
Querying Flying Robots and Other Things:  
Ontology-Supported Stream Reasoning 
A discussion on the role of ontologies and stream reasoning in Internet of Things applications. 

By Daniel de Leng 

 

Imagine a world in which the Internet has become so ubiquitous that it extends itself even to everyday 

things, such as our cars, fridges, and milk cartons. How far are we then removed from being able to 

query things for the location of a delivery van, or as some companies foresee it, flying delivery robots? 

After all, sensor platforms could themselves be regarded as complex things. Could I perhaps ask them 

more complex questions that involve many (complex) things? 

Unmanned Aerial Vehicles (UAVs) have increasingly become a topic of discussion in today's society, in 

part because of having become more and more affordable and easy to use. Many are equipped with 

cameras for taking pictures or recording video, and commercial UAVs marketed for the general public 

can sometimes be controlled through simple means such as tablets. The wide-spread deployment of 

UAVs has not come without consequence. UAVs have been blamed for privacy infringement, airspace 

intrusions and near-misses with commercial airliners, and military applications. But they also serve as 

useful tools for artists and farmers, help to monitor the health of levees protecting increasingly many 

people, and have the immense potential to save lives in hard-to-reach disaster areas when things do go 

wrong - by assisting rescue workers in acquiring information they themselves cannot readily obtain. 

They too play a role in the Internet of Things as complex entities that have the potential to provide a 

wider array of services compared to the more traditional things, as part of a diverse ecology. 

In this text we focus on a type of stream reasoning involving a wide variety of things at the application 

layer. So what is stream reasoning, and what does it mean in this context? Many have pointed out that 

the amount of raw unfiltered data that is produced per day is so enormous that any attempts at storing 

this data for processing is very difficult, if not impossible. Some of this data is produced by humans: 

Social media communication platform Twitter reported in 2013 that it saw a spike of 143,199 tweets 

(messages) in a single second. Other data is produced by sensors or programs at potentially high 

intervals. In both cases, the data becomes incrementally available in what we call streams. Stream 

reasoning is the reasoning over these streams, bearing in mind that any received data sample is likely to 

be forgotten shortly after arrival. By stream reasoning we mean the answering of questions or drawing 

conclusions over streams, in part through aggregation of raw data into more abstract information using 

various means of processing. In a way, stream reasoning attempts to make sense of a large volume of 

incrementally-available data as it arrives. 



 

Figure: A Yamaha RMAX used by Linköping University. 
 

A Perimeter Monitoring Example 

Let us consider a situation where we want to know whether someone is trespassing during a certain 

time period. Maybe the area is a construction site deemed unsafe. We are therefore not interested in 

'catching' a possible trespasser. Rather, we wish to warn the trespasser to make him or her leave at their 

own accord first. Sending someone over to deal with the situation is a secondary course of action in case 

this is unsuccessful. 

The restricted area is surrounded by a security fence, which has two gates with sensors detecting 

whether they are closed or not. We also have a few cameras on-site, and we have a private security 

guard in case human intervention is needed. We also have several small UAVs with cameras to cover the 

area, and a third-party virtual server provider for computational power at a price. Finally, all of these 

things are able to interact over the Internet and are aware of each other's identities as part of a local 

security network. 

Suppose we wish to query this security network in order to determine for the next 24 hours if and when 

a trespasser stays within the restricted area for more than 15 minutes. There are many possible 

languages to pose such a query in. We focus on temporal logics to leverage their expressivity with 

regards to temporal concepts. In particular, using Metric Temporal Logic (MTL), this query can be posed 

by evaluating the following formula: 

 

Here  stands for 'it must always be the case within interval I', and  stands for 'eventually it will be 

the case within interval I'. The intervals are assumed to be measured in minutes. Concretely, this 

formula returns False if there is an instance x that is a person and inside of the restricted area, and does 

not leave the restricted area within 15 minutes. Otherwise it returns True. 



Such a formula would of course be easy to evaluate if only we had data for the truth values of the 

individual predicates at all time-points. It is more likely that we do not have this data in its 

completeness, nor does this data come from a single source. This thus entails some form of stream 

reasoning using various heterogeneous data resources. Could we reasonably require the UAVs to 

evaluate this formula? What is reasonable depends on e.g. whether the UAV has access to the required 

data resources, whether it has the necessary processing capacity, and whether the data resources are 

reliable enough. This is a multifaceted and interesting problem, for which we do not yet have a general 

solution. 

 

Setting Up Stream Reasoning 

Given a complex query such as a temporal logic formula, we want to have the information that is 

referenced by the symbols used in such a query. From a streaming perspective, this information is 

represented as streams, and so the challenge becomes to generate a stream with the desired 

information. We call this an applicable stream, to indicate that it is applicable in relation to the query. 

There exist a number of approaches to stream processing. Complex event processing (CEP) considers 

event streams where every stream sample corresponds to an event. We can then consider complex 

events, i.e. temporal combinations of (non-)events that are represented as events themselves. An 

example of CEP would go as follows. First, there is an event that car A is closely behind car B. This is 

followed by the event that car A is beside car B. Finally we detect the event that car A is in front of car B. 

This could then be seen as the 'overtake' complex event. Data Stream Management Systems (DSMS) 

take a different approach. Here streams are sequences of values on which we apply various variants of 

window operations, such as sliding or tumbling windows. This results in manageable tables unto which 

the usual database aggregation methods can be applied. Take for example a stream of speeds produced 

by a smartphone, as is not uncommon for runners. These values may individually deviate a lot due to 

hardware quality, so we could then take the average over a sliding window. Clearly there are many 

similarities between DSMS and CEP. Both CEP and DSMS are applicable for Internet of Things 

applications. 

The focus areas for stream processing are very diverse. Some research focuses on query expressivity and 

the ability to make use of the absence rather than exclusively the presence of data. Another focus area 

is that of performance; how can we maximize the throughput of these systems? Yet another area 

considers streams of RDF triples in the context of the Semantic Web. Most of these areas consider a 

single stream processing engine. We take a different approach that focuses on the problem of 

integrating many (specialized) stream processing engines within the robotics domain. This of course 

comes at a cost; we concern ourselves less with throughput optimization, and we focus primarily on fast 

and quantitative sensor data. 

These specialized stream processing engines effectively offer stream-based services, taking streams of 

data as input and producing output streams in accordance with their specifications. A middleware 

architecture can be used to manage this multitude of services. Suppose that such a stream reasoning 

framework distinguishes between streams, transformations, and "computational units" (CUs). Streams 

are named and can carry a vector of values in every sample. Every sample also contains the timestamp 

at which the sample became available, and the timestamp for which the data is valid. These two 



timestamps can be different, for example when a stream contains predictions about a future time. 

Transformations are stream-generating functions that take other streams as input. They can, for 

example, be used to generate a stream of speeds from a stream of coordinates, or serve as data sources 

by relaying sensor information or importing streams from outside of the system. Transformation 

specifications describe how to instantiate a transformation and what parameters to use, and so multiple 

specifications can describe the same implementation with different parameters. CUs represent 

instantiations of transformations. They have unique names and can have subscriptions to existing 

streams. CUs can be created and destroyed as desired. DyKnow [1] represents an instance of such 

flexible middleware architectures. We can use systems such as DyKnow to evaluate temporal logic 

formulas in MTL. To do so, a configuration specification describing which transformations and CUs to 

use and how to connect them needs to be executed. However, writing such a configuration specification 

is tedious and error-prone. It significantly complicates the writing of queries, and it is not very scalable. 

After all, we want to use information resources provided by the things we have access to. Another 

complication is that a particular information resource may not always be available. 

 

Managing Semantics 
Misunderstandings happen. As a Dutch person, I am convinced that my office is on the ground floor, 

whereas my American partner claims it is on the first floor, and the university considers it to be on the 

second floor due to the presence of a basement. This works for humans, but can be disastrous for 

machines. Do we use metric or Imperial units of measurement? What frame of reference is used for 

coordinates? Misunderstandings with regard to these examples can crash your UAV, literally. As a real-

world example, the 'Mars Climate Orbiter Mishap' was the result of unintentionally using different units 

of measurement, resulting in the unfortunate loss of an interplanetary probe. 

There is a need for things to have some degree of semantic understanding. Granted, specifications can 

help harmonize semantics, but how well does this scale when we add further systems into the mix, 

some of which were written by other people? Ideally we would like to simply write a query describing 

the information we are interested in without having to worry about how the information is acquired, 

unless we explicitly put constraints on that - a concept similar to declarative languages like Prolog or 

SQL.  

DyKnow does this by representing its state in terms of streams, transformations and CUs, with the help 

of an ontology. Ontologies formally describe concepts and the relations between those concepts, and 

are based on Description Logics. They can be used as a common vocabulary or as a data model, among 

other things. We use an ontology to query whenever we need information about the state of a DyKnow 

instance. Facts are then represented using RDF triples, consisting of a subject, a predicate, and an 

object, in accordance with the ontology. We can then also describe properties of individuals (objects), 

such as specific streams, CUs or transformations. This allows us to assign properties to transformations, 

for example to describe the semantics of their inputs and outputs. We call these properties semantic 

annotations. Since transformation instances are CUs, and CUs produce streams, these semantics 

indirectly describe the information contained within streams. This approach is similar to OWL-S and its 

service profiles, or the Semantic Sensor Network (SSN) ontology. 



One obvious weakness to this approach is that someone or something needs to provide these semantic 

annotations, although the same is true of transformation specifications themselves. Another is that it 

presumes concepts already exist for annotating transformations with. Usually the desired semantic 

annotations of transformations are application or domain specific. Ultimately it is the expressivity of the 

annotation language that determines whether queries using that language have the intended effects. 

This is by no means a trivial problem. But what benefits do we gain, assuming we have a suitable, 

developer-provided domain-specific annotation language? 

Recall that in order to set up stream reasoning, we require a configuration. Assume we have a 

description of some kind of desired information in the form of a query using the vocabulary provided by 

the ontology. The semantic annotations make generating a configuration something that can be done 

automatically by recursively searching for appropriate transformations. This is similar to configuration 

planning, and is based on introspective capabilities. The matching of desired semantics with semantic 

annotations is a procedure we call semantic matching. It returns a set of applicable transformation trees 

- trees of transformations where the leafs take no inputs and the root produces the desired information. 

Some of these transformations may use other things. If only a single solution is found, it can 

immediately be instantiated. If no solutions are found, the query cannot be answered, but some 

approximations may be possible by relaxing constraints. If multiple solutions are found, there are many 

ways of choosing between them. One can associate costs with instantiating transformations, favoring 

pre-existing CUs. Alternatively one may desire smaller trees as a heuristic for CPU load. One could also 

take into account some preferential ordering over the possible information providers, such as preferring 

on-board sensors or external image processing. 

Going back to the example, note that both the cameras and the UAVs are able to provide camera data of 

various areas. If we have some person detectors and trackers, we could determine whether the 

predicate 'Inside' holds. If the UAVs do not have the processing capacity, one might support using 

external computation facilities to offload the heavy work. A progressor can be used to evaluate MTL 

formulas. If the formula evaluates to False, we can regard this as a violation event itself, which can be 

sent to the security guard. This way multiple things offer services that are combined based on their 

semantic annotations. 

But even here things can go wrong. CUs may crash or stall, streams may be of low quality or stop 

altogether. Perhaps the wireless signal went bad, or the server providing CCTV streams went down. 

Some processing has to change to accommodate failures. This would not be possible if the subscriptions 

were syntactic, but since they are semantic we can attempt to repair the broken pipeline and clean up 

any CUs that are now inactive due to the broken inputs. None of this requires human input (but does not 

exclude it), which makes for a very adaptive system. 

 

Conclusion 
The Internet of Things opens up many exciting opportunities for acquiring information resources and for 

the sharing of information between things. A lot of information comes in the form of streams. Being 

able to use this information has the potential to greatly enhance Internet of Things applications. This is 

not limited to static household objects, but can be extended to autonomous robots. However, one 

precondition is that the information available is understood, and for this the semantics of the streams, 



transformations and CUs need to be made clear. We need to understand who provides what 

information with which semantics under which constraints at what price within which time period and 

with what quality. Ontologies and semantic web technologies can help with this.  

When things come to agree on the semantics of streaming data, many interesting applications are 

possible. 

 

References 

[1] de Leng, D. and Heintz, F. 2015. Ontology-Based Introspection in Support of Stream Reasoning. In 

Proceedings of the Thirteenth Scandinavian Conference on Artificial Intelligence (SCAI). 

 

Biography 

Daniel de Leng is a Ph.D. student at the Department of Computer and Information Science at Linköping 

University in Sweden. His work focuses on on-demand knowledge acquisition for grounded spatio-

temporal stream reasoning through collaboration and the semantic web. 


