
A Computational Foundation for the Study of Cognition

David J. Chalmers

School of Philosophy

Australian National University

Canberra, ACT 0200, Australia

[This paper was written in 1993 but never published (although section 2 was included in "On Implementing a

Computation", published in Minds and Machines in 1994). It is now forthcoming in the Journal of Cognitive

Science (2012), where there will be a special issue devoted to commentaries on it and a reply. Because the paper

has been widely cited over the years, I have not made any changes to it (apart from adding one footnote), instead

saving any further thoughts for my reply in the special issue. In any case I am still largely sympathetic with the

views expressed here, in broad outline if not in every detail.]

ABSTRACT

Computation is central to the foundations of modern cognitive science, but its role is

controversial. Questions about computation abound: What is it for a physical system to

implement a computation? Is computation sufficient for thought? What is the role of

computation in a theory of cognition? What is the relation between different sorts of

computational theory, such as connectionism and symbolic computation? In this paper I

develop a systematic framework that addresses all of these questions.

Justifying the role of computation requires analysis of implementation, the nexus between

abstract computations and concrete physical systems. I give such an analysis, based on the

idea that a system implements a computation if the causal structure of the system mirrors the

formal structure of the computation. This account can be used to justify the central

commitments of artificial intelligence and computational cognitive science: the thesis of

computational sufficiency, which holds that the right kind of computational structure suffices

for the possession of a mind, and the thesis of computational explanation, which holds that

computation provides a general framework for the explanation of cognitive processes. The

theses are consequences of the facts that (a) computation can specify general patterns of

causal organization, and (b) mentality is an organizational invariant, rooted in such patterns.

Along the way I answer various challenges to the computationalist position, such as those put

forward by Searle. I close by advocating a kind of minimal computationalism, compatible

with a very wide variety of empirical approaches to the mind. This allows computation to

serve as a true foundation for cognitive science.

Keywords: computation; cognition; implementation; explanation; connectionism;

computationalism; representation; artificial intelligence.

1 Introduction

Perhaps no concept is more central to the foundations of modern cognitive science than that of

computation. The ambitions of artificial intelligence rest on a computational framework, and

in other areas of cognitive science, models of cognitive processes are most frequently cast in

computational terms. The foundational role of computation can be expressed in two basic

theses. First, underlying the belief in the possibility of artificial intelligence there is a thesis of

computational sufficiency, stating that the right kind of computational structure suffices for

http://www.u.arizona.edu/~chalmers/

the possession of a mind, and for the possession of a wide variety of mental properties.

Second, facilitating the progress of cognitive science more generally there is a thesis of

computational explanation, stating that computation provides a general framework for the

explanation of cognitive processes and of behavior.

These theses are widely held within cognitive science, but they are quite controversial. Some

have questioned the thesis of computational sufficiency, arguing that certain human abilities

could never be duplicated computationally (Dreyfus 1974; Penrose 1989), or that even if a

computation could duplicate human abilities, instantiating the relevant computation would not

suffice for the possession of a mind (Searle 1980). Others have questioned the thesis of

computational explanation, arguing that computation provides an inappropriate framework for

the explanation of cognitive processes (Edelman 1989; Gibson 1979), or even that

computational descriptions of a system are vacuous (Searle 1990, 1991).

Advocates of computational cognitive science have done their best to repel these negative

critiques, but the positive justification for the foundational theses remains murky at best. Why

should computation, rather than some other technical notion, play this foundational role? And

why should there be the intimate link between computation and cognition that the theses

suppose? In this paper, I will develop a framework that can answer these questions and justify

the two foundational theses.

In order for the foundation to be stable, the notion of computation itself has to be clarified.

The mathematical theory of computation in the abstract is well-understood, but cognitive

science and artificial intelligence ultimately deal with physical systems. A bridge between

these systems and the abstract theory of computation is required. Specifically, we need a

theory of implementation: the relation that holds between an abstract computational object (a

"computation" for short) and a physical system, such that we can say that in some sense the

system "realizes" the computation, and that the computation "describes" the system. We

cannot justify the foundational role of computation without first answering the question: What

are the conditions under which a physical system implements a given computation? Searle

(1990) has argued that there is no objective answer to this question, and that any given system

can be seen to implement any computation if interpreted appropriately. He argues, for

instance, that his wall can be seen to implement the Wordstar program. I will argue that there

is no reason for such pessimism, and that objective conditions can be straightforwardly

spelled out.

Once a theory of implementation has been provided, we can use it to answer the second key

question: What is the relationship between computation and cognition? The answer to this

question lies in the fact that the properties of a physical cognitive system that are relevant to

its implementing certain computations, as given in the answer to the first question, are

precisely those properties in virtue of which (a) the system possesses mental properties and

(b) the system's cognitive processes can be explained.

The computational framework developed to answer the first question can therefore be used to

justify the theses of computational sufficiency and computational explanation. In addition, I

will use this framework to answer various challenges to the centrality of computation, and to

clarify some difficult questions about computation and its role in cognitive science. In this

way, we can see that the foundations of artificial intelligence and computational cognitive

science are solid.

2 A Theory of Implementation

The short answer to question (1) is straightforward. It goes as follows:

A physical system implements a given computation when the causal structure of the physical

system mirrors the formal structure of the computation.

In a little more detail, this comes to:

A physical system implements a given computation when there exists a grouping of physical

states of the system into state-types and a one-to-one mapping from formal states of the

computation to physical state-types, such that formal states related by an abstract state-

transition relation are mapped onto physical state-types related by a corresponding causal

state-transition relation.

This is still a little vague. To spell it out fully, we must specify the class of computations in

question. Computations are generally specified relative to some formalism, and there is a wide

variety of formalisms: these include Turing machines, Pascal programs, cellular automata,

and neural networks, among others. The story about implementation is similar for each of

these; only the details differ. All of these can be subsumed under the class of combinatorial-

state automata (CSAs), which I will outline shortly, but for the purposes of illustration I will

first deal with the special case of simple finite-state automata (FSAs).

An FSA is specified by giving a set of input states I_1,...,I_k, a set of internal states

S_1,...,S_m, and a set of output states O_1,...,O_n, along with a set of state-transition relations

of the form (S, I) -> (S', O'), for each pair (S, I) of internal states and input states, where S'

and O' are an internal state and an output state respectively. S and I can be thought of as the

"old" internal state and the input at a given time; S' is the "new" internal state, and O' is the

output produced at that time. (There are some variations in the ways this can be spelled out -

e.g. one need not include outputs at each time step, and it is common to designate some

internal state as a "final" state - but these variations are unimportant for our purposes.) The

conditions for the implementation of an FSA are the following:

A physical system P implements an FSA M if there is a mapping f that maps internal states of

P to internal states of M, inputs to P to input states of M, and outputs of P to output states of

M, such that: for every state-transition relation (S, I) -> (S', O') of M, the following

conditional holds: if P is in internal state s and receiving input i where f(s)=S and f(i)=I, this

reliably causes it to enter internal state s' and produce output o' such that f(s')=S' and

f(o')=O'.[1]

This definition uses maximally specific physical states s rather than the grouped state-types

referred to above. The state-types can be recovered, however: each corresponds to a set {s |

f(s) = S_i}, for each S_i \in M. From here we can see that the definitions are equivalent. The

causal relations between physical state-types will precisely mirror the abstract relations

between formal states.

There is a lot of room to play with the details of this definition. For instance, it is generally

useful to put restrictions on the way that inputs and outputs to the system map onto inputs and

outputs of the FSA. We also need not map all possible internal states of P, if some are not

reachable from certain initial states. These matters are unimportant here, however. What is

important is the overall form of the definition: in particular, the way it ensures that the formal

state-transitional structure of the computation mirrors the causal state-transitional structure of

the physical system. This is what all definitions of implementation, in any computational

formalism, will have in common.

2.1 Combinatorial-state automata

Simple finite-state automata are unsatisfactory for many purposes, due to the monadic nature

of their states. The states in most computational formalisms have a combinatorial structure: a

cell pattern in a cellular automaton, a combination of tape-state and head-state in a Turing

machine, variables and registers in a Pascal program, and so on. All this can be

accommodated within the framework of combinatorial-state automata (CSAs), which differ

from FSAs only in that an internal state is specified not by a monadic label S, but by a vector

[S^1, S^2, S^3, ...]. The elements of this vector can be thought of as the components of the

overall state, such as the cells in a cellular automaton or the tape-squares in a Turing machine.

There are a finite number of possible values S_j^i for each element S^i, where S_j^i is the jth

possible value for the ith element. These values can be thought of as "substates". Inputs and

outputs can have a similar sort of complex structure: an input vector is [I^1,...,I^k], and so on.

State-transition rules are determined by specifying, for each element of the state-vector, a

function by which its new state depends on the old overall state-vector and input-vector, and

the same for each element of the output-vector.

Input and output vectors are always finite, but the internal state vectors can be either finite or

infinite. The finite case is simpler, and is all that is required for any practical purposes. Even

if we are dealing with Turing machines, a Turing machine with a tape limited to 10^{200}

squares will certainly be all that is required for simulation or emulation within cognitive

science and AI. The infinite case can be spelled out in an analogous fashion, however. The

main complication is that restrictions have to be placed on the vectors and dependency rules,

so that these do not encode an infinite amount of information. This is not too difficult, but I

will not go into details here.

The conditions under which a physical system implements a CSA are analogous to those for

an FSA. The main difference is that internal states of the system need to be specified as

vectors, where each element of the vector corresponds to an independent element of the

physical system. A natural requirement for such a "vectorization" is that each element

correspond to a distinct physical region within the system, although there may be other

alternatives. The same goes for the complex structure of inputs and outputs. The system

implements a given CSA if there exists such a vectorization of states of the system, and a

mapping from elements of those vectors onto corresponding elements of the vectors of the

CSA, such that the state-transition relations are isomorphic in the obvious way. The details

can be filled in straightforwardly, as follows:

A physical system P implements a CSA M if there is a vectorization of internal states of P

into components [s^1,s^2,...], and a mapping f from the substates s^j into corresponding

substates S^j of M, along with similar vectorizations and mappings for inputs and outputs,

such that for every state-transition rule ([I^1,...,I^k],[S^1,S^2,...]) ->

([S'^1,S'^2,...],[O^1,...,O^l]) of M: if P is in internal state [s^1,s^2,...] and receiving input

[i^1,...,i^n] which map to formal state and input [S^1,S^2,...] and [I^1,...,I^k] respectively, this

reliably causes it to enter an internal state and produce an output that map to [S'^1,S'^2,...] and

[O^1,...,O^l] respectively.

Once again, further constraints might be added to this definition for various purposes, and

there is much that can be said to flesh out the definition's various parts; a detailed discussion

of these technicalities must await another forum (see Chalmers 1996a for a start). This

definition is not the last word in a theory of implementation, but it captures the theory's basic

form.

One might think that CSAs are not much of an advance on FSAs. Finite CSAs, at least, are no

more computationally powerful than FSAs; there is a natural correspondence that associates

every finite CSA with an FSA with the same input/output behavior. Of course infinite CSAs

(such as Turing machines) are more powerful, but even leaving that reason aside, there are a

number of reasons why CSAs are a more suitable formalism for our purposes than FSAs.

First, the implementation conditions on a CSA are much more constrained than those of the

corresponding FSA. An implementation of a CSA is required to consist in a complex causal

interaction among a number of separate parts; a CSA description can therefore capture the

causal organization of a system to a much finer grain. Second, the structure in CSA states can

be of great explanatory utility. A description of a physical system as a CSA will often be

much more illuminating than a description as the corresponding FSA.[2] Third, CSAs reflect

in a much more direct way the formal organization of such familiar computational objects as

Turing machines, cellular automata, and the like. Finally, the CSA framework allows a

unified account of the implementation conditions for both finite and infinite machines.

This definition can straightforwardly be applied to yield implementation conditions for more

specific computational formalisms. To develop an account of the implementation-conditions

for a Turing machine, say, we need only redescribe the Turing machine as a CSA. The overall

state of a Turing machine can be seen as a giant vector, consisting of (a) the internal state of

the head, and (b) the state of each square of the tape, where this state in turn is an ordered pair

of a symbol and a flag indicating whether the square is occupied by the head (of course only

one square can be so occupied; this will be ensured by restrictions on initial state and on state-

transition rules). The state-transition rules between vectors can be derived naturally from the

quintuples specifying the behavior of the machine-head. As usually understood, Turing

machines only take inputs at a single time-step (the start), and do not produce any output

separate from the contents of the tape. These restrictions can be overridden in natural ways,

for example by adding separate input and output tapes, but even with inputs and outputs

limited in this way there is a natural description as a CSA. Given this translation from the

Turing machine formalism to the CSA formalism, we can say that a given Turing machine is

implemented whenever the corresponding CSA is implemented.

A similar story holds for computations in other formalisms. Some formalisms, such as cellular

automata, are even more straightforward. Others, such as Pascal programs, are more complex,

but the overall principles are the same. In each case there is some room for maneuver, and

perhaps some arbitrary decisions to make (does writing a symbol and moving the head count

as two state-transitions or one?) but little rests on the decisions we make. We can also give

accounts of implementation for nondeterministic and probabilistic automata, by making

simple changes in the definition of a CSA and the corresponding account of implementation.

The theory of implementation for combinatorial-state automata provides a basis for the theory

of implementation in general.

2.2 Questions answered

The above account may look complex, but the essential idea is very simple: the relation

between an implemented computation and an implementing system is one of isomorphism

between the formal structure of the former and the causal structure of the latter. In this way,

we can see that as far as the theory of implementation is concerned, a computation is simply

an abstract specification of causal organization. This is important for later purposes. In the

meantime, we can now answer various questions and objections.

Does every system implement some computation? Yes. For example, every physical system

will implement the simple FSA with a single internal state; most physical systems will

implement the 2-state cyclic FSA, and so on. This is no problem, and certainly does not

render the account vacuous. That would only be the case if every system implemented every

computation, and that is not the case.

Does every system implement any given computation? No. The conditions for

implementing a given complex computation - say, a CSA whose state-vectors have 1000

elements, with 10 possibilities for each element and complex state-transition relations - will

generally be sufficiently rigorous that extremely few physical systems will meet them. What

is required is not just a mapping from states of the system onto states of the CSA, as Searle

(1990) effectively suggests. The added requirement that the mapped states must satisfy

reliable state-transition rules is what does all the work. In this case, there will effectively be at

least 10^{1000} constraints on state-transitions (one for each possible state-vector, and more if

there are multiple possible inputs). Each constraint will specify one out of at least 10^{1000}

possible consequents (one for each possible resultant state-vector, and more if there are

outputs). The chance that an arbitrary set of states will satisfy these constraints is something

less than one in (10^{1000})^{10^{1000}} (actually significantly less, because of the

requirement that transitions be reliable). There is no reason to suppose that the causal

structure of an arbitrary system (such as Searle's wall) will satisfy these constraints. It is true

that while we lack knowledge of the fundamental constituents of matter, it is impossible to

prove that arbitrary objects do not implement every computation (perhaps every proton has an

infinitely rich internal structure), but anybody who denies this conclusion will need to come

up with a remarkably strong argument.

Can a given system implement more than one computation? Yes. Any system

implementing some complex computation will simultaneously be implementing many simpler

computations - not just 1-state and 2-state FSAs, but computations of some complexity. This

is no flaw in the current account; it is precisely what we should expect. The system on my

desk is currently implementing all kinds of computations, from EMACS to a clock program,

and various sub-computations of these. In general, there is no canonical mapping from a

physical object to "the" computation it is performing. We might say that within every physical

system, there are numerous computational systems. To this very limited extent, the notion of

implementation is "interest-relative". Once again, however, there is no threat of vacuity. The

question of whether a given system implements a given computation is still entirely objective.

What counts is that a given system does not implement every computation, or to put the point

differently, that most given computations are only implemented by a very limited class of

physical systems. This is what is required for a substantial foundation for AI and cognitive

science, and it is what the account I have given provides.

If even digestion is a computation, isn't this vacuous? This objection expresses the feeling

that if every process, including such things as digestion and oxidation, implements some

computation, then there seems to be nothing special about cognition any more, as computation

is so pervasive. This objection rests on a misunderstanding. It is true that any given instance

of digestion will implement some computation, as any physical system does, but the system's

implementing this computation is in general irrelevant to its being an instance of digestion. To

see this, we can note that the same computation could have been implemented by various

other physical systems (such as my SPARC) without it's being an instance of digestion.

Therefore the fact that the system implements the computation is not responsible for the

existence of digestion in the system.

With cognition, by contrast, the claim is that it is in virtue of implementing some computation

that a system is cognitive. That is, there is a certain class of computations such that any

system implementing that computation is cognitive. We might go further and argue that every

cognitive system implements some computation such that any implementation of the

computation would also be cognitive, and would share numerous specific mental properties

with the original system. These claims are controversial, of course, and I will be arguing for

them in the next section. But note that it is precisely this relation between computation and

cognition that gives bite to the computational analysis of cognition. If this relation or

something like it did not hold, the computational status of cognition would be analogous to

that of digestion.

What about Putnam's argument? Putnam (1988) has suggested that on a definition like

this, almost any physical system can be seen to implement every finite-state automaton. He

argues for this conclusion by demonstrating that there will almost always be a mapping from

physical states of a system to internal states of an FSA, such that over a given time-period

(from 12:00 to 12:10 today, say) the transitions between states are just as the machine table

say they should be. If the machine table requires that state A be followed by state B, then

every instance of state A is followed by state B in this time period. Such a mapping will be

possible for an inputless FSA under the assumption that physical states do not repeat. We

simply map the initial physical state of the system onto an initial formal state of the

computation, and map successive states of the system onto successive states of the

computation.

However, to suppose that this system implements the FSA in question is to misconstrue the

state-transition conditionals in the definition of implementation. What is required is not

simply that state A be followed by state B on all instances in which it happens to come up in a

given time-period. There must be a reliable, counterfactual-supporting connection between

the states. Given a formal state-transition A -> B, it must be the case that if the system were to

be in state A, it would transit to state B. Further, such a conditional must be satisfied for every

transition in the machine table, not just for those whose antecedent states happen to come up

in a given time period. It is easy to see that Putnam's system does not satisfy this much

stronger requirement. In effect, Putnam has required only that certain weak material

conditionals be satisfied, rather than conditionals with modal force. For this reason, his

purported implementations are not implementations at all.

(Two notes. First, Putnam responds briefly to the charge that his system fails to support

counterfactuals, but considers a different class of counterfactuals - those of the form "if the

system had not been in state A, it would not have transited to state B". It is not these

counterfactuals that are relevant here. Second, it turns out that Putnam's argument for the

widespread realization of inputless FSAs can be patched up in a certain way; this just goes to

show that inputless FSAs are an inappropriate formalism for cognitive science, due to their

complete lack of combinatorial structure. Putnam gives a related argument for the widespread

realization of FSAs with input and output, but this argument is strongly vulnerable to an

objection like the one above, and cannot be patched up in an analogous way. CSAs are even

less vulnerable to this sort of argument. I discuss all this at much greater length in Chalmers

1996a.)

What about semantics? It will be noted that nothing in my account of computation and

implementation invokes any semantic considerations, such as the representational content of

internal states. This is precisely as it should be: computations are specified syntactically, not

semantically. Although it may very well be the case that any implementations of a given

computation share some kind of semantic content, this should be a consequence of an account

of computation and implementation, rather than built into the definition. If we build semantic

considerations into the conditions for implementation, any role that computation can play in

providing a foundation for AI and cognitive science will be endangered, as the notion of

semantic content is so ill-understood that it desperately needs a foundation itself.

The original account of Turing machines by Turing (1936) certainly had no semantic

constraints built in. A Turing machine is defined purely in terms of the mechanisms involved,

that is, in terms of syntactic patterns and the way they are transformed. To implement a

Turing machine, we need only ensure that this formal structure is reflected in the causal

structure of the implementation. Some Turing machines will certainly support a systematic

semantic interpretation, in which case their implementations will also, but this plays no part in

the definition of what it is to be or to implement a Turing machine. This is made particularly

clear if we note that there are some Turing machines, such as machines defined by random

sets of state-transition quintuples, that support no non-trivial semantic interpretation. We need

an account of what it is to implement these machines, and such an account will then

generalize to machines that support a semantic interpretation. Certainly, when computer

designers ensure that their machines implement the programs that they are supposed to, they

do this by ensuring that the mechanisms have the right causal organization; they are not

concerned with semantic content. In the words of Haugeland (1985), if you take care of the

syntax, the semantics will take care of itself.

I have said that the notion of computation should not be dependent on that of semantic

content; neither do I think that the latter notion should be dependent on the former. Rather,

both computation and content should be dependent on the common notion of causation. We

have seen the first dependence in the account of computation above. The notion of content has

also been frequently analyzed in terms of causation (see e.g. Dretske 1981 and Fodor 1987).

This common pillar in the analyses of both computation and content allows that the two

notions will not sway independently, while at the same time ensuring that neither is dependent

on the other for its analysis.

What about computers? Although Searle (1990) talks about what it takes for something to

be a "digital computer", I have talked only about computations and eschewed reference to

computers. This is deliberate, as it seems to me that computation is the more fundamental

notion, and certainly the one that is important for AI and cognitive science. AI and cognitive

science certainly do not require that cognitive systems be computers, unless we stipulate that

all it takes to be a computer is to implement some computation, in which case the definition is

vacuous.

What does it take for something to be a computer? Presumably, a computer cannot merely

implement a single computation. It must be capable of implementing many computations -

that is, it must be programmable. In the extreme case, a computer will be universal, capable

of being programmed to compute any recursively enumerable function. Perhaps universality

is not required of a computer, but programmability certainly is. To bring computers within the

scope of the theory of implementation above, we could require that a computer be a CSA with

certain parameters, such that depending on how these parameters are set, a number of

different CSAs can be implemented. A universal Turing machine could be seen in this light,

for instance, where the parameters correspond to the "program" symbols on the tape. In any

case, such a theory of computers is not required for the study of cognition.

Is the brain a computer in this sense? Arguably. For a start, the brain can be "programmed" to

implement various computations by the laborious means of conscious serial rule-following;

but this is a fairly incidental ability. On a different level, it might be argued that learning

provides a certain kind of programmability and parameter-setting, but this is a sufficiently

indirect kind of parameter-setting that it might be argued that it does not qualify. In any case,

the question is quite unimportant for our purposes. What counts is that the brain implements

various complex computations, not that it is a computer.

3 Computation and cognition

The above is only half the story. We now need to exploit the above account of computation

and implementation to outline the relation between computation and cognition, and to justify

the foundational role of computation in AI and cognitive science.

Justification of the thesis of computational sufficiency has usually been tenuous. Perhaps the

most common move has been an appeal to the Turing test, noting that every implementation

of a given computation will have a certain kind of behavior, and claiming that the right kind

of behavior is sufficient for mentality. The Turing test is a weak foundation, however, and one

to which AI need not appeal. It may be that any behavioral description can be implemented by

systems lacking mentality altogether (such as the giant lookup tables of Block 1981). Even if

behavior suffices for mind, the demise of logical behaviorism has made it very implausible

that it suffices for specific mental properties: two mentally distinct systems can have the same

behavioral dispositions. A computational basis for cognition will require a tighter link than

this, then.

Instead, the central property of computation on which I will focus is one that we have already

noted: the fact that a computation provides an abstract specification of the causal organization

of a system. Causal organization is the nexus between computation and cognition. If cognitive

systems have their mental properties in virtue of their causal organization, and if that causal

organization can be specified computationally, then the thesis of computational sufficiency is

established. Similarly, if it is the causal organization of a system that is primarily relevant in

the explanation of behavior, then the thesis of computational explanation will be established.

By the account above, we will always be able to provide a computational specification of the

relevant causal organization, and therefore of the properties on which cognition rests.

3.1 Organizational invariance

To spell out this story in more detail, I will introduce the notion of the causal topology of a

system. The causal topology represents the abstract causal organization of the system: that is,

the pattern of interaction among parts of the system, abstracted away from the make-up of

individual parts and from the way the causal connections are implemented. Causal topology

can be thought of as a dynamic topology analogous to the static topology of a graph or a

network. Any system will have causal topology at a number of different levels. For the

cognitive systems with which we will be concerned, the relevant level of causal topology will

be a level fine enough to determine the causation of behavior. For the brain, this is probably

the neural level or higher, depending on just how the brain's cognitive mechanisms function.

(The notion of causal topology is necessarily informal for now; I will discuss its formalization

below.)

Call a property P an organizational invariant if it is invariant with respect to causal topology:

that is, if any change to the system that preserves the causal topology preserves P. The sort of

changes in question include: (a) moving the system in space; (b) stretching, distorting,

expanding and contracting the system; (c) replacing sufficiently small parts of the system with

parts that perform the same local function (e.g. replacing a neuron with a silicon chip with the

same I/O properties); (d) replacing the causal links between parts of a system with other links

that preserve the same pattern of dependencies (e.g., we might replace a mechanical link in a

telephone exchange with an electrical link); and (e) any other changes that do not alter the

pattern of causal interaction among parts of the system.

Most properties are not organizational invariants. The property of flying is not, for instance:

we can move an airplane to the ground while preserving its causal topology, and it will no

longer be flying. Digestion is not: if we gradually replace the parts involved in digestion with

pieces of metal, while preserving causal patterns, after a while it will no longer be an instance

of digestion: no food groups will be broken down, no energy will be extracted, and so on. The

property of being tube of toothpaste is not an organizational invariant: if we deform the tube

into a sphere, or replace the toothpaste by peanut butter while preserving causal topology, we

no longer have a tube of toothpaste.

In general, most properties depend essentially on certain features that are not features of

causal topology. Flying depends on height, digestion depends on a particular physiochemical

makeup, tubes of toothpaste depend on shape and physiochemical makeup, and so on. Change

the features in question enough and the property in question will change, even though causal

topology might be preserved throughout.

3.2 The organizational invariance of mental properties

The central claim of this section is that most mental properties are organizational invariants. It

does not matter how we stretch, move about, or replace small parts of a cognitive system: as

long as we preserve its causal topology, we will preserve its mental properties.[3]

An exception has to be made for properties that are partly supervenient on states of the

environment. Such properties include knowledge (if we move a system that knows that P into

an environment where P is not true, then it will no longer know that P), and belief, on some

construals where the content of a belief depends on environmental context. However, mental

properties that depend only on internal (brain) state will be organizational invariants. This is

not to say that causal topology is irrelevant to knowledge and belief. It will still capture the

internal contribution to those properties - that is, causal topology will contribute as much as

the brain contributes. It is just that the environment will also play a role.

The central claim can be justified by dividing mental properties into two varieties:

psychological properties - those that are characterized by their causal role, such as belief,

learning, and perception - and phenomenal properties, or those that are characterized by way

in which they are consciously experienced. Psychological properties are concerned with the

sort of thing the mind does, and phenomenal properties are concerned with the way it feels.

(Some will hold that properties such as belief should be assimilated to the second rather than

the first class; I do not think that this is correct, but nothing will depend on that here.)

Psychological properties, as has been argued by Armstrong (1968) and Lewis (1972) among

others, are effectively defined by their role within an overall causal system: it is the pattern of

interaction between different states that is definitive of a system's psychological properties.

Systems with the same causal topology will share these patterns of causal interactions among

states, and therefore, by the analysis of Lewis (1972), will share their psychological properties

(as long as their relation to the environment is appropriate).

Phenomenal properties are more problematic. It seems unlikely that these can be defined by

their causal roles (although many, including Lewis and Armstrong, think they might be). To

be a conscious experience is not to perform some role, but to have a particular feel. These

properties are characterized by what it is like to have them, in Nagel's (1974) phrase.

Phenomenal properties are still quite mysterious and ill-understood.

Nevertheless, I believe that they can be seen to be organizational invariants, as I have argued

elsewhere. The argument for this, very briefly, is a reductio. Assume conscious experience is

not organizationally invariant. Then there exist systems with the same causal topology but

different conscious experiences. Let us say this is because the systems are made of different

materials, such as neurons and silicon; a similar argument can be given for other sorts of

differences. As the two systems have the same causal topology, we can (in principle)

transform the first system into the second by making only gradual changes, such as by

replacing neurons one at a time with I/O equivalent silicon chips, where the overall pattern of

interaction remains the same throughout. Along the spectrum of intermediate systems, there

must be two systems between which we replace less than ten percent of the system, but whose

conscious experiences differ. Consider these two systems, N and S, which are identical except

in that some circuit in one is neural and in the other is silicon.

The key step in the thought-experiment is to take the relevant neural circuit in N, and to install

alongside it a causally isomorphic silicon back-up circuit, with a switch between the two

circuits. What happens when we flip the switch? By hypothesis, the system's conscious

experiences will change: say, for purposes of illustration, from a bright red experience to a

bright blue experience (or to a faded red experience, or whatever). This follows from the fact

that the system after the change is a version of S, whereas before the change it is just N.

But given the assumptions, there is no way for the system to notice these changes. Its causal

topology stays constant, so that all of its functional states and behavioral dispositions stay

fixed. If noticing is defined functionally (as it should be), then there is no room for any

noticing to take place, and if it is not, any noticing here would seem to be a thin event indeed.

There is certainly no room for a thought "Hmm! Something strange just happened!", unless it

is floating free in some Cartesian realm.[4] Even if there were such a thought, it would be

utterly impotent; it could lead to no change of processing within the system, which could not

even mention it. (If the substitution were to yield some change in processing, then the systems

would not have the same causal topology after all. Recall that the argument has the form of a

reductio.) We might even flip the switch a number of times, so that red and blue experiences

"dance" before the system's inner eye; it will never notice. This, I take it, is a reductio ad

absurdum of the original hypothesis: if one's experiences change, one can potentially notice in

a way that makes some causal difference. Therefore the original assumption is false, and

phenomenal properties are organizational invariants. This needs to be worked out in more

detail, of course. I give the details of this "Dancing Qualia" argument along with a related

"Fading Qualia" argument in (Chalmers 1995).

If all this works, it establishes that most mental properties are organizational invariants: any

two systems that share their fine-grained causal topology will share their mental properties,

modulo the contribution of the environment.

3.3 Justifying the theses

To establish the thesis of computational sufficiency, all we need to do now is establish that

organizational invariants are fixed by some computational structure. This is quite

straightforward.

An organizationally invariant property depends only on some pattern of causal interaction

between parts of the system. Given such a pattern, we can straightforwardly abstract it into a

CSA description: the parts of the system will correspond to elements of the CSA state-vector,

and the patterns of interaction will be expressed in the state-transition rules. This will work

straightforwardly as long as each part has only a finite number of states that are relevant to the

causal dependencies between parts, which is likely to be the case in any biological system

whose functions cannot realistically depend on infinite precision. (I discuss the issue of

analog quantities in more detail below.) Any system that implements this CSA will share the

causal topology of the original system. In fact, it turns out that the CSA formalism provides a

perfect formalization of the notion of causal topology. A CSA description specifies a division

of a system into parts, a space of states for each part, and a pattern of interaction between

these states. This is precisely what is constitutive of causal topology.

If what has gone before is correct, this establishes the thesis of computational sufficiency, and

therefore the the view that Searle has called "strong artificial intelligence": that there exists

some computation such that any implementation of the computation possesses mentality. The

fine-grained causal topology of a brain can be specified as a CSA. Any implementation of that

CSA will share that causal topology, and therefore will share organizationally invariant

mental properties that arise from the brain.

The thesis of computational explanation can be justified in a similar way. As mental

properties are organizational invariants, the physical properties on which they depend are

properties of causal organization. Insofar as mental properties are to be explained in terms of

the physical at all, they can be explained in terms of the causal organization of the system.[5]

We can invoke further properties (implementational details) if we like, but there is a clear

sense in which they are not vital to the explanation. The neural or electronic composition of

an element is irrelevant for many purposes; to be more precise, composition is relevant only

insofar as it determines the element's causal role within the system. An element with different

physical composition but the same causal role would do just as well. This is not to make the

implausible claim that neural properties, say, are entirely irrelevant to explanation. Often the

best way to investigate a system's causal organization is to investigate its neural properties.

The claim is simply that insofar as neural properties are explanatorily relevant, it is in virtue

of the role they play in determining a systems causal organization.

In the explanation of behavior, too, causal organization takes center stage. A system's

behavior is determined by its underlying causal organization, and we have seen that the

computational framework provides an ideal language in which this organization can be

specified. Given a pattern of causal interaction between substates of a system, for instance,

there will be a CSA description that captures that pattern. Computational descriptions of this

kind provide a general framework for the explanation of behavior.

For some explanatory purposes, we will invoke properties that are not organizational

invariants. If we are interested in the biological basis of cognition, we will invoke neural

properties. To explain situated cognition, we may invoke properties of the environment. This

is fine; the thesis of computational explanation is not an exclusive thesis. Still, usually we are

interested in neural properties insofar as they determine causal organization, we are interested

in properties of the environment insofar as they affect the pattern of processing in a system,

and so on. Computation provides a general explanatory framework that these other

considerations can supplement.[6]

3.4 Some objections

A computational basis for cognition can be challenged in two ways. The first sort of challenge

argues that computation cannot do what cognition does: that a computational simulation

might not even reproduce human behavioral capacities, for instance, perhaps because the

causal structure in human cognition goes beyond what a computational description can

provide. The second concedes that computation might capture the capacities, but argues that

more is required for true mentality. I will consider four objections of the second variety, and

then three of the first. Answers to most of these objections fall directly out of the framework

developed above.

But a computational model is just a simulation! According to this objection, due to Searle

(1980), Harnad (1989), and many others, we do not expect a computer model of a hurricane to

be a real hurricane, so why should a computer model of mind be a real mind? But this is to

miss the important point about organizational invariance. A computational simulation is not a

mere formal abstraction, but has rich internal dynamics of its own. If appropriately designed it

will share the causal topology of the system that is being modeled, so that the system's

organizationally invariant properties will be not merely simulated but replicated.

The question about whether a computational model simulates or replicates a given property

comes down to the question of whether or not the property is an organizational invariant. The

property of being a hurricane is obviously not an organizational invariant, for instance, as it is

essential to the very notion of hurricanehood that wind and air be involved. The same goes for

properties such as digestion and temperature, for which specific physical elements play a

defining role. There is no such obvious objection to the organizational invariance of

cognition, so the cases are disanalogous, and indeed, I have argued above that for mental

properties, organizational invariance actually holds. It follows that a model that is

computationally equivalent to a mind will itself be a mind.

Syntax and semantics. Searle (1984) has argued along the following lines: (1) A computer

program is syntactic; (2) Syntax is not sufficient for semantics; (3) Minds have semantics;

therefore (4) Implementing a computer program is insufficient for a mind. Leaving aside

worries about the second premise, we can note that this argument equivocates between

programs and implementations of those programs. While programs themselves are syntactic

objects, implementations are not: they are real physical systems with complex causal

organization, with real physical causation going on inside. In an electronic computer, for

instance, circuits and voltages push each other around in a manner analogous to that in which

neurons and activations push each other around. It is precisely in virtue of this causation that

implementations may have cognitive and therefore semantic properties.

It is the notion of implementation that does all the work here. A program and its physical

implementation should not be regarded as equivalent - they lie on entirely different levels, and

have entirely different properties. It is the program that is syntactic; it is the implementation

that has semantic content. Of course, there is still a substantial question about how an

implementation comes to possess semantic content, just as there is a substantial question

about how a brain comes to possess semantic content. But once we focus on the

implementation, rather than the program, we are at least in the right ball-park. We are talking

about a physical system with causal heft, rather than a shadowy syntactic object. If we accept,

as is extremely plausible, that brains have semantic properties in virtue of their causal

organization and causal relations, then the same will go for implementations. Syntax may not

be sufficient for semantics, but the right kind of causation is.

The Chinese room. There is not room here to deal with Searle's famous Chinese room

argument in detail. I note, however, that the account I have given supports the "Systems

reply", according to which the entire system understands Chinese even if the homunculus

doing the simulating does not. Say the overall system is simulating a brain, neuron-by-neuron.

Then like any implementation, it will share important causal organization with the brain. In

particular, if there is a symbol for every neuron, then the patterns of interaction between slips

of paper bearing those symbols will mirror patterns of interaction between neurons in the

brain, and so on. This organization is implemented in a baroque way, but we should not let the

baroqueness blind us to the fact that the causal organization - real, physical causal

organization - is there. (The same goes for a simulation of cognition at level above the neural,

in which the shared causal organization will lie at a coarser level.)

It is precisely in virtue of this causal organization that the system possesses its mental

properties. We can rerun a version of the "dancing qualia" argument to see this. In principle,

we can move from the brain to the Chinese room simulation in small steps, replacing neurons

at each step by little demons doing the same causal work, and then gradually cutting down

labor by replacing two neighboring demons by one who does the same work. Eventually we

arrive at a system where a single demon is responsible for maintaining the causal

organization, without requiring any real neurons at all. This organization might be maintained

between marks on paper, or it might even be present inside the demon's own head, if the

calculations are memorized. The arguments about organizational invariance all hold here - for

the same reasons as before, it is implausible to suppose that the system's experiences will

change or disappear.

Performing the thought-experiment this way makes it clear that we should not expect the

experiences to be had by the demon. The demon is simply a kind of causal facilitator,

ensuring that states bear the appropriate causal relations to each other. The conscious

experiences will be had by the system as a whole. Even if that system is implemented inside

the demon by virtue of the demon's memorization, the system should not be confused with

demon itself. We should not suppose that the demon will share the implemented system's

experiences, any more than it will share the experiences of an ant that crawls inside its skull:

both are cases of two computational systems being implemented within a single physical

space. Mental properties arising from distinct computational systems will be quite distinct,

and there is no reason to suppose that they overlap.

What about the environment? Some mental properties, such as knowledge and even belief,

depend on the environment being a certain way. Computational organization, as I have

outlined it, cannot determine the environmental contribution, and therefore cannot fully

guarantee this sort of mental property. But this is no problem. All we need computational

organization to give us is the internal contribution to mental properties: that is, the same

contribution that the brain makes (for instance, computational organization will determine the

so-called "narrow content" of a belief, if this exists; see Fodor 1987). The full panoply of

mental properties might only be determined by computation-plus-environment, just as it is

determined by brain-plus-environment. These considerations do not count against the

prospects of artificial intelligence, and they affect the aspirations of computational cognitive

science no more than they affect the aspirations of neuroscience.

Is cognition computable? In the preceding discussion I have taken for granted that

computation can at least simulate human cognitive capacity, and have been concerned to

argue that this counts as honest-to-goodness mentality. The former point has often been

granted by opponents of AI (e.g. Searle 1980) who have directed the fire at the latter, but it is

not uncontroversial.

This is to some extent an empirical issue, but the relevant evidence is solidly on the side of

computability. We have every reason to believe that the low-level laws of physics are

computable. If so, then low-level neurophysiological processes can be computationally

simulated; it follows that the function of the whole brain is computable too, as the brain

consists in a network of neurophysiological parts. Some have disputed the premise: for

example, Penrose (1989) has speculated that the effects of quantum gravity are

noncomputable, and that these effects may play a role in cognitive functioning. He offers no

arguments to back up this speculation, however, and there is no evidence of such

noncomputability in current physical theory (see Pour-El and Richards (1989) for a

discussion). Failing such a radical development as the discovery that the fundamental laws of

nature are uncomputable, we have every reason to believe that human cognition can be

computationally modeled.

What about Gödel's theorem? Gödel's theorem states that for any consistent formal system,

there are statements of arithmetic that are unprovable within the system. This has led some

(Lucas 1963; Penrose 1989) to conclude that humans have abilities that cannot be duplicated

by any computational system. For example, our ability to "see" the truth of the Gödel sentence

of a formal system is argued to be non-algorithmic. I will not deal with this objection in detail

here, as the answer to it is not a direct application of the current framework. I will simply note

that the assumption that we can see the truth of arbitrary Gödel sentences requires that we

have the ability to determine the consistency or inconsistency of any given formal system, and

there is no reason to believe that we have this ability in general. (For more on this point, see

Putnam 1960, Bowie 1982 and the commentaries on Penrose 1990.)

Discreteness and continuity. An important objection notes that the CSA formalism only

captures discrete causal organization, and argues that some cognitive properties may depend

on continuous aspects of that organization, such as analog values or chaotic dependencies.

A number of responses to this are possible. The first is to note that the current framework can

fairly easily be extended to deal with computation over continuous quantities such as real

numbers. All that is required is that the various substates of a CSA be represented by a real

parameter rather than a discrete parameter, where appropriate restrictions are placed on

allowable state-transitions (for instance, we can require that parameters are transformed

polynomially, where the requisite transformation can be conditional on sign). See Blum, Shub

and Smale (1989) for a careful working-out of some of the relevant theory of computability.

A theory of implementation can be given along in a fashion similar to the account I have

given above, where continuous quantities in the formalism are required to correspond to

continuous physical parameters with an appropriate correspondence in state-transitions.

This formalism is still discrete in time: evolution of the continuous states proceeds in discrete

temporal steps. It might be argued that cognitive organization is in fact continuous in time,

and that a relevant formalism should capture this. In this case, the specification of discrete

state-transitions between states can be replaced by differential equations specifying how

continuous quantities change in continuous time, giving a thoroughly continuous

computational framework. MacLennan (1990) describes a framework along these lines.

Whether such a framework truly qualifies as computational is largely a terminological matter,

but there it is arguable that the framework is significantly similar in kind to the traditional

approach; all that has changed is that discrete states and steps have been "smoothed out".

We need not go this far, however. There are good reasons to suppose that whether or not

cognition in the brain is continuous, a discrete framework can capture everything important

that is going on. To see this, we can note that a discrete abstraction can describe and simulate

a continuous process to any required degree of accuracy. It might be objected that chaotic

processes can amplify microscopic differences to significant levels. Even so, it is implausible

that the correct functioning of mental processes depends on the precise value of the tenth

decimal place of analog quantities. The presence of background noise and randomness in

biological systems implies that such precision would inevitably be "washed out" in practice. It

follows that although a discrete simulation may not yield precisely the behavior that a given

cognitive system produces on a given occasion, it will yield plausible behavior that the system

might have produced had background noise been a little different. This is all that a proponent

of artificial intelligence need claim.

Indeed, the presence of noise in physical systems suggests that any given continuous

computation of the above kinds can never be reliably implemented in practice, but only

approximately implemented. For the purposes of artificial intelligence we will do just as well

with discrete systems, which can also give us approximate implementations of continuous

computations.

It follows that these considerations do not count against the theses of computational

sufficiency or of computational explanation. To see the first, note that a discrete simulation

can replicate everything essential to cognitive functioning, for the reasons above, even though

it may not duplicate every last detail of a given episode of cognition. To see the second, note

that for similar reasons the precise values of analog quantities cannot be relevant to the

explanation of our cognitive capacities, and that a discrete description can do the job.

This is not to exclude continuous formalisms from cognitive explanation. The thesis of

computational explanation is not an exclusive thesis. It may be that continuous formalisms

will provide a simpler and more natural framework for the explanation of many dynamic

processes, as we find in the theory of neural networks. Perhaps the most reasonable version of

the computationalist view accepts the thesis of (discrete) computational sufficiency, but

supplements the thesis of computational explanation with the proviso that continuous

computation may sometimes provide a more natural explanatory framework (a discrete

explanation could do the same job, but more clumsily). In any case, continuous computation

does not give us anything fundamentally new.

4 Other kinds of computationalism

Artificial intelligence and computational cognitive science are committed to a kind of

computationalism about the mind, a computationalism defined by the theses of computational

sufficiency and computational explanation. In this paper I have tried to justify this

computationalism, by spelling out the role of computation as a tool for describing and

duplicating causal organization. I think that this kind of computationalism is all that artificial

intelligence and computational cognitive science are committed to, and indeed is all that they

need. This sort of computationalism provides a general framework precisely because it makes

so few claims about the kind of computation that is central to the explanation and replication

of cognition. No matter what the causal organization of cognitive processes turns out to be,

there is good reason to believe that it can be captured within a computational framework.

The fields have often been taken to be committed to stronger claims, sometimes by

proponents and more often by opponents. For example, Edelman (1989) criticizes the

computational approach to the study of the mind on the grounds that:

An analysis of the evolution, development, and structure of brains makes it highly unlikely

that they could be Turing machines. This is so because of the enormous individual variation in

structure that brains possess at a variety of organizational levels. [...] [Also,] an analysis of

both ecological and environmental variation, and of the categorization procedures of animals

and humans, makes it highly unlikely that the world (physical and social) can function as a

tape for a Turing machine. (Edelman 1989, p. 30.)

But artificial intelligence and computational cognitive science are not committed to the claim

that the brain is literally a Turing machine with a moving head and a tape, and even less to the

claim that that tape is the environment. The claim is simply that some computational

framework can explain and replicate human cognitive processes. It may turn out that the

relevant computational description of these processes is very fine-grained, reflecting

extremely complex causal dynamics among neurons, and it may well turn out that there is

significant variation in causal organization between individuals. There is nothing here that is

incompatible with a computational approach to cognitive science.

In a similar way, a computationalist need not claim that the brain is a von Neumann machine,

or has some other specific architecture. Like Turing machines, von Neumann machines are

just one kind of architecture, particularly well-suited to programmability, but the claim that

the brain implements such an architecture is far ahead of any empirical evidence and is most

likely false. The commitments of computationalism are more general.

Computationalism is occasionally associated with the view that cognition is rule-following,

but again this is a strong empirical hypothesis that is inessential to the foundations of the

fields. It is entirely possible that the only "rules" found in a computational description of

thought will be at a very low level, specifying the causal dynamics of neurons, for instance, or

perhaps the dynamics of some level between the neural and the cognitive. Even if there are no

rules to be found at the cognitive level, a computational approach to the mind can still

succeed. Another claim to which a computationalist need not be committed are "the brain is a

computer"; as we have seen, it is not computers that are central but computations).

The most ubiquitous "strong" form of computationalism has been what we may call symbolic

computationalism: the view that cognition is computation over representation (Newell and

Simon 1976; Fodor and Pylyshyn 1988). To a first approximation, we can cash out this view

as the claim that the computational primitives in a computational description of cognition are

also representational primitives. That is to say, the basic syntactic entities between which

state-transitions are defined are themselves bearers of semantic content, and are therefore

symbols.

Symbolic computationalism has been a popular and fruitful approach to the mind, but it does

not exhaust the resources of computation. Not all computations are symbolic computations.

We have seen that there are some Turing machines that lack semantic content altogether, for

instance. Perhaps systems that carry semantic content are more plausible models of cognition,

but even in these systems there is no reason why the content must be carried by the systems'

computational primitives. In connectionist systems, for example, the basic bearers of semantic

content are distributed representations, patterns of activity over many units, whereas the

computational primitives are simple units that may themselves lack semantic content. To use

Smolensky's term (Smolensky 1988), these systems perform subsymbolic computation: the

level of computation falls below the level of representation.[7] But the systems are

computational nevertheless.

Note that the distinction between symbolic and subsymbolic computation does not coincide

with the distinction between different computational formalisms, such as Turing machines

and neural networks. Rather, the distinction divides the class of computations within each of

these formalisms. Some Turing machines perform symbolic computation, and some perform

subsymbolic computation; the same goes for neural networks. (Of course it is sometimes said

that all Turing machines perform "symbol manipulation", but this holds only if the ambiguous

term "symbol" is used in a purely syntactic sense, rather than in the semantic sense I am using

here.)

Both proponents and opponents of a computational approach have often implicitly identified

computation with symbolic computation. A critique called What Computers Can't Do

(Dreyfus 1972), for instance, turns out to be largely directed at systems that perform

computation over explicit representation. Other sorts of computation are left untouched, and

indeed systems performing subsymbolic computation seem well-suited for some of Dreyfus's

problem areas. The broader ambitions of artificial intelligence are therefore left intact.

On the other side of the fence, Fodor (1992) uses the name "Computational Theory of Mind"

for a version of symbolic computationalism, and suggests that Turing's main contribution to

cognitive science is the idea that syntactic state-transitions between symbols can be made to

respect their semantic content. This strikes me as false. Turing was concerned very little with

the semantic content of internal states, and the concentration on symbolic computation came

later. Rather, Turing's key contribution was the formalization of the notion of mechanism,

along with the associated universality of the formalization. It is this universality that gives us

good reason to suppose that computation can do almost anything that any mechanism can do,

thus accounting for the centrality of computation in the study of cognition.

Indeed, a focus on symbolic computation sacrifices the universality that is at the heart of

Turing's contribution. Universality applies to entire classes of automata, such as Turing

machines, where these classes are defined syntactically. The requirement that an automaton

performs computation over representation is a strong further constraint, a semantic constraint

that plays no part in the basic theory of computation. There is no reason to suppose that the

much narrower class of Turing machines that perform symbolic computation is universal. If

we wish to appeal to universality in a defense of computationalism, we must cast the net more

widely than this.[8]

The various strong forms of computationalism outlined here are bold empirical hypotheses

with varying degrees of plausibility. I suspect that they are all false, but in any case their truth

and falsity is not the issue here. Because they are such strong empirical hypotheses, they are

in no position to serve as a foundation for artificial intelligence and computational cognitive

science. If the fields were committed to these hypotheses, their status would be much more

questionable than it currently is. Artificial intelligence and computational cognitive science

can survive the discovery that the brain is not a von Neumann machine, or that cognition is

not rule-following, or that the brain does not engage in computation over representation,

precisely because these are not among the fields' foundational commitments. Computation is

much more general than this, and consequently much more robust.[9]

5 Conclusion: Toward a minimal computationalism

The view that I have advocated can be called minimal computationalism. It is defined by the

twin theses of computational sufficiency and computational explanation, where computation

is taken in the broad sense that dates back to Turing. I have argued that these theses are

compelling precisely because computation provides a general framework for describing and

determining patterns of causal organization, and because mentality is rooted in such patterns.

The thesis of computational explanation holds because computation provides a perfect

language in which to specify the causal organization of cognitive processes; and the thesis of

computational sufficiency holds because in all implementations of the appropriate

computations, the causal structure of mentality is replicated.

Unlike the stronger forms of computationalism, minimal computationalism is not a bold

empirical hypothesis. To be sure, there are some ways that empirical science might prove it to

be false: if it turns out that the fundamental laws of physics are noncomputable and if this

noncomputability reflects itself in cognitive functioning, for instance, or if it turns out that our

cognitive capacities depend essentially on infinite precision in certain analog quantities, or

indeed if it turns out that cognition is mediated by some non-physical substance whose

workings are not computable. But these developments seem unlikely; and failing

developments like these, computation provides a general framework in which we can express

the causal organization of cognition, whatever that organization turns out to be.

Minimal computationalism is compatible with such diverse programs as connectionism,

logicism, and approaches focusing on dynamic systems, evolution, and artificial life. It is

occasionally said that programs such as connectionism are "noncomputational", but it seems

more reasonable to say that the success of such programs would vindicate Turing's dream of a

computational intelligence, rather than destroying it.

Computation is such a valuable tool precisely because almost any theory of cognitive

mechanisms can be expressed in computational terms, even though the relevant computational

formalisms may vary. All such theories are theories of causal organization, and computation

is sufficiently flexible that it can capture almost any kind of organization, whether the causal

relations hold between high-level representations or among low-level neural processes. Even

such programs as the Gibsonian theory of perception are ultimately compatible with minimal

computationalism. If perception turns out to work as the Gibsonians imagine, it will still be

mediated by causal mechanisms, and the mechanisms will be expressible in an appropriate

computational form. That expression may look very unlike a traditional computational theory

of perception, but it will be computational nevertheless.

In this light, we see that artificial intelligence and computational cognitive science do not rest

on shaky empirical hypotheses. Instead, they are consequences of some very plausible

principles about the causal basis of cognition, and they are compatible with an extremely wide

range of empirical discoveries about the functioning of the mind. It is precisely because of

this flexibility that computation serves as a foundation for the fields in question, by providing

a common framework within which many different theories can be expressed, and by

providing a tool with which the theories' causal mechanisms can be instantiated. No matter

how cognitive science progresses in the coming years, there is good reason to believe that

computation will be at center stage.

References

Armstrong, D.M. 1968. A Materialist Theory of the Mind. Routledge and Kegan Paul.

Block, N. 1981. Psychologism and behaviorism. Philosophical Review 90:5-43.

Blum, L., Shub, M., and Smale, S. 1989. On a theory of computation and complexity over the

real numbers: NP-completeness, recursive functions, and universal machines. Bulletin (New

Series) of the American Mathematical Society 21(1):1-46.

Bowie, G. 1982. Lucas' number is finally up. Journal of Philosophical Logic 11:279-85.

Chalmers, D.J. (1995). Absent qualia, fading qualia, dancing qualia. In (T. Metzinger, ed)

Conscious Experience. Ferdinand Schoningh.

Chalmers, D.J. (1996a). Does a rock implement every finite-state automaton? Synthese.

Chalmers, D.J. (1996b). The Conscious Mind: In Search of a Fundamental Theory. Oxford

University Press. Press.

Dietrich, E.S. 1990. Computationalism. Social Epistemology.

Dretske, F. 1981. Knowledge and the Flow of Information. MIT Press.

Dreyfus, H. 1972. What Computers Can't Do. Harper and Row.

Edelman, G.M. 1989. The Remembered Present: A Biological Theory of Consciousness. Basic

Books.

Fodor, J.A. 1975. The Language of Thought. Harvard University Press.

Fodor, J.A. 1987. Psychosemantics: The Problem of Meaning in the Philosophy of Mind. MIT

Press.

Fodor, J.A. and Pylyshyn, Z.W. 1988. Connectionism and cognitive architecture. Cognition

28:3-71.

Fodor, J.A. 1992. The big idea: Can there be a science of mind? Times Literary Supplement

4567:5-7 (July 3, 1992).

Gibson, J. 1979. The Ecological Approach to Visual Perception. Houghton Mifflin.

Harnad, S. 1989. Minds, machines and Searle. Journal of Experimental and Theoretical

Artificial Intelligence 1:5-25.

Haugeland, J. 1985. Artificial intelligence: The Very Idea. MIT Press.

Lewis, D. 1972. Psychophysical and theoretical identifications. Australasian Journal of

Philosophy 50:249-58.

Lucas, J.R. 1963. Minds, machines, and Gödel. Philosophy 36:112-127.

MacLennan, B. 1990. Field computation: A theoretical framework for massively parallel

analog computation, Parts I - IV. Technical Report CS-90-100. Computer Science

Department, University of Tennessee.

Nagel, T. 1974. What is it like to be a bat? Philosophical Review 4:435-50.

Newell, A. and Simon, H.A. 1981. Computer science as empirical inquiry: Symbols and

search. Communications of the Association for Computing Machinery 19:113-26.

Penrose, R. 1989. The Emperor's New Mind: Concerning computers, minds, and the laws of

physics. Oxford University Press.

Penrose, R. 1990. Precis of The Emperor's New Mind. Behavioral and Brain Sciences 13:643-

655.

Pour-El, M.B., and Richards, J.I. 1989. Computability in Analysis and Physics. Springer-

Verlag.

Putnam, H. 1960. Minds and machines. In (S. Hook, ed.) Dimensions of Mind. New York

University Press.

Putnam, H. 1967. The nature of mental states. In (W.H. Capitan and D.D. Merrill, eds.) Art,

Mind, and Religion. University of Pittsburgh Press.

Putnam, H. 1988. Representation and Reality. MIT Press.

Pylyshyn, Z.W. 1984. Computation and Cognition: Toward a Foundation for Cognitive

Science. MIT Press.

Searle, J.R. 1980. Minds, brains and programs. Behavioral and Brain Sciences 3:417-57.

Searle, J.R. 1984. Minds, brains, and science. Harvard University Press.

Searle, J.R. 1990. Is the brain a digital computer? Proceedings and Addresses of the American

Philosophical Association 64:21-37.

Searle, J.R. 1991. The Rediscovery of the Mind. MIT Press.

Smolensky, P. 1988. On the proper treatment of connectionism. Behavioral and Brain

Sciences 11:1-23.

Turing, A.M. 1936. On computable numbers, with an application to the

Entscheidungsproblem. Proceedings of the London Mathematical Society, Series 2 42: 230-

65.

Notes

1. I take it that something like this is the "standard" definition of implementation of a finite-

state automaton; see, for example, the definition of the description of a system by a

probabilistic automaton in Putnam (1967). It is surprising, however, how little space has been

devoted to accounts of implementation in the literature in theoretical computer science,

philosophy of psychology, and cognitive science, considering how central the notion of

computation is to these fields. It is remarkable that there could be a controversy about what it

takes for a physical system to implement a computation (e.g. Searle 1990, 1991) at this late

date.

2. See Pylyshyn 1984, p. 71, for a related point.

3. In analyzing a related thought-experiment, Searle (1991) suggests that a subject who has

undergone silicon replacement might react as follows: "You want to cry out, `I can't see

anything. I'm going totally blind'. But you hear your voice saying in a way that is completely

out of your control, `I see a red object in front of me'" (pp. 66-67). But given that the system's

causal topology remains constant, it is very unclear where there is room for such "wanting" to

take place, if it is not in some Cartesian realm. Searle suggests some other things that might

happen, such as a reduction to total paralysis, but these suggestions require a change in causal

topology and are therefore not relevant to the issue of organizational invariance.

4. I am skeptical about whether phenomenal properties can be explained in wholly physical

terms. As I argue in Chalmers 1996b, given any account of the physical or computational

processes underlying mentality, the question of why these processes should give rise to

conscious experience does not seem to be explainable within physical or computational theory

alone. Nevertheless, it remains the case that phenomenal properties depend on physical

properties, and if what I have said earlier is correct, the physical properties that they depend

on are organizational properties. Further, the explanatory gap with respect to conscious

experience is compatible with the computational explanation of cognitive processes and of

behavior, which is what the thesis of computational explanation requires.

5. Of course there is a sense in which it can be said that connectionist models perform

"computation over representation", in that connectionist processing involves the

transformation of representations, but this sense is to weak to cut the distinction between

symbolic and subsymbolic computation at its joints. Perhaps the most interesting foundational

distinction between symbolic and connectionist systems is that in the former but not in the

latter, the computational (syntactic) primitives are also the representational (semantic)

primitives.

6. [Note added 2011.] In order to make them compatible with the views of consciousness in

Chalmers 1996b, the thesis of computational sufficiency and the claim that mental properties

are organizational invariants must be understood in terms of nomological rather metaphysical

necessity: the right kind of computation suffices with nomological necessity for possession of

a mind, mental properties supervene nomologically on causal topology. These claims are

compatible with the metaphysical possibility of systems with the same organization and no

consciousness. As for the thesis of computational explanation: if one construes cognitive

processes to include arbitrary intentional or representational states, then I think these cannot

be explained wholly in terms of computation, as I think that phenomenal properties and

environmental properties play a role here. One might qualify the thesis by understanding

"cognitive processes" and "behavior" in functional and nonintentional terms, or by saying that

computational explanation can undergird intentional explanation when appropriately

supplemented, perhaps by phenomenal and environmental elements. Alternatively, the version

of the thesis most directly supported by the argument in the text is that computation provides

a general framework for the mechanistic explanation of cognitive processes and behavior.

That is, insofar as cognitive processes and behavior are explainable mechanistically, they are

explainable computationally.

7. It is common for proponents of symbolic computationalism to hold, usually as an unargued

premise, that what makes a computation a computation is the fact that it involves

representations with semantic content. The books by Fodor (1975) and Pylyshyn (1984), for

instance, are both premised on the assumption that there is no computation without

representation. Of course this is to some extent a terminological issue, but as I have stressed

in 2.2 and here, this assumption has no basis in computational theory and unduly restricts the

role that computation plays in the foundations of cognitive science.

8. Some other claims with which computationalism is sometimes associated include "the brain

is a computer", "the mind is to the brain as software is to hardware", and "cognition is

computation". The first of these is not required, for the reasons given in 2.2: it is not

computers that are central to cognitive theory but computations. The second claim is an

imperfect expression of the computationalist position for similar reasons: certainly the mind

does not seem to be something separable that the brain can load and run, as a computer's

hardware can load and run software. Even the third does not seem to me to be central to

computationalism: perhaps there is a sense in which it is true, but what is more important is

that computation suffices for and explains cognition. See Dietrich (1990) for some related

distinctions between computationalism, "computerism", and "cognitivism".

