
Managing Dynamic Object Structures using Hypothesis Generation and
Validation

Fredrik Heintz and Patrick Doherty

Abstract

Any autonomous system embedded in a dynamic and chang-
ing environment must be able to create qualitative knowledge
and object structures representing aspects of its environment
on the fly from raw or preprocessed sensor data in order to
reason qualitatively about the environment. These structures
must be managed and made accessible to deliberative and re-
active functionalities which are dependent on being situation-
ally aware of the changes in both the robotic agent’s embed-
ding and internal environment. DyKnow is a software frame-
work which provides a set of functionalities for contextually
accessing, storing, creating and processing such structures.
In this paper, we focus on the use of DyKnow in support-
ing the representation and reasoning about dynamic objects
such as road vehicles in the external environment of an au-
tonomous unmanned aerial vehicle. The representation of
complex objects generally consists of simpler objects with
associated features that are related to each other via linkages.
These linkage structures are constructed incrementally as ad-
ditional sensor data is acquired and integrated with existing
structures. The resulting linkage structures represent complex
objects at many levels of abstraction. Many issues related to
anchoring and symbol grounding can be approached by tak-
ing advantage of the versatility of these linkage structures.
Examples are provided in the paper using an experimental
UAV research platform.

Introduction
Research in cognitive robotics is concerned with endow-
ing robots and software agents with higher level cognitive
functions that enable them to reason, act and perceive in a
goal-directed manner in changing, incompletely known, and
unpredictable environments. Research in robotics has tra-
ditionally emphasized low-level sensing, sensor processing,
control and manipulative tasks. One of the open challenges
in cognitive robotics is to integrate techniques from both dis-
ciplines and develop architectures which support the seam-
less integration of low-level sensing and sensor processing
with the generation and maintenance of higher level knowl-
edge structures grounded in the sensor data.

Knowledge about the internal and external environments
of a robotic agent is often both static and dynamic. A great
amount of background or deep knowledge is required by the

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

agent in understanding its world and in understanding the
dynamics in the embedding environment where objects of
interest are cognized, hypothesized as being of a particu-
lar type or types and whose dynamics must be continuously
reasoned about in a timely manner. This implies signal-to-
symbol transformations at many levels of abstraction with
different and varying constraints on real-time processing.

Much of the reasoning involved with dynamic objects and
the dynamic knowledge related to such objects involves is-
sues of situation awareness. How can a robotics architec-
ture support the task of getting the right information in the
right form to the right functionalities in the architecture at
the right time in order to support decision making and goal-
directed behavior? Another important aspect of the problem
is the fact that this is an on-going process. Data and knowl-
edge about dynamic objects has to be provided continuously
and on-the-fly at the rate and in the form most efficient for
the receiving cognitive or reactive robotics functionality in a
particular context.

Context is important because the most optimal rates and
forms in which a robotic functionality receives data are of-
ten task and environmentally dependent. Consequently, au-
tonomous agents must be able to declaratively specify and
re-configure the character of the data received. How to de-
fine a change, how to approximate values at time-points
where no value is given and how to synchronize collections
of values are examples of properties that can be set in the
context. By robotic functionalities, we mean control, reac-
tive and deliberative functionalities ranging from sensor ma-
nipulation and navigation to high-level functionalities such
as chronicle recognition, trajectory planning, and execution
monitoring.

The paper is structured as follows. We start with a sec-
tion where a larger scenario using the proposed techniques
is described. The next section provides a description of the
UAV platform used in our experiments. The third section de-
scribes a distributed autonomous robotics architecture devel-
oped to support the integration of deliberative, reactive and
control functionalities. In the fourth section the DyKnow
framework itself is introduced. The fifth section concludes
with a description of hypothesis generation and validation
mechanisms which are used to create and manage dynamic
object structures.

An Identification and Track Scenario
In order to make the ideas more precise, we will begin with
a scenario from an unmanned aerial vehicle project the au-
thors are involved in which requires many of the capabilities
discussed so far.

Picture the following scenario. An autonomous un-
manned aerial vehicle (UAV), in our case a helicopter, is
given a mission to identify and track a vehicle with a partic-
ular signature in a region of a small city. The signature is
provided in terms of color and size (and possibly 3D shape).
Assume that the UAV has a 3D model of the region in ad-
dition to information about building structures and the road
system. These models can be provided or may have been
generated by the UAV itself. Additionally, assume the UAV
is equipped with a GPS and INS1 for navigating purposes
and that its main sensor is a camera on a pan/tilt mount.

One way for the UAV to achieve its task would be to initi-
ate a reactive task procedure (parent procedure) which calls
the image processing module with the vehicle signature as
a parameter. The image processing module will try to iden-
tify colored blobs in the region of the right size, shape and
color as a first step. The features of each new blob, such
as RGB values with uncertainty bounds, length and width in
pixels and position in the image, are associated with avision
object. The image processing system will then try to track
the blobs. From the perspective of the UAV, these objects
are only cognized to the extent that they are moving colored
blobs of interest and the feature data being collected should
continue to be collected while tracking.

Now one can hypothesize that the blob actually exists in
the world and represent a single entity by creating a repre-
sentation of the blob in the world. New features, such as po-
sition in geographical coordinates, are associated with a new
world object. The geographic coordinates provide a com-
mon frame of reference where positions over time and over
different objects can be compared. To represent that the two
objects represent two aspects of the same entity the vision
object islinked to the world object. Since the two objects
are related the features of the world object will be computed
from features of the linked vision object. At this point the
object is cognized at a more qualitative level of abstraction,
yet its description in terms of its linkage structure contains
both cognitive and pre-cognitive information which must be
continuously managed and processed due to the interdepen-
dencies of the features at various levels.

Assuming the UAV only has one camera, the link from
a vision object to a world object will be one-to-many, i.e.
several world objects could be hypothesized from the same
vision object but each world object only depends on one vi-
sion object. If there was more than one camera then more
than one vision object could be associated with the world
object, one for each camera. To compute the features of the
world object, computations and fusion between feature val-
ues from the linked-from objects would be required.

Each time a new vision object is created, it is tested
against each existing world object to see if they could repre-

1GPS and INS are acronyms for global positioning system and
inertial navigation system, respectively.

sent the same entity. If the world object passes the test then a
link is created between it and the vision object. In this case,
world object features would be updated using features from
the new vision object as long as they remain linked. This is
an example where the world object has been reacquired.

Since links only represent hypotheses, they are always
subject to becoming invalid given additional data, so the
UAV agent continually has to verify the links validity. This
is done by associating maintenance constraints with links
which must continually be monitored for validity. A main-
tenance constraint could compare the behavior of the new
entity, which is the combination of the two representations,
with the normative behavior of this type of entity and, if
available, the predicted behavior of the previous entity.

The next qualitative step in creating a linkage structure
in this scenario would be to check if the world object is a
moving object. In this case, it would be hypothesized if the
world object’s position feature changes over time. The same
condition can be used to maintain the link. Failure of this
condition would depend on further hypotheses and there are
many choices. For example, if there is a further hypothesis
where the object is considered to be a vehicle, when it stops,
it may be just to park, and it should retain its moving vehicle
status.

To continue the chain of qualitative levels of representa-
tions, if the moving object is on or close to a road, as defined
by a geographical information system (GIS), then we could
hypothesize that it’s anon-road object, i.e. an object moving
along roads. The maintenance condition is that it’s actually
following the road system, otherwise it would be anoff-road
object(which we ignore in this scenario). An on-road object
could contain more abstract and qualitative features such as
position in a road segment which would allow the parent
procedure to reason qualitatively about its position in the
world relative to the road, other vehicles on the road, and
building structures in the vicinity of the road. At this point,
streams of data are being generated and computed for many
of the features in the linked object structures at many levels
of abstraction as the helicopter tracks the on-road objects.

The last step in our qualitative representation of entities
is to hypothesize what kind of vehicle it is. The default as-
sumption is that it’s a car, but if it’s too large or too small
then one could hypothesize that it’s a truck, bus or motor-
cycle. Here it is assumed that background knowledge about
vehicle types exists and can be put to use in determining ve-
hicle type.

All object types, links and constraints are currently con-
figured by a parent task procedure at the beginning of an
identification scenario. Thus if the situation changes the task
procedure has the option of modifying the object and link
specifications associated with the task at hand.

How then can a robotic’s architecture, in particular, the
UAV architecture described here, be set up to support the
processes described in the UAV scenario above? In (Heintz
& Doherty 2004) a software system called theDyKnow
Framework2 is proposed for supporting the use of dynamic

2”DyKnow” is pronounced as ”Dino” in ”Dinosaur” and stands
for Dynamic Knowledge and Object Structure Processing.

knowledge structures. In this paper we extend the frame-
work with techniques for the management of dynamic object
structures as described above.

The WITAS UAV Platform

The WITAS3 Unmanned Aerial Vehicle Project (Doherty
et al. 2000; Doherty 2004) is a long-term basic research
project whose main objectives are the development of an
integrated hardware/software VTOL (Vertical Take-Off and
Landing) platform for fully-autonomous missions and its
future deployment in applications such as traffic monitor-
ing and surveillance, emergency services assistance, pho-
togrammetry and surveying.

The WITAS Project UAV platform we use is a slightly
modified Yamaha RMAX (figure 1). It has a total length of
3.6 m (incl. main rotor), a maximum take-off weight of 95
kg, and is powered by a 26 hp two-stroke engine. Yamaha
equipped the radio controlled RMAX with an attitude sensor
(YAS) and an attitude control system (YACS).

Figure 1: The WITAS RMAX Helicopter

The hardware platform consists of three PC104 embed-
ded computers (figure 2). The primary control system con-
sists of a PIII (700Mhz) processor, a wireless modem (se-
rial line RS232C) and the following sensors: an integrated
INS/DGPS (serial), a barometric altitude sensor (analog), a
sonar and infrared altimeter (analog), and a compass (se-
rial). It is connected to the YAS and YACS (serial), the im-
age processing computer (serial) and the deliberative com-
puter (Ethernet). The image processing system consists
of a second PC104 embedded computer (PIII 700MHz),
a color CCD camera (S-VIDEO, serial interface for con-
trol) mounted on a pan/tilt unit (serial), a video transmitter
(composite video) and a recorder (miniDV). The delibera-
tive/reactive system runs on a third PC104 embedded com-
puter (PIII 700MHz) which is connected to the other PCs
with Ethernet using CORBA event channels. The D/R sys-
tem is described in more detail in the next section.

DARA: A Distributed Autonomous Robotics
Architecture

3WITAS (pronouncedvee-tas) is an acronym for the Wallen-
berg Information Technology and Autonomous Systems Labora-
tory at Linköping University, Sweden.

RTLINUX

RTLINUX

TCP/IP

700Mhz PIII/256ram/500Mbflash

700Mhz PIII/256ram/256Mbflash

700Mhz PIII/256ram/256Mbflash

C-MIGIT II-EMI INS

GPS

serial analog

magnetic
compass

pressure
sensor

temp.
sensors

camera
controls

framegrabber
BT878

HMR3000

preprocessor

IPAPI

path
planner

task
planner

knowledge
repository

TP exec

chronicle
recognition

GIS

DOR

Other. . .

Helicopter Control

RMAX Helicopter
Platform

Yamaha
Attitude
Controller

roll

yaw

pitch

200Hz

50Hz

Camera Platform

Sony FCB-EX470LP

mini-dv

Yamaha
Attitude
Sensors

200/66Hz

LINUX

RS232

sonar

Figure 2: DARA Hardware Schematic

The DARA system (Dohertyet al. 2004) consists of
both deliberative and reactive components which interface
to the control architecture of the primary flight controller
(PFC). Current flight modes include autonomous take-off
and landing, pre-defined and dynamic trajectory following,
vehicle tracking and hovering. We have chosen Real-Time
CORBA (Object Computing, Inc. 2003)4 as a basis for the
design and implementation of a loosely coupled distributed
software architecture for our aerial robotic system.

Many of the functionalities which are part of the archi-
tecture can be viewed as clients or servers where the com-
munication infrastructure is provided by CORBA facilities
and other services such as real-time event channels. Fig-
ure 3 depicts an (incomplete) high-level schematic of some
of the software components used in the architecture. Each of
these may be viewed as a CORBA server/client providing or
requesting services from each other and receiving data and
events through both real-time and standard event channels.

The modular task architecture (MTA) which is part of
DARA is a reactive system design in the procedure-based
paradigm developed for loosely coupled heterogeneous sys-
tems such as the WITAS aerial robotic system. Reactive
behaviors are implemented astask procedures(TP) which
are executed concurrently and essentially event-driven. A
TP may open its own (CORBA) event channels, and call
its own services (both CORBA and application-oriented ser-
vices such as path planners) including functionalities in Dy-
Know.

4We are currently using TAO/ACE.The Ace Orb is an open
source implementation of CORBA 2.6.

��������	
��
���

�����	���

���������
�����	���

�����	

����

�����	���

��������
���������
�	��
 ������!��� "

��# ���

����	
	��
$��%	
�

&����	
��
��
���		��
$��%	
�

�����������
$��%	
�

������������
$��%	
�

'��	
����
&��������

����	
��
&�����
&��������

(����
&��������

(�)�(
(�)�(����	��

(��������
���	��� ������!(� "

*���	�	%�
$	��������
���	��

&��������

Figure 3: DARA Software Schematic

DyKnow

Given the distributed nature of both the hardware and soft-
ware architectures in addition to their complexity, one of the
main issues is getting data to the right place at the right time
in the right form and to be able to transform the data to the
proper levels of abstraction for use by high-level delibera-
tive functionalities and middle level reactive functionalities.
DyKnow is designed to contribute to achieving this.

Ontologically, we view the external and internal environ-
ment of the agent as consisting of entities representing phys-
ical and non-physical objects, properties associated with
these entities, and relations between entities. We will call
such entitiesobjectsand those properties or relations asso-
ciated with objects will be calledfeatures. Features may be
static or dynamic and parameterized with objects. Due to
the potentially dynamic nature of a feature, that is, its abil-
ity to change value through time, afluent is associated with
each feature. A fluent is a function of time whose range is
the feature’s type. For a dynamic feature, the fluent values
will vary through time, whereas for a static feature the fluent
will remain constant through time.

Some examples of features would be theestimated veloc-
ity of a world object, thecurrent road segmentof an on-
road object, and thedistancebetween two car objects. Each
fluent associated with these examples implicitly generates a
continuous stream of time tagged values of the appropriate
type.

Additionally, we will introducelocations, policies, com-
putational unitsandfluent streamswhich refer to aspects of
fluent representations in the actual software architecture. A
location is intended to denote any pre-defined physical or
software location that generates feature data in the DARA
architecture. Some examples would be onboard or offboard
databases, CORBA event channels, physical sensors or their
device interfaces, etc. In fact, a location will be used as
an index to reference a representational structure associated
with a feature. This structure denotes the process which
implements the fluent associated with the feature. A fluent
implicitly represents a stream of data, afluent stream. The
stream is continuous, but can only ever be approximated in
an architecture. Apolicy is intended to represent a particular
contextual window or filter used to access a fluent. Particu-
lar functionalities in the architecture may need to sample the
stream at a particular rate or interpolate values in the stream

in a certain manner. Policies will denote such collections
of constraints.Computational unitsare intended to denote
processes which take fluent streams as input, perform op-
erations on these streams and generate new fluent streams
as output. Each of these entities are represented either syn-
tactically or in the form of a data structure within the ar-
chitecture and many of these data structures are grounded
through sensor data perceived through the robotic agent’s
sensors. In addition, since declarative specifications of both
features and policies that determine views of fluent streams
are 1st-class citizens in DyKnow, a language for referring to
features, locations, computational units and policies is pro-
vided, see (Heintz & Doherty 2004) for details.

One can view DyKnow as implementing a distributed
qualitative signal processing tool where the system is given
the functionality to generate dynamic representations of
parts of its internal and external environment in a contex-
tual manner through the use of policy descriptors and fea-
ture representation structures. The dynamic representations
can be viewed as collections of time series data at various
levels of abstraction, each time series representing a particu-
lar feature and each bundle representing a particular history
or progression. Another view of such dynamic representa-
tions and one which is actually put to good use is to interpret
the fluent stream bundles as partial temporal models in the
logical sense. These partial temporal models can then be
used on the fly to interpret temporal logical formulas in TAL
(temporal action logic) or other temporal formalisms. Such
a functionality can be put to good use in constructing ex-
ecution monitors, predictive modules, diagnostic modules,
etc. The net result is a very powerful mechanism for dealing
with a plethora of issues associated with focus of attention
and situational awareness.

Dynamic Object Structure in DyKnow

An ontologically difficult issue involves the meaning of
an object. In a distributed architecture such as DARA, infor-
mation about a specific object is often distributed throughout
the system, some of this information may be redundant and
it may often even be inconsistent due to issues of precision
and approximation. For example, given a car object, it can
be part of a linkage structure which may contain otherob-
jectssuch as on-road, world and vision objects. For an ex-
ample of a linkage structure see figure 4. In addition, many
of the features associated with these objects are computed in
different manners in different parts of the architecture with
different latencies. One candidate definition for an object
could be the aggregate of all features which take the object
as a parameter for each feature. But an object only repre-
sents some aspects of an entity in the world. To represent
that several different objects actually represent the same en-
tity in the world, links are created between those objects. It
is these linkage structures that represent all the aspects of an
entity which are known to the UAV agent. It can be the case
that two linkage structures in fact represent the same entity
in the world but the UAV agent is unable to determine this.
Two objects may even be of the same type but have different
linkage structures associated with them. For example, given

two car objects, one may not have an on-road object, but
an off-road object, as part of its linkage structure. It is im-
portant to point out that objects as intended here have some
similarities with OOP objects, but many differences.

#5
OnRoadObjectVisionObject

#2 #3
WorldObject

#7
CarObject

Figure 4: An example object linkage structure

Hypothesis Generation
Each object is associated with a set of possible hypotheses,
each associated with constraints relating the object to an-
other object. Each possible hypothesis is a relation between
two objects associated with constraints between the objects.
To generate a hypothesis, the constraints of a possible hy-
pothesis must be satisfied. Two different types of hypothe-
ses can be made depending on the types of the objects. If the
objects have different types then a hypothesis between them
is represented by a link. If they have the same type then
a hypothesis is represented by a codesignation between the
objects. Codesignations hypothesize that two objects repre-
senting the same aspect of the world are actually identical,
while a link hypothesizes that two objects represent different
aspects of the same entity.

A link can be hypothesized when a reestablish constraint
between two existing objects is satisfied or an establish con-
straint between an object and a newly created object is sat-
isfied. In the anchoring literature these two processes are
called reacquire and find (Coradeschi & Saffiotti 2003).

Since the UAV agent can never be sure its hypotheses are
true, it has to continually verify and validate them against
its current knowledge of the world. To do this, each hy-
pothesis is associated with maintenance constraints which
should be satisfied as long as the hypothesis holds. If the
constraints are violated then the hypothesis is removed. The
maintenance and hypothesis generation constraints are rep-
resented using the linear temporal logic (LTL) with intervals
(Lamine & Kabanza 2002) and are checked using an execu-
tion monitoring module which is part of the DyKnow frame-
work (Heintz & Doherty 2004).

Object Specification
Before DyKnow can generate object structures, the con-
trolling task procedure has to specify the appropriate links
and object types. The latter are called classes. A link
specification has two parts, the classes which the link as-
sociates and the constraint specifications for establishing
and maintaining instances of the link. A linkl is denoted
as l(from, to, establish, reestablish,maintain), where
from andto are the names of classes whose instances the
link associates, the three constraintsestablish, reestablish,
andmaintain specify when to create and delete instances
of the link. The constraints are expressed as LTL formulas
containing features associated with the objects being linked.
In order to refer to the objects being linked, the special fea-
ture argumentsto andfrom can be used.

A class specification consists of the specifications of
the links and features associated with the class, the delete
constraint and the codesignation policy. A classC is denoted
as C({l1, . . . , ln}, {f1, . . . , fm}, delete, codesignation),
whereli is a link specification andfj is a feature specifica-
tion with special arguments representing the actual object
instance (this) and each incoming link (the name of the
link). The delete constraint specifies when an instance
of the class should be deleted. The codesignation policy
consists of the codesignation strategy, the codesignation
constraint and the merge function. It specifies when two
objects belonging to the class should be hypothesized as
being identical and how to merge them. The constraints
are expressed as LTL (with intervals) formulas using
feature specifications with the special argumentthis, which
represents the instance of the class. Two example classes
are:

VisionObject({},
{mx=mean_x(DOR, pol1, this),

my=mean_y(DOR, pol1, this), ...},
not(always(mx == prev(mx)

until[0..30]
mx != prev(mx))),

<keep_old, false, f>)

WorldObject({vo_wo_link(
VisionObject, WorldObject,
eventually(vo_wo_link(DOM, pol2, from)

= {}),
eventually(dist_est_pos(DOR,

pol3, from, to) < 5),
true)},
{p=position(DOR,

colocate(mean_x(DOR, pol4, vo_wo_link),
mean_y(DOR, pol4, vo_wo_link)),

pol5, this), ...},
not(always(p == prev(p)

until[0..60]
p != prev(p))),

<keep_old, false, g>)

The VisionObject class specification states that a
VisionObject has two features with the specifications
mean x(DOR, pol1, this) and mean y(DOR, pol1, this),
where DOR is the feature location which should host
the feature representations, this will be replaced with the
actual object identifier.pol1 is the policy used to create
the associated fluents for the feature representations. The
delete constraint states that the object should be deleted
when themean x feature hasn’t been updated within 30
seconds. The WorldObject class specification says that
a WorldObject has one feature with the specification
position(DOR, colocate(mean x(DOR, pol3, vo wo link),
mean y(DOR, pol3, vo wo link)), pol4, this), where
vo wo link will be replaced with the object identifier
for the linked from VisionObject instance. If the link is
not established no position feature will be created. The
specification states that the position is calculated from the
vision coordinates taken from the linked from VisionObject.

Object Management
Objects are created either explicitly or as part of hypothesis
generation. In either case the object manager is responsible
for creating the object. To create an object instance of a class
it has to instantiate the links and features and create moni-
tors for the establish, reestablish, codesignation and delete
constraints associated with the new object. When the object
instance is deleted, either explicitly or because the delete
constraint is satisfied, the feature representations have to be
deleted together with all monitors and links associated with
the object. The object manager is also responsible for keep-
ing track of the links objects are connected to and instanti-
ating features when new links have been created since the
features of an object may be dependent on features related
to linked-from objects.

Algorithm for creating an object instance of a classC

1. create instances of all features f
related to the class C

2. create a monitor for the delete
constraint for the class C

3. for each other object instance o of the
class C create a monitor for the
codesignation constraint for C between
this and o

4. for each link L which links from the
class C do

a. create a new object instance o of
the linked to class D and create
a monitor for the establish
constraint for L between this and o

b. for each object instance o of the
linked to class D create a copy o’
and a monitor for the reestablish
constraint for L between this and o’

5. for each link L which links to the
class C do

a. for each object instance o of the
linked from class B create a monitor
for the reestablish constraint for
L between o and this

Link Management
When establish or reestablish constraints are satisfied the
object manager should create a link between two objects.
If there is no link of the same type to the linked-to object
then the new link is added and returned to the object man-
ager, otherwise the existing link and the new link have to be
merged since an object is only allowed to be linked to once
for each link type. Three strategies are used to merge two
links:

1. apply a select function which compares the two links and
returns the link representing the best hypothesis; or

2. assume the linked from objects represent different ver-
sions of the same aspect of the same entity, since they
are not codesignated, and merge the two links to a many-
to-one link; or

3. duplicate the linked to object and link to the new object,
i.e. we would have two different hypotheses about the
same object (i.e. a disjunctive hypothesis).

Figure 5 shows the result after linking VisionObject #11
to WorldObject #3 (which is already linked to VisionObject
#2) using the second (top) and third strategy (bottom).

VisionObject WorldObject
#3

VisionObject
#11

Before

or

After

WorldObject
#13

#2

#2
VisionObject WorldObject

#3

VisionObject
#11

#2
VisionObject

VisionObject
#11

WorldObject
#3

Figure 5: Two examples of merging links

The many-to-one link used above can be realized in dif-
ferent ways depending on the properties of the objects. The
purpose is to merge the information stored inn objects from
classA to a single object of classB. To do this we can ei-
ther create a single object of classA representing all then
objects or we can createn instances of the classB and then
merge thesen instances to a single object from classB. The
merging of the objects is done using the merge function in
the codesignation policy of the class. This implies that either
A or B has to have a merge function defined otherwise the
many-to-one link can’t be realized. The second option, i.e.
to createn instances ofB and then merge these, also requires
that it is possible to create an instance ofB from an instance
of A. The default approach is to merge then instances ofA
to a single instance and use it in the link.

Algorithm for establishing a link betweena andb:
1. Create a link instance between a and b
2. Merge existing links
3. Instantiate the features related to the

link in a and b
4. Set up a monitor for the maintain

constraint on the link

Codesignation Management
When objects are hypothesized as being identical the object
manager has to merge them into one representation. This
can be done in two ways, either merge the objects into one
of the existing objects (and delete the others) or create a new
object which is the result of the merge. Which approach to
use is defined by the strategy in the codesignation policy. In
either case we need to merge the information stored in the
objects and this is done with the merge function which is
also a component in the codesignation policy. Finally the
links related to the objects have to be merged. All outgoing
links have to be moved to the merged object and duplicated
links removed. If we keep the old objects and continually
update a new merged object from them we also keep the in-
coming links as they are, otherwise we have to move them

to the object we are keeping and merge them as described
above. A benefit of the strategy to create a new object which
is the result of continually merging two or more objects is
that the codesignation hypothesis can be withdrawn if it’s
no longer valid. The drawback is less performance and du-
plication of data.

Lifecycle Example

position(DOR, colocate(mx, my),

 pol4, wo2)
position(DOR, colocate(mx, my),
 pol4, wo1)
position(DOR, colocate(mx, my),
my=mean_y(DOR, pol1, vo2)
mx=mean_x(DOR, pol1, vo2)

FeatureManager (DOR)

 pol4, wo1)
position(DOR, colocate(mx, my),
my=mean_y(DOR, pol1, vo2)
mx=mean_x(DOR, pol1, vo2)

FeatureManager (DOR)

my=mean_y(DOR, pol1, vo1)
mx=mean_x(DOR, pol1, vo1)

 pol4, wo1)
position(DOR, colocate(mx, my),
my=mean_y(DOR, pol1, vo1)
mx=mean_x(DOR, pol1, vo1)

mx=mean_x(DOR, pol1, vo2)
delete(wo1)

codesignation(wo1, wo2)

maintain(vo_wo_link(vo2, wo2))
reestablish(vo_wo_link(vo2, wo1))
delete(vo2)

delete(wo2)

MonitorManager

codesignation(wo1, wo2)

maintain(vo_wo_link(vo2, wo2))
maintain(vo_wo_link(vo2, wo1))
delete(vo2)

delete(wo2)

delete(wo1)

MonitorManager

maintain(vo_wo_link(vo2, wo1))
delete(vo2)
delete(wo1)

MonitorManager

 pol4, wo2)

my=mean_y(DOR, pol1, vo2)

my=mean_y(DOR, pol1, vo2)

FeatureManager (DOR) MonitorManager

FeatureManager (DOR) MonitorManager

FeatureManager (DOR) MonitorManager

delete(wo1)

mx=mean_x(DOR, pol1, vo2)

Establish constraint vo_wo_link(vo2) satisfied

FeatureManager (DOR)

establish(vo_wo_link(vo2))
reestablish(vo_wo_link(vo2, wo1))
delete(vo2)

Codesignation constraint between wo1 and wo2 satisfied

Reestablish constraint vo_wo_link(vo2, wo1) satisfied

establish(vo_wo_link(vo1))

maintain(vo_wo_link(vo1, wo1))
delete(wo1)

delete(vo1)

Establish constraint vo_wo_link(vo1) satisfied

FeatureManager (DOR) MonitorManager

delete(wo1)

delete(vo1)

Vision object vo2 created

Delete constraint vo1 satisfied

Vision object vo1 created

Figure 6: The state of the feature and monitor managers dur-
ing the example.

Using the VisionObject and WorldObject specifications
above, assume a VisionObjectvo1 is created. The
mean x(DOR, pol1, vo1) andmean y(DOR, pol1, vo1) fea-

ture representations are created, as well as a delete con-
straint monitor forvo1. Since a VisionObject can partic-
ipate in avo wo link link an establish monitor is cre-
ated. Assume the establish constraint is satisfied, then a
WorldObject, e.g. wo1, is created. Together with it the
feature representationsmx = mean x(DOR, pol3, vo1),
my = mean y(DOR, pol3, vo1), and position(DOR,
colocate(mx, my), pol4,wo1) are created. A delete moni-
tor for the object is created as well as a maintenance monitor
for the link betweenvo1 andwo1. The states of the feature
and monitor managers at the different stages of the example
are shown in figure 6.

Now assume the tracking ofvo1 is lost and the object
removed. This means the link betweenvo1 and wo1 is
also removed, but notwo1 itself, even though it will no
longer be updated. A few images later a new blob is
found and a new VisionObjectvo2 is created. Then the
mean x andmean y feature representations are created, to-
gether with monitors for the delete,vo wo link estab-
lish andvo wo link (vo2, wo1) reestablish constraints. If
the establish constraint is satisfied then a new WorldOb-
ject, e.g. wo2, is created together with the feature repre-
sentations forposition as well as monitors for the delete
and codesignate(wo1, wo2) constraints. After some time the
reestablish constraint might be satisfied and a link between
vo2 andwo1 is created together with a maintenance moni-
tor. Later the codesignate constraint betweenwo1 andwo2
is satisfied, which is natural since they are computed from
the same vision object,wo1 andwo2 are merged intowo1
andwo2 is removed.

Related Work
In this section, we will compare three approaches to anchor-
ing symbols which use techniques having some similarity to
the DyKnow approach. According to (Coradeschi & Saf-
fiotti 2003), anchoring is “the process of creating and main-
taining the correspondence between symbols and sensor data
that refer to the same physical objects”.

Instead of creating one symbol for each physical object as
described in (Coradeschi & Saffiotti 2000; 2001) we create
one symbol for each aspect of a physical object we are inter-
ested in, working in a bottom-up fashion from sensor data.
These symbols can then be linked together to assert the fact
that they actually represent the same entity in the world. The
benefit is that we do not have to create one function for deter-
mining whether the blob seen in an image is a car but rather
can split up the problem into smaller and simpler problems,
like determining whether a blob is an object in the world, if
a world object is moving along roads and finally whether an
object moving along roads is a car.

Another benefit is that we can generate several hypothe-
sized objects at different levels of abstraction, which are all
anchored to the same sensor data, to handle uncertainty in
object identities. To verify and validate the hypotheses con-
straints are placed on the links in the linkage structures and
monitors are created to continually check that constraints are
not violated. If the constraints on a link are violated, the link
is removed and the particular object is no longer grounded.
The object itself is not removed since we might reestablish

a link at a later time. This corresponds to a reacquire in the
terminology of (Coradeschi & Saffiotti 2003). There are two
ways of relating our linkage structures to their anchors, ei-
ther view each linkage structure as an anchor or each link as
an anchor and the linkage structure as a chain of anchors. Ei-
ther way we have great flexibility in describing the require-
ments for creating and maintaining the anchors.

Another related approach is (Fritschet al. 2003) where
they propose a method for anchoring symbols denoting com-
posite objects through anchoring the symbols of their corre-
sponding component objects. They extend the framework
presented by Coradeschi and Saffiotti with the concept of a
composite anchor which is an anchor without a direct per-
ceptual counterpart. Instead the composite anchor computes
its own perceptual signature from the perceptual signatures
of its component objects. The benefit is that each sensor can
anchor its percepts to symbols which can be used to build
composite objects fusing information from several sensors.
The same functionality can be provided by DyKnow since
objects do not have to have direct perceptual counterparts,
but can be computed from other objects which may or may
not acquire their input directly from sensors.

This particular functionality is important to emphasize
since in complex hybrid robotic architectures, different com-
ponents and functionalities in the architecture require access
to representations of dynamic objects in the external envi-
ronment at different levels of abstraction and with different
guaranteed upper bounds on latencies in data. By modeling
dynamic objects as structured objects with different types
of features, any functionality in the architecture can access
an object at the proper level of abstraction and acquire data
from the object in a timely manner.

A final related approach is that of (Bonarini, Matteucci,
& Restelli 2001), where they use concepts with properties to
model objects. They introduce a model which is the set of
all concepts linked by relationships. The relationships can
represent constraints that must be satisfied, functions which
generate property values for a concept from property values
of another concept, or structural constraints which can be
used to guide anchoring (such as the fact that two concepts
are a total and exclusive specialization of another concept).

In DyKnow such functions are called computational units
and the constraints used are partitioned into several types
depending on their function. Although we do not have di-
rect support for structural constraints, we can use existing
DyKnow functionality to represent disjuncts such as the fact
that a moving object is either an off-road object or an on-
road object but not both.

Another difference between the approaches is that Bonar-
ini et al compute the degree of matching for each concept
in order to better handle uncertain and incomplete infor-
mation. Similarity measurements between objects are an
essential functionality for anchoring objects to sensor data
and comparing them to each other. Currently, we have de-
veloped a general theory for measuring similarity based on
the use of rough set techniques (Doherty & Szałas 2004;
Doherty, Łukaszewicz, & Szałas 2003; Doherty & Szałas
2004), although this particular functionality has not yet been
integrated into DyKnow. This is part of our ongoing activity

in this area.

Summary
DyKnow is a software framework developed for supporting
access to signal data in robotic architectures at various lev-
els of abstraction and fusing such data into component ob-
jects representing entities in both the internal and external
environments of robotic systems. In this particular case we
focus on an unmanned aerial vehicle and describe function-
ality which supports contextual access, creation, storing and
processing dynamic objects representing vehicles perceived
by the UAV. This subset of DyKnow functionalities provides
a generic toolkit for dealing with many issues related to an-
choring and symbol grounding in robotic systems. We de-
scribe this subset and compare this functionality to related
work. The UAV and DyKnow system have been tested ex-
perimentally in actual flights.

Acknowledgements
This work is partially supported by a grant from the Wallen-
berg Foundation, Sweden and NFFP 539 COMPAS.

References
Bonarini, A.; Matteucci, M.; and Restelli, M. 2001. An-
choring: do we need new solutions to an old problem or do
we have old solutions for a new problem? InAnchoring
Symbols to Sensor Data in Single and Multiple Robot Sys-
tems: Papers from the 2001 AAAI Fall Symposium, Techni-
cal Report No. FS-01-01, 79–86. Menlo Park, CA: AAAI
Press.
Coradeschi, S., and Saffiotti, A. 2000. Anchoring symbols
to sensor data: preliminary report. InProc. of the 17th
AAAI Conf., 129–135. Menlo Park, CA: AAAI Press.
Coradeschi, S., and Saffiotti, A. 2001. Perceptual anchor-
ing of symbols for action. InProc. of the 17th IJCAI Conf.,
407–412.
Coradeschi, S., and Saffiotti, A. 2003. An introduction to
the anchoring problem.Robotics and Autonomous Systems
43(2-3):85–96.
Doherty, P., and Szałas, A. 2004. On the correspondence
between approximations and similarity. InProceedings of
the 4th International Conference on Rough Sets and Cur-
rent Trends in Computing, RSCTC’2004.
Doherty, P.; Granlund, G.; Kuchcinski, K.; Sandewall, E.;
Nordberg, K.; Skarman, E.; and Wiklund, J. 2000. The
WITAS unmanned aerial vehicle project. InProceedings
of the 14th European Conference on Artificial Intelligence,
747–755.
Doherty, P.; Haslum, P.; Heintz, F.; Merz, T.; Nyblom, P.;
Persson, T.; and Wingman, B. 2004. A distributed architec-
ture for autonomous unmanned aerial vehicle experimenta-
tion. InProceedings of the 7th International Symposium on
Distributed Autonomous Robotic Systems.
Doherty, P.; Łukaszewicz, W.; and Szałas, A. 2003. Toler-
ance spaces and approximative representational structures.
In Proceedings of the 26th German Conference on Artifi-
cial Intelligence.

Doherty, P. 2004. Advanced research with autonomous
unmanned aerial vehicles. InProceedings on the 9th In-
ternational Conference on Principles of Knowledge Repre-
sentation and Reasoning.
Fritsch, J.; Kleinehagenbrock, M.; Lang, S.; Pltz, T.; Fink,
G. A.; and Sagerer, G. 2003. Multi-modal anchoring for
human-robot interaction.Robotics and Autonomous Sys-
tems43(2-3):133–147.
Heintz, F., and Doherty, P. 2004. DyKnow: An approach
to middleware for knowledge processing.Journal of Intel-
ligent and Fuzzy Systems.
Lamine, K. B., and Kabanza, F. 2002. Reasoning about
robot actions: A model checking approach. InAdvances in
Plan-Based Control of Robotic Agents, LNAI, 123–139.
Object Computing, Inc. 2003.TAO Developer’s Guide,
Version 1.3a. See alsohttp://www.cs.wustl.edu/
˜schmidt/TAO.html .

