class EmcObject that requires initialization. The class provides
nested class Initor for that purpose. The implementation of Initor uses two mem-
ber functions provided by EmcObject , initialize and finalize , that do the
actual initialization and finalization of the class. An initialization object should be c
ated before operating upon EmcObject objects.

class EmcObject
{
 public:
 // ...
 class Initor
 {
 public:
 Initor();
 ~Initor();
 private:
100 Industrial Strength C++

nce.
ime
tatic
 and

n one
 static int refcountM;
 };
 friend class Initor;

 private:
 static void initialize();
 static void finalize();

 // ...
};

The implementation must prevent a class to be initialized or finalized more than o
All EmcObject::Initor objects share a reference count that is updated each t
an object is created. This is a common technique for safe initialization of s
objects. By checking the value, we make sure that the class is only initialized
finalized once.

// EmcObject.cc

int EmcObject::Initor::refcountM = 0;

EmcObject::Initor::Initor()
{
 if (refcountM == 0) EmcObject::initialize();
 refcountM++;
}

EmcObject::Initor::~Initor()
{
 refcountM--;
 if (refcountM == 0) EmcObject::finalize();
}

Before the client uses the class, an EmcObject::Initor object is created inside an
unnamed namespace. By doing that, there is no risk of name clashes if more tha
object with that name is created.

// client code

namespace
{
 EmcObject::Initor initor; // initializes EmcObject
 // ...
}

// more code ...
101

102 Industrial Strength C++

C h a p t e r Te n
g

Object-
oriented

programming

In this chapter we will discuss rules and recommendations concernin
the most important parts of object oriented programming, namely
encapsulation, dynamic binding, inheritance and software contracts.

 data
ectly
ect-
not
s the

ata
ifies
ject

n of
w
ges.

bers
ting

ata
ven
. By
lass

em-
ub-
Encapsulation

There are many aspects to what is called encapsulation. For any
member it is required that the source code that may access it dir
is limited to a part of the program, that can be deduced from insp
ing the class definition only. The main idea is that users should
be affected by modifications to the class representation as long a
class interface is unchanged.

RULES
AND

RECOMMENDATIONS

Rule 10.1 Only declare data members private.
Rec 10.2 If a member function returns a pointer or refer-

ence, then you should document how it should be
used and for how long it is valid.

See Also Rec 5.5, Rule 5.6, Rec 5.7, initialization of data members.

Rule 7.7, return value of copy assignment operator.

Rule 10.1 Only declare data
members private.

Public data members should be avoided. By only having private d
members, it is possible to know in advance what code that mod
data members. This makes it less likely that the state of the ob
becomes corrupt by mistake.

We want to avoid having users that depend on the representatio
the object. With public data members, it is difficult to predict ho
much code that must be modified when the representation chan
There will also always be a risk that the user modifies data mem
in a way not anticipated by the implementation of the class, crea
bugs that are hard to find.

Imagine how hard it would be to maintain a class with public d
members. Many bugs would most likely be the user's own fault, e
though the program crashes inside member functions of the class
declaring data members as private the effort to maintain the c
will be less.

It is also impossible to change the name or type of public data m
bers, since that would immediately break all code using them. If p
104 Industrial Strength C++

of a
dify

since
nre-
ers as
 that
ince
e is
lass

, but
life-
 any

ct,
t we
ion.

e can
 way.

rt of
t the

le is
 ref-

em-
tate.
, e.g.
lic data members are avoided, then the internal representation
class can be changed without users of the class having to mo
their code.

We also recommend that protected data members are avoided,
member functions of derived classes have the same kind of u
stricted and possibly dangerous access to protected data memb
other functions have to public data members. Some might argue
constant members could be declared protected without risk, s
these cannot be modified. Even here a member function interfac
slightly better, since it makes the base class and the derived c
more loosely coupled.

Rec 10.2 If a member function
returns a pointer or reference,

then you should document how
it should be used and for how

long it is valid.

Private data members are a good step towards encapsulation
they are not enough. We must always document ownership and
time of objects that we return pointers or references to, and also
restrictions on how we use such pointers or references.

It is not always wrong to return a pointer or reference to an obje
but if we have a badly designed class interface, it is possible tha
use the object in a way that is not anticipated by the implementat

EXAMPLE 10.1 Returning non-const reference to object

Suppose we have a string class with a member function length() that returns a non-
const reference to the data member that stores the length of the string. Then w
easily invalidate the state of the object by assigning to the reference returned this

OtherString s("hello"); // length() == 5
s.length() = 114; // Not recommended
 // length() == 114

It is always unwise to give uncontrolled access to data that is pa
an object's state. If such access is necessary, it is important tha
user knows how to use the class correctly. A good design princip
to have as few limitations as possible on how to use a pointer or
erence returned from a function.

It is not always wrong to return a pointer or reference to a data m
ber, since not all such objects are part of the containing object's s
Sometimes it is even necessary to return a pointer or reference
when using overloaded operators to modify an object.
105

rstand

e
 to.

ject
e the
er-
this
con-
 be
 that

ter-
jects
eir

hout
 pro-

 in
EXAMPLE 10.2 Assigning to string element

When assigning to an element of a string or an array, it is easier to read and unde
the code if we use the same syntax as for built-in arrays.

EmcString has overloaded [] to allow assignment of individual elements of th
string. This operator returns a reference to an array element that can be assigned

EmcString s = "Hello";
s[0] = 'h'; // Better than: s.set(0,'h');

Sometimes a function returns a pointer or a reference to an ob
that must be managed by the user. Typically the user must delet
object in order to avoid a memory leak. If a function transfers own
ship of an object that it returns a pointer or reference to, then
must always be documented. A good strategy is to use a naming
vention to make it obvious to the user when the object must
deleted by the user. You could e.g. give such functions a name
starts with “new”, “ make” or “create ”.

Dynamic binding

C++ allows you write code that only depends on a base class in
face. It is possible to bind base class pointers or references to ob
of derived classes and to operate on them without knowing th
exact type. This makes it possible to add new derived classes wit
having to change the code that operates upon them. This makes
grams easier to adapt to changing user requirements.

Here we want to explain how and when to use dynamic binding
your programs.

RULES
AND

RECOMMENDATIONS

Rec 10.3 Selection statements (if and switch) should be
used when the flow of control depends on an
object's value, while dynamic binding should be
106 Industrial Strength C++

stly
ct.

trol
ible
rent

 to
 new
s in

rtual

ble to
e if
lls
e.

ro-
you
ing
ou a
ing

ol-
rived
s. By
om its
used when the flow of control depends on the
object's type.

See Also Rule 4.1, Rec 4.2 – Rec 4.5, writing if and switch statements.

Rec 10.3 Selection statements
(if and switch) should be used

when the flow of control
depends on an object's value,

while dynamic binding should
be used when the flow of con-

trol depends on the object's
type.

Heavy use of the selection statements if /else and switch might
be an indication of a poor design. Selection statements should mo
be used when the flow of control depends on the value of an obje

Selection statements are not the best choice if the flow of con
depends on the type of an object. If you want to have an extens
set of types that you operate upon, code that uses objects of diffe
types will be difficult and costly to maintain. Each time you need
add a new type, each selection statement must be updated with a
branch. It is best to localize selection statements to a few place
the code. This however requires that you use inheritance and vi
member functions.

Suppose you have a class that is a public base class. It is possi
operate on objects of derived classes without knowing their typ
you only call virtual member functions. Such member function ca
are dynamically bound, i.e. the function to call is chosen in run-tim
Dynamic binding is an essential component of object-oriented p
gramming and we cannot overemphasize the importance that
understand this part of C++. You should try to use dynamic bind
instead of selection statements as much as possible. It gives y
more flexible design since you can add classes without rewrit
code that only depends on the base class interface.

EXAMPLE 10.3 Factory class

EmcCollection<T> is a base class that allows many different types of object c
lections to be manipulated through the same interface. It is only meant to be de
from and each derived class must override a set of pure virtual member function
making it an abstract base class, the class interface is more clearly separated fr
implementation.

template <class T>
class EmcCollection
{
 public:
 // ...
107

dden

m
-

 // insert one element
 virtual void insert(const T&) = 0; // pure virtual
 // ...

};

template <class T>
ostream&
operator<<(ostream&, const EmcCollection<T>& coll);

EmcArrayCollection is a class template derived from EmcCollection<T> that
implements the base class interface. All pure virtual member functions are overri
so that an EmcArrayCollection<T> object can be created.

template <class T>
class EmcArrayCollection
 : public virtual EmcCollection<T>
{
 public:
 static const size_t initialSize = 10;
 EmcArrayCollection(size_t maxsize = initialSize);
 // ...
};

A user of EmcCollectionFactory can create objects of classes derived fro
EmcCollection<T> without explicitly including their class definitions in the pro
gram, which makes the program less sensitive to changes in the implementation.

class InvalidCollectionType : public EmcException
{
 public:
 InvalidCollectionType(int id);
 // ...
 private:
 int idM;
};

template <class T>
class EmcCollectionFactory
{
 public:

 EmcCollectionFactory();
 // ...
 enum EmcCollectionId { ArrayId = 0, /* ... */ };
 virtual EmcCollection<T>* create(int type) const
 throw(InvalidCollectionType);
 virtual EmcCollection<T>* createArray() const;
 // ...
 private:
 // ...
};
108 Industrial Strength C++

ng an

-

Each class derived from EmcCollection<T> has its own type identifier represented
as an integer. This identifier is passed to the create member function when creati
object.

EmcCollection<T>*
EmcCollectionFactory<T>::create(int type) const
 throw(InvalidType)
{
 // Select behavior based on the value of type.

 switch (type)
 {
 case ArrayId:
 {
 return createArray();
 }
 // ...
 default:
 {
 throw InvalidCollectionType(type);
 }
 }
 return 0; // Never reached
}

template <class T>
EmcCollection<T>*
EmcCollectionFactory<T>::createArray() const
{
 return new EmcArrayCollection<T>();
}

EXAMPLE 10.4 Dynamic binding

Suppose you have created an object of the class EmcArrayCollection<int> with
a call to EmcCollectionFactory<int>::create() . That object can be
assigned to an EmcCollection<int> pointer and operated upon using virtual mem
ber functions declared by the base class.

EmcCollectionFactory<int> factory;
EmcCollection<int>* collection =
 factory.create(EmcCollectionFactory<int>::ArrayId);

collection->insert(42);
// EmcArrayCollection<int>::insert() is called

cout << *collection << endl;
delete collection;
109

ase
irtual
lared

hould
ived
nces.

tual

 be

inter.

di-

tual
l part
ese
eting
rt of
hese
will
Inheritance

If you use inheritance, you need to plan in advance how the b
class is meant to be used. Many base classes must have v
destructors, but not all. Sometimes a base class should be dec
virtual and sometimes not.

RULES
AND

RECOMMENDATIONS

Rule 10.4 A public base class must either have a public vir-
tual destructor or a protected destructor.

Rule 10.5 If you derive from more than one base classes
with the same parent, then that parent should be a
virtual base class.

See Also Rule 8.1 – Rule 8.2, how to delete objects.

Rule 10.4 A public base class
must either have a public vir-
tual destructor or a protected

destructor.

When a class appears as a public base class, derived classes s
be specializations of the base class. This allows objects of der
classes to be operated upon through base class pointers or refere
The user can use an object without knowing its exact type if a vir
member function is called.

The destructor is a member function that in most cases should
declared virtual . It is necessary to declare it virtual in a base
class if derived class objects are deleted through a base class po
If the destructor is not declared virtual , only the base class
destructor will be called when deleting an object that way. In ad
tion to that, the size of the base class object will be passed to oper-
ator delete() and not the size of the complete object.

There is however a case where it is not appropriate to use vir
destructors; mix-in classes. Such a class is used to define a smal
of an interface, which is inherited (mixed-in) by subclasses. In th
cases the destructor, and hence also the possibility of a user del
a pointer to such a mix-in base class, should normally not be pa
the interface offered by the base class. The best thing to do in t
cases is to have a non-virtual, non-public destructor, since that
110 Industrial Strength C++

ship

 This
ter

ry to

its
nec-
re that
not allow a user of a pointer to such a base class to claim owner
of the object and decide to simply delete it.

In such cases it is appropriate to make the destructor protected.
will stop users from accidentally deleting an object through a poin
to the mix-in base class, and therefore it is no longer necessa
require the destructor to be virtual.

EXAMPLE 10.5 Deleting a derived class object

EmcCollection<T> has a derived class EmcArrayCollection<T> that stores an
array of T objects.

class EmcCollection
{
 public:
 // ...
 // destructor virtual for base class
 virtual ~EmcCollection();
 // ...
};

template <class T>
class EmcArrayCollection : public virtual
EmcCollection<T>
{
 public:
 // ...
 ~EmcArrayCollection();
 // ...
 private:
 size_t indexM;
 EmcArray<T> arrayM;
 // ...
};

The destructor of the EmcArray<T> member must be called when the object ends
lifetime since otherwise memory allocated for the array will not be released. It is
essary to declare the destructor as virtual in the base class, if we want to be su
the derived class object is properly deleted.

EmcCollectionFactory<int> factory;
EmcCollection<int>* collection =
 factory.create(EmcCollectionFactory<int>::ArrayId);
// ...
delete collection;

// 1. ~EmcArrayCollection<int>() is called
// 2. ~EmcArray<int>() is called
// 3. ~EmcCollection<int>() is called
111

c-

ut it
wo
lass

 base
e is
ult is
hare

n the

lass
out
rit-
lass
will
 we

 that
s a vir-

 is
ss
// 4. ::operator delete(sizeof EmcArray<int>, cp)
// is called

The destructor for EmcArray would in this case never have been called if the destru
tor for EmcCollection had not been declared virtual .

Rule 10.5 If you derive from
more than one base classes

with the same parent, then that
parent should be a virtual base

class.

Multiple inheritance is a language feature that is seldom used, b
is for example very useful if you want to derive from classes in t
different class libraries. It is then possible to have one derived c
instead of many.

Each object of a derived class has an object representing each
class, a base class member. A problem with multiple inheritanc
that when two base classes inherit from the same class, the defa
to duplicate that base class member in the derived class, not to s
it.

Why is this bad?

Since you actually have two base class objects, you cannot assig
derived class object to a pointer or reference to that base class.

You cannot call a member function introduced by that base c
when directly operating upon objects of the derived class with
explicitly qualifying the name with a base class name. When inhe
ance is non-virtual, all names that are introduced by the base c
will be ambiguous. The presence of duplicated base classes
make a derived class different from other derived classes, which
should avoid.

It is more natural to share base class objects, but this requires
each base class that appears more than once as a base class, i
tual base class.

EXAMPLE 10.6 Virtual base class

The class EmcLogged allows an object to write a log message on a format that
specified by the implementation of EmcLogged. It is meant to be used as a base cla
only and is an example of a mix-in base class.

class EmcLogged
{
 public:
 virtual void writeClassName(ostream&) const = 0;
112 Industrial Strength C++

by a

 new

to

r

an
 virtual void writeObjectId(ostream&) const;
 virtual void writeValue(ostream&) const = 0;

 void logMessage(const char* message) const;

 protected:
 ~EmcLogged(); // mix-in base class
};

The class has two pure virtual member functions that must be implemented
derived class. They are called by the non-virtual member function logMessage() .
This function prints a log message to a file.

Suppose we want to make it possible to write a collection to the log. We create a
class template EmcLoggedCollection that inherits from both EmcCollec-
tion<T> and EmcLogged, both which are declared virtual base classes.

template <class T>
class EmcLoggedCollection
 : public virtual EmcCollection<T>,
 public virtual EmcLogged
{
 public:
 void writeValue(ostream&) const;

 protected:
 ~EmcLoggedCollection();
};

The member function writeValue() is implemented so that operator<<() is used
print a collection object. The class is abstract since it does not implement write-
ClassName() .

template <class T>
void EmcLoggedCollection<T>::writeValue(ostream& o) const
{
 o << *this;
}

Since both the EmcLogged destructor and the EmcLoggedCollection destructors
are protected, we cannot delete objects through pointers of these types.

Since the EmcCollection<T> is a virtual base class, we can mix-in this behavio
into another template derived from EmcArrayCollection<T> . Here, virtual inher-
itance is necessary since EmcCollection<T> appears as a base class more th
once.

template <class T>
class EmcLoggedArrayCollection
 : public virtual EmcArrayCollection<T>,
 public virtual EmcLoggedCollection<T>

{

113

 writ-
gging

nging

ype of
 public:
 EmcLoggedArrayCollection();
 // ...
 virtual void writeClassName(ostream&) const;

 protected:
 ~EmcLoggedArrayCollection();
};

This class implements its constructors and its destructor so that a log message is
ten when these member functions are called. We could use this class when debu
our programs.

Inheritance can also be used to extend EmcCollectionFactory . Here, there is no
need for virtual inheritance.

We create a class template EmcLoggedCollectionFactory that creates objects of
classes that derive from EmcLoggedCollection<T> . The advantage of this
approach is that we can trace how objects are created and deleted without cha
the implementation of our existing EmcCollection classes. All that was required
was the virtual inheritance from EmcCollection<T> .

template <class T>
class EmcLoggedCollectionFactory : public
EmcCollectionFactory<T>
{
 public:
 virtual EmcCollection<T>* createArray() const;
};

template <class T>
EmcCollection<T>*
EmcLoggedCollectionFactory<T>::createArray() const
{
 return new EmcLoggedArrayCollection<T>();
}

Since we only depend on the base class interface, we only need to change the t
the factory object that is created.

EmcLoggedCollectionFactory<int> factory;

EmcCollection<int>* collection =
 factory.create(EmcCollectionFactory<int>::ArrayId);

collection->insert(42);
// EmcLoggedArrayCollection<int>::insert() is called

// ...
delete collection;
114 Industrial Strength C++

 to
tions,
 in a

ould
fica-
f the

ir
 any

s also
tant
 the
 by
lass

lass
eci-

heck
The Class Interface

When you design object-oriented systems, you must know how
describe class interfaces. Each class interface has member func
types and relationships to other classes that must be described
class specification.

The class specification should not only describe how the class sh
be implemented, but also how it should be used. The class speci
tion is a software contract that must be obeyed by both the user o
class and the class supplier.

It is important to distinguish this external view of objects from the
representation, since a class specification should not depend on
particular implementation of a class.

If a class appears as a public base class, the class specification i
valid for all its derived classes. Proper use of inheritance is impor
for good object-oriented design. Proper inheritance means that
interface of a public base class is also implemented correctly
derived classes. A derived class should not modify the base c
interface, just extend it.

If C++ is used to describe preconditions, postconditions and c
invariants, test programs will be much easier to write, and the sp
fication will be more exact.

RULES
AND

RECOMMENDATIONS

Rec 10.6 Specify classes using preconditions, postcondi-
tions, exceptions and class invariants.

Rec 10.7 Use C++ to describe preconditions, postconditions
and class invariants.

Rule 10.8 A pointer or reference to an object of a derived
class should be possible to use wherever a pointer
or reference to a public base class object is used.

Rec 10.9 Document the interface of template arguments.

See Also Rule 11.1, Rec 11.2, assertions can be useful if you need to c
conditions in your program.
115

 We
er-

pro-
hat
nce

rip-
lass
ding
ndi-

 is

ndi-
 can

em-
sed

em-
ons

 a
f an

tions;

ck is
tack is

mem-
Rec 10.6 Specify classes using
preconditions, postconditions,

exceptions and class invari-
ants.

The program operates upon object by calling member functions.
want to write correct programs, which means that we must und
stand how to use the objects correctly. Unless we are careful,
gramming errors could result in unexpected run-time errors t
terminate the program. We should also try to minimize the cha
that a program relies on undocumented features.

A class specification should be the programmer's primary desc
tion of a class, that prevents us from making mistakes. The c
specification should describe more than what you can get by rea
the code and that is why we recommend you to provide preco
tions, postconditions and exceptions for each member function.

The user must know under what conditions a member function
possible to call and if it has been implemented correctly.

The user's obligations are described as member function preco
tions that describe under what circumstances a member function
be called.

Preconditions are conditions that should be valid on entry to a m
ber function. Their purpose is to prevent an object from being u
incorrectly.

The supplier's obligations are described as class invariants and m
ber function postconditions. The class invariant describes conditi
that are valid for all objects of the class.

Postconditions are conditions that should be valid on exit from
member function and their purpose is to specify how the state o
object is modified by a member function.

EXAMPLE 10.7 Pre- and postconditions

A stack is a classical example on an abstract data type with pre- and postcondi
here represented by the class EmcIntStack .

Initially a stack is empty. After you have pushed an element onto the stack, the sta
no longer empty. It is possible to push an element onto the stack as long as the s
not full and to pop an element as long as the stack is not empty.

We can express this knowledge as pre- and postconditions of the corresponding
ber functions in the class.

class EmcIntStack
{

116 Industrial Strength C++

are
ten
de
lid.
ition

t be
at
 public:
 // ...
 int empty() const;
 int full() const;
 int top() const;
 void push(int i);
 int pop();

 private:
 // ...
};

void EmcIntStack::push(int i)
{
 // Precondition: ! full()
 // ...
 // Postcondition: ! empty()
}

int EmcIntStack::pop()
{
 // Precondition: ! empty()
 // ...
}

Pre- and postconditions should always be valid, but what if they
not? The implementation of the member function should be writ
with the assumption that the precondition is valid, so it is the co
that uses a class that must be modified if a precondition is not va
This means that it is sometimes necessary to check the precond
before operating upon the object.

On the other hand, it is the implementation of a class that mus
modified if a postcondition is not valid, since it is required th
implementation makes the postcondition valid.

EXAMPLE 10.8 Using member function with precondition

EmcString makeString(const EmcIntStack& stack)
{
 EmcString returnValue;
 EmcIntStack copy(stack);
 ostrstream out;
 while (! copy.empty())
 // loop condition makes precondition valid
 {
 out << copy.pop(); // Precondition: ! copy.empty()
 }
 out << ends;
 char* buf = out.str();
117

t be
ch

 the
 be

++
 sup-
di-
oes

ake
fica-

nts
ifica-
cu-
 returnValue = buf;
 delete [] buf;
 return returnValue;
}

A class invariant could be seen as a set of conditions that mus
valid for all objects of a class outside its member functions. Ea
public member function must leave the object in a state where
class invariant is valid. This means that the invariant should also
valid on entry to a member function.

Preconditions, postconditions and invariants are not part of the C
language. Some languages such as Eiffel has explicit language
port that allows the programmer to specify preconditions, postcon
tions and invariants using the programming language, but C++ d
not have that.

EXAMPLE 10.9 Class with invariant

We could assume that the length of all EmcString objects are larger than 0 and equal
to the length of the 0-terminated string returned from cStr() . The latter assumption
is however not correct, since this string class overloads [] that allows us to assign a 0-
character in the middle of the string. When specifying class invariants, we must m
sure that it is difficult to break the invariant since that would make the class speci
tion rather useless.

class EmcString
{
 public:
 // ...
 const char* cStr() const;
 // cStr() returns 0-terminated string
 size_t length() const;
 char& operator[](size_t index);
 // ...

 // Invariant:
 // length() >= 0

 // Not always true:
 // length() == ::strlen(cStr())
};

Rec 10.7 Use C++ to describe
preconditions, postconditions

and class invariants.

If it is possible, preconditions, postconditions and class invaria
should be expressed as C++ expressions. Otherwise, the spec
tion is open for human interpretation and will only rarely be an ac
118 Industrial Strength C++

ome
too

ssi-
sy to

the
with
ial to

 be
hould
oes
rate description of the class. But there are a few exceptions. S
conditions are not possible to check inside a program or are
costly to check.

By using C++ to express conditions, and if the conditions are po
ble to check outside the scope of the class, test programs are ea
write. A good test program verifies both the specification and
implementation of a class. A program should behave the same
and without such checks, so it is inside such expressions essent
only observe properties of objects, not to modify them.

Normally, this means that the only member functions that should
called in such expressions are public accessors, since these s
not modify the state of any objects. Constants and functions that d
not modify any objects can also be used.

EXAMPLE 10.10 Using comments to specify class template

// EmcCollection is an abstract template class,
// that allows a user to add, remove and search
// for objects within an arbitrary collection.

// REQUIRE(e), e is a precondition
// ENSURE(e), e is a postcondition
// throw(e), e is an exception type that an
// implementation may throw

template <class T>
class EmcCollection
{
 public:

 virtual ~EmcCollection();

 // insert one element
 virtual void insert(const T&) = 0;
 // REQUIRE(! isFull())
 // ENSURE(! isEmpty())
 // throw(bad_alloc)

 // remove all elements
 virtual void clear() = 0;
 // ENSURE(isEmpty())

 // ...

 // Remove one element
 virtual T remove() = 0;
 // REQUIRE(!isEmpty())
119

ll
ssor
e

t the
at, it
s to
 that
nger.

tion
rite
men-
ects
r ref-

ous
uch
lass
h a

 to
s on

pre-
le-
 // ...
};

The member function insert() has a precondition; the collection must not be fu
when inserting an object. This condition is possible to check by calling the acce
member function isFull() . It also has a postcondition; the collection must not b
empty after an element has been inserted.

It would have been reasonable to further specify the postconditions by saying tha
size of the collection grows by 1 each time an element is inserted. By not doing th
is possible to have a collection that grows until it is full and then simply refuse
insert more elements. It is intentional not to have such a postcondition, since
allows us to specify how a derived class is allowed to make the postcondition stro

EXAMPLE 10.11 Checking precondition

EmcCollectionFactory<int> factory;
EmcCollection<int>* collection =
 factory.create(EmcCollectionFactory<int>::ArrayId);

if (! collection->isFull())
{
 collection->insert(42);
 // ...
}

Rule 10.8 A pointer or refer-
ence to an object of a derived

class should be possible to use
wherever a pointer or refer-
ence to a public base class

object is used.

A class inherit from another class either to reuse the implementa
or the class interface. Public inheritance makes it possible to w
code that only depends on the base class interface, not the imple
tation. Public inheritance should only be used if derived class obj
are supposed to be operated upon through base class pointers o
erences.

You should reconsider the way inheritance is used, if it is danger
to call inherited member functions for a derived class object. S
member functions can either be called directly by the base c
implementation, or indirectly when the object is accessed throug
base class pointer or reference.

Substitutability is a property of derived classes that will allow you
use objects of these classes without changing code that depend
the base class interface only. If a virtual member function has a
condition and a postcondition, then these must be valid for all imp
120 Industrial Strength C++

lass

cifi-

erted
 that

a
 sit-
n be

tion,

ndi-
 has
ndi-

the
at is

 class
mentations of the class interface. If they are not, the derived c
should not inherit the base class.

EXAMPLE 10.12 Substitutability

// insertObject() works for any class with
// EmcCollection<T> as public base class.

template <class T>
bool insertObject(EmcCollection<T>& c, const T& element)
// throw (bad_alloc)
{
 // return false if insertion fails, true otherwise

 if (! c.isFull())
 {
 c.insert(element);
 return true;
 }
 return false;
}

FOOTNOTE: It is worth noting that this function does not have an exception spe
cation. The main reason is that we want to allow any EmcCollection instantiations
to use this function. It could be possible that an exception is thrown when the ins
element is copied. Since its type is unknown, we cannot know what exceptions
are thrown.

Typically, an implementation of a virtual member function in
derived class can allow the member function to be called in more
uations than specified by the base class, so the precondition ca
weaker in a derived class. The opposite, a stronger precondi
breaks substitutability.

A derived class implementation often does more than the postco
tion of the base class promises, because the implementation
added state that is also modified. The opposite, a weaker postco
tion, breaks substitutability.

Substitutability also requires that a derived class always fulfils
base class invariant. Otherwise an object can be put in a state th
not expected by the user of the class.

EXAMPLE 10.13 Specification of overriden member function

A collection may be bounded or unbounded, so it is natural to specialize the base
EmcCollection<T> .
121

f

 base

o
n be

must

 new

red
 user
class
.

The class template, EmcBoundedCollection , represents a family of classes
derived from an EmcCollection -instantiation, that only allows a limited number o
objects to be inserted. By pre-allocating storage, it is possible to avoid a bad_alloc
exception when an object is inserted. This a stronger promise than made by the
class, but that does not break substitutability, since the precondition for insert() is
the same.

 virtual void insert(const T&);
 // REQUIRE(! isFull())
 // ENSURE(! isEmpty())

The class template, EmcUnboundedCollection represents a family of classes
derived from a EmcCollection -instantiation, that allows any number of objects t
be inserted. As long as the program does not run out of memory, objects ca
inserted, i.e. the precondition is weaker, but the postcondition is still valid.

 virtual void insert(const T&);
 // throw(bad_alloc)
 // ENSURE(! isEmpty())
 // ENSURE(OLD.size() + 1 == size())

On the other hand, a stronger postcondition has been added. An insertion
increase the size of the collection or throw a bad_alloc exception. The old postcon-
dition that the collection is not empty after an insertion is a consequence of this
stronger postcondition, since the size will always be larger than 0. It is mentioned here
for exposure only.

Without this stronger postcondition, an implementation could simply overwrite sto
objects instead of increasing the size of the collection. That is a behavior that the
probably does not expect when operating on an unbounded collection. A derived
should give additional constraints for how the base class interface is implemented

// insertObject() works for any class with
// EmcUnboundedCollection<T> as a public base class.

template <class T>
bool insertObject(EmcUnboundedCollection<T>& cref,
 const T& element) // throw (bad_alloc)
{
 // return false if insertion fails, true otherwise

 // The precondition of
 // EmcUnboundedCollection<T>::insert is weaker than the
 // precondition for EmcCollection<T>::insert since an
 // unbounded collection is never full.

 cref.insert(element);
 return true;
}

122 Industrial Strength C++

av-
ed, a
n.
 of

ctions
hen
use

 to
nge

bolic
ents

ry and

, for
Rec 10.9 Document the inter-
face of template arguments.

A template defines a family of classes or functions. Apart from h
ing template parameters that must be given values before it is us
template is not very different from an ordinary class or functio
Here we discuss what is different with templates; the presence
type parameters and the consequence of having classes and fun
that are generated by the compiler. This will also help you both w
you want to write you own templates and when you only want to
templates.

Templates were originally introduced in C++ to make it possible
write type safe containers without having to use macros to cha
the stored type.

EXAMPLE 10.14 Describing template argument requirements

EmcCollection is a class template whose instantiations are abstract classes.

// T must be: DefaultConstructible
// CopyConstructible
// Assignable
// Destructible
// EqualityComparable

template <class T>
class EmcCollection
{
 public:
 // ...
};

We have a comment to describe what is required for the type argument T in order to
instantiate the template.

These requirements must be known to the user of the class. By having sym
names for the most common requirements, the specification of template requirem
will be shorter and easier to comprehend.

In the example above, we use names that are taken from the C++ standard libra
they have the following meaning.

If T is a type, the following expressions should be valid.

 T t1; // DefaultContructible
 T t2(t1); // CopyConstructible
 t2 = t1; // Assignable
 bool b = (t2 == t1); // EqualityComparable
 // Destructable, an object on the stack can be created.

An appropriate way to extend the basic interface requirements is to simply say
example:
123

lass
ally
ole
class
 the
 not
 it is
ted

class
res-
the

nts

 type.
very
tia-
 “T must have: int T::hash() const ”

The compiler checks that a template argument is suitable. For c
templates, only those member function templates that are actu
used will be instantiated. Some older compilers instantiate the wh
class, but that is not standard behavior. A consequence is that a
template can be used with arguments that only fulfill a subset of
requirements, as long as member functions that require more are
used. This is not a recommended use of a class template, since
an implementation detail to know how the requirements are rela
to individual member functions.

To make sure that the template arguments are well-behaved, the
should have a private static member function that contains exp
sions that can only be parsed if the template arguments fulfill
complete set of requirements.

If this member function is instantiated, the full set of requireme
will be checked by the compiler.

EXAMPLE 10.15 Checking type constraints

template <class T>
class EmcCollection
{
 public:
 // ...
 static void templateRequirements();
 // ...
};

template <class T>
void EmcCollection<T>::templateRequirements()
{
 // T must be:
 T t1; // DefaultContructible
 T t2(t1); // CopyConstructible
 t2 = t1; // Assignable
 bool b = (t2 == t1); // EqualityComparable
} // Destructible

These checks does not help you to determine the performance characteristics of a
If types with the wrong characteristics are used, the program may perform
poorly. By documenting the time-complexity for different operations on the instan
tion-bound types, the user will be able to avoid surprises.
124 Industrial Strength C++

und
ust

uld

d to

r-
A template instantiation could also have a set of types that are fo
by qualifying their name with template type parameters. These m
also be taken in consideration when specifying templates.

EXAMPLE 10.16 Performance characteristics of types

A container in the standard library should provide the following two types:

The first type, value_type , is assumed to be costly to copy, since any value sho
be possible to store in a container.

The second type, iterator , should behave as a pointer and is therefore assume
be cheap to copy.

The consequence of this is that value_type object are always passed as const refe
ences, while iterator objects are passed as values.

value_type Type of values stored by the container.

iterator For access to objects in container.
125

126 Industrial Strength C++

127

128 Industrial Strength C++

C h a p t e r E l e v e n

t
r-
ecks
is is
sert
Assertions

You probably write test programs to verify your implementation. To
make sure that bugs are detected as early as possible, it is useful to
check preconditions, postconditions and invariants inside your code.
Many bugs originate from making the wrong assumption about what
conditions that should be true when writing the code. These checks
should be done within the implementation of a class, since you do no
want to break encapsulation when testing the class. There is a perfo
mance cost with having these checks. Normally you want to have ch
that are easy to disable after testing is complete. By using macros th
easy to achieve. This chapter is about the consequences of using as
macros.

eful.

 pro-
rary

, the
sser-
ble

are
s on
are

 use
ing

pro-
RULES
AND

RECOMMENDATIONS

Rule 11.1 Do not let assertions change the state of the pro-
gram.

Rec 11.2 Remove all assertions from production code.

See Also Rec 10.7, if you use C++ to specify classes, assertions can be us

Rule 11.1 Do not let asser-
tions change the state of the

program.

Assertions are macros since they should be easy to remove from
duction code. Either you use the assert macro in the standard lib
or you create your own.

An assertion must not change the state of the program. If it does
behavior of the program and the state of objects depend on if a
tions are enabled or not. This will make it impossible to disa
assertions after testing has been done.

EXAMPLE 11.1 Standard assert macro

#include <assert.h>

void check(int answer)
{
 assert(answer == 42);
 // ...
}

Rec 11.2 Remove all asser-
tions from production code.

All assertions should be removed from production code. If they
not, there is a chance that the behavior of the program depend
them. The program will also be faster if unnecessary checks
removed.

Some conditions are not checked by assertions. You should not
assertions to check conditions that should always result in throw
an exception if the check fails. Such exceptions are part of the
duction code and should not be possible to remove.
130 Industrial Strength C++

EXAMPLE 11.2 Assertions and exceptions

// Checked version

char& EmcString::at(size_t index)
{
 if (index >= lengthM)
 {
 throw EmcLengthError("String::operator[](size_t)");
 }

 return cpM[index];
}

// Unchecked version

char& EmcString::operator[](size_t index)
{
 assert(index < lengthM);
 return cpM[index];
}

131

132 Industrial Strength C++

C h a p t e r T w e l v e
,

rs
 to
or-
Error handling

Errors can be reported and handled in a few different ways in a C++
program. Here, we will concentrate on the use of exception handling
which has many advantages compared to the other alternatives. By
using exception handling it is possible to separate the error handling
code from the normal flow of control and many different types of erro
can be handled in one place. By allowing any amount of information
be passed with the exception, there is a better chance to make the c
rect decision when handling the error.

++
nc-
n-

 to

ir
g a

vi-
ep-

ny
ors
ions.

 to

t is

t to
rror
hat
Different ways to report errors

Run-time errors can be reported in a few different ways in a C
program. Throwing exceptions or returning status codes from fu
tions are two possibilities. It is important to always check error co
ditions, regardless of how they are reported.

RULES
AND

RECOMMENDATIONS

Rec 12.1 Check for all errors reported from functions.
Rec 12.2 Use exception handling instead of status values

and error codes.

See Also

Rec 12.1 Check for all errors
reported from functions.

Rec 12.2 Use exception han-
dling instead of status values

and error codes.

In C++, the best way to report an unexpected error condition is
throw an exception.

throw EmcException("Fatal error: Could not open file");

Throwing an exception is very similar to a return statement. When
a function returns, local objects will end their lifetime and the
destructors will be called. The same thing happens when leavin
function by throwing an exception. A difference is that it is not ob
ous from reading the code which statement that will throw an exc
tion, but is quite obvious where the function returns.

Throwing an exception is not the only way to report an error. Ma
programs reuse existing libraries written in C that report err
through status values and error codes instead of throwing except

A difference between these solutions is that it is not possible
ignore an exception. Unless there is a handler, a catch statement,
that can handle the exception, the program will terminate. If tha
the wrong behavior, the program must be modified.

It is important to handle exceptions, but it is even more importan
always check status values returned from functions. If an e
reported this way is ignored, there is no easy way of knowing w
134 Industrial Strength C++

o be

n
riptor

g did
able

 but
t do
 pro-
ost

in
ram-
ith

dles
be
ion
ep-
her
eventually made the program crash. Such programs must als
modified, but it is much more difficult to know where.

EXAMPLE 12.1 Checking status value

The socket() function is a UNIX library function that creates a communicatio
channel between two processes. If the call succeeds, it returns a socket file desc
that is >= 0 , otherwise -1 is returned.

// create socket
int socketfd = socket(AF_UNIX, SOCK_STREAM, 0);
if (socketfd < 0) // check status value
{
 // ...
}

The negative return value is a status value that only tells the user that somethin
go wrong, but not the reason for failure. In this particular case, the global vari
errno must be used to get a description of the error.

It seems natural to check status values returned from functions,
in reality there are huge amounts of code written that does no
these checks. The fact that status values can be ignored by the
grammer is one of the reasons to why exception handling in m
cases is a better way of reporting errors.

Using status values only works well if all functions along a call cha
are given the chance to handle the error. This requires the prog
mer to mix code that represents the ordinary flow of control w
code that is only run when an error is reported.

With exception handling it is possible to separate code that han
errors from the ordinary flow of control. Less code will need to
written since exception handling can be localized to one funct
along a call chain. It is also possible to handle many different exc
tions with the same piece of code by specifying a handler for eit
an exception base class or with ellipsis (...).

try
{ // ordinary flow of control
 f();
 g();
}
catch(...) // handler for any kind of exception
{
 // error handling
}

135

nd
hat a
or be

ons
em
 any
can

rbi-
ion
nce

 that
An additional difficulty with status values is that constructors a
some overloaded operators cannot return values, which means t
status value must either be passed as a reference argument
stored by the object.

By using exception handling instead of status values, the functi
will need fewer arguments and return values, which makes th
much easier to use. Another advantage is that if you do not have
way of recovering from an error reported as an exception, you
simply ignore it and it will be propagated up along the call chain.

An additional benefit is that since an exception is an object, an a
trary amount of error information can be stored in an except
object. The more information that is available, the greater the cha
that the correct decision is made for how to handle the error.

EXAMPLE 12.2 Throwing an exception

One way to encapsulate the UNIX system calls is to provide a wrapper function
throws an exception instead of returning a status value.

class EmcException
{
 public:
 // ...
 // EmcException objects can be printed
 friend ostream&
 operator<<(ostream&, const EmcException&);
 // ...
};

class EmcSystemException : public EmcException
{
 public:
 EmcSystemException(const char* message);
 // ...
};

int emcSocket(int family, int type, int protocol)
throw(EmcSystemException)
{
 // create socket
 int socketfd = socket(family, type, protocol);
 if (socketfd < 0)// check status value
 {
 throw EmcSystemException("emcSocket");
 }
 return socketfd;
}

136 Industrial Strength C++

at the

apsu-
ser
 for
e not

ded
plier

ep-
o not
 the

cted
 and
have
A better solution is to encapsulate the calls inside a class that represents wh
socket is used for. By doing that, errors reported by functions like socket() can be
translated into exceptions that are more meaningful to the user, and can also enc
late all reasons why a particular member function failed. This will also allow the u
to modify the implementation and to replace sockets with any other mechanism
inter-process communication, without revealing such changes to the user. We hav
done that because we wanted to keep the example simple.

When to throw exceptions

A programmer can throw an exception anytime, so rules are nee
for when exceptions are thrown so that both the user and the sup
of class libraries can write code that is robust and correct.

RULES
AND

RECOMMENDATIONS

Rec 12.3 Only throw exceptions when a function fails to
perform what it is expected to do.

Rec 12.4 Do not throw exceptions as a way of reporting
uncommon values from a function.

Rule 12.5 Do not let destructors called during stack unwind-
ing throw exceptions.

Rec 12.6 Constructors of types thrown as exceptions
should not themselves throw exceptions.

See Also Rec 10.6, how to describe what a function is expected to do.

Rule 12.8, classes that must have a destructor.

Rec 12.3 Only throw excep-
tions when a function fails to

perform what it is expected to
do.

When should an exception be thrown? It is possible to throw exc
tions whenever a function encounters an unusual case, but we d
recommend that since too frequent use of exceptions will make
control flow difficult to follow.

It is appropriate to use exceptions as a way to report unexpe
errors. What is unexpected depends on the class specification
when the error is detected. The user and the implementor often
137

on-
ssi-

r.

ex-
le an
.

er in
e

ble,

me-
rom

uch
y to
ram
tive
find

ser
en
 are
am

 to
different views of what is unexpected. If preconditions and postc
ditions are used to specify behavior of member functions, it is po
ble to be more precise.

• A precondition violation is an unexpected error for the imple-
mentor, but not for the user.

• A postcondition violation is an unexpected error for the user if
the precondition was valid on entry, but not for the implemento

We think that an exception should only be thrown to report an un
pected error to the user. We must give the user a chance to hand
error that could not have been prevented by a precondition check

Such exceptions are part of the class interface and tells the us
what way the function could not fulfil its obligation to make th
postcondition valid.

Exceptions thrown for any other reason than this are questiona
but not completely forbidden.

Not following this recommendation means that exceptions are so
times thrown even when the user could have prevented them f
being thrown. A precondition violation is a good example.

Since it is the user's obligation to make the precondition valid, s
errors are only found in incorrect programs. What is the best wa
handle such errors? To recover from the error and to let the prog
continue, or rewrite the program? We prefer the second alterna
and recommend you to check preconditions only as a way to
bugs in your program.

It is useful to check the precondition since that prevents the u
from writing incorrect code, but if we assume that incorrectly writt
programs should be corrected, how to report precondition errors
less important. If an exception should be thrown or the progr
should terminate by calling abort() is a matter of taste and
depends on the situation. Exception handling allows the program
terminate in a more controlled manner.

EXAMPLE 12.3 Member function with precondition

When initializing an EmcString object with a char -array, a precondition is that a
non-null pointer must be passed as argument.
138 Industrial Strength C++

 null
hat the

ssary
r by

only
at
 val-

ese
led,
ot
ng-

 in
ual
ion
trol

at

itera-
se of
The implementation does not throw an exception, since the user can prevent a
pointer to be passed as parameter. Here, it is the user's obligation to make sure t
member function can do what it is expected to do.

An EmcString object stores a pointer to a char -array that is allocated with new. The
user cannot possibly check beforehand that new might fail to allocate the nece
memory needed for the allocation, so the implementation must report the erro
throwing an exception.

EmcString::EmcString(const char* cp) throw(bad_alloc)
: lengthM(strlen(cp))
{
 // PRECONDITION: cp != 0

 // operator new[]() will throw bad_alloc
 // if allocation fails
 cpM = new char[lengthM + 1];
 strcpy(cpM, cp);
}

Rec 12.4 Do not throw excep-
tions as a way of reporting

uncommon values from a func-
tion.

A consequence of the recommendation that exceptions should
be thrown if a function fails to do what it is expected to, is th
exceptions should not be used as a way of reporting uncommon
ues from a function.

It is important to remember why exceptions are a bad choice in th
situations. If an exception is thrown, that exception must be hand
or the control flow of the program will change in a way that cann
be predicted. Throwing an exception for the sole purpose of cha
ing the control flow is therefore not recommended.

Your code can be difficult to understand if you throw exceptions
many different situations, ranging from a way to just report unus
threads in your code to reporting fatal run-time problems. Except
handling is also often a very inefficient way to change the con
flow in a program, compared to passing along error codes.

EXAMPLE 12.4 Returning special value to report failure

The find() function in the standard library is a good example of a function th
could fail, but for which throwing an exception is inappropriate.

The standard library uses iterators to traverse through collections of objects. The
tors are modeled after pointers, and ordinary pointers are therefore a special ca
iterators.
139

t the
llec-
iter-

le-

k-
ere-

eport

ers.
will
r

 the

od
 have
t be

call
 all
ires

ep-
++

iler
he
An input iterator is a special kind of iterator that allows you to read one element a
time in a forward direction only. If such an object is assigned to an element in a co
tion, it will eventually, after being incremented a number of times, be equal to the
ator pointing at the last element in the collection.

template<class InputIterator, class T>
InputIterator
find(InputIterator first, InputIterator last,
 const T& value);

The function find() is defined to return the first iterator between first and last e
ment (but not counting last itself) that points to a T equal to value . If no such value is
found, it will return the last iterator. It is quite common not to find what you are loo
ing for, so it is not reasonable to call it a programming failure if that happens. Th
fore find() is defined to return last if value was not found in the sequence.

Rule 12.5 Do not let destruc-
tors called during stack

unwinding throw exceptions.

There are a few places where exceptions should not be used to r
errors. Inside destructors is one such particular place.

A try -block defines both a scope and a set of exception handl
Before continuing the execution inside a handler, the program
leave the scope of the try -block. This means that destructors fo
local variables inside the try -block must be run to properly end
their life time.

If an exception is thrown during this process and not handled by
destructor, the library function terminate() will be called. This
function will terminate the program. If that happens, there is a go
chance that some external resources managed by local objects
not been released, which could mean that the program canno
restarted without first manually releasing such resources.

There are two ways to avoid this. Either you make sure not to
code that might throw exceptions inside destructors or you catch
exceptions thrown in destructors. The second alternative requ
some additional programming, since you must add a try -block with
exception handlers to the implementation of the destructor.

A problem is that you may want to allow the user to handle exc
tions thrown under normal circumstances. A recent addition to C
is the function uncaught_exception() which will report true if
exceptions are handled, and false if they are not. If your comp
supports this function, then you can check if it is OK to rethrow t
140 Industrial Strength C++

ns

ver
ay to
m to

mes-

ction
en
exception. If it is not supported, you should ignore all exceptio
thrown inside the destructor.

EXAMPLE 12.5 Preventing exceptions inside destructors

Logging is useful if you want to know what made a program crash. It can howe
slow down a program since output must be written to a file or the console. One w
improve performance is to cache the log messages in memory and only write the
a file when something unexpected happens, e.g. when an exception is thrown.

The class EmcLog is used to implement such a scheme. The class stores the log
sages and writes them to a log file after a call to the member function flush() . The
idea is to allocate objects of this class on the stack and to use the fun
uncaught_exception() inside the destructor to check if an exception has be
thrown or not. If an exception has been thrown, we append to the log file.

class EmcLog
{
 public:

 class CouldNotOpenFile : public EmcException
 {
 public:
 CouldNotOpenFile(const char* file);
 };

 EmcLog(const char* filename);
 ~EmcLog();

 void message(const EmcString&); // store log message
 void flush() throw(CouldNotOpenFile);
 // append to log file

 // ...

 private:
 EmcLog(const EmcLog& i); // Non-copyable
 EmcLog& operator=(const EmcLog& i);

 EmcQueue<EmcString> messageCacheM; // log messages
 const char* filenameM; // log file
};

EmcLog::~EmcLog()
{
 if (uncaught_exception())
 {
 flush();
 }
}

141

t not

ing

hen
atch
user
be

bject
tem
py

string
 a
tion

 the
 string
We must also call uncaught_exception() inside flush() , since this function
throws an exception if it is unable to open the log file. Since an exception mus
propagate from the destructor, such an error must be ignored when flush() is called
by the destructor.

void EmcLog::flush()
{
 ofstream out(filenameM, ios::app);
 if (!out && !uncaught_exception())
 {
 throw EmcSystemException("EmcLog::flush()");
 }
 // write messages to log
 // ...
}

Rec 12.6 Constructors of
types thrown as exceptions

should not themselves throw
exceptions.

Another place where exceptions should be prevented from slipp
out is inside the constructors of objects thrown as exceptions.

The problem here is that if the constructor throws an exception, t
the user would get the wrong exception to catch. The user may c
the exception, and even try to recover from the problem, but the
is actually trying to handle another error. The real problem will
lost and forgotten.

For copy constructors, there is another reason. The exception o
will be copied to an area managed by the exception handling sys
before leaving the scope in which the throw is done. If this co
fails, terminate() will be called.

EXAMPLE 12.6 Exception class constructor

The exception class EmcException has a constructor with a const char* param-
eter. It seems natural to have a string data member to store that value. Most
classes allocate memory with the new operator. This means that if the class has such
data member, the constructor of this class will throw the standard excep
bad_alloc if memory allocation fails.

A way to avoid that would be to limit the size of the string. Such a solution has
advantage of being exception safe, but you have to make sure that the allocated
is big enough.

class EmcException
{
 public:
 EmcException(const char* message);
 // ...
142 Industrial Strength C++

 are
g all
p-

ent
 private:
 enum { maxSizeM = 100 };

 int lengthM;
 char messageM[maxSizeM+1];
};

EmcException::EmcException(const char* message)
{
 size_t actualLength = strlen(message);
 lengthM = min(maxSizeM,actualLength);
 strncpy(messageM, message, lengthM);
 messageM[lengthM] = '\0';
}

Exception-safe code

It is necessary to prevent memory leaks and other errors that
related to how resources are acquired and released. By managin
resources with objects it will be less difficult to write code that pro
erly manages resources.

RULES
AND

RECOMMENDATIONS

Rec 12.7 Use objects to manage resources.
Rule 12.8 A resource managed by an object must be

released by the object's destructor.
Rec 12.9 Use stack objects instead of free store objects.
Rec 12.10 Before letting any exceptions propagate out of a

member function, make certain that the class
invariant holds, and if possible leave the state of
the object unchanged.

See Also Rec 5.11, when to implement copy constructor, copy assignm
operator and destructor.

Rec 10.6, definition of class invariant.
143

t for
les
, file
cks.

when

 you
rce
on
nd

iring
 the
on

hat
d in
n is
be

pur-
 and
rly

re the
r an

e,
sses.
 the
Rec 12.7 Use objects to man-
age resources.

A resource is something that more than one program needs, bu
which there is a limit for how much that is available. Good examp
are memory and other operating system resources like sockets
descriptors, drawing contexts, shared memory and database lo
The most important to manage are those that are not released
the program terminates.

It is essential to correctly acquire and release resources. Unless
acquire a resource for the whole lifetime of the program, a resou
should be acquired and released within a block of code. It is comm
to have a function that is called at the beginning of the block a
another function that is called at the end of the block.

1. call function to acquire resource

2. use the resource

3. call function to release resource

The question is how to make sure that the statements for acqu
and releasing the resource are both run. What is difficult is that
control flow of a C++ program is not sequential, since a functi
could return either the normal way or by throwing an exception.

A fundamental idea behind the C++ exception handling is t
resources should be allocated in the constructor and deallocate
the destructor of a class. This is often called “Resource acquisitio
initialization”. Another way to say this is that resources should
managed by objects.

It is convenient to use the constructor and the destructor for this
pose, since they are automatically called when the objects start
end their lifetime. No additional function calls are needed to prope
manage the resource. It is also the best way, since destructors a
only member functions that are called before leaving a scope afte
exception has been thrown.

If your code is a mix of application logic and error handling cod
this is probably a consequence of not having exception safe cla
It should always be a goal to separate error handling code from
application control flow.
144 Industrial Strength C++

ther
ave
han-
de

oth
ects
to
tack
nd
use

ree
sible
 the

 to

-

cated
 book

t the
Rule 12.8 A resource man-
aged by an object must be

released by the object's
destructor.

You should always release a resource in the destructor. If any o
member functions would need to be called, you would perhaps h
to catch the exception and propagate it a number of times before
dling it. This is a much more complex solution since additional co
must be written.

Rec 12.9 Use stack objects
instead of free store objects.

You should also question how you allocate objects. C++ has b
objects with static, automatic and dynamic storage duration. Obj
created with new are most expensive to allocate and most difficult
use. Whenever possible, you should create an object on the s
instead of with new. Stack objects are less expensive to allocate a
there is no risk of getting any memory leaks as long as you only
exception safe classes.

You only need to create an object with new if the life-time is not con-
trolled by you, not just because you need a pointer to the object.

Exception handling has made it even more difficult to manage f
store objects. Each free store object must always be acces
through either a static pointer or an object on the stack that owns
object.

It is dangerous and inconvenient to have only local pointers
objects allocated with new. If a local pointer is the only way to
access an object created with new, your code will not be exception
safe, unless you have a try -block that catches all possible excep
tions.

EXAMPLE 12.7 Unsafe memory allocation

The most fundamental resource to manage in C++ programs are dynamically allo
memory. The most obvious example is a string class and we have earlier in the
seen examples on how to write such a class.

The following code is unsafe since it contains a memory leak. The problem is tha
delete statement is not reached if an exception is thrown within the function.

void f() // Not recommended
{
 int* ip = new int(1); // create int with new
 g(*ip);
 // memory leak if g() throws exception
 delete ip; // not reached
}

145

ith-

horter

r

void g(int i)
{
 throw i; // Not recommended to throw int
}

EXAMPLE 12.8 Having a try -block to manage memory

It is possible to rewrite our previous example so that the memory leak is avoided w
out introducing any new classes. The function should have a try -block with a handler
that catches all possible exceptions.

void f() // Not recommended
{
 int* ip = new int(1); // create int with new
 try
 {
 g(*ip);
 // memory safe even if g() throws exception
 delete ip; // not reached
 }
 catch(...) // catch any exception
 {
 delete ip;
 throw; // Rethrowing the exception
 }
}

EXAMPLE 12.9 Exception safe allocation of free store objects

The best way to manage objects allocated with new is to have a local object that man-
ages the memory instead of a pointer and a delete statement. You code will be s
and less difficult to write.

We recommend you to use the class template, auto_ptr , supplied by the C++ stan-
dard library.

void f()
{
 auto_ptr<int> ip = new int(1); // create int with new
 g(*ip);
 // memory safe even if g() throws exception
}

If you want to keep control of the deletion of the object managed by the auto_ptr ,
you must explicitly call release() to tell the auto_ptr to give up ownership of the
object. If you do not do that, the auto_ptr will delete the object when its destructo
is run.
146 Industrial Strength C++

cts.
 the
not
 safe
 can
cal
ctor

hen
 for

o be
lete

 its
cess-
on-

ra-
t of
he
lled.
e of
the

are
mp-
e of

f an
od-

out
 be

 the

tions
ll be
Rec 12.10 Before letting any
exceptions propagate out of a

member function, make certain
that the class invariant holds,
and if possible leave the state

of the object unchanged.

Throwing an exception should not damage the state of your obje
If possible, preserve the state of the current object before leaving
scope of a member function by throwing an exception. If that is
possible, try to restore the state so that the object's destructor is
to call. By doing that there is a greater chance that the program
recover from the exception, since if the current object is a lo
object its destructor will be called. As said before, such a destru
must not throw exceptions or fail in any other way.

Here we discuss state only after the object has been initialized. W
exceptions are thrown by constructors, destructors are only called
member objects that are completely initialized. Only these need t
in valid states when leaving the constructor – not the comp
object.

All constructors should leave the object in a valid state so that
destructor can be called without any errors. That guarantees suc
ful clean-up of member objects when leaving the scope of the c
structor.

When designing classes you should try to figure out which ope
tions that could throw exceptions, and then minimize the amoun
time that the object is in an invalid state. If it is possible, modify t
state of the object only after all dangerous functions has been ca
If that is not possible, either make it possible to restore the stat
the object or give the object a default value before throwing
exception.

When writing templates you must decide what operations that
allowed to throw exceptions. If you do not make any such assu
tions, an exception could be thrown in a situation where the stat
the object is invalid.

If it is possible, whenever a member function modifies the state o
object, avoid changing the state of the actual object and instead m
ify a copy of the state. If we can switch the state of the object with
getting any exceptions, a template can allow any exceptions to
thrown when updating the copy, not the original, thereby keeping
state of the original object unchanged.

Better performance can be achieved by making stronger assump
about what exceptions that can be thrown, but then the class wi
147

and

data
ays

rator
 the

ndi-
less reusable. As always there is a trade-off between flexibility
performance.

EXAMPLE 12.10 Exception safe copy assignment operator

The template EmcStack uses a built-in array, vectorM , to store copies of objects.
The pointer topM stores an index to the next element in the array to assign. The
member allocatedM stores the number of currently allocated objects, and is alw
a positive number.

template<class T>
class EmcStack
{
 public:
 enum { defaultSizeM = 100 };

 EmcStack(int size = defaultSizeM);
 EmcStack(const EmcStack& s);
 ~EmcStack();
 EmcStack& operator=(const EmcStack& s);
 // ...
 bool empty() const;
 const T& top() const;
 void push(const T& i);
 const T& pop();

 private:
 unsigned allocatedM;
 T* vectorM;
 int topM;
};

We want to provide an exception safe implementation of the copy assignment ope
for EmcStack . Our strategy is to make all dangerous operations before modifying
state of the object, so that the state will be valid even if an exception is thrown.

In order to avoid memory leaks, we also use an object of the class EmcAutoArray-
Ptr<T> to manage memory. EmcAutoArrayPtr is a template that is similar to the
class auto_ptr in the standard library, but manages arrays of objects instead of i
vidual objects.

template<class T>
EmcStack<T>& EmcStack<T>::operator=(const EmcStack<T>& s)
{
 if (this != &s)
 {
 // operator new may throw bad_alloc
 EmcAutoArrayPtr<T> newVector(new T[s.allocatedM]);

 // copy elements
 for (int i = 0; i < s.topM; i++)
 {
148 Industrial Strength C++

 by
PLE
cep-
epre-

 to

on
er of

.e.
that
This
 newVector[i] = s.vectorM[i];
 }
 delete [] vectorM;

 // assign to object
 topM = s.topM;
 vectorM = newVector.release();
 allocatedM = s.allocatedM;
 }
 return *this;
}

If memory allocation would have been costly, we could have tried to optimize
copying to existing storage already used by the object, as was done in EXAM
5.12. Such an implementation would however be much more difficult to make ex
tion safe. If an exception is thrown when assigning to an element of the objects r
sentation, the state of the object will be undefined and probably corrupt.

Exception types

Exception handling makes it possible to localize error handling
fewer places in the code. The number of try blocks should not have
to grow exponentially with the size of the program. Excepti
classes should be organized in hierarchies to minimize the numb
exception handlers.

Exception hierarchies allow for object-oriented error handling, i
you can use dynamic binding when handling errors. This means
the same handler can be used for different types of exceptions.
will make the code more readable and easier to maintain.

RULES
AND

RECOMMENDATIONS

Rec 12.11 Only throw objects of class type.
Rec 12.12 Group related exception types by using inherit-

ance.
Rec 12.13 Only catch objects by reference.

See Also Rule 7.6, why objects are passed by reference.

Rule 10.8, behavior of derived classes.
149

his
s or
ise

he
pre-
am.

 risk
at is
es

rror,

ny
iption

nted
-

sible,

gers,
ced

lution
nts

tion

is is
ep-
Rec 12.11 Only throw objects
of class type.

An object can be thrown if it can be copied and destroyed. T
makes it possible to throw values of built-in types, pointers, array
objects. You should only throw objects of class type, since otherw
it will not be possible to distinguish errors by the type, only by t
value. There is nothing in the language to prevent a value to re
sent many things, but a type name must be unique within a progr

If we throw a general-purpose type, such as an int , the value would
have to represent exactly one type of error, or there would be a
that the wrong error is handled. We would have to use a value th
globally unique, a solution that makes it difficult to add new class
or to use new class libraries.

The exception type should instead always represent the type of e
and it should be a class that is used for exception handling only.

An additional benefit of throwing objects is that they can contain a
amount of data. You can have a data member that stores a descr
of the error and you can print that description inside the handler.

EXAMPLE 12.11 Throwing object of built-in type

The socket() function has many reasons for failure, each one of them represe
as an integer value. For example, EACESS is returned if the function is denied permis
sion to create the socket, and ENOMEM is returned if there is no available memory.

Suppose you would like to translate these error codes into exceptions. It is pos
but not recommended, to throw an int containing the error value. The problem with
this approach is that you cannot catch different objects, in this case different inte
only different types. With an integer approach like this you would therefore be for
to have one single catch clause with a big switch statement for how, or if, an error
should be handled, depending on the integer value. What is even worse, this so
only works if you can know from where the exception originates. Nothing preve
two functions from throwing the same value to represent two different errors.

Rec 12.12 Group related
exception types by using inher-

itance.

Rec 12.13 Only catch objects
by reference.

A try block could have as many handlers as there are excep
types, but it is good to limit the number of handlers.

You can group related exception types by using inheritance. Th
necessary when you want to handle many different types of exc
tions the same way.
150 Industrial Strength C++

 user

ses
 will
han-
class.
o it
ng to

e is
ied

 same
ion.

from
 will
 but
con-
ase

scrip-
uld
It is a good idea to catch a reference to a base class, so that the
can ignore the exact type of the exception that was thrown.

An important aspect here is that it is possible to derive new clas
without affecting the user's code. The handler for the base class
handle exceptions of derived classes. Instead of having many
dlers for each derived class, you can have a handler for a base
In the catch clause we are supposed to try to handle an error, s
makes sense to group exception classes in hierarchies accordi
how they can be handled.

Another reason to why exceptions should be caught by referenc
that you can loose information when a derived class object is cop
to a base class object instead of being passed by reference. The
thing that could happen when passing objects by value to a funct

It can be useful to have nested exception classes. If you derive
both that class and from a general purpose exception class, this
allow you to organize your handlers not only based on error type,
also on where the exception was thrown. Inheritance is used to
trol type matching rather than to create specializations of the b
class.

EXAMPLE 12.12 Inheritance of exception classes

It is good to have a general exception class at the top that allows you to print a de
tion of the error. Most users are satisfied with knowing what went wrong and wo
only have one handler for a whole hierarchy of exception classes.

In our examples we have used the class EmcException , that stores strings that
describe the error condition.

class EmcException
{
 public:
 EmcException(const char* message);

 // EmcException objects can be printed
 friend ostream&
 operator<<(ostream&, const EmcException&);

 protected:
 // hook for derived classes
 virtual ostream& printOn(ostream& o) const;

 private:
 enum { maxSizeM = 100 };
151

e
stored

glo-
ys-

 int lengthM;
 char messageM[maxSizeM];
};

The class provides a virtual member function printOn() that can be overridden by
derived classes.

ostream& EmcException::printOn(ostream& o) const
{
 o << messageM;
 return o;
}

ostream& operator<<(ostream& o, const EmcException& e)
{
 return e.printOn(o);
}

If an object of the class EmcException or any class derived from it is handled, th
message printed will both depend on the type of the exception and the message
by the object.

We have also used the class EmcSystemException that is derived from EmcEx-
ception .

class EmcSystemException : public EmcException
{
 public:
 EmcSystemException(const char* cp);
 // ...
 protected:
 virtual ostream& printOn(ostream& o) const;
 private:
 static const char* const headerM;
};

It overrides printOn() so that a header is provided for each error message. The
bal variable errno is used as index in the table of error messages for the UNIX s
tem calls, sys_errlist .

const char* const
EmcSystemException::headerM = "System call failed: ";

extern char* sys_errlist[]; // Table with error messages
 // for UNIX system calls

ostream& EmcSystemException::printOn(ostream& o) const
{
 o << headerM << " " << sys_errlist[::errno] << ": ";
 return EmcException::printOn(o);
}

152 Industrial Strength C++

ugh
ch,

it-
ges

le-
lace
 all
EXAMPLE 12.13 Handling many exceptions with one handler

A handler for EmcException can be used to handle an EmcSystemException ,
since the latter class inherits from EmcException .

try
{ // ordinary flow of control
 int socketfd = emcSocket(AF_UNIX, SOCK_STREAM, 0);
 // ...
}
catch(EmcException& e) // handler for any exception class
 // derived from EmcException
{
 cerr << e << endl;
 // ...
}

Error recovery

Sometimes exceptions of unknown types may propagate thro
your code. It is important to know which of these you should cat
and which ones you should let the user handle.

RULES
AND

RECOMMENDATIONS

Rule 12.14 Always catch exceptions the user is not supposed
to know about.

Rec 12.15 Do not catch exceptions you are not supposed to
know about.

See Also Rec 10.6, Rec 12.16, specifying exceptions for a class.

Rule 12.14 Always catch
exceptions the user is not sup-

posed to know about.

Hidden implementation details is an important property of well wr
ten programs, since it gives you the possibility to make chan
without affecting the user.

Imagine a hierarchy of libraries where some libraries are imp
mented on top of other libraries. To be able to change or rep
lower level classes without affecting the user, you must catch
153

e an
pro-

o be
the
ion
try
er

ough
ious
me-

vari-
cep-

ions
ld in
ly the

hrow
ter

. In
ake
exceptions that the user is not supposed to know about. Otherwis
exception of a class unknown to the user could terminate the
gram or be caught by a handler with a ... parameter list. In either
case, nothing can be said about what caused the exception t
thrown. All exceptions that reach the user should be known to
user, since that will make it possible to explain why the except
was thrown and how to prevent it from being thrown. You should
to avoid writing programs that simply crashes without any prop
indication of what went wrong.

Rec 12.15 Do not catch excep-
tions you are not supposed to

know about.

There are on the other hand exceptions that may propagate thr
your code which you should not catch or translate. The most obv
example is exceptions that might be thrown from template para
ters.

The template designer must specify under what circumstances a
able of a type given as template parameter is allowed to throw ex
tions. It is practically very difficult, if not impossible, to write
templates that can be instantiated with a type that throws except
in places that are not known in advance. These exceptions shou
most cases be propagated to the user of the template, since on
user code knows what exceptions to expect.

There are other cases where you may use code which can t
unknown exceptions. The user might, for example, supply a poin
to a sorting or hash function, which you will use inside your code
such cases you should as well let the supplier of the function t
care of all the exceptions that might be thrown.
154 Industrial Strength C++

 that
uch

y the
n to
not
ow

pos-
eck

on
, the
ifi-

gate
 an
t of
em-
n if
Exception specifications

Exception specifications are used to document what exceptions
are thrown from a function. We recommend you to use them as m
as possible.

RULES
AND

RECOMMENDATIONS

Rec 12.16 Use exception specifications to declare which
exceptions that might be thrown from a function.

See Also Rec 12.3, when to throw exceptions.

Rec 12.16 Use exception spec-
ifications to declare which

exceptions that might be
thrown from a function.

Exceptions are part of the class interface and must be handled b
user when they are thrown. The language gives you an optio
declare the exceptions thrown by a function. If a function does
have an exception specification, that function is allowed to thr
any type of exception.

We recommend you to use exception specifications as much as
sible. Since they are part of the language, the compiler will ch
that the exception classes exist and are available to the user.

It is a program bug if a function with an exception specificati
throws an exception that has not been specified. If that happens
default is to either terminate the program or, if the exception spec
cation includes bad_exception , to throw an object of that class
instead. You should avoid this situation if you can.

A consequence of the fact that template functions should propa
exceptions is that a template function should only rarely have
exception specification. It should only have it when the exact se
exception types that can be thrown are known in advance. A t
plate function should probably not have an exception specificatio
the type of the exception thrown depends on a type argument.

EXAMPLE 12.14 Exception specification

char& EmcString::at(size_t pos) throw(EmcIndexOutOfRange)
{

155

 if (pos > lengthM)
 {
 throw EmcIndexOutOfRange(pos);
 }
 // ...
}

156 Industrial Strength C++

C h a p t e r T h i r t e e n
y
ce
e

er

n-
ary
Parts of C++
to avoid

There are parts of C++ that should be avoided. C++ comes with man
new standard library classes and templates that in many cases repla
functions inherited from the C standard library. Also certain parts of th
language that are inherited from C are no longer needed. Either bett
language constructs exists or there are classes or templates to use
instead.

Library functions to avoid

C++ has inherited all parts of the library defined by the C sta
dard. Some of the functions provided by the C standard libr

.

rd

for

 as:

m-
are not well-suited for C++ programming and should not be used

RULES
AND

RECOMMENDATIONS:

Rec 13.1 Use new and delete instead of malloc , calloc ,
realloc and free .

Rule 13.2 Use the iostream library instead of C-style I/O.
Rule 13.3 Do not use setjmp() and longjmp() .
Rec 13.4 Use overloaded functions and chained function

calls instead of functions with an unspecified
number of arguments.

See Also Rec 7.15, Rule 7.16, how to overload functions and operators.

Rule 8.1 – Rule 8.2, how to use new and delete .

Rec 12.2, exception handling can be used instead of setjmp and
longjmp .

Rec 13.1 Use new and delete
instead of malloc, calloc, real-

loc and free.

You should avoid all memory-handling functions from the standa
C-library (such as malloc , calloc , realloc and free) since
they do not call constructors for new objects or destructors
deleted objects.

It is also dangerous to mix C and C++ allocation of memory, such

• calling delete for a pointer obtained via malloc ,

• calling malloc for objects having constructors,

• calling free for anything allocated using new,

• calling realloc for anything allocated using new.

Complete avoidance of C memory handling is therefore reco
mended.

Rule 13.2 Use the iostream
library instead of C-style I/O.

For similar reasons the iostream library is better to use than the
stdio library. Functions in the stdio library cannot be used for
user-defined objects.
158 Industrial Strength C++

nce

as
lling
ro-
ct

ns
n-
m-
d for

ded
 For
f the
e by

s or
fer-
EXAMPLE 13.1 C-style I/O is not adequate for objects

EmcString s;
cin >> s; // Yes: this works

scanf("%??", s); // NO: this does not work

It is not possible to extend the set of formats understood by scanf .

If optimal efficiency is required, the stdio library is sometimes better than the ios-
tream library. This is not a universal truth, however, so you should do performa
benchmarks before you start to use the stdio library. If you use it, localize the code
so that it is easy to replace.

Rule 13.3 Do not use setjmp()
and longjmp().

The normal way to leave a function is by using a return statement
which gives control back to the calling function. If a serious error h
been encountered, this can be an unwise thing to do. The ca
function could perhaps recover from the failure, and when the p
gram crashes it is difficult to find out what went wrong. The corre
thing to do in C++ is to throw an exception. The library functio
setjmp() and longjmp() can be used to simulate exception ha
dling. Unfortunately the behavior of these functions is very platfor
dependent. Even worse is the fact that destructors are not calle
bypassed objects when longjmp() is called. You should therefore
avoid them altogether.

Rec 13.4 Use overloaded
functions and chained function
calls instead of functions with

an unspecified number of
arguments.

Functions with unspecified number of arguments should be avoi
since they are a common cause of bugs that are hard to find.
example, the compiler is not able to check that an argument is o
type expected by the function. Such checks must instead be don
the function in run-time.

In most cases it is in C++ possible to use overloaded function
operators instead, and to chain the function calls by returning re
ences to operate upon. Such solutions are more type safe.
159

ect

o

EXAMPLE 13.2 Passing objects to printf()

The function printf() should not be given an object as argument even if the obj
is of a class that can be implicitly converted to a type that printf() knows how to
handle.

class DangerousString
{
 public:
 DangerousString(const char* cp);
 operator const char*() const; // Conversion operator
 // ...
};

DangerousString hello = "Hello World!";
cout << hello << endl; // Works perfectly
printf("%s\n", hello); // Garbage is printed

In this case operator const char*() will be called when the string is passed t
cout , but this will not happen for the string when it is passed to printf() . When a
string object is passed as argument to printf() , no implicit conversion takes place
and the bit pattern for the object will be printed as a string.

EXAMPLE 13.3 Overloading of operator<<

class EmcString
{
 public:
 EmcString(const char* cp);
 // ...
};

ostream& operator<<(ostream& os, const EmcString& s);

EmcString s = "Hello World!";
cout << s << endl; // uses overloaded operator
160 Industrial Strength C++

 are

tion

de.

tter

 is a
gful

nex-
on to
s.

 lan-
Language constructs to avoid

A few parts of the C++ language should be avoided since they
too error prone compared to the potential benefit of using them.

RULES
AND

RECOMMENDATIONS

Rule 13.5 Do not use macros instead of constants, enums,
functions or type definitions.

Rec 13.6 Use an array class instead of built-in arrays.
Rec 13.7 Do not use unions.

See Also Rule 2.3, macros should be used in include guards.

Rec 10.3, polymorphism and inheritance can often replace selec
statements and unions.

Rec 15.14, macros can be used for writing forward-compatible co

Style 1.6 – Style 1.7, how include guards are written.

Rule 13.5 Do not use macros
instead of constants, enums,
functions or type definitions.

In C, macros are often used for defining constants. In C++, a be
alternative is to use enum values or const declared variables. Mac-
ros do not obey the normal scope rules for the language, and this
common source of errors. The compiler can seldom give meanin
error messages if the error is caused by a macro replacement.

EXAMPLE 13.4 Macros do not obey scope rules

#define SIZE 1024 // Not recommended
const size_t SIZE = 1024; // Compilation error

Macro names should be all uppercase letters to help avoid u
pected macro replacements by the preprocessor. This is one reas
why you should not have normal identifiers in all uppercase letter

Constants defined by the language obey the scope rules of the
guage and can for example be enclosed inside a class.
161

om-

most
ing,
t is
on-

er-

gu-
 com-
EXAMPLE 13.5 Recommended way to define constants

You can often define constants within a class.

class X
{
 public:
 // ...
 private:
 static const size_t maxBuf = 1024;
 enum Color {green, yellow, red};
};

// Definition of static const member
const size_t X::maxBuf;

EXAMPLE 13.6 Using an enum instead of static const int

Older compilers will not allow you to define ordinary constants inside a class. A c
mon trick is to use an anonymous enum instead.

class X
{
 // ...
 private:
 enum { maxBuf = 1024 };
 enum Color {green, yellow, red};
};

Another advantage of using constants instead of macros is that
debuggers only see the code as it looks like after preprocess
when all macro definitions have been substituted for their calls. I
possible to print the value of a constant, but not a macro value. C
stants therefore make it easier to debug a program.

Macros are often used in C as a way to avoid the function-call ov
head for time-critical functions.

EXAMPLE 13.7 Function-like macro, SQUARE

// Not recommended to have function-like macro
#define SQUARE(x) x*x

There are many problems with function-like macros. Since the ar
ments are pure textual replacements, the consequences of using
plex expressions as arguments are often surprising.

int i = SQUARE(3 + 4);
// Wrong result: i = (3 + 4 * 3 + 4) == 19, not 49
162 Industrial Strength C++

ugs.

 an
ed as

ow
ing

hat
ing-
 of

e. A

cial
ons,
It is common to add parentheses to the definition to avoid some b

// Parentheses to avoid precedence bugs
#define SQUARE(x) ((x)*(x))

But there are some bugs for which there is no good solution. If
argument is used more than once and an expression is pass
argument, the expression will be evaluated more than once.

int a = 2; int b = SQUARE(a++);
// Unknown result: b = 4 or 6 depending on when the value
// of postfix ++ is evaluated.

Inline functions in C++ are often a better choice, since they all
you to avoid the function call overhead and you still have someth
that behaves as a function.

EXAMPLE 13.8 Inline function, square

inline int square(int x) // Recommended
{
 return x * x;
};

int c = 2;
int d = square(c++); // d = (2 * 2) == 4

Another advantage of inline functions compared to macros is t
they are type-safe, which means that the compiler will give mean
ful error messages when a function is used with the wrong type
arguments.

EXAMPLE 13.9 Function-like macros are not type safe

int i = SQUARE("hello"); // Error: Illegal operands

Macros are also sometimes used to introduce synonyms for a typ
better solution is to use a typedef.

EXAMPLE 13.10 How to define synonyms for a type

#define Velocity int // Not recommended
typedef int Velocity; // Recommended

Macros should only be used as include guards and for very spe
purposes such as forward-compatibility macro packages (excepti
templates and run-time type identification).
163

ess
on

 can
tem-
des

of a
ou
d for
se a

ans
 not

ress
 first

tions
ave
ases
een
 the
C++
inter,
ass-
ts a
nts in
 to
Rec 13.6 Use an array class
instead of built-in arrays.

There are many potential bugs involved in using pointers to acc
built-in arrays. For example, when traversing an array, it is comm
to access too few or too many elements. Memory management
also be a big problem. It is almost always better to use an array
plate instead, and fortunately the standard library for C++ provi
such a class.

There are a few other problems with the built-in arrays. They are
fixed size which means that the whole array must be copied if y
need to increase its size. If the size changes often this can be ba
the performance of the program. It is in most cases better to u
class that handles growth in an efficient way.

Another problem is that there is no bounds checking, which me
that you can access a memory area outside the array if you are
careful.

When accessing an array, the index is simply used to find the add
of an element in the array. An array is treated as a pointer to the
element and the index is the offset to the element.

The fact that an array is treated as a pointer when passed to func
is a common source for errors. It is especially dangerous to h
arrays of objects. Since the size of derived class objects in most c
are different from the size of base class objects, the offset betw
elements in an array of base class objects will be different than
offset between elements in an array of derived class objects.
allows a derived class pointer to be assigned to a base class po
with the consequence that a compiler cannot prevent you from p
ing an array of derived class objects to a function that expec
pointer to an array of base class objects. When accessing eleme
the array, you will get pointers within objects rather than pointers
objects. This is yet another reason to avoid the built-in arrays.

EXAMPLE 13.11 Passing array to function

// Fruit is a base class

void printFruits(Fruit* fruits, size_t size)
// Not recommended to pass arrays to functions
{
 for (size_t i = 0; i < size; i++)
 {
 cout << fruits[i] << endl;
164 Industrial Strength C++

 with
ime.
rous.
tatic
ivial
ent

t is
, the
t of
s the
rious
sed

ing.
e of
thout
ffi-
m

 }
}

If we have an array of objects of the derived class Apple , the following code may
crash.

// Apple is derived from Fruit

const size_t numberOfApples = 3;

Apple apples[numberOfApples];

printFruits(apples, numberOfApples); // Might crash!

Rec 13.7 Do not use unions. Unions may seem quite easy to use, since they look like classes
the exception that they only store one of its data members at a t
The similarity between classes and unions are, however, treache
A union cannot have virtual member functions, base classes, s
data members or data members of any type that has a non-tr
default constructor, copy constructor, destructor or copy assignm
operator. This can make unions very hard to use.

Unions can be an indication of a non-object oriented design tha
hard to extend. Since a union could store different types of data
programmer needs a way to tell what is actually stored. If the se
different types of data changes, each piece of code that accesse
object must be rewritten. This disadvantage can be made less se
by putting all access to the union inside a class, instead of u
directly in many different places in the code.

The usual alternative to unions is inheritance and dynamic bind
The advantage of having a derived class representing each typ
value stored is that the set of derived classes can be extended wi
rewriting any code. Since code with unions is only slightly more e
cient, but much more difficult to maintain, you should avoid the
unless you have a very good reason.
165

166 Industrial Strength C++

C h a p t e r F o u r t e e n
nd
sar-

al

e

r
Size of
executables

This chapter describes how to trade program size for performance a
vice versa. There are many things that can make a program unneces
ily large. Among them are:

• unneeded code is linked with the program,

• program code or data is duplicated.

Too extensive copying of code will make a program hard to maintain
and will increase the size of the program. Therefore it should be a go
to reuse code to a large extent.

There is a trade-off between the size of an executable and its perfor-
mance. Inline functions can make a program faster, but since many
inline functions will increase the size of a program, the effect could b
the opposite.

Before making a function inline it is necessary to check if the need fo
inlining really exists.

l per-
 is
f the
stay
ore
nce
rge
the
t.

any

y to
t is
ake a
ries
at
-
 by
 be
on
ir-
ed.
ing
RULES
AND

RECOMMENDATIONS

Rec 14.1 Avoid duplicated code and data.
Rule 14.2 When a public base class has a virtual destructor,

each derived class should declare and implement
a destructor.

See Also Rec 7.1, when to make functions inline .

Rule 10.4, how to declare destructors for derived classes.

Rec 14.1 Avoid duplicated
code and data.

Large programs can have negative consequences on the overal
formance of a system. If an operating system with multi-tasking
used, each program must share the CPU with other programs. I
program is large, that means it is less likely that the program can
in memory while the operating system runs other programs. M
time will be spent in swapping programs in and out of memory, si
the time for context switches will increase. Reading pages of la
programs from memory is time consuming. This can reduce
amount of actual work that is done by a program during a time slo

Without proper care when implementing and using classes, m
programs could become unnecessarily large.

Reuse of code has the benefit of making a program more eas
maintain. An additional benefit is better quality, since code tha
reused has been tested at least once. In theory, reuse should m
program smaller, but a common problem is that many class libra
will give the client a larger executable instead. A problem is th
most linkers will link a function even if it is not called by the pro
gram. The result will be a code bloat that can only be avoided
carefully organizing the source code. The problem could partially
solved by putting each function definition in its own implementati
file. Not even this kind of drastic solution is complete since all v
tual functions that a program potentially can use must be link
Since these are called indirectly, the compiler has no way of know
exactly which ones that are not needed.
168 Industrial Strength C++

the
ance

eat

ut if
site.
t be

e
ot

piler
 will
ro-
. it

if
 is
 not
m-
ioned

will
tion
nt

mart
 are
lare

ven
 and
citly.

g,
All these problems are technical an will probably be solved in
future. Try to reuse code to a large extent, since there is good ch
that you can get better and smaller programs.

The program size will also depend on how different compilers tr
inline functions.

It is possible to speed up the program by using inline functions, b
these make the program too large, the effect will be the oppo
There is a trade-off between inlining and program size that mus
taken seriously.

The inline keyword is a hint to the compiler to inline-expand th
function body where the function is called. Inline functions are n
meant to be called as ordinary functions, but sometimes the com
is unable to inline-expand them, and in such cases the compiler
generate a function with local linkage that can be called by p
grams. This generated function is similar to a static function, i.e
can only be called inside the file that defines it.

Inline-expansion could fail if the inline function contains loops,
the address of an inline function is used, or if an inline function
called in a complex expression. In these cases, the compiler will
be able to inline-expand the function. The rules for inlining are co
piler-dependent, but to be on the safe side, avoid the cases ment
here.

Since the generated functions have local linkage, the compiler
generate many copies of the function; one for each implementa
file that includes the header file with its definition. The total amou
of code generated could become large, unless the linker is s
enough to remove excessive copies. Unfortunately, not all linkers
that smart. The general recommendation is therefore to only dec
functions as inline if they are actually inline-expanded.

Constructors and destructors are often too complex for inlining e
though they appear to be simple. Do not forget that constructors
destructors for the base class and data members are called impli

Virtual member functions could often be simple enough for inlinin
but they should not be declared inline .
169

n-
that
 and
pro-
the

nc-
is
first
ble
is is
ctor

 the
 is
 of

m-
and
le.

f the
vir-
Rule 14.2 When a public base
class has a virtual destructor,

each derived class should
declare and implement a

destructor.

A particularly insidious case, worth making a special rule for, co
cerns destructors. Destructors are the only virtual functions
could be generated by the compiler. If a base class declares
implements a virtual destructor and if a derived class does not
vide one, the compiler will need to generate a destructor for
derived class.

A compiler needs to store the address of all virtual member fu
tions, to make it possible to bind their calls dynamically. Th
includes the destructor. Some compilers use the location of the
virtual member function to decide where to allocate the virtual ta
(a table that stores addresses of virtual member functions). Th
dangerous since there could be many such locations if the destru
is the first virtual member function and it has been generated by
compiler. Some compilers will duplicate the virtual table if there
more than one location. This could significantly increase the size
your program.

You should either avoid making the destructor the first virtual me
ber function, or make sure that each derived class declares
implements it. The latter solution is better, since it is portab
Another compiler could, for example, instead use the address o
last virtual member function to determine where to allocate the
tual table.
170 Industrial Strength C++

C h a p t e r F i f t e e n
-

ard-
er

ges
 to
is

.
he
pe

ft-
r
Portability

ISO 91261 defines portability as:

A set of attributes that bear on the ability of software to be trans
ferred from one environment to another.

The word “environment” is not defined, but can typically be:

Operating systems are e.g. Mac-OS, NextStep, Solaris, MS-DOS. H
ware platforms are e.g. Motorola 68K, PowerPC, Sparc, ix86. Compil
vendors are e.g. Borland, Microsoft, IBM, Watcom. GUI-systems are
e.g. OpenWindows, OSF/Motif, MS Windows, OS2/PM. User langua
are e.g. English, Swedish, French. Presentation formats are e.g. how
display time, currency, etc. Other aspects of the word “environment”
communications, databases and different kinds of class libraries.

Portability is an issue to all projects involving multiple “environments”
In this chapter we will concentrate on the portability issues close to t
C++ language. Other aspects are also relevant, but not within the sco
of this book.

1. International Standard ISO/IEC 9126, Information technology - So
ware product evaluation - Quality characteristics and guidelines fo
their use. Reference number ISO/IEC 9126:1991(E).

• the operating system, • the GUI-system,

• the hardware platform, • the user's language,

• the compiler, vendor and
version

• a set of presentation for-
mats.

lled
the
artic-
+,
s in

lar to

go-

tely
or
rent
is

iler
har
General aspects of portability

Many aspects of C++ are inherently non-portable. They are ca
either undefined, unspecified or implementation-defined parts of
language. Then there are pure extensions that are supplied by p
ular compiler vendors. You should try to avoid all extensions to C+
but if they are needed, their use must be localized to a few place
the code.

RULES
AND

RECOMMENDATIONS

Rule 15.1 Do not depend on undefined, unspecified or
implementation-defined parts of the language.

Rule 15.2 Do not depend on extensions to the language or to
the standard library.

Rec 15.3 Make non-portable code easy to find and replace.

See Also Rec 15.14, unsupported language features must be treated simi
language extensions.

Rule 15.1 Do not depend on
undefined, unspecified or

implementation-defined parts
of the language.

Most non-portable code generally falls into three different cate
ries:

1. Implementation-defined behavior

2. Unspecified behavior

3. Undefined behavior

Implementation-defined behavior means that the code is comple
legal C++, but compilers may interpret it differently. However, f
each implementation-defined aspect there are only a few diffe
ways in which compilers may differ, and the compiler vendor
required to say in the documentation what their particular comp
does. For example, it is implementation-defined whether a c
object can store a negative value or not.

EXAMPLE 15.1 Implementation-defined behavior

const char c = -100;

if (c < 0) // Implementation-defined behavior
{

172 Industrial Strength C++

tely
ce
vior
ar-
 an

.

tan-
. It
lse.
e a

se
m is
f all
so
ap-

 you
 or
hat
 // ...
}

Unspecified behavior also means that the code is also comple
legal C++, but compilers may interpret it differently. The differen
between implementation-defined behavior and unspecified beha
is that the compiler vendor is not required to describe what their p
ticular compiler does. For example, when you cast an integer to
enum, the resulting enum value may in some cases be unspecified

EXAMPLE 15.2 Unspecified behavior

enum BasicAttrType
{
 // ...

 counterGauge = 0x1000, // 4096
 counterPeg = 0x2000, // 8192
 conterAcc = 0x3000 // 12288
};

BasicAttrType t = (BasicAttrType) 10000;
// t has unspecified value

Undefined behavior means that code is not correct C++. The s
dard does not specify what a compiler shall do with such code
may ignore the problem completely, issue an error or something e
For example, it is undefined what happens if you dereferenc
pointer returned from a request for zero bytes of memory.

EXAMPLE 15.3 Undefined behavior

char* a = new char[0];
cout << *a << endl; // Undefined behavior

All programs with any ambition of being portable shall of cour
avoid all dependencies on such parts of the language. The proble
that there are very few programmers on the planet who knows o
these parts of C++. Many portability problems are fortunately
obscure that they seldom give any problems. In the rest of this ch
ter we will describe the most common ones.

In general you should stay within the areas of the language that
as an individual programmer know well, and take a look in a book
the language specification itself if you are doing something new t
is likely to be non-portable.
173

ro-
s, for
e lan-
orta-

near
rate
ces-

 seg-

rd key

way
n of
ode
ch
Rule 15.2 Do not depend on
extensions to the language or

to the standard library.

Extensions to C++ are sometimes necessary. A fully portable p
gram shall of course not depend on such features, but sometime
various reasons, it can be necessary to use such extensions to th
guage. It can be necessary to use macros if you want to write p
ble code.

EXAMPLE 15.4 Language extension

An extension provided by many compilers for DOS and MS-Windows are far and
pointers. By specifying the type of the pointer it is possible to sometimes gene
more efficient code for a segmented architecture such as the 80x86-family of pro
sors.

A near pointer is a 16 bit-pointer that can be used to access objects within a 64K
ment.

char __near* np;

A far pointer is a 32-bit pointer that can access any available memory area.

char __far* fp;
// sizeof(fp) != sizeof(np)

Portable code must have macros to make it possible to remove these non-standa
words when compiling on other platforms.

#ifdef UNIX
#define FAR
// ...
#else
#define FAR _far
#endif

char FAR* fp; // This will now be OK on a UNIX computer

Rec 15.3 Make non-portable
code easy to find and replace.

Sometimes you are forced to write non-portable code. The best
out of this is to use such features in a way so that a new definitio
a macro or a typedef, or the replacement of a file, makes the c
work in the new environment. The general trick is to isolate su
code as much as possible so that it is easy to find and replace.

EXAMPLE 15.5 Type of fixed size

#ifdef INT32
typedef int sint32;
#else
typedef long sint32;
#endif
174 Industrial Strength C++

r the
e.g.

hen
.

the
lly a
only

th
om-
sint32 result = 1234 * 567; // result should

To avoid platform-specific behavior, you must choose a suitable representation fo
sint32 typedef. Depending on how large the integral types are, you could
choose between an int or a long .

Including files

There are a few non-portable aspects of file inclusion, such as w
to write "" or <>, and what can be inside of such include brackets

RULES
AND

RECOMMENDATIONS

Rule 15.4 Headers supplied by the implementation should
go in <> brackets; all other headers should go in
"" quotes.

Rec 15.5 Do not specify absolute directory names in
include directives.

Rec 15.6 Include file names should always be treated as
case sensitive.

See Also Rule 2.1, what to include.

Rule 15.4 Headers supplied
by the implementation should
go in <> brackets; all other

headers should go in ""
quotes.

All classes and functions in the C++ standard library requires
inclusion of a header before it can be used. A header is usua
source file, but it does not have to be so. It is recommended to
include standard headers with <>. It is implementation-defined what
happens if a name not defined by the standard appears within <>. All
non-standard header files should be included with "" quotes to avoid
such implementation-defined behavior. Most compilers allow bo
ways, since other standards, such as for example POSIX, rec
mend the use of <> for inclusion.

EXAMPLE 15.6 Good and bad way of including files

// Only include standard header with <>
#include <iostream.h> /* OK: standard header */
175

ive,
es

ide the
path

of
that
nt
 any

MS,
 to
any

i-
ays
cu-
#include <MyFile.hh> /* NO: non-standard header */

// include any header with ""
#include "stdlib.h" /* NO: better to use <> */
#include "MyFile.hh" /* OK */

Rec 15.5 Do not specify abso-
lute directory names in include

directives.

You should also avoid using directory names in the include direct
since it is implementation-defined how files in such circumstanc
are found. Most modern compiler allow relative path names with/
as separator, because such names has been standardized outs
C++ standard, for example in POSIX. Absolute path names and
names with other separators should always be avoided though.

The file will be searched for in an implementation-defined list
places. Even if one compiler finds this file there is no guarantee
another compiler will. It is better to specify to the build environme
where files may be located, since then you do not need to change
include-directives if you switch to another compiler.

EXAMPLE 15.7 Directory names in include directives

#include "inc/MyFile.hh" /* Not recommended */
#include "inc\MyFile.hh" /* Not portable */
#include "/gui/xinterface.h" /* Not portable */
#include "c:\gui\xinterf.h" /* Not portable */

Rec 15.6 Include file names
should always be treated as

case sensitive.

Some operating systems, such as DOS, Windows NT and Vax-V
do not have case-sensitive file names. When writing programs
such operating systems, the programmer can include a file in m
different ways.

If you are inconsistent, your code will be difficult to port to an env
ronment with case-sensitive file names. Therefore you should alw
include a file as if it was case sensitive. You should look at the do
mentation for the class if you are uncertain.

EXAMPLE 15.8 Case-sensitivity of header file name

// Includes the same file on Windows NT, but not on UNIX.

#include <Iostream.h>
176 Industrial Strength C++

 so
ossi-
 of

 are

ts.
t of
 to
cts,
#include <iostream.h>
#include <iostream.H>

The size and layout of objects

The size and layout of objects is implementation-defined in C++
that compiler vendors can generate code that is as efficient as p
ble. This is one of the most powerful parts of C++, as well as one
the most error-prone ones. A few rules and recommendations
needed in order to steer clear of portability problems.

RULES
AND

RECOMMENDATIONS

Rule 15.7 Do not make assumptions about the size of or lay-
out in memory of an object.

Rule 15.8 Do not cast a pointer to a shorter quantity to a
pointer to a longer quantity.

Rec 15.9 If possible, use plain int to store, pass or return
integer values.

Rec 15.10 Do not explicitly declare integral types as signed
or unsigned .

Rule 15.11 Make sure all conversions of a value of one type to
another of a narrower type do not slice off signifi-
cant data.

Rec 15.12 Use typedefs or classes to hide the representation
of application-specific data types.

See Also Rec 6.1 – Rec 6.3, how to use casts.

Rec 7.3 – Rec 7.5, how to pass arguments.

Rule 15.7 Do not make
assumptions about the size of

or layout in memory of an
object.

The sizes of built-in types are different in different environmen
For example, an int may be 16, 32 or even 64 bits long. The layou
objects is also different in different environments, so it is unwise
make any kind of assumption as to the layout in memory of obje
such as when lumping together different data in a struct.
177

y to

ire-
ple,

at an
size

-

e it
e. A
hen
ssor.
EXAMPLE 15.9 Offset of data member

struct PersonRecord
{
 char ageM;
 unsigned int phoneNumberM;
 EmcString nameM;
};

A compiler is entitled to significant freedom when laying out such data in memor
find the most efficient solution. The exact address of the ageM, phoneNumberM and
nameM data members within an object of type PersonRecord can vary between dif-
ferent environments.

Rule 15.8 Do not cast a
pointer to a shorter quantity to
a pointer to a longer quantity.

Certain types have alignment requirements. An alignment requ
ment is a requirement on the addresses of objects. For exam
some architectures require that objects of a certain size starts
even address. It is a fatal error if a pointer to an object of that
points to an odd address. For example, you might have a char
pointer and want to convert it to an int pointer. If the pointer points
at an address that is illegal for an int , dereferencing the int pointer
will give a run-time error.

EXAMPLE 15.10 Cast must obey alignment rules

int stepAndConvert(const char* a, int n)
{
 const char* b = a + n; // step n chars ahead
 return *(int*) b;
 // NO: Dangerous cast of const char* to int*
}

Calling stepAndConvert() will probably give a run-time error for many combina
tions of the two parameters (a, n).

const char data[] = "abcdefghijklmnop";
int anInt = 3;
int i = stepAndConvert(data, anInt); // NO: May crash

This kind of code is unlikely to work, but if it does, it will certainly not be portable.

Rec 15.9 If possible, use plain
int to store, pass or return inte-

ger values.

Plain int is the most efficient integral type on most systems, sinc
has the natural word size suggested by the machine architectur
rule of thumb is that fewer machine instructions are needed w
you have operands that have the natural word size of the proce
178 Industrial Strength C++

igi-

ype

riv-

ge

lt is

 if
There are however exceptions, like the Alpha processor from D
tal, which has 32 bits int s, 64 bits long int s and a natural word
size of 64 bits. However, in most cases, if you select any other t
you should have a good reason.

Selecting a short int instead of a plain int does not make sense
unless you are very tight on memory, and a long int should only
be used if it will hold values so large that plain ints are not big
enough.

Rec 15.10 Do not explicitly
declare integral types as

signed or unsigned.

It is also best to avoid using explicitly signed or unsigned inte-
gral types, since mixing them in expressions may give you non-t
ial arithmetic conversions that are tricky to understand.

EXAMPLE 15.11 Mixing signed and unsigned integers

The standard header limits.h defines a number of constants that describe the ran
of the built-in types, for example INT_MIN , INT_MAX, UINT_MIN and UINT_MAX. If
you work with very large numbers, be sure to check against these values.

// Suppose int and unsigned int are 32 bits long.

// From a typical limits.h file:
// #define INT_MIN -2147483648
// #define INT_MAX 2147483647
// #define UINT_MAX 4294967295

int i = 42;
unsigned ui = 2222222242;
int j = i - ui;

// NO: Result -2222222200 is out of range!!!
// j has value: 2072745096 !!!

When subtracting a larger value from a smaller value, the resu
implementation-defined if an unsigned type is used. Plain char s
are particularly problematic, since it is implementation-defined
they are signed or unsigned .

EXAMPLE 15.12 char s can be signed or unsigned

char zero = 0;
char one = 1;
char minusOne = zero - one; // NO: result has
 // implementation-
 // defined value
179

lly

ou
You

ger-

ef

 par-

ies
s it
uch
ype-
 neg-
char result = one + minusOne; // result is not always
 // equal to zero

Rule 15.11 Make sure all con-
versions of a value of one type
to another of a narrower type

do not slice off significant
data.

Converting values from a longer to a narrower type is potentia
unsafe since significant data may be lost.

Most compilers will warn about dangerous conversions and y
should try to rewrite the code if that is necessary to avoid them.
could, for example, use a data type with larger range.

You could also look through your code to see whether such dan
ous conversions are possible.

EXAMPLE 15.13 OS-specific typedef

The UNIX system call fork() , which returns a value of a type given by the typed
pid_t . Some systems define pid_t as a short .

// fork() returns pid_t that is sometimes a short
short int pid1 = fork(); // NO: should use pid_t

If a typedef is provided, you should always use it instead of the actual type. In this
ticular case, we should use pid_t .

pid_t pid2 = fork(); // Recommended

Rec 15.12 Use typedefs or
classes to hide the representa-

tion of application-specific
data types.

An application-specific type is used to store a quantity that var
between different environments. By providing a typedef or a clas
is possible for the programmer to write more portable code. S
types should only be used when there is a real need for them. T
defs makes the code more difficult to read, and classes can have
ative impact on performance.
180 Industrial Strength C++

t all
ny

-

efi-
ions
 are

ide
 close
Unsupported language features

A common problem is to use compilers that does not implemen
features of the language. By looking forward you can avoid ma
future problems today.

RULES
AND

RECOMMENDATIONS

Rec 15.13 Always prefix global names (such as externally
visible classes, functions, variables, constants,
typedefs and enums) if namespace is not sup-
ported by the compiler.

Rec 15.14 Use macros to prevent usage of unsupported key
words.

Rec 15.15 Do not reuse variables declared inside a for -loop.

See Also Rec 1.4, names that should be put in namespace s.

Rule 4.1, how to write a for -loop.

Rec 15.13 Always prefix glo-
bal names (such as externally

visible classes, functions, vari-
ables, constants, typedefs and

enums) if namespace is not
supported by the compiler.

It is possible to avoid name clashes by putting declarations and d
nitions inside namespaces. Without namespaces, most definit
and declarations will be global. In such cases name clashes
avoided by adding a unique prefix to each global name.

Other solutions, such as putting declarations and definitions ins
classes as static members should be avoided unless there is a
relationship between the nested identifier and the class.

EXAMPLE 15.14 Prefixed name

EmcString famousClimber = "Edmund Hillary";
// Uses Emc as prefix
181

age.

 for

pil-
Rec 15.14 Use macros to pre-
vent usage of unsupported key-

words.

The C++ standard has added many new keywords to the langu
The current list contains 63 keywords.

The language also provide textual, alternative representations
some of the operators.

None of these names are legal to use as identifiers, but many com
ers are not up-to-date with the standard.

asm false sizeof

auto float static

bool for static_cast

break friend struct

case goto switch

catch if template

char inline typeid

class int typename

const long union

const_cast mutable unsigned

continue namespace using

default new virtual

delete operator void

do private volatile

double protected wchar_t

dynamic_cast public while

else register this

enum reinterpret_cast throw

explicit return true

export short try

extern signed typedef

and (&&) compl (~) or_eq (|=)

and_eq (&=) not (!) xor (^)

bitand (&) not_eq (!=) xor_eq (^=)

bitor (|) or (||)
182 Industrial Strength C++

 an

ey-

to be

 the
 an

ntor
ver-
EXAMPLE 15.15 Unsupported keyword as empty macro

If your compiler for example does not support the keyword explicit that is used to
prevent a constructor from defining an implicit conversion, it is useful to define
empty macro with the same name as the keyword.

#ifdef NO_EXPLICIT
#define explicit
#endif

By doing so you prevent many future problems that will result from using the k
word incorrectly.

EmcString explicit; // Error: explicit is keyword
// will not compile if explicit defined as macro

An additional benefit is that you can use a keyword in places where it is intended
used.

class EmcArray
{
 public:
 explicit EmcArray(size_t size);
 // ...
};

The macro does however not work as the keyword will do, since it will not stop
constructor to work as an implicit conversion from the type of the parameter to
object of the type of the class. The macro will only work as a way for the impleme
of the class to tell the user that the constructor should not be used for implicit con
sions.

EXAMPLE 15.16 Forward-compatibility macros

Here are some other useful macro-definitions and typedefs:

#ifdef NO_BOOL
typedef int bool;
const bool false = 0;
const bool true = 1;
#endif

#ifdef NO_MUTABLE
#define mutable
#endif

#ifdef NO_EXCEPTION
#define throw(E) abort();
#define try
#define catch(T) if (0)
#endif
183

d be

 in
also
list

been
ed to
the

se a

ticu-
ith

g to
an be
se
one
 to
The library standard defines numerous names, that also shoul
avoided. Most of them will be put inside the namespace std , so the
chance of getting into trouble will be less. We do not list all names
the book since the list contains more than 800 names. It is
unlikely that anyone would want to spend time checking that
while reviewing code.

Rec 15.15 Do not reuse vari-
ables declared inside a for-

loop.

The scope of a variable declared inside a for-statement has
changed by the C++ standard. Previously such a variable belong
the enclosing scope, but now it belongs to the block following
for -statement. This means that a variable declared in a for -loop
can no longer be reused in the enclosing scope. If you want to reu
loop variable you need to move the declaration outside the for loop.

EXAMPLE 15.17 Reusing a loop variable

int i = 0;

for(; i < last(); i++)
{
 // ...
}

for(; i >= first(); i--)
{
 // ...
}

Other compiler differences

Some parts of C++ have never been clearly specified. This is par
larly true for templates. Such parts of C++ should be handled w
care, since compilers often handle them differently. The best thin
do is to have a design that is as good as possible and code that c
compiled for the platforms chosen. Another solution is to only u
compilers that implement templates the same way, or only use
compiler. If that is not possible, you must either restrict yourself
184 Industrial Strength C++

, or

lass
er
de is

nts
anti-
uld

for
those part of the language that are implemented by all compilers
try to make your code easy to modify for new platforms.

RULES
AND

RECOMMENDATIONS

Rec 15.16 Only inclusion of the header file should be needed
when using a template.

Rec 15.17 Do not rely on partial instantiation of templates.
Rec 15.18 Do not rely on the lifetime of temporaries.
Rec 15.19 Do not use pragma s.
Rule 15.20 Always return a value from main() .
Rec 15.21 Do not depend on the order of evaluation of argu-

ments to a function.

See Also Rec 2.5, how to organize templates.

Rec 7.3 – Rec 7.5, argument passing.

Rec 15.16 Only inclusion of
the header file should be

needed when using a template.

How should you organize your templates?

A template has an interface and an implementation just as any c
or function. A template is similar to an inline-function. The compil
must be see both the interface and the implementation when co
generated.

A template is automatically instantiated for all template argume
that the program uses. It is also possible to request it to be inst
ated for a particular set of arguments. The reason to why you wo
want such explicit instantiations is to reduce the compile time
your program.

EXAMPLE 15.18 Using a template

// emcMax is function template

template<class T>
const T& emcMax(const T& a, const T& b)
{
 return (a > b) ? a : b;
}

void foo(int i, int j)
{
 int m = emcMax(i, j); // usage of emcMax
185

 and
gu-

en.
 are

 the

 to
ith
 file

m-
pa-
n
 be

ot.
}

EmcQueue<int> q; // usage of class EmcQueue<int> and
 // EmcQueue<int>:s default constructor

q.insert(42); // usage of EmcQueue<int>::insert

template class EmcQueue<char>; // Explicit instantiation

There is no standard for how template source code is organized
how much of a template to instantiate for a particular set of ar
ments.

A function template is used when it is called, or its address is tak
A class template is used when instances of the class template
used to declare objects.

Some compilers require that the implementation either be part of
header file or be included by the header file.

Other compilers use file-name conventions to determine where
find the implementation. The implementation should be in a file w
the same name as the header file, but with the implementation
extension substituted for the header file extension.

This is a potential portability problem when writing code using te
plates. We recommend to always put the implementation in a se
rate file, a template definition file. By using conditional compilatio
to control if this file is included or not, the same source code can
used with different compilers.

EXAMPLE 15.19 Template header file

By having a macro EXTERNAL_TEMPLATE_DEFINITION it is possible, at compile-
time, to control whether the implementation file is included by the header file or n

template <class T>
class EmcQueue
{
 // ...
};

#ifndef EXTERNAL_TEMPLATE_DEFINITION
#include <EmcQueue.cc>
#endif
186 Industrial Strength C++

 is

pes
 by

hat
lled

ere-
en if
hat
ys

tion
alue.
ng
until
tu-

hat
 the

alues,
ointer
Rec 15.17 Do not rely on par-
tial instantiation of templates.

A difference between compilers that is more difficult to handle
how much of a template class is instantiated.

Some compilers allow a template class to be instantiated for ty
that does not provide all operators or member functions needed
the implementation.

As long as you do not use the part of the implementation t
requires these, no error is reported by these compilers. This is ca
partial instantiation.

Other compilers instantiate all members of a template class. Th
fore, the template argument must support all uses of the type, ev
only a few of the member functions are used. The only solution t
always works is to avoid relying on partial instantiation; i.e. alwa
assume that all member functions are instantiated.

Rec 15.18 Do not rely on the
lifetime of temporaries.

Temporary objects are often created in C++, such as when a func
returns a value, or when a parameter to a function is passed by v
The lifetime of temporaries was implementation-defined for a lo
time, but it has now been decided that they must persist at least
the end of the full expression in which they were created. Unfor
nately, it is possible that your compiler still does not implement t
behavior. Therefore you should take great care not to depend on
lifetime of temporaries.

EXAMPLE 15.20 Temporary objects

Temporary objects are often created when operating upon objects that store v
such as strings. If the class also provides a conversion operator that returns a p
or reference to the representation, then you have potentially dangerous code.

class DangerousString
{
 public:
 DangerousString(const char* cp);
 operator const char*() const;
 // conversion operator gives access to data member
 // ...
};
187

he

e of
omes

era-
 to

exists

uch
an
lly

are
 will
just

ill

tly
nd

ro-
the
The conversion operator to const char* is used to access the representation of t
string so that it can be printed by calling ostream::operator<<(const char*) .
The problem with this is that the DangerousString object to be printed could be a
temporary, for example if it stores the result of an expression. Since the lifetim
those objects vary between implementations, there is a risk that the pointer bec
invalid before it is used.

DangerousString operator+(const DangerousString& left,
 const DangerousString& right);

DangerousString a = "This may go";
DangerousString b = " wrong";
cout << a << endl; // OK
cout << a + b << endl; // Dangerous

The solution for avoiding the problem in this particular case is to add an output op
tor for DangerousString -objects. Since a reference to the temporary is passed
the function, the compiler must guarantee that the object bound to that reference
until the function returns.

ostream&
operator<<(ostream& o, const DangerousString& s);

Rec 15.19 Do not use prag-
mas.

A pragma is usually a way to control the compilation process, s
as disabling optimization of a particular function, or to force
inline function to become inline in cases when the compiler norma
would refuse to make it inline.

Everything about pragmas is implementation-defined, so they
perhaps the most non-portable feature of C++. The preprocessor
handle them if it can understand them, and otherwise they will
be ignored. You cannot be completely sure a new compiler w
understand any pragmas in your code.

It is only OK to use pragmas as long as your code will work correc
without them. Therefore you should only use them sparingly a
always document why and where they are used.

EXAMPLE 15.21 A pragma-directive

The pragma once was previously provided by the g++ compiler as a way for the p
grammer to tell the preprocessor which files that are include files. Files with
pragma should only be included once.

#pragma once /* NO: not portable! */
188 Industrial Strength C++

turn
out

this

 of

ger
ram
Rule 15.20 Always return a
value from main().

The standardization committee for C++ has decided that the re
values of functions must always be declared. Functions with
return values were previously assumed to return an int . Therefore
you now have to declare main to return an int and you should also
always return a value. This is good, since in many environments
return value is checked by other programs.

EXAMPLE 15.22 How to declare main()

int main() // Yes
{
 // ...
 return 0; // Yes
}

Rec 15.21 Do not depend on
the order of evaluation of
arguments to a function.

Another area where compilers differ is the order of evaluation
function arguments.

EXAMPLE 15.23 Evaluation order of arguments

func(f1(), f2(), f3());
// f1 may be evaluated before f2 and f3,
// but don't depend on it!

The order of evaluation of expressions that are part of a lar
expression, is in many cases also unspecified. A portable prog
should not depend on any specific order.

EXAMPLE 15.24 Evaluation order of subexpressions

a[i++] = i; // NO: i may be incremented before or
 // after its value is used on the right
 // side of the assignment.
189

190 Industrial Strength C++

A p p e n d i x O n e

 we
n
es
Style

Code is always written in a particular style. Naming conventions, file
name extensions and lexical style are all part of this structure of code
call Style. Discussing style is highly controversial, which is the reaso
we have placed it in an appendix, to keep it distinct from all other rul
and recommendations.

 be

uld
 be
pro-
r

ith
ous
ect,
ch
ndard

ix
 can
de,
r all
h
tyles
us-

ome
rue
unt

com-
ro-
sers
General Aspects of Style

The most important aspect of style, whatever style you use, is to
consistent.

RULES
AND

RECOMMENDATIONS

Style 1.1 Do not mix coding styles within a group of closely
related classes.

Style 1.1 Do not mix coding
styles within a group of closely

related classes.

For each project, or group of closely related classes, you sho
select a coding style. Code written by one programmer might
maintained by another, so the same style should be used by all
grammers within the project. If you modify files from anothe
project, you should stick to the style chosen for that project.

However, sometimes you may be forced to mix code written w
different styles. It could, for example, be code reused from previ
projects using a different style than the one chosen for your proj
or from third party libraries, or from the standard library. In su
cases are it can be an option to select the style used by the sta
library, or the style used by the third party library, or perhaps a m
between the two styles, or the style described in this appendix. It
be an end in itself to use different styles for different kinds of co
as well as there is obvious reasons for having the same style fo
code in the whole project. Mixing libraries is very common, whic
means that style issues are bound to be a problem, but mixing s
within a group of closely related classes is likely to be very conf
ing, and should therefore be avoided if possible.

It should be noted that the standard library uses a style that in s
cases is different from what we recommend. This is particularly t
for how names for classes are written. It is our belief that the amo
of confusion should be small since the names and usage of the
ponents in the standard library will be known and used by all p
grammers and thus easily distinguished from code written by u
in a project.
192 Industrial Strength C++

 in a
itten.
ould
we

ne
 new
ause
r to
Naming conventions

Parallel to the issue of selecting good names for the abstractions
program lies the question as to how these names should be wr
Should you use uppercase or lowercase characters? How sh
names consisting of many words be written? In this section
present one such naming style.

RULES
AND

RECOMMENDATIONS

Style 1.2 In names that consist of more than one word, the
words are written together and each word that
follows the first begins with an uppercase letter.

Style 1.3 The names of classes, typedefs, and enumerated
types should begin with an uppercase letter.

Style 1.4 The names of variables and functions should
begin with a lower-case letter.

Style 1.5 Let data members have a “M” as suffix.
Style 1.6 The names of macros should be in uppercase.
Style 1.7 The name of an include guard should be the name

of the header file with all illegal characters
replaced by underscores and all letters converted
to uppercase.

Style 1.8 Do not use characters that can be mistaken for
digits, and vice versa.

Style 1.2 In names that consist
of more than one word, the

words are written together and
each word that follows the first

begins with an uppercase let-
ter.

There are a few different ways to separate words in identifiers. O
is to use underscores and another is to let the first letter in each
word be in uppercase. We have chosen the latter approach bec
such identifiers are shorter and, in our personal opinion, easie
read. Both naming conventions have their pros and cons.

EXAMPLE 16.1 How to separate words in an identifier

int max_timeout_time = 1000; // Not recommended
int maxTimeOutTime = 1000; // Recommended
193

h an
ns,

es
ber

to
r to

 been
 a
uite
nc-
Style 1.3 The names of
classes, typedefs, and enumer-

ated types should begin with
an uppercase letter.

Style 1.4 The names of vari-
ables and functions should

begin with a lower-case letter.

Type names, like classes and enums, should always begin wit
uppercase letter to distinguish them from variables and functio
which we recommend should begin with a lowercase letter.

EXAMPLE 16.2 Naming style

class Browser; // Class
enum State { green, yellow, red }; // Enum
int n = 0; // Local variables
void Browser::show() // Member function
{
 // ...
};

Style 1.5 Let data members
have a “M” as suffix.

It is useful to have a naming convention that clearly distinguish
data members from local variables, function parameters and mem
functions. We suggest adding an “M” (as in “Member”) as suffix
data members. The implementation of member functions is easie
understand if data members are easy to distinguish in the code.

EXAMPLE 16.3 Data member suffix

template<class T>
class EmcStack
{
 public:
 // ...
 private:
 unsigned allocatedM;
 T* vectorM;
 int topM;
};

Style 1.6 The names of macros
should be in uppercase.

Names in all uppercase letters are reserved for macros. This has
the traditional naming convention for macros, and we think it is
good idea to keep this tradition. Macros should, however, be q
unusual in C++, since const variables, enum values and inline fu
tions often are better and safer alternative for macros.
194 Industrial Strength C++

in all
uard
ers

ese
 in
me

n be
EXAMPLE 16.4 Names of macros

#define SQUARE(x) (x)*(x) /* Recommended */

Style 1.7 The name of an
include guard should be the

name of the header file with all
illegal characters replaced by

underscores and all letters
converted to uppercase.

Include guards are macros, and as such they should also be
uppercase letters. We suggest that the name of an include g
should be the name of the header file with all illegal charact
replaced by underscores and all letters converted to uppercase.

It is quite important to have a consistent style for the names of th
macros, since that will relieve programmers from having to look
the header file to know the name of the include guard. The file na
should be enough to deduce the name of the include guard.

EXAMPLE 16.5 Names of include guards

// In file File.hh
#ifndef FILE_HH
#define FILE_HH

// The rest of the file

#endif /* FILE_HH */

Style 1.8 Do not use charac-
ters that can be mistaken for

digits, and vice versa.

Some digits are rather similar to some characters. The digit 0 is quite
similar to the character O, 1 is similar to l , as well as 5 and S. There
is therefore a risk that they are mistaken for each other, which ca
confusing.

EXAMPLE 16.6 Integral suffixes

A suffix can be used to specify the type of an integer value. You can use either “L” or
“ l ” if the value is a long int , but the lowercase “l ” should be avoided since it can
be mistaken for the digit 1.

long i1 = 1l; // Not recommended
long i2 = 1L; // Better
195

for

t of

with
es
ose

les
rent
ize
 to
to
 par-
 on
File-name extensions

A convention for choosing file-name extensions will make it easy
tools and humans to distinguish between different types of files.

RULES
AND

RECOMMENDATIONS

Style 1.9 Header files should have the extension “.hh ”.
Style 1.10 Inline definition files should have the extension

“ .icc ”.

See Also Rec 2.4, what to put in inline definition file.

Style 1.9 Header files should
have the extension “.hh”.

Style 1.10 Inline definition
files should have the extension

“.icc”.

There are many different file name extensions in use. This is a lis
some of them:

We have chosen to avoid the extensions .h and .c since they are
used by the C standard. We have also avoided all extensions
uppercase letters, like .H and .C , since some operating systems do
not distinguish file names with mixed case. Of the ones left to cho
from, we selected .hh , .cc and .icc as our recommendation for
header files, implementation files and inline definition files.

Using only one standard for the extension for implementation fi
helps, but for practical reasons, it is often necessary to have diffe
extensions for different platforms. Some compilers do not recogn
files with certain extensions, and do further more not allow you
override which suffixes they recognize, which will force a project
use some other extension instead. Fortunately, this should not be
ticularly important since client code should normally not depend
the name extensions for implementation files.

Header files: .h, .hh, .H, .hpp, .hxx

Implementation files: .c, .cc, .C, .cpp, .cxx,
.cp

Inline definition files: .icc, .i
196 Industrial Strength C++

the
at is
f it

s

an
eters

er to
etter
uffi-
ll be
Lexical style

A lexical style is a preferred way to combine the lexical tokens of
language. Such a style should be chosen to avoid having code th
difficult to read and understand just because different parts o
looks different.

RULES
AND

RECOMMENDATIONS

Style 1.11 The names of parameters to functions should be
specified in the function declaration if the type
name is insufficient to describe the parameter.

Style 1.12 Always provide an access specifier for base classe
and data members.

Style 1.13 The public, protected, and private sections of a
class should be declared in that order.

Style 1.14 The keyword struct should only be used for a C-
style struct.

Style 1.15 Define inline member functions outside the class
definition.

Style 1.16 Write unary operators together with their oper-
and.

Style 1.17 Write access operators together with their oper-
ands.

Style 1.18 Do not access static members with '. ' or ' -> '.

Style 1.11 The names of
parameters to functions should

be specified in the function
declaration if the type name is

insufficient to describe the
parameter.

The declaration of a function often contains more information th
the compiler needs to see. For example, names on formal param
are only needed in the function definition, not in declarations.

Parameter names are meant to make it easier for a programm
understand the purpose and usage of a function. It is in general b
to supply too many names than too few, but if the type name is s
cient to describe the purpose of a parameter, the declaration wi
shorter and as easy to understand as without the name.

EXAMPLE 16.7 Specifying parameter names

template<class T>
class list
197

mes
ame-
h

cess
red
tter
{
 public:
 list();
 explicit list(const T&);
 list(const list<T>&);
 list<T>& operator=(const list<T>&);
 ~list();
 // member template
 template <class InputIterator>
 void insert(iterator position,
 InputIterator first,
 InputIterator last);
 void insertFirst(const T&);
 void insertLast(const T&);
 // ...
};

The purpose of all member functions above is obvious, just by looking at their na
and the type of the parameters, except for the only member function with two par
ters of the same type, the insert() member function. To explain the purpose of eac
parameter, all its parameters has been given names.

Style 1.12 Always provide an
access specifier for base

classes and data members.

All members of a class are private unless the class has an ac
specification. Likewise a base class will be private unless decla
otherwise. You should not use this default behavior. It is much be
to explicitly show the reader of the code what you mean.

EXAMPLE 16.8 Implicitly given access specifiers

// Base class B implicitly declared private

class A : B // Not recommended
{
 // Not recommended: implicit access specifier
 int i;
 public:
 // ...
};

EXAMPLE 16.9 Explicitly given access specifiers

// Base class B explicitly declared private

class A : private B // Recommended
{
 public:
 // ...

 // Recommended: explicit access specifier
198 Industrial Strength C++

ass,
t to
hile
fore

s in
nt
m-

m
ions
ruct
 to

D-
ld
lass
not
class

lass
lass
le-
 private:
 int i;
};

Style 1.13 The public, pro-
tected, and private sections of
a class should be declared in

that order.

The public part should be most interesting to the user of the cl
and should therefore come first. The protected part is of interes
derived classes and should therefore come after the public part, w
the private part should be of nobody's interest and should there
be listed last in the class declaration.

Style 1.14 The keyword struct
should only be used for a C-

style struct.

There is only one major difference between a struct and a clas
C++. Everything in a struct is by default public, which is differe
from a class where everything by default is private. This is for co
patibility with C, since everything in a C struct is public. Apart fro
that there are no big differences. A struct can have member funct
and inherit from other classes. It would be possible to only use st
instead of class, but that would make your code more difficult
understand.

To avoid confusion, the keyword struct should only be used when
you are grouping built-in data types into a C-style struct; a PO
struct (POD is an acronym for “plain old data”). A struct shou
therefore have no member functions, nor data members of c
types. In other words, if you group anything in a struct that does
exist in C (references, class objects etc.) then you should use a
instead.

Style 1.15 Define inline mem-
ber functions outside the class

definition.

Inline member functions can be defined inside or outside the c
definition. We strongly recommend the second alternative. The c
definition will be more compact and comprehensible if no imp
mentation can be seen in the class interface.

EXAMPLE 16.10 Where to implement inline member functions

class X
{
 public:
 // Not recommended: function definition in class
199

 their
dif-

f the
bers
 bool insideClass() const { return false; }
 bool outsideClass() const;
};

// Recommended: function definition outside class
inline bool X::outsideClass() const
{
 return true;
}

Style 1.16 Write unary opera-
tors together with their oper-

and.

The various operators should be presented to the reader so that
use is completely clear. Some of them look identical but are very
ferent, like unary and binary * . Unary operators such as unary * and
++ are best written together with their operand.

EXAMPLE 16.11 How to write unary operators

int* i = new int(77);

cout << * i << endl; // Not recommended
cout << *i << endl; // Recommended

Style 1.17 Write access opera-
tors together with their oper-

ands.

Access operators, such as . and -> are best written together with
both their operands.

EXAMPLE 16.12 How to write access operators

a->foo(); // Recommended
b.bar(); // Recommended

Style 1.18 Do not access static
members with '.' or '->'.

Static members are members of the class and not of an object o
class. Accessing such members as if they were object mem
would therefore be confusing.

EXAMPLE 16.13 How to access static members

class G
{
 public:
 // ...
 static G* create();
 // ...
200 Industrial Strength C++

};

G* G::create()
{
 return new G;
}

G g;
G* gp = new G;
G* gp1 = g.create(); // Not recommended
G* gp2 = gp->create(); // Not recommended
G* gp3 = G::create(); // Recommended
201

202 Industrial Strength C++

A p p e n d i x Tw o
aft
di-

l

ch

r
to a

,
 as
Terminology

The terminology used by this book is as defined by the “Dr
Standard for The Programming Language C++” with some ad
tions that are presented below.

ABSTRACT BASE CLASS An abstract base class is a class with at least one pure virtua
member function.

ACCESS FUNCTION
ACCESSOR

An access function (accessor) is a member function that returns
a value and that does not modify the object’s state.

BUILT-IN TYPE A built-in type is one of the types defined by the language, su
as int, short, char and bool.

CLASS INVARIANT A class invariant is a condition that defines all valid states fo
an object. An class invariant is both a pre- and postcondition
member function of the class.

CONST CORRECT A program is const correct if it has correctly declared functions
parameters, return values, variables and member functions
const.

or

ce

e

as

ce,

o
en

e
ing

n

COPY ASSIGNMENT
OPERATOR

The copy assignment operator of a class is the assignment operat
taking a reference to an object of the same class as parameter.

COPY CONSTRUCTOR The copy constructor of a class is the constructor taking a referen
to an object of the same class as parameter.

DANGLING POINTER A dangling pointer is pointing at an object that been deleted.

DECLARATIVE REGION A declarative region is the largest part of a program where a nam
declared in that region can be used with its unqualified name.

DIRECT BASE CLASS The direct base class of a class is the classes explicitly mentioned
base classes in its definition. All other base classes are indirect base
classes.

DYNAMIC BINDING A member function call is dynamically bound if different functions
will be called depending on the type of the object operated upon.

ENCAPSULATION Encapsulation allows a user to only depend on the class interfa
and not upon its implementation.

EXCEPTION SAFE A class is exception safe if its objects do not loose any resources, d
not invalidate their class invariant or terminate the application wh
they end their life-time because of an exception.

EXPLICIT TYPE
CONVERSION

An explicit type conversion is when an object is converted from on
type to another, and where you have to explicitly write the result
type.

FILE SCOPE An object with file scope is only accessible to functions within the
same translation unit.

FLOW CONTROL
PRIMITIVE

The flow control primitives are:
if-else , switch , do-while , while and for .

FORWARDING FUNCTION A forwarding function is a function which does nothing more tha
call another function.

FREE STORE An object on the free store is an object allocated with new.

GLOBAL OBJECT A global object is an object in global scope.

GLOBAL SCOPE An object or type is in global scope if it can be accessed from within
any function of a program.
204 Industrial Strength C++

 to

the

of

con-

em-

s

ent
ame
ts as

-
n.
.

er
.

 for
can
IMPLEMENTATION-
DEFINED BEHAVIOR

Code with Implementation-defined behavior is completely legal
C++, but compilers may differ. The compiler vendor is required
describe what their particular compiler does with such code.

IMPLICIT TYPE
CONVERSION

An implicit type conversion is when an object is converted from
one type to another, and where you don't have to explicitly write
resulting type.

INHERITANCE A derived class inherits state and behavior from a base class.

INLINE DEFINITION FILE An inline definition file is a file that only contains definitions of
inline functions.

ITERATOR An iterator is an object used to traverse through collections
objects.

LITERAL A literal is a sequence of digits or characters that represent a
stant value.

MEMBER OBJECT The member objects of a class is its base classes and the data m
bers.

MODIFYING FUNCTION
MODIFIER

A modifying function (modifier) is a member function that change
the value of at least one data member.

NON-COPYABLE CLASS A class is non-copyable if its objects cannot be copied.

OBJECT-ORIENTED
PROGRAMMING

A language supports object-oriented programming if it provides
encapsulation, inheritance and polymorphism.

POLYMORPHISM Polymorphism means that an expression can have many differ
interpretations depending on the context. This means that the s
piece of code can be used to operate upon many types of objec
provided by e.g. dynamic binding and parameterization.

POSTCONDITION A postcondition is a condition that must be true on exit from a mem
ber function, if the precondition was valid on entry to that functio
A class is implemented correctly if postconditions are never false

PRECONDITION A precondition is a condition that must be true on entry to a memb
function. A class is used correctly if preconditions are never false

RESOURCE A resource is something that more than one program needs, but
which there is a limit for how much that is available. Resources
be acquired and released.
205

e-
rated

en an
unc-

he
 the

ibly
 the

in a
ase

e

ay

ibe

r
ined
non-
er-

-
ent
SELF-CONTAINED A header file is self contained if nothing more than its inclusion is
needed to use the full interface of a class.

SIGNATURE The signature of a function is defined by its return type, its param
ter types and their order, and the access given the object ope
upon (const or volatile).

SLICING Slicing means that the data added by a subclass is discarded wh
object of a subclass is passed or returned by value to or from a f
tion expecting a base class object.

STACK UNWINDING Stack unwinding is the process during exception handling when t
destructor is called for all local objects between the place where
exception was thrown and where it is caught.

STATE The state of an object is the data members of the object, and poss
also other data which the object has access to, which affects
observable behavior of the object.

SUBSTITUTABILITY Substitutability means that a derived class object can be used
context expecting an object of any class derived from one its b
class.

TEMPLATE
DEFINITION FILE

An template definition file is a file that only contains definitions of
non-inline template functions.

TRANSLATION UNIT A translation unit is the result of merging a implementation fil
with all its headers and header files.

UNDEFINED BEHAVIOR Code with undefined behavior is not correct C++. The standard
does not specify what a compiler shall do with such code. It m
ignore the problem completely, issue an error or something else.

UNSPECIFIED BEHAVIOR Code with unspecified behavior is completely legal C++, but com-
pilers may differ. The compiler vendor is not required to descr
what their particular compiler does with such code.

USER-DEFINED
CONVERSION

A user-defined conversion is a conversion from one type to anothe
introduced by a programmer, i.e. not one of the conversions def
by the language. Such user-defined conversions are either a
explicit constructor taking only one parameter, or a conversion op
ator.

VIRTUAL TABLE A virtual table is an array of pointers to all virtual member func
tions of a class. Many compilers generate such tables to implem
dynamic binding of virtual functions.
206 Industrial Strength C++

.

Rules and
recommendations

Naming

Meaningful names

Rec 1.1 Use meaningful names.
Rec 1.2 Use English names for identifiers.
Rec 1.3 Be consistent when naming functions, types, variables and constants

Names that collide

Rec 1.4 Only namespace names should be global.
Rec 1.5 Do not use global using declarations and using directives inside header

files.
Rec 1.6 Prefixes should be used to group macros.
Rec 1.7 Group related files by using a common prefix in the file name.

Illegal naming

Rule 1.8 Do not use identifiers that contain two or more underscores in a row.
Rule 1.9 Do not use identifiers that begin with an underscore.
207

 file.
epa-

con-

at

tions.

n in
Organizing the code

Rule 2.1 Each header file should be self-contained.
Rule 2.2 Avoid unnecessary inclusion.
Rule 2.3 Enclose all code in header files within include guards.
Rec 2.4 Definitions for inline member functions should be placed in a separate
Rec 2.5 Definitions for all template functions of a class should be placed in a s

rate file.

Comments

Rec 3.1 Each file should contain a copyright comment.
Rec 3.2 Each file should contain a comment with a short description of the file

tent.
Rec 3.3 Every file should declare a local constant string that identifies the file.
Rec 3.4 Use // for comments.
Rec 3.5 All comments should be written in English.

Control flow

Rule 4.1 Do not change a loop variable inside a for -loop block.
Rec 4.2 Update loop variables close to where the loop-condition is specified.
Rec 4.3 All flow control primitives (if, else, while, for, do, switch

and case) should be followed by a block, even if it is empty.
Rec 4.4 Statements following a case label should be terminated by a statement th

exits the switch statement.
Rec 4.5 All switch statements should have a default clause.
Rule 4.6 Use break and continue instead of goto .
Rec 4.7 Do not have too complex functions.

Object Life Cycle

Initialization of variables and constants

Rec 5.1 Declare and initialize variables close to where they are used.
Rec 5.2 If possible, initialize variables at the point of declaration.
Rec 5.3 Declare each variable in a separate declaration statement.
Rec 5.4 Literals should only be used in the definition of constants and enumera

Constructor initializer lists

Rec 5.5 Initialize all data members.
Rule 5.6 Let the order in the initializer list be the same as the order of declaratio

the header file. First base classes, then data members.
Rec 5.7 Do not use or pass this in constructor initializer lists.
208 Industrial Strength C++

nces
red.
 and

opy as-

e ac-

-

odify

, or

eant

he ob-
Copying of objects

Rec 5.8 Avoid unnecessary copying of objects that are costly to copy.
Rule 5.9 A function must never return, or in any other way give access to, refere

or pointers to local variables outside the scope in which they are decla
Rec 5.10 If objects of a class should never be copied, then the copy constructor

the copy assignment operator should be declared private and not imple-
mented.

Rec 5.11 A class that manages resources should declare a copy constructor, a c
signment operator, and a destructor.

Rule 5.12 Copy assignment operators should be protected from doing destructiv
tions if an object is assigned to itself.

Conversions

Rec 6.1 Prefer explicit to implicit type conversions.
Rec 6.2 Use the new cast operators (dynamic_cast, const_cast,

reinterpret_cast and static_cast) instead of the old-style casts,
unless portability is an issue.

Rec 6.3 Do not cast away const.
Rule 6.4 Declare a data member as mutable if it must be modified by a const mem

ber function.

The class interface

Inline functions

Rec 7.1 Make simple functions inline.
Rule 7.2 Do not declare virtual member functions as inline .

Argument passing and return values

Rec 7.3 Pass arguments of built-in types by value, unless the function should m
them.

Rec 7.4 Only use a parameter of pointer type if the function stores the address
passes it to a function that does.

Rec 7.5 Pass arguments of class types by reference or pointer.
Rule 7.6 Pass arguments of class types by reference or pointer, if the class is m

as a public base class.
Rule 7.7 The copy assignment operator should return a non-const reference to t

ject assigned to.

Const Correctness

Rule 7.8 A pointer or reference parameter should be declared const if the function
does not change the object bound to it.
209

ve a

ld be

of an

ame

ould
built-

class'
le
ass

 file,

d-

nt is
re

cope
Rule 7.9 The copy constructor and copy assignment operator should always ha
const reference as parameter.

Rule 7.10 Only use const char -pointers to access string literals.
Rule 7.11 A member function that does not change the state of the program shou

declared const .
Rule 7.12 A member function that gives non-const access to the representation

object must not be declared const .
Rec 7.13 Do not let const member functions change the state of the program.

Overloading and default arguments

Rule 7.14 All variants of an overloaded member function should be used for the s
purpose and have similar behavior.

Rec 7.15 If you overload one out of a closely-related set of operators, then you sh
overload the whole set and preserve the same invariants that exist for
in types.

Rule 7.16 If, in a derived class, you need to override one out of a set of the base
overloaded virtual member functions, then you should override the who
set, or use using-declarations to bring all of the functions in the base cl
into the scope of the derived class.

Rule 7.17 Supply default arguments with the function's declaration in the header
not with the function's definition in the implementation file.

Conversion functions

Rec 7.18 One-argument constructors should be declared explicit .
Rec 7.19 Do not use conversion functions.

new and delete

Rule 8.1 delete should only be used with new.
Rule 8.2 delete [] should only be used with new [] .
Rule 8.3 Do not access a pointer or reference to a deleted object.
Rec 8.4 Do not delete this .
Rec 8.5 If you overload operator new for a class, you should have a correspon

ing overloaded operator delete .
Rec 8.6 Customize the memory management for a class if memory manageme

an unacceptably-large part of the allocation and deallocation of free sto
objects of that class.

Static Objects

Rec 9.1 Objects with static storage duration should only be declared within the s
of a class, function or anonymous namespace.

Rec 9.2 Document how static objects are initialized.
210 Industrial Strength C++

ocu-

sed

ected

n that

ass in-

ts.
le to
d.

ted

 a
Object-oriented programming

Encapsulation

Rule 10.1 Only declare data members private.
Rec 10.2 If a member function returns a pointer or reference, then you should d

ment how it should be used and for how long it is valid.

Dynamic binding

Rec 10.3 Selection statements (if and switch) should be used when the flow of
control depends on an object's value, while dynamic binding should be u
when the flow of control depends on the object's type.

Inheritance

Rule 10.4 A public base class must either have a public virtual destructor or a prot
destructor.

Rule 10.5 If you derive from more than one base classes with the same parent, the
parent should be a virtual base class.

The Class Interface

Rec 10.6 Specify classes using preconditions, postconditions, exceptions and cl
variants.

Rec 10.7 Use C++ to describe preconditions, postconditions and class invarian
Rule 10.8 A pointer or reference to an object of a derived class should be possib

use wherever a pointer or reference to a public base class object is use
Rec 10.9 Document the interface of template arguments.

Assertions

Rule 11.1 Do not let assertions change the state of the program.
Rec 11.2 Remove all assertions from production code.

Error handling

Different ways to report errors

Rec 12.1 Check for all errors reported from functions.
Rec 12.2 Use exception handling instead of status values and error codes.

When to throw exceptions

Rec 12.3 Only throw exceptions when a function fails to perform what it is expec
to do.

Rec 12.4 Do not throw exceptions as a way of reporting uncommon values from
function.

Rule 12.5 Do not let destructors called during stack unwinding throw exceptions.
211

w ex-

tructor.

ke
e ob-

e

ns

ini-

hould
Rec 12.6 Constructors of types thrown as exceptions should not themselves thro
ceptions.

Exception-safe code

Rec 12.7 Use objects to manage resources.
Rule 12.8 A resource managed by an object must be released by the object's des
Rec 12.9 Use stack objects instead of free store objects.
Rec 12.10 Before letting any exceptions propagate out of a member function, ma

certain that the class invariant holds, and if possible leave the state of th
ject unchanged.

Exception types

Rec 12.11 Only throw objects of class type.
Rec 12.12 Group related exception types by using inheritance.
Rec 12.13 Only catch objects by reference.

Error recovery

Rule 12.14 Always catch exceptions the user is not supposed to know about.
Rec 12.15 Do not catch exceptions you are not supposed to know about.

Exception specifications

Rec 12.16 Use exception specifications to declare which exceptions that might b
thrown from a function.

Parts of C++ to avoid

Library functions to avoid

Rec 13.1 Use new and delete instead of malloc , calloc , realloc and free .
Rule 13.2 Use the iostream library instead of C-style I/O.
Rule 13.3 Do not use setjmp() and longjmp() .
Rec 13.4 Use overloaded functions and chained function calls instead of functio

with an unspecified number of arguments.

Language constructs to avoid

Rule 13.5 Do not use macros instead of constants, enums, functions or type def
tions.

Rec 13.6 Use an array class instead of built-in arrays.
Rec 13.7 Do not use unions.

Size of executables

Rec 14.1 Avoid duplicated code and data.
Rule 14.2 When a public base class has a virtual destructor, each derived class s
212 Industrial Strength C++

arts

y.

bject.
tity.

wer

ific

ns,

late.
declare and implement a destructor.

Portability

General aspects of portability

Rule 15.1 Do not depend on undefined, unspecified or implementation-defined p
of the language.

Rule 15.2 Do not depend on extensions to the language or to the standard librar
Rec 15.3 Make non-portable code easy to find and replace.

Including files

Rule 15.4 Headers supplied by the implementation should go in <> brackets; all other
headers should go in "" quotes.

Rec 15.5 Do not specify absolute directory names in include directives.
Rec 15.6 Include file names should always be treated as case sensitive.

The size and layout of objects

Rule 15.7 Do not make assumptions about the size of or layout in memory of an o
Rule 15.8 Do not cast a pointer to a shorter quantity to a pointer to a longer quan
Rec 15.9 If possible, use plain int to store, pass or return integer values.
Rec 15.10 Do not explicitly declare integral types as signed or unsigned .
Rule 15.11 Make sure all conversions of a value of one type to another of a narro

type do not slice off significant data.
Rec 15.12 Use typedefs or classes to hide the representation of application-spec

data types.

Unsupported language features

Rec 15.13 Always prefix global names (such as externally visible classes, functio
variables, constants, typedefs and enums) if namespace is not supported by
the compiler.

Rec 15.14 Use macros to prevent usage of unsupported keywords.
Rec 15.15 Do not reuse variables declared inside a for -loop.

Other compiler differences

Rec 15.16 Only inclusion of the header file should be needed when using a temp
Rec 15.17 Do not rely on partial instantiation of templates.
Rec 15.18 Do not rely on the lifetime of temporaries.
Rec 15.19 Do not use pragma s.
Rule 15.20 Always return a value from main() .
Rec 15.21 Do not depend on the order of evaluation of arguments to a function.
213

ether

ith an

etter.

th all
pper-

ion

rs.
ed in
Style

General Aspects of Style

Style 1.1 Do not mix coding styles within a group of closely related classes.

Naming conventions

Style 1.2 In names that consist of more than one word, the words are written tog
and each word that follows the first begins with an uppercase letter.

Style 1.3 The names of classes, typedefs, and enumerated types should begin w
uppercase letter.

Style 1.4 The names of variables and functions should begin with a lower-case l
Style 1.5 Let data members have a “M” as suffix.
Style 1.6 The names of macros should be in uppercase.
Style 1.7 The name of an include guard should be the name of the header file wi

illegal characters replaced by underscores and all letters converted to u
case.

Style 1.8 Do not use characters that can be mistaken for digits, and vice versa.

File-name extensions

Style 1.9 Header files should have the extension “.hh ”.
Style 1.10 Inline definition files should have the extension “.icc ”.

Lexical style

Style 1.11 The names of parameters to functions should be specified in the funct
declaration if the type name is insufficient to describe the parameter.

Style 1.12 Always provide an access specifier for base classes and data membe
Style 1.13 The public, protected, and private sections of a class should be declar

that order.
Style 1.14 The keyword struct should only be used for a C-style struct.
Style 1.15 Define inline member functions outside the class definition.
Style 1.16 Write unary operators together with their operand.
Style 1.17 Write access operators together with their operands.
Style 1.18 Do not access static members with '. ' or '-> '.
214 Industrial Strength C++

Index
Symbols
"" 175
* 200
++ 200
. 200
<> 175
-> 200
_ 193, 195
__ 8

A
abort 138
abstract base class107, 108, 203
access function203
access operator200
access specifier

for base class198
for data member198
implicit 198
order of declaration199
see also encapsulation

accessor203
ambiguous name, multiple inheritance112
argument passing58–65, 66–67

passing array164
array

see array class
see built-in array

array class, instead of built-in array164
array, see built-in array
assertion

assert macro 130
conditions to check119–120, 130–131

auto_ptr 146, 148

B
bad_exception 155
base class

abstract 107, 203
access specifier198
destructor110
duplicated 112
interface 107, 114
mix-in 110, 112
pointer or reference, using110, 120
pointer, using164
virtual 37

bitwise copying 39
block, after flow control primitive27–28
break , see switch
built-in array

allocated with new 88–89
using 164

built-in type 203
alignment in struct177
range of 179
size 177

C
C standard, see standard C
call chain 136
calloc 158
case 28
cast

different types49
new-style 49
see also conversion

catch
as macro183
base class reference135, 151–153
integer 150
with ... 135, 146, 154

char
alignment of pointer178
signed or unsigned 179
signed or unsigned 172

class
215

access specifiers199
compared to struct199
data member access104–105, 198
factory class107–109
forward-declaring13–14
header file 15
name 192, 194
non-copyable40, 205
resource management41–42
singleton 97–98
specification 116, 119–120, 137
used for portability180
see also base class
see also class interface
see also member function

class interface115–125
avoiding exception138
const correctness71–74
exception specification155
supplier, obligations116
user, obligations105, 116

class invariant118, 203
as C++ expression118
preserving147
preserving in derived class121

class template
documenting types125
exception specification155
instantiating 17, 186
see also template

code
duplicated 168–169
non-portable174–175
organization11–18
style 192

comment 19–23
C++ style and C style22
copyright 20
file description 21
language22
template parameter behavior123

common identifier6
compiler differences184–189
const

cast away52–??
correctness66–74, 203
data member162
instead of macro194

member function53, 70–74
parameter66–67
see also mutable

const_cast , see new-style cast
constructor

assignment in body35
declared explicit 183
expected behavior147
implicit conversion183
initializer list 35–38
inline 169
throwing exception142, 147
see also new

control flow 25–30
complexity 30
primitive 27, 204
selection statements107
with exception handling137, 139

conversion47–53
arithmetic 179
between pointer types178
cast-expressions49
explicit 204
explicit vs. implicit 48
from longer to narrower type180
implicit 205
implicit with constructor183
implicit with operator 160
using member function48–49

conversion operator
for string class160, 188
overloading 49, 81–82
returning pointer to data member187

copy assignment operator204
exception safe148
return value65–??
self-assignment43, 44
type of parameter67
when to implement40
see also member function

copy constructor204
throwing exception142
type of parameter67
when to implement40
see also member function

copyable class42
copyright comment20
216 Industrial Strength C++

D
dangling pointer204

how to avoid 43, 89
data member

access specifier104–105, 198
constant162
initialization 35
mutable 53
naming convention194
offset 178
static 97

declaration
class 199
return value189
variable 34

declarative region204
default arguments80
default int 189
default , see switch
delete

accessing deleted object89
and new 88
derived class object111
instead of free 158
stack object90
when to call 106, 158

delete 88–91
derived class

compiler-generated destructor170
delete through base pointer111
implement base class interface107
object, copying151
overriding member functions108

destructor
called after exception134, 147
catching exception140
compiler-generated170
exception safe147
explicit call 91
inline 169
mix-in class 110
releasing resource145
virtual 110, 170
virtual or not 110
see also delete
see also member function

direct base class204
do-while , when to use27

dynamic binding106–109, 204
instead of union165

dynamic storage duration, see new
dynamic_cast , see new-style cast

E
encapsulation104–106, 204
enum

anonymous162
casting an integer to173
instead of macro194
instead of static const int 162
name 194

errno 135, 152
error handling133–156

assertions and exceptions130
code, location144
constructor 136
error description150–151
errors that cannot be prevented137–140
inside destructor142
overloaded operator136
status values and error codes134
unexpected value in switch 29

error recovery153–154, 159
evaluation order

argument189
subexpressions189

exception
compared to status value134–136
representing the type of error150
specification 116
throwing class object150
to terminate program138
translation of status value137
type 149–153, 154
unexpected155
unhandled134, 140
unknown type154
when to throw137–143
see also throw

exception class
constructor 142
copy assignment operator148
copy constructor142
destructor140
error description150–151
217

inheritance135, 150, 151
nested151

exception handling133–156
bad_exception 155
one catch for many exceptions153
performance147
preventing memory leaks92
proper use137–140
recover from exception147, 153–154
resource management145
rethrow exception140
simulating 159
stack unwinding140
terminate 140
uncaught_exception 140–141
unexpected exception155
when to throw exception137–143

exception safe143–149, 204
exception specification121, 155–156

to document class interface155
explicit 183
extension

C++ 174
standard library174

EXTERNAL_TEMPLATE_DEFINITION186

F
factory class107–109
false 183
file

description 21
identification 21
inclusion 175–177
name 8, 195–196
name, case sensitive196
name, template implementation186
scope 204
see also header file
see also inline definition file
see also template header file

finalization function 99
flow control primitive 27, 204
for

loop index 26
scope of loop variable184
when to use27

forwarding function204

free 158
free store204

see new and delete
function

calls, chained159–160
complexity 30
declaration189
evaluation of argument189
lifetime of return value187
local linkage 169
name 194
ownership of return value106
returning reference or pointer105
returning status value134–135
unspecified number of arguments159–

160
wrapper 136
see also inline function
see also linker
see also template function

function parameter59–65
const 66–67
name 194, 197, 198
pointer to array164
reference to temporary188
reference vs. pointer60–62
specifying constness52
to document function198

function template
exception specification155
instantiating 17, 186
see also template

G
global

name 181
object 204
scope 204

goto 29

H
header file

extension196
how to avoid multiple includes14
inclusion 14, 175
name 195
218 Industrial Strength C++

name, case176–177
path name separator176
purpose12
self-contained12
when to include13
see also template header file

header, inclusion of175

I
identifier

language2
separating words in193

if-else
see control flow

if-else 27, 107
implementation file

extension196
name extension196

implementation-defined behavior172, 205
char signed or unsigned 179
data member offset178
include 176
include-directives175
layout of object177
lifetime of temporary object187
pragma 188
size of object177
subtracting with unsigned types179

include
header175
header file175
path names176
using "" 175
using <> 175
see also header file
see also template header file

include guard14, 195
name 195

inheritance110–114
instead of union165
multiple 112–114
private, protected or public120
purpose120
replace if-else and switch 107
shared base class member112
substitutability 120–122

initialization

data member35
instead of assignment33
object 100–101
order, static objects98–101
order, within translation unit99
using function 99
variable 33

initializer list 35–38
calling member function38
order of initializers37
passing this 37

inline definition file 15, 205
extension196

inline function 56–58
effect on compile time13, 57
effect on performance and size56, 169
failure to inline 169

inline member function
in separate file15, 199
virtual 57

inlining
compiler-differences169
correct use56–57
when to avoid169

int
conversion from char 178
out of range179
performance178
size 177–179

INT_MAX 179
INT_MIN 179
integral suffix 195
integral types

choosing 178
signed and unsigned 179

invariant
see class invariant

iostream
compared to stdio 158
performance159

ISO 9126 171
iterator 139–140, 205

K
keyword

as macro182
list 182
219

unsupported183

L
letters, case193–196
limits.h 179
linker 168
list of keywords 182
literal 205

type of string literal69
where to use34

local variable
see variable

long int
instead of int 179
size 179

longjmp 159
loop

block 27–28
selecting 27

M
macro

assert 130
constant 161–162
EXTERNAL_TEMPLATE_DEFINITION1

86
function-like 162–163
include guard14
INT_MAX 179
INT_MIN 179
name 8, 161, 194–195
type alias 163
unsupported keyword183
used for portability174

magic number, see literal
maintenance

adding classes107
adding exception classes154

malloc 158
member function

compiler-generated member functions41
const -declared70–74
definition inside class199
destructor111
dynamic binding107
exception specification116

exception-safe implementation147
in struct 199
modifying data member53
name 198
postcondition116–118, 138
precondition 116–118
pure virtual 107
throwing exception147
virtual 57, 107
where to define15
see also conversion operator
see also copy assignment operator
see also copy constructor
see also destructor
see also inline function
see also inline member function

member object205
see base class
see data member

memory allocation
built-in array 88–89
exception safe145
mixing malloc and new 158
performance149

memory leak145, 148
memory management

customized92–94
deleting derived class object111
memory managed by class148
ownership of object106

mix-in base class110, 112
modifier 205
modifying function 205
multiple inheritance112–114
mutable

as macro183
when to use53

N
name

allocation function106
ambiguous112
clash 181
consisting of several words193
file 8
illegal 8
include guard195
macro 8, 161
220 Industrial Strength C++

parameter194
prefix 181
qualified with base class112
scope 5
suffix 194
template requirement123

namespace5–7
std 184
unnamed97–98

naming 1–9
abbreviations2
accessors and modifiers4
convention 106, 193–195
language2

new
and delete 88
bad_alloc 139
constructor88
instead of malloc 158
performance145

new 88–89
new-style cast

const_cast 50
dynamic_cast 49–50
reinterpret_cast 49–50
static_cast 49–50

non-copyable class41, 205

O
object

deleting 110
dynamically allocated88
how to copy 38–44
life cycle 31–44
ownership and lifetime105
representation104
size and layout177–180
size, passed to operator delete 110
static 96–101
using correctly116

object state
access105
class invariant118
how to modify 147, 148
modifying 147
preserving147
specifying state changes116

object-oriented programming103–125,
205

operator
access200
alternative textual names182
unary 200

operator delete
size of object110
see also overloading

operator delete 88
operator delete[]

see also overloading
operator delete[] 89, 92
operator new

see also overloading
operator new 88, 91
operator new[]

see also overloading
operator new[] 88, 92
operator+ 188
operator<< 160, 188
overloading 74–??

memory management91–94

P
parameter

see function parameter
see template parameter

performance
caching 141
exception handling139, 147
flexibility trade-off 148
inlining 169
iostream compared to stdio 159
memory allocation145, 149
program size168
removing assertions130
using int 178

placement new 91
POD 199
pointer

base class110, 120
casting 178
constness69
dangling 43, 89, 188
dereferencing173
parameter59–62
return value105
221

to array, using164
to free store object145
type 174

polymorphism 205
portability 171–189

general aspects172–175
ISO 9126 definition171
isolate non-portable code174
see implementation-defined behavior
see undefined behavior
see unspecified behavior

postcondition116–118, 205
as C++ expression118
strengthen in derived class121

pragma
disabling of optimization188
once 188

pragma 188
precondition 116–118, 205

as C++ expression118
weaken in derived class121
when to check138

preprocessor
include guard14, 188, 195
pragma 188

printf 160
private 198, 199
program

correctness116, 138
size 167–170
terminated by exception134, 138
terminating 138
testing 119

protected 198
public

base class110
data member104

public 198, 199
pure virtual member function107

Q
qualification, base class112

R
realloc 158
reference

base class120
inside struct199
parameter59–62
return value105

reinterpret_cast , see new-style cast
representation of object104
resource205

leak, exception140
locally managed146
managed by auto_ptr 146
managed by class41–42
managed by object144
releasing144

resource management
exception safe145

return in switch 28
return value

copy assignment operator65–??
ownership 105

reuse, consequences168

S
scope

class 7
macro 161
namespace6

self-contained206
setjmp 159
short int , instead of int 179
signature206
singleton class97–98
size of executable167–170

inlining 169
slicing 151, 180, 206
stack allocation

instead of free store145
preventing 90

stack unwinding140, 206
standard C++182–184

compatibility with C 199
standard library175

abort 138
array class164
assert 130
auto_ptr 146, 148
bad_exception 155
C memory handling158
222 Industrial Strength C++

find 139
names to avoid184
printf 160
style 192
template requirement123
uncaught_exception 140–141

state 206
depending on assert 130
see also object state

static allocation96–101, 145
static member

accessing200
static object95–101

file scope 97, 98
function-local 99

static_cast , see new-style cast
stdio 158, 159
struct , data member access199
style 191–201

consistent192, 195
function parameter names197–198
lexical 197–201
mixing libraries 192

substitutability 120–122, 206
switch

case-labels28
default -label 29
fall-through 28
how to terminate28
see control flow

switch 27, 107

T
template

compiler differences16, 186–187
documenting123–125
effect on compile time185
exception handling147, 154
instantiating 17, 185–187
names qualified with typename 4

template definition file16, 186
template header file

including implementation16, 186
inclusion 185–186

template parameter
behavior 63, 123–125
type constraint123

temporary object
creating 187
lifetime 187

terminate 140, 142
this

delete this 90
in initializer list 37
to protect against self-assignment43

throw
as macro183
compared to return134
during assignment149
inside constructor92, 136, 147
inside overloaded operator136
instead of status value136
of unknown exception154
rethrow 146
see also exception

translation unit99, 206
true 183
try

as macro183
managing memory within146
see also catch

type
alignment 178
application-specific180
name 194

typedef
name 194
standard name125
used for portability174, 180

typename 5

U
UINT_MAX 179
UINT_MIN 179
uncaught_exception 140–141
undefined behavior172, 206
union, compared to class165
unspecified behavior172, 206

evaluation of argument189
evaluation order of subexpressions189
inline 169

unspecified number of arguments159–160
unsupported language features181–184

bool 183
223

exception handling159, 183
explicit 183
mutable 183
namespace181
uncaught_exception 140
variable declared in for -loop 184

user-defined conversion206
using declaration6, 7
using directive 7

V
variable

declaring 34
initialization 33
local 194
local static 97, 98
name 194
returning reference to local39
stack unwinding147
where to declare32

virtual
see virtual base class
see virtual member function

virtual base class112–114
initialization 37

virtual member function
destructor110
dynamic binding106–109
implementation170
inline 169
linkage 168
overridden 108
replace if-else and switch 107

virtual table 170, 206

W
while , when to use27
word size 178
wrapper function136
224 Industrial Strength C++

	Industrial Strength C++
	Mats Henricson Erik Nyquist
	Contents
	Naming� 1
	Organizing the�code� 11
	Comments� 19
	Control flow� 25
	Object Life Cycle� 31
	Conversions� 47
	The class interface� 55
	new and delete� 87
	Static Objects� 95
	Object-oriented programming� 103
	Assertions� 129
	Error handling� 133
	Parts of C++ to avoid� 157
	Size of executables� 167
	Portability� 171
	Style� 191
	AppendixTerminology� 203
	Rules and recommendations� 207
	Index� 215
	Acknowledgements

	Chapter ��One
	Naming
	Meaningful names
	RULES AND RECOMMENDATIONS
	Rec 1.1 Use meaningful names.
	Rec 1.2 Use English names for identifiers.
	Rec 1.3 Be consistent when naming functions, types, variables and constants.

	See Also
	Rec 1.1 Use meaningful names.
	EXAMPLE 1.1 Naming a variable
	Rec 1.2 Use English names for identifiers.
	Rec 1.3 Be consistent when naming functions, types, variables and constants.

	EXAMPLE 1.2 Different ways to print an object
	EXAMPLE 1.3 Naming accessors and modifiers
	EXAMPLE 1.4 Names used by a template function

	Names that collide
	RULES AND RECOMMENDATIONS:
	Rec 1.4 Only namespace names should be global.
	Rec 1.5 Do not use global using declarations and using directives inside header files.
	Rec 1.6 Prefixes should be used to group macros.
	Rec 1.7 Group related files by using a common prefix in the file name.

	See Also
	Rec 1.4 Only namespace names should be global.
	EXAMPLE 1.5 Namespace
	EXAMPLE 1.6 Accessing names from namespace
	EXAMPLE 1.7 Class as namespace
	EXAMPLE 1.8 Class names with prefixes
	Rec 1.5 Do not use global using declarations and using directives inside header files.
	Rec 1.6 Prefixes should be used to group macros. Rec 1.7 Group related files by using a common pr...

	EXAMPLE 1.9 Names of include files

	Illegal naming
	RULES AND RECOMMENDATIONS
	Rule 1.8 Do not use identifiers that contain two or more underscores in a row.
	Rule 1.9 Do not use identifiers that begin with an underscore.

	See Also
	Rule 1.8 Do not use identifiers that contain two or more underscores in a row. Rule 1.9 Do not us...
	EXAMPLE 1.10 Use of underscores in names

	Chapter ��Two
	Organizing the�code
	RULES AND RECOMMENDATIONS
	Rule 2.1 Each header file should be self-contained.
	Rule 2.2 Avoid unnecessary inclusion.
	Rule 2.3 Enclose all code in header files within include guards.
	Rec 2.4 Definitions for inline member functions should be placed in a separate file.
	Rec 2.5 Definitions for all template functions of a class should be placed in a separate file.

	See Also
	Rule 2.1 Each header file should be self-contained.
	EXAMPLE 2.1 Testing for self-containment
	Rule 2.2 Avoid unnecessary inclusion.

	EXAMPLE 2.2 Data member of class type
	EXAMPLE 2.3 Forward declaration
	Rule 2.3 Enclose all code in header files within include guards.

	EXAMPLE 2.4 Include guard
	Rec 2.4 Definitions for inline member functions should be placed in a separate file.

	EXAMPLE 2.5 Disable inlining by using inline definition files
	EmcString.icc
	EmcString.hh
	EmcString.cc
	Rec 2.5 Definitions for all template functions of a class should be placed in a separate file.

	EXAMPLE 2.6 Function template
	EXAMPLE 2.7 Class template
	EXAMPLE 2.8 Template header file
	EmcQueue.hh

	Chapter �Three
	Comments
	RULES AND RECOMMENDATIONS
	Rec 3.1 Each file should contain a copyright comment.
	Rec 3.2 Each file should contain a comment with a short description of the file content.
	Rec 3.3 Every file should declare a local constant string that identifies the file.
	Rec 3.4 Use // for comments.
	Rec 3.5 All comments should be written in English.

	See Also
	Rec 3.1 Each file should contain a copyright comment.
	Short copyright comment
	Long copyright comment

	Rec 3.2 Each file should contain a comment with a short description of the file content.
	Comment describing the file content

	Rec 3.3 Every file should declare a local constant string that identifies the file.
	EXAMPLE 3.1 Static string identifying the file
	Rec 3.4 Use // for comments.

	EXAMPLE 3.2 Comments in C++
	EXAMPLE 3.3 Nested C-style comment
	Rec 3.5 All comments should be written in English.

	Chapter ��Four
	Control flow
	RULES AND RECOMMENDATIONS
	Rule 4.1 Do not change a loop variable inside a for-loop block.
	Rec 4.2 Update loop variables close to where the loop-condition is specified.
	Rec 4.3 All flow control primitives (if, else, while, for, do, switch and case) should be followe...
	Rec 4.4 Statements following a case label should be terminated by a statement that exits the swit...
	Rec 4.5 All switch statements should have a default clause.
	Rule 4.6 Use break and continue instead of goto.
	Rec 4.7 Do not have too complex functions.

	See Also
	Rule 4.1 Do not change a loop variable inside a for-loop block.
	Rec 4.2 Update loop variables close to where the loop-condition is specified.
	1. Use a for loop if the loop variable is updated on exit from the block AFTER the loop condition...
	2. Use a do-while loop if the loop will execute at least once and if the loop variable is updated...
	3. Use a while loop if the loop variable is updated on entry to the block AFTER the loop conditio...

	Rec 4.3 All flow control primitives (if, else, while, for, do, switch and case) should be followe...
	EXAMPLE 4.1 Block after for-loop
	EXAMPLE 4.2 Blocks in switch-statement
	Rec 4.4 Statements following a case label should be terminated by a statement that exits the swit...

	EXAMPLE 4.3 How to write switch statements
	Rec 4.5 All switch statements should have a default clause.
	Rule 4.6 Use break and continue instead of goto.

	EXAMPLE 4.4 How to break out of a loop
	Rec 4.7 Do not have too complex functions.

	Chapter ��Five
	Object Life Cycle
	Initialization of variables and constants
	RULES AND RECOMMENDATIONS
	Rec 5.1 Declare and initialize variables close to where they are used.
	Rec 5.2 If possible, initialize variables at the point of declaration.
	Rec 5.3 Declare each variable in a separate declaration statement.
	Rec 5.4 Literals should only be used in the definition of constants and enumerations.

	See Also
	Rec 5.1 Declare and initialize variables close to where they are used.
	EXAMPLE 5.1 Initializing variables
	Rec 5.2 If possible, initialize variables at the point of declaration.

	EXAMPLE 5.2 Initialization instead of assignment
	EXAMPLE 5.3 Assignment instead of initialization
	Rec 5.3 Declare each variable in a separate declaration statement.

	EXAMPLE 5.4 Declaring multiple variables
	Rec 5.4 Literals should only be used in the definition of constants and enumerations.

	EXAMPLE 5.5 Correct use of “magic” number

	Constructor initializer lists
	RULES AND RECOMMENDATIONS
	Rec 5.5 Initialize all data members.
	Rule 5.6 Let the order in the initializer list be the same as the order of declaration in the hea...
	Rec 5.7 Do not use or pass this in constructor initializer lists.

	See Also
	Rec 5.5 Initialize all data members.
	EXAMPLE 5.6 Constructor initialization lists
	Rule 5.6 Let the order in the initializer list be the same as the order of declaration in the hea...

	EXAMPLE 5.7 Order of initializers
	Rec 5.7 Do not use or pass this in constructor initializer lists.

	Copying of objects
	RULES AND RECOMMENDATIONS
	Rec 5.8 Avoid unnecessary copying of objects that are costly to copy.
	Rule 5.9 A function must never return, or in any other way give access to, references or pointers...
	Rec 5.10 If objects of a class should never be copied, then the copy constructor and the copy ass...
	Rec 5.11 A class that manages resources should declare a copy constructor, a copy assignment oper...
	Rule 5.12 Copy assignment operators should be protected from doing destructive actions if an obje...

	See Also
	Rec 5.8 Avoid unnecessary copying of objects that are costly to copy.
	Rule 5.9 A function must never return, or in any other way give access to, references or pointers...
	EXAMPLE 5.8 Returning dangling pointers and references
	Rec 5.10 If objects of a class should never be copied, then the copy constructor and the copy ass...

	EXAMPLE 5.9 Non-copyable class
	Rec 5.11 A class that manages resources should declare a copy constructor, a copy assignment oper...

	EXAMPLE 5.10 Copyable class that manages memory
	Rule 5.12 Copy assignment operators should be protected from doing destructive actions if an obje...

	EXAMPLE 5.11 Self-assignment
	EXAMPLE 5.12 Implementing a copy assignment operator

	Chapter ��Six
	Conversions
	RULES AND RECOMMENDATIONS
	Rec 6.1 Prefer explicit to implicit type conversions.
	Rec 6.2 Use the new cast operators (dynamic_cast, const_cast, reinterpret_cast and static_cast) i...
	Rec 6.3 Do not cast away const.
	Rule 6.4 Declare a data member as mutable if it must be modified by a const member function.

	See Also
	Rec 6.1 Prefer explicit to implicit type conversions.
	EXAMPLE 6.1 Explicit conversions
	EXAMPLE 6.2 Conversion of string object to const char*
	Rec 6.2 Use the new cast operators (dynamic_cast, const_cast, reinterpret_cast and static_cast) i...

	EXAMPLE 6.3 Using static_cast
	EXAMPLE 6.4 New style casts
	Rec 6.3 Do not cast away const.

	EXAMPLE 6.5 Casting away const
	EXAMPLE 6.6 Object in write-protected memory
	Rule 6.4 Declare a data member as mutable if it must be modified by a const member function.

	EXAMPLE 6.7 Class with mutable data member

	Chapter �Seven
	The class interface
	Inline functions
	RULES AND RECOMMENDATIONS
	Rec 7.1 Make simple functions inline.
	Rule 7.2 Do not declare virtual member functions as inline.

	See Also
	Rec 7.1 Make simple functions inline.
	EXAMPLE 7.1 A class with inline member functions
	Rule 7.2 Do not declare virtual member functions as inline.

	Argument passing and return values
	RULES AND RECOMMENDATIONS
	Rec 7.3 Pass arguments of built-in types by value, unless the function should modify them.
	Rec 7.4 Only use a parameter of pointer type if the function stores the address, or passes it to ...
	Rec 7.5 Pass arguments of class types by reference or pointer.
	Rule 7.6 Pass arguments of class types by reference or pointer, if the class is meant as a public...
	Rule 7.7 The copy assignment operator should return a non-const reference to the object assigned to.

	See Also
	Rec 7.3 Pass arguments of built-in types by value, unless the function should modify them.
	EXAMPLE 7.2 Different types of function parameters
	EXAMPLE 7.3 Passing parameters by value
	Rec 7.4 Only use a parameter of pointer type if the function stores the address, or passes it to ...

	EXAMPLE 7.4 Pointer and reference arguments
	Rec 7.5 Pass arguments of class types by reference or pointer.

	EXAMPLE 7.5 Passing arguments of unknown type
	Rule 7.6 Pass arguments of class types by reference or pointer, if the class is meant as a public...

	EXAMPLE 7.6 Passing base class reference
	EXAMPLE 7.7 Passing base class object by value
	Rule 7.7 The copy assignment operator should return a non- const reference to the object assigned...

	EXAMPLE 7.8 Return value from assignment operators

	Const Correctness
	RULES AND RECOMMENDATIONS
	Rule 7.8 A pointer or reference parameter should be declared const if the function does not chang...
	Rule 7.9 The copy constructor and copy assignment operator should always have a const reference a...
	Rule 7.10 Only use const char-pointers to access string literals.
	Rule 7.11 A member function that does not change the state of the program should be declared const.
	Rule 7.12 A member function that gives non-const access to the representation of an object must n...
	Rec 7.13 Do not let const member functions change the state of the program.

	See Also
	Rule 7.8 A pointer or reference parameter should be declared const if the function does not chang...
	EXAMPLE 7.9 const-declared parameter
	EXAMPLE 7.10 Using parameter as a local variable
	Rule 7.9 The copy constructor and copy assignment operator should always have a const reference a...

	EXAMPLE 7.11 Copyable type parameter
	Rule 7.10 Only use const char-pointers to access string literals.

	EXAMPLE 7.12 Accessing string literals
	Rule 7.11 A member function that does not change the state of the program should be declared const.
	1. Only const member functions can be called for const objects.
	2. A const member function will not change data members.

	EXAMPLE 7.13 Implications of const
	EXAMPLE 7.14 Accessing objects inside const member function
	Rule 7.12 A member function that gives non-const access to the representation of an object must n...

	EXAMPLE 7.15 Accessing characters in a string
	Rec 7.13 Do not let const member functions change the state of the program.

	Overloading and default arguments
	RULES AND RECOMMENDATIONS
	Rule 7.14 All variants of an overloaded member function should be used for the same purpose and h...
	Rec 7.15 If you overload one out of a closely-related set of operators, then you should overload ...
	Rule 7.16 If, in a derived class, you need to override one out of a set of the base class' overlo...
	Rule 7.17 Supply default arguments with the function's declaration in the header file, not with t...

	See Also
	Rule 7.14 All variants of an overloaded member function should be used for the same purpose and h...
	EXAMPLE 7.16 Overloaded member functions
	Rec 7.15 If you overload one out of a closely-related set of operators, then you should overload ...

	EXAMPLE 7.17 Operator overloading
	EXAMPLE 7.18 Implementation of closely related operators
	Rule 7.16 If, in a derived class, you need to override one out of a set of the base class' overlo...

	EXAMPLE 7.19 Hiding member functions
	EXAMPLE 7.20 Inheriting overloaded virtual member functions
	Rule 7.17 Supply default arguments with the function's declaration in the header file, not with t...

	EXAMPLE 7.21 Adding default arguments
	EXAMPLE 7.22 Default arguments for member function

	Conversion functions
	RULES AND RECOMMENDATIONS
	Rec 7.18 One-argument constructors should be declared explicit.
	Rec 7.19 Do not use conversion functions.

	See Also
	Rec 7.18 One-argument constructors should be declared explicit.
	EXAMPLE 7.23 One-argument constructor
	Rec 7.19 Do not use conversion functions.

	EXAMPLE 7.24 How to avoid conversion operator function

	Chapter �Eight
	new and delete
	RULES AND RECOMMENDATIONS
	Rule 8.1 delete should only be used with new.
	Rule 8.2 delete [] should only be used with new [].
	Rule 8.3 Do not access a pointer or reference to a deleted object.
	Rec 8.4 Do not delete this.
	Rec 8.5 If you overload operator new for a class, you should have a corresponding overloaded oper...
	Rec 8.6 Customize the memory management for a class if memory management is an unacceptably-large...

	See Also
	Rule 8.1 delete should only be used with new. Rule 8.2 delete [] should only be used with new [].
	EXAMPLE 8.1 Allocate and deallocate free store object
	Rule 8.3 Do not access a pointer or reference to a deleted object.

	EXAMPLE 8.2 Dangerous access to deleted object
	Rec 8.4 Do not delete this.

	EXAMPLE 8.3 Objects that commit suicide
	Rec 8.5 If you overload operator new for a class, you should have a corresponding overloaded oper...

	EXAMPLE 8.4 Placement new
	EXAMPLE 8.5 Class with customized memory management
	Rec 8.6 Customize the memory management for a class if memory management is an unacceptably-large...

	Chapter ��Nine
	Static Objects
	RULES AND RECOMMENDATIONS
	Rec 9.1 Objects with static storage duration should only be declared within the scope of a class,...
	Rec 9.2 Document how static objects are initialized.

	See Also
	Rec 9.1 Objects with static storage duration should only be declared within the scope of a class,...
	EXAMPLE 9.1 Function local static object
	EXAMPLE 9.2 Static data member
	EXAMPLE 9.3 Unnamed namespace
	EXAMPLE 9.4 Static objects in file scope
	Rec 9.2 Document how static objects are initialized.

	EXAMPLE 9.5 Access to static object inside constructor
	EXAMPLE 9.6 Initialization order of static objects
	EXAMPLE 9.7 Initialization object

	Chapter ��Ten
	Object- oriented programming
	Encapsulation
	RULES AND RECOMMENDATIONS
	Rule 10.1 Only declare data members private.
	Rec 10.2 If a member function returns a pointer or reference, then you should document how it sho...

	See Also
	Rule 10.1 Only declare data members private.
	Rec 10.2 If a member function returns a pointer or reference, then you should document how it sho...
	EXAMPLE 10.1 Returning non-const reference to object
	EXAMPLE 10.2 Assigning to string element

	Dynamic binding
	RULES AND RECOMMENDATIONS
	Rec 10.3 Selection statements (if and switch) should be used when the flow of control depends on ...

	See Also
	Rec 10.3 Selection statements (if and switch) should be used when the flow of control depends on ...
	EXAMPLE 10.3 Factory class
	EXAMPLE 10.4 Dynamic binding

	Inheritance
	RULES AND RECOMMENDATIONS
	Rule 10.4 A public base class must either have a public virtual destructor or a protected destruc...
	Rule 10.5 If you derive from more than one base classes with the same parent, then that parent sh...

	See Also
	Rule 10.4 A public base class must either have a public virtual destructor or a protected destruc...
	EXAMPLE 10.5 Deleting a derived class object
	Rule 10.5 If you derive from more than one base classes with the same parent, then that parent sh...

	EXAMPLE 10.6 Virtual base class

	The Class Interface
	RULES AND RECOMMENDATIONS
	Rec 10.6 Specify classes using preconditions, postconditions, exceptions and class invariants.
	Rec 10.7 Use C++ to describe preconditions, postconditions and class invariants.
	Rule 10.8 A pointer or reference to an object of a derived class should be possible to use wherev...
	Rec 10.9 Document the interface of template arguments.

	See Also
	Rec 10.6 Specify classes using preconditions, postconditions, exceptions and class invariants.
	EXAMPLE 10.7 Pre- and postconditions
	EXAMPLE 10.8 Using member function with precondition
	EXAMPLE 10.9 Class with invariant
	Rec 10.7 Use C++ to describe preconditions, postconditions and class invariants.

	EXAMPLE 10.10 Using comments to specify class template
	EXAMPLE 10.11 Checking precondition
	Rule 10.8 A pointer or reference to an object of a derived class should be possible to use wherev...

	EXAMPLE 10.12 Substitutability
	EXAMPLE 10.13 Specification of overriden member function
	Rec 10.9 Document the interface of template arguments.

	EXAMPLE 10.14 Describing template argument requirements
	EXAMPLE 10.15 Checking type constraints
	EXAMPLE 10.16 Performance characteristics of types

	Chapter Eleven
	Assertions
	RULES AND RECOMMENDATIONS
	Rule 11.1 Do not let assertions change the state of the program.
	Rec 11.2 Remove all assertions from production code.

	See Also
	Rule 11.1 Do not let assertions change the state of the program.
	EXAMPLE 11.1 Standard assert macro
	Rec 11.2 Remove all assertions from production code.

	EXAMPLE 11.2 Assertions and exceptions

	Chapter Twelve
	Error handling
	Different ways to report errors
	RULES AND RECOMMENDATIONS
	Rec 12.1 Check for all errors reported from functions.
	Rec 12.2 Use exception handling instead of status values and error codes.

	See Also
	Rec 12.1 Check for all errors reported from functions. Rec 12.2 Use exception handling instead of...
	EXAMPLE 12.1 Checking status value
	EXAMPLE 12.2 Throwing an exception

	When to throw exceptions
	RULES AND RECOMMENDATIONS
	Rec 12.3 Only throw exceptions when a function fails to perform what it is expected to do.
	Rec 12.4 Do not throw exceptions as a way of reporting uncommon values from a function.
	Rule 12.5 Do not let destructors called during stack unwinding throw exceptions.
	Rec 12.6 Constructors of types thrown as exceptions should not themselves throw exceptions.

	See Also
	Rec 12.3 Only throw exceptions when a function fails to perform what it is expected to do.
	EXAMPLE 12.3 Member function with precondition
	Rec 12.4 Do not throw exceptions as a way of reporting uncommon values from a function.

	EXAMPLE 12.4 Returning special value to report failure
	Rule 12.5 Do not let destructors called during stack unwinding throw exceptions.

	EXAMPLE 12.5 Preventing exceptions inside destructors
	Rec 12.6 Constructors of types thrown as exceptions should not themselves throw exceptions.

	EXAMPLE 12.6 Exception class constructor

	Exception-safe code
	RULES AND RECOMMENDATIONS
	Rec 12.7 Use objects to manage resources.
	Rule 12.8 A resource managed by an object must be released by the object's destructor.
	Rec 12.9 Use stack objects instead of free store objects.
	Rec 12.10 Before letting any exceptions propagate out of a member function, make certain that the...

	See Also
	Rec 12.7 Use objects to manage resources.
	1. call function to acquire resource
	2. use the resource
	3. call function to release resource

	Rule 12.8 A resource managed by an object must be released by the object's destructor.
	Rec 12.9 Use stack objects instead of free store objects.
	EXAMPLE 12.7 Unsafe memory allocation
	EXAMPLE 12.8 Having a try-block to manage memory
	EXAMPLE 12.9 Exception safe allocation of free store objects
	Rec 12.10 Before letting any exceptions propagate out of a member function, make certain that the...

	EXAMPLE 12.10 Exception safe copy assignment operator

	Exception types
	RULES AND RECOMMENDATIONS
	Rec 12.11 Only throw objects of class type.
	Rec 12.12 Group related exception types by using inheritance.
	Rec 12.13 Only catch objects by reference.

	See Also
	Rec 12.11 Only throw objects of class type.
	EXAMPLE 12.11 Throwing object of built-in type
	Rec 12.12 Group related exception types by using inheritance. Rec 12.13 Only catch objects by ref...

	EXAMPLE 12.12 Inheritance of exception classes
	EXAMPLE 12.13 Handling many exceptions with one handler

	Error recovery
	RULES AND RECOMMENDATIONS
	Rule 12.14 Always catch exceptions the user is not supposed to know about.
	Rec 12.15 Do not catch exceptions you are not supposed to know about.

	See Also
	Rule 12.14 Always catch exceptions the user is not supposed to know about.
	Rec 12.15 Do not catch exceptions you are not supposed to know about.

	Exception specifications
	RULES AND RECOMMENDATIONS
	Rec 12.16 Use exception specifications to declare which exceptions that might be thrown from a fu...

	See Also
	Rec 12.16 Use exception specifications to declare which exceptions that might be thrown from a fu...
	EXAMPLE 12.14 Exception specification

	Chapter Thirteen
	Parts of C++ to avoid
	Library functions to avoid
	RULES AND RECOMMENDATIONS:
	Rec 13.1 Use new and delete instead of malloc, calloc, realloc and free.
	Rule 13.2 Use the iostream library instead of C-style I/O.
	Rule 13.3 Do not use setjmp() and longjmp().
	Rec 13.4 Use overloaded functions and chained function calls instead of functions with an unspeci...

	See Also
	Rec 13.1 Use new and delete instead of malloc, calloc, realloc and free.
	Rule 13.2 Use the iostream library instead of C-style I/O.
	EXAMPLE 13.1 C-style I/O is not adequate for objects
	Rule 13.3 Do not use setjmp() and longjmp().
	Rec 13.4 Use overloaded functions and chained function calls instead of functions with an unspeci...

	EXAMPLE 13.2 Passing objects to printf()
	EXAMPLE 13.3 Overloading of operator<<

	Language constructs to avoid
	RULES AND RECOMMENDATIONS
	Rule 13.5 Do not use macros instead of constants, enums, functions or type definitions.
	Rec 13.6 Use an array class instead of built-in arrays.
	Rec 13.7 Do not use unions.

	See Also
	Rule 13.5 Do not use macros instead of constants, enums, functions or type definitions.
	EXAMPLE 13.4 Macros do not obey scope rules
	EXAMPLE 13.5 Recommended way to define constants
	EXAMPLE 13.6 Using an enum instead of static const int
	EXAMPLE 13.7 Function-like macro, SQUARE
	EXAMPLE 13.8 Inline function, square
	EXAMPLE 13.9 Function-like macros are not type safe
	EXAMPLE 13.10 How to define synonyms for a type
	Rec 13.6 Use an array class instead of built-in arrays.

	EXAMPLE 13.11 Passing array to function
	Rec 13.7 Do not use unions.

	Chapter Fourteen
	Size of executables
	RULES AND RECOMMENDATIONS
	Rec 14.1 Avoid duplicated code and data.
	Rule 14.2 When a public base class has a virtual destructor, each derived class should declare an...

	See Also
	Rec 14.1 Avoid duplicated code and data.
	Rule 14.2 When a public base class has a virtual destructor, each derived class should declare an...

	Chapter Fifteen
	Portability
	General aspects of portability
	RULES AND RECOMMENDATIONS
	Rule 15.1 Do not depend on undefined, unspecified or implementation-defined parts of the language.
	Rule 15.2 Do not depend on extensions to the language or to the standard library.
	Rec 15.3 Make non-portable code easy to find and replace.

	See Also
	Rule 15.1 Do not depend on undefined, unspecified or implementation-defined parts of the language.
	1. Implementation-defined behavior
	2. Unspecified behavior
	3. Undefined behavior

	EXAMPLE 15.1 Implementation-defined behavior
	EXAMPLE 15.2 Unspecified behavior
	EXAMPLE 15.3 Undefined behavior
	Rule 15.2 Do not depend on extensions to the language or to the standard library.

	EXAMPLE 15.4 Language extension
	Rec 15.3 Make non-portable code easy to find and replace.

	EXAMPLE 15.5 Type of fixed size

	Including files
	RULES AND RECOMMENDATIONS
	Rule 15.4 Headers supplied by the implementation should go in <> brackets; all other headers shou...
	Rec 15.5 Do not specify absolute directory names in include directives.
	Rec 15.6 Include file names should always be treated as case sensitive.

	See Also
	Rule 15.4 Headers supplied by the implementation should go in <> brackets; all other headers shou...
	EXAMPLE 15.6 Good and bad way of including files
	Rec 15.5 Do not specify absolute directory names in include directives.

	EXAMPLE 15.7 Directory names in include directives
	Rec 15.6 Include file names should always be treated as case sensitive.

	EXAMPLE 15.8 Case-sensitivity of header file name

	The size and layout of objects
	RULES AND RECOMMENDATIONS
	Rule 15.7 Do not make assumptions about the size of or layout in memory of an object.
	Rule 15.8 Do not cast a pointer to a shorter quantity to a pointer to a longer quantity.
	Rec 15.9 If possible, use plain int to store, pass or return integer values.
	Rec 15.10 Do not explicitly declare integral types as signed or unsigned.
	Rule 15.11 Make sure all conversions of a value of one type to another of a narrower type do not ...
	Rec 15.12 Use typedefs or classes to hide the representation of application-specific data types.

	See Also
	Rule 15.7 Do not make assumptions about the size of or layout in memory of an object.
	EXAMPLE 15.9 Offset of data member
	Rule 15.8 Do not cast a pointer to a shorter quantity to a pointer to a longer quantity.

	EXAMPLE 15.10 Cast must obey alignment rules
	Rec 15.9 If possible, use plain int to store, pass or return integer values.
	Rec 15.10 Do not explicitly declare integral types as signed or unsigned.

	EXAMPLE 15.11 Mixing signed and unsigned integers
	EXAMPLE 15.12 chars can be signed or unsigned
	Rule 15.11 Make sure all conversions of a value of one type to another of a narrower type do not ...

	EXAMPLE 15.13 OS-specific typedef
	Rec 15.12 Use typedefs or classes to hide the representation of application-specific data types.

	Unsupported language features
	RULES AND RECOMMENDATIONS
	Rec 15.13 Always prefix global names (such as externally visible classes, functions, variables, c...
	Rec 15.14 Use macros to prevent usage of unsupported keywords.
	Rec 15.15 Do not reuse variables declared inside a for-loop.

	See Also
	Rec 15.13 Always prefix global names (such as externally visible classes, functions, variables, c...
	EXAMPLE 15.14 Prefixed name
	Rec 15.14 Use macros to prevent usage of unsupported keywords.

	EXAMPLE 15.15 Unsupported keyword as empty macro
	EXAMPLE 15.16 Forward-compatibility macros
	Rec 15.15 Do not reuse variables declared inside a for- loop.

	EXAMPLE 15.17 Reusing a loop variable

	Other compiler differences
	RULES AND RECOMMENDATIONS
	Rec 15.16 Only inclusion of the header file should be needed when using a template.
	Rec 15.17 Do not rely on partial instantiation of templates.
	Rec 15.18 Do not rely on the lifetime of temporaries.
	Rec 15.19 Do not use pragmas.
	Rule 15.20 Always return a value from main().
	Rec 15.21 Do not depend on the order of evaluation of arguments to a function.

	See Also
	Rec 15.16 Only inclusion of the header file should be needed when using a template.
	EXAMPLE 15.18 Using a template
	EXAMPLE 15.19 Template header file
	Rec 15.17 Do not rely on partial instantiation of templates.
	Rec 15.18 Do not rely on the lifetime of temporaries.

	EXAMPLE 15.20 Temporary objects
	Rec 15.19 Do not use pragmas.

	EXAMPLE 15.21 A pragma-directive
	Rule 15.20 Always return a value from main().

	EXAMPLE 15.22 How to declare main()
	Rec 15.21 Do not depend on the order of evaluation of arguments to a function.

	EXAMPLE 15.23 Evaluation order of arguments
	EXAMPLE 15.24 Evaluation order of subexpressions

	Appendix ��One
	Style
	General Aspects of Style
	RULES AND RECOMMENDATIONS
	Style 1.1 Do not mix coding styles within a group of closely related classes.

	Style 1.1 Do not mix coding styles within a group of closely related classes.

	Naming conventions
	RULES AND RECOMMENDATIONS
	Style 1.2 In names that consist of more than one word, the words are written together and each wo...
	Style 1.3 The names of classes, typedefs, and enumerated types should begin with an uppercase let...
	Style 1.4 The names of variables and functions should begin with a lower-case letter.
	Style 1.5 Let data members have a “M” as suffix.
	Style 1.6 The names of macros should be in uppercase.
	Style 1.7 The name of an include guard should be the name of the header file with all illegal cha...
	Style 1.8 Do not use characters that can be mistaken for digits, and vice versa.

	Style 1.2 In names that consist of more than one word, the words are written together and each wo...
	EXAMPLE 16.1 How to separate words in an identifier
	Style 1.3 The names of classes, typedefs, and enumerated types should begin with an uppercase let...

	EXAMPLE 16.2 Naming style
	Style 1.5 Let data members have a “M” as suffix.

	EXAMPLE 16.3 Data member suffix
	Style 1.6 The names of macros should be in uppercase.

	EXAMPLE 16.4 Names of macros
	Style 1.7 The name of an include guard should be the name of the header file with all illegal cha...

	EXAMPLE 16.5 Names of include guards
	Style 1.8 Do not use characters that can be mistaken for digits, and vice versa.

	EXAMPLE 16.6 Integral suffixes

	File-name extensions
	RULES AND RECOMMENDATIONS
	Style 1.9 Header files should have the extension “.hh”.
	Style 1.10 Inline definition files should have the extension “.icc”.

	See Also
	Style 1.9 Header files should have the extension “.hh”. Style 1.10 Inline definition files should...

	Lexical style
	RULES AND RECOMMENDATIONS
	Style 1.11 The names of parameters to functions should be specified in the function declaration i...
	Style 1.12 Always provide an access specifier for base classes and data members.
	Style 1.13 The public, protected, and private sections of a class should be declared in that order.
	Style 1.14 The keyword struct should only be used for a C- style struct.
	Style 1.15 Define inline member functions outside the class definition.
	Style 1.16 Write unary operators together with their operand.
	Style 1.17 Write access operators together with their operands.
	Style 1.18 Do not access static members with '.' or '->'.

	Style 1.11 The names of parameters to functions should be specified in the function declaration i...
	EXAMPLE 16.7 Specifying parameter names
	Style 1.12 Always provide an access specifier for base classes and data members.

	EXAMPLE 16.8 Implicitly given access specifiers
	EXAMPLE 16.9 Explicitly given access specifiers
	Style 1.13 The public, protected, and private sections of a class should be declared in that order.
	Style 1.14 The keyword struct should only be used for a C- style struct.
	Style 1.15 Define inline member functions outside the class definition.

	EXAMPLE 16.10 Where to implement inline member functions
	Style 1.16 Write unary operators together with their operand.

	EXAMPLE 16.11 How to write unary operators
	Style 1.17 Write access operators together with their operands.

	EXAMPLE 16.12 How to write access operators
	Style 1.18 Do not access static members with '.' or '->'.

	EXAMPLE 16.13 How to access static members

	Terminology
	abstract base class
	access function accessor
	built-in type
	CLASS invariant
	const correct
	copy assignment operator
	copy constructor
	dangling pointer
	declarative region
	direct base class
	dynamic binding
	encapsulation
	exception safe
	explicit type conversion
	file scope
	flow control �primitive
	forwarding function
	free store
	global object
	global scope
	implementation- defined behavior
	implicit type conversion
	inheritance
	inline definition file
	iterator
	literal
	member object
	modifying function modifier
	non-copyable class
	object-oriented programming
	polymorphism
	postcondition
	precondition
	resource
	self-contained
	signature
	slicing
	stack unwinding
	state
	substitutability
	template� definition file
	translation unit
	undefined behavior
	unspecified behavior
	user-defined conversion
	virtual table

	Rules and recommendations�����
	Naming
	Meaningful names
	Names that collide
	Illegal naming

	Organizing the�code
	Comments
	Control flow
	Object Life Cycle
	Initialization of variables and constants
	Constructor initializer lists
	Copying of objects

	Conversions
	The class interface
	Inline functions
	Argument passing and return values
	Const Correctness
	Overloading and default arguments
	Conversion functions

	new and delete
	Static Objects
	Object-oriented programming
	Encapsulation
	Dynamic binding
	Inheritance
	The Class Interface

	Assertions
	Error handling
	Different ways to report errors
	When to throw exceptions
	Exception-safe code
	Exception types
	Error recovery
	Exception specifications

	Parts of C++ to avoid
	Library functions to avoid
	Language constructs to avoid

	Size of executables
	Portability
	General aspects of portability
	Including files
	The size and layout of objects
	Unsupported language features
	Other compiler differences

	Style
	General Aspects of Style
	Naming conventions
	File-name extensions
	Lexical style

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

