
Bridging the Sense-Reasoning Gap: DyKnow - A Middleware
Component for Knowledge Processing

Fredrik Heintz and Jonas Kvarnström and Patrick Doherty
Department of Computer and Information Science, Linköpings universitet,

SE-581 83 Linköping, Sweden
{frehe, jonkv, patdo}@ida.liu.se

Abstract— Developing autonomous agents displaying rational
and goal-directed behavior in a dynamic physical environment
requires the integration of both sensing and reasoning compo-
nents. Due to the different characteristics of these components
there is a gap between sensing and reasoning. We believe that
this gap can not be bridged in a single step with a single
technique. Instead, it requires a more general approach to
integrating components on many different levels of abstraction
and organizing them in a structured and principled manner.

In this paper we propose knowledge processing middleware
as a systematic approach for organizing such processing.
Desirable properties of such middleware are presented and
motivated. We then go on to argue that a declarative stream-
based system is appropriate to provide the desired functionality.
Finally, DyKnow, a concrete example of stream-based knowl-
edge processing middleware that can be used to bridge the
sense-reasoning gap, is presented. Different types of knowledge
processes and components of the middleware are described
and motivated in the context of a UAV traffic monitoring
application.

I. INTRODUCTION

When developing autonomous agents displaying rational
and goal-directed behavior in a dynamic physical environ-
ment, we can lean back on decades of research in artificial in-
telligence. A great number of deliberative and reactive func-
tionalities have already been developed, including chronicle
recognition, motion planning, task planning and execution
monitoring. To integrate these approaches into a coherent
system it is necessary to reconcile the different formalisms
used to represent information and knowledge about the
world. To construct these world models and maintain a
correlation between them and the environment it is necessary
to extract information and knowledge from data collected
by sensors. However, most research done in a symbolic
context tends to assume crisp knowledge about the current
state of the world while the information extracted from the
environment often is noisy and incomplete quantitative data
on a much lower level of abstraction. This causes a wide gap
between sensing and reasoning.

Bridging this gap in a single step, using a single technique,
is only possible for the simplest of autonomous systems. As
complexity increases, one typically requires a combination of

This work is partially supported by grants from the Swedish Aeronautics
Research Council (NFFP4-S4203), the Swedish Foundation for Strategic
Research (SSF) Strategic Research Center MOVIII and the Center for
Industrial Information Technology CENIIT (06.09).

a wide variety of methods, including more or less standard
functionalities such as various forms of image processing
and information fusion as well as application-specific and
possibly even scenario-specific approaches. Such integration
is currently done ad hoc, partly by allowing the sensory and
deliberative layers of a system to gradually extend towards
each other and partly by introducing intermediate processing
levels.

In this paper, we propose using the term knowledge
processing middleware for a principled and systematic frame-
work for bridging the gap between sensing and deliberation
in a physical agent. We claim that knowledge processing
middleware should provide both a conceptual framework
and an implementation infrastructure for integrating a wide
variety of components and managing the information that
needs to flow between them. It should allow a system to
incrementally process low-level sensor data and generate a
coherent view of the environment at increasing levels of
abstraction, eventually providing information and knowledge
at a level which is natural to use in symbolic deliberative
functionalities. Such a framework would also support the
integration of different deliberation techniques.

The structure of the paper is as follows. In the next section,
an example scenario is presented as further motivation for
the need for a systematic knowledge processing middle-
ware framework. Desirable properties of such frameworks
are investigated and a specific stream-based architecture is
proposed which is suitable for a wide range of systems.
As a concrete example, our framework DyKnow is briefly
described. The paper is concluded with some related work
and a summary.

II. A TRAFFIC MONITORING SCENARIO

Traffic monitoring is an important application domain for
research in autonomous unmanned aerial vehicles (UAVs)
which provides a plethora of cases demonstrating the need
for an intermediary layer between sensing and deliberation.
It includes surveillance tasks such as detecting accidents and
traffic violations, finding accessible routes for emergency
vehicles, and collecting statistics about traffic patterns.

In the case of detecting traffic violations, one possible
approach relies on using a formal declarative description of
each type of violation. This can be done using a chronicle [7],



Chronicle 

RecognitionRecognition

Qualitative spatial relations

Qualitative Spatial 

Reasoning

Car objects

Anchoring
Temporal Logic 

Progression

Geographical 

Information System

Car objects

Road 

objects
Formula events

Formula states

Image 

Vision objects

Formula events

Color camera Image 

Processing

Camera state

Color camera

IR camera

Helicopter State 

Estimation

Camera State 

Estimation

Helicopter

state

IMU GPS Pan-tilt unit

Fig. 1. An overview of how the incremental processing for the traffic
surveillance task could be organized.

which defines a class of complex events using a simple tem-
poral network where nodes correspond to occurrences of high
level qualitative events and edges correspond to metric tem-
poral constraints between event occurrences. For example,
to detect a reckless overtake, qualitative spatial events such
as beside(car1, car2), close(car1, car2) and on(car1, road7)
might be used. Creating such high-level representations from
low-level sensory data, such as video streams from color
and infrared cameras, involves a great deal of work at
different levels of abstraction which would benefit from
being separated into distinct and systematically organized
tasks.

Figure 1 provides an overview of how the incremental
processing required for the traffic surveillance task could be
organized.

At the lowest level, a helicopter state estimation system
uses data from inertial measurement unit and GPS sen-
sors to determine the current position and attitude of the
helicopter. The resulting information is fed into a camera
state estimation system, together with the current angles
of the pan-tilt unit on which the cameras are mounted, to
generate information about the current camera state. The
image processing system uses the camera state to determine
where the camera is currently pointing. Video streams from
the color and thermal cameras can then be analyzed in order
to extract vision objects representing hypotheses regarding
moving and stationary physical entities, including their ap-
proximate positions and velocities.

Each vision object must be associated with a symbol for
use in higher level services, a process known as anchoring
[5, 11]. In the traffic surveillance domain, identifying which
vision objects correspond to vehicles is also essential, which
requires knowledge about normative sizes and behaviors
of vehicles. One interesting approach to describing such
behaviors relies on the use of formulas in a metric temporal
modal logic, which are incrementally progressed through
states that include current vehicle positions, velocities, and
other relevant information. An entity satisfying all require-
ments can be hypothesized to be a vehicle, a hypothesis
which is subject to being withdrawn if the entity ceases

to satisfy the normative behavior and thereby causes the
formula progression system to signal a violation.

As an example, vehicles usually travel on roads. Given
that image processing provided absolute world coordinates
for each vision object, the anchoring process can query
a geographic information system to determine the nearest
road segment and derive higher level predicates such as
on-road(car) and in-crossing(car). These would be included
in the states sent to the progressor as well as in the vehicle
objects sent to the next stage of processing, which involves
deriving qualitative spatial relations between vehicles such
as beside(car1, car2) and close(car1, car2). These predicates,
and the concrete events corresponding to changes in the pred-
icates, finally provide sufficient information for the chronicle
recognition system to determine when higher-level events
such as reckless overtakes occur.

In this example, we can identify a considerable number
of distinct processes involved in bridging the gap between
sensing and deliberation and generating the necessary sym-
bolic representations from sensor data. However, in order
to fully appreciate the complexity of the system, we have
to widen our perspective somewhat. Looking towards the
smaller end of the scale, we can see that what is represented
as a single process in Figure 1 is sometimes merely an
abstraction of what is in fact a set of distinct processes.
Anchoring is a prime example, encapsulating tasks such as
the derivation of higher level predicates which could also
be viewed as a separate process. At the other end of the
scale, a complete UAV system also involves numerous other
sensors and information sources as well as services with dis-
tinct knowledge requirements, including task planning, path
planning, execution monitoring, and reactive procedures.

Consequently, what is seen in Figure 1 is merely an ab-
straction of the full complexity of a small part of the system.
It is clear that a systematic means for integrating all forms
of knowledge processing, and handling the necessary com-
munication between parts of the system, would be of great
benefit. Knowledge processing middleware should fill this
role, by providing a standard framework and infrastructure
for integrating image processing, sensor fusion, and other
data, information and knowledge processing functionalities
into a coherent system.

III. KNOWLEDGE PROCESSING MIDDLEWARE

Any principled and systematic framework for bridging
the gap between sensing and deliberation in a physical
agent qualifies as knowledge processing middleware, by the
definition in the introduction. We now consider the necessary
and desirable properties of any such framework.

The first requirement is that the framework should per-
mit the integration of information from distributed sources,
allowing this information to be processed at many different
levels of abstraction and finally transformed into a suitable
form to be used by a deliberative functionality. In the
traffic monitoring scenario, the primary input will consist
of low level sensor data such as images, a signal from



a barometric pressure sensor, a GPS (Global Positioning
System) signal, laser range scans, and so on. But there might
also be high level information available such as geographical
information and declarative specifications of traffic patterns
and normative behaviors of vehicles. The middleware must
be sufficiently flexible to allow the integration of all these
different sources into a coherent processing system. Since
the appropriate structure will vary between applications, a
general framework should be agnostic as to the types of data
and information being handled and should not be limited to
specific connection topologies.

To continue with the traffic monitoring scenario, there
is a natural abstraction hierarchy starting with quantitative
signals from sensors, through image processing and anchor-
ing, to representations of objects with both qualitative and
quantitative attributes, to high level events and situations
where objects have complex spatial and temporal relations.
Therefore a second requirement is the support of quantitative
and qualitative processing as well as a mix of them.

A third requirement is that both bottom-up data processing
and top-down model-based processing should be supported.
Different abstraction levels are not independent. Each level
is dependent on the levels below it to get input for bottom-up
data processing. At the same time, the output from higher
levels could be used to guide processing in a top-down
fashion. For example, if a vehicle is detected on a particular
road segment, then a vehicle model could be used to predict
possible future locations, which could be used to direct or
constrain the processing on lower levels. Thus, a knowledge
processing framework should not impose strict bottom-up
nor strict top-down processing.

A fourth requirement is support for management of uncer-
tainty on different levels of abstraction. There are many types
of uncertainty, not only at the quantitative sensor data level
but also in the symbolic identity of objects and in temporal
and spatial aspects of events and situations. Therefore it is
not realistic to use a single approach to handling uncertainty
throughout a middleware framework. Rather, it should allow
many different approaches to be combined and integrated
into a single processing system in a manner appropriate to
the specific application at hand.

Physical agents acting in the world have limited resources,
both in terms of processing power and in terms of sensors,
and there may be times when these resources are insufficient
for satisfying the requests of all currently executing tasks. In
these cases a trade-off is necessary. For example, reducing
update frequencies would cause less information to be gen-
erated, while increasing the maximum permitted processing
delay would provide more time to complete processing.
Similarly, an agent might decide to focus its attention on
the most important aspects of its current situation, ignoring
events or objects in the periphery, or to focus on providing
information for the highest priority tasks or goals. An alterna-
tive could be to replace a resource-hungry calculation with a
more efficient but less accurate one. Each trade-off will have
effects on the quality of the information produced and the
resources used. Another reason for changing the processing

is that it is often context dependent and as the context
changes the processing needs to change as well. For example,
the processing required to monitor the behavior of vehicles
following roads and vehicles which may drive off-road is
very different. In the first case simplifying assumptions can
be made as to how vehicles move, while these would be
invalid if a vehicle goes off-road. To handle both cases
a system would have to be able to switch between the
different processing configurations. A fifth requirement on
knowledge processing middleware is therefore support for
flexible configuration and reconfiguration of the processing
that is being performed.

An agent should not depend on outside help for recon-
figuration. Instead, it should be able to reason about which
trade-offs can be made at any point in time, which requires
introspective capabilities. Specifically, the agent must be able
to determine what information is currently being generated
as well as the potential effects of any changes it may make in
the processing structure. Therefore a sixth requirement is for
the framework to provide a declarative specification of the
information being generated and the information processing
functionalities that are available, with sufficient content to
make rational trade-off decisions.

To summarize, knowledge processing middleware should
support declarative specifications for flexible configuration
and dynamic reconfiguration of context dependent processing
at many different levels of abstraction.

IV. STREAM-BASED KNOWLEDGE PROCESSING
MIDDLEWARE

The previous section focused on requirements that are
necessary or desirable in any form of knowledge process-
ing middleware, intentionally leaving open the question of
how these requirements should be satisfied. We now go on
to propose one specific type of framework, stream-based
knowledge processing middleware, which we believe will
be useful in many applications. A concrete implementation,
DyKnow, will be discussed later in this paper.

Due to the need for incremental refinement of information
at different levels of abstraction, we model computations
and processes within the stream-based knowledge processing
framework as active and sustained knowledge processes. The
complexity of such processes may vary greatly, ranging from
simple adaptation of raw sensor data to image processing al-
gorithms and potentially reactive and deliberative processes.

In our experience, it is not uncommon for knowledge
processes at a lower level to require information at a higher
frequency than those at a higher level. For example, a sensor
interface process may query a sensor at a high rate in order
to average out noise, providing refined results at a lower
effective sample rate. This requires knowledge processes
to be decoupled and asynchronous to a certain degree.
In stream-based knowledge processing middleware, this is
achieved by allowing a knowledge process to declare a set of
stream generators, each of which can be subscribed to by an
arbitrary number of processes. A subscription can be viewed
as a continuous query, which creates a distinct asynchronous



stream onto which new data is pushed as it is generated.
The contents of a stream may be seen by the receiver as
data, information or knowledge.

Decoupling processes through asynchronous streams mini-
mizes the risk of losing samples or missing events, something
which can be a cause of problems in query-based systems
where it is the responsibility of the receiver to poll at suffi-
ciently high frequencies. Streams can provide the necessary
input for processes that require a constant and timely flow
of information. For example, a chronicle recognition system
needs to be apprised of all pertinent events as they occur, and
an execution monitor must receive constant updates for the
current system state at a given minimum rate. A push-based
stream system also lends itself easily to “on-availability”
processing, i.e. processing data as soon as it is available, and
the minimization of processing delays, compared to a query-
based system where polling introduces unnecessary delays
in processing and the risk of missing potentially essential
updates as well as wastes resources. Finally, decoupling also
facilitates the distribution of processes within a platform or
between different platforms, another important property of
many complex autonomous systems.

Finding the correct stream generator requires each stream
generator to have an identity which can be referred to, a
label. Though a label could be opaque, it often makes sense
to use structured labels. For example, given that there is a
separate position estimator for each vehicle, it makes sense
to provide an identifier i for each vehicle and to denote
the (single) stream generator of each position estimator by
position[i]. Knowing the vehicle identifier is sufficient for
generating the correct stream generator label.

Even if many processes connect to the same stream gen-
erator, they may have different requirements for their input.
As an example, one could state whether new information
should be sent “when available”, which is reasonable for
more event-like information or discrete transitions, or with a
given frequency, which is more reasonable with continuously
varying data. In the latter case, a process being asked for
a subscription at a high frequency may need to alter its
own subscriptions to be able to generate stream content
at the desired rate. Requirements may also include the
desired approximation strategy when the source knowledge
process lacks input, such as interpolation or extrapolation
strategies or assuming the previous value persists. Thus,
every subscription request should include a policy describing
such requirements. The stream is then assumed to satisfy
this policy until it is removed or altered. For introspection
purposes, policies should be declaratively specified.

While it should be noted that not all processing is based
on continuous updates, neither is a stream-based framework
limited to being used in this manner. For example, a path
planner or task planner may require an initial state from
which planning should begin, and usually cannot take up-
dates into account. Even in this situation, decoupling and
asynchronicity are important, as is the ability for lower level
processing to build on a continuous stream of input before
it can generate the desired snapshot. A snapshot query, then,

is simply a special case of the ordinary continuous query.

A. Knowledge Processes

For the purpose of modeling, we find it useful to iden-
tify four distinct types of knowledge processes: Primitive
processes, refinement processes, configuration processes and
mediation processes.

Primitive processes serve as an interface to the outside
world, connecting to sensors, databases or other information
sources that in themselves have no explicit support for
stream-based knowledge processing. Such processes have
no stream inputs but provide a non-empty set of stream
generators. In general, they tend to be quite simple, mainly
adapting data in a multitude of external representations to the
stream-based framework. For example, one process may use
a hardware interface to read a barometric pressure sensor and
provide a stream generator for this information. However,
greater complexity is also possible, with primitive processes
performing tasks such as image processing.

The remaining process types will be introduced by means
of an illustrating example from the traffic monitoring sce-
nario, where car objects must be generated and anchored
to sensor data which is mainly collected using cameras.
Note that this example is not purely theoretical but has been
fully implemented and successfully used in test flights in an
experimental UAV platform [13].

In the implemented approach, the image processing system
produces vision objects representing entities found in an
image, called blobs, having visual and thermal properties
similar to those of a car. A vision object state contains an
estimation of the size of the blob and its position in absolute
world coordinates. When a new vision object has been found,
it is tracked for as long as possible by the image processing
system and each time it is found in an image a new vision
object state is pushed on a stream.

Anchoring begins with this stream of vision object states,
aiming at the generation of a stream of car object states
providing a more qualitative representation, including re-
lations between car objects and road segments. An initial
filtering process, omitted here for brevity, determines whether
to hypothesize that a certain vision object in fact corresponds
to a car. If so, a car object is created and a link is established
between the two objects. To monitor that the car object
actually behaves like a car, a maintain constraint describing
expected behavior is defined. The constraint is monitored,
and if violated, the car hypothesis is withdrawn and the link
is removed. A temporal modal logic is used for encoding
normative behaviors, and a progression algorithm is used for
monitoring that the formula is not violated.

Figure 2 shows an initial process setup, existing when
no vision objects have been linked to car objects. As will
be seen, processes can dynamically generate new processes
when necessary. Figure 3 illustrates the process configuration
when VisionObject#51 has been linked to CarObject#72 and
two new refinement processes have been created.

The first process type to be considered is the refinement
process, which takes a set of streams as input and provides



VoCoLinkViolations

Violated

links

VoCoLink CreateVoCoLinkMonitors
Vision to car object links

links

Vision object

labels

CreateVoToCo

labels

CreateVoToCo

Fig. 2. The initial set of processes before any vision object has been created.
Maintain vision object #51 

VoCoLinkViolations

Violated

links

VoCoLinkMonitor

Maintain vision object #51 

to car object #72 link

VoCoLink CreateVoCoLinkMonitors
Vision to car object links

links

Vision object

labels

CreateVoToCo

labels

CreateVoToCo

Car object #72GIS
Road objects

VoToCo
Vision object #51

Car object #72GIS
Road objects

Fig. 3. The set of processes after VisionObject#51 has been linked to
CarObject#72.

one or more stream generators producing refined, abstracted
or otherwise processed values. Several examples can be
found in the traffic monitoring application, such as:

• VoCoLink – Manages the set of links between vision
objects and car objects, each link being represented as a
pair of labels. When a previously unseen vision object
label is received, create a new car object label and a
link between them. When a link is received from the
VoCoLinkViolations process, the maintain constraint of
the link has been violated and the link is removed. The
output is a stream of sets of links. A suitable policy may
request notification only when the set of links changes.

• VoToCo – Refines a single vision object to a car ob-
ject by adding qualitative information such as which
road segment the object is on and whether the road
segment is a crossing or a road. Because quantitative
data is still present in a car object, a suitable policy
may request new information to be sent with a fixed
sample frequency. Using a separate process for each car
object yields a fine-grained processing network where
different cars may be processed at different frequencies
depending on the current focus of attention.

• VoCoLinkMonitor – An instantiation of the formula pro-
gressor. Monitors the maintain constraint of a vision
object to car object link, using the stream of car object
states generated by the associated VoToCo. The output
is false iff the maintain constraint has been violated.

The second type of process, the configuration process, takes a
set of streams as input but produces no new streams. Instead,
it enables dynamic reconfiguration by adding or removing
streams and processes. The configuration processes used in
our example are:

• CreateVoCoLinkMonitors – Takes a stream of sets of
links and ensures VoCoLinkMonitor refinement processes
are created and removed as necessary.

• CreateVoToCos – Takes a stream of vision to car object
links and ensures VoToCo refinement processes are
created and removed as necessary.

Finally, a mediation process generates streams by selecting
or collecting information from other streams. Here, one or
more of the inputs can be a stream of labels identifying other
streams to which the mediation process may subscribe. This
allows a different type of dynamic reconfiguration in the
case where not all potential inputs to a process are known
in advance or where one does not want to simultaneously
subscribe to all potential inputs due to processing cost. One
mediation process is used in our example:

• VoCoLinkViolations – Takes a stream of sets of links
identifying all current connections between vision ob-
jects and car objects. Dynamically subscribes to and
unsubscribes from monitor information from the as-
sociated VoCoLinkMonitors as necessary. If a monitor
signals a violation (sending the value “false”), the
corresponding link becomes part of the output, a stream
of sets of violated links.

In Figure 2 the VoCoLinkViolations mediation process sub-
scribes to no streams, since there are no VoCoLinkMonitor
streams. In Figure 3 it subscribes to the stream of monitor
results of the maintain constraint of the new VisionObject#51
to CarObject#72 link.

This example shows how stream-based knowledge pro-
cessing middleware can be applied in a very fine-grained
manner, even at the level of individual objects being tracked
in an image processing context. At a higher level, the entire
anchoring process can be viewed as a composite knowledge
process with a small number of inputs and outputs, as
originally visualized in Figure 1. Thus, one can switch
between different abstraction levels while remaining within
the same unifying framework.

B. Timing

Any realistic knowledge processing architecture must take
into account the fact that both processing and communica-
tion takes time, and that delays may vary, especially in a
distributed setting. As an example, suppose one knowledge
process is responsible for determining whether two cars
are too close to each other. This test could be performed
by subscribing to two car position streams and measuring
the distance between the cars every time a new position
sample arrives. Should one input stream be delayed by one
sample period, distance calculations would be off by the
distance traveled during that period, possibly triggering a
false alarm. Thus, the fact that two pieces of information
arrive simultaneously must not be taken to mean that they
refer to the same time.

For this reason, stream-based knowledge processing mid-
dleware should support tagging each piece of information in
a stream with its valid time, the time at which the information
was valid in the physical environment. For example, an image
taken at time t has the valid time t. If an image processing
system extracts vision objects from this image, each created



vision object should have the same valid time even though
some time will have passed during processing. One can
then ensure that only samples with the same valid time are
compared. Valid time is also used in temporal databases [15].

Note that nothing prevents the creation of multiple samples
with the same valid time. For example, a knowledge process
could very quickly provide a first rough estimate of some
property, after which it would run a more complex algorithm
and eventually provide a better estimate with identical valid
time.

The available time, the time when a piece of information
became available through a stream, is also relevant. If each
value is tagged with its available time, a knowledge process
can easily determine the total aggregated processing and
communication delay associated with the value, which is
useful in dynamic reconfiguration. Note that the available
time is not the same as the time when the value was
retrieved from the stream, as retrieval may be delayed by
other processing.

The available time is also essential when determining
whether a system behaves according to specification, which
depends on the information actually available at any time as
opposed to information that has not yet arrived.

V. DYKNOW

A concrete example of a stream-based knowledge pro-
cessing middleware framework called DyKnow has been
developed as part of our effort to build UAVs capable of
carrying out complex missions [6, 10, 12]. Most of the func-
tionality provided by DyKnow has already been presented
in the previous section, but one important decision for each
concrete instantiation is the type of entities it can process. For
modeling purposes, DyKnow views the world as consisting
of objects and features.

Since we are interested in dynamic worlds, a feature may
change values over time. Due to the dynamic nature of
the value of a feature a fluent is introduced to model the
value of a feature. A fluent is a total function from time to
value, representing the value of a feature at every time-point.
Example features are the speed of a car, the distance between
two cars, and the number of cars in the world.

Since the world is continuous and the sensors are imperfect
the fluent of a feature will in most cases never be completely
known and it has to be approximated. In DyKnow, an
approximation of a fluent is represented by a fluent stream. A
fluent stream is a totally ordered sequence of samples, where
each sample represents an observation or an estimation of the
value of the feature at a particular time-point.

To satisfy the sixth requirement of having a declarative
specification of the information being generated, DyKnow
introduces a formal language to describe knowledge process-
ing applications. An application declaration describes what
knowledge processes and streams exists and the constraints
on them. To model the processing of a dependent knowledge
process a computational unit is introduced. A computational
unit takes one or more samples as inputs and computes zero
or more samples as output. A computational unit is used

by a dependent knowledge process to create a new fluent
generator. A fluent generator declaration is used to specify
the fluent generators of a knowledge process. It can either
be primitive or dependent. To specify a stream a policy is
used.

The DyKnow implementation sets up the stream process-
ing according to an application specification and processes
the streams to satisfy their policies. Using DyKnow an
instance of the traffic monitoring scenario has successfully
been implemented and tested [13].

VI. RELATED WORK

There is a large body of work on hybrid architectures
which integrate reactive and deliberative decision making [2–
4, 18, 19]. This work has mainly focused on integrating
actions on different levels of abstraction, from control laws
to reactive behaviors to deliberative planning. It is often
mentioned that there is a parallel hierarchy of more and
more abstract information extraction processes or that the
deliberative layer uses symbolic knowledge, but few are
described in detail [1, 16, 17].

The rest of this section focuses on some approaches
claiming to provide general support for integrating sensing
and reasoning as opposed to approaches limited to particular
subproblems such as symbol grounding, simultaneous local-
ization and mapping or transforming signals to symbols.

4D/RCS is a general cognitive architecture which claims
to be able to combine different knowledge representation
techniques in a unified architecture [20]. It consists of a
multi-layered hierarchy of computational nodes each con-
taining sensory processing, world modeling, value judgment,
behavior generation, and a knowledge database. The idea
of the design is that the lowest levels have short-range and
high-resolution representations of space and time appropriate
for the sensor level while higher levels have long-range
and low-resolution representations appropriate to deliberative
services. Each level thus provides an abstract view of the pre-
vious levels. Each node may use its own knowledge represen-
tation and thereby support multiple different representation
techniques. But the architecture does not, to our knowledge,
provide any support for the transformation of information in
one node at one abstraction level to information in another
node on another abstraction level.

SCENIC [21] performs model-based behavior recogni-
tion, distributing tasks such as spatial reasoning and object
recognition, classification and tracking into three process-
ing stages: Low-level analysis, middle layer mediation and
high-level interpretation. From an integration perspective the
middle layer, which tries to match top-down hypotheses
with bottom-up evidence and computes temporal and spatial
relations, is clearly the most interesting. However, it is also
quite specific to this particular task as opposed to being a
general processing framework.

Gunderson and Gunderson (2006) claim to bridge the gap
between sensors and symbolic levels for a cognitive system
using a Reification Engine [8]. While other approaches
mainly focus on grounding for the purpose of reasoning



about the world, the authors claim that a system should
also be able to use a symbol to affect the world, citing this
bidirectionality as a critical insight missing in other work on
symbol grounding. The major weakness with this approach
is the focus on a single step approach to connecting a symbol
to sensor data, a process we believe will require several steps
where the intermediate structures will be useful as well.

The CoSy Architecture Schema Toolkit (CAST) is another
general cognitive architecture [9]. It consists of a collection
of interconnected subarchitectures (SAs). Each SA contains
a set of processing components that can be connected to
sensors and effectors and a working memory which acts
like a blackboard within the SA. One special SA is the
binder which creates a high-level shared representation that
relates back to low-level subsystem-specific representations
[14]. It binds together content from separate information
processing subsystems to provide symbols that can be used
for deliberation and then action. By deliberation the authors
mean processes that explicitly represent and reason about
hypothetical world states. Each SA provides a binding proxy
which contains a set of attribute-value pairs called binding
features corresponding to the internal data in the SA. The
binder will try to bind proxies together to form binding
unions which fuse the information from several proxies to a
single representation. The set of unions represent the best
system wide hypothesis of the current state. A weakness
is that the binder is mainly interested in finding matching
binding proxies which are then merged into binding unions
representing the best hypothesis about the current system
state. The system provides no support for other types of
refinement or fusion.

VII. SUMMARY

As autonomous physical systems become more sophisti-
cated and are expected to handle increasingly complex and
challenging tasks and missions, there is a growing need to
integrate a variety of functionalities developed in the field
of artificial intelligence. A great deal of research in this
field has been performed in a purely symbolic setting, where
one assumes the necessary knowledge is already available
in a suitable high-level representation. There is a wide
gap between such representations and the noisy sensor data
provided by a physical platform, a gap that must somehow
be bridged in order to ground the symbols that the system
reasons about in the physical environment in which the
system should act.

As physical autonomous systems grow in scope and
complexity, bridging the gap in an ad-hoc manner becomes
impractical and inefficient. At the same time, a systematic
solution has to be sufficiently flexible to accommodate a
wide range of components with highly varying demands.
Therefore, we began by discussing the requirements that
we believe should be placed on any principled approach to
bridging the gap. As the next step, we proposed a specific
class of approaches, which we call stream-based knowledge
processing middleware and which is appropriate for a large

class of autonomous systems. This step provides a consider-
able amount of structure for the integration of the necessary
functionalities, but still leaves certain decisions open in order
to avoid unnecessarily limiting the class of systems to which
it is applicable. Finally, DyKnow was presented to give an
example of an existing implementation of such middleware.

REFERENCES

[1] Virgil Andronache and Matthias Scheutz. APOC - a framework for
complex agents. In Proceedings of the AAAI Spring Symposium, pages
18–25. AAAI Press, 2003.

[2] R. C. Arkin. Behavior-Based Robotics. MIT Press, 1998.
[3] Marc S. Atkin, Gary W. King, David L. Westbrook, Brent Heeringa,

and Paul R. Cohen. Hierarchical agent control: a framework for
defining agent behavior. In Proc. AGENTS ’01, pages 425–432, 2001.

[4] P. Bonasso, J. Firby, E. Gat, D. Kortenkamp, D. Miller, and M. Slack.
Experiences with an architecture for intelligent, reactive agents. J.
Experimental and Theoretical AI, 9, April 1997.

[5] S. Coradeschi and A. Saffiotti. An introduction to the anchoring
problem. Robotics and Autonomous Systems, 43(2-3):85–96, 2003.

[6] Patrick Doherty, Patrik Haslum, Fredrik Heintz, Torsten Merz, Per
Nyblom, Tommy Persson, and Björn Wingman. A distributed archi-
tecture for autonomous unmanned aerial vehicle experimentation. In
Proc. DARS’04, 2004.

[7] Malik Ghallab. On chronicles: Representation, on-line recognition and
learning. In Proc. KR’96, pages 597–607, November 5–8 1996.

[8] J. P. Gunderson and L. F. Gunderson. Reification: What is it, and why
should i care? In Proceedings of Performance Metrics for Intelligent
Systems Workshop, pages 39–46, 2006.

[9] Nick Hawes, Michael Zillich, and Jeremy Wyatt. BALT & CAST:
Middleware for cognitive robotics. In Proceedings of IEEE RO-MAN
2007, pages 998–1003, August 2007.

[10] Fredrik Heintz and Patrick Doherty. DyKnow: An approach to mid-
dleware for knowledge processing. J. Intelligent and Fuzzy Systems,
15(1):3–13, nov 2004.

[11] Fredrik Heintz and Patrick Doherty. Managing dynamic object struc-
tures using hypothesis generation and validation. In Proc. Workshop
on Anchoring Symbols to Sensor Data, 2004.

[12] Fredrik Heintz and Patrick Doherty. A knowledge processing mid-
dleware framework and its relation to the JDL data fusion model. J.
Intelligent and Fuzzy Systems, 17(4), 2006.

[13] Fredrik Heintz, Piotr Rudol, and Patrick Doherty. From images to
traffic behavior – a UAV tracking and monitoring application. In Proc.
Fusion’07, Quebec, Canada, July 2007.

[14] Henrik Jacobsson, Nick Hawes, Geert-Jan Kruijff, and Jeremy Wyatt.
Crossmodal content binding in information-processing architectures.
In Proc. HRI’08, Amsterdam, The Netherlands, March 12–15 2008.

[15] Christian Jensen and Curtis Dyreson (eds). The consensus glossary
of temporal database concepts - february 1998 version. In Temporal
Databases: Research and Practice. 1998.

[16] Kurt Konolige, Karen Myers, Enrique Ruspini, and Alessandro Saf-
fiotti. The Saphira architecture: a design for autonomy. J. Experimental
and Theoretical AI, 9(2–3):215–235, April 1997.

[17] D.M. Lyons and M.A. Arbib. A formal model of computation for
sensory-based robotics. Robotics and Automation, IEEE Transactions
on, 5(3):280–293, 1989.

[18] Barney Pell, Edward B. Gamble, Erann Gat, Ron Keesing, James
Kurien, William Millar, Pandurang P. Nayak, Christian Plaunt, and
Brian C. Williams. A hybrid procedural/deductive executive for
autonomous spacecraft. In Proc. AGENTS ’98, pages 369–376, 1998.

[19] M. Scheutz and J. Kramer. RADIC – a generic component for the
integration of existing reactive and deliberative layers for autonomous
robots. In Proc. AAMAS’06, 2006.

[20] Craig Schlenoff, Jim Albus, Elena Messina, Anthony J. Barbera, Raj
Madhavan, and Stephen Balakrisky. Using 4D/RCS to address AI
knowledge integration. AI Mag., 27(2):71–82, 2006.

[21] Kasim Terzić, Lothar Hotz, and Bernd Neumann. Division of work
during behaviour recognition – the SCENIC approach. In Workshop
on Behaviour Modelling and Interpretation, KI’07, 2007.


