
Linköping Studies in Science and Technology
Dissertaࢢons, No. 2006

Robust Stream Reasoning Under Uncertainty

Daniel de Leng

Linköping University
Department of Computer and Informaࢢon Science

Arࢢficial Intelligence and Integrated Computer Systems
SE-581 83 Linköping, Sweden

Linköping 2019

Ediࢢon 1:1

© Daniel de Leng, 2019
Thesis cover: A photo taken in Norrköping near (58.588510◦N, 16.183002◦W) on
July 1st 2018, facing north-west, showing stepped waterfalls represenࢢng the
incremental transformaࢢon of streams.

ISBN 978-91-7685-013-8
ISSN 0345-7524
URL http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-157633

Typeset using XƎTEX

Printed by LiU-Tryck, Linköping 2019

ii

Dedicated to the loving memory of Joan Grace de Leng (1921–2019), a strong,
brave, and adventurous English lady who gave me this language, the courage to
move abroad, an example of perseverance, a love of Star Trek, and an appreciaࢢon
of birds. She was my grandmother, my nana, and a real-life Captain Janeway. Her

spirit has been set free, but she will be sorely missed.

iii

POPULÄRVETENSKAPLIG SAMMANFATTNING

Robust inkrementell slutsatsdragning uࢢfrån osäkra
informaࢢonsströmmar

Informaࢢon finns överallt. Mycket av de�a produceras och konsumeras som informaࢢonsströmmar. Vi
har internetsamtal, �arࢢ på video, och live-streamar händelser. Övervakningskameror samlar och skic-
kar bilder konࢢnuerligt. Sensorer gör a� vi kan kolla på hur vädret är just nu. Marknadsinformaࢢon gör
a� vi kan kolla på statusen för världens börser. Våra smartphones kan ge oss posiࢢonsinformaࢢon live
som kan delas med andra. Dessutom observerar robotar sina närområden med hjälp av sensorer, såsom
människor observerar sina närområden med sina sinnesorgan. Dessa informaࢢonsströmmar ger oss in-
komple�a ögonblicksbilder av världen där vi befinner oss. Dock kan informaࢢonsmängden göra det svårt
a� förstå världen. Det är därför vikࢢgt för autonoma system a� ha förmågan a� förstå dessa informa-
,onsströmmarࢢ llࢢ exempel genom automaࢢsk slutsatsdragning. Inkrementell slutsatsdragning uࢢfrån
informaࢢonsströmmar, som också kallas för stream reasoning på engelska, är särskilt relevant för auto-
noma robotsystem i den fysiska världen. I den här avhandlingen fokuserar vi på två delar av problemet
gällande robust inkrementell slutsatsdragning uࢢfrån osäkra informaࢢonsströmmar.

Första delen handlar om hur e� system svarar på dsrelateradeࢢ frågor om informaࢢonsströmmar. Vi kan
använda en dslogikࢢ för a� beskriva händelsen på e� formellt sä�. Dessa händelser kan llࢢ exempel
representera värden av en särskild akࢢe, en finansiell transakࢢonmellan två parter, eller nuvarande status
av e� robotsystem. Logiska u�ryck är användbara där vi vill kontrollera om logiska specifikaࢢoner uppfylls
av e� system. En överträdelse av specifikaࢢonerna kan llࢢ exempel betyda a� en särskilt akࢢe går ner för
fort i värde, en suspekt finansiell transakࢢon har upptäckts, eller e� robotsystem agerar på e� ovanligt
och otryggt sä�. E[ersom det ibland saknas informaࢢon är förmågan a� hantera osäkerhet e� vikࢢgt
problem.

Andra delen handlar om hur e� sådant system kan generera informaࢢonsströmmar på e� robust sä�.
Många slutsatsdragningstekniker för logik tar inte hänsyn llࢢ ursprunget av de använda symbolernas tolk-
ning i logiska specifikaࢢoner. Det är vanligt a�man bara antar a� informaࢢonsströmmar som krävs också
finns. Men även om de är direkt llgängligaࢢ så kan llgänglighetenࢢ ändras över .dࢢ En potenࢢell lösning
är a� beskriva vilken sorts informaࢢon som krävs, i stället för var informaࢢon finns. Lösningen gör a�
det är möjligt för e� system a� anpassa sig när informaࢢonsströmresurser blir oࢢllgänglig medan de an-
vänds för slutsatsdragning, genom a� fortsä�a generera informaࢢonsströmmenmed hjälp av alternaࢢva
resurser.

Dessa två delar integrerades i e� ramverk för robust inkrementell slutsatsdragning uࢢfrån osäkra infor-
maࢢonsströmmar. Ramverket stödjer resonemanget om informaࢢonen som finns i strömmar, och om
strömmarna själva som produkt av en strömsyntesprocess. Dessa förmågor kommer a� bli vikࢢgare ju
mer informaࢢonsströmmar som genereras i vår digitala värld.

v

POPULAIRWETENSCHAPPELIJKE SAMENVATTING

Robuust automaࢢsch redeneren met onzekere informaࢢestromen

Informaࢢe is overal. Veel van deze informaࢢe wordt geproduceerd en geconsumeerd in de vorm van in-
formaࢢestromen. We houden online telefoongesprekken, kijken naar video-afleveringen, en streamen
live gebeurtenissen. Toezichtcamera’s verzamelen en versturen conࢢnu beeldmateriaal. Sensoren zor-
gen ervoor dat we actuele weersinformaࢢe kunnen opvragen. Daarbij observeren robots hun omgeving
met hulp van sensoren, zoals mensen hun omgeving observeren met behulp van zintuigen. Dergelijke in-
formaࢢestromen geven ons incomplete momentopnamen van de wereld waarin we ons bevinden. Ech-
ter kan de hoeveelheid informaࢢe het begrijpen van die wereld bemoeilijken. Het is daarom belangrijk
voor autonome systemen om deze informaࢢestromen te kunnen begrijpen, bijvoorbeeld door middel
van automaࢢsch redeneren. Automaࢢsch redeneren met informaࢢestromen, ook wel stream reasoning
genoemd in het Engels, is in het bijzonder relevant voor autonome systemen die zich in de fysieke we-
reld begeven. In deze scripࢢe concentreren we ons op twee onderdelen van het probleem van robuust
automaࢢsch redeneren met onzekere informaࢢestromen.

Het eerste onderdeel gaat over hoe een systeem antwoorden kan geven op jdsgerelateerdeࢢ vragen over
informaࢢestromen. We kunnen een jdslogicaࢢ gebruiken om gebeurtenissen op een formele manier te
beschrijven. Die gebeurtenissen kunnen bijvoorbeeld gaan over de waarde van een bepaald aandeel,
een financiële transacࢢe tussen twee parࢢjen, of de huidige status van een robotsysteem. Logische uiࢢn-
gen zijn handig wanneer we willen controleren of een systeem zich houdt aan een logische specificaࢢe.
Een overtreding kan bijvoorbeeld betekenen dat een bepaald aandeel te snel in waarde verliest, een ver-
dachte financiële transacࢢe ontdekt is, of dat een robotsysteem zich op een ongebruikelijke en gevaarlijke
manier gedraagt. Omdat er soms informaࢢe ontbreekt is het vermogen om om te gaan met onzekerheid
een belangrijk probleem.

Het andere onderdeel gaat over hoe een dergelijk systeem informaࢢestromen op een robuuste wijze kan
genereren. Veel technieken voor automaࢢsch redeneren op basis van logica houden zich niet bezig met
de oorsprong van de betekenis van de gebruikte symbolen in een logische specificaࢢe. Het is gebruike-
lijk dat men simpelweg aanneemt dat de benodigde informaࢢestromen beschikbaar zijn. Echter, zelfs als
ze direct toegankelijk zijn kan die toegankelijkheid over jdࢢ variëren. Een potenࢢële oplossing is om te
beschrijven welk soort informaࢢe benodigd is, in plaats van wáár de informaࢢe is. Dat zorgt ervoor dat
het mogelijk is voor een systeem om zich aan te passen wanneer bronnen van informaࢢestromen on-
toegankelijk worden terwijl ze in gebruik zijn voor automaࢢsch redeneren. Dit kan door middel van het
genereren van alternaࢢeve informaࢢestromen met hulp van alternaࢢeve middelen.

Deze twee delen zijn geïntegreerd in een raamwerk voor robuust automaࢢsch redeneren met onzekere
informaࢢestromen. Het raamwerk ondersteunt het redeneren met informaࢢe in de vorm van stromen,
en het redeneren over die stromen zelf als product van een syntheseproces. Deze vermogens worden
belangrijker naar mate er meer informaࢢestromen gegenereerd worden in onze digitale wereld.

vi

ABSTRACT

Vast amounts of data are conࢢnually being generated by a wide variety of data producers. This data
ranges from quanࢢtaࢢve sensor observaࢢons produced by robot systems to complex unstructured
human-generated texts on social media. With data being so abundant, the ability to make sense of these
streams of data through reasoning is of great importance. Reasoning over streams is parࢢcularly relevant
for autonomous roboࢢc systems that operate in physical environments. They commonly observe this en-
vironment through incremental observaࢢons, gradually refining informaࢢon about their surroundings.
This makes robust management of streaming data and their refinement an important problem.

Many contemporary approaches to stream reasoning focus on the issue of querying data streams in order
to generate higher-level informaࢢon by relying on well-known database approaches. Other approaches
apply logic-based reasoning techniques, which rarely consider the provenance of their symbolic inter-
pretaࢢons. In this work, we integrate techniques for logic-based stream reasoning with the adapࢢve
generaࢢon of the state streams needed to do the reasoning over. This combinaࢢon deals with both the
challenge of reasoning over uncertain streaming data and the problem of robustly managing streaming
data and their refinement.

The main contribuࢢons of this work are (1) a logic-based temporal reasoning technique based on path
checking under uncertainty that combines temporal reasoning with qualitaࢢve spaࢢal reasoning; (2) an
adapࢢve reconfiguraࢢon procedure for generaࢢng and maintaining a data stream required to perform
spaࢢo-temporal stream reasoning over; and (3) integraࢢon of these two techniques into a stream rea-
soning framework. The proposed spaࢢo-temporal stream reasoning technique is able to reason with
intertemporal spaࢢal relaࢢons by leveraging landmarks. Adapࢢve state stream generaࢢon allows the
framework to adapt to situaࢢons inwhich the set of available streaming resources changes. Management
of streaming resources is formalised in the DyKnowmodel, which introduces a configuraࢢon life-cycle to
adapࢢvely generate state streams. The DyKnow-ROS stream reasoning framework is a concrete realisa-
onࢢ of this model that extends the Robot Operaࢢng System (ROS). DyKnow-ROS has been deployed on
the So[Bank Roboࢢcs NAO pla�orm to demonstrate the system’s capabiliࢢes in a case study on run-ࢢme
adapࢢve reconfiguraࢢon. The results show that the proposed system — by combining reasoning over
and reasoning about streams — can robustly perform stream reasoning, even when the availability of
streaming resources changes.

This work was funded in part by the Naࢡonal Graduate School in Computer Science, Sweden (CUGS),
the Swedish Aeronauࢡcs Research Council (NFFP6), the Swedish Foundaࢡon for Strategic Research (SSF)
project CUAS, the Swedish Research Council (VR) Linnaeus Center CADICS, the ELLIIT Excellence Center at
Linköping-Lund for Informaࢡon Technology, and the Center for Industrial Informaࢡon Technology CENIIT.

Department of Computer and Informaࢢon Science
Linköping University

SE-581 83 Linköping, Sweden

vii

ACKNOWLEDGEMENTS

My supervisor once told me that working towards a PhD is like running a marathon;
someࢢmes things move slowly, and someࢢmes you work all the .meࢢ I someࢢmes
also imagine it is a bit like running your own business, where you have to make your
own decisions, and where nobody else is going to bail you out. As a PhD student you
are responsible for your own progress. You suffer your own setbacks and you reap
your own rewards. It can at mesࢢ be a rollercoaster of highs and lows. Someࢢmes
good enough is good enough, and you have a choice to make in spending your lim-
ited mewhereࢢ it ma�ers themost; other mesࢢ there seems to be a lot of ,meࢢ and
yet it can feel like things are going nowhere. During those mesࢢ it can be difficult not
to compare yourself to others, or to quesࢢon your own capabiliࢢes, but it is impor-
tant to remember that every PhD is different, both in terms of achievements as well
as expectaࢢons. What we take away from this experience is different for all of us.
For me, it gave me the opportunity to learn a lot from my own experiences as well
as those of others. It allowed me to go places, to learn new things, to meet people,
to exchange ideas, to grow socially as a person, and many more ‘scary things’.

I came to Sweden in the end of November of 2012, a day before winter buried
everything under a blanket of ice and snow, with a single suitcase and a backpack
containing a laptop and some recent papers by Fredrik Heintz. It got dark a[er 15:00,
and I remember howMarc, who was a fellow student who started his thesis work in
Linköping before me, sent me a helpful welcomemessage assuring me that this was
perfectly normal. The first night I slept on a thin ma�ress in an empty apartment I
had signed up for five years prior. That first Christmas, I was invited over by Lo�a (my
‘Swedish mum’) to spend Julwith her and my long-ࢢme friend Stefan (whose raving
about Sweden originally got me interested), which I appreciated tremendously. And
over the years, I had the opportunity to learn more about my new home. All these
things will stay with me as my PhD student adventure ends and another begins. But
this adventure would not have been possible without so many people, and while it
is impossible to menࢢon all of you, you know who you are.

I want to start by thanking Fredrik for being willing to take me on as an exjobb
student back in 2012 (and John-Jules Meyer for being willing to ask on my behalf),
despite being an outsider, and for offering me to stay on a[erwards as his first PhD
student. In a way I also feel lucky to have been his first PhD student because I had
the opportunity to see him develop as a supervisor as well! Fredrik’s work on the
DyKnow stream reasoning framework focused exactly on the problems I found the
most interesࢢng, andhe letmepursuemyown take on those problems from the very
beginning. I am grateful for all the supervision support I received over the years. I
also want to thank Patrick Doherty for all of the valuable feedback and suggesࢢons

ix

for improvements over the years. I consider myself lucky to have been part of AIICS
during my PhD studies, not just for the feedback and support but also for the enter-
taining Friday fikas. I appreciated the support from all of you; Karin, Anna, Patrick,
Fredrik H, Jonas, Cyrille, Tommy, Per, Piotr, Mariusz, Karol, Olov, Mikael, Maࢰas,
Fredrik P, Johan, and David.

A special ‘thank you’ also goes to AnneMoe, who granted me one iniࢢal conver-
saࢢon before (thankfully!) forcing me to pracࢢcemy Swedish, and who is absolutely
indispensable to all PhD students at IDA. I also want to thankmy good friendMaࢰas
for our frequent discussions about everything research and otherwise, and for really
helping me feel at home in Sweden. Our lunches and fikas with Erik, Jon, David and
Riley were a great way to relax or to learn new things. My hope is that we can con-
nueࢢ our tradiࢢon of having some gaming sessions and BBQs over the weekends.

None of this would have been possible without the amazing family support I
received these past years. My husband Riley has been part of my journey for almost
five years, and I cannot even begin to express how much his love and support has
helped me cope with this stressful endeavour. He le[behind everything he knew,
and moved to a country across the ocean to be here with me. None of this would
have been possible if he had not pushed me to aim high and try new things when
I was sࢢll a Master’s student. Thank you so much! I hope you realise the learned
lessons listed here — although I am sure you know them by heart — are primarily
meant as a reminder for you~

Lastly, I want to thank my extended family across several countries for their sup-
port and their paࢢence — my parents Eric and Natasha, my father-in-law Gary and
my latemother-in-law Paige, who sadly passed away far too young and whowemiss
dearly; my sister Samantha, her husband Vincent, andmy energeࢢc cousins Thomas
and Kevin, whosemany adventures I hope to hearmore about in our video calls; and
my brother Daryl and his fiancée Maaike. Moving abroad is ulࢢmately a selfish act;
you end up missing out on baby showers, birthdays, and funerals. I have asked a lot
from you, and I am grateful you sࢢll welcome me back whenever the opportunity
arises. Dank jullie wel!

Daniel de Leng
Linköping, October 2019

x

CONTENTS

Abstract v

Acknowledgments x

Contents xi

List of Figures xv

List of Tables xviii

Part I: Introducࢢon and background 1

1 Introducࢢon 3
1.1 Moࢢvaࢢon . 3
1.2 Scope and delimitaࢢons . 6
1.3 Methodology . 8
1.4 Contribuࢢons . 9
1.5 Publicaࢢons . 11
1.6 Dissertaࢢon outline . 12

2 Preliminaries 15
2.1 Introducࢢon . 15
2.2 Views of streams . 15
2.3 Anatomy of a stream . 18
2.4 Anatomy of a transformaࢢon . 19
2.5 Stream reasoning . 20
2.6 Summary . 22

Part II: Stream reasoning under uncertainty 23

3 Reasoning about meࢢ 25
3.1 Introducࢢon . 25
3.2 Temporal models and logics . 26
3.3 Formal verificaࢢon . 29
3.4 Runࢢme verificaࢢon . 31
3.5 Formula simplificaࢢon . 34

xi

3.6 Empirical evaluaࢢon . 37
3.7 Summary . 39

4 Reasoning under uncertainty 41
4.1 Introducࢢon . 41
4.2 Prefix progression under uncertainty 42
4.3 Progression graphs . 46
4.4 Incremental graph progression 53
4.5 Progression-based monitoring . 58
4.6 Empirical evaluaࢢon . 59
4.7 Summary . 62

5 Reasoning about space 65
5.1 Introducࢢon . 65
5.2 Qualitaࢢve spaࢢal reasoning . 66
5.3 Metric Spaࢢo-Temporal Logic . 67
5.4 Spaࢢo-temporal inference with RCC-8 70
5.5 MSTL progression . 75
5.6 Empirical evaluaࢢon . 78
5.7 Summary . 83

Part III: Adapࢢve stream processing 85

6 State stream synthesis 87
6.1 Introducࢢon . 87
6.2 Timed data streams . 89
6.3 Syntacࢢc subscripࢢons . 89
6.4 Semanࢢc subscripࢢons . 92
6.5 Synchronisaࢢon . 95
6.6 Incorporaࢢng background knowledge 99
6.7 Summary . 100

7 Reasoning about composiࢢon 101
7.1 Introducࢢon . 101
7.2 Service composiࢢon . 102
7.3 DyKnow model . 103
7.4 Ontology-based model representaࢢon 110
7.5 Summary . 114

8 Reasoning about perturbaࢢons 115
8.1 Introducࢢon . 115
8.2 Perturbaࢢon handling . 116
8.3 Update procedure . 117
8.4 Correctness . 125

xii

8.5 Any-ࢢme extension . 127
8.6 Summary . 128

Part IV: Applied stream reasoning 129

9 DyKnow-ROS 131
9.1 Introducࢢon . 131
9.2 DyKnow-ROS . 133
9.3 The nodelet proxy . 134
9.4 Management of stream processing 136
9.5 Stream reasoning support . 141
9.6 Empirical evaluaࢢon . 142
9.7 Summary . 143

10 Case-studies 145
10.1 Introducࢢon . 145
10.2 Interacࢢve visualisaࢢon . 145
10.3 Collaboraࢢve tracking of a ball 147
10.4 Summary . 156

11 Related work 157
11.1 Introducࢢon . 157
11.2 STREAM . 157
11.3 Aurora and Borealis . 158
11.4 TelegraphCQ . 159
11.5 ETALIS . 160
11.6 Retalis . 162
11.7 T-Rex . 163
11.8 LARS . 164
11.9 SECRET . 165
11.10 RSP . 166
11.11 PEIS . 169
11.12 Summary . 171

Part V: Conclusions 173

12 Conclusions and future work 175
12.1 Overview . 175
12.2 Conclusions . 177
12.3 Limitaࢢons and open problems 179
12.4 Future work . 181

Bibliography 183

xiii

A DyKnow ontology in Manchester syntax 197

xiv

LIST OF FIGURES

1.1 Synergy effect between reasoning over streams and reasoning about
streams. 4

1.2 The stream reasoning waterfall model showing the incremental trans-
formaࢢon of fast streams at a low abstracࢢon level into slow streams at
a high abstracࢢon level, which can elicit a response from an agent that
implements this model. 6

2.1 The stream reasoning waterfall model with the transformaࢢon of
shrouded fluents into observaࢢons highlighted. 17

2.2 Anatomy of an irregular-ࢢmed data stream showing key concepts in red
and primiࢢve operaࢢons in blue. 19

2.3 Anatomy of a transformaࢢon, showing its structure and its relaࢢonship
to streams. 19

3.1 The stream reasoningwaterfallmodelwith the transformaࢢon of knowl-
edge into verdicts, also known as logic-based stream reasoning, high-
lighted. 26

3.2 Le[: All models of the system descripࢢon are also models of the formal
specificaࢢon, showing correctness. Right: Some models of the system
descripࢢon are not models of the formal specificaࢢon, indicaࢢng that
the specificaࢢon is violated by some system traces. 30

3.3 Formula trees T (G(¬p → F[0,5]G[0,3]p)) (le[), and its progressed ver-
sions T (PROGRESS(G(¬p → F[0,5]G[0,3]p,∅))) before (middle) and af-
ter (right) formula simplificaࢢon. The tree nodes in light green can be
eliminated. 35

3.4 Formula size over meࢢ when progressing GF[0,10]p over regular state
sequences. 37

3.5 Formula size over mewhenࢢ progressingGF[0,10]pwithout formula sim-
plificaࢢon. 38

3.6 Formula size over meࢢ when progressing G(¬p → F[0,10]G[0,9]p) over
regular state sequences. 39

4.1 Example progression graph for the formula F[0,5]p. Verࢢces represent
formulas; edges are labelled with complete states to illustrate under
which logical state a formula progresses into a formula. Reflexive edges
for the verdicts are omi�ed for clarity. 47

xv

4.2 Example progression graph G3(G(¬p → F[0,5]G[0,3]p)) a[er receiving
state {∅} three mesࢢ in a row. 55

4.3 Example progression graph G7(G(¬p→ F[0,5]G[0,3]p)). 56
4.4 Leaked probability mass at terminaࢢon (le[), and number of iteraࢢons

to terminaࢢon (right). 61
4.5 Average meࢢ per iteraࢢon±2σ (right). 62

5.1 The eight qualitaࢢve spaࢢal relaࢢons considered by RCC-8 and their
transiࢢons as illustrated by regions x and y. 67

5.2 The probability of saࢢsfiability of CSPs drawn from A(n, d, 4.0) =

A′(n, d, 4.0, 1.0) for varying numbers of regions n and varying degrees
d. A phase transiࢢon can be observed to occur for d ∈ [5, 15]. 79

5.3 Average meࢢ per iteraࢢon in milliseconds for four different cases. The
top le[shows the average meࢢ in milliseconds for A(n, d, 4.0). The
top right shows an increased cost a[er one iteraࢢon when separaࢢng
the dynamic component A′

d(n, d, 4.0, 0.25) from the staࢢc component
A′

s(n, d, 4.0, 0.25). The bo�om row shows how the one-ࢢme overhead
imposed by compuࢢng the staࢢc and dynamic components separately
decreases, for three (bo�om le[) and five (bo�om right) iteraࢢons re-
specࢢvely. 80

5.4 Absolute disjuncࢢon size for varying number of regions and landmark
raࢢo; smaller is be�er. 82

5.5 Percentage of relaࢢons fully unknown for varying number of regions and
landmark raࢢo. 83

6.1 The stream reasoning waterfall model with the transformaࢢon of obser-
vaࢢons into knowledge via interpretaࢢons highlighted. 88

6.2 Breakdown of automated query construcࢢon performance. 95

7.1 Hierarchical concept graph of the DyKnow ontology. 111

9.1 The stream reasoning waterfall model with the components within the
stream reasoning pipeline range highlighted. 132

9.2 UML diagram showing the DyKnow nodelet implementaࢢon and its re-
laࢢon to standard ROS components. 135

9.3 Performance graph showing the different me-to-arrivalsࢢ for messages
relaࢢve to the number of hops for a linear chain. 143

10.1 The stream reasoning waterfall model with the agent response to ver-
dicts highlighted. 146

10.2 Screenshot of the interacࢢve visualisaࢢon tool. 146
10.3 Humanoid lab (le[) equipped with four ceiling cameras (right). 147
10.4 A So[Bank Roboࢢcs NAO V4 robot. 148
10.5 Piff and Puff’s transformaࢢon pipeline conceptually showing the trans-

formaࢢons from camera images to ball posiࢢons. 149

xvi

12.1 A simplified version of the stream reasoning waterfall model. 176

xvii

LIST OF TABLES

1.1 An outline of this dissertaࢢon. 12

3.1 Rewriࢢng rules for wffs ϕ, ψ, χwhere we assume i ̸= j ̸= k. Symmetric
relaࢢonships are implicit for commutaࢢve verࢢces. Rules for syntacࢢc
sugar (i.e. GI ,FI ,→,↔) follow implicitly from the rules listed. 36

4.1 Empirical results illustraࢢng the impact of removal strategies πttl and
πmax. 60

5.1 Definiࢢons for the 15 RCC relaࢢons. 67

6.1 The five categories for streams when performing synchronisaࢢon using
the SYNCHRONISE procedure. 97

7.1 Notaࢢon for the DyKnow model. 103

10.1 Piff’s TFs and their tags denoted by itag1, . . . , itagn ⇒ otag. 150
10.2 The Humanoid lab’s ceiling camera transformaࢢons and their tags de-

noted by itag1, . . . , itagn ⇒ otag. 154

xviii

Part I

INTRODUCTION AND BACKGROUND

Chapter

1
Introduction

R eal-world roboࢢc systems must be able to interpret and reason about un-
certain sensor observaࢢons to effecࢢvely operate in the physical world in a
safe manner. Such observaࢢons occur in the context of and across meࢢ and

space. Consequently, observaࢢons are temporally and spaࢢally connected to each
other. The discrete observaࢢons succeed each other like snapshots that, when taken
together, tell us a story about the world we reside in. Stream reasoning is a sub-
field of Arࢢficial Intelligence (AI) that focuses on incremental reasoning over rapidly-
available informaࢢon, which we characterise as streams containing situaࢢonal infor-
maࢢon. More specifically, stream reasoning is a subfield of Knowledge Representa-
onࢢ (KR), which is itself a subfield of AI. The focus of this dissertaࢢon is on robust
stream reasoning under uncertainty, with applicaࢢons to adapࢢve stream process-
ing and path checking. Whereas most pre-exisࢢng stream reasoning approaches
have considered the stream as a complete and accurate representaࢢon of the state
of the world, we will make no such assumpࢢon. Furthermore, whereas path check-
ing assumes a stream is given, we will addiࢢonally consider how such a stream is
obtained. The work presented here thus considers the transformaࢢons needed for
a noisy signal to be used to draw conclusions, resulࢢng in a broad problem domain
that reflects the realiࢢes an integrated AI-enabled systemmust be able to copewith.

1.1 Moࢢvaࢢon

The world is becoming ever more interconnected. As ciࢢes grow and technology
advances, we can observe an increase in the number of sensors deployed to moni-
tor our physical environment. These developments are o[en characterised as smart
ciࢡes and the Internet of Things (IoT). But the observaࢢons are not necessarily lim-
ited to passive sensors. They include people sharing informaࢢon using mobile de-
vices, as well as more and more affordable unmanned pla�orms carrying cameras.

3

1. Introducࢢon

Reasoning
over streams

Reasoning
about streams

Influences

Facilitates

Figure 1.1: Synergy effect between reasoning over streams and reasoning about
streams.

The research presented here was originally inspired by a discussion of a research
project scenario in which unmanned aerial vehicles (UAVs) were to be used for gath-
ering informaࢢon in the physical world. There is o[en a disconnect in the way peo-
ple request informaࢢon and the way informaࢢon systems provide that informaࢢon.
Commonly, a client requesࢢng informaࢢon by default does not care how their re-
quest is fulfilled, unless specifically menࢢoned otherwise. If a client wants to obtain
a video feed showing the façade of a building, all that ma�ers is that this video feed
is obtained under the constraints provided, if any. Stream reasoning can help by
providing informaࢢon on demand.

Increasingly many of these informaࢢon systems are safety-criࢢcal due to their
interacࢢon with physical environments, which are o[en shared with human beings.
Such systems include UAVs, and may in the future also include autonomous vehi-
cles sharing the roads with human drivers. Checking whether these systems oper-
ate in accordance with their formal specificaࢢons is an important problem within
AI. Luckcuck et al. (2019) recently provided a survey on techniques for the for-
mal specificaࢢon and verificaࢢon of these types of systems, covering both model
checking and runࢢme verificaࢢon approaches. For many such systems, including
autonomous roboࢢc systems, streaming informaࢢon is generated from sensor ob-
servaࢢons. Stream reasoning thus plays an increasingly important role as robots
are no longer confined to carefully cra[ed environments and instead have to deal
with the highly-dynamic physical world that is shared with other enࢢࢢes. This dy-
namic and highly complex operaࢢonal environment makes it difficult or impossible
to prove a-priori that a system adheres to its specificaࢢons. Furthermore, the black
box nature ofmany AImodels is problemaࢢcwhen a formal specificaࢢon of a system
is needed to perform safety checks. Stream reasoning can help by reasoning about
streaming informaࢢon during runࢢme, which is a type of runࢡme verificaࢡon.

The contribuࢢons presented in this dissertaࢢon consequently fall under two dis-
nctࢢ but adjoining strands; stream reasoning under uncertainty and adapࢡve stream
processing. Stream reasoning seeks to obtain verdicts (of some kind) from streams
of informaࢢon. In many pracࢢcal applicaࢢons, streams are subject to uncertainty,
whichmust be taken into account. Stream reasoning under uncertainty is thus a type
of reasoning over streams. Conversely, adapࢢve stream processing uࢢlises reason-
ing about streams, and can be regarded as meta stream reasoning. In this view, the

4

1.1. Moࢢvaࢢon

streams themselves — and by extension, their properࢢes — are of interest for the
purpose of reasoning. Both views are complementary and form the basis for the two
strands of this dissertaࢢon. As illustrated in Figure 1.1, reasoning about streams can
facilitate and strengthen reasoning over streams, and reasoning over streams can
influence the reasoning about streams: the two strands provide a natural synergy
effect wherein the whole is greater than its individual parts.

Stream reasoning under uncertainty. Stream reasoning seeks to draw conclusions
from streams of informaࢢon, for example to check whether an informaࢢon system is
behaving in accordance with safety specificaࢢons. A stream reasoning system needs
to handle the incremental nature of streaming informaࢢon, where informaࢢon can-
not be assumed to be available immediately, and where the total amount of infor-
maࢢon in a complete stream may be arbitrarily large. Furthermore, the streaming
informaࢢon may be uncertain, and therefore cannot be assumed to accurately rep-
resent an observed environment. This dissertaࢢon focuses on the problemof stream
reasoning withmulࢢple hypotheses, each of which has a probability associated with
it. This is done by considering runࢢme verificaࢢon for streams under uncertainty,
where we also consider qualitaࢢve spaࢢal informaࢢon.

Adapࢢve stream processing. In many cases, distributed informaࢢon systems have
streams of informaࢢon flow between their nodes. At the same ,meࢢ the number
of sources for streams — such as sensors or Internet of Things (IoT) devices — is
increasing. Yet most research assumes that the sources of streams as well as their
transformaࢢon serviceswithin distributed informaࢢon systems are fixed and known.
While it is important to reason about which streaming resources to subscribe to,
most of today’s systems lack the capability to do so. It can therefore be argued
that it is unreasonable to assume that the streaming resources are fixed and known,
and that being able to reason about these dynamics is important for autonomous
systems in order to effecࢢvely operate in the real world. This dissertaࢢon focuses
in parࢢcular on the problem of reliably generaࢢng a stream of interest, as indicated
by a user or an informaࢢon system, where the computaࢢonal resources may change
over .meࢢ This is done by reasoning about streams, and in parࢢcular how streams
can be generated.

Figure 1.2 illustrates a contextual representaࢢon of stream reasoning by using a
waterfall model, inspired by the well-known (revised) JDL fusion model (Steinberg
and Bowman, 2008). The goal of an agent implemenࢢng this model is to respond
to a dynamic environment. To do so, the agent needs to produce verdicts about the
environment. For example, an agent may want to conࢢnuously check whether its
formal model of the environment holds. As long as the agent produces verdicts that
confirm that the model holds, the agent can keep operaࢢng normally. However, as
soon as there is a verdict that represents a violaࢢon, the agent can use this verdict as
a trigger to adjust its behaviour in order to maintain safety. Of course, verdicts are

5

1. Introducࢢon

Fluent

Observation

Interpretation

Knowledge

Verdict

Shroud

Slow

Fast

Low
abstraction

High
abstraction

Stream reasoning pipeline

Response

Figure 1.2: The stream reasoning waterfall model showing the incremental transfor-
maࢢon of fast streams at a low abstracࢢon level into slow streams at a high abstrac-
onࢢ level, which can elicit a response from an agent that implements this model.

highly abstract and the result of mulࢢple steps of reasoning. They are consequently
also generated at a relaࢢvely slow pace. In the model, verdicts are produced as
the result of knowledge. Knowledge combines factual informaࢢon with models that
can be based on formal theories or past experience. These models can for example
be used to compile past observaࢢonal informaࢢon into a compact representaࢢon.
Knowledge is obtained from interpretaࢡons of observaࢡons. An interpretaࢢon is a
representaࢢon of observaࢢons, whereas observaࢢons are for example streams of
raw sensor readings. Observaࢢons are o[en imprecise, but do not have to be. For
example, one can have precise observaࢢons of social media acࢢvity, and the facts
that follow from such observaࢢons correspond to states. Observaࢢons can be ob-
tained from fluents, which represent conࢢnuous, me-variantࢢ (physical) properࢢes.
The fluents themselves are shrouded, meaning that we cannot read fluents directly
as they represent the ground truth of Nature itself. Because they are shrouded, the
act of obtaining observaࢢons from fluents introduces noise and uncertainty. If the
specificaࢢons and properࢢes of the sensing device that produces observaࢢons are
known, however, it is possible to compensate by explicitly represenࢢng these prop-
erࢢes using probabilisࢢc tools, as is for example common within the area of signal
processing. The stream reasoning pipeline deals with explicit streams, and therefore
starts with observaࢢons to eventually produce verdicts. Throughout this disserta-
,onࢢ we will regularly come back to this stream reasoning waterfall model when
considering the various subcomponents of such a stream reasoning pipeline.

1.2 Scope and delimitaࢢons

The aim of this dissertaࢢon is

to formally model, develop, and analyse methods and algorithms for
incorporaࢢng uncertain informaࢢon in logic-based spaࢢal and tem-

6

1.2. Scope and delimitaࢢons

poral stream reasoning; and to formally model, develop, and analyse
methods and algorithms for the adapࢢve generaࢢon of state streams
needed to perform this type of reasoning.

This dissertaࢢon invesࢢgates the following research quesࢢons in the pursuit of this
aim:

• [RQ1]: How can uncertainty be formally modelled for the purpose of logical
stream reasoning?

• [RQ2]: How can a spaࢢo-temporal logic be constructed by combining spaࢢal
and temporal formalisms, and how can statements in such a logic be tested
for saࢢsfacࢢon given a stream?

• [RQ3]: How can a stream be generated for the purpose of symbol grounding?

• [RQ4]: How can the procedure for generaࢢng a stream for the purpose of
runࢢme verificaࢢon be made robust to changes that affect its ability to keep
generaࢢng such a stream?

• [RQ5]: How can the techniques developed towards answering the aforemen-
onedࢢ research quesࢢons be leveraged in a concrete middleware framework
such as the Robot Operaࢢng System?

Adapࢢve stream processing. The waterfall model from Figure 1.2 starts with the
problem of adapࢢvely generaࢢng streams needed for path checking, i.e. from ob-
servaࢢons, via interpretaࢢons, to knowledge. This is referred to as adapࢡve stream
processing (covered in Part III), which is necessary to ground symbols such that they
can be given an interpretaࢢon. One important delimitaࢢon here is that the focus
is on how to robustly generate such a stream, rather than the development of so-
phisࢢcated methods for connecࢢng its contents to symbols. Another delimitaࢢon
is that we will not consider the generaࢢon of new knowledge. Rather, we focus on
using pre-exisࢢng knowledge in the form of logical theories to support the reasoning
process.

Stream reasoning under uncertainty. The waterfall model then considers the
problem of drawing conclusions from this informaࢢon. In the work presented
here, we specifically focus on drawing such conclusions from uncertain informaࢢon
streams (covered in Part II), i.e. stream reasoning under uncertainty. Here we will
assume that the uncertainty is explicitly given, rather than a�empࢢng to model the
uncertainty based on streaming informaࢢon. The impact of this explicit uncertainty
on the reasoning process is the topic of interest. Further, the scope of this disser-
taࢢon limits itself to the unidirecࢢonal support from adapࢢve stream processing to
stream reasoning under uncertainty. The described (bidirecࢢonal) synergy effect
by allowing the stream reasoning to affect the adapࢢve stream processing is le[to
future work.

7

1. Introducࢢon

Integraࢢon. The above contribuࢢons are integrated into a single architecture (cov-
ered in Part IV) for the purpose of checking the behaviour of autonomous robots,
called DyKnow. The focus is on the usability of the resulࢢng system towards re-
search into safe autonomous robots. A system integraࢢng DyKnow with the Robot
Operaࢢng System (ROS) is called DyKnow-ROS. The system restricts itself to produc-
ing verdicts, but does not provide any funcࢢonality to act on those verdicts, as that
ability is le[outside of the scope of this dissertaࢢon.

1.3 Methodology

Themethodology followed for this dissertaࢢon is designed to allow for the discovery
and invesࢢgaࢢons of new problems that arise as the result of ongoing research. It
can be categorised into three categories; theory, engineering, and deployment.

Theory. First, theoreࢢcal contribuࢢons were developed and proposed, providing a
solid foundaࢢon that doubles as a clear design specificaࢢon. These theoreࢢcal con-
tribuࢢons are based on and extend previous work in the various fields. The strand
for stream reasoning under uncertainty is closely related to research in the field of
knowledge representaࢢon and reasoning, for example.

Engineering. The different theoreࢢcal results were verified empirically as so[-
ware artefacts. While the contribuࢢons themselves are general and could be im-
plemented in a variety of ways, the goal of this work was to provide a stream rea-
soning framework implementaࢢon that integrates these results in a useful manner.
This presented a number of engineering problems that were resolved as part of the
integraࢢonwork. The engineeringwork focused in part on the applicability of the re-
sulࢢng so[ware artefacts. Special carewas taken tomake sure that the so[warewas
easy to use by other developers, decreasing the cost of adopࢢon. The engineering
efforts o[en highlighted potenࢢal theoreࢢcal problems which had to be resolved.

Deployment. Where suitable, the resulࢢng so[ware artefacts were deployed on
the So[Bank Roboࢢcs NAO robot pla�orm. Since the work on state stream gener-
aࢢon relies on underlying implemented funcࢢonality, so[ware under development
for the RoboCup Standard Pla�orm League (SPL) was used and adapted toworkwith
the stream reasoning framework. This presented an interesࢢng test-bed for tesࢢng
the ease of integraࢢon, and highlighted various engineering problems that required
solving. The result of deployment o[en also yields or highlights interesࢢng theoret-
ical quesࢢons and problems.

The theoreࢢcal foundaࢢon thus provide a basis upon which the proposed system
is built. While some of the presented results are purely theoreࢢcal in nature, the
focus lies on roboࢢcs-related applicaࢢon domains. By providing a formal model of
the system, the results can therefore be reproduced in other system realisaࢢons

8

1.4. Contribuࢢons

than the onepresented in this dissertaࢢon, using different pla�orms than those used
here. This demonstrates that the results are general.

1.4 Contribuࢢons

The contribuࢢons presented in this dissertaࢢon benefit from a long line of prior
stream reasoning works, albeit under different names, spurred from requirements
in the WITAS UAV project (1997–2005) towards the development of technology for
autonomous unmanned aerial vehicles, as well as subsequent developments post-
WITAS. An overview of theWITAS project’s second phase was given by Doherty et al.
(2000), and indicated a need for reasoning about streams as follows: “In order to
understand the observed ground scenarios, to predict their extension into the near
future, and for planning the acࢢons of the UAV itself, the system needs a declaraࢢve
representaࢢon of acࢢons and events.” Heintz and Doherty (2001) describe the inte-
graࢢon of chronicle recogniࢢon into theWITAS system for the purpose of recognising
event sequences such as overtakes by vehicles, using the CRS chronicle recogniࢢon
system by France Telecom (Dousson and LeMaigat, 2007). A Dynamic Object Repos-
itory (DOR) was responsible for storing fluent informaࢢon pertaining to objects that
was needed by the UAV to perform chronicle recogniࢢon. The chronicle recogniࢢon
engine itself was a passive component that could be controlled by the UAV control
and acࢢve vision systems. Given today’s descripࢢon of the field, the WITAS project
was one of the first systems to successfully employ what is today known as stream
reasoning — a term that would be coined years later by Della Valle et al. (2009) —
in a real-world seࢰng.

DyKnow1 was first introduced by Heintz and Doherty (2004c) and integrated in
the Distributed Autonomous Roboࢡcs Architecture (DARA), by Heintz and Doherty
(2004a). To perform chronicle recogniࢢon, DyKnow needed to cognise objects of in-
terest, hypothesise their class, and reason conࢢnuously about their dynamics. In or-
der for DyKnow to do so, Heintz andDoherty (2004c) recognised that “Consequently,
autonomous agents must be able to declaraࢢvely specify and re-configure the char-
acter of the data received.” The character of the data was described in terms of
rate and form, which included the way changes were modelled and approximaࢢons
were handled for me-pointsࢢ without observaࢢons. This led to the introducࢢon of
the fluent stream concept, inspired by Erik Sandewall’s work on fluents. A fluent
stream could be generated by a computaࢢonal unit from a parࢢcular locaࢢon and
according to a provided policy which described the character of the data.

DyKnow introduced object linkage structures (also described as dynamic ob-
ject structures) to realise the ability to hypothesise object classes and, in part, to
reason about their dynamics (Heintz and Doherty, 2004c,e,b,d; Heintz et al., 2009,
2013). Object linkage structuresmade it possible tomake and retract class hypothe-

1Pronounced ‘dino’, as in ‘dinosaur’. Iniࢢally DyKnow was an acronym for Dynamic Knowledge Pro-
cessing. This was later extended to Dynamic Knowledge Processing and Object Management. The term
has since evolved into a pseudo-acronym.

9

1. Introducࢢon

ses based on observed object dynamics, and to adjust the expected behaviour of
these objects based on the currently hypothesised class. This provided bi-direcࢢonal
(bo�om-up and top-down) reasoning uࢢlising potenࢢally many levels of abstracࢢon
as hypotheses built upon each other. The adopࢢng and retracࢢng of hypotheses
is a form of reasoning under uncertainty that is complementary to the contribu-
onsࢢ presented in Part II. As is the case in this work, high-level reasoning requires
a suitable stream to perform the reasoning over. The handling of the character of
streams thus requiredmeans to performwhatwas referred to as knowledge process-
ing (Heintz and Doherty, 2004b,d). This was used in applicaࢢons where low-level
informaࢢon was conࢢnuously transformed to perform high-level reasoning, for ex-
ample for chronicle recogniࢢon tasks for traffic monitoring (Heintz et al., 2007b,a,
2008b), diagnosis (Heintz et al., 2008a; Krysander et al., 2008, 2010), and execuࢢon
monitoring (Kvarnströmet al., 2008; Doherty et al., 2009, 2013). The knowledge pro-
cessing language (KPL) was introduced by Heintz et al. (2009, 2010) and formalised
knowledge processing. The concepts introduced in the formalisaࢢon of KPL form
the basis of much of the work presented in Part III.

A mulࢢ-agent version of DyKnow was considered by Heintz and Doherty (2008,
2010). To achieve this, a Federated DyKnow was introduced, using proxies and
speech acts to facilitate the sharing of informaࢢon between instances. This work
also introduced the concept of semanࢡc labels for interoperability between agents,
staࢢng: “These semanࢢc labels can then be translated by each agent to local Dy-
Know labels using whatever procedure necessary.” (Heintz and Doherty, 2008)
These semanࢢc labels represent the precursor to later work towards semanࢢc in-
formaࢢon integraࢢon (Heintz and Dragisic, 2012; Heintz and de Leng, 2013; de Leng
and Heintz, 2014), which this dissertaࢢon is a conࢢnuaࢢon of. The DyKnow sys-
tem has been described in terms of the JDL Fusion Model in Heintz and Doherty
(2005b,c,a, 2006), and plays an important role in the HDRC3 Distributed Hybrid De-
liberaࢡve/Reacࢡve Architecture by Doherty et al. (2014).

Thework presented in this dissertaࢢon is a conࢢnuaࢢon of these earlier research
efforts. In parࢢcular, this work conࢢnues from the aforemenࢢoned efforts towards
semanࢢc informaࢢon integraࢢon, and applies them to a new proof-of-concept Dy-
Know stream reasoning architecture that is separate fromHDRC3 at the meࢢ of writ-
ing. The main contribuࢢons presented in this dissertaࢢon are as follows:

1. A formal model of a distributed stream reasoning framework was developed,
along with the formalisaࢢon of its dynamics in terms of changes to the com-
putaࢢonal environment. Reconfiguraࢢon of the computaࢢonal environment
allows for the generaࢢon of streams based on requests, for example to sup-
port the evaluaࢢon of a logic formula. An adapࢢve reconfiguraࢢon algorithm
is presented. To support adapࢢve reconfiguraࢢon planning, the cost of us-
ing the framework’s components is assumed to be esࢢmated during run-ࢢme.
[RQ3, RQ4]

2. The problem of stream reasoning with uncertain state informaࢢon is consid-
ered and applied in conjuncࢢon with qualitaࢢve spaࢢal reasoning. Specifi-

10

1.5. Publicaࢢons

cally, we consider the problem of path checking over infinite-length streams
where each uncertain state is represented by a discrete probability distribu-
onࢢ over fully-known states. By keeping track of all possible hypotheࢢcal com-
plete streamswe are able to incrementally keep track of the saࢢsfacࢢon prob-
ability of a temporal logic formula. [RQ1, RQ2]

3. The DyKnow-ROS dynamically reconfigurable stream reasoning framework
was implemented as an extension to the Robot Operaࢢng System (ROS). The
required reconfigurability strengthens ROS, which by default does not support
this ability. ROS visualisaࢢon tools were enhanced with the ability to visualise
the dynamically-changing environment. [RQ5]

1.5 Publicaࢢons

These contribuࢢons are the result of a number of publicaࢢons. The complete lisࢢng
of publicaࢢons covered in this dissertaࢢon is as follows:

• D. de Lengand F. Heintz. Stream reasoningwith probabilisࢡc state informaࢡon
using progression-based path checking. Journal arࢡcle under review.

• D. de Leng and F. Heintz. Approximate Stream Reasoning with Metric Tempo-
ral Logic under Uncertainty. In Proceedings of the 33rd AAAI Conference on
Arࢡficial Intelligence, 2019.

• D. de Leng and F. Heintz. Parࢢal-State Progression for Metric Temporal Logic.
In Proceedings of the 16th Internaࢡonal Conference on Principles of Knowl-
edge Representaࢡon and Reasoning, 2018.

• D. de Leng and F. Heintz. Towards Adapࢢve Semanࢢc Subscripࢢons for Stream
Reasoning in the Robot Operaࢢng System. In Proceedings of the 30th IEEE/RSJ
Internaࢡonal Conference on Intelligent Robots and Systems, 2017.

• D. de Leng and F. Heintz. DyKnow: A Dynamically Reconfigurable Stream Rea-
soning Framework as an Extension to the Robot Operaࢢng System. In Pro-
ceedings of the 5th IEEE Internaࢡonal Conference on Simulaࢡon, Modeling,
and Programming for Autonomous Robots, 2016.

• D. de Leng and F. Heintz. Qualitaࢢve Spaࢢo-Temporal Stream Reasoning With
Unobservable Intertemporal Spaࢢal Relaࢢons Using Landmarks. In Proceed-
ings of the 30th AAAI Conference on Arࢡficial Intelligence, 2016.

• D. de Leng and F. Heintz. Ontology-Based Introspecࢢon in Support of Stream
Reasoning. In Proceedings of the 13th Scandinavian Conference on Arࢡficial
Intelligence, 2015.

• D. de Leng and F. Heintz. Ontology-Based Introspecࢢon in Support of Stream
Reasoning. In Proceedings of the 1st Joint Ontology Workshops held at the
24th Internaࢡonal Joint Conference on Arࢡficial Intelligence, 2015.

11

1. Introducࢢon

Part I Part II Part III Part IV Part V
Introducࢢon Stream reasoning Synthesis DyKnow-ROS Conclusions
Preliminaries Uncertainty Composiࢢon Case studies Appendices

Space Perturbaࢢons Related work

Table 1.1: An outline of this dissertaࢢon.

• F. Heintz and D. de Leng. Spaࢢo-Temporal Stream Reasoning with Incomplete
Spaࢢal Informaࢢon. In Proceedings of the 21st European Conference on Arࢡ-
ficial Intelligence, 2014.

• D. de Leng and F. Heintz. Towards On-Demand Semanࢢc Event Processing for
Stream Reasoning. In Proceedings of the 17th Internaࢡonal Conference on
Informaࢡon Fusion, 2014.

• F. Heintz and D. de Leng. Semanࢢc Informaࢢon Integraࢢon with Transforma-
onsࢢ for Stream Reasoning. In Proceedings of the 16th Internaࢡonal Confer-
ence on Informaࢡon Fusion, 2013.

Addiࢢonally, the following publicaࢢons were also produced but will be excluded
from this dissertaࢢon because they are unrelated to the research quesࢢons or were
not peer-reviewed:

• D. de Leng, M. Tiger, M. Almquist, V. Almquist, and N. Carlsson. Second Screen
Journey to the Cup: Twi�er Dynamics during the Stanley Cup Playoffs. In Pro-
ceedings of the 2nd Network Traffic Measurement and Analysis Conference,
2018.

• D. de Leng. Querying Flying Robots and Other Things: Ontology-supported
stream reasoning. In XRDS: Crossroads (popular science magazine), 2015.

Lastly, the material in this dissertaࢢon is a conࢢnuaࢢon of the following Licenࢢate
thesis:

• D. de Leng. Spaࢢo-temporal stream reasoningwith adapࢢve state streamgen-
eraࢢon. Licenࢢate thesis No. 1783, Linköping University, 2017.

1.6 Dissertaࢢon outline

This dissertaࢢon is subdivided into five separate parts, as shown in Table 1.1, with
each chapter covering a subset of the waterfall model shown in Figure 1.2. Part I
covers an introducࢢon and background for this dissertaࢢon. Part II covers spaࢢo-
temporal stream reasoning under uncertainty. This is followed by Part III covering
adapࢢve stream processing. Part IV covers applied stream reasoning and presents

12

1.6. Dissertaࢢon outline

the DyKnow-ROS stream reasoning framework alongside case studies and related
approaches. Finally, Part V concludes the dissertaࢢon.

Chapter 2, tledࢢ ‘Preliminaries’, further elaborates on the concept of a stream
by considering the two different views used in this work and relates streams to the
concepts of stream processing and stream reasoning. The purpose of this chapter
is to clarify these concepts for the context of this dissertaࢢon, because there have
been various interpretaࢢons for these concepts in the literature due to the stream
reasoning research area sࢢll being fairly young.

Chapter 3, tledࢢ ‘Reasoning about ,’meࢢ focuses on tradiࢢonal stream reasoning
tasks where streaming informaࢢon is used in conjuncࢢonwith reasoning capabiliࢢes
to yield verdicts. This chapter introduces a well-known incremental path checking
procedure and suggests improvements.

Chapter 4, tledࢢ ‘Reasoning under uncertainty’, enhances the path checking pro-
cedure from the preceding chapter to also consider uncertainty. Here, uncertainty
is represented by assigning probabiliࢢes to different hypotheses, all of which are
commonly kept track of for the purpose of yielding verdicts.

Chapter 5, tledࢢ ‘Reasoning about space’, presents an extension from tempo-
ral reasoning to qualitaࢢve spaࢢo-temporal reasoning. Concretely, the Region Con-
necࢢon Calculus (RCC-8) is uࢢlised to support qualitaࢢve spaࢢo-temporal stream
reasoning.

Chapter 6, tledࢢ ‘State stream synthesis’, discusses what is needed in order to
synthesise state streams and how to ground logical symbols in those state streams.

Chapter 7, tledࢢ ‘Reasoning about composiࢢon’, takes the view of streams as
objects which are the product of potenࢢally many stream processing steps. It illus-
trates how a configuraࢢon manager can adapt the configuraࢢon of stream process-
ing components to produce a stream in accordance with a semanࢢc specificaࢢon.

Chapter 8, tledࢢ ‘Reasoning about perturbaࢢons’, follows up on the preced-
ing chapter by also considering adapࢢve behaviour in the face of changes to the
availability of stream transformaࢢons. It does so both for cases where a process-
ing pipeline ‘breaks’, as well as for cases where switching to a different pipeline is
beneficial to the overall system.

Chapter 9, tledࢢ ‘DyKnow-ROS’, takes the formal contribuࢢons from the preced-
ing chapters and combines them into a stream reasoning framework called DyKnow-
ROS. The chapter does so by connecࢢng computaࢢons to services provided by the
framework.

Chapter 10, tledࢢ ‘Case-studies’, uࢢlises the stream reasoning framework from
the preceding chapter in a case study. The intenࢢon is to show the applicability of
the proposed approaches on a real robot as a proof of concept.

Chapter 11, tledࢢ ‘Related work’, relates the contribuࢢons of this dissertaࢢon to
a number of other stream reasoning systems.

Chapter 12, tledࢢ ‘Conclusions and future work’, discusses some of the limita-
onsࢢ of the presented contribuࢢons, lists some of the remaining open problems,
and concludes this dissertaࢢon by reiteraࢢng the contribuࢢonsmade and discussing
potenࢢal future work.

13

Chapter

2
Preliminaries

S treams form the foundaࢢon for the work presented in this dissertaࢢon. This
chapter considers the nature of streams; what they are and where they origi-
nate from, and how one can model and interpret them in an informaࢢon sys-

tem. We focus on different views of streams and discuss the relaࢢonship between
streams and stream reasoning relaࢢve to the stream reasoning model.

2.1 Introducࢢon

Classical database approaches tend to only operate on what is stored and always
on everything that is stored. In contrast, stream reasoning puts constraints on how
much can be stored and always assumes to only have a fragment of the enࢢre stream
to operate on. In this chapter, we therefore seek to describe the nature of streams,
i.e. what a stream is, how it can be represented, and how it related to stream reason-
ing. It is important to be aware of the different views that exist for stream reasoning.
In parࢢcular, streams are represented in different ways in the literature, using dif-
ferent assumpࢢons and constraints. This occurs at both the data level, i.e. what is
contained within a stream, and the temporal level, i.e. how meࢢ plays a role in the
descripࢢon of a stream. Furthermore, streams can themselves be represented as
objects with their own properࢢes, which can be useful in applicaࢢons that focus on
the generaࢢon and transformaࢢon of streams.

2.2 Views of streams

We consider two views of streams; streams as data sequences, and streams as ob-
jects.

15

2. Preliminaries

Streams as data sequences

Streams are commonly regarded as data sequences, using what we refer to as an
internal view. In the internal view, we consider the properࢢes of the samples that
make up a stream. These samples could for example be noisy discrete observaࢢons
of conࢢnuous fluents, or even data generated from social media posࢢngs or system
logs. The samples can be used to represent instantaneous events, meࢢ periods, or
simply a logical ordering between samples. Streams as data sequences have a lot
in common with Big Data, which is a term that generally focuses on large volumes
of data and the challenges pertaining to the processing of such data. Laney (2001)
originally described the terms volume, velocity and variety as important properࢢes
for describing data, and these properࢢes were subsequently extended to define the
Big Data concept. The following stream properࢢes originate from the ‘four Vs of big
data’ applied to a stream reasoning context:

Volume. One can no longer assume that the data can be collected in its enࢢrety
prior to processing it. The volume of data may simply be too large for any pracࢢcal
storage to take place. Streaming data is therefore generally assumed to be accessed
once and then lost, unless explicitly and only parࢢally stored.

Velocity. The incremental nature of streams invokes the property of velocity,
i.e. how quickly data becomes available. Depending on the source of a data
stream one can or cannot make assumpࢢons about its velocity. For example, user-
generated content could be highly irregular and bound to human behavioural pat-
terns, whereas sensor data in a real-ࢢme system could be assumed to have a fixed
frequency. A general stream reasoning systemmust be able to copewith differences
in velocity, and high velocity in parࢢcular.

Variety. Streaming data canoriginate frommanyheterogeneous sources in various
data formats and as various data types. Examples of different data types are text,
images, and speech. Being able to interpret the data from streams in various formats
and types is important in order to effecࢢvely work with this data.

Veracity. The trustworthiness and accuracy of data is another important factor to
consider when dealing with streaming data. The trustworthiness of data is in part
based on who produced the data and who provided it; some sources may be of
poor quality or (purposely or not) misrepresent informaࢢon. This may also be a
consequence of low accuracy of data.

Different stream reasoning systems focus on different aspects. For social media
tools, variety and veracity may be far less important than dealing with volume and
velocity, as the focus is user-generated unstructured data. In robot systems, veracity

16

2.2. Views of streams

Fluent

Observation

Interpretation

Knowledge

Verdict

Shroud

Slow

Fast

Low
abstraction

High
abstraction

Stream reasoning pipeline

Response

Figure 2.1: The stream reasoning waterfall model with the transformaࢢon of
shrouded fluents into observaࢢons highlighted.

and velocity are especially important in order to deal with a rapidly-changing envi-
ronment. Figure 2.1 shows the observaࢢon of fluents highlighted, which is where a
lot of uncertainty enters the reasoning pipeline.

Streams as objects

An alternaࢢve external view of streams is also possible. In the external view, we
consider streams as objects with their own properࢢes and labels. This is parࢢcularly
useful in cases where we want to consider streams as a product of computaࢢons.
Streams can be transformed, combined, or subscribed to. In this dissertaࢢon, we
consider the following properࢢes of streams as objects:

Syntacࢢc label. When considering streams as objects, they can be named or
anonymous. A named stream is a stream that has one ormore labels associatedwith
it. These labels can then be used to refer to a parࢢcular stream in a system, such
that they can be subscribed to by a program, allowing the samples in the stream to
be used for processing.

Type. Streams in pracࢢce o[en have a type. This type provides a constraint on the
data type of the samples. By knowing the type of a stream, a program is able to
interpret the samples using the correct data type. This parࢢcular property is closely
related with the ‘variety’ property from earlier.

Semanࢢc annotaࢢon. A semanࢢc annotaࢢon for a stream is an addiࢢonal specifi-
caࢢon that can be associated with a stream in order to describe the semanࢢc mean-
ing of the samples contained in the stream. Commonly a semanࢢc annotaࢢon of a
stream is inherited from the process that led to the generaࢢon of the stream.

17

2. Preliminaries

Provenance. Provenance informaࢢon for streams conveys the origin of a stream;
how, where, and by whom it was created. This type of informaࢢon provides a
context which can be important in order to correctly interpret the informaࢢon in
a stream. For example, it is possible for a stream to be generated from transfor-
maࢢons applied to an external source, in which case it can be useful to know more
about said source when considering the veracity of the streaming data.

Policy. A policy for a stream is also inherited from the process that led to the gen-
eraࢢon of the stream, and describes the condiࢢons under which a transformaࢢon is
applied. This includes properࢢes like the frequency of a stream (which can be reg-
ular or irregular), and how missing or late samples are handled using for example
different methods of interpolaࢢon.

The above properࢢes treat a streamas an object that can be reasonedwith. While
treaࢢng streams as objects is in itself not a new idea, stream reasoning commonly
considered only the internal view for streams (see e.g. de Leng (2017); Dell’Aglio
et al. (2019)). Several of the listed properࢢes inherit from an underlying stream
processing process, which we cover in more detail in Part III.

2.3 Anatomy of a stream

The internal and external views of streams both hold simultaneously, and while
they give a general idea of what a stream looks like, we have not yet considered
the anatomy of a stream that combines these two views. We use the term medࢡ
data stream to represent a named discrete instanࢢaࢢon of the concept of a stream
wherein each sample is a set of me-stampedࢢ strictly-typed key-value pairs. The
me-stampsࢢ can for example be used to describe the available ,meࢡ meaning the
meࢢ at which the data sample was received. An alternaࢢve me-stampࢢ is the valid
,meࢡ which represents the me-pointࢢ for which the key-value pairs hold. A formal
definiࢢon for medࢢ data streams is given in Chapter 7. For now, however, we limit
ourselves to an informal overview.

Figure 2.2 illustrates the anatomy of a stream. It shows a graphical representa-
onࢢ of a stream along two dimensions. The horizontal dimension represents ,meࢢ
with me-pointࢢ 0 represenࢢng the present. A stream can theoreࢢcally be infinitely
long; we may simply not know when the stream ends, so the relaࢢve me-pointsࢢ
run up to infinity. Along the temporal axis, we can see samples represented by ver-
calࢢ black lines. The distance between these samples may vary, which allows us
to represent a me-lineࢢ using reals. The samples are intersected by red horizontal
lines. The horizontal axis represents the stream’s bandwidth, and each horizontal
red line represents a field within a stream. Such a field can in pracࢢce be named.
The simplest form of stream however only contains one field. The intersecࢢons are
then values for observaࢢons over .meࢢ As the stream progresses, the latest value in

18

2.4. Anatomy of a transformaࢢon

Relative time
0 n �

Fields Value Sample

Ba
nd

w
id

th Typ eH. slice

V. slice

Figure 2.2: Anatomy of an irregular-ࢢmed data stream showing key concepts in red
and primiࢢve operaࢢons in blue.

1

3

Π
Config

Storage

Out2

Figure 2.3: Anatomy of a transformaࢢon, showing its structure and its relaࢢonship
to streams.

a field may change over .meࢢ Finally, the combinaࢢon of fields along the bandwidth
axis represents the type of the stream.

Because a stream is a composite enࢢty, it is possible to consider a subset of a
stream in the two different axes. We call these subsets slices, and disࢢnguish be-
tween horizontal slices and verࢢcal slices. A horizontal slice corresponds to a tem-
poral subset of a stream, which is commonly referred to as a window. Similarly, a
verࢢcal slice corresponds to a volumetric subset of a stream, which we call a sub-
stream2.

2.4 Anatomy of a transformaࢢon

Transformaࢢons are funcࢢons that, given some data streams, produce a new data
stream. They therefore need to consider both the internal and external views on
data streams.

2Not to be confused with the LARS definiࢢon of a substream as per Beck et al. (2014, 2015), which
corresponds to a horizontal slice here.

19

2. Preliminaries

Figure 2.3 shows a graphical representaࢢon of a transformaࢢon and how it con-
nects to streams. The light-blue box marks the components that make up an acࢢve
transformaࢢon, also known as a computaࢡon unit. A source is a specific type of com-
putaࢢon unit which does not take any streams as input. To the le[, we can see two
streams. There are dashed arrows originaࢢng from the transformaࢢon and poinࢢng
to fields in the two streams, although not all of them. These dashed lines represent
subscripࢡons for input arguments one through three of a transformaࢢon denoted by
Π. This represents that whenever a new sample is observed, the most recent sam-
ples for all of the subscripࢢons are sent to the transformaࢢon. They are joined by
a configuraࢡon which can be set externally, and a small storage which the transfor-
maࢢon can read from and write to. The configuraࢢon can be changed dynamically,
and controls properࢢes such as which streams the unit is subscribed to. The result,
if any, is then sent out to the stream generator marked by ‘out’, which, over ,meࢢ
generates a resulࢢng stream. By default, a transformaࢢon is set to respond to every
change as characterised by the observaࢢon of samples from one of its subscribed-to
streams. By considering a clock stream, which sends out a meࢢ value at a regular in-
terval, the transformaࢢon can adopt a policy in which it only published new samples
whenever the meࢢ is updated.

2.5 Stream reasoning

In recent years definiࢢons of stream reasoning have started to slowly converge. In
this dissertaࢢon, we informally define stream reasoning as follows.

Definiࢢon 2.1 (Stream reasoning). Stream reasoning is the incremental reasoning
over and about rapidly-changing informaࢡon.

The intuiࢢon behind stream reasoning is that there is some potenࢢally-infinite
length sequence over which reasoning is performed with finite computaࢢonal re-
sources, commonly including storage as a bo�leneck. There is also a meࢢ dimen-
sion; because the informaࢢon changes rapidly, the stream reasoning process needs
to either keep up with the stream or handle any dropped samples through alterna-
veࢢ means. The incremental nature of reasoning is also important, since it forces
any reasoning process to deal with parts of the stream rather than to consider the
stream as a whole, as is common in tradiࢢonal reasoning approaches. As a logical
extension of an informal theory of streams, we consider some of the ontology (in
the metaphysical sense of the word) for stream reasoning here.

Stream reasoning has been studied for some meࢢ now, and even the defini-
onࢢ used here slightly deviates from the one used in publicaࢢons this dissertaࢢon is
based on. Other researchers have characterised stream reasoning through different
lenses; a characterisࢢc a�ributable to the mulࢢdisciplinary nature of stream rea-
soning. Cugola and Margara (2012a) collecࢢvely refer to stream reasoning systems
as Informaࢡon Flow Processing (IFP) systems, and provide a thorough survey of the
various approaches. The following is a brief contrast between two classes of stream

20

2.5. Stream reasoning

reasoning systems they idenࢢfied; the Data Stream Management (DSM) systems3,
and the Complex Event Processing (CEP) systems. The boundaries between DSM
and CEP systems can be blurry at ,mesࢢ but generally speaking, DSM systems orig-
inate from the area of databases and Database Management Systems (DBMS) and
take conࢢnuous queries that produce results for the duraࢢon that they are acࢢve
by construcࢢng relaࢢonal tables based on meࢢ windows. This is in contract with
CEP systems, where CEP is someࢢmes defined as methods, techniques and tools
for the conࢢnuous and melyࢢ processing of events as they occur (Eckert and Bry,
2009)4. Whereas DSM systemsmake use of windows, CEP systems tend tomake use
of temporal orderings. The detecࢢon of a queried temporal ordering of events can
itself be seen as a complex event. Early CEP techniques include chronicle recogniࢡon
systems, which were introduced by Ghallab (1996). Chronicles are represented by
(complex) events and metric temporal constraints on those events. Chronicles can
be detected in a stream by checking for the occurrence of their composite events
relaࢢve to the metric temporal constraints. A more in-depth discussion of these
types of systems is presented as part of related work in Chapter 11.

It is important to point out that some stream reasoning efforts have chosen to
characterise themselves as stream processing efforts. While no agreed-upon formal
disࢢncࢢon has been developed thus far— and given that somemay argue that such
a disࢢncࢢon does not even exist to begin with — this dissertaࢢon does also refer to
streamprocessing and stream reasoning. Herewe consider stream reasoning to deal
with the obtaining of verdicts through reasoning processes, by combining stream-
ing informaࢢon with background knowledge bases. Stream reasoning produces ei-
ther single verdicts or slow-moving streams of verdicts, and these verdicts can be
regarded as informaࢢve conclusions about an environment that aid in the decision-
making process of an agent. On the other hand, stream processing focuses on the
transformaࢢon of streaming data from one format into another by combining data
resources. If the transformaࢢons are simple, this can be done at a fast rate. Stream
processing is therefore process-centric; it focuses on how data is transformed, with-
out necessarily needing to consider the meaning of this data. Simple window-based
aggregaࢢon jobs are an example where the meaning of the values has no bearing
on the informaࢢon system performing the stream processing. But the disࢢncࢢon
between the two is not a perfect one; there is no clear separaࢢon since the pro-
cessing needed to obtain a verdict in stream reasoning can be explained as a stream
processing task, and if the goal of a stream processing task is to obtain verdicts it is
o[en regarded as stream reasoning. This phenomenon can be observed with RSP
research, which o[en characterises itself as stream reasoning research due to the
combinaࢢon of RDF streams with a background knowledge base in the form of an
ontology.

3The term ‘Data Stream Management Systems’ is commonly wri�en as DSMS, but when contrasted
with ‘CEP systems’ it is also wri�en as ‘DSM systems’.

4Loosely translated from a German-language definiࢢon of CEP by Eckert and Bry (2009): “Complex
Event Processing (CEP) ist ein Sammelbegriff für Methoden, Techniken und Werkzeuge, um Ereignisse zu
verarbeiten während sie passieren, also konࢡnuierlich und zeitnah.”

21

2. Preliminaries

2.6 Summary

In this chapter, we considered an informal theory of streams. Streams can be viewed
in different ways. The interval view of streams can be aligned with the 4 V’s of Big
Data; volume, velocity, variety, and veracity. In this view, streams are regarded as
sequences of data. An alternaࢢve view is the external view of streams, which con-
siders streams as objects. In this view, streams are their own objects with associated
properࢢes, including a label for named streams, a type related to variety, a possible
semanࢢc annotaࢢon describing themeaning of a stream, a provenance covering the
stream’s origin, and a generaࢢon policy determining properࢢes such as frequency
for regular streams. Both views can play a role when considering stream processing
and stream reasoning. However, these two concepts as of yet have no agreed-upon
disࢢncࢢon. We covered various types of stream reasoning and stream processing in
the literature to give an overview of the breadth and commonaliࢢes between the
approaches, and explained how this dissertaࢢon disࢢnguishes between stream rea-
soning and stream processing.

22

Part II

STREAM REASONING UNDER UNCERTAINTY

Chapter

3
Reasoning about time

T ime represents the core of stream reasoning. Being able to make temporal
statements and to determine the truth value of such a statement is of great
importance tomany applicaࢢons, including areas such as intelligent roboࢢcs.

We refer to the evaluaࢢon of temporal statements through a temporal logical lan-
guage by using the term ‘logic-based stream reasoning’. In parࢢcular, we focus on
the problem of model checking a stream, also known as path checking.

3.1 Introducࢢon

Temporal logics can be a powerful tool for the formal verificaࢢon of programs and
systems. Given an informaࢢon system, temporal logics such as Linear Temporal Logic
(LTL) (Pnueli, 1977) or Metric Temporal Logic (MTL) (Koymans, 1990) allow us to
make statements describing the correct behaviour of these systems over .meࢢ As
shown in Figure 3.1, by checking whether these statements are upheld — given a
stream of states containing truth values for the proposiࢢons used in making such a
statement—we can then issue a verdict or even a streamof verdicts. The generaࢢon
of verdicts can be an expensive process, and the rate at which verdicts are produced
is therefore generally much lower than for example the rate at which observaࢢons
can be produced. Once obtained, a verdict can be used to trigger an informaࢢon
system to respond accordingly.

Tradiࢢonal approaches for checking the correctness— and, consequently, safety
— of a system include automata-based model checking (Wolper et al., 1983; Vardi
and Wolper, 1994). For LTL, these automata can for example be Büchi (1990) or
Muller (1963) ω-automata when we consider non-determinisࢢc or infinite-length
runs. However, we are instead interested in those cases where a model of the sys-
tem is unavailable, or where construcࢢng one is infeasible. Runࢡme verificaࢡon is
the verificaࢢon of a system relaࢢve to a formal specificaࢢon during run-ࢢme, and is

25

3. Reasoning about meࢢ

Fluent

Observation

Interpretation

Knowledge

Verdict

Shroud

Slow

Fast

Low
abstraction

High
abstraction

Stream reasoning pipeline

Response

Figure 3.1: The stream reasoning waterfall model with the transformaࢢon of knowl-
edge into verdicts, also known as logic-based stream reasoning, highlighted.

suitable in applicaࢢon domains wheremodel checking a system a priori is infeasible,
such as the domain of autonomous roboࢢc systems (Adolf et al., 2017; Desai et al.,
2017). This can o[en be stated as a path checking problem (Markey and Schnoebe-
len, 2003), which is computaࢢonally simpler than saࢢsfiability or model checking.
Concretely, a path checking problem is a decision problem in which we receive a
path and a temporal formula, and have to determinewhether the provided path sat-
isfies the provided formula. Path checking ω-words has previously been applied to
MTL in different forms, for example covering dense-ࢢme conࢢnuous semanࢢcs over
transiࢢon sequences (Baldor and Niu, 2012), trace-length independent monitoring
over medࢢ words under pointwise semanࢢcs by rewriࢢng into LTL (Ho et al., 2014),
path checking of data words under pointwise semanࢢcs (Feng et al., 2015, 2017),
and almost event-rate independent path checking of medࢢ words under pointwise
semanࢢcs (Basin et al., 2017).

In this chapterwe focus on reasoning about ,meࢢ by evaluaࢢng the truth value of
logical statements. First, we introduce some temporal logics which allow us tomake
statements about proposiࢢons over .meࢢ Then, we consider how these logics are
tradiࢢonally used to verify the correctness of a system apriori, under the assumpࢢon
that a model of that system is available. This is different from the case where such a
model is missing, or wherewewish to do so during runࢢme, which is discussed next.
In parࢢcular, this dissertaࢢon opts to focus on a well-known incremental syntacࢢc
rewriࢢng procedure, and extends it with a formula simplificaࢢon technique. Finally,
a small empirical evaluaࢢon is provided for this syntacࢢc rewriࢢng procedure.

3.2 Temporal models and logics

Logic-based approaches to stream reasoning are o[en related to temporal (modal)
logics. LTL is commonly used when dealing with linear ,meࢢ and its models can
be represented using a linear me-lineࢢ composed of discrete points. In contrast,

26

3.2. Temporal models and logics

Computaࢡon Tree Logic (CTL) (Clarke and Emerson, 1981) is someࢢmes referred to
as a branching-ࢢme logic, where the possible me-linesࢢ fan out like a tree structure.
We are primarily concerned with linear ,meࢢ and therefore focus on LTL and its
extensions towards dealing with real .meࢢ In parࢢcular, we consider MTL and its
sublanguageMetric Interval Temporal Logic (MITL) (Alur et al., 1996). These logics
make it possible to more precisely specify temporal constraints. The following is an
introducࢢon to the syntax and semanࢢcs of these logics, and the temporal models
over which those semanࢢcs are defined.

Linear Temporal Logic

The syntax for LTL determines what statements consࢢtute well-formed formulas
(wffs), as shown below.

Definiࢢon 3.1 (LTL syntax). The syntax for proposiࢡonal LTL is as follows for atomic
proposiࢡons p and well-formed formulas (wffs) ϕ and ψ:

⊤ | ⊥ | p | ¬ϕ | ϕ ∨ ψ | ϕ U ψ | Xϕ (3.1)

The operators U and X represent the temporal operators for ‘unࢢl’ and ‘next’. A
formula ϕUψ holds iff ϕ is true unࢢl ψ is true. Similarly, a formula Xϕ holds iff ϕ is
true at the next ,me-pointࢢ meaning the tail of the ω-word under consideraࢢon.

LTL also commonly makes use of syntacࢢc sugar, which allows for abbreviaࢢons
of wffs. In this dissertaࢢon, we make use of ϕ ∧ ψ ≡def ¬(¬ϕ ∨ ¬ψ) for conjunc-
,onsࢢ ϕ → ψ ≡def ¬ϕ ∨ ψ for implicaࢢons, ϕ ↔ ψ ≡def (ϕ → ψ) ∧ (ψ → ϕ)

for bi-implicaࢢons, ϕ R ψ ≡def ¬(¬ϕ U ¬ψ) for the ‘release’ temporal operator,
Fϕ ≡def ⊤U ϕ for the ‘eventually’ (‘finally’) temporal operator,Gϕ ≡def ¬F¬ϕ for
the ‘always’ (‘globally’) temporal operator,⊤ ≡def p∨¬p for truth, and⊥ ≡def ¬⊤
for contradicࢢon. Their semanࢢcs are thus defined in terms of the semanࢢcs for
wffs.

Example 3.1 (LTL statement). Consider the following statement: “If I am in my
room, it is always the case that if the light condiࢡon of my surroundings is poor, then
the surroundings will eventually be well-lit.” This statement can be approximated as

inRoom→ G(poorLight→ F(goodLight)), (3.2)

where proposiࢡons inRoom, poorLight and goodLight stand for “I am in my room”,
“the light condiࢡon of my surroundings is poor”, and “the surroundings are well-lit”
respecࢡvely.

The semanࢢcs for LTL are defined in terms ofω-words. To this end, letΣ denote
an alphabet based on a set of proposiࢢons denoted by P , i.e. Σ = 2P . An ω-word
is then denoted by σ = (σ0σ1 . . .), i.e. σ ∈ Σω. We can take a suffix of any ω-word
by wriࢢng σ≥i for i ∈ N, yielding σ≥i = (σiσi+1 . . .). We call a suffix for i > 0 a
strict suffix, which in turn is an ω-word. We can now formally define the semanࢢcs
of LTL.

27

3. Reasoning about meࢢ

Definiࢢon 3.2 (LTL semanࢢcs). Let ϕ, ψ stand for well-formed LTL formulas, and
σi for an ω-word. The semanࢡcs of LTL are defined recursively for any choice of
me-pointࢡ i ∈ N:

σ, i |= p iff p ∈ σi for p ∈ P (3.3)
σ, i |= ¬ϕ iff not σ, i |= ϕ (3.4)

σ, i |= ϕ ∨ ψ iff σ, i |= ϕ or σ, i |= ψ (3.5)
σ, i |= ϕ U ψ iff there is an j ≥ i such that σ, j |= ψ

and σ, k |= ϕ for all i ≤ k < j (3.6)
σ, i |= Xϕ iff σ, i+ 1 |= ϕ (3.7)

Lastly, we use the short-hand σ |= ϕ to represent σ, 0 |= ϕ.

Metric Temporal Logic

MTL extends LTLwith temporal intervals for the modal operators, restricࢢng them
to a specific .me-periodࢢ This allows for concise temporal statements such as “ϕ
is true for the next 10 ”,me-pointsࢢ or “ψ becomes true within the next 10 -meࢢ
points.” Crucially,MTL considers real-ࢢme events where every le�er of an ω-word
is associated with a .me-stampࢢ An MTL-formula is said to be well-formed iff it
adheres to theMTL syntax, which is similar to that of LTL.

Definiࢢon 3.3 (MTL syntax). The syntax for (future-restricted) MTL for atomic
proposiࢡons p, temporal (natural) intervals I ⊆ R+, and well-formed formulas
(wffs) ϕ and ψ is as follows:

⊤ | ⊥ | p | ¬ϕ | ϕ ∨ ψ | ϕ UI ψ | ϕ SI ψ | XIϕ (3.8)

Just as for LTL, we make use of mostly the same syntacࢢc sugar. Only the tem-
poral operators GI , FI , and RI have been modified to incorporate the temporal
interval I introduced for UI and XI . Addiࢢonally, the temporal operator intervals
may be omi�ed for cases where I = [0,∞].

Example 3.2 (MTL statement). Recall the example statement: “If I am inmy room, it
is always the case that if the light condiࢡon of my surroundings is poor, then the sur-
roundings will be well-lit within 10 seconds.” InMTL, this statement can be wri�en
as follows:

inRoom→ (G(poorLight→ F[0,10](goodLight))), (3.9)

where proposiࢡons inRoom, poorLight and goodLight stand for “I am in my room”,
“the light condiࢡon of my surroundings is poor”, and “the surroundings are well-lit”
respecࢡvely.

The semanࢢcs ofMTL takes into account the real-ࢢme nature of its logical state-
ments by considering medࢡ ω-words rather than the unࢢmed ω-words used for the

28

3.3. Formal verificaࢢon

LTL semanࢢcs. A medࢢ ω-word annotates each le�er of the word with a -meࢡ
stamp. The index of each le�er is referred to as a .me-pointࢡ Concretely, let σ de-
note a medࢢ ω-word; then, σ = ((σ0, τ0)(σ1, τ1) . . .), where σ0 represents a le�er
in Σ for me-pointࢢ 0 and is annotated with a me-stampࢢ τ0 ∈ R. The same holds
for all other .me-pointsࢢ Time-stamps are assumed to be non-decreasing, so for any
pair of me-pointsࢢ i < j it is the case for the associated me-stampsࢢ that τi ≤ τj .
As before, a suffix σ≥i is defined to be a medࢢ ω-word ((σi, τi)(σi+1, τi+1) . . .).
We can now formally define the semanࢢcs ofMTL.

Definiࢢon 3.4 (MTL semanࢢcs). Let ϕ, ψ stand for well-formed MTL formulas, σ
for a medࢡ ω-word, τ ∈ R+ for a ,me-stampࢡ and i ∈ N for a .me-pointࢡ The
semanࢡcs ofMTL are defined recursively:

σ, τi |= p iff p ∈ σi for p ∈ P (3.10)
σ, τi |= ¬ϕ iff not σ, τi |= ϕ (3.11)

σ, τi |= ϕ ∨ ψ iff σ, τi |= ϕ or σ, τ |= ψ (3.12)
σ, τi |= ϕ UI ψ iff there is a τ ′ ∈ I + τi such that σ, τ ′ |= ψ

and σ, τ ′′i |= ϕ for all τi < τ ′′ < τ ′ (3.13)
σ, τi |= ϕ SI ψ iff there is a τ ′ ∈ I − τi such that σ, τ ′ |= ψ

and σ, τ ′′i |= ϕ for all τ ′ < τ ′′ < τi (3.14)

Note that the ‘next’ operator X from LTL by default is undefined in MTL
because there is no trivial ‘next’ .me-stampࢢ However, someࢢmes the interval-
bounded ‘next’ operator, denoted by XI , is added as syntacࢢc sugar, where XIϕ

is defined as⊥UIϕ.

Metric Interval Temporal Logic

The use of intervals allows for more precise logical statements in MTL. Because of
its undecidability for saࢢsfiability and model checking problems (Alur et al., 1996),
several restricࢢons to MTL were proposed, among them MITL. MITL disallows
‘punctuality’ constraints — in which temporal intervals are points — and tempo-
ral intervals to subsets I ⊆ N to get around the undecidability. We will be using
MITL alongside LTL in the remainder of this dissertaࢢon.

3.3 Formal verificaࢢon

Formal verificaࢢon techniques are used to check whether a system’s possible be-
haviours are in line with the formal specificaࢢons for that system, the la�er of
which can be given using the previously-introduced logics. Automata are com-
monly used to represent the systems for which the correctness is to be proven.
Figure 3.2 illustrates the relaࢢonship between specificaࢢons and system descrip-
.onsࢢ Automata-theoreࢢc model checking makes use of ω-automata to describe a

29

3. Reasoning about meࢢ

Specification

System
description

Specification

System
description

Figure 3.2: Le[: All models of the system descripࢢon are also models of the formal
specificaࢢon, showing correctness. Right: Some models of the system descripࢢon
are not models of the formal specificaࢢon, indicaࢢng that the specificaࢢon is vio-
lated by some system traces.

program in terms of possible state sequences, which can be regarded as streams.
These finite automata operaࢢng on (infinite-length) ω-words are therefore some-
mesࢢ called ‘stream automata’. For infinite-length words we instead use the setΣω

of ω-words, from which languages of infinite words can be constructed. Just as reg-
ular languages can be described by regular expressions, ω-regular languages can be
described by ω-regular expressions.

Example 3.3 (Finite and infinite regular languages). Suppose we have a finite alpha-
bet Σ = {a, b}. The regular expression a(a|b)∗ describes any finite sequence of a’s
or b’s following a single a. These sequences describe finite-length words. We can de-
scribe ω-words with ω-regular expressions. As an example, consider the ω-regular
expression a∗bω, which describes all ω-words which start with a finite sequence of
a’s followed by an infinite sequence of b’s.

We can use acceptors to recognise finite-length inputs in Σ∗. These finite-state
automata use accept (or final) states to determine the acceptability of words: if a
word ends in an accept state of a given finite-state automaton, the word is consid-
ered to be accepted by that finite-state automaton.

Definiࢢon 3.5 (Finite-state automaton). A determinisࢡc finite-state automaton
(FSA) A is denoted by a tuple (Σ, Q, q0, δ, F), where Σ denotes the alphabet of A,
Q denotes the set of states, q0 ∈ Q denotes the iniࢡal state, δ : Q×Σ→ Q denotes
the transiࢡon funcࢡon, and F ⊆ Q denotes the set of final (accepࢡng) states.

An FSA A can then be used to check for the acceptance of finite-length words.
These are part of the language L(A).

Definiࢢon 3.6 (FSA acceptance). An FSA (Σ, Q, q0, δ, F) accepts a word
(σ0, . . . , σn−1) iff there exists a sequence of states r0, . . . , rn such that r0 = q0 for
the iniࢡal state, rn ∈ F for the final state, and ri+1 = δ(ri, σi) for all 0 ≤ i < n.

30

3.4. Runࢢme verificaࢢon

ω-automata are extensions of FSA that can detect ω-words. Because ω-words
are of infinite length, the acceptance condiࢢons of ω-automata differs from those
of FSA. Different types of ω-automata consequently exist with varying semanࢢcs in
terms of acceptance condiࢢons, but Büchi ω-automata are commonly used.

Definiࢢon 3.7 (Büchi automata). A determinisࢡc Büchi automaton B is a type of ω-
automaton over an alphabetΣ denoted by a tuple (Σ, Q, q0, δ, F), whereQ denotes
a finite set of states, q0 ∈ Q denotes an iniࢡal state, δ : Q × Σ → Q denotes the
transiࢡon relaࢡons, and F ⊆ Q denotes the set of accepࢡng states.

An ω-automaton can be said to encode a language L(B), which represents the
set ofω-words accepted byB. The concept of a run is used to formally describe such
ω-words.

Definiࢢon 3.8 (Büchi run). Let r = (r0, . . .) denote an infinite sequence of states
ri ∈ Q. A run on a Büchi automaton is then an ω-word σ such that r0 = q0 for the
iniࢡal state, and ri+1 = δ(ri, σi) for any i ≥ 0.

Not all ω-words that can be described by a run on an automaton B are also ac-
cepted by B, but those that do are part of the language L(B) encoded by B.

Definiࢢon 3.9 (Büchi acceptance). LetB denote a Büchi automaton (Σ, Q, q0, δ, F),
and let the funcࢡon inf : σ → Q denote a set of states that occur infinitely o[en. An
ω-word σ ∈ Σω is accepted byB, i.e.α ∈ L(B), iff it is the case that inf(σ)∩F ̸= ∅,
i.e. at least one of the accept states is encountered infinitely o[en.

These automata are o[en used in the context of model checking and saࢡsfia-
bility checking. In the case of model checking, we can describe a system in terms
of a Büchi automaton Bsys such that the set of ω-words that are accepted by Bsys
correspond to the set of possible system traces. A Büchi automaton thus describes
a language L(B) ⊆ Σω. LTL is commonly used to describe the properࢢes of a
systemwhich we want to verify. These properࢢes can then be translated into equiv-
alent Büchi automata in various ways, by converࢢng an LTL specificaࢢon ϕ into a
Büchi automaton Bϕ. There exist many techniques for the construcࢢon of Büchi
automata, and a survey is presented by Vardi (2007). As illustrated in Figure 3.2,
if we can determine that L(Bsys) ⊆ L(Bϕ), we prove that the system adheres to
the formal LTL specificaࢢons. This is done by checking for the empࢢness property
L(Bsys) ∩ L(B¬ϕ) = ∅, meaning there are no ω-words which are part of the sys-
tem’s language while also being in violaࢢon of the LTL specificaࢢons denoted by ϕ.
In the case of saࢢsfiability checking, the problem is whether there exists an ω-word
that saࢢsfies a formula ϕ, which requires determining whether L(Bϕ) ̸= ∅.

3.4 Runࢢme verificaࢢon

Model checking has as an advantage that it allows for formal correctness proofs for
systems without needing to test the system during run-ࢢme. However, to do so, it

31

3. Reasoning about meࢢ

requires a systemmodelBsys, which may not always be explicitly available. Instead,
runࢡme verificaࢡon considers the case where the behaviour of a system needs to be
checked on-line during runࢢme. These incremental approaches commonly uࢢlise
the equivalence

ϕUψ ≡ ψ ∨ (ϕ ∧ X(ϕUψ)). (3.15)

This dissertaࢢon therefore focuses on the case where we can observe the system’s
runs during run-ࢢme, also called traces or paths. The problem of path checking,
which is a type of runࢢme verificaࢢon, is to determine whether such a trace σ is a
model of a wff ϕ, i.e. whether σ |= ϕ. Since runࢢme verificaࢢon pracࢢcally only
deals with finite ,meࢢ this affects the choice of formula ϕ. In parࢢcular, ϕ is picked
based on the ability of a runࢢme verificaࢢon system to determine whether it is vi-
olated by a finite-length prefix. Kupferman and Vardi (2001) refer to these prefixes
as bad prefixes (in addiࢢon to good prefixes), and the LTL formulas for which these
prefixes exist safety properࢡes. This leads us to the concept of safety languages,
defined as follows.

Definiࢢon 3.10 (Safety language). A a safety language is any language L ⊆ Σω for
which each word α ̸∈ L has a bad prefix.

Runࢢme verificaࢢon techniques have for example been used by Doherty et al.
(2009) for execuࢢon monitoring in autonomous UAV applicaࢢons, in which path
checking ofMITL formulas was used to check whether the execuࢢon of a plan is in
accordance with expectaࢢons. Path checking is sufficient for any applicaࢢon which
only needs to check whether a given wff is true or false for a given path, for example
to check for adherence to safety requirements. The techniques for path checking
can be roughly divided into three categories; using automata-based model checking
techniques, using proof systems, or through the use of derivaࢡves-based syntacࢡc
rewriࢡngs.

Automata

From an automata-theoreࢢc perspecࢢve, it is not possible to check whether σ ∈
L(Bϕ) by simulaࢢng a run overBϕ, because the acceptance condiࢢonwould require
an infinitely-long simulaࢢon. However, one important observaࢢon is that there
someࢢmes exist finite-length prefixes for which no extension exists that would al-
low the resulࢢng ω-word to be accepted by Bϕ. For example, let ϕ = Gp. Any
finite-length prefix containing ¬p cannot be extended into an ω-word that would be
accepted by Bϕ. If a formula ϕ is a safety property, then we can construct a finite-
state automaton for¬ϕ and check whether a prefix σ<n for some n ∈ N is accepted
by that automaton.

Proof systems

Alternaࢢvely, LTL proof systems can be used for performing path checking. Cini
and Francalanza (2015) in parࢢcular present a local proof system which can be ap-

32

3.4. Runࢢme verificaࢢon

Algorithm 3.1: Simplified progression
1 funcࢢon PROGRESS(ϕ, si):
2 if ϕ = ϕ1 ∨ ϕ2 then
3 return PROGRESS(ϕ1, si) ∨ PROGRESS(ϕ2, si)
4 else if ϕ = ¬ϕ1 then
5 return ¬PROGRESS(ϕ1, si)
6 else if ϕ = ϕ1 UI ϕ2 then
7 if I < 0 then
8 return⊥
9 else if 0 ∈ I then
10 return PROGRESS(ϕ2, si) ∨ (PROGRESS(ϕ1, si) ∧ ϕ1 UI−1 ϕ2)
11 else
12 return PROGRESS(ϕ1, si) ∧ ϕ1 UI−1 ϕ2

13 end
14 else
15 if ϕ ∈ si then
16 return⊤
17 else
18 return⊥
19 end
20 end

plied during run-ࢢme, by focusing on individual points rather than sets of points.
Their proof system allows for the construcࢢon of both saࢢsfacࢢon (⊢+) and viola-
onࢢ (⊢−) proofs fromcorresponding sets of rules. By incrementally and concurrently
construcࢢng proofs towards both saࢢsfacࢢon and violaࢢon judgements, the proof
process can be in one of three modes at any given .meࢢ If the proof system finds
a saࢢsfacࢢon proof for ϕ, then we have detected a good prefix and can terminate.
Conversely, if the proof system finds a violaࢢon proof for ϕ, then we have detected
a bad prefix and can terminate. Finally, if the proof system has found neither a sat-
isfacࢢon proof nor a violaࢢon proof, the prefix is too short to make any judgemen�.
Upon terminaࢢon, we furthermore have an explicit proof that can be used to explain
why a certain verdict was reached, although this proof can become very large.

Derivaࢢves

In this dissertaࢢon, we consider as an alternaࢢve the derivaࢡves approach to path
checking. These approaches work by applying a state to a formula to obtain a new
formula that has been evaluated for the state applied to it (see e.g. Havelund and
Roşu (2001)). This is similar to the proof system discussed above, but does not keep
track of an explanaࢢon. All of the informaࢢon stored is containedwithin the formula
that is conࢢnuously being rewri�en.

An incremental procedure for real-ࢢme path checkingMITL has previously been
proposed by Bacchus and Kabanza (1998). Progression assumes complete states but
allows the temporal distance between states to vary, i.e. they support posiࢢve val-

33

3. Reasoning about meࢢ

ues for delay ∆ ∈ Z+ between iteraࢢons. An adapted version of the progression
procedure, called PROGRESS, is shown in Algorithm 3.1. It deviates from the original
progression procedure by fixing the delay parameter to∆ = 1, which corresponds
to the assumpࢢon that the stream is synchronised at a regular meࢢ interval. A pro-
cedure for this type of synchronisaࢢon is described in more detail in Chapter 6.

Progression is a syntacࢢc rewriࢢng procedure which takes a formula together
with a state and a delay, and produces a new formula obtained from evaluaࢢon the
temporal interval in the input formula which is covered by the input state. This re-
sulࢢng output formula can then be used as the input formula for the next iteraࢢon
of progression. Thismeans that every iteraࢢon of progression has a me-complexityࢢ
which is linear in the size of the formula, but the repeated applicaࢢon of progres-
sion can result in exponenࢢal formula growth due to the handling of temporal inter-
vals on lines 6–13 in Algorithm 3.1. Bacchus and Kabanza (1998) further prove that
their incremental approach is correct given the semanࢢcs ofMITL. We provide our
adapted version below.

Lemma 3.1: Correctness of simplified progression

The PROGRESS procedure is correct, i.e.

σ, i |= ϕ iff σ, i+ 1 |= PROGRESS(ϕ, σi) (3.16)

for traces σ, me-pointsࢢ i ∈ N, and wffs ϕ.

Proof. Follows trivially from the correctness proof for progression onMITL per Bac-
chus and Kabanza (1998) by restricࢢng mepointsࢢ to N and fixing the delay to
∆ = 1. ■

3.5 Formula simplificaࢢon

One problem caused by progression is that it naively grows a formula without re-
gard for the size-compactness of the resulࢢng statement. To illustrate this, we can
represent formulas by formula trees, which are a special case for abstract syntax
trees.

Definiࢢon 3.11 (Formula tree). A formula tree T (ϕ) is an abstract syntax tree for a
wff ϕ such that

1. ∧,∨,↔ are represented by commutaࢡve binary verࢡces;

2. →,UI for intervals I are represented by non-commutaࢡve binary verࢡces;

3. ¬,GI ,FI for intervals I are represented by unary verࢡces; and

4. proposiࢡons in P and verdicts⊤,⊥ are represented by leaf verࢡces.

34

3.5. Formula simplificaࢢon

G

→

F[0,5]

G[0,3]

p

¬

p

∧

G

→

F[0,5]

G[0,3]

p

¬

p

→

∨

F[0,4]

G[0,3]

p

∧

G[0,2]

p

⊥

¬

⊥

∧

G

→

F[0,5]

G[0,3]

p

¬

p

F[0,4]

G[0,3]

p

Figure 3.3: Formula trees T (G(¬p → F[0,5]G[0,3]p)) (le[), and its progressed ver-
sions T (PROGRESS(G(¬p→ F[0,5]G[0,3]p,∅))) before (middle) and a[er (right) for-
mula simplificaࢢon. The tree nodes in light green can be eliminated.

The size of a formula tree, denoted by |T (ϕ)| for the formula tree of wff ϕ, is deter-
mined by the number of verࢡces in T (ϕ).

Consider a wff G(¬p → F[0,5]G[0,3]p). Figure 3.3 (le[) shows the formula tree
T (G(¬p → F[0,5]G[0,3]p)). The space complexity can be expressed in terms of the
size of the associated formula tree. If we were to progress this formula with a com-
plete state ∅ (i.e. p is false), we would obtain the formula represented by the for-
mula tree in Figure 3.3 (right) a[er formula simplificaࢡon. However, prior to sim-
plificaࢢon, strict applicaࢢon of the PROGRESS procedure can produce large trees as
illustrated by Figure 3.3 (middle). The unsimplified formula tree has some obvious
redundancies (in light green) that could be eliminated to obtain amore concise tree.
The key however is to perform these simplificaࢢons during construcࢢon of the pro-
gressed tree as an opࢢmisaࢢon approach. This is done during progression by check-
ing the current subtree against formula pa�erns and performing rewriࢢngs as shown
in Table 3.1. Applicaࢢon of the rewriࢢng rules then yields the formula simplifica-
onࢢ shown in Figure 3.3, which are used by the simplificaࢢon procedure SIMPLIFY
shown in Algorithm 3.2. A similar approach was taken by for example Shen et al.
(2014) forLTL, inwhich they call the combinaࢢonof progression and formula rewrit-
ing convergent formula progression.

Theorem 3.1: Correctness of formula simplificaࢢon

The formula simplificaࢢon procedure SIMPLIFY as shown in Algorithm 3.2 is
correct, meaning that each rule ℓ in Table 3.1 is sound and SIMPLIFY termi-
nates a[er a finite number of rewriࢢngs.

35

3. Reasoning about meࢢ

ℓ Pa�ern ⇒ℓ Product
1. ¬⊤ ⊥
2. ¬⊥ ⊤
3. ⊤ ∨ ϕ ⊤
4. ⊥ ∧ ϕ ⊥
5. ⊤ ∧ ϕ ϕ
6. ⊥ ∨ ϕ ϕ
7. ϕ ∧ ϕ ϕ
8. ϕ ∨ ϕ ϕ
9. ¬(¬ϕ) ϕ
10. (ϕU[i,j]ψ) ∧ (ϕU[i,k]ψ) ϕU[i,min(j,k)]ψ
11. (ϕU[i,j]ψ) ∨ (ϕU[i,k]ψ) ϕU[i,max(j,k)]ψ
12. ϕU[0,0]ψ ψ

Table 3.1: Rewriࢢng rules for wffs ϕ, ψ, χ where we assume i ̸= j ̸= k. Sym-
metric relaࢢonships are implicit for commutaࢢve verࢢces. Rules for syntacࢢc sugar
(i.e. GI ,FI ,→,↔) follow implicitly from the rules listed.

Algorithm 3.2: Formula rewriࢢng
1 funcࢢon SIMPLIFY(ϕ):
2 while True do
3 ϕ′ ← ϕ
4 foreach Rule ℓ in Table 3.1 do

▷ Apply rule ℓ to ϕ if applicable, otherwise keep ϕ unchanged:
5 ϕ← ℓ(ϕ)

6 end
7 if ϕ′ = ϕ then
8 return ϕ
9 end
10 end

Proof. For each pa�ern-product pair x⇒ℓ y in Table 3.1, it is the case that x→ y is
true for all interpretaࢢons. Addiࢢonally, because each applicable rule ℓ reduces the
size of a formula it is applied to, formula rewriࢢng terminates a[er a finite number
of rewriࢢngs. ■

While formula simplificaࢢon does not change the conclusions progressionwould
otherwise yield, it does provide a determinisࢢcmethod for compacࢢng formula rep-
resentaࢢons, resulࢢng in lower space requirements. Furthermore, the determinisࢢc
transformaࢢons also make it possible to check the equality of two formulas by com-
paring their respecࢢve simplified formula trees, which is a feature we make use of
when considering repeated progression of formulas.

36

3.6. Empirical evaluaࢢon

5 10 15 20 25 30 35 40 45 50 55

Iterations

0

1

2

3

4

5

6

7

8

9

10

F
o

rm
u

la
 S

iz
e

false*10; true*1 true

Figure 3.4: Formula size over meࢢ when progressing GF[0,10]p over regular state
sequences.

3.6 Empirical evaluaࢢon

The adapted progression procedure from Algorithm 3.1 combined with the appli-
caࢢon of rewriࢢng rules from Table 3.1 was empirically evaluated. First, a baseline
evaluaࢢon is given for the standard progression procedure. This is then followed up
with a contrasࢢng experiment where the impact of the rewriࢢng rules is measured.
The performance of progression has been studied previously (Doherty et al., 2009),
but is included for the sake of completeness using our new implementaࢢon. The
performance of progression is closely edࢢ to the formula being progressed and the
stream used for the progression. The evaluaࢢon of progression is therefore done
through two separate experiments with different formulas and different streams.
We primarily focus on the change in formula size over ,meࢢ bearing in mind that the
meࢢ complexity of progression is linear in the size of the formula.

In the first experiment wemeasure the formula growth over successive progres-
sions for the formula

GF[0,10]p, (3.17)

where the truth value of p is determined by a regular pa�ern. The the first pa�ern
is illustrated by a crossed (blue) line; the second pa�ern is illustrated by an unin-
terrupted (red) line. The first pa�ern shows a sequence wherein p is false for 10
me-stepsࢢ and becomes true for one ,me-stepࢢ before repeaࢢng. This means that
the formula must grow in order to keep track of the eventually operator, for which
the interval allows a delay of up to 10 me-stepsࢢ before p has to be true in order for
the formula to not be evaluated to false. The pa�ern uses the full duraࢢon allowed,

37

3. Reasoning about meࢢ

5 10 15 20 25 30 35 40 45 50 55

Iterations

0

500

1000

1500

F
o

rm
u

la
 S

iz
e

false*10; true*1 true

Figure 3.5: Formula size over meࢢ when progressingGF[0,10]pwithout formula sim-
plificaࢢon.

and once p becomes true the formula shrinks again. This shrinking and growing be-
haviour can be correctly observed in Figure 3.4, where the shrinking occurs every 10
.me-stepsࢢ For the second pa�ern, p is set to always be true. This corresponds to a
state stream in which for every state p is set to true. The nesࢢng of temporal oper-
ators is important here. Since p is always true, the eventually operator immediately
evaluates to true as well, so the formula does not grow in size.

It is important to perform formula rewriࢢngs because they allow us to reduce
the formula size where possible, resulࢢng in the growing and shrinking pa�erns ob-
served in Figure 3.4. If we however disable formula rewriࢢng, the formula’s growth
becomes unbounded, as is illustrated in Figure 3.5. Progression will evaluate the
formula GF[0,10]p by rewriࢢng it into GF[0,10]p ∧ F[0,9]p ∧ p. Since proposiࢢon p is
not scoped by a temporal interval, it is then replaced with the truth value for p as
specified by the state stream. Even if p is false, without simplificaࢢon rules we can-
not collapse the formula. To make ma�ers worse, each subsequent iteraࢢon will
again progress the original formula, which remains part of the progressed formula,
resulࢢng in the unbounded growth observed in Figure 3.5.

In the second experiment we similarly measure the formula growth over succes-
sive progressions for the formula

G(¬p→ F[0,10]G[0,9]p), (3.18)

where the truth value of p is again determined by a regular pa�ern. Figure 3.6 shows
the formula size for different stream pa�erns with formula rewriࢢng enabled. Due
to the semanࢢcs of implicaࢢon, this formula only grows whenever p is false. The
different state sequences show different degrees growth accordingly. In the best

38

3.7. Summary

10 20 30 40 50 60

Iterations

0

2

4

6

8

10

12

14

16

18

20

F
o

rm
u

la
 S

iz
e

false*1; true*40

false*1; true*10

false*10; true*10

true

Figure 3.6: Formula size over meࢢ when progressing G(¬p → F[0,10]G[0,9]p) over
regular state sequences.

case, p is never false and the formula is never expanded. If p does become false, the
formula is expanded, and progression steps consequently take more .meࢢ

3.7 Summary

In this chapter we started with an introducࢢon to the temporal logics, which are
useful tools for describing logical specificaࢢons and requirements of informaࢢon
systems. To check the correctness of such a system, different techniques can be
used. When the logical specificaࢢon of a system is known, automata-based model
checking techniques can be used. However, such a system specificaࢢon is not al-
ways available, for a variety of reasons. In those cases, path checking techniques
can be applied to check the system during runࢢme. We looked at the syntacࢢc for-
mula rewriࢢng technique by Bacchus and Kabanza (1998) called progression, which
can be used to check whether a trace saࢢsfies a formula. We showed that it can
however also be used to check whether a stream saࢢsfies a formula under certain
constraints. We then considered a number of rewriࢢng rules, whichmake it possible
to determinisࢢcally reduce the size of a formula, which in turn speeds up progres-
sion since its complexity depends on the size of the formula being progressed. The
rewriࢢng technique also makes it possible to check for formula equality, which is a
useful property as we shall see in Chapter 4.

39

Chapter

4
Reasoning under uncertainty

H andling uncertainty is a vital ability for systems operaࢢng in the physical
world. Just like humans, these systems only observe the world through
inherently imprecise sensors that measure the shrouded fluents of reality.

Furthermore, these sensors will only be able to observe a small part of the world,
whereas many tasks require an agent to know facts about the unobserved world.
We call this type of reasoning reasoning under uncertainty, which is a problem of
high importance within the stream reasoning community and beyond. This chapter
borrows from and extends previous work on progression-based path checking with
incomplete states (de Leng andHeintz, 2018) under uncertainty (de Leng andHeintz,
2019).

4.1 Introducࢢon

While a common problem within AI, the problem of reasoning with uncertain in-
formaࢢon was only recently idenࢢfied as a problem of high importance in the area
of stream reasoning (Dell’Aglio et al., 2017a, 2019). We therefore again consider a
future-restricted MITL incremental path checking procedure under pointwise se-
manࢢcs. This ,meࢢ however, we adapt the technique for applicaࢢon to probabilisࢡc
streams. Informally, these streams are represented using sets of states rather than
single states for each .me-pointࢢ Each state in a set of states has a probability as-
sociated with it, corresponding to the likelihood of the hypotheࢢcal state being the
true state.

While our focus is on uncertainty represented by distribuࢢons over states, there
have been many approaches where the uncertainty is directly represented in the
logic itself. P-MTL (Tiger and Heintz, 2016) is a probabilisࢢc temporal logic which
allows for logical differenࢢaࢢon between observaࢢons and predicࢢons. TLD (Kov-
tunova and Peñaloza, 2018) is a probabilisࢢc extension of LTLwhich allows for tem-

41

4. Reasoning under uncertainty

poral uncertainty of event occurrences to be modelled through probabilisࢢc distri-
buࢢons. LTL4-C (Medhat et al., 2016) extends LTL by introducing absolute and
relaࢢve ‘counࢢng quanࢢfiers’, allowing for the expression and monitoring of con-
straints pertaining to a (absolute or relaࢢve) lower or upper bound on instances.
The query languageTPQ (Koopmann, 2019) extends a temporal query language are
based on LTL for ontology-based data access (OBDA) by introducing a probability
operator ranging over statements in the TPQ language. Further, the work by Sato
(1995); Sato and Kameya (2001) introduces distribuࢢon semanࢢcs for probabilisࢢc
logic programs.

In this chapter we first formally define what a probabilisࢢc stream is and how
it can be represented formally. We then consider the applicaࢢon of progression to
these streams, which requires a different approach from the usual syntacࢢc rewrit-
ing of single formulas. Concretely, we show how to construct so-called progression
graphs that can be used to representmany formulas in an efficientmanner. We then
conclude by considering an incremental construcࢢon and maintenance process for
these graphs, in line with the incremental nature of streams.

4.2 Prefix progression under uncertainty

In many pracࢢcal applicaࢢons, an agent is constrained by parࢢal observability of
its environment. Nevertheless, while certain facts may not be perceived (or even
perceivable) directly, an agent can o[en, through reasoning, infer parࢢal state in-
formaࢢon. Dealing with incomplete states is an important problem within the area
of stream reasoning, and one which has been idenࢢfied as being in need of further
study (Dell’Aglio et al., 2017a, 2019). A good example of the occurrence of incom-
plete states is qualitaࢢve spaࢢal reasoning, which is discussed inmore detail in Chap-
ter 5. Given a parࢢal model of spaࢢal relaࢢons between regions, qualitaࢢve spaࢢal
reasoning allows an agent to infer — for example through composiࢢon table based
reasoning — a set of possible complete models consistent with the parࢢal model.
This set represents the set of possible hypotheses, each of which could be the ‘true’
model. Note that this set is disjuncࢢve; we know beforehand that one of the hy-
potheࢢcal models must be true, but we cannot be certain which one. Likewise, to
relax the constraint on complete states for progression, we consider disjuncࢢve sets
of states called incomplete states. This is a generalisaࢢon; we could model the case
of complete states by considering only singleton incomplete states.

Model for incomplete prefixes

In the case of incomplete state streams, we want to be able to represent all of the
different hypotheࢢcal complete streams it could represent. We therefore represent
an incomplete state stream as a set of complete state streams, which are in agree-
ment for complete states but are in disagreement for incomplete states.

42

4.2. Prefix progression under uncertainty

Definiࢢon 4.1 (Incomplete state stream). An incomplete state stream of size N ∈
Z+, represenࢡngN hypotheࢡcal complete streams σ ∈ ρ, is denoted by

ρ =
{
σ(1), σ(2), . . . , σ(N) | σ(i) ∈ Σω

}
⊂ Σω. (4.1)

Definiࢢon 4.2 (Incomplete state). An incomplete state is denoted by a set of states

ρn =
{
σ(1)
n , σ(2)

n , . . . , σ(|ρ|)
n | n ∈ N ∧ σ(i) ∈ ρ

}
⊆ Σ. (4.2)

Our goal is to extend progression to be able to process incomplete state streams
in a meaningful way. Due to its incremental nature, progression produces results
for (finite) sequences of states, and in many cases does not require the enࢢrety of a
stream before returning a verdict (i.e.⊤,⊥). Such a finite sequence of states corre-
sponds to a stream prefix.

Definiࢢon 4.3 (Prefix). A prefix for complete state streams σ and incomplete state
streams ρ for me-pointsࢡ n ∈ N is denoted by

σ<n = (σ0 . . . σn−1), (4.3)

ρ<n =
{
σ
(1)
<n, . . . , σ

(|ρ|)
<n

}
. (4.4)

The problem with prefixes is that they are incompaࢢble with the semanࢢcs of
temporal logics that assume infinite-length streams. Yet progression is able to pro-
duce verdicts prematurely given the right condiࢢons. This happens when every pos-
sible infinite-length extension of a finite-length prefix saࢢsfies certain constraints.
Following the example of Kupferman and Vardi (2001), we call such prefixes good
prefixes— and, for the converse case in which all possible infinite-length extension
of a finite-length prefix saࢢsfies the negaࢢon of the constraints, bad prefixes.

Definiࢢon 4.4 (Prefix truth). Let σ<n and ρ<n be prefixes. We define prefix truth
using the short-hands

σ<n |= ϕ iff σ<n + σ′ |= ϕ for all σ′ ∈ Σω, (4.5)
ρ<n |= ϕ iff σ<n |= ϕ for all σ<n ∈ ρ<n, (4.6)

where we denote the concatenaࢡon of words by the ‘+’ operator.

In parࢢcular, progression is able to terminatewhen every possible infinite-length
extension of a finite-length prefix is a model of the formula being progressed. We
can connect progression reaching a verdict a[er n iteraࢢons to the saࢢsfacࢢon re-
laࢢon for those n-length-prefix extensions.

Definiࢢon 4.5 (Prefix progression). We denote the repeated applicaࢡon of
PROGRESS to an iniࢡal formula ϕ over an n-length prefix σ<n of complete state
stream σ, called prefix progression, by

PROGRESSn(ϕ, σ) = PROGRESS(PROGRESSn−1(. . .), σn−1), (4.7)

where n ∈ N. For base-case n = 0 we have a fix-point; PROGRESS 0(ϕ, σ) = ϕ.

43

4. Reasoning under uncertainty

Theorem 4.1: Soundness of prefix progression

The applicaࢢon of progression over prefixes is sound wrt the semanࢢcs of
MITL for any wff ϕ and prefix σ<n, i.e. PROGRESSn(ϕ, σ<n) = ⊤ implies
that σ<n + σ′ |= ϕ for all σ′ ∈ Σω.

Proof. Assume that PROGRESSn(ϕ, σ<n) = ⊤. Since σ<n + σ′, n |= ⊤ for all σ′ ∈
Σω , it is therefore the case that σ<n + σ′, n |= PROGRESSn(ϕ, σ<n) for all σ′ ∈
Σω. From the definiࢢon of prefix progression (Definiࢢon 4.5), this is equivalent to
σ<n + σ′, n |= PROGRESS(PROGRESSn−1(. . .), σn−1) for all σ′ ∈ Σω. Applying
Lemma 3.1, the correctness of simplified progression, n mesࢢ then yields σ<n +

σ′, 0 |= PROGRESS0(ϕ, ϵ) for all σ′ ∈ Σω and word terminator (i.e. empty word) ϵ,
which according to Definiࢢon 4.5 is equivalent to σ<n + σ′ |= ϕ. ■

Theorem 4.2: Incompleteness of prefix progression

The applicaࢢon of progression over prefixes is incomplete wrt the semanࢢcs
ofMITL for any wff ϕ and prefix σ<n, i.e. σ<n + σ′ |= ϕ for all σ′ ∈ Σω does
not imply that PROGRESSn(ϕ, σ<n) = ⊤.

Proof. It suffices to show a counter-example to completeness. One such example
is for ϕ = Gp ∨ F¬p and an arbitrary prefix σ<n. The formula ϕ is true for any
infinite-length ω-word in Σω, so σ<n + σ′ |= ϕ for all σ′ ∈ Σω. However, since
n is finite, there exists no n such that PROGRESSn(ϕ, σ<n) = ⊤, demonstraࢢng
incompleteness. ■

Corollary 4.1: Parࢢal completeness of prefix progression

The applicaࢢon of progression over prefixes is complete for the safety frag-
ment ofMITL for any wff ϕ and prefix σ<n.

Proof. The counter-examples to (full) completeness hinge on the choice of a wff
ϕ which has no good prefixes and no counter-models. Therefore, let ϕ be a safety
property as described in Definiࢢon 3.10. Due to the safety restricࢢon it is guaranteed
for an n ∈ Z+ to exist such that PROGRESSn(ϕ, σ<n) = ⊤whenever σ<n+σ

′ |= ϕ

for all σ′ ∈ Σω. ■

44

4.2. Prefix progression under uncertainty

Saࢢsfacࢢon probability

We have thus far considered purely disjuncࢢve sets of states as incomplete states.
This can be further enhanced by providing a probabilisࢢc grounding for such disjunc-
veࢢ sets. In the absence of priors, one may reasonably assign a uniform probability
distribuࢢon to the set of complete states making up an incomplete state. However,
if prior informaࢢon exists, we may wish to change the probabiliࢢes of the com-
plete states such that some become more likely while others become less likely.
These probabiliࢢes are assumed to be given— for each me-pointࢢ — by the incom-
plete state stream. The set of states Σ is associated with a ,me-varyingࢢ discretely-
distributed stochasࢢc variable Sn ∼ Discrete(θn) for me-pointsࢢ n ∈ N, where
θn = {θn,s}s∈Σ represents a probability mass funcࢢon (pmf) for states s ∈ Σ and
me-pointsࢢ n ∈ N. While the discrete distribuࢢon for Sn could under certain condi-
onsࢢ be learned, we will assume it is given. We write Pr (Sn = s) = θn,σ to denote
the probability of observing a state s at me-pointࢢ n ∈ N. The condiࢢonal prob-
ability of a complete state s given an observed incomplete state ρn is denoted by

Pr (Sn = s | ρn) =
θn,s · [s ∈ ρn]∑

s′∈ρn
θn,s′

, (4.8)

where the notaࢢon [·] represents Iverson brackets5. Similarly, we denote the (con-
diࢢonal) probability of observing prefixes by

Pr (S<n = σ<n) =
n−1∏
i=0

Pr (Si = σi) , (4.9)

Pr (S<n = σ<n | ρ<n) =
n−1∏
i=0

Pr (Si = σi | ρi) . (4.10)

This notaࢢon makes it possible to refer to the posterior probability distribuࢢon at
me-pointࢢ n by combining the prior Sn with an observaࢢon of an incomplete state
ρn.

Definiࢢon 4.6 (Prefix saࢢsfacࢢon probability). The (condiࢡonal) probability of a
complete prefix σ<n to saࢡsfy a wff ϕ is denoted by

Pr(σ<n |= ϕ) = Pr(S<n = σ<n) · [σ<n |= ϕ], (4.11)
Pr(σ<n |= ϕ | ρ<n) = Pr(S<n = σ<n | ρ<n) · [σ<n |= ϕ]. (4.12)

Similarly, the probability of an incomplete prefix ρ<n to saࢡsfy a wff ϕ is denoted by

Pr(ρ<n |= ϕ) =
∑

σ<n∈ρ<n

Pr(σ<n |= ϕ | ρ<n). (4.13)

5Iverson brackets contain a Boolean statement and resolve to 1 if that statement is true, and 0 oth-
erwise, i.e. for a Boolean statement b, [b] = 1 iff b is true; otherwise [b] = 0.

45

4. Reasoning under uncertainty

Theorem 4.3: Monotonicity of prefix saࢢsfacࢢon probability

Letρdenote an incomplete state streamandϕ an arbitrarywff. Theprobability
of prefix saࢢsfacࢢon grows monotonically as n ∈ Z+ increases, such that

Pr(ρ<n |= ϕ) ≤ Pr(ρ<n+1 |= ϕ), (4.14)
Pr(ρ<n ̸|= ϕ) ≤ Pr(ρ<n+1 ̸|= ϕ). (4.15)

Proof. Per Definiࢢon 4.6, we can rewrite the prefix saࢢsfacࢢon probability into

Pr(ρ<n |= ϕ) =
∑

σ<n∈ρ<n

(Pr(S<n = σ<n | ρ<n) · [σ<n |= ϕ]), (4.16)

Pr(ρ<n ̸|= ϕ) =
∑

σ<n∈ρ<n

(Pr(S<n = σ<n | ρ<n) · [σ<n ̸|= ϕ]). (4.17)

Let ρn =
{
σ
(1)
n , . . . , σ

(N)
n

}
. By concatenaࢢng this incomplete state with the incom-

plete prefix ρ<n we obtain

ρ<n+1 =
{
σ<n + σ(i)

n | σ<n ∈ ρ<n and 1 ≤ i ≤ N
}
. (4.18)

Per Definiࢢon 4.4, if σ<n |= ϕ then also σ<n + σ′ |= ϕ for any choice of σ′ ∈ Σ.
Conversely, if σ<n ̸|= ϕ then also σ<n+σ

′ ̸|= ϕ for any choice of σ′ ∈ Σ. Therefore
the following also holds;

σ<n |= ϕ⇒ σ<n + σ′ |= ϕ, (4.19)
σ<n ̸|= ϕ⇒ σ<n + σ′ ̸|= ϕ, (4.20)

for all σ′ ∈ ρn, since ρn ⊆ Σ. For these two cases, any extension of σ<n neither
increases nor decreases the prefix saࢢsfacࢢon probability.

However, if neither σ<n |= ϕ nor σ<n |= ϕ, then it is possible that σ<n+σ
′ |= ϕ

or σ<n + σ′ ̸|= ϕ for some σ′ ∈ ρn. In that former case, Pr(ρ<n+1 |= ϕ) >

Pr(ρ<n |= ϕ), whereas in the la�er Pr(ρ<n+1 ̸|= ϕ) > Pr(ρ<n ̸|= ϕ). This
means that in the general case Pr(ρ<n |= ϕ) ≤ Pr(ρ<n+1 |= ϕ) and Pr(ρ<n ̸|=
ϕ) ≤ Pr(ρ<n+1 |= ϕ), which shows that the probability of prefix saࢢsfacࢢon grows
monotonically. ■

4.3 Progression graphs

To perform progression with incomplete states, we can apply simplified progres-
sion (Algorithm 3.1) for each of the complete states represented by an incomplete
state. A graph structure can be used to leverage the property that different formu-
las progressed with different states can produce the same resulࢢng formula, con-
straining the potenࢢal combinatoric explosion. An example of this is illustrated in

46

4.3. Progression graphs

⊤ ⊥

p

{p} {¬p}

F[0,1] p

{p}

{¬p}

F[0,2] p

{p}

{¬p}

F[0,3] p

{p}

{¬p}

F[0,4] p

{p}

{¬p}

F[0,5] p

{p}

{¬p}

Figure 4.1: Example progression graph for the formula F[0,5]p. Verࢢces represent
formulas; edges are labelled with complete states to illustrate under which logical
state a formula progresses into a formula. Reflexive edges for the verdicts are omit-
ted for clarity.

Figure 4.1, which shows how formulas progress into formulas given some complete
state. We start with a formula we wish to progress, in this case F[0,5]p. The graph
structure follows the PROGRESS procedure by requiring that there exists a directed
edge (ϕ, ψ, s) iff PROGRESS(ϕ, s) = ψ. Hence we can observe ψ = F[0,4]p is reach-
able from ϕ = F[0,5]p for complete state s = ∅, whereas ψ = ⊤ is reachable from
ϕ for complete state s = {p}. Since all verࢢces have an out-degree equal to |Σ|
— the figure omits the reflexive edges for verdict nodes for clarity — the graph is a
complete encoding of progression for F[0,5]p.

These progression graphs can be represented as a type of finite state automa-
ton. Given a wff ϕ, a progression graph G(ϕ) = (ϕ, V,E) can disࢢnguish between
acceptance of both ϕ and ¬ϕ, where the la�er represents a ‘rejecࢢon’ of ϕ. If
⊤ ∈ V , that means that there exist finite-length accepࢢng runs, which corresponds
to the existence of good prefixes. Conversely, if⊥ ∈ V , that means that there exist
finite-length rejecࢡng runs, which corresponds to the existence of bad prefixes. So if
⊤ ∈ V , it is an accepࢢng state, with the analogous holding for⊥. If neither⊤ nor⊥
are states of G(ϕ), then there exist no good or bad prefixes for ϕ, which means that
ϕ is not a safety formula. In addiࢢon to encoding the structure of progression— and
unlike standard finite state automata—progression graphs also encode probabilisࢢc
informaࢢon in terms of probability mass associated with each formula.

47

4. Reasoning under uncertainty

Definiࢢon 4.7 (Progression graph). A progression graph is a directed graphGn(ϕ) =
(ϕ, V,E,mn) at me-pointࢡ n consisࢡng of a set of wffs V such that ϕ ∈ V , a set of
directed labelled transiࢡons

E = {(v, v′, s) ∈ V × V × Σ | PROGRESS(v, s) = v′} , (4.21)

and a probability mass funcࢡon mn : V → [0, 1] represenࢡng a probability distri-
buࢡon over formulas in v ∈ V defined as

mn(v) =
∑

σ<n∈ρ<n

(Pr (S<n = σ<n | ρ<n) · [PROGRESSn(ϕ, σ<n) = v]) , (4.22)

and m0(ϕ) = 1 corresponds to the base-case. We will use the a-temporal short-
hand G(ϕ) = (ϕ, V,E) when referring only to the structure of a progression graph.

Given a progression graph Gn(ϕ), the probability mass mn(ψ) for a formula ψ
represents the probability that progression of the ‘true’ stream would have pro-
duced the formula ψ at me-pointࢢ n. At me-pointࢢ n = 0, no part of the stream
has yet been observed, and thus all of the probability mass resides in the to-be-
progressed source formula ϕ. The exact process involved in incrementally updaࢢng
a progression graph given these components is presented later; for now it suffices
to assume that such a process exists. In that case, we can consider the probabilisࢢc
counterpart to the saࢢsfacࢢon relaࢢon for incomplete state stream prefixes; saࢡs-
facࢡon probability.

Theorem 4.4: Correctness of progression graphs

Given a progression graph Gn(ϕ) = (ϕ, V,E,mn) and an incomplete state
stream prefix ρ<n for any me-pointࢢ n ∈ N. Let Pr(ρ<n |=? ϕ) denote
Pr(not (ρ<n |= ϕ or ρ<n ̸|= ϕ)). Then it is the case that

Pr (ρ<n |= ϕ) = mn(⊤), (4.23)
Pr (ρ<n ̸|= ϕ) = mn(⊥), (4.24)

Pr
(
ρ<n |=? ϕ

)
= 1− (mn(⊤) +mn(⊥)). (4.25)

Proof. Per Definiࢢon 4.7, the pmfmn for verdicts is based on the sum of the proba-
biliࢢes of the complete state stream prefixes progressing to those verdicts by -meࢢ
point n.

mn(⊤) =
∑

σ<n∈ρ<n

(Pr (S<n = σ<n | ρ<n) · [PROGRESSn(ϕ, σ<n) = ⊤]) , (4.26)

mn(⊥) =
∑

σ<n∈ρ<n

(Pr (S<n = σ<n | ρ<n) · [PROGRESSn(ϕ, σ<n) = ⊥]) . (4.27)

From Theorems 4.1 and 4.2, we know that prefix progression is sound but incom-
plete.

48

4.3. Progression graphs

Consider the casewheren = 0, fromwhichwe know thatV = {ϕ},E = ∅, and
m0(ϕ) = 1. This corresponds to not yet having observed any part of the incomplete
state stream ρ. In this case,m0(⊤) = [ϕ = ⊤] andm0(⊥) = [ϕ = ⊥].

Consider the case where⊤ ̸∈ V and n > 0. That means that there is nom ≤ n
such that PROGRESSm(ϕ, σ<n) = ⊤ for any σ<n ∈ ρ<n. This means that there
exists no good prefix σ<n ∈ ρ<n for ϕ, somn(⊤) = 0. Conversely, if ⊥ ̸∈ V and
n > 0, then there is nom ≤ n such that PROGRESSm(ϕ, σ<n) = ⊥ for any σ<n ∈
ρ<n. This means that there exists no bad prefix σ<n ∈ ρ<n for ϕ, somn(⊥) = 0.
Both cases match the definiࢢons forPr (ρ<n |= ϕ) andPr (ρ<n ̸|= ϕ) respecࢢvely.

Consider the case where ⊤ ∈ V (or: ⊥ ∈ V) and n > 0. Then ϕ is guaranteed
to have at least one good (or: bad) prefix due to the existence of a sequence of
edges leading from ϕ to⊤ (or: ⊥). This means that ϕ is a safety property. Based on
Theorem 4.1 and Corollary 4.1, we can therefore rewritemn(⊤) andmn(⊥) to

mn(⊤) =
∑

σ<n∈ρ<n

(Pr (S<n = σ<n | ρ<n) · [∀σ′ ∈ Σω(σ<n + σ′ |= ϕ)]) ,

(4.28)

mn(⊥) =
∑

σ<n∈ρ<n

(Pr (S<n = σ<n | ρ<n) · [∀σ′ ∈ Σω(σ<n + σ′ ̸|= ϕ)]) .

(4.29)

This corresponds to the saࢢsfacࢢon probability of the observed incomplete state
stream wrt ϕ, i.e.

mn(⊤) =
∑

σ<n∈ρ<n

(Pr (S<n = σ<n | ρ<n) · [σ<n |= ϕ])

= Pr(ρ<n |= ϕ), (4.30)

mn(⊥) =
∑

σ<n∈ρ<n

(Pr (S<n = σ<n | ρ<n) · [σ<n ̸|= ϕ])

= Pr(ρ<n ̸|= ϕ). (4.31)

Then it trivially follows from the definiࢢon of Pr(ρ<n |=? ϕ) that

Pr
(
ρ<n |=? ϕ

)
= 1− (mn(⊤) +mn(⊥)), (4.32)

which matches the original claim. ■

Given a formula ϕ, a progression graph can be regarded as automaton that ac-
cepts runs σ such that σ |= ϕ whenever ⊤ is a node in that progression graph.
The opposite holds as well; a progression graph can be regarded as automaton that
accepts runs σ such that σ ̸|= ϕ whenever⊥ is a node in that progression graph.

49

4. Reasoning under uncertainty

Theorem 4.5: Progression graphs encode good/bad prefixes

Letϕ denote awell-formedMITL formula,G(ϕ) = (ϕ, V,E) a full progression
graph for wffs V such that ϕ ∈ V , and

E = {(v, v′, s) ∈ V × V × Σ | PROGRESS(v, s) = v′} . (4.33)

We define a transiࢢon funcࢢon δE : V,Σ→ V based on E as follows:

δE : (v, s) 7→ v′ for all (v, v′, s) ∈ E. (4.34)

Then let Aϕ = (Σ, V, ϕ, δE , {⊤}) and A¬ϕ = (Σ, V, ϕ, δE , {⊥}) repre-
sent determinisࢢc finite-state automata. Then the following two relaࢢonships
hold:

• if there exists a prefix σ<n such that (ϕ, v0, σ0), . . . , (vn−2,⊤, σn−1) ∈
E, thenAϕ accepts σ<n;

• if there exists a prefix σ<n such that (ϕ, v0, σ0), . . . , (vn−2,⊥, σn−1) ∈
E, thenA¬ϕ accepts σ<n.

Proof. Follows directly from Definiࢢon 3.6 describing accepࢢng runs over FSAs. ■

These relaࢢonships are due to the edges of a progression graph being based on
progression. This also means that a progression graph for a formula ϕ that lacks a
node ⊤ does not have a good prefix. Likewise, if it lacks a node ⊥ then it does not
have a bad prefix. Consequently, if a progression graph for a formula ϕ lacks both
the⊤ and⊥ nodes, then ϕ is not a safety property.

Corollary 4.2: Progression graphs encode safety properࢢes

Let ϕ denote a well-formed MITL formula, and G(ϕ) = (ϕ, V,E) a full pro-
gression graph for ϕ. Then ϕ is a safety property iff⊤ ∈ V or⊥ ∈ V .

Proof. If ϕ is a safety property as per Definiࢢon 3.10, then there must exist good
or bad prefixes for ϕ, which means ⊤ ∈ V or ⊥ ∈ V according to Theorem 4.5.
Conversely, if ⊤ ∈ V or ⊥ ∈ V , then according to Theorem 4.5 there exist good or
bad prefixes respecࢢvely, which per Definiࢢon 3.10means thatϕ is a safety property.

■

Thus far we have shown that a progression graph is an accurate snapshot of
progression over incomplete state streams for me-pointsࢢ n ∈ N, where n = 0 rep-
resents the base-case before having observed any part of the stream. We have also
assumed that the structure of a graphGn(ϕ)— its verࢢcesV and edgesE—remain

50

4.3. Progression graphs

fixed across .meࢢ This is an assumpࢢon we will relax shortly, but it does present
us with the worst-case space complexity of progression graphs. In the worst-case
scenario, progression will repeatedly produce new formulas such that no two non-
verdict formulas share a common child. In such a graph, each formula produces |Σ|
new formulas in accordancewith its out-degree. In pracࢢce, some of these formulas
will be shared, which is a necessary condiࢢon for the graph to be of finite size. This
is because of the constraints forced upon the graph’s structure by the PROGRESS
procedure from Algorithm 3.1. This too therefore applies to progression graphs.

Formula simplificaࢢon is beneficial to restricࢢng the space requirements of pro-
gression graphs. Note that there is significant overlap between the trees before
and a[er progression, both in terms of the subtrees for the ‘eventually’ operator as
well as the unbounded ‘always’ operator. This is because the PROGRESS procedure
only recombines subtrees with logical connecࢢves and decremented-interval tem-
poral operators. We can therefore cache parts of formula trees and use pointers
whenever we are about to construct a cached formula tree as part of the PROGRESS
procedure. The formula cache will in the worst case contain all interval-shi[ed sub-
formulas of the original formula ϕ for which a progression graph G(ϕ)— meaning
the full progression graph for ϕ—was constructed. Basin et al. (2017) refer to this
set as the set of interval-skewed subformulas (ISF), which was originally introduced
by Thaࢢ and Roşu (2005).

Definiࢢon 4.8 (Interval-skewed subformulas). The (future-restricted6) set of
interval-skewed subformulas (ISF) is defined for wffs ϕ as

ISF (ϕ) = SF (ϕ) ∪ {ϕ1UI−nϕ2 | ϕ1UIϕ2 ∈ SF (ϕ) ∧ n ∈ [1,max(I)]} , (4.35)

where SF (ϕ) represents the inclusive set of subformulas of ϕ.

For example, Figure 4.1 shows G(F[0,3]p) = (F[0,3]p, V,E,mn), and for which
ISF (F[0,3]p) = V \ {⊤,⊥}. Addiࢢonally, given a formula ϕ, the size of its ISF is
proporࢢonal to the size of its subformula set, i.e. |ISF (ϕ)| ∝ |SF (ϕ)|. Taking into
account the predetermined out-degree of formula verࢢces, the space complexity of
a progression graph G(ϕ) is thereforeO(|SF (ϕ)| · |Σ|).

The use of formula simplificaࢢon and formula caching in conjuncࢢon with the
progression procedure yields the REPROGRESS procedure shown in Algorithm 4.1.
As the name implies, REPROGRESS is opࢢmised for use-cases in which progression
is performed mulࢢple .mesࢢ It takes the same input informaࢢon as Algorithm 3.1,
plus a formula tree cache Ω, which can be iniࢢalised with SF (ϕ). The notaࢢon
Ω[ϕ] returns a pointer to a cached tree T (ϕ) if one already exists; otherwise one
is constructed and added to the cache first. This prevents duplicate subtrees from
being stored, and allows for subtrees to be re-used. The SIMPLIFY(ψ) operaࢢon
(see Algorithm 3.2) is performed by repeatedly applying the inference rules from
Table 3.1 unࢢl no more rules can be applied, and returning the result.

6Basin et al. (2017) addiࢢonally use the backwards-looking temporal operator ‘since’, which we do
not consider in this work, hence the ‘future-restricted’ qualifier.

51

4. Reasoning under uncertainty

Algorithm 4.1: Repeat-progression
1 funcࢢon REPROGRESS(ϕ, si, Ω):
2 if ϕ = ϕ1 ∨ ϕ2 then
3 ψ ← REPROGRESS(ϕ1, si,Ω) ∨ REPROGRESS(ϕ2, si,Ω)
4 ψ∗ ← SIMPLIFY(ψ)
5 return Ω[ψ∗]

6 else if ϕ = ¬ϕ1 then
7 ψ ← ¬REPROGRESS(ϕ1, si,Ω)
8 ψ∗ ← SIMPLIFY(ψ)
9 return Ω[ψ∗]

10 else if ϕ = ϕ1 UI ϕ2 then
11 if I < 0 then
12 return Ω[⊥]
13 else if 0 ∈ I then
14 ψ ← REPROGRESS(ϕ2, si,Ω) ∨ (REPROGRESS(ϕ1, si,Ω) ∧ ϕ1 UI−1 ϕ2)
15 ψ∗ ← SIMPLIFY(ψ)
16 return Ω[ψ∗]

17 else
18 ψ ← REPROGRESS(ϕ1, si,Ω) ∧ ϕ1 UI−1 ϕ2

19 ψ∗ ← SIMPLIFY(ψ)
20 return Ω[ψ∗]

21 end
22 else
23 if ϕ ∈ si then
24 return Ω[⊤]
25 else
26 return Ω[⊥]
27 end
28 end

Theorem 4.6: Correctness of REPROGRESS

The REPROGRESS procedure is correct wrt simplified progression, meaning

PROGRESS(ϕ, s) ≡ REPROGRESS(ϕ, s,Ω) (4.36)

for any wff ϕ, complete state s ∈ Σ, and cache Ω.

Proof. In order for REPROGRESS to be correct, the formulas it produces need to
be equivalent to the formulas produced by PROGRESS under the same inputs. If
we ignore the caching mechanism in REPROGRESS, the procedure is idenࢢcal to
PROGRESS. Since PROGRESS is correct according to Lemma 3.1, REPROGRESS is also
correct wrt simplified progression. ■

52

4.4. Incremental graph progression

4.4 Incremental graph progression

Previously, we looked exclusively at progression graph snapshots; that is, the state
of progression graphs at specific .me-pointsࢢ We now focus on the transiࢢons be-
tween these snapshots by considering how probability mass flows through a pro-
gression graph, and how a progression graph is incrementally constructed, using ac-
curate or approximate strategies. Concretely, the problem we consider here is how
to compute a progression graph Gn+1(ϕ) given a progression graph Gn(ϕ) for wff ϕ
at me-pointࢢ n ∈ N, where we assume for the base-case G0(ϕ) = (ϕ, {ϕ} ,∅,m0).

Probability mass flow

Over ,meࢢ we will incrementally observe an increasingly-large prefix ρ<n as n in-
creases. The goal of a progression graph is to efficiently encode an arbitrarily-long
prefix for all mepointsࢢ preceding n, and to only rely on themost recent incomplete
state ρn−1 to obtain Gn(ϕ) from Gn−1(ϕ). This is achieved through simultaneous
updates to the pmfmn−1 to obtainmn.

Lemma 4.1: Incremental updates

Let Gn(ϕ),Gn−1(ϕ) be full progression graphs. An update frommn−1 tomn

given an incomplete state ρn−1, where n > 0, can be characterised by the
update

mn(v)←
∑

(v′,v,s)∈E

(
mn−1(v

′) · Pr (Sn−1 = s | ρn−1)
)
. (4.37)

Proof. We need to show that the full update Eq. 4.22 from Definiࢢon 4.7 for -meࢢ
point n is equivalent to the full update for me-pointࢢ m = n − 1 followed by an
incremental update at me-pointࢢ n as shown in the above relaࢢonship. By plugging
Definiࢢon 4.7 into the incremental update rule, we get∑

(v′,v,s)∈E

(∑
σ<m∈ρ<m

(Pr (S<m = σ<m | ρ<m) · [PROGRESSm(ϕ, σ<m) = v′])

· Pr (Sm = s | ρm)
)
. (4.38)

The inner sum ranging over σ<m ∈ ρ<m can be rewri�en to instead range over
paths in the graph:

∑
(v′,v,s)∈E

 ∑
(ϕ,v′,σ<m)∈Em

Pr (S<m = σ<m | ρ<m)

 · Pr (Sm = s | ρm)

 .

(4.39)

53

4. Reasoning under uncertainty

Algorithm 4.2: Graph progression
1 funcࢢon GRAPH-PROGRESS(Gn−1, ρn−1, Ω):
2 Gn ← (Vn−1, En−1, [])
3 foreach v ∈ Vn−1 do
4 ifmn−1[v] > 0 then
5 foreach s ∈ ρn do
6 v′ ← REPROGRESS(v, s,Ω)
7 Vn ← Vn ∪ {v′}
8 En ← En ∪ {(v, v′, s)}
9 end
10 foreach (v, v′, s) ∈ En do
11 mn[v

′]← mn[v
′] +mn−1[v] · Pr (Sn−1 = s | ρn−1)

12 end
13 end
14 end
15 return (Gn,Ω)

We can now collapse the two sums into one sum ranging over paths from ϕ to v,
appending the incomplete state ρn to the incomplete stream ρ<m to obtain ρ<n:∑

(ϕ,v,σ<n)∈En

Pr (S<n = σ<n | ρ<n) . (4.40)

Plugging the PROGRESS funcࢢon back in we can rewrite the mass assignment to

mn(v)←
∑

σ<n∈ρ<n

(Pr (S<n = σ<n | ρ<n) · [PROGRESSn(ϕ, σ<n) = v]) , (4.41)

which matches Eq. 4.22 from Definiࢢon 4.7. ■

We thus only have to consider those verࢢces with a non-zero probability mass
and their immediate neighbours when performing an update. Because the update is
performed simultaneously for all verࢢces, it is possible for a vertex to receive fresh
probability mass from mulࢢple parents while distribuࢢng its own probability mass,
if any, to its children. Finally, since we know what G0(ϕ) looks like for any wff ϕ, we
only need to consider the most recent element of any prefix ρ<n without having to
store any of its preceding incomplete states.

Incremental graph construcࢢon

Because we only need to keep track of graph verࢢces with a non-zero probabil-
ity mass and their direct neighbours, it is not necessary to know the complete set
of verࢢces and edges at me-pointࢢ n = 0. Instead, we can incrementally con-
struct parts of a progression graph when needed, and it is even possible to ‘forget’
parts of progression graphs when they are no longer required. We therefore pro-
pose an incremental graph construcࢢon procedure based on REPROGRESS, called

54

4.4. Incremental graph progression

F[0,2] G [0,3] p ∧ G (¬p → F[0,5] G [0,3] p)

F[0,3] G [0,3] p ∧ G (¬p → F[0,5] G [0,3] p) [1]

∅

F[0,4] G [0,3] p ∧ G (¬p → F[0,5] G [0,3] p) [2]

∅

G (¬p → F[0,5] G [0,3] p) [3]

∅

Figure 4.2: Example progression graph G3(G(¬p → F[0,5]G[0,3]p)) a[er receiving
state {∅} three mesࢢ in a row.

GRAPH-PROGRESS, illustrated in Algorithm 4.2. The procedure starts out with the
progression graph of the previous iteraࢢon, inheriࢢng its structure as a base-line. It
then creates a new but empty pmf for the new graph (line 2). The procedure con-
siders all formulas which had probability mass associated with them according to
the old pmf (line 4), and expands those formulas by applying REPROGRESS where
needed (lines 5–9). Since the cache is shared between calls to graph progression,
REPROGRESS benefits from the overlap between the formulas that make up the pro-
gression graph. The procedure then proporࢢonally to ρn−1 redistributes the prob-
ability mass from the previous iteraࢢon, construcࢢng the new probability mass pmf
(lines 10–12). The resulࢢng progression graph and updated cache are then returned
(line 15) to serve as input for the next iteraࢢon. The GRAPH-PROGRESS procedure
can be shown to be correct wrt the definiࢢon of progression graphs based on the
incremental update mechanism employed in lines 10–12.

Theorem 4.7: Correctness of GRAPH-PROGRESS

For every progression graph Gn−1, the procedure GRAPH-PROGRESS produces
a pmfmn[v] such that

mn[v] =
∑

σ<n∈ρ<n

(Pr (S<n = σ<n | ρ<n) · [PROGRESSn(ϕ, σ<n) = v]) ,

(4.42)
meaningGRAPH-PROGRESS is correctwrt the definiࢢonof a progression graph.

Proof. Follows directly from Algorithm 4.2 and its applicaࢢon of Lemma 4.1 on line
11. The admissibility of REPROGRESS on line 6 follows directly from Theorem 4.6.

■

55

4. Reasoning under uncertainty

G (¬p → F[0,5] G [0,3] p)

F[0,4] G [0,3] p ∧ G (¬p → F[0,5] G [0,3] p) [6]

∅

⊥ (F[0,2] G [0,3] p ∨ G [0,1] p) ∧ G (¬p → F[0,5] G [0,3] p) ∧ G [0,1] p

p ∧ G (¬p → F[0,5] G [0,3] p)

{p}

∅

G (¬p → F[0,5] G [0,3] p) ∧ G [0,1] p [1]

∅

{p}

(F[0,3] G [0,3] p ∨ G [0,2] p) ∧ G (¬p → F[0,5] G [0,3] p) ∧ G [0,2] p [1]

∅ {p}

F[0,4] G [0,3] p ∧ G (¬p → F[0,5] G [0,3] p) ∧ G [0,3] p [2]

∅

{p}

G [0,2] p ∧ G (¬p → F[0,5] G [0,3] p) [2]

∅

{p}

F[0,1] G [0,3] p ∧ G (¬p → F[0,5] G [0,3] p) [3]

∅

{p}

(F[0,1] G [0,3] p ∨ G [0,2] p) ∧ G (¬p → F[0,5] G [0,3] p) [3]

{p} ∅

F[0,2] G [0,3] p ∧ G (¬p → F[0,5] G [0,3] p) [4]

∅

{p}

F[0,3] G [0,3] p ∧ G (¬p → F[0,5] G [0,3] p) [5]

∅

∅

Figure 4.3: Example progression graph G7(G(¬p→ F[0,5]G[0,3]p)).

We can graphically illustrate the incremental construcࢢon behaviour of graph
progression by considering our previous example formula ϕ = G(¬p →
F[0,5]G[0,3]p). Let us first consider the case where we receive states {∅}, i.e.
p is known to be false, for three consecuࢢve iteraࢢons. Figure 4.2 shows the
progression graph for ϕ at the end of the third iteraࢢon. The bo�om formula,
F[0,2]G[0,3]p ∧ (G(¬p → F[0,5]G[0,3]p)), has a 100% green background, indicaࢢng
it contains all of the probability mass. This matches the behaviour of the original
progression procedure. Its parent has a solid box and an age of 1, illustraࢢng this
is a formula which held probability mass during the previous iteraࢢon. In general,
its ancestors in turn are represented using dashed boxes with corresponding ages,
indicaࢢng that these parts of the graph are dormant.

If we now consider the case in which we receive incomplete states {{p} ,∅},
i.e. completely unknown, where the probabiliࢢes for all me-pointsࢢ n ≥ 3 are
Pr(Sn = {p}) = 0.9 andPr(Sn = ∅) = 0.1. Figure 4.3 shows the resulࢢng graphs
for iteraࢢon 7. We can observe how the probability mass has moved through the
graph, and by iteraࢢon 7 both the verdict node⊥ and the original formula ϕ are re-
ceiving probabilitymass. Sincemass cannot leave verdict nodes, themass contained

56

4.4. Incremental graph progression

within them will conࢢnue to grow. As more of the progression graph is explored, its
size will also conࢢnue to grow.

Approximaࢢon strategies

One observaࢢon when looking at Figure 4.3 is that many formulas have gone stale,
meaning that they have not received any probabilitymass for someࢢme. In the ideal
case, the stale raࢡo— being the raࢢo of stale formulas compared to the total num-
ber of formulas — of a progression graph stays close to 0 while only a few formulas
get expanded. We can use formula removal strategies to shrink the size of a progres-
sion graph, at the cost of having to reacquire them through progression if we need
them again. We call a formula removal strategy an approximaࢡon strategy when
it removed formulas that have probability mass associated with them, resulࢢng in
leakage.

Definiࢢon 4.9 (Leakage). Assume a progression graphGn(ϕ). The leaked probability
mass ℓn is defined as

ℓn = 1−
∑
v∈V

mn(v). (4.43)

Definiࢢon 4.10 (Removal strategy). A removal strategy is a funcࢡon π from progres-
sion graphs Gn to progression graphs G′n such that |Gn| ≥ |G′n|. A removal strategy
is called exact iff it guarantees that ℓ′n = 0; otherwise it is called approximaࢡve.

In the following, we consider some example removal strategies, both exact and
approximate:

• Default πid: The default strategy simply returns the same graph it was given.
It is therefore exact, but does not do anything to reduce the size of the pro-
gression graph it is applied to. It thus serves as a base-case strategy for when
no removals are performed.

• Maximum me-to-liveࢢ πttl: The maximum me-to-liveࢢ strategy uࢢlises the
age of formulas by considering ‘stale’ formulas for removal. A formula is ‘stale’
if it exceeds a predeterminedMAX_AGE value. The strategy is exact since nodes
receiving probability mass have their age reset to 0, and are thus never re-
moved. Any formulas removed may be recomputed by applying the progres-
sion procedure to their direct neighbours.

• Maximum size πmax: The maximum size strategy is more aggressive than πttl
because it puts a hard limit MAX_NODES on the size of the progression graph,
and removes formulas unࢢl this hard limit is no longer violated. It prioriࢢses
first based on staleness, followed by low probability mass. This means that
πmax will induce leakage if necessary, starࢢng with formulas containing the
least probability mass, making the strategy approximaࢢve.

57

4. Reasoning under uncertainty

The approximaࢢon strategies act as heurisࢢcs which try to balance formula re-
moval against the overhead of reprogressing formulas and losing precision due to
leaking probability mass. The choice of parameters impacts this balance in ways
that are difficult to predict beforehand, as there exists an interacࢢon with the in-
complete state stream and formula being progressed.

4.5 Progression-based monitoring

Progression graphs have been shown to be suitable for progression tasks that involve
incomplete state streams. However, they can also be adapted towards monitoring
tasks, where for a wff ϕ we want to know for each me-pointࢢ i ∈ N whether ρ, i |=
ϕ. This means that rather than a single (probabilisࢢc) verdict, we receive such a
verdict for every .me-pointࢢ In the following, we therefore consider progression-
based monitoring by ‘stacking’ progression graphs, adding a new graph to the stack
for every .me-pointࢢ

Definiࢢon 4.11 (Progression graph stack). A progression graph stack is a collecࢡon
of progression graphs denoted by

Gn(ϕ) =
{
G(1)n (ϕ),G(2)n−1(ϕ), . . . ,G

(n)
1 (ϕ)

}
, (4.44)

where each G(i)m (ϕ) represents a progression graph at iteraࢡon m path-checking
whether ρ≥i |= ϕ holds for stream suffix ρ≥i.

Each progression graph in a progression graph stack Gn(ϕ) has a pmf describing
the probability of an incomplete state stream prefix being a model of ϕ. This means
that per Theorem 4.4, for each ,me-pointࢢ a lower bound can be determined for
verdicts⊤,⊥. However, as the menࢢ ∈ N increases, the stack becomes too large to
store, since it approximates the size of the full stream. We can uࢢlise the structure
of wff ϕ to limit the size of our stack. Specifically, we make use of the concept of
future reach introduced by Ho et al. (2014), which describes the maximum prefix
length required for determining the truth value of a formula.

Definiࢢon 4.12 (Future reach adapted from Ho et al. (2014)). The future reach for
anMTL formula ϕ is determined by the funcࢡon FR(ϕ), defined incrementally as:

FR(p) = 0 for all p ∈ P ∪ {⊤,⊥} (4.45)
FR(¬ϕ1) = FR(ϕ1) (4.46)

FR(ϕ1 ∨ ϕ2) = max(FR(ϕ1), FR(ϕ2)) (4.47)
FR(ϕ1UIϕ2) = sup(I) + max(FR(ϕ1), FR(ϕ2)) (4.48)

The future reach of a formula thus describes the temporal interval covered
by that formula. By limiࢢng the prefix length for progression a formula ϕ by its
future reach FR(ϕ), one is guaranteed to obtain a resulࢢng progression graph
GFR(ϕ)(ϕ) for which mFR(ϕ)(⊤) + mFR(ϕ)(⊥) = 1. Unfortunately, this is not

58

4.6. Empirical evaluaࢢon

Algorithm 4.3: Progression-based monitor
1 funcࢢon PROGRESSMON(G(ϕ), ρn, Ω, τmax):
2 G(ϕ)[n (mod |G(ϕ)|)]← G0(ϕ)
3 foreach i ∈ [n− |G(ϕ)|+ 1, n] do
4 if G(ϕ)[n− i] ̸= nil then
5 (G,Ω)← GRAPH-PROGRESS(G(ϕ)[n− i], ρn,Ω)
6 if (Pr(ρi:n |= ϕ) + Pr(ρi:n |= ϕ) ≥ τmax) ∨ (i = n− |G(ϕ)|+ 1) then
7 Report Pr(ρi:n |= ϕ), Pr(ρi:n ̸|= ϕ) and ℓn
8 G(ϕ)[n− i]← nil
9 else
10 G(ϕ)[n− i]← G
11 end
12 end
13 end
14 return (G(ϕ),Ω)

enough for wffs ϕ containing unbounded temporal operators, for which FR(ϕ)
approaches infinity. We can therefore further limit the prefix length to a prede-
termined constant MAX_WINDOW. This means that for those formulas ϕ for which
FR(ϕ) > MAX_WINDOW, we will not have finished progressing all the possible pro-
gression traces, resulࢢng in further leakage and thus corresponding to an approxi-
maࢢon.

Algorithm 4.3 shows the progression-based monitoring procedure
PROGRESSMON, where ρi:n denotes a substream of ρ from me-pointࢢ i to -meࢢ
point n inclusive. The procedure takes an iniࢢally-empty progression stack G(ϕ)
implemented as an array, a cache Ω iniࢢally iniࢢalised for formulas in SF (ϕ), an
incomplete state ρn, and an early terminaࢢon threshold τmax. At the start of
each call, the procedure updates the stack in a round-robin fashion, overwriࢢng
the oldest progression graph with a new progression graph. A[er every call, it
returns an updated progression stack G(ϕ) and an updated cache Ω by applying
GRAPH-PROGRESS to each of the progression graphs in the stack. The space com-
plexity of PROGRESSMON is the same as the probability mass space complexity from
GRAPH-PROGRESS mulࢢplied by a constant window size, which was defined to be
the smaller of FR(ϕ) and MAX_WINDOW. Since the graph can be shared between all
progression graphs in the stack, no addiࢢonal copies are required.

4.6 Empirical evaluaࢢon

Since the impact of the proposed removal strategies is difficult to predict, we per-
formed an empirical evaluaࢢon to measure the impact of changing the parameters
on both meࢢ and space requirements, as well as the impact of the approximaࢢve

59

4. Reasoning under uncertainty

MAX_AGE MAX_NODES Iteraࢢons Max Size Median Size Avg Density
∞ ∞ 226,867 15,706 15,706 0.024
5 ∞ 226,867 11,851 1,162 0.243
1 ∞ 226,867 4,074 335 0.665
∞ 250 226,863 3,858 3,726 0.099
5 250 226,863 3,855 1,163 0.254
1 250 226,863 3,722 335 0.665
∞ 225 226,295 3,480 3,352 0.110
5 225 226,295 3,480 1,164 0.259
1 225 226,295 3,361 335 0.665
∞ 200 225,644 3,105 2,978 0.124
5 200 225,644 3,105 1,165 0.266
1 200 225,644 2,999 335 0.665
∞ 175 222,599 2,730 2,604 0.142
5 175 222,599 2,730 1,164 0.277
1 175 222,599 2,653 335 0.665

Table 4.1: Empirical results illustraࢢng the impact of removal strategies πttl and
πmax.

strategy on probability mass leakage. To do so, the graph progression procedure
was implemented in Java7.

Removal strategies

Table 4.1 shows an empirical evaluaࢢon of the impact of changing the removal strat-
egy parameters for πttl and πmax; MAX_AGE and MAX_NODES respecࢢvely. We used
the formula ϕ = G

(
¬p→

(
F[0,100]

(
G[0,10]p

)))
as a benchmarking formula, based

on its membership in the class of response formulas — described by the pa�ern
GI (ϕ→ FJψ)—which is a formula class most commonly observed in runࢢme ver-
ificaࢢon (Dwyer et al., 1999). For our choice of stream we randomly generated in-
complete streams containing {{p}} for 80% of the samples, and let the remaining
samples be uniformly unknown, i.e. {{p} ,∅}. Our experiments terminated when-
ever 99%of the total probabilitymasswas leaked ormade its way into verdict nodes.
Addiࢢonally, the values for MAX_NODESwere chosen such that the amount of leaked
probability mass would not exceed 1%; the impact on mass leakage was considered
separately. The best results are marked in bold-face.

The exact strategy πttl, when configured with a low MAX_AGE value, results in a
higher average density (i.e. inverse staleness) of progression graphs, corresponding
to a high raࢢo of mass-bearing nodes relaࢢve to the total number of nodes. As men-
onedࢢ previously, this does however result in an increased workload by requiring
the regeneraࢢon of previously-deleted formulas. We can also observe a decrease in
the maximum and medium progression graph size, determined by the cumulaࢢve
size of all of the contained-within formulas, indicaࢢng that the graph shrinks as ex-

7The jprogress implementaࢢon is available at https://github.com/dnleng/jprogress.

60

https://github.com/dnleng/jprogress

4.6. Empirical evaluaࢢon

20 40 60 80 100 120 140 160 180

MAX_NODES

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L
e
a
k
e
d
 P

ro
b
a
b
ili

ty
 a

t
T

e
rm

in
a
ti
o
n

0

0.5

1

1.5

2

It
e
ra

ti
o
n
s
 t
o
 T

e
rm

in
a
ti
o
n

105

Figure 4.4: Leaked probability mass at terminaࢢon (le[), and number of iteraࢢons
to terminaࢢon (right).

pected. This is further affected by the choice of MAX_NODES from the πmax strategy.
By decreasing the value of MAX_NODES, we can also observe that the number of it-
eraࢢons to terminaࢢon is reduced, although this is parࢢally due to the leakage of
probability mass.

Leakage characterisࢢcs

A more detailed analysis of mass leakage is shown in Figure 4.4. On the le[-hand
side (corresponding to the blue dashed line), we see the leaked probability mass
at terminaࢢon, which occurs when 99% of probability mass has found its way into
verdict nodes for ‘false’ and ‘unknown’. As the probability of an ‘unknown’ verdict
decreases, the probability of a ⊥ verdict — here its inverse; not shown explicitly
— increases. The switch-over, denoted by the 0.5 leaked probability mark, occurs
between MAX_NODES = 110 and MAX_NODES = 111. When we decrease the value
for MAX_NODES, the ‘unknown’ verdict dominates the ‘false’ verdict, and vice-versa.
On the right-hand side of Figure 4.4 (the red line) we see the iteraࢢons to termina-
.onࢢ As is common with phase transiࢢons, the ‘unknown’ verdicts take far less meࢢ
to compute than ‘false’ verdicts. We also observe that the iteraࢢons to termina-
onࢢ increases at a faster rate than the ‘false’ verdict probability as it approaches 1.
This is supported by the observaࢢonsmade in Table 4.1, which showed a correlaࢢon
between progression graph size and meࢢ to terminaࢢon.

The average meࢢ per iteraࢢon (in microseconds) is shown in Figure 4.5 for the
same values of MAX_NODES as before. The shown mesࢢ were obtained by running
jprogress on a fourth-generaࢢon Intel Xeon E5-1650 CPU (6 cores, 12 threads)

61

4. Reasoning under uncertainty

20 40 60 80 100 120 140 160 180

MAX_NODES

0

100

200

300

400

500

600

700

800

900

T
im

e
 p

e
r

It
e

ra
ti
o

n
 (

s
)

Figure 4.5: Average meࢢ per iteraࢢon±2σ (right).

with 50GiB of RAM allocated to the JVM. For lower values of MAX_NODES, the meࢢ
per iteraࢢon is a bit unstable (i.e. yielding a high variance) due to the relaࢢvely low
number of iteraࢢons involved, but this value stabilises as the value of MAX_NODES
increases. This is because the first couple of iteraࢢons result in the construcࢢon
of the progression graph up to the limit imposed by MAX_NODES, a[er which any
extensions of the graph are followed by removals. Since the number of iteraࢢons
needed unࢢl terminaࢢon increases over ,meࢢ as shown in Figure 4.4, the iniࢢal meࢢ
penalty becomes increasingly less important for the average. We can also observe
that the meࢢ needed to perform an iteraࢢon is in the order of microseconds. This
indicates that this experimental setup can handle a high-frequency stream.

4.7 Summary

Path-checking is an important task for many safety-criࢢcal systems in which, given a
path and a temporal logic formula, a procedure must determine whether the path
saࢢsfies the formula. Increasingly many safety-criࢢcal systems have to work with
incomplete and uncertain informaࢢon, for example due to having a physical op-
eraࢢonal environment shared with people. In this chapter, we therefore focused
on developing a procedure that allows for path-checking of MITL formulas, which
can be used to formally specify the desired behaviour of a system. The presented
path-checking approach is novel in that it considers situaࢢons wherein state infor-
maࢢon may be incomplete, meaning that there may be a set of possible states, one
of which is known to be the ‘true’ state. Furthermore, we support assigning proba-
biliࢢes to such hypotheࢢcal states. The combinaࢢon of these two properࢢes means

62

4.7. Summary

that we have to keep track of potenࢢally many incrementally-available hypotheࢢcal
streams. The presented approach makes use of and extends the progression pro-
cedure originally introduced by Bacchus and Kabanza (1998). We are able to limit
the combinatoric explosion caused by incomplete state informaࢢon by incremen-
tally construcࢢng progression graphs that contain probability mass. To do so, we
make use of a formula simplificaࢢon calculus which assists in the collapsing of po-
tenࢢally many state streams into the same formula. While a progression graph can
in the worst case grow exponenࢢally, the collapsing behaviour in combinaࢢon with
removal heurisࢢcs can be used to limit the growth. The configuraࢢon of the heuris-
csࢢ further allows for a trade-off between precision and speed; by choosingwhether
to abandon low-probability state streams in favour of keeping the progression graph
small.

63

Chapter

5
Reasoning about space

L ogic-based stream reasoning commonly makes use of temporal logics to ex-
press statements concerning the truth value of properࢢes over .meࢢ Similar
to temporal statements, many autonomous roboࢢc systems can also benefit

from or require the ability to make statements concerning spaࢢal properࢢes. This
chapter presentsMSTL, which is a spaࢢo-temporal logic that combinesMITL with
qualitaࢢve spaࢢal relaࢢons. We present and empirically evaluate techniques for de-
termining the truth value of MSTL-statements. We call the applicaࢢons of these
techniques reasoning about space. This chapter includes and extends previously
publishedmaterial (Heintz and de Leng, 2014; de Leng and Heintz, 2016a) on spaࢢo-
temporal stream reasoning.

5.1 Introducࢢon

Qualitaࢢve spaࢢo-temporal reasoning is concerned with reasoning over meࢢ and
space, in parࢢcular reasoning about spaࢢal change (Cohn and Renz, 2008). This
chapter presents a logic for spaࢢo-temporal stream reasoning, alongside the tools
required to incrementally evaluate spaࢢo-temporal formulas in this logic. Further-
more, this chapter presents techniques that allow us to efficiently determine the
truth value of such a formula. Combining spaࢢal and temporal reasoning can be ex-
tremely useful in situaࢢons wherein one deals with for example physical objects, as
it allows for the expression of spaࢢal constraints that must hold over .meࢢ Consider
the following example concerning a quad-rotor.

Example 5.1 (Containment in a virtual box). A quad-rotor is a small unmanned aerial
vehicle that can be used in small spaces, for example indoors. In some cases, a quad-
rotormay have to share space togetherwith humans. Safety condiࢡons could include
restricࢡng such a quad-rotor to a specific area of space, like a virtual box. An example

65

5. Reasoning about space

statement combining spaࢡal and temporal constraints is as follows: “It is always the
case that if the UAV leaves the virtual box, it should be inside the virtual box within
five seconds.”

The constraints above are useful to detect situaࢢons where safety is compro-
mised. A different example concerns itself with the detecࢢon of suspicious acࢢvity
in order to prevent unsafe situaࢢons from occurring in the first place.

Example 5.2 (Perimeter monitoring). Consider a restricted area close to a public
road. The area’s perimeter is under surveillance by autonomous UAVs. A high-level
task planner is responsible for detecࢡng and tracking intrusions. An example rule
could be expressed as: “If a moving object outside the perimeter stops moving for
more than 60 seconds, dispatch a UAV to that object.”

In the above example, a type of spaࢢo-temporal behaviour can be detected
and responded to. Note that neither example deals with exact spaࢢal coordinates.
Rather, spaࢢal enࢢࢢes are referenced by their spaࢢal relaࢢons. We therefore focus
on qualitaࢢve spaࢢal relaࢢons when dealing with the spaࢢal properࢢes of objects.

5.2 Qualitaࢢve spaࢢal reasoning

The Region Connecࢡon Calculus (RCC) was presented by Randell et al. (1992) as a
calculus for topological reasoning over abstract regions based on their spaࢢal rela-
.onsࢢ These regions are assumed to be composed of non-empty regions of topolog-
ical space that can be characterised in terms of sets of points. The calculus defines
and builds up spaࢢal relaࢢons between regions from a primiࢢve ‘connected’ relaࢢon
C(x, y), which has the intended meaning that (non-empty) regions x and y share at
least one point. Randell et al. (1992) recursively define a set of 15 RCC relaࢢons
(including C) as shown in Table 5.1.

RCC-8 is a subset of RCC that is composed of eight jointly exhausࢢve and pair-
wise disjoint relaࢢons that allow us to describe the topological spaࢢal relaࢢons be-
tween regions. Using composiࢢon-table based reasoning inRCC-8 (Cui et al., 1993),
new spaࢢal relaࢢons can be inferred from incomplete spaࢢal knowledge. Figure 5.1
shows the eight qualitaࢢve relaࢢons that are considered by RCC-8 as well as their
transiࢢons. The transiࢢons are interesࢢng in situaࢢons where observaࢢons of a pair
of regions yield non-adjacent spaࢢal relaࢢons, because those intermediate and un-
observed relaࢢons can then be inferred.

Example 5.3 (Busy student). Suppose that we have a spaࢡal configuraࢡon in which
we consider three regions student, office, and canteen. A robot observes that re-
gion student is strictly within region office, i.e. NTTP(student, office). Further, the
robot knows that region canteen is disconnected from region office, i.e.DC(canteen,
office). When asked whether the student is in the canteen, the robot cannot rely on
direct observaࢡons. In fact, the robot might even consider it likely for a student to
be in a canteen. By using the composiࢡon table for RCC-8, the robot can correctly
deduce the unobserved spaࢡal relaࢡon DC(student, canteen).

66

5.3. Metric Spaࢢo-Temporal Logic

Definiࢢon Descripࢢon
C(x, y) ≡def x ∩ y ̸= ∅ Connected
DC(x, y) ≡def ¬C(x, y) Disconnected
P(x, y) ≡def ∀z[C(z, x)→ C(z, y)] Part of
PP(x, y) ≡def P(x, y) ∧ ¬P(y, x) Proper part
EQ(x, y) ≡def P(x, y) ∧ P(y, x) Equals
x = y ≡def P(x, y) ∧ P(y, x)
O(x, y) ≡def ∃z[P(z, x) ∧ P(z, y)] Overlapping
PO(x, y) ≡def O(x, y) ∧ ¬P(x, y) ∧ ¬P(y, x) Parࢢally overlapping
DR(x, y) ≡def ¬O(x, y) Discrete from
TPP(x, y) ≡def PP(x, y) ∧ ∃z[EC(z, x) ∧ EC(z, y)] Tangenࢢal proper part
EC(x, y) ≡def C(x, y) ∧ ¬O(x, y) Externally connected
NTPP(x, y) ≡def PP(x, y) Non-tangenࢢal

∧¬∃z[EC(z, x) ∧ EC(z, y)] proper part
P−1(x, y) ≡def P(y, x) Inverse part of
PP−1(x, y) ≡def PP(y, x) Inverse proper part
TPP−1(x, y) ≡def TPP(y, x) Inverse tangenࢢal

proper part
NTPP−1(x, y) ≡def NTPP(y, x) Inverse non-tangenࢢal

proper part

Table 5.1: Definiࢢons for the 15 RCC relaࢢons.

Figure 5.1: The eight qualitaࢢve spaࢢal relaࢢons considered by RCC-8 and their
transiࢢons as illustrated by regions x and y.

In the above example, the observed spaࢢal relaࢢons are used to infer unob-
served facts about the world. This can be especially useful when there is a need for
informaࢢon that is not easily observable, or even unobservable.

5.3 Metric Spaࢢo-Temporal Logic

Several qualitaࢢve spaࢢo-temporal reasoning formalisms have been created by com-
bining a spaࢢal formalism with a temporal one. Examples are STCC (Gerevini and
Nebel, 2002) and ARCC-8 (Benne� et al., 2002) which both combine RCC-8 with

67

5. Reasoning about space

Allen’s Interval Algebra (Allen, 1983). The STi family8 (Wolter and Zakharyaschev,
2000) of spaࢢo-temporal logics represent a language for reasoning over spaࢢo-
temporal representaࢢons and offers such a temporalisaࢢon of RCC-8 using tempo-
ral operators. STi member language ST0 makes use of the temporal operators ‘it
will always be the case’G, ‘at some point in the future’F, and ‘at the next ’me-pointࢢ
X. Its extension ST1 introduces spaࢢo-temporal representaࢢons for spaࢢal rela-
onsࢢ between two me-pointsࢢ through the ‘next’ operator, but does not a�empt
to provide reasoning techniques that handle such instantaneous observaࢢons. One
problem is for example that ST1 can refer to future states, which clearly causes dif-
ficulࢢes when observaࢢons are assumed to be incremental over .meࢢ Furthermore,
the STi family is a pure temporalisaࢢon of RCC-8 in the sense that it does not al-
low for expressing other (non-spaࢢal) properࢢes. This means that the domain of
discourse exclusively treats its objects as spaࢢal enࢢࢢes in relaࢢon to each other. A
survey of other approaches that combine spaࢢal and temporal reasoning techniques
is provided by Kontchakov et al. (2007).

To make and evaluate statements about the spaࢢal and temporal properࢢes of
objects, we introduce a logic called Metric Spaࢡo-Temporal Logic (MSTL), which
combines elements from MITL and RCC-8. MITL provides the ability to reason
over proposiࢢons in ,meࢢ but does not include a spaࢢal formalism. We extend these
languages by considering a finite domain composedof temporal objects that are spa-
alࢢ in nature. MSTL is thus similar to ST1, which temporalises RCC-8 but restricts
its language to spaࢢal relaࢢons. Because MSTL is in part based on MITL, state-
ments in MSTL can contain both spaࢢal relaࢢons and predicates. Note that since
we assume a finite, fixed domain of regions, these elements of MSTL are equiva-
lent to proposiࢢons, with universal and existenࢢal quanࢢfiers being short-hands for
finite repeࢢࢢons of conjuncࢢons and disjuncࢢons respecࢢvely.

Modelling intertemporal qualitaࢢve dynamics

Spaࢢal relaࢢons are of the formR(r1, r2) whereR is any of{
EC,EQ,DC,PO,NTTP,TPP,NTTP−1,TPP−1

}
(5.1)

and r1, r2 are spaࢢal objects, also referred to as regions. We call this set R8 for
brevity to indicate that its elements correspond to the RCC-8 relaࢢons ‘externally
connected’, ‘equals’, ‘disconnected’, ‘non-tangenࢢal proper part’, ‘tangenࢢal proper
part’, ‘inverse non-tangenࢢal proper part’ and ‘inverse tangenࢢal proper part’ re-
specࢢvely.

Definiࢢon 5.1 (MSTL syntax). Given an n-ary predicate P , binary spaࢡal relaࢡon
R8, variable or constant terms τ1, . . . , τn, and integers i, j ∈ Z the following state-
ments are well-formed formulas (wffs) inMSTL:

R8(X iτ1,X jτ2) | P (τ1, . . . , τn) | X iτ1 = X jτ2 (5.2)
8For consistency reasons we use the same typeseࢰng for all logics; the original literature — as well

as the papers this chapter is based on — use a calligraphic version ST i instead.

68

5.3. Metric Spaࢢo-Temporal Logic

We will write τ for X 0τ , Xτ for X 1τ , and X−τ for X−1τ as syntacࢡc sugar. By
recursion, for wffs ϕ and ψ and variable x the following statements are also wffs in
MSTL:

¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ | ϕ→ ψ | ∀x[ϕ] | ∃x[ϕ] (5.3)

Finally, temporal notaࢡons are also defined by recursion for wff ϕ, natural numbers
n1, n2 ∈ N, and integers i ∈ Z:

X iϕ | G[n1,n2]ϕ | Gϕ | F[n1,n2]ϕ | Fϕ | ϕ U[n1,n2] ψ (5.4)

Note that we apply the same syntacࢡc sugar as for X over terms.

The syntax allows us to make complex spaࢢo-temporal statements. Take for ex-
ample the following statement, where informallyGmeans ‘it will always be the case’,
Fmeans ‘at some point in the future’, andXmeans ‘at the next .’me-pointࢢ The spa-
alࢢ relaࢢon PO is contained inR8 and stands for ‘parࢢally overlapping’.

∀c1[∀c2[c1 ̸= c2 ∧ Car(c1) ∧ Car(c2)→ (5.5)
(G(PO(Xc1, c2) ∧ Speeding(c1)→ F(PO(c1, c2))))]]

This wff has the intended meaning ‘it is always the case that if a car is speeding and
tails another car, they will eventually collide’.

Because we are interested in statements over space and ,meࢢ we make use of
spaࢡo-temporal models for MSTL. It borrows the noࢢon of a spaࢢal assignment
funcࢢon from the topological temporal model (�-model) from STi.

Definiࢢon 5.2 (Spaࢢo-temporal model). A spaࢡo-temporal model is a tuple of the
formM = ⟨T,<,U,D, I, α⟩, where T represents a set of ,me-pointsࢡ < repre-
sents an ordering over T , U represents the non-empty universe of the space as a set
of points, and D = ⟨P,R⟩ represents the domain consisࢡng of predicates P and
spaࢡal objectsR. An interpretaࢡon It ∈ I maps predicates and constant terms to
P andR respecࢡvely for every me-pointࢡ in T . For constant terms this mapping will
be the same for all t, but for predicates this is not necessarily the case. A spaࢡal as-
signment funcࢡon α associates at every me-pointࢡ in T every spaࢡal object label in
R to a subset of U . It is extended to interpret ‘next’ as α(X ir, t) = α(X i−jr, t+ j)

for spaࢡal object label r ∈ R and integers i, j ∈ Z.

From this definiࢢon it is clear that we are only considering objects that have
some spaࢢal properࢢes associated with them, expressed in the form of spaࢢal re-
laࢢons. Spaࢢal objects therefore are also commonly called regions when we only
focus on temporal and spaࢢal properࢢes.

Definiࢢon 5.3 (MSTL semanࢢcs). TheMSTL statement that a spaࢡo-temporal for-
mula ϕ holds inM = ⟨T,<,U,D, I, α⟩ at me-pointࢡ t ∈ T is defined recursively

69

5. Reasoning about space

for integers i, j ∈ Z.

M, t |= P (τ1, . . . , τn) iff
⟨
It(τ1), . . . , I

t(τn)
⟩
∈ It(P) (5.6)

M, t |= ∀x[ϕ] iff ∀r ∈ R :M, t |= ϕ[x/r] (5.7)
M, t |= ∃x[ϕ] iff ∃r ∈ R :M, t |= ϕ[x/r] (5.8)
M, t |= ¬ϕ iffM, t ̸|= ϕ (5.9)

M, t |= ϕ ∨ ψ iffM, t |= ϕ orM, t |= ψ (5.10)
M, t |= ϕ U[t1,t2] ψ iff ∃t

′ ∈ [t+ t1, t+ t2] :M, t′ |= ψ (5.11)
and ∀t′′ ∈ [t, t′) :M, t′′ |= ϕ

M, t |= X iϕ iffM, t+ i |= ϕ (5.12)

M, t |= C(X ir1,X jr2) iff α(r1, t+ i) ∩ α(r2, t+ j) ̸= ∅ (5.13)

From the RCC ‘connected’ spaࢡal relaࢡon C, the usual semanࢡcs of all RCC-8 rela-
onsࢡ can be recursively defined, but here they are le[out for the sake of brevity.

Allowing for the ‘next’ operator to be invoked over region variables is a powerful
extension thatmakes it possible to refer to a parࢢcular region at the next ,me-pointࢢ
or by recursive applicaࢢon any past or future .me-pointࢢ

5.4 Spaࢢo-temporal inference with RCC-8

RCC-8 allows for both representaࢢon of observed spaࢢal relaࢢons as well as the
inference of unobserved spaࢢal relaࢢons. However, these observaࢢons are usually
assumed to be restricted to a single me-pointࢢ rather than across different -meࢢ
points. To represent spaࢢal relaࢢons across ,me-pointsࢢ we can add a temporal
element. The addiࢢon of a ‘next’ operatorX as iniࢢally proposed by ST1 can lead to
situaࢢons wherein regions at different me-pointsࢢ are considered. In what follows,
we explore the consequences to spaࢢo-temporal inferencewhen the ‘next’ operator
is used to describe relaࢢons across ,me-pointsࢢ starࢢng with the representaࢢon of
these relaࢢons.

Temporal constraint networks

While the ‘next’ operator allows for powerful representaࢢons, it complicates eval-
uaࢢon of those statements when we consider observaࢢons of the world to occur
within rather than across .me-pointsࢢ Spaࢢal relaࢢons for regions can be parࢢally
observed at me-pointࢢ t and at me-pointࢢ t+1 independently, but no observaࢢons
can be made with regards to the spaࢢal relaࢢons between regions at me-pointࢢ t
and regions at me-pointࢢ t + 1. To be�er illustrate how these concepts relate, we
introduce the spaࢢal relaࢢon matrix as a representaࢢon of constraint networks.

Definiࢢon 5.4 (Spaࢢal relaࢢonmatrix). Given a spaࢡo-temporal modelM, a spaࢡal
relaࢡonmatrix is an n×nmatrixM t for me-pointࢡ t ∈ T where n denotes the total

70

5.4. Spaࢢo-temporal inference with RCC-8

number of region variables |R|. For every matrix elementM t
i,j and region variables

ri, rj ∈ R we haveM t
i,j = (riRrj) such that R ⊆ R8 and R ̸= ∅. The semanࢡcs

ofM t are then as follows.

M t
i,j = (riRrj) iffM, t |=

∨
Rk∈R

Rk(ri, rj) (5.14)

The spaࢢal relaࢢon matrix allows us to intuiࢢvely represent spaࢢal facts about
regions and corresponds to a complete RCC-8 network. The main diagonal always
consists of the singleton {EQ}. Further, the matrix is semi-symmetric; symmetry
holds for all relaࢢons except for NTTP and TPP, which have inverses NTTP−1

and TPP−1 respecࢢvely. Exisࢢng general solvers for qualitaࢢve CSPs can be used to
determine the algebraic closure of spaࢢal relaࢢonmatrices, i.e. given spaࢢal relaࢢon
matrixM t, the algebraic closure AC(M t) yields a spaࢢal relaࢢon matrix N t such
that for every corresponding set of spaࢢal relaࢢons N t

i,j ⊆ M t
i,j ⊆ R8. A small

example of a spaࢢal relaࢢon matrix for regions r1, r2, r3 at me-pointࢢ t with parࢢal
knowledge is shown below.

M t =

 {EQ}
{
NTTP−1

}
{PO,EC}

{NTTP} {EQ} {DC}
{PO,EC} {DC} {EQ}

 (5.15)

Region r2 is inside of region r1 but disconnected from region r3, and region r1 is
parࢢally overlapping or externally connected with region r3.

A spaࢢal relaࢢon matrix can be extended to describe relaࢢons between mulࢢ-
ple .me-pointsࢢ This is a useful property because it allows us to describe relaࢢons
between regions at different me-pointsࢢ that are not necessarily consecuࢢve.

Definiࢢon 5.5 (Intertemporal spaࢢal relaࢢon matrix). An intertemporal spaࢡal re-
laࢡon matrixM t1,t2 is a spaࢡal relaࢡon matrix describing the spaࢡal relaࢡons be-
tween regions ri, rj ∈ R such that we relate ri at me-pointࢡ t1 to rj at me-pointࢡ
t2, i.e. relaࢡng α(ri, t1) to α(rj , t2).

A spaࢢal relaࢢon matrix M t from Definiࢢon 5.4 is then equivalent to an in-
tertemporal spaࢢal relaࢢon matrix M t,t. Intertemporal spaࢢal relaࢢons can thus
be represented by an intertemporal spaࢢal relaࢢon matrix. For the ‘next’ operator,
this would for example be M t,t+1. However, we assume that these relaࢢons are
unobservable and must somehow be inferred from our observaࢢons at me-pointsࢢ
t and t+ 1, represented byM t andM t+1.

By combining the four different combinaࢢons for intertemporal spaࢢal relaࢢon
matrices over two me-pointsࢢ t1 and t2, we can concisely describe in one matrix
the relaࢢons between regions at single me-pointsࢢ as well as the relaࢢons between
those regions at different .me-pointsࢢ This corresponds to an RCC-8 network in
which every region is contained twice, i.e. once for every .me-pointࢢ

71

5. Reasoning about space

Definiࢢon5.6 (Extended spaࢢal relaࢢonmatrix). Anextended spaࢡal relaࢡonmatrix
M t1∪t2 for t1 < t2 combines four intertemporal spaࢡal relaࢡon matrices as follows:

M t1∪t2 =

[
M t1,t1 M t1,t2

M t2,t1 M t2,t2

]
(5.16)

In general, spaࢢal relaࢢonmatrices can be used to represent uncertainty for spa-
alࢢ relaࢢons between regions by using non-singleton sets. This is important because
o[en we can not deduce that a single relaࢢon must hold. We can use extended
spaࢢal relaࢢon matrices to talk about the spaࢢal relaࢢons both within individual
me-pointsࢢ and between .me-pointsࢢ This makes them a suitable representaࢢon
tool for intertemporal RCC-8 networks when considering the problem of deducing
unobservable intertemporal relaࢢons.

Intratemporal inference

Intratemporal inference with RCC-8 assumes that all spaࢢal relaࢢons are observed
within the same ,me-pointࢢ i.e.M t,t for some me-pointࢢ t. In this case,M t,t rep-
resents a constraint network for a single ,me-pointࢢ for which it may be possible to
reduce the uncertainty of spaࢢal relaࢢons between regions based on the observed
spaࢢal relaࢢons between other regions. It is possible to apply composiࢢon table
based reasoning for RCC-8 to this effect. A composiࢢon table presumes regions i,
j, and k such that the spaࢢal relaࢢons for (i, j) and (j, k) are knowns, and presents
the possible spaࢢal relaࢢons that may exist between regions (i, k).

Gantner et al. (2008) present the Generic Qualitaࢡve Solver (GQR) which can
be used to perform qualitaࢢve reasoning on a number of calculi, including RCC-8.
They make use of the path consistency algorithm shown in Algorithm 5.1, based
on the path consistency algorithm by Mackworth (1977). The algorithm takes a
constraint network and produces a refined constraint network in O(n3) meࢢ and
O(n2) space. Path consistency conࢢnuously updates spaࢢal relaࢢon Cik by com-
puࢢngCik∩(Cij ◦Cjk), uࢢlising a third variable j. These updates can be performed
based on a composiࢢon table.

Intertemporal inference

Someࢢmeswewant to talk about spaࢢal relaࢢons between regions at different -meࢢ
points. By following the example of ST1, we can extend our definiࢢon of region
symbols accordingly. If ‘region’ is a region symbol, then ‘X(region)’ is also a region
symbol, such that α(X(region, t)) = α(region, t + 1). This allows us to refer to
regions at different me-pointsࢢ using the same region symbol ‘region’. However, this
also complicates the semanࢢcs of the mapping α. From its definiࢢon, it is clear that
we are referring to the same universe of points, but it is not clear whetherα(x, t) =
α(x, t + 1) for all me-pointࢢ t, or whether it is possible that α(x, t) ̸= α(x, t + 1)

for some me-pointࢢ t. In this dissertaࢢon we will assume space itself to be rigid.

72

5.4. Spaࢢo-temporal inference with RCC-8

Algorithm 5.1: Path consistency (Gantner et al., 2008)
1 funcࢢon PATH-CONSISTENCY((V,C)):
2 Q← {(i, j) | 1 ≤ i < j ≤ n}
3 whileQ is not empty do
4 select and delete an (i, j) fromQ
5 for k ← 2 to n, k ̸= i ∧ k ̸= j do
6 t← Cik ∩ (Cij ◦ Cjk)
7 if t ̸= Cik then
8 Cik ← t
9 Cki ← t⌣

10 Q← Q ∪ {(i, j)}
11 end
12 t← Ckj ∩ (Cki ◦ Cij)
13 if t ̸= Ckj then
14 Ckj ← t
15 Cjk ← t⌣

16 Q← Q ∪ {(k, j)}
17 end
18 end
19 end
20 return (V,C)

Definiࢢon 5.7 (Rigid space assumpࢢon). The rigid space assumpࢡon assumes that
space itself is fixed across ,meࢡ i.e.

∃t ∈ T [x ∈ R → α(x, t) ̸= α(x, t+ 1) (5.17)

for meࢡ T , regionsR, and spaࢡal assignment funcࢡon α.

Reasoning alone thus does not allowus to say anything about intertemporal rela-
,onsࢢ represented byM t1,t2 andM t2,t1 in extended spaࢢal relaࢢonmatrices. These
relaࢢons cannot be observed, nor can they be inferred from individual .me-pointsࢢ
Concretely, observaࢢons are limited toM t1,t1 andM t2,t2 . This may seem counter-
intuiࢢve, but this is because humans o[en assume a frame of reference when ob-
serving spaࢢal changes over .meࢢ One way around this problem is therefore to
make assumpࢢons about some or all intertemporal relaࢢons represented byM t1,t2

and M t2,t1 in order to establish such a frame of reference. Effecࢢvely this corre-
sponds to ‘pegging’ only these landmark regions to the space they occupy, allowing
outside space to warp relaࢢve to the landmarks and fixing the frame of reference.
The set of landmarks is indicated by LM ⊆ R. For all landmarks x ∈ LM, the
α-mapping is fixed such that α(x, t) = α(x, t + 1) for all t ∈ T . By using a con-
sistent set of landmarks, it is possible to infer intertemporal relaࢢons based on the
spaࢢal relaࢢons between non-landmark and landmark regions. Addiࢢonally, since
the landmark regions are rigid, the spaࢢal relaࢢons between landmark regions do
not change.

73

5. Reasoning about space

Definiࢢon 5.8 (Landmark). A landmark given a set of region variables R over any
two me-pointsࢡ t, t+ 1 is a region variable r ∈ R that is rigid between t and t+ 1,
i.e. EQ(r,Xr). The set of landmarks is indicated by LM ⊆ R such that r ∈ LM
implies that landmark r is rigid.

Example real-world landmark candidates are e.g. buildings, lakes, monuments,
trees, and roads. These physical enࢢࢢes are unlikely to change during the run-ࢢme
of a system, and therefore provide a reasonable frame of reference. An immediate
effect of landmarks being rigid is that their relaࢢons to other landmark regions re-
main unchanged. Effecࢢvely, the set of landmarksLM provides a possible frame of
reference with respect to which relaࢢons may change over .meࢢ Since this affects
the truth semanࢢcs of statements in MSTL, we introduce a landmark extension to
the spaࢢo-temporal model to capture this.

Definiࢢon 5.9 (Landmark-based spaࢢo-temporal model). A landmark-based spaࢡo-
temporal model is a spaࢡo-temporal model

MLM = ⟨T,<,U,D, I, αLM⟩ (5.18)

and LM ⊆ R represents the landmark set. LM then restricts α such that for
all me-pointsࢡ t ∈ T and all landmark regions r ∈ LM it is the case that
α(r, t) = α(r, t+ 1).

Landmarks may introduce inconsistencies if we make observaࢢons that conflict
with the landmark-imposed restricࢢon of α. To illustrate how this might happen,
consider an example where at me-pointࢢ t we make the observaࢢon PO(r1, r2),
and at me-pointࢢ t+1wemake the observaࢢonDC(r1, r2). If we only consider the
individual ,me-pointsࢢ there is no problem. The following extended spaࢢal relaࢢon
matrix illustrates our ignorance of the intertemporal spaࢢal relaࢢons M t1,t2 and
M t2,t1 .

M t1∪t2 =

{EQ} {PO} R8 R8

{PO} {EQ} R8 R8

R8 R8 {EQ} {DC}
R8 R8 {DC} {EQ}

 (5.19)

However, if we use landmarks, the choice of LM results in an assumpࢢon about
some intertemporal relaࢢons. Choosing LM = {r1, r2} is inconsistent, because it
implies that regions r1 and r2 need to be parࢢally overlapping and disconnected
at the same ,meࢢ which is a contradicࢢon. Instead picking LM = {r1} is consis-
tent, and one could imagine region r2 ‘moving away from’ region r1. Naturally, the
converse holds as well if we pick region r2 as our frame of reference.

We can show that consistency is guaranteed if only one landmark is chosen, and
the above example shows that this does not always hold for the case of |LM| ≥
2. Picking a single landmark corresponds to the case of adding a single connecࢢon
between two disconnected RCC-8 networks for different .me-pointsࢢ To further
illustrate the impact of the choice of LM, consider again the scenario above and

74

5.5. MSTL progression

suppose we wish to evaluate the formula G(EQ(r1,Xr1)) at me-pointࢢ t. Choosing
LM = {r1}means this formula will evaluate to True, i.e.

M{r1}, t |= G(EQ(r1,Xr1)). (5.20)

Choosing LM = {r2}means this formula will evaluate to False, i.e.

M{r2}, t ̸|= G(EQ(r1,Xr1)). (5.21)

Choosing any other consistent LM we can only conclude

MLM, t |= G(EQ(r1,Xr1)) ∨ ¬(G(EQ(r1,Xr1))); (5.22)

we cannot say for certain which one is true. This is specifically caused by the choice
of landmark in combinaࢢon with the observaࢢons at the two .me-pointsࢢ The fol-
lowing two statements then hold for the same two observaࢢons described earlier:

M{r1}, t |= G(EQ(r1,Xr1)) ∧ ¬G(EQ(r2,Xr2)) (5.23)
M{r2}, t |= G(EQ(r2,Xr2)) ∧ ¬G(EQ(r1,Xr1)) (5.24)

This clearly shows how landmark choice shapes the frame of reference within which
MSTL statements may hold.

5.5 MSTL progression

In stream reasoning, informaࢢon is assumed to become incrementally available. Re-
call that progression is a technique for evaluaࢢng temporal logic formulas where we
try to determine the truth value of the formula based on the informaࢢon received
thus far. Thismakes it possible to someࢢmes determine the truth value for anMSTL
formula without having to wait for the enࢢre stream to arrive. However,MSTL pro-
gression differs from MITL progression in that MSTL formulas can combine infor-
maࢢon frommulࢢple me-pointsࢢ due to the introducࢢon of the ‘next’ operator over
region terms. This would first require such terms to be rewri�en such that they refer
to past regions, a[er which progression has to potenࢢally take into account mulࢢ-
ple states if intertemporal spaࢢal relaࢢons are used. The former can be achieved by
adding addiࢢonal rewriࢢng rules that extract the ‘next’ operator, whereas the la�er
can be achieved by using landmarks and mulࢢple hypotheses as introduced earlier.

Rewriࢢng rules for ‘next’

In order for progression to be applicable toMSTL, some changes are needed to deal
with the spaࢢal relaࢢons. In parࢢcular, the applicaࢢon of temporal operators to spa-
alࢢ objects needs to be handled before progression can operate on the proposiࢢons
in a wff.

By combining temporal with spaࢢal reasoning, we effecࢢvely need both tempo-
ral and spaࢢal evaluaࢢonmethods. For every step in the progression, spaࢢal reason-
ing is performed within that step. This however does not include spaࢢal reasoning

75

5. Reasoning about space

between different .me-pointsࢢ Therefore, progression needs to be extended to han-
dle intertemporal relaࢢons that are the result of the ‘next’ operator in MSTL. This
gives rise to addiࢢonal rewriࢢng rules based on occurrences of the ‘next’ operator.

Progressing the ‘next’ operator when it occurs in front of wffs in MSTL corre-
sponds to rewriࢢng that formula by removing the operator, i.e. during progression
Xϕ is rewri�en to ϕ for wff ϕ. The following proofs show equivalences for occur-
rence of ‘next’ excluding intertemporal relaࢢons, and make use of the semanࢢcs
presented in Definiࢢon 5.3.

Proposiࢢon 5.1 (Next and negaࢢon). ‘Not at the next ’me-pointࢡ is equivalent to ‘it
is not the case at the next ,’me-pointࢡ i.e.

|= ¬XR(x, y)↔ X¬R(x, y). (5.25)

Proof. Decomposing bi-implicaࢢon into cases:

(⇒) Assume M, t |= ¬XR(x, y) holds for some arbitrary M and t. From the
semanࢢcs of negaࢢon this meansM, t ̸|= XR(x, y). According to the semanࢢcs of
X, this is equivalent toM, t+ 1 ̸|= R(x, y), thus
M, t+ 1 |= ¬R(x, y). Reintroducing X then yieldsM, t |= X¬R(x, y).

(⇐) Analogous to the above in reverse order. ■

Proposiࢢon 5.2 (Next and always). The ‘next’ operator can be integrated into the
interval of an ‘always’ operator, i.e.

|= G[t1,t2]XR(x, y)↔ G[t1+1,t2+1]R(x, y). (5.26)

Proof. Decomposing bi-implicaࢢon into cases:

(⇒) Assume M, t |= G[t1,t2]XR(x, y) holds for some arbitrary M and t. From
the semanࢢcs of G, this means ∀t1 ≤ t′ ≤ t2 : M, t′ |= XR(x, y) holds. By defi-
niࢢon of X, for every t′ we getM, t′ + 1 |= R(x, y). Reintroducing the universal
quanࢢfier, we get ∀t1 + 1 ≤ t′ ≤ t2 + 1 :M, t′ |= R(x, y). Reintroducing G, this
yieldsM, t′ |= G[t1+1,t2+1]R(x, y).

(⇐) Analogous to the above in reverse order. ■

Proposiࢢon 5.3 (Next and eventually). The ‘next’ operator can be integrated into
the interval of an ‘eventually’ operator, i.e.

|= F[t1,t2]XR(x, y)↔ F[t1+1,t2+1]R(x, y). (5.27)

Proof. Analogous to the proof of Proposiࢢon 5.2, replacing quanࢢfiers ∀ and tem-
poral operators G by ∃ and F respecࢢvely. ■

76

5.5. MSTL progression

The ‘next’ operator can also occur inside intertemporal relaࢢons R(x,Xy). In
this case, it is not possible to evaluate R(x,Xy) at the current ,me-pointࢢ because
the relaࢢon depends on a future state of y. To work around this problem, we make
use of the ‘previous’ operator X−, which is the inverse of the ‘next’ operator. The
following proofs show equivalences for ‘next’ involving intertemporal relaࢢons, and
make use of the ‘previous’ operator.

Proposiࢢon 5.4 (Extract next). The ‘next’ operator can be extracted from terms, i.e.

|= XR(x, y)↔ R(Xx,Xy). (5.28)

Proof. Decomposing bi-implicaࢢon into cases:

(⇒) AssumeM, t |= XR(x, y) holds for some arbitraryM and t. From the seman-
csࢢ of X, this meansM, t+ 1 |= R(x, y). Further, we have α(z, t+ 1) = α(Xz, t)
for any region z, so we getM, t |= R(Xx,Xy).

(⇐) Analogous to the above in reverse order. ■

Proposiࢢon 5.5 (Parࢢally extract next). The ‘next’ operator can be subtracted from
terms, i.e.

|= R(x,Xy)↔ XR(X−x, y). (5.29)

Proof. Decomposing bi-implicaࢢon into cases:

(⇒) AssumeM, t |= R(x,Xy) holds for some arbitraryM and t. From the seman-
csࢢ of X over regions, we have α(z, t) = α(X−z, t+ 1) and α(Xz, t) = α(z, t+ 1)

for any region z. Therefore this is equivalent to

M, t+ 1 |= R(X−x, y) (5.30)

when applied to regions x and y respecࢢvely. Introducing X then yields

M, t |= XR(X−x, y). (5.31)

(⇐) Analogous to the above in reverse order. ■

The ability to rewrite MSTL formulas such that occurrences of ‘next’ over re-
gions are either removed or replaced by ‘previous’ is vital for stream reasoning, be-
cause it allows for the delayed evaluaࢢon of formulas so that, at the meࢢ of evalu-
aࢢon, they only refer to the current and previous state(s) of the world. This makes
the earlier-presented landmark approach applicable in a stream reasoning context.

77

5. Reasoning about space

Algorithm 5.2: Progression adapted forMSTL
1 funcࢢon PROGRESS-MSTL(ϕ, It, {M0, . . . ,MN−1}, LM,D, G, Ω):
2 expand quanࢢfiers in ϕ using domainD
3 simplify ϕ using SIMPLIFY and Proposiࢢons 5.1–5.5 to extract ‘next’
4 compute AC for combinaࢢons ofMi and LM used by ϕ
5 apply the AC to It to obtain a set ofm hypotheses ρ =

{
It0, . . . , I

t
m−1

}
6 return GRAPH-PROGRESS(G, ρ, Ω)

MSTL-adapted progression with incomplete informaࢢon
Recall that the simplified progression procedure, as presented in Algorithm3.1, does
not handlemulࢢple hypotheses, while we know that composiࢢon table-basedRCC-
8 reasoning can yieldmulࢢple such hypotheses corresponding to different consistent
spaࢢal configuraࢢons. This is due to the topological space, as modelled through the
α mapping, not being directly available in pracࢢce. In Chapter 6, we consider the
state stream synthesis needed to generate sets of states containingRCC-8 relaࢢons.
This provides us with a realisaࢢon of the parࢢal knowledge about the topological
space. Given a stream containing sets of states pertaining to theRCC-8 relaࢢons, we
can then apply progression under uncertainty as presented in Chapter 4. This does
however require changes to accommodate the usage of relaࢢons and predicates
with a finite domain of spaࢢal objects.

The MSTL-adapted progression procedure PROGRESS-MSTL is shown in Algo-
rithm 5.2. It takes a wff ϕ, a state It, spaࢢal relaࢢonmatricesMi, a set of landmarks
LM, a domain D containing spaࢢal objects, a progression graph G, and a cache Ω.
Note that the value ofN depends on the range of the intertemporal spaࢢal relaࢢons
occurring in ϕ. It then expands the universal quanࢢfiers in ϕ into a conjuncࢢon over
all spaࢢal objects in D, and the existenࢢal quanࢢfiers similarly into a disjuncࢢon. It
then simplifies the formula by using the simplificaࢢon procedure in Algorithm 3.2
together with the extracࢢon rules of ‘next’. Once this is done, it computes the alge-
braic closure for the combinaࢢons ofMi used in ϕ, using a CSP solver. This produces
a set of possible spaࢢal configuraࢢons, which are joined with It to produce a set of
m hypotheࢢcal states ρ. These hypotheses are then fed to the progression graph as
usual, using GRAPH-PROGRESS listed in Algorithm 4.2.

5.6 Empirical evaluaࢢon

Thus far we introduced a logic for spaࢢo-temporal stream reasoning and a number
of methods for the evaluaࢢon of formulas in that logic. In the following, we provide
experimental results measuring the impact of separaࢢng staࢢc and dynamic compo-
nents in RCC-8 scenarios, and the impact of landmarks on the disjuncࢢon size a[er
applying an algebraic closure to intertemporal RCC-8 scenarios.

78

5.6. Empirical evaluaࢢon

0

20

100

40

P
ro

b
a

b
ili

ty
 (

%
)

60

200 5

n

80

d

300 10

100

400 15
500 20

Figure 5.2: The probability of saࢢsfiability of CSPs drawn from A(n, d, 4.0) =
A′(n, d, 4.0, 1.0) for varying numbers of regions n and varying degrees d. A phase
transiࢢon can be observed to occur for d ∈ [5, 15].

Caching spaࢢal relaࢢons between rigid objects

The spaࢢal reasoning is mainly dependent on the number of variables, the number
of constraints (degree) and the label size (Renz andNebel, 2001). In the experiments
we try to esࢢmate the funcࢢon A′(n, d, l, r) by measuring the execuࢢon meࢢ on
instances with the number of variables n, degree d, label size l and raࢢo of dynamic
variables r. The number of variables can be divided in a dynamic part vd = r × v
and a staࢢc part vs = v − vd. The expected degree is the expected number of
relaࢢons from a given dynamic variable to other variables. The expected label size is
the expected size of the disjuncࢢon of RCC-8 relaࢢons for a given relaࢢon between
a dynamic variable and some other variable.

Using basically the samemethod as Renz andNebel (2001)weevaluate the effect
of precompuࢢng the algebraic closure of the staࢢc variables, compared to comput-
ing the whole algebraic closure for each .me-stepࢢ In accordance with the method-
ology proposed by Renz and Nebel (2001), problems are randomly generated for
different values for n and d, with the label size fixed to l = 4.0. First, nd/2 edges
are selected out of the n(n− 1)/2 possible edges, using a uniform distribuࢢon. For
these edges, one RCC-8 relaࢢon is assigned at random, and the remaining relaࢢons
are added with a probability of (l − 1)/7 for each such relaࢢon. For the remaining
edges, the universal relaࢢon is assigned. Generaࢢng problems with the help of this
methodology results in the saࢢsfiability graph shown in Figure 5.2, which also shows
the phase transiࢢon idenࢢfied by Renz and Nebel (2001) by averaging over 500 runs.
The phase-transiࢢon occurs where themajority of problem instances flip from being
saࢢsfiable to being unsaࢢsfiable.

79

5. Reasoning about space

0

500

400 20

T
im

e
 (

m
s
)

A

n

15

1000

d

200 10
5

0

500

400 20

T
im

e
 (

m
s
)

A'
d
+A '

s

n

15

1000

d

200 10
5

0

500

400 20

T
im

e
 (

m
s
)

(3A'
d
+A '

s
)/3

n

15

1000

d

200 10
5

0

500

400 20

T
im

e
 (

m
s
)

(5A'
d
+A '

s
)/5

n

15

1000

d

200 10
5

Figure 5.3: Average meࢢ per iteraࢢon in milliseconds for four different cases. The
top le[shows the average meࢢ in milliseconds for A(n, d, 4.0). The top right
shows an increased cost a[er one iteraࢢon when separaࢢng the dynamic compo-
nentA′

d(n, d, 4.0, 0.25) from the staࢢc componentA′
s(n, d, 4.0, 0.25). The bo�om

row shows how the one-ࢢme overhead imposed by compuࢢng the staࢢc and dy-
namic components separately decreases, for three (bo�om le[) and five (bo�om
right) iteraࢢons respecࢢvely.

Using this methodology, we can separate staࢢc regions from dynamic regions
and precompute the algebraic closure for the staࢢc component before consider-
ing dynamic regions. The mean performance results of the former are denoted by
A(v,E(deg), 4.0). For the mean performance results of the dynamic component
of the la�er, the notaࢢon A′

d(n, d, 4.0, r) is used. The performance experiments
used values of d ranging from 1 to 20 with step size 1, and values of n ranging from
20 to 500 with step size 20. The value of r was chosen to be constant, r = 0.25;
similar results are obtained for different values of r, which are characterised by the
moving of the phase transiࢢon from Figure 5.2. For each combinaࢢon we took the
average over 100 runs. The average metric was chosen to account for the difference
in distribuࢢon between the saࢢsfiable and unsaࢢsfiable problem instances.

Figure 5.3 shows the impact on runࢢme for compuࢢng the algebraic closure of
the generated CSPs by averaging over 500 runs. The top le[graph shows the run-
meࢢ in milliseconds for esࢢmaࢢngA(n, d, 4.0) = A′(n, d, 4.0, 1.0). This is the base

80

5.6. Empirical evaluaࢢon

case without separaࢢng out a staࢢc component, hence it is equivalent to r = 1.0.
The top right graph shows what happens if we separate out the staࢢc component
A′

s(n, d, 4.0, 0.25) from the dynamic component A′
d(n, d, 4.0, 0.25). There is clear

addiࢢonal overhead for the low values of d corresponding to problems with a high
probability of saࢢsfiability, and the converse for high values of d. However, since
the staࢢc component is only computed once, we are also interested in the impact
over .meࢢ The bo�om le[and bo�om right graphs therefore show the average
per-run meࢢ performance a[er three and five runs respecࢢvely, which show the
impact of the iniࢢal overhead diminishing, A[er five runs, even problems around
the phase transiࢢon for n ≤ 500 see gains as the result of separaࢢng out the staࢢc
component from the dynamic component. The choice of whether or not to separate
the two thus depends on the expected number of re-uses of the staࢢc component
A′

s(n, d, 4.0, 0.25), which is likely to be high in the context of stream reasoning ap-
plicaࢢons.

The exact mesࢢ of course depend on the system on which the computaࢢons are
performed. The results listed here are the product of a system containing a fourth-
generaࢢon Intel Xeon E5-1650 CPU (6 cores, 12 threads) with access to 64GiB of
RAM, uࢢlising the General Qualitaࢢve Reasoner (GQR)9 by Gantner et al. (2008),
configured for RCC-8. The results show that processing streams at over 1Hz is sࢢll
possible even for problems near the phase transiࢢon involving 500 regions.

Effecࢢveness and scalability of landmarks

In order to empirically evaluate MSTL with landmarks we ran experiments to test
the effecࢢveness and the scalability of the landmark based approach compared to
the case where no landmarks were used. In these experiments, we were only in-
terested in consistent scenarios, to capture the operaࢢonal real-world domain. In
parࢢcular, we are interested in the effects of landmarks on the resulࢢng intertem-
poral disjuncࢢon size for non-landmark to non-landmark relaࢢons.

When considering two me-pointsࢢ t1 and t2, the problem of generaࢢng scenar-
ios is given a consistent scenario with landmarks for me-pointࢢ t1 generate a con-
sistent scenario with those same landmarks for me-pointࢢ t2. To achieve this, we
make use of a variaࢢon of the scenario generaࢢon method presented earlier. Sce-
narios for a single me-pointࢢ are generated based on the number of (non-landmark)
regions n and the average disjuncࢢon size l. We extend this by also considering the
number of landmarksm such that n+m = |R|, and again fixing parameter l = 4.
Our parameter combinaࢢons consist of varying numbers of regions between 20 and
200 with step size 20, and varying landmark raࢢos relaࢢve to the number of regions
(i.e. m/n) between 0 and 0.9 with step size 0.1.

The iniࢢal ‘seed’ for a scenario covers the landmark regions and their relaࢢons
to each other. In our experiments we generated 30 such seeds per parameter com-
binaࢢon. Here we are only interested in a consistent scenario with complete knowl-

9The GQR implementaࢢon is available at https://github.com/m-westphal/gqr.

81

https://github.com/m-westphal/gqr

5. Reasoning about space

3.8

20

4

40

4.2

60 0.1

D
is

ju
n

c
ti
o

n
 s

iz
e

80

4.4

0.2
100 0.3

Regions

4.6

0.4120

Landmark Ratio

4.8

0.5140 0.6160 0.7180 0.8
200 0.9

Figure 5.4: Absolute disjuncࢢon size for varying number of regions and landmark
raࢢo; smaller is be�er.

edge, so GQR is used to generate consistent interpretaࢢons of scenarios. These fully
known seeds can then be used as the basis for a larger spaࢢal relaࢢon matrix by
adding further regions unࢢl we obtain the desired |R| regions. The number of CSPs
generated from a seed was kept constant at 20. Note that these CSPs then all share
a seed as a common component. We can therefore combine two CSPs that share a
common seed. Excluding combinaࢢons that involve the same CSP twice, given 30
seeds and 20 CSPs per seed we get 30× (20× (20-1))/2 = 5,700 instances for each
parameter set.

The results of our experiments are illustrated in Figures 5.4 and 5.5, where ev-
ery point represents the average over 5,700 instances. In Figure 5.4, the number of
regions and the landmark raࢢo are changed to see how they affect the disjuncࢢon
size of non-landmark to non-landmark spaࢢal relaࢢons. Here we limit ourselves
to the average over the spaࢢal relaࢢons that are not fully unknown. The results
show that the more landmarks are added, the less uncertainty in terms of disjunc-
onࢢ size is measured for these relaࢢons, reaching a disjuncࢢon size of about 4 for a
landmark raࢢo of 0.9. The landmark approach is also scalable in terms of the num-
ber of regions. This is also shown in Figure 5.5, which illustrates the percentage of
non-landmark to non-landmark intertemporal relaࢢons that remain fully unknown.
Previously, we could not say anything about these relaࢢons, as illustrated by the
percentage of fully unknown relaࢢons being 100%. Using landmarks, this is reduced
to 30% for landmark raࢢo 0.9, but having a landmark raࢢo as low as 0.1 results in an
improvement of roughly 20%.

82

5.7. Summary

0

20

20

40

40

60 0

F
u

lly
 u

n
k
n

o
w

n
 r

e
la

ti
o

n
s
 (

%
)

80 0.1

60

0.2100

Regions

80

0.3120

Landmark Ratio

0.4

100

140 0.5
0.6160

0.7180 0.8200 0.9

Figure 5.5: Percentage of relaࢢons fully unknown for varying number of regions and
landmark raࢢo.

5.7 Summary

While spaࢢal extension to temporal reasoning have been invesࢢgated in the past,
these works have not specifically focused on the applicaࢢon of these resulࢢng
spaࢢo-temporal logics in a stream reasoning context. We presented MSTL, a met-
ric spaࢢo-temporal logic that combines MITL and RCC-8 qualitaࢢve spaࢢal calcu-
lus. Similar to ST1, MSTL allows for the applicaࢢon of the ‘next’ operator to re-
gion terms, which makes it possible to express intertemporal spaࢢal relaࢢons be-
tween regions. Since qualitaࢢve intertemporal spaࢢal relaࢢons cannot be observed
directly, a frame of reference formed by landmark regions is used to reduce the un-
certainty of the intertemporal spaࢢal relaࢢons. To facilitate incremental reasoning
over streams, the generaࢢon of state streams is discussed. These state streams are
used to progressMSTL formulas using an extension of the classical progression pro-
cedure forMITL. This makes it possible to apply path checking to MSTL formulas,
which is useful in applicaࢢons such as execuࢢon monitoring.

83

Part III

ADAPTIVE STREAM PROCESSING

Chapter

6
State stream synthesis

T emporal models have thus far been presented as ω-words, which can be
used to represent streams. That way a prefix of an ω-word could be used
to model the observed stream, with the suffix represenࢢng the part of the

stream that is yet to be observed. The problem focused on here is how to synchro-
nise a stream that could be represented using prefixes. As this is not a primary fo-
cus for this dissertaࢢon, this chapter primarily serves as a chronological overview
based on observaࢢons made during the research, uࢢlising parts of earlier publica-
onsࢢ (Heintz and de Leng, 2013; de Leng, 2013; de Leng and Heintz, 2014, 2015a,b).

6.1 Introducࢢon

The goal of state stream synthesis is to generate a stream containing state infor-
maࢢon on demand. This requires uࢢlising stream processing to capture and refine
observaࢢons such that they can be used for the grounding of logical proposiࢢonal
or predicate symbols, and to synchronise potenࢢally many such streams such that
state informaࢢon can be delivered at a regular meࢢ interval.

The type of stream processing considered here is therefore different from the
type of stream processing research commonly found in the context of Big Data and
distributed systems. In those areas, the problem focus is on the speed at which
streaming data is processed. Indeed, as has also been pointed out more recently
by Hirzel et al. (2018), many stream processing tools and languages have been de-
veloped with differing emphases on for example performance (e.g. the use of win-
dows and parallelisaࢢon), generality (e.g. language extendibility), and producࢢv-
ity (e.g. ease of adopࢢon). One example of a language for stream processing is the
CAL Actor Language (Eker and Janneck, 2003), which is a language for describing
low-level operaࢢons at the stream transformaࢢon level, whereas stream process-
ing languages like the Conࢢnuous Query Language (CQL) by Arasu et al. (2006) in-

87

6. State stream synthesis

Fluent

Observation

Interpretation

Knowledge

Verdict

Shroud

Slow

Fast

Low
abstraction

High
abstraction

Stream reasoning pipeline

Response

Figure 6.1: The stream reasoning waterfall model with the transformaࢢon of obser-
vaࢢons into knowledge via interpretaࢢons highlighted.

stead take a SQL-like declaraࢢve approach, with the added benefit of being easy
to adopt by those familiar with SQL. An example for a larger stream processing ar-
chitecture is Apache Flink (Carbone et al., 2015), which emphasises high-velocity
distributed stream processing at a meta-level. Instead of focusing on throughput,
the work presented here focuses on the qualitaࢢve aspects of stream processing.
Of parࢢcular interest is the issue of generaࢢng a synchronised stream with state
informaࢢon based on some user-requested grounding, which is characterised by a
mapping from logical proposiࢢonal or predicate symbols to stream objects. This first
requires a choice of data model for streams, combined with a way of accessing parts
of individual states. Since different stream processing languages assume different
data models (e.g. RDF stream processing assumes the RDF data model for streams,
as will be discussed later in Chapter 11), it may not be possible to use pre-exisࢢng
stream processing languages. Recall the stream reasoning waterfall shown again in
Figure 6.1 with the transformaࢢon from observaࢢon to knowledge via interpreta-
onࢢ highlighted. The data model concerns are captured by the interpretaࢢon step,
which in part deals with the problem of representaࢢon. Finally, the knowledge step
incorporates background theories and allows for implicit informaࢢon to be made
explicit.

In this chapter, we consider these transiࢢons in relaࢢon to previous work and
the lessons learned. In parࢢcular, we give an overview of different kinds of stream
subscripࢢons, and consider how these could be used to synthesise state streams for
the purpose of stream reasoning by applying a synchronisaࢢon procedure. We also
briefly consider the problem of incorporaࢢng background knowledge given such a
state stream. Chapters 7 and 8 then focus on the robust maintenance of stream
subscripࢢons.

88

6.2. Timed data streams

6.2 Timed data streams

Timed data streams were originally informally discussed in Chapter 2. They are a
specific instance of the stream concept, whichwe consider to be a sequence of -meࢢ
stamped values.

Definiࢢon 6.1 (Timed data stream). A medࢡ data stream is an unbounded sequence
of me-stampedࢡ values

((l0, v0, t0), (l1, v1, t1), . . .) (6.1)

where vi ∈ V represents a (structured) value, li ∈ Var represents a variable name,
and ti ∈ T represents a .me-pointࢡ

The individual triplets that make up a stream are referred to as data samples.
Streams are assumed to flow from a source that generates the stream’s samples to
a receiver that consumes those samples. This connecࢢon is referred to as a chan-
nel, which can be realised by a transportaࢢonmechanism and annotatedwithmeta-
informaࢢon such as a label. These channels are closely related to subscripࢡons. A
subscripࢢon is a statement of interest in a sequence of data samples that conform to
a parࢢcular descripࢢon provided by an interested client. Such a statement of inter-
est usually leads to the establishment of a channel between a stream provider and
the aforemenࢢoned subscribing client. Subscripࢢons are therefore a useful starࢢng
point for synthesising a state stream that can be used for stream reasoning. Recall
that streams can be regarded through an internal view, in which a stream is seen
as a sequence of states, and an external view, in which a stream is seen as an ob-
ject with associated properࢢes. Consequently, there are different interpretaࢢons of
what subscripࢢon entails. In general, a subscripࢢon can be regarded as an expres-
sion of interest with the goal of receiving said thing of interest. One might therefore
idenࢢfy a stream by name subject to certain constraints as an expression of interest,
which can be regarded as a syntacࢡc subscripࢡon. Alternaࢢvely, one might instead
idenࢢfy desired states based on semanࢢc characterisࢢcs, which can be regarded as
a semanࢡc subscripࢡon.

6.3 Syntacࢢc subscripࢢons

When seࢰng up a syntacࢢc subscripࢢon, one describes a desired stream by iden-
fyingࢢ one or more source streams and constraints. For example, it is common to
see mulࢢple streams get combined and filtered according to a set of logical con-
diࢢons. Query languages are used to describe the specificaࢢons of such a desired
stream, and it is the task of a stream processing engine to apply the necessary oper-
aࢢons. There is therefore a need for a query language that is designed to be compat-
ible with the stream model described informally in Chapter 2, in which a stream is
characterised as a sequence of samples containing potenࢢally mulࢢple named fields
containing values. It is to this end that the languages SPL and FSL were developed.

89

6. State stream synthesis

Lisࢢng 6.1: Formal grammar for SPL.
1 decl : source_decl | sink_decl | compunit_decl |
2 stream_decl ;
3 decls : decl | decl SEMICOLON decls ;
4 source_decl : ’ source ’ type_decl STRING ;
5 sink_decl : ’ s i nk ’ stream ;
6 compunit_decl : ’ compunit ’ type_decl STRING LP
7 type_decl (COMMA type_decl)* RP ;
8 stream_decl : ’ stream ’ NAME EQ stream ;
9 type_decl : basic_type | complex_type ;
10 basic_type : NAME COLON type ;
11 complex_type : LP basic_type (COMMA basic_type)* RP ;
12 type : ’ i n t ’ | ’ f l o a t ’ | ’ s t r i n g ’ | ’ boolean ’ ;
13

14 stream : stream_term ’ with ’ stream_constraints ;
15 streams : stream | stream COMMA streams ;
16 stream_term : STRING
17 | STRING LP streams RP
18 | ’ sync ’ LP streams RP
19 | ’merge ’ LP streams RP
20 | LP ’ s e l e c t ’ select_exprs ’ from ’ stream
21 (’ where ’ where_exprs) ? RP ;
22 select_exprs : select_expr | select_expr COMMA select_exprs

;
23 select_expr : field_id (’ as ’ pstring) ? ;
24 where_exprs : where_expr | where_expr ’ and ’ where_exprs ;
25 where_expr : field_id EQ value ;
26 field_id : STRING | STRING DOT field_id ;
27 pstring : STRING | STRING? PERCENT field_id PERCENT
28 pstring? ;
29 value : STRING | NUMBER
30 stream_constraints : stream_constraint | stream_constraint COMMA
31 stream_constraints ;
32 stream_constraint : ’ s tar t_t ime ’ EQ NUMBER | ’ end_time ’ EQ
33 NUMBER | ’max_delay ’ EQ NUMBER |
34 ’ sample_period ’ EQ NUMBER |
35 ’ sample_per iod_deviat ion ’ EQ NUMBER ;

Stream Processing Language

The Stream Processing Language (SPL) was originally designed by Hongslo (2012)
and Heintz (2013), and was inspired by the Structured Query Language (SQL) used
in many relaࢢonal database management systems (RDBMS). SPL is typically used to
filter exisࢢng streams through selecࢢon and to combine streams through merging
or synchronisaࢢon, and contains the opࢢon to set policy constraints. Addiࢢonally,
aliases can be used to resolve conflicࢢng field names and to improve readability.

However, SPL iniࢢally had a number of issues, the most criࢢcal being the lack
of support for transformaࢢons stemming from its design. SPL was modified and

90

6.3. Syntacࢢc subscripࢢons

Lisࢢng 6.2: Example SPL statements.
1 s1 = select output as va lue from somestream where i d = uav1
2 s2 = select output as va lue from cu (somestream , anotherstream)

where i d = uav1
3 s3 = merge (s1 , s2)
4 s4 = sync (s1 , s2) with sample_period = 100
5 s5 = select * from (select * from s1) where va lue = 0

extended to address these shortcomings, and its formal grammar is shown in List-
ing 6.1. The language provides two key features: stream manipulaࢢon support and
knowledge process declaraࢢon support. The stream manipulaࢢon support allows
for the selecࢢon, synchronisaࢢon and merging of streams. Knowledge process dec-
laraࢢon support allows for the declaraࢢve specificaࢢon of a stream transformaࢢon
instance by describing sources, sinks and computaࢢonal units.

Example 6.1 (Example SPL statements). Consider the statements shown in Lisࢡng
6.2. The first two statements are select statements, where the first is called a simple
select and the seconda complex select. For the first statement, the streamprocessing
engine is asked to select the field ‘output’ from stream somestream for all samples
in which the field ‘id’ has a value equal to ‘uav1’. The resulࢡng stream is then called
stream s1. For the second statement, the stream processing engine is requested to
use a computaࢡonal unit cu, which is parameterised by two streams. A complex se-
lect differenࢡates itself from simple select by the invocaࢡon of computaࢡonal units.
The stream processing engine in this situaࢡon first creates an internal stream pro-
duced by cu, and then uses this stream to apply a simple select in order to apply the
filtering. This resulࢡng stream is then called stream s2. The third statement shows a
merge statement, with the intended meaning that stream s3 is constructed by com-
bining all of the samples arriving from two streams s1 and s2, which are of the same
type. The fourth statement shows a synchronisaࢡon statement. During synchronisa-
,onࢡ a stream processing engine is requested to generate a new stream at a certain
frequency so that the values are all valid at the same .meࢡ The example statement
tells the stream processing engine to synchronise streams s1 and s2 at every 100ms,
producing a new stream s4. For each synchronised state to be generated, the pro-
cedure decides whether to wait for a data sample to arrive on the input streams,
or whether to generate such a data sample based on the previously-received data
sample from that stream. In the simplest case, such a previously-received sample is
simply repeated. The resulࢡng synchronised stream adheres to constraints that in-
clude the requested frequency and amaximumdelay for the individual data samples.
Finally, the fi[h statement shows the importance of the parentheses around select
statement when ‘where’ parts are involved. In this example, the filtering is done
over the outermost select statement. However, had the parentheses been absent,
the filtering would have been done over the inner-most select statement instead.
The resulࢡng stream is called s5.

91

6. State stream synthesis

Lisࢢng 6.3: Formal grammar for FSL.
1 decl : source_decl | sink_decl | compunit_decl ;
2 decls : decl | decl SEMICOLON decls ;
3 source_decl : ’ source ’ NAME EQ path arguments? ;
4 sink_decl : ’ s i nk ’ NAME EQ path arguments? ;
5 compunit_decl : ’ compunit ’ NAME EQ path arguments? ;
6

7 path : system_path | ros_path ;
8 system_path : (’ a ’ . . ’ z ’ | ’A ’ . . ’Z ’ | ’ 0 ’ . . ’ 9 ’ | SLASH | DASH |
9 UNDERSCORE | DOT)+ ;
10 ros_path : (’ a ’ . . ’ z ’ | ’A ’ . . ’Z ’ | ’ 0 ’ . . ’ 9 ’ | SLASH | DASH |
11 UNDERSCORE)+ ;
12 arguments : NAME (COMMA NAME)* ;
13 NAME : (’ a ’ . . ’ z ’ | ’A ’ . . ’Z ’ | ’ 0 ’ . . ’ 9 ’)+ ;

Factory Specificaࢢon Language

The Factory Specificaࢡon Language (FSL) was developed (de Leng, 2013) to connect
transformaࢢon symbols to programs (e.g. shared objects) that perform the desired
computaࢢons, and acted as a companion language to SPL. The FSL grammar is shown
in Lisࢢng 6.3, and can easily be extended to include more path types. An FSL state-
ment is converted into a ‘factory specificaࢢon’. Conceptually, the factory specifi-
caࢢon serves as a transformaࢢon, i.e. it serves as a factory for the generaࢢon of a
computaࢢon unit (with special cases being sources and sinks), which is an instance
of a transformaࢢon.

6.4 Semanࢢc subscripࢢons

Semanࢢc subscripࢢons are subscripࢢons to a certain kind of informaࢢon rather than
streaming resources. For example, if a user wants to obtain temperature measure-
ments for a parࢢcular room, this interest is decoupled from any specific informaࢢon
source; any resource providing the desired informaࢢon suffices. The idea behind
semanࢢc subscripࢢons is closely related to topics such as semanࢡc web services uࢢl-
ising the OWL-S service ontology (Marࢢn et al., 2007) for annotaࢢng semanࢢc web
services, or content-centric networking (CCN) (Jacobson et al., 2009) where docu-
ments are stored at various points in the network based on demand and supplied
to users based on a specificaࢢon of interest in a parࢢcular document rather than a
parࢢcular address.

Semanࢢc Specificaࢢon Language

To support semanࢢc subscripࢢons in a stream reasoning seࢰng, the Semanࢡc Spec-
ificaࢡon Language (SSL) was developed. SSL was intended to enable the declara-
onࢢ of semanࢢc specificaࢢons for streams and transformaࢢons as characterised

92

6.4. Semanࢢc subscripࢢons

Lisࢢng 6.4: Formal grammar for SSL.
1 decl : stream_decl | source_decl | compunit_decl ;
2 stream_decl : ’ stream ’ NAME ’ conta ins ’ feature_list
3 for_part? ;
4 source_decl : ’ source ’ NAME ’ p rov ide s ’ field_feature ;
5 compunit_decl : ’ compunit ’ NAME ’ t rans forms ’ field_features
6 ’ to ’ field_feature ;
7 field_features : field_feature (COMMA field_feature)* ;
8 field_feature : NAME COLON NAME unit_list? ;
9 feature_list : feature (COMMA feature)* ;
10 feature : NAME LP feature_args RP EQ NAME unit_list? ;
11 feature_args : feature_arg (COMMA feature_arg)* ;
12 feature_arg : NAME alias? ;
13 for_part : ’ f o r ’ entity (COMMA entity)* ;
14 entity : sort | object ;
15 unit_list : (OPEN unit (COMMA unit)* CLOSE) | ’ no_unit ’ ;
16 unit : NAME power? ;
17 power : (’+’ | ’− ’) ? NUMBER ;
18 alias : ’ as ’ NAME ;
19 object : entity_full ;
20 sort : sort_type entity_full ;
21 entity_full : NAME EQ NAME ;
22 sort_type : ’ some ’ | ’ every ’ ;
23 NAME : (’ a ’ . . ’ z ’ | ’A ’ . . ’Z ’ | ’ 0 ’ . . ’ 9 ’)+ ;
24 NUMBER : (’ 0 ’ . . ’ 9 ’)+ ;

Lisࢢng 6.5: Example SSL statements for streams.
1 stream s1 contains Al t i t ude (uav1) = a l t
2 stream s2 contains Al t i t ude (uav1) = a l t for uav1 = id
3 stream s3 contains Speed (UAV) = spd for every UAV = id
4 stream s4 contains XYDist (UAV as arg1 , UAV as arg2) = d i s t for

every arg1 = id1 , arg2 = id2

in this dissertaࢢon. The iniࢢal version of SSL was the Semanࢡc Specificaࢡon Lan-
guage for Topics (SSLT), and was used to semanࢢcally annotatemiddleware-specific
named transportaࢢon channels (called ‘topics’ in this case) by the ontological con-
cepts they contained (Dragisic, 2011; Heintz and Dragisic, 2012). Subsequent work
(Heintz and de Leng, 2013; de Leng, 2013) extended SSLT with units of measure-
ment and transformaࢢons, called the Semanࢡc Specificaࢡon Language for Transfor-
maࢡons (SSLTF). SSL combines the two languages, and its full grammar is shown in
Lisࢢng 6.4.

Example 6.2 (Example SSL statements). Consider the SSL statements in Lisࢡng 6.5.
The first statement states that stream s1 contains informaࢡon on the Alࢡtude of
object uav1 in the field named ‘alt’. This is different from the second statement,
which states that stream s2 contains the same informaࢡon as stream s1 with the

93

6. State stream synthesis

Lisࢢng 6.6: Example SSL statements for transformaࢢons.
1 compunit cu1 transforms from Distance [m] to Speed [m. s−1]
2 compunit cu2 transforms from Distance [km] to Speed [mi . h−1]
3 compunit cu3 transforms from NumVehicles no_unit to NumUAVs

no_unit
4 source s rc1 provides Distance [m]
5 source s rc2 provides NumVehicles no_unit

difference that this is only the case when the field named ‘id’ has the value ‘uav1’.
The last two statements make use of sorts that are specified in the object ontology.
Stream s3 contains informaࢡon on the Speed for all objects in sort UAV, where the
speed informaࢡon is presented in the field named ‘spd’ for the UAV object referred
to in the field named ‘id’. We can see a similar construct in the semanࢡc stream
specificaࢡon for stream s4. However, here we encounter some ambiguity as the sort
UAV occurs twice. This is resolved by using an alias, in this case ‘arg1’ and ‘arg2’.

SSL allows for the semanࢡc annotaࢡons of transformaࢡons by semanࢡcally an-
notaࢡng a transformaࢡon with its input features and output feature. Alongside ev-
ery feature the assumed unit of measurement is also included. Lisࢡng 6.6 shows a
number of example SSL declaraࢡons used to describe transformaࢡon in this fash-
ion. Here, three computaࢡonal units and two sources are described by a semanࢡc
specificaࢡon. The first computaࢡonal unit, called cu1, transforms from the feature
Distance to the feature Speed, where the temporal informaࢡon in samples is uࢡlised.
It assumes distances in metres and speeds in m/s. Computaࢡonal unit cu2 performs
a similar transformaࢡon, but expects kilometres and mph respecࢡvely for its units
of measurement. Not all features have to have units of measurements, and this is
clearly shown in the case of computaࢡonal unit cu3. The first source, called src1,
provides the feature Distance in metres. Just like computaࢡonal units, sources can
handle features that do not assume units of measurement, as is shown for source
src2.

Automaࢢc query construcࢢon

A combinaࢢon of SPL, FSL, and SSL was used in previous work (Heintz and de Leng,
2013; de Leng, 2013) for state stream synthesis through a process called semanࢡc
matching. In this approach, a user could describe a desired informaࢢon stream by
specifying ontological concepts of interest. This vocabulary matched the one used
by SSL to annotate streaming resources, such that a stream reasoning framework
could idenࢢfy matching resources by comparing the requested concepts to the re-
source annotaࢢons. Such a framework could then construct an SPL query based
on a select-merge-synchronise pa�ern; relevant fields were selected from source
streams, matching fields from different streams were merged, and the resulࢢng
streams were synchronised into a single stream containing a field for every concept
of interest. This is referred to as an automated query construcࢡon process.

94

6.5. Synchronisaࢢon

Figure 6.2: Breakdown of automated query construcࢢon performance.

One problem with this approach, however, is that the resulࢢng query is staࢢc.
If anything needs to be changed, another query needs to be constructed to effect
that change. Another observed problem with such a process, is the cost involved
in construcࢢng a query. SPL was not designed to be efficient in terms of the re-
quired query length, resulࢢng in a disproporࢢonate amount of meࢢ being spent on
first construcࢢng and then execuࢢng a query. Figure 6.2 (de Leng, 2013; Heintz,
2013) shows a breakdown of the performance of automated query construcࢢon as
the number of relevant streaming resources (i.e. resources that saࢢsfy a semanࢢc
query) increases. The extracࢢon meࢢ refers to the meࢢ needed to parse a seman-
cࢢ query, followed by a communicaࢢon overhead, and finally the actual meࢢ spent
on construcࢢng and execuࢢng an SPL query. These results led to a change in our
methodology for state stream synthesis; instead of construcࢢng a query, the focus
shi[ed towards managing stream processing directly.

6.5 Synchronisaࢢon

The tleࢢ of this dissertaࢢon refers to ‘robust stream reasoning’. Robustness in the
context of this dissertaࢢonmeans a resilience to changing condiࢢonswhen perform-
ing stream reasoning. In parࢢcular, this requires a steady supply of states, which is
characterised as a state stream. Such a state stream has to be synthesised through
the combinaࢢon of potenࢢally mulࢢple source streams.

For stream reasoning applicaࢢons such as the runࢢme verificaࢢon discussed pre-
viously, this state stream represents an ω-word for which it is checked whether it
saࢢsfies a logical formula. This means that the fields that make up the samples in
the state stream can be used as interpretaࢢons for the proposiࢢonal symbols in that
formula. This can be considered as a type of symbol grounding. Each sample of the
state stream corresponds to a parࢢcular ,me-pointࢢ and the informaࢢon in the fields
of that sample is valid for that .me-pointࢢ While in a formal seࢰng it is beneficial to
just consider boolean-typed fields, in a pracࢢcal seࢰng the fields’ informaࢢon does

95

6. State stream synthesis

Algorithm 6.1: Synchronisaࢢon (Heintz, 2009)
1 funcࢢon SYNCHRONISE(f1, . . . , fn, tstart, tend,∆, dapprox, dmax):
2 foreach fi do
3 create a buffer and set up a subscripࢢon to fi
4 end
5 tsync ← tstart
6 while tsync ≤ tend do
7 SYNCHRONISE_AT(tsync, dapprox, dmax)
8 tsync ← tsync +∆

9 end

not necessarily have to be boolean. It can be useful to make statements about ex-
pected observaࢢons, for example G[0,10](altitude > 100). Here, the boolean con-
diࢢon can be regarded as a greater-than built-in binary predicate taking two num-
bers. When a predicate is built-in, its interpretaࢢon given any combinaࢢon of terms
is well-defined and can be regarded as part of background knowledge that does not
have to be provided via a stream. The ‘alࢢtude’ term in this example can therefore
be grounded in a state stream that has a numeric ‘alࢢtude’ field. This mapping can
either be established implicitly, based on string matching, or explicitly, based on a
user-provided mapping. The mappings connect symbols in a formula to fields in a
state stream. This state stream needs to first be synthesised. The procedure taken
here is to start with a subscripࢢon (of either the syntacࢢc or semanࢢc kind) for each
symbol mapping. The subscribed-to streams then need to be combined into one
state stream. One such synchronisaࢢon procedure is that by Heintz (2009), called
SYNCHRONISE, which makes use of the two helper procedures SYNCHRONISE_AT
and IS_SYNCHRONISED.

The main idea behind the synchronisaࢢon procedure in Algorithm 6.1 is to syn-
chronise samples from different streams by their valid mesࢢ for predetermined
.me-pointsࢢ Recall that the valid meࢢ of a sample is the meࢢ at which the infor-
maࢢon contained within the sample is valid, and that this meࢢ can differ from the
meࢢ at which the sample becomes available to the synchronisaࢢon procedure. The
SYNCHRONISE procedure listed in Algorithm 6.1 first sets up subscripࢢons to the
streams that need to be synchronised, denoted by f1, . . . , fn. The synchronisaࢢon
procedure is then supposed to only perform its task between mesࢢ tstart and tend,
with a period of∆ .me-unitsࢢ It then simply calculates the next meࢢ at which syn-
chronisaࢢon is supposed to take place—called synchronisaࢡonࢡme and denoted by
tsync — and calls the SYNCHRONISE_AT procedure from Algorithm 6.2 to compute
a state for this .meࢢ

Algorithm 6.2 assumes that the valid mesࢢ in states grow monotonically such
that receiving a sample for a specific valid meࢢ comes with the guarantee that no
further samples will arrive with valid mesࢢ that precede that of the current sample.
Furthermore, approximaࢢon may be necessary because samples may not necessar-
ily have valid mesࢢ for the desired synchronisaࢢon .meࢢ Heintz (2009) therefore

96

6.5. Synchronisaࢢon

Algorithm 6.2: Synchronisaࢢon at a specific meࢢ (Heintz, 2009)
1 funcࢢon SYNCHRONISE_AT(t, dapprox, dmax):
2 tsync ← t
3 add a me-outࢢ for meࢢ tsync + dapprox
4 add a me-outࢢ for meࢢ tsync + dmax

5 do
6 wait for input or meoutࢢ
7 if received sample s from input stream i at meࢡ t then
8 add sample s to buffer i
9 remove obsolete samples from buffer i
10 update the category for buffer i
11 else if received meoutࢡ t then
12 foreach buffer i do
13 update the category for buffer i
14 end
15 end
16 while ¬IS_SYNCHRONISED(t, dapprox, dmax)
17 compute state at tsync

Category Descripࢢon
Exact An exact value is available.

AprxFinal Approximaࢢon available; no further informaࢢon expected.
AprxMore Approximaࢢon available; addiࢢonal informaࢢon possible.

NoAprxFinal No approximaࢢon available; no further informaࢢon expected.
NoAprxMore No approximaࢢon available; addiࢢonal informaࢢon possible.

Table 6.1: The five categories for streams when performing synchronisaࢢon using
the SYNCHRONISE procedure.

considered five possible classificaࢢons for each stream— one based on perfect -mࢢ
ing and another four based on combinaࢢons of approximaࢢon and delayed state
informaࢢon— shown in Table 6.1. At the start, each stream is classified asNoAprx-
More, as no informaࢢon has yet been received to make an approximaࢢon and more
informaࢢon may sࢢll arrive.

Given these categories, it is possible to consider at least two types of delay
thresholds. The first deals with the maximum delay before approximaࢢon, denoted
by dapprox, for which a me-outࢢ is set (line 3) by seࢰng the delay relaࢢve to the
synchronisaࢢon meࢢ tsync. If this me-outࢢ is reached, the buffered informaࢢon is
used to a�empt to approximate the state at tsync. Depending on the approxima-
onࢢ method used, this may require more or less state informaࢢon. For example,
given quanࢢtaࢢve state informaࢢon, a linear approximaࢢon would need two sam-
ples whereas a most-recent value approximaࢢon only requires a single such sam-
ple. Likewise, for boolean values one could assume that a truth value holds unless
replaced, which is equivalent to a most-recent value approximaࢢon. These approxi-
maࢢons are computed as part of the IS_SYNCHRONISED procedure shown in Algo-

97

6. State stream synthesis

Algorithm 6.3: Synchronisaࢢon check (Heintz, 2009)
1 funcࢢon IS_SYNCHRONISED(t, dapprox, dmax):
2 foreach input stream i in category NoAprxFinal do
3 approximate i with no_value
4 set the category of i to AprxFinal
5 end
6 if all input streams are in categories Exact, AprxFinal, or AprxMore and

tsync + dapprox ≤ tnow then
7 return True
8 else if tsync + dmax ≤ tnow then
9 foreach input stream i in category NoAprxMore do
10 approximate i with no_value
11 set the category of i to AprxFinal
12 end
13 return True
14 else
15 return False
16 end

rithm 6.3, which determines whether we can proceed to generaࢢng a synchronised
state. Similarly, the second delay type is the maximum delay, denoted by dmax, for
which a me-outࢢ is also set (line 4) by seࢰng the delay relaࢢve to the synchronisa-
onࢢ meࢢ tsync. This me-outࢢ is then guaranteed to lead to the computaࢢon of a
state based on the informaࢢon received thus far.

Algorithm 6.3 consider four cases. First, IS_SYNCHRONISED ‘approximates’ a
value to no_value (line 3) if the corresponding stream reached the maximum delay
without being able to approximate a meaningful value, leading to a reclassificaࢢon
to AprxFinal (line 4). Second, if exact or approximated values exist for each stream,
and the maximum delay before approximaࢢon has been reached or exceeded, syn-
chronisaࢢon is deemed completed. Third, if the maximum delay has been reached
or exceeded, streams that lack approximaࢢon are ‘approximated’ to no_value and
reclassified to AprxFinal, a[er which synchronisaࢢon is deemed completed. Fi-
nally, by default, synchronisaࢢon is not yet finished. In the first three cases, how-
ever, the SYNCHRONISE_AT procedure fromAlgorithm6.2 computes a state for tsync
(line 17) based on the exact or approximated values for each stream. Of course, this
can be a problem if no exact value or usable approximaࢢon (i.e. a no_value that
cannot be resolved by using an incomplete state as per Definiࢢon 4.2) is produced.
There is no ‘correct’ soluࢢon for producing a synchronised state in this case—Heintz
(2009) suggests noࢢfying the system of an error or approximaࢢng the state anyway
using whatever informaࢢon is available, for example based on the previous synchro-
nised state if one exists.

This finally brings us to the issue of obtaining suitable subscripࢢons, which is
needed for the SYNCHRONISE procedure (line 3) in Algorithm 6.1. As explained pre-
viously, there are a number of problems when relying on query construcࢢon. We

98

6.6. Incorporaࢢng background knowledge

therefore seeks to instead dynamically reconfigure stream processing based on a
user’s needs. Chapter 7 formalises these desired semanࢢc subscripࢢons as objects
called targets, which can be saࢢsfied by a configuraࢢon. This addiࢢonally makes
it possible to change stream processing on the fly if the need arises, which is dis-
cussed in more detail in Chapter 8. The combinaࢢon makes it possible to robustly
perform state stream synthesis using the synchronisaࢢon and grounding procedures
described here. The invesࢢgaࢢon ofmore flexible ways of grounding logical symbols
in state streams provided in this fashion is le[for future work.

6.6 Incorporaࢢng background knowledge

Part of stream reasoning involves reasoning about the individual states that make
up a stream. This type of a-temporal reasoning is common, and works by combin-
ing state informaࢢon (without necessarily considering the meࢢ for which it is valid)
with a background theory. In all of these cases, the reasoning can be regarded as a
funcࢢon taking a state and a theory that, when combined, yield a set of states with
their individual probabiliࢢes.

An example of this is qualitaࢢve reasoning, as shown in Chapter 5, which focuses
on reasoning about abstract relaࢢons rather than quanࢢࢢes. Commonly a set of re-
laࢢons forms a state which can then be closed through the use of composiࢢon-table
based reasoning, where a reasoner determines whether the state is consistent and,
if so, what the possible consistent configuraࢢons are. Augmenࢢng state streams
with spaࢢal informaࢢon can then be done in a number of ways. A straigh�orward
and naive method would be to collect the complete set of spaࢢal informaࢢon for a
given ,me-pointࢢ run it through a qualitaࢢve reasoner to infer more informaࢢon on
the spaࢢal relaࢢons, and then augment the state streamwith these resulࢢng spaࢢal
relaࢢons.

A slightly be�er way would be to only augment the state stream with those spa-
alࢢ relaࢢons that are relevant. To efficiently infer implicit spaࢢal relaࢢonswe use the
facts that relaࢢons between (rigid) variables that have not changed are the same and
the algebraic closure for the same set of variables must be computed many mesࢢ
(every meࢢ some of the variables have changed). As an example, the spaࢢal rela-
onsࢢ between staࢢc buildings do not change, so it is not necessary to compute their
spaࢢal relaࢢons at every me-pointࢢ even if they are not explicitly given. If the set
of variables is parࢢࢢoned into those that are staࢢc and those that are dynamic, it
is enough to compute the algebraic closure of the constraints involving only staࢢc
variables once and then add the constraints involving at least one changing variable
when they have changed and compute the new algebraic closure. The effect is that
there is an iniࢢal cost of compuࢢng the staࢢc part while the cost for each update is
reduced (Heintz and de Leng, 2014).

Since qualitaࢢve reasoning may yield mulࢢple consistent hypotheses, we can
generate a set of states containing each of these hypotheses together with the prob-

99

6. State stream synthesis

ability of that hypothesis. In the absence of addiࢢonal informaࢢon, the probability
of each hypothesis is equal to that of the others, i.e. they are uniformly distributed.

6.7 Summary

In this chapter, we considered the problem of state stream synthesis for the purpose
of generaࢢng a state stream that can be used for stream reasoning tasks as intro-
duced earlier. This parࢢcular problem is not a primary focus of this dissertaࢢon, but
nevertheless plays an important role in connecࢢng the two strands for reasoning
over and about streams. Some earlier efforts towards automated query construc-
onwereࢢ discussed, resulࢢng in the introducࢢon of SPL and FSL for seࢰng up stream
processing, and SSL for allowing streams and transformaࢢons to be semanࢢcally an-
notated. Semanࢢc matching describes the process of finding suitable transforma-
onsࢢ or streams given a semanࢢc specificaࢢon. It was used to ulࢢmately construct
an SPL query that would result in a state stream containing the desired informa-
.onࢢ This approach however had a few down-sides. The automated construcࢢon of
queries before their execuࢢon was expensive. Addiࢢonally, if further changes were
needed, new queries would have to be constructed with the present configuraࢢon
of the ongoing stream processing in mind. Nevertheless, if the relevant streams are
subscribed to, they can then be synchronised using the synchronisaࢢon procedure
by Heintz (2009). In the next chapters, we consider a different approach to seࢰng
up semanࢢc subscripࢢons, which are compaࢢble with the state stream synthesis
methodology presented here.

100

Chapter

7
Reasoning about composition

L ogic-based stream reasoning commonly makes use of temporal logics to ex-
press statements concerning the truth value of properࢢes over .meࢢ Stream
reasoning techniques usually do not consider where their data originates

from, and assume it to be given. However, the generaࢢon of streaming data for
the purpose of stream reasoning is an important stream processing task. We call
this ability reasoning about composiࢡon, which treats streams as objects. This chap-
ter borrows from and extends previous work on configuraࢢon modelling and plan-
ning (de Leng and Heintz, 2015a,b, 2017).

7.1 Introducࢢon

Roboࢢc systems are geࢰng increasingly complex, with more and more components
usually connected by some form of publish-subscribe messaging pa�ern. Support
for this type of integraࢢon is o[en provided by middleware such as the Common
Object Request Broker Architecture (CORBA) and the Robot Operaࢢng System (ROS).
The configuraࢢon of what channels a component publishes and subscribes to is of-
ten done manually or through scripts. This is both error-prone and assumes that
the set of available components does not change at run-ࢢme. However, IoT devel-
opment towards for example swarmlets (Latronico et al., 2015) points to a future
in which systems are increasingly heterogeneous, decentralised and geographically
spread-out. The assumpࢢon of an unchanging or slowly changing set of available
components is therefore rapidly becoming unreasonable.

The challenge of dealing with this volaࢢlity also affects the task of transform-
ing streams with the goal of producing state streams. A[er all, if component sets
cannot be assumed to be constant, the task of generaࢢng a stream needs to be com-
plemented with the task of maintaining one. In this chapter, the problem of gener-
aࢢng a state stream is therefore translated into the problem of saࢢsfying a semanࢢc

101

7. Reasoning about composiࢢon

subscripࢢon in a stream reasoning framework. We first consider a formalisaࢢon of
a stream reasoning framework and its dynamics, called the DyKnow model, which
allows us to frame the problem as an opࢢmisaࢢon problem. The purpose of the for-
mal model is to be general enough such that implementaࢢon details are abstracted
away, allowing for potenࢢally many different realisaࢢons. Lastly, with the DyKnow
model formalised, we consider a common representaࢢon of configuraࢢons relaࢢve
to an ontology.

7.2 Service composiࢢon

The problem of finding a suitable composiࢢon of transformaࢢons through reasoning
about those transformaࢢons shares a lot of similariࢢes with the work on automaࢢc
service composiࢢon. For example, an approach to ‘semanࢢcally-enabled sensor plug
& play’ was proposed by Bröring et al. (2009), who idenࢢfied challenges to achieving
sensor plug-and-play based on semanࢢc knowledge of sensor observaࢢons. They
subsequently proposed amethod for automaࢢc plug-and-play funcࢢonality by mak-
ing use of a Sensor Bus (Bröring et al., 2011) that matches services to sensors. The
approach to semanࢢc subscripࢢons taken in this dissertaࢢon is more advanced than
the Sensor Bus approach in that we periodically recombine and reconnect compo-
nents whereas the Sensor Bus directly connects with informaࢢon sources. Another
example is research towards Semanࢢc Sensor Networks, which led to the develop-
ment of the Semanࢢc Sensor Network ontology (SSN) (Compton et al., 2012). SSN
focuses on well-structured semanࢢc descripࢢons of sensors. The work presented
here makes use of semanࢢc descripࢢons of streaming components rather than sen-
sors by using funcࢢonal descripࢢons of the inputs and outputs of these components.
These funcࢢonal descripࢢons are extensions of the OWL-S service ontology (Marࢢn
et al., 2004) applied to a streaming context.

The ability to reconfigure a system on demand is also closely related to configu-
raࢢon planning. Automaࢢc (re)configuraࢢon techniques have been studied in detail
(Rao and Su, 2005; Dustdar and Schreiner, 2005; Pejman et al., 2012). The work
by Tang and Parker (2005) on ASyMTRe is an example of a system geared towards
the automaࢢc self-configuraࢢon of robot resources in order to execute a certain
task. Similar work was performed by Lundh et al. (2008) related to the Ecology of
Physically Embedded Intelligent Systems, also called the PEIS-ecology (Saffioࢰet al.,
2008). Given a high-level goal describing a task, a configuraࢢon planner is used to
configure a collecࢢon of robots towards the execuࢢon of the task rather than logic-
based stream reasoning. Their soluࢢon is however designed for use within the PEIS
middleware and does not easily transfer to other environments such as the ROS
middleware. Lundh (2009) further points out that their approach uses staࢢc cost
measures and could benefit from incorporaࢢng semanࢢc knowledge. Our approach
focuses on a more advanced representaࢢon of cost, and makes use of semanࢢc de-
scripࢢons for components. The SAMSONWireless Sensor Networks (WSNs) middle-
ware by Portocarrero et al. (2016) is similar to run-ࢢme reconfigurable systems in

102

7.3. DyKnow model

Symbol Descripࢢon
li ∈ Var Set of variables

tag, itagi, otag ∈ Tag Set of tags
vi ∈ V Set of (structured) values
ti ∈ T Set of me-pointsࢢ

tid, cid, qid ∈ N Set of idenࢢfiers
ini, out, chan ∈ N Set of channels⟨

cid, tid, [in1, in2, . . . , inn]
T , out,S

⟩
∈ CU Computaࢢon units⟨

tid, f(x1, . . . , xn,S), [itag1, . . . , itagn]T , otag
⟩
∈ F Transformaࢢons

⟨qid, tag, chan⟩ ∈ T Targets
S ⊆ Var × V States
∼⊆ Tag × Tag Similarity relaࢢon

f : Vn × S ↪→ V × S Transformaࢢon funcࢢon
ε = ⟨CU,F, T,∼⟩ Environment

δ = (CU+, CU−, F+, F−, T+, T−) Change set
ε′ = ε⊗ δ Update
ε⇒δ ε

′

ε ∈ Valid Set of valid environments

Table 7.1: Notaࢢon for the DyKnow model.

their consideraࢢon of a dynamic environment in which a network can be reconfig-
ured to deal with changes, albeit at a lower level. In the case of SAMSON, these
changes include faults, but also disconnecࢢon and power concerns. A survey of
other recentwork towardsWSNmiddlewares is presented by Kerasioࢢs et al. (2015).

None of these approaches are specifically suitable for stream reasoning frame-
works, however. Furthermore, the choice of cost measure for services is difficult.
Previous work by Lundh (2009) for example notes the same difficulࢢes and instead
simplifies the problemby assigning constant uࢢlity values. It seemsmore likely, how-
ever, that the cost of services would change based on the context of the operaࢢons,
which is one angle we will therefore consider here.

7.3 DyKnow model

The DyKnow model is a formalisaࢢon of stream reasoning frameworks and extends
earlier work (Heintz, 2009; Heintz et al., 2010) that considered such frameworks to
be composed of possibly many interconnected components. The formal model is
general and serves as a specificaࢢon from which potenࢢally many different realisa-
onsࢢ can be created. Table 7.1 provides a complete summary for the notaࢢon used
in describing the model.

103

7. Reasoning about composiࢢon

Computaࢢonal environment

A computaࢡonal environment is composed of a computaࢡon graph, transformaࢡons
and targets. The computaࢢon graph consists of computaࢡon units connected by
channels.

Streams are the product of transformaࢢons, which can either refine exisࢢng
streams into new streams, or act as sources by generaࢢng streams without requir-
ing any input streams. In pracࢢce, sources o[en use informaࢢon external to the
computaࢢonal environment to generate streams, for example through sensor ob-
servaࢢons. A transformaࢢon is considered to be an annotated funcࢢon that can be
instanࢢated as a computaࢢon unit for applicaࢢon within a specific configuraࢢon.

Definiࢢon 7.1 (Transformaࢢon). A transformaࢡon (TF) is an annotated stream-
generaࢡng funcࢡon that takes streams as inputs. It is described by a tuple⟨

tid, f(x1, . . . , xn,S), [itag1, . . . , itagn]T , otag
⟩
, (7.1)

where tid ∈ N represents a unique transformaࢡon idenࢡfier, f : Vn × S ↪→ V ×
S represents a parࢡal funcࢡon from input values and an iniࢡal state to an output
value and a resulࢡng state, itagi ∈ Tag represent tags for inputs, and otag ∈ Tag
represents the output tag.

Definiࢢon 7.2 (Computaࢢon unit). A computaࢡon unit (CU) is a component that is
described by a tuple ⟨

cid, tid, [in1, in2, . . . , inn]
T
, out,S

⟩
, (7.2)

where cid ∈ N represents a unique idenࢡfier for CUs, tid ∈ N represents the unique
idenࢡfier of the transformaࢡon which this CU is an instance of, ini ∈ N ∪ {none}
represent incoming channels, out ∈ N ∪ {none} represents the outgoing channel,
and S ⊆ Var × V represents the state as a relaࢡon between variables and values.

Note that there is a close relaࢢon between CUs and TFs — a CU is called an
instance of a TF iff their tid idenࢢfiers match.

Example 7.1 (TFs and CUs). Robots commonly use visual sensing methods to detect
and track objects of interest. Consider a ball detector that is able to detect footballs
by their round white shape with black spots. The ball detector can be represented in
terms of a transformaࢡon and a computaࢡon unit. The ball detector transformaࢡon
refers to the mathemaࢡcal funcࢡon describing the detecࢡon method, together with
meta-informaࢡon for this funcࢡon. It is annotated with tags describing its input as
camera images, and its output as bounding boxes. We can apply the transformaࢡon
by connecࢡng it to an input stream of camera images, yielding a stream of bounding
boxes. This applicaࢡon of the transformaࢡon is called a computaࢡon unit. Every CU
has an idenࢡty, a reference to its corresponding TF, connecࢡons to input and outputs
channels, and state informaࢡon. The state informaࢡon allows the transformaࢡons
to be stateful, meaning they can retain informaࢡon that makes it easier to for exam-
ple perform tracking a[er an iniࢡal detecࢡon.

104

7.3. DyKnow model

Lastly, the computaࢢonal environment contains targets, which describe seman-
cࢢ subscripࢢons for outsidemodules such as the stream reasoning engine. Note that
subscripࢢons also occur within the computaࢢonal environment, but that these are
not referred to as targets because they do not reflect the global configuraࢢon goals
of the computaࢢonal environment. Subscripࢢons of the la�er kind are described by
the connecࢢons between CUs and channels as shown earlier.

Definiࢢon 7.3 (Target). A target describes a desired semanࢡc subscripࢡon and is
denoted by a tuple

⟨qid, tag, chan⟩ , (7.3)

where qid ∈ N is a unique (query) idenࢡfier, tag ∈ Tag is a descripࢡon of the desired
informaࢡon, and chan is the channel the described stream is expected on.

Targets thus indirectly represent configuraࢢon goals for the computaࢢonal envi-
ronment10 by indirectly referencing desired streams by their semanࢢc descripࢢons.
These streams are generated by instanࢢated transformaࢢons, which in turn have
input requirements. For a given set of targets, there may be many different compu-
taࢢon graphs which saࢢsfy all of the input requirements and similarity relaࢢons at
different costs.

By combining these elements, we can formally describe the computaࢢonal en-
vironment.

Definiࢢon 7.4 (Environment). An environment is denoted by a tuple

ε = ⟨CU,F, T,∼⟩ , (7.4)

where CU denotes a set of computaࢡon units called a computaࢡon graph, F de-
notes a collecࢡon of transformaࢡons called a library, T denotes a set of targets called
a goal, and∼⊆ Tag×Tag denotes a similarity relaࢡon between tags. Elements of
environment ε have short-hand representaࢡons CUε, Fε, Tε, and∼ε respecࢡvely.

An environment thus encodes the configuraࢢon of the system as well as the
state of its individual components. It is connected to streams through the collecࢢon
of channels that connect the various CUs, because they are a product of those CUs.
There is therefore a total mapping from streams to channels. Since CUs define out-
going and incoming channels, there is a clear connecࢢon between streams and their
source and desࢢnaࢢon CUs as well.

Dynamics

An environment is a representaࢢon of the state of the configuraࢢon of the compu-
taࢢonal environment. This environment may be subjected to changes over .meࢢ
These changes are represented by a change set.

10Alternaࢢvely, one can consider targets to represent constraints on channels. These constraints are
then described in terms of desired semanࢢc descripࢢons.

105

7. Reasoning about composiࢢon

Definiࢢon 7.5 (Change set). A change set is a tuple

δ = (CU+, CU−, F+, F−, T+, T−) (7.5)

consisࢡng of set addiࢡons and set removals denoted by superscript ‘+’ and ‘−’
respecࢡvely. The notaࢡon δ∅ is used as a short-hand to describe the absence of
change, i.e. δ∅ = (∅,∅,∅,∅,∅,∅).

Change sets can thus add and remove elements to and from the environment.
These addiࢢons and removals can also be used to for example represent tag changes
in transformaࢢons or connecࢢon changes of CUs to channels. Whenever an envi-
ronment changes in a way that can be represented using a change set, we call this
change an update. More formally, an update is the applicaࢢon of a change set to an
environment, yielding a new environment.

Definiࢢon 7.6 (Update). An update applying a change set δ to an environment ε is
denoted by ε′ = ε ⊗ δ (alternaࢡvely: ε ⇒δ ε

′), where ⊗ maps environments ε and
change set δ to resulࢡng environments ε′ such that

CUε′ = (CUε ∪ CU+
δ) \ CU

−
δ , (7.6)

Fε′ = (Fε ∪ F+
δ) \ F−

δ , (7.7)
Tε′ = (Tε ∪ T+

δ) \ T−
δ . (7.8)

Change sets can be used to express operaࢢons of interest on environments. We
call these operaࢢons acࢡons. In parࢢcular, we are interested in the addiࢢon and re-
moval acࢢons for environment elements, aswell as acࢢons for changing connecࢢons
between CUs and channels.

TFs are idenࢢfied by a unique tid and describe a funcࢢon f(x1, . . . , xn,S) from
inputs and current state to an output and resulࢢng state. They are further annotated
with tags in Tag for the inputs and the output. Common acࢢons affecࢢng TFs in a
computaࢢonal environment are register and deregister.

Definiࢢon 7.7 (Register acࢢon). The register acࢡon covers the class of change sets
defined by the funcࢡon

register(ε, tid, f, itag, otag) = (∅,∅, {⟨tid, f, itag, otag⟩} ,∅,∅,∅). (7.9)

Definiࢢon 7.8 (Deregister acࢢon). The deregister acࢡon covers the class of change
sets defined by the funcࢡon

deregister(ε, tid) = (∅,∅,∅, F,∅,∅), (7.10)

where F = {⟨tid, _, _, _⟩ ∈ Fε} and _ represents a wildcard.

Targets are composed of a (query) idenࢢfier, tag, similarity relaࢢon, and a spec-
ified channel. Like TFs, targets can be added and removed by the query and release
acࢢons.

106

7.3. DyKnow model

Definiࢢon 7.9 (Query acࢢon). The query acࢡon covers the class of change sets de-
fined by the funcࢡon

query(ε, qid, tag, chan) = (∅,∅,∅,∅, {⟨qid, tag, chan⟩} ,∅). (7.11)

Definiࢢon 7.10 (Release acࢢon). The release acࢡon covers the class of change sets
defined by the funcࢡon

release(ε, qid) = (∅,∅,∅,∅,∅, T), (7.12)

where T = {⟨qid, _, _⟩ ∈ Tε} and _ represents a wildcard.

Like TFs and targets, CUs can also be added and removed. However, unlike with
TFs and targets, exisࢢng CUs can be connected to and disconnected from channels
as well. We therefore consider the addiࢢon and removal of CUs to be two acࢢons in
addiࢢon to the connecࢢng and disconnecࢢng of exisࢢng CUs. Adding and removing
CUs is represented by the spawn and destroy acࢢons.

Definiࢢon 7.11 (Spawn acࢢon). The spawn acࢡon covers the class of change sets
defined by the funcࢡon

spawn(ε, cid, tid, S) = (CU,∅,∅,∅,∅,∅), (7.13)

where CU =
{⟨
cid, tid, [none, . . . , none]T , none,S

⟩}
.

Definiࢢon 7.12 (Destroy acࢢon). The destroy acࢡon covers the class of change sets
defined by the funcࢡon

destroy(ε, cid) = (∅, CU,∅,∅,∅,∅), (7.14)

where CU = {⟨cid, _, _, _, _⟩ ∈ CUε} and _ represents a wildcard.

The spawn acࢢon thus adds a CU with a provided state to account for e.g. pa-
rameters. Since CUs encode their own connecࢢons to channels, the removal of a CU
implicitly breaks any connecࢢons to channels. When the spawn acࢢon is applied, a
CU is added such that all of its connecࢢons are set to none by default. This iniࢢal
state can then be altered by using the connect and disconnect acࢢons, for each of
which we have to consider two variants to disࢢnguish between inputs and output.

Definiࢢon 7.13 (Connect acࢢon). The connect acࢡon covers the class of change sets
defined by the funcࢡons

connect↓(ε, cid, i, chan) = (CU+, CU−,∅,∅,∅,∅), (7.15)

107

7. Reasoning about composiࢢon

where CU+ and CU− are defined for every
⟨
cid, tid′, in′, out′,S ′

⟩
∈ CUε as

CU+ =

⟨
cid, tid′,

...
in′

i−1

chan

in′i+1
...

 , out
′,S ′

⟩

, (7.16)

CU− =
{⟨
cid, tid′, in′, out′,S ′

⟩
∈ CUε

}
, (7.17)

and its outgoing variant

connect↑(ε, cid, chan) = (CU+, CU−,∅,∅,∅,∅), (7.18)

where CU+ and CU− are defined for every
⟨
cid, tid′, in′, out′,S ′

⟩
∈ CUε as

CU+ =
{⟨
cid, tid′, in′, chan,S ′

⟩}
, (7.19)

CU− =
{⟨
cid, tid′, in′, out′,S ′

⟩
∈ CUε

}
. (7.20)

Definiࢢon7.14 (Disconnect acࢢon). Thedisconnect acࢡon covers the class of change
sets defined by the funcࢡons

disconnect↓(ε, cid, i) = connect↓(ε, cid, i, none), (7.21)
disconnect↑(ε, cid) = connect↑(ε, cid, none). (7.22)

Acࢢons are useful to concisely describe common change sets, and will be used
later as part of a reconfiguraࢢon algorithm.

Cost and opࢢmality

While there may be many different environments that would saࢢsfy a target, not all
such environments are equally preferred. This is due to the costs associatedwith the
run-ࢢme expenses of maintaining such a resulࢢng environment, and the one-ࢢme
expense of applying the change set that yields such a resulࢢng environment. We
refer to the cost of maintaining a CU as upkeep. Likewise, the cost of instanࢢaࢢng a
CU is called labour. While labour is a one-ࢢme cost, upkeep accumulates over .meࢢ

The measured labour and upkeep are represented by funcࢢons from environ-
ments or change sets to cost. These global cost measures are obtained from the
individual CUs.

Definiࢢon 7.15 (Labour). Labour is the observed non-negaࢡve cost of performing
an update ε⊗ δ and is equal to

labour(δ) =
∑

cu∈(CU+−CU−)

labour(tid(cu)). (7.23)

108

7.3. DyKnow model

Definiࢢon 7.16 (Upkeep). The run-ࢡme cost of an environment ε = ⟨CU,F, T,∼⟩ is
referred to as upkeep. Upkeep represents the observed non-negaࢡve run-ࢡme cost
for one me-unitࢡ and is calculated as

upkeep(ε) =
∑

cu∈CUε

upkeep(cid(cu)). (7.24)

Labour and upkeep can be used to represent the cost of change sets and environ-
ments. This is useful when we wish to compare the costs of different (alternaࢢve)
updates. We will make use of esࢢmators l̂abour and ûpkeep to represent the esࢢ-
mated rather than measured labour and upkeep of change sets and environments.

A computaࢢonal environmentmay become invalid or subopࢢmal as the result of
updates. This may for example happen due to changing operaࢢonal costs associated
with CUs (upkeep), CUs may crash and require replacing, transformaࢢons may be-
come unavailable rendering their CU instances invalid, or new transformaࢢons may
become available for a lower cost. In order to maintain adapࢢve semanࢢc subscrip-
,onsࢢ the problem is to find a change set such that, when applied to an environment,
the resulࢢng environment is valid and update is opࢢmal.

Definiࢢon 7.17 (Validity). An environment ε is valid, denoted by ε ∈ Valid, iff for
every CU:

1. there exists an associated TF in Fε;

2. for every idenࢡfier ini there exists a CU in CUε for every 1 ≤ i ≤ n, i.e. no
subscripࢡons to none;

3. for every target ⟨qid, tag, chan⟩ in Tε, there exists a CU with an associated TF
such that tag ∼ε otag; and

4. itagi ∼ε otag holds for every connected pair of CUs.

We exclude change sets that yield an invalid environment when used in an up-
date. This reduces the number of applicable change sets to just those that yield en-
vironments that saࢢsfy all targets. A pragmaࢢc relaxaࢢon is to also allow for change
sets that saࢢsfy some targets, if it is not possible to saࢢsfy all targets.

By combining validity with the esࢢmators for labour and upkeep, we obtain a
cost esࢢmator that takes into account whether the resulࢢng environment is valid.
A value MAX_COST is used to represent an upper limit on the cost of an update.
For updates yielding invalid environments, this is represented by a cost exceeding
MAX_COST.

Definiࢢon 7.18 (Cost). The cost esࢡmator ĉost combining esࢡmators ûpkeep and
l̂abour is defined as

ĉost(ε, δ,H) =

{
l̂abour(δ) +H × ûpkeep(ε⊗ δ), if ε⊗ δ ∈ Valid,

MAX_COST + 1, otherwise.
(7.25)

109

7. Reasoning about composiࢢon

The cost esࢢmator is used for determining the esࢢmated cost of updates. An
opࢡmal update is one that minimises the esࢢmated cost of applying a change set
and the esࢢmated upkeep over a predetermined horizon. It makes use of the cost
esࢢmator and excludes updates that exceed the maximum cost, for example due to
being absent from Valid.

Definiࢢon 7.19 (Opࢢmality). An update ε′ = ε⊗ δ∗ is opࢡmal relaࢡve to a horizon
ofH me-unitsࢡ iff δ∗ ∈ ∆∗, where

∆∗ = argmin
δ
ĉost(ε, δ,H) (7.26)

subject to ĉost(ε, δ,H) ≤ MAX_COST

for cost esࢡmator ĉost and upper bound MAX_COST.

Note that theremay bemany opࢢmal change sets, in which case any can be cho-
sen. Alternaࢢvely, if no change set can make the resulࢢng environment valid, there
are no opࢢmal change sets. The choice of horizon determines how conservaࢢve
change sets are; if the horizon is large, upkeep starts to outweigh labour more than
in cases where the horizon is kept short. Different esࢢmators can be used, rang-
ing from simplisࢢc constant values to advanced predicࢢve models whose accuracy
is used to increase or decrease the length of the next horizon.

7.4 Ontology-based model representaࢢon

The formal model for stream reasoning frameworks allows us to precisely describe
system configuraࢢons in terms of environments, and the change sets that can be ap-
plied to those environments. However, different realisaࢢons of this type of frame-
work may use different internal representaࢢons. This can lead to situaࢢons wherein
two different realisaࢢons based on the same formal model use two different repre-
sentaࢢons. Such inconsistencies can lead to difficulࢢes if the two are expected to
interoperate.

DyKnow ontology

SemanࢢcWeb technologies were used to generate a DyKnow ontology. The Seman-
cWebwasࢢ iniࢢally proposed by Berners-Lee et al. (2001) as an approach tomaking
the World Wide Web machine-readable so that concepts could be formalised and
exchanged, making it a good candidate to realise semanࢢc interoperability. TheWeb
Ontology Language (OWL) was described by the W3C in McGuinness et al. (2004),
and was designed to describe such ontologies. Ontologies in the Semanࢢc Web are
based on Descripࢢon Logic (DL), which makes it possible to perform inference on
them to obtain indirect knowledge. The DyKnow ontology describes the concepts
presented as part of the formal model, as well as the relaࢢons that exist between
these concepts. A concept hierarchy is shown in Figure 7.1, and a more detailed

110

7.4. Ontology-based model representaࢢon

Figure 7.1: Hierarchical concept graph of the DyKnow ontology.

111

7. Reasoning about composiࢢon

descripࢢon of the ontology is presented in Appendix A using Manchester syntax for
human readability.

The ontology formalises concepts such as CUs and the transformaࢢons they are
instances of. For example, the dyknow:Transformation concept is defined in DL as

Transformation ⊑∃hasName.xsd:Name (7.27)
⊓∃hasCostModel.LabourCostModel,

where
LabourCostModel ⊑ CostModel. (7.28)

dyknow:Transformation objects can further have input and output ports using
the dyknow:hasInPort and dyknow:hasOutPort relaࢢons. The name of a dy-
know:Transformationobject then corresponds to a tid; the relaࢢons to dyknow:Port
objects are used for itag1, . . . , itagn and otag; and the cost is represented by a dy-
know:LabourCostModel.

CUs are also encoded in the ontology with the dyknow:ComputationUnit con-
cept;

ComputationUnit ⊑∃hasName.xsd:Name (7.29)
⊓∃hasCostModel.UpkeepCostModel.

CUs can be connected via a dyknow:Subscription, which is defined as

Subscription ⊑∃fromCU.ComputationUnit (7.30)
⊓∃fromPort.OutPort
⊓∃toCU.ComputationUnit
⊓∃toPort.InPort
⊓∃hasChannel.Channel,

meaning that a dyknow:Subscriptionmust have some input and output port, as well
as some input and output CU. Further, it is associatedwith a dyknow:Channel, which
is used to represent the transportaࢢon mechanism over which streams can flow
from CU to CU. These channels are only required to have some name, i.e.

Channel ⊑ ∃hasChannelName.xsd:string. (7.31)

The semanࢢc representaࢢon thus matches the formal definiࢢon of computaࢢon
graphs, and adds addiࢢonal concepts (i.e. channel) that are necessary for realisa-
onsࢢ of the formal model.

Finally, targets are represented using the dyknow:Target concept;

Target ⊑∃hasName.xsd:Name (7.32)
⊓∃hasChannel.Channel
⊓∃hasTag.Tag.

112

7.4. Ontology-based model representaࢢon

Targets are thus also extended with a channel over which the resulࢢng stream is
expected. The dyknow:hasTag connects dyknow:Tag objects to a dyknow:Target
object. The dyknow:Tag objects are in turn connected to semanࢢc descripࢢonswith
the dyknow:hasTagDescription relaࢢon.

CUs, transformaࢢons and targets can be associated with dyknow:Environment
objects to clearly disࢢnguish between different environments. Thismakes it possible
for a knowledge base to represent not just a representaࢢon of a local environment,
but also that of external environments, for example on different pla�orms. Config-
uraࢢon informaࢢon can further be exchanged using a common vocabulary, allowing
agents to interpret configuraࢢons of other agents and to share them in amulࢢ-agent
system. Furthermore, different realisaࢢons of the formal model for stream reason-
ing frameworks can use and extend the ontology while retaining interoperability.
For example, the dyknow:Channel concept does not specify a specific transporta-
onࢢ mechanism.

Because ontologies in OWL are based on DL, we can apply inference to the on-
tological data. This makes it possible to obtain implicit informaࢢon from explicit
informaࢢon. One example of a potenࢢally useful property is the transiࢢve dy-
know:dependsOn object property, which is defined by

dependsOn ⊑ hasSubscription ◦ fromCU. (7.33)

The dyknow:dependsOn relaࢢon for a given CU will connect it to all other CUs down
the subscripࢢon pipeline. A reasoner can be used to infer these relaࢢons for every
CU, such that the relaࢢons do not have to be provided explicitly, reducing the size of
the populated ontology. This makes it possible to easily obtain for some CU all CUs
it depends on, which can be useful for example when removing a CU to check for
broken dependencies.

Ontological extensions

The DyKnow ontology thus provides a tool to support semanࢢc interoperability be-
tween different realisaࢢons of the formal model for stream reasoning frameworks,
even when these realisaࢢons make use of different internal representaࢢons of en-
vironments. A key observaࢢon is that the DyKnow ontology is designed to be ex-
tendible for purposes of realising the DyKnow model. These extensions can be per-
formed in different ways while retaining a cross-compaࢢble representaࢢon. One
could thus see the DyKnow ontology as a top-level ontology. There are two sets of
expected extensions for the DyKnow ontology: system realisaࢡons and annotaࢡon
language realisaࢡons.

System realisaࢢons. The first category for ontological extensions deals with the
realisaࢢon of the DyKnowmodel into a concrete system. In this case, concepts such
asChannel orTransformation need an applicaࢢon-specific conceptualisaࢢon. These
conceptualisaࢢons are more specific than the general concepts described in the Dy-
Know ontology. For example, while a channel is assumed to have an idenࢢfier, the

113

7. Reasoning about composiࢢon

DyKnow model does not put any constraints on what this idenࢢfier may look like,
whereas a specific realisaࢢon might do so. Likewise, transformaࢢons may be re-
alised as programs, resulࢢng in more specific properࢢes.

Annotaࢢon language realisaࢢons. The second category deals with the realisaࢢon
of languages to annotate transformaࢢons or targets. These annotaࢢons are concep-
tualised by the DyKnowontology using theTag concept. A tag could bemany things.
For example, a tag may simply be a simple string of text, or it might be something
more specific such as logical proposiࢢons or ontological concepts.

Different realisaࢢons can thus be represented using ontological extensions of the
DyKnow ontology, as demonstrated later. Different realisaࢢons however sࢢll under-
stand the high-level conceptualisaࢢons; a channel is a channel regardless of how it is
implemented. This makes it possible for different realisaࢢons of DyKnow to remain
compaࢢble. While a mulࢢ-agent approach is beyond the scope of this dissertaࢢon,
the ontology serves as an important starࢢng point for mulࢢ-agent support.

7.5 Summary

In many stream reasoning applicaࢢon domains, and especially in the case of roboࢢc
systems, informaࢢon enters the system at a low level of abstracࢢon, for example as
raw sensor observaࢢons. Generaࢢng a high-level informaࢢon stream requires the
ability to reason about one’s own stream refinement capabiliࢢes. This chapter for-
malised the stream reasoning framework’s computaࢢonal environment as the Dy-
Know model. It does so by considering targets for formula symbols, abstract trans-
formaࢢons, concrete CUs, and channels connecࢢng CUs. The model can be repre-
sented relaࢢve to a Semanࢢc Web ontology, allowing other (heterogeneous) sys-
tems to reason about a system’s internal configuraࢢon.

114

Chapter

8
Reasoning about perturbations

S ometimes the context of a stream reasoning system may change. This is es-
pecially true for systems which are expected to run for extended periods of
.meࢢ In those situaࢢons, it is possible for system components, both hard-

ware and so[ware, to fail. Conversely, it is possible for new and improved (exter-
nal) services to become available. Being able to cope with the loss (and capitalise on
the becoming available) of services is an important ability. We call reasoning about
such changes reasoning about perturbaࢡons. This chapter borrows from and ex-
tends previous work on configuraࢢon modelling and planning (de Leng and Heintz,
2015b,a, 2017).

8.1 Introducࢢon

During the run-ࢢme of a stream reasoning system, it is possible for the environment
to change outside of its own control. We call these changes perturbaࢡons, which
can be represented in terms of change sets. Some perturbaࢢons can be relaࢢvely
harmless; for example, a transformaࢢon that is currently not in use could be dereg-
istered. Worse would be the case wherein a transformaࢢon for which CUs exist is
deregistered. In such a case, the behaviour of those CUs becomes undefined, and
they therefore require removal. Furthermore, the loss of these CUs can leave holes
in the computaࢢon graph, leaving the environment invalid. In yet another example,
a CU could crash and thereby be removed from the computaࢢon graph, resulࢢng
in similar potenࢢal problems. These last examples are clear cases wherein a per-
turbaࢢon results in an expensive and subopࢢmal environment. Less clear cases are
those wherein new transformaࢢons become available. A new transformaࢢon could
be cheaper to use than the transformaࢢons currently in use by an environment, but
making this change is not criࢢcal.

115

8. Reasoning about perturbaࢢons

In this chapter, we consider a formal definiࢢon of perturbaࢢons, and present
procedures for correctly handling these perturbaࢢons. Specifically, whenever a per-
turbaࢢon occurs, the stream reasoning system needs to make changes to its config-
uraࢢon. Since many such changes may be correct, this becomes an opࢢmisaࢢon
problem wherein the cost of a change to correct a perturbaࢢon is minimised. The
proposed procedures are any-ࢢme algorithms, allowing the stream reasoning sys-
tem to addiࢢonally choose howmuch resources it allocates to the perturbaࢢon han-
dling process.

8.2 Perturbaࢢon handling

A perturbaࢢon can be defined as a change set whichwas not expected by the stream
reasoning system. Formally, the definiࢢon of a perturbaࢢon is as follows:

Definiࢢon 8.1 (Perturbaࢢon). We can consider different types of perturbaࢡons de-
noted by δp. Short-term negaࢡve perturbaࢡons11 result in an immediate cost in-
crease (compared to no change) when considering an equal horizonH :

cost(ε, δp,H) > cost(ε, δ∅,H). (8.1)

When the cost does not change as the result of δp, it is considered to be a short-term
neutral perturbaࢡon. Similarly, long-term posiࢡve perturbaࢡons make possible an
update that would result in a cost decrease, i.e.

∃δ∗[cost(ε⊗ δp, δ∅,H) > cost(ε⊗ δp, δ∗,H)], (8.2)

with (inversely) long-term neutral perturbaࢡons lacking such an update. Different
perturbaࢡons can thus have different effects in the short and long term.

To handle both the short and long term repercussions of perturbaࢢons, seman-
cࢢ subscripࢢons are periodically evaluated and updated to repair or improve the
underlying environment. This recurring process is referred to as the configuraࢡon
life-cycle. The life-cycle is composed of a number of phases which are repeated ev-
ery cycle, which starts with a review interval followed by a stable interval.

The purpose of the review interval is to reflect on the preceding stable interval
(if any) and to improve the environment configuraࢢon. During this interval, a stream
reasoning manager searches for a change set such that its applicaࢢon to the current
environment consࢢtutes an opࢢmal update. Whether an update is opࢢmal is deter-
mined by a combinaࢢon of labour and cumulaࢢve upkeep relaࢢve to a horizon. If an
opࢢmal update is found (i.e.∆∗ ̸= ∅), it is then applied; otherwise the environment
remains unchanged (i.e. δ∗ = δ∅). During the applicaࢢon of an update, the labour
costs are measured and used to update the labour esࢢmator l̂abour. The review
interval is then succeeded by a new stable interval.

11Short-term posiࢡve perturbaࢡons are generally ignored as they would require an outside force to
for example remove a target together with any CUs that would no longer be necessary.

116

8.3. Update procedure

Once the update produced during the review interval has been performed, the
stable interval begins. The purpose of the stable interval is to maintain uninter-
rupted streams that saࢢsfy targets, while monitoring the upkeep of the environ-
ment to update the ûpkeep esࢢmator. The stable interval ends when one of two
events occur: (1) if a short-term negaࢢve perturbaࢢon is detected, the review in-
terval is started immediately in order to miࢢgate the increase in cost induced by
such a perturbaࢢon; and (2) if the horizon is reached, the review interval is started
as scheduled in order to check for possible improvements as the result of any long-
term posiࢢve perturbaࢢons that occurred during the stable interval.

8.3 Update procedure

Whenever the review interval is started, we search for and apply an opࢢmal update
if one exists. We denote δp to represent the perturbaࢢon that started to review
cycle, if one exists; otherwise δp = δ∅. It is applied to a previous environment
ε−1 to yield the current environment ε0 = ε−1 ⊗ δp. The challenge is to find an
opࢢmal update δ∗ to miࢢgate any subopࢢmality induced by δp, yielding the next
environment12 ε1 = ε0 ⊗ δ∗. This is done through a three-step approach shown
below.

Exploraࢢon

The procedure for reconfiguraࢢon is shown in Algorithm 8.1. Nodes represent CUs-
to-be that should become part of the resulࢢng environment. The EXPLORE proce-
dure first generates a root node which is a placeholder that is used to represent
the targets (line 7). For example, if there are three targets, the root node will be a
ternary node such that the tags for every input correspond to the tags of the targets,
and the ports correspond to the desired ports of the targets. The task of EXPLORE
is to build a valid computaࢢon graph starࢢng from the root node. To do so, it will
need to expand nodes in the graph with children saࢢsfying that node’s inputs. The
combinaࢢon of a node and an input index is therefore called a job. Jobs are kept
track of as part of the openJobs stack (line 3), and updated when necessary. The
choices made while building the graph are likewise stored in the trace stack (line 4).

The procedure runs by sequenࢢally considering every job in openJobs and calls
the EXPAND procedure on these nodes (lines 11–23). If the EXPAND procedure suc-
ceeds, any new children have their inputs added to openJobs. Someࢢmes EXPAND
will find an exisࢢng node. In that case it has already been expanded as the result of
the DFS approach, and does not need its inputs added as jobs. Whenever EXPAND
fails, the failing job is returned to openJobs and backtracking is applied (lines 24–
39). EXPAND can fail when all candidates for expansion have been exhausted, ei-
ther due to having been a�empted already, or because they result in the graph’s

12The perturbaࢢon ε−1 ⊗ δp is thus similar to the game-theoreࢢcalmove by nature.

117

8. Reasoning about perturbaࢢons

Algorithm 8.1: Exploraࢢon procedure
1 funcࢢon EXPLORE(Environment ε, ChangeSet δp):
2 registry ← newMap()
3 openJobs← new Stack()
4 trace← new Stack()
5 bestTrace← new Stack()
6 bestCost←∞
7 Node root = new Node(createRoot(ε))
8 running ← true
9 while running do
10 expansionFailure← false
11 while |openJobs| > 0 ∧ ¬expansionFailure do
12 Job job← openJobs.pop()
13 Node next← registry[job.tid]
14 if EXPAND (next, trace, registry, ε, δp, bestCost) then
15 if ¬next.virtual[job.port] then
16 Add children to openJobs
17 end
18 Reset candIndex for all jobs in openJobs
19 else
20 expansionFailure← true
21 openJobs.push(job)

22 end
23 end
24 if |trace > 0| then
25 (from⇒i to, cost)← trace.pop()
26 if ¬expansionFailure ∧ bestCost > cost then
27 bestTrace← trace ∪ (from⇒i to, cost)
28 bestCost← cost

29 end
30 registry[from].children[i]← nil
31 registry[from].virtual[i]← false
32 if⇒=→ then
33 registry[to]← nil
34 Remove invalidated jobs from openJobs

35 end
36 openJobs.push(new Job(from, i))

37 else
38 running ← false
39 end
40 end
41 return COMPILE (bestTrace, ε)

cost exceeding the current best cost. When backtracking is performed, the last ac-
onࢢ stored in trace is reverted and a corresponding job as added. This will cause
EXPAND to try a different candidate. For every valid graph, we check whether it is
be�er than the currently best soluࢢon, and if so we replace it. Once no more back-

118

8.3. Update procedure

Algorithm 8.2: Node expansion
1 funcࢢon EXPAND(Node node, var i, Stack trace, Map registry, Environment ε,

ChangeSet δp, var bestCost):
2 node.children[i]← nil
3 node.virtual[i]← false
4 node.expanded← false
5 while ¬expanded ∧ candIndex[i] < numCandidates(node.tid, ε, i) do
6 candidateTID ← getCandidate(node.tid, ε, δp, candIndex[i])
7 (from⇒i to, sumCost)← trace.peek()
8 cost← cost(candidateTID)
9 if registry[candidateTID] = nil then
10 if sumCost+ cost < bestCost then
11 Node child← new Node(candidateTID)
12 node.children[i]← child
13 node.virtual[i]← false
14 registry[candidateTID]← child
15 trace.push((tid→i candidateTID, sumCost+ cost))
16 Reset inputs succeeding i
17 node.expanded← true

18 end
19 else
20 node.children[i]← registry[candidateTID]
21 node.virtual[i]← true
22 trace.push((tid⇝i candidateTID, sumCost))
23 node.expanded← true

24 end
25 candIndex[i]← candIndex[i] + 1

26 end
27 return expanded

tracking is possible, we use the best trace and convert it into a change set using the
COMPILE procedure (line 41).

Expansion

The EXPAND procedure is described in greater detail in Algorithm 8.2. The procedure
is applied to a specific node and a�empts to find a valid child node for a specified
input index i. The corresponding acࢡon taken is then added to the trace. Acࢢons
can represent the spawning of and connecࢢng to new CUs (→), or the reusing of
nodes (⇝) thatwere previously added to the exploraࢢon graph as part of the current
call to EXPLORE.

Every node keeps track of which candidates it has thus far considered for ex-
pansion for every input index. This is done by maintaining a candIndex array of
candidate indices, where each index corresponds to the next candidate to be at-
tempted for that input index. The procedure a�empts successive candidates unࢢl it

119

8. Reasoning about perturbaࢢons

Algorithm 8.3: Compilaࢢon procedure
1 funcࢢon COMPILE(Stack trace, Environment ε):
2 δ← (∅,∅,∅,∅,∅,∅)
3 removalSet← CUε

4 channelMap← newMap()
5 cidMap← newMap()
6 foreach (from⇒i to, cost) ∈ trace do
7 if to.cid ∈ removalSet then
8 removalSet \ {to.cid}
9 end
10 if⇒=→ then
11 chan← getUniqueID()
12 channelMap[to]← chan
13 cid← getUniqueID()
14 cidMap[to.tid]← cid
15 δ ← δ ∪ spawn(ε, cid, to.tid,∅) ∪

connect↓(ε, cidMap[from.tid], i, chan) ∪ connect↑(ε, cid, chan)
16 else
17 chan← channelMap[to]
18 δ ← δ ∪ connect↓(ε, cidMap[from.tid], i, chan)

19 end
20 end
21 foreach cid ∈ removalSet do
22 δ ← δ ∪ destroy(ε, cid)
23 end
24 return δ

either finds one that works, or runs out of candidates for input index i (lines 5–26).
Specifically, the procedure considers transformaࢢons candidateTID and checks if
they occur in the registry map, which maps TIDs to nodes. If a node already exists
for candidateTID, it is reused (lines 20–23), i.e. a virtual connecࢢon. Otherwise, a
new node is created iff this does not result in the cost exceeding the best cost (lines
10–18), i.e. a new connecࢢon. Finally, the procedure returns whether expansion
was successful or not (line 27).

Change set compilaࢢon

The COMPILE procedure described in Algorithm 8.3 constructs a change set δ∗ from
the trace produced by EXPLORE in conjuncࢢon with EXPAND. The change set is first
composed of a number of spawn and connect acࢢons. Spawn acࢢons are called for
nodes represenࢢng new CUs (line 15). A newly spawned CU then needs to be con-
nected to a channel for its output port. The same channel is used to connect the
input port of the receiving CU to. For connecࢢons to exisࢢng CUs, only the receiving
CU needs to be connected with its input port. In these cases, the pre-exisࢢng chan-
nel is used to connect to. Finally, any CUs exisࢢng in the original environment that

120

8.3. Update procedure

do not occur in the trace are scheduled for destrucࢢon. This ensures that CUs that
are not in use do not linger and therefore do not accumulate upkeep.

Finding an opࢢmal change set

To be�er illustrate how the three procedures interact, the following example illus-
trates two key scenarios. In the first, the environment is completely empty as it
would be when the system is first started, and a perturbaࢢon populates the envi-
ronment for the first .meࢢ The second case deals with perturbaࢢons that nega-
velyࢢ impact the environment and which must be resolved to guarantee semanࢢc
subscripࢢons are maintained. As an example, consider for a horizon H = 10 an
environment ε = ⟨∅, F, T,∼⟩ such that

F = { ⟨tid1, f1(x), [A] , B⟩ , (8.3)
⟨tid2, f2(x), [C] , D⟩ ,
⟨tid3, f3(), [], E⟩ ,
⟨tid4, f4(), [], F ⟩ ,
⟨tid5, f5(), [], G⟩};

T = { ⟨qid1, B, 101⟩ , (8.4)
⟨qid2, D, 102⟩},

and the similarity relaࢢon is reflexive and further includes A ∼ E, A ∼ F , B ∼ F ,
and B ∼ G. We thus have an environment in which no CUs are acࢢve, five trans-
formaࢢons are registered, and two targets are registered. We will assume that the
cost esࢢmators yield 1.0 labour and 1.0 upkeep for each of the five transformaࢢons.
Addiࢢonally, the perturbaࢢon is described by

δp = (∅,∅,∅,∅, T,∅), (8.5)

meaning that the disturbance is the registraࢢon of the targets T for example by
a human operator. Since δp is a short-term negaࢢve perturbaࢢon (∞ > 0),
the EXPLORE(ε, δp) procedure described in Algorithm 8.1 is called to miࢢgate the
perturbaࢢon-induced cost increase.

A[er iniࢢalising the stacks and map, the root node is created. This root node is
based on the set of targets T and is represented by a placeholder transformaࢢon
⟨root,∅, [D,E] , none⟩. The first call to EXPAND is done on this root node with an
empty trace and a bestCost value corresponding to∞. The expansion is performed
in a depth-first manner, starࢢng with the first input of the root node. The candidates
are determined by the similarity relaࢢon ∼. Therefore, any transformaࢢons with
an output tag equal to an input tag under consideraࢢon qualify as candidates for
expansion. The first input tag of the root node isB, which is only equal to the output
tag of transformaࢢon tid1. Since tid1 does not exist in the registry, it cannot be
reused, so a new CU would have to be spawned from it. The total cost of such a CU
would be 11.0; 1.0 from the labour and 10.0 from the upkeep over the length of the

121

8. Reasoning about perturbaࢢons

horizon. Since our current cost is 0.0, adding 11.0 would not exceed the bestCost
value of∞, so the candidate is used. The trace now consists of one entry;

[(root→0 tid1, 11.0)]. (8.6)

The EXPAND procedure is subsequently called again for the first input index of the
node for tid1. Its input tag corresponds to A, which is similar to the output tag of
tid3 and tid4. Maintaining the order of transformaࢢons, tid3 is chosen first, result-
ing in the trace

[(tid1 →0 tid3, 22.0) , (8.7)
(root→0 tid1, 11.0)].

Since tid3 has no dependencies, the search conࢢnues with the second input of the
root node, yielding tid2 as a candidate, followed by tid4. The first soluࢢon thus has
a trace

[(tid2 →0 tid4, 44.0) , (8.8)
(root→1 tid2, 33.0) ,

(tid1 →0 tid3, 22.0) ,

(root→0 tid1, 11.0)]

and a cost of 44.0. The EXPLORE procedure then starts backtracking. The trace head

(tid2 →0 tid4, 44.0) (8.9)

is first removed, and EXPAND is called on its head node tid2 with a best cost of 44.0.
While tid5 is a valid candidate, its cost would be equal or greater than the best cost
of 44.0, so EXPAND returns failure and backtracking conࢢnues. The next trace head
is

(root→1 tid2, 33.0) , (8.10)

for which there are no alternaࢢves, so backtracking conࢢnues further. Next is trace
head

(tid1 →0 tid3, 22.0) , (8.11)

where EXPAND is called on the tid1 node, which does have an alternaࢢve candidate
tid4. Since picking tid4 would not exceed the best cost, it is picked, resulࢢng in a
trace

[(tid1 →0 tid4, 22.0) , (8.12)
(root→0 tid1, 11.0)].

The EXPAND procedure returns success, but EXPLORE sࢢll has the root node as an
open job to reflect the backtracking which removed its subgraph at its second input,
so EXPAND is called on the root node. Due to the change from tid3 to tid4 earlier

122

8.3. Update procedure

in the trace, the root node is allowed to pick tid2 as its candidate again. Expansion
of the tid2 node subsequently yields tid4 and tid5 as candidates. Adhering to the
ordering, tid4 is chosen first. This ,meࢢ tid4 already exists in the registry, so it can
be reused for free, resulࢢng in the trace

[(tid2 ⇝0 tid4, 33.0) , (8.13)
(root→1 tid2, 33.0) ,

(tid1 →0 tid4, 22.0) ,

(root→0 tid1, 11.0)]

and a cost of 33.0. A[er this point, no be�er soluࢢons are found, and backtracking
exhausts the trace.

The EXPLORE procedure then returns the result of applying the COMPILE proce-
dure to the trace given the environment ε. This procedure runs through the trace,
starࢢng at the bo�om of the stack, choosing unique channels and CU idenࢢfiers.
The first item is root →0 tid1, which requires the spawning of a CU of type tid1
and its subsequent connecࢢon to the desired target channel 101. A unique channel
is randomly chosen for its input; we will assume it is channel 1. This is followed by
the spawning of a CU of type tid4, the output for which is connected to channel 1,
and which has no inputs. Then follows the spawning of a CU of type tid2 whose
output is connected to channel 102 as determined by the second target, and whose
input channel us chosen to be channel 1 as it shares the source CU of type tid4. The
resulࢢng change set then becomes δ∗ = (CU+,∅,∅,∅,∅,∅), where

CU+ = { ⟨cid1, tid1, [1], 101,∅⟩ , (8.14)
⟨cid2, tid4, [], 1,∅⟩ ,
⟨cid3, tid2, [1], 102,∅⟩}.

The update ε′ = ε⊗ EXPLORE(ε, δp) thus yields a resulࢢng environment

ε′ =
⟨
CU+, Fε, Tε,∼ε

⟩
. (8.15)

When this update is performed, the esࢢmators for l̂abour are updated based on the
observed resource usage associated with instanࢢaࢢng transformaࢢons.

The update abovemarks the end of the review interval and the start of the stable
interval. The stable interval normally has a duraࢢon equal to the horizon length,
duringwhich the esࢢmators for ûpkeep are updates based on the observed resource
usage of CUs. Short-term negaࢢve perturbaࢢons could however cut this duraࢢon
short. To be�er illustrate the adapࢢvity of semanࢢc subscripࢢons, we will assume
that such a perturbaࢢon indeed occurs.

For the duraࢢon from the review cycle’s compleࢢon to the perturbaࢢon, the
targets qid1 and qid2 ensured that there would be a stream sent over channels 101
and 102, for which the semanࢢcs are described by the tags B and D respecࢢvely.
The occurrence of the perturbaࢢon jeopardises these streams. In the worst case,

123

8. Reasoning about perturbaࢢons

nomore samples are sent out on the channels, effecࢢvely freezing the streams. The
premature terminaࢢon of the stable interval and start of the review interval ismeant
to quickly miࢢgate this problem. We will assume that the perturbaࢢon corresponds
to the crash of a CU, illustrated by

δp = (∅, {⟨cid3, tid2, [1], 102, S⟩} ,∅,∅,∅,∅). (8.16)

The perturbaࢢon δp encodes the fact that the CU of type tid2 and with idenࢢty cid3
has been removed from the environment. This puts a hole in the computaࢢon graph,
as streaming data from CU cid2 sent over channel 1 is no longer processed, nor is
the stream that would have resulted from that processing sent over channel 102 to
saࢢsfy target qid2. Furthermore, the esࢢmators for labour and upkeep have been
updated since our previous opࢢmal update, and the upkeep cost of CU cid2 is de-
termined to be 3.0 per me-unitࢢ instead of the esࢢmated 1.0 per .me-unitࢢ

The EXPLORE(ε′⊗ δp, δp) procedure is run to obtain an opࢢmal update that will
cost-efficiently resume the data stream on channel 102. The process is the same
as before, except that now we can use CUs from the environment ε′′ = ε′ ⊗ δp,
which are prioriࢢsed over spawning new CUs from transformaࢢons. One advantage
of reusing CUs is that no labour cost is acrued. This leads to an iniࢢal trace

[(tid2 ⇝0 cid2, 51.0) , (8.17)
(root→1 tid2, 51.0) ,

(cid1 →0 cid2, 40.0) ,

(root→0 cid1, 10.0)]

and a cost of 51.0; reusing cid1 requires an upkeep of 10.0, reusing cid2 requires an
upkeep of 30.0, spawning a CU of type tid2 requires an upkeep of 10.0 and labour
equal to 1.0, and connecࢢng this new CU to a CU we already paid for is cost-free.
Unfortunately, while this soluࢢon is a quick-fix of the problem, it is not the best
soluࢢon. The upkeep cost of cid2 has increased sharply since the last review interval.
Therefore, backtracking yields another soluࢢon which is opࢢmal;

[(tid2 →0 tid5, 43.0) , (8.18)
(root→1 tid2, 32.0) ,

(cid1 →0 tid3, 21.0) ,

(root→0 cid1, 10.0)].

This way, we no longer expend resources on the upkeep of cid2, and the one-off
labour cost is insignificant with a horizon length of 10 .me-unitsࢢ The EXPLORE al-
gorithm next calls on COMPILE. As before, a change set is generated which spawns
and connects CUs. This meࢢ we however also destroy CU cid2 to remove its drain
on the upkeep, as it is never removed from the removalSet due to not occurring
in the trace. The resulࢢng change set is therefore δ∗ = (CU+, CU−,∅,∅,∅,∅),

124

8.4. Correctness

where

CU+ = { ⟨cid4, tid3, [], 1,∅⟩ , (8.19)
⟨cid5, tid2, [2], 102,∅⟩ ,
⟨cid6, tid5, [], 2,∅⟩};

CU− = { ⟨cid2, tid4, [], 1, S⟩}. (8.20)

The applicaࢢon of δ∗ to environment ε′′ then yields a new environment

ε′′ ⊗ δ∗ = ⟨CU,Fε, Tε,∼ε⟩ (8.21)

such that the new computaࢢon graph CU is described by

CU = { ⟨cid1, tid1, [1], 101, S⟩ , (8.22)
⟨cid4, tid3, [], 1,∅⟩ ,
⟨cid5, tid2, [2], 102,∅⟩ ,
⟨cid6, tid5, [], 2,∅⟩}.

As can be seen from the environment ε′′ ⊗ δ∗, we now have four CUs saࢢsfying
the two targets. This leads to the resumpࢢon of the previously-frozen stream over
channel 102, fixing the problem caused by the most recent perturbaࢢon in a cost-
efficient manner.

8.4 Correctness

The EXPLORE procedure is designed to find an opࢢmal update if one exists, even if
the original environment is invalid and therefore has a cost exceeding MAX_COST.
Note that while there may exist different opࢢmal updates with the same cost, only
the first one found is selected; the others are pruned. In order to show the correct-
ness of the EXPLORE procedure, it must be shown to return an opࢢmal update.

125

8. Reasoning about perturbaࢢons

Theorem 8.1: Correctness

The EXPLORE procedure is correct, meaning that for any environment ε result-
ing from a perturbaࢢon δp, and any horizon of lengthH , for the set of opࢢmal
change sets∆∗ defined as

∆∗ = argmin
δ
ĉost(ε, δ,H) (8.23)

subject to ĉost(ε, δ,H) ≤ MAX_COST,

the following implicaࢢon holds:

∆∗ ̸= ∅→ EXPLORE(ε, δp) ∈ ∆∗, (8.24)

i.e. if some opࢢmal change sets exist, the EXPLORE procedure will return one
of them.

Proof. The proof is based on Algorithms 8.1, 8.2, and 8.3. In parࢢcular, it is first
shown that the exploraࢢon procedure exhausࢢvely finds all change sets δ so that
ε⊗ δ ∈ Valid if the guard sumCost+ cost < bestCost on line 10 in Algorithm 8.2
is omi�ed. It is then shown that the inclusion of this guard excludes subopࢢmal
change sets, thereby returning an opࢢmal change set if one exists.

The EXPLORE procedure performs a depth-first expansion of the root nodewhen
run for the first .meࢢ This sequence of operaࢢons is enforced by the stack of open
jobs; whenever more expansions are available, they are pushed to the top of the
stack. This means that when the stack is empty, no more expansions can be per-
formed, and a complete computaࢢon graph has been found. The sequence of ac-
onsࢢ resulࢢng in this graph ismaintained as a trace stack. This allows us to backtrack
by undoing acࢢons and considering alternaࢢve candidates.

The candidates for expansion are kept track of within the nodes of the graph.
Whenever we backtrack to a node, we increment the candidate index (candIndex)
for the input index of interest. When a suitable alternaࢢve candidate is found, the
trace is updated accordingly. Since a change has beenmade to the graph, thismeans
we can reset all of the candidate indices of future jobs. This way we ensure that we
find all valid change sets.

Now consider what happens if we reinstate the cost guard. For EXPLORE to re-
turn a subopࢢmal soluࢢon, either there exists no soluࢢon in∆∗ or the opࢢmal solu-
onࢢ is not considered in lines 9–40. The former is a contradicࢢon with our assump-
onࢢ that ∆ ̸= ∅. The la�er can only occur if the cost guard on line 10 in EXPAND
prunes away the opࢢmal soluࢢon. Since the guard only excludes expansions that
would lead to costs greater than the best cost, that would mean negaࢢve costs are
necessary for this to occur. But negaࢢve costs are not allowed, so EXPAND cannot
prune away the opࢢmal soluࢢon. Therefore EXPLORE cannot return a subopࢢmal
soluࢢon whenever∆∗ is non-empty. ■

126

8.5. Any-ࢢme extension

8.5 Any-ࢢme extension

The EXPLORE procedure quickly finds a first soluࢢon (or finds that none exist), which
it subsequently improves on through an exhausࢢve consideraࢢon of alternaࢢves.
Alternaࢢvely, the procedure could stop considering alternaࢢves prematurely and
return the best soluࢢon found thus far. Such an any-ࢢme extension of EXPLORE is
useful in cases where an exhausࢢve search would take too long and we are will-
ing to sacrifice the opࢢmality of the produced change set in favour of geࢰng a
change set faster. We therefore consider a variant of EXPLORE which in addiࢢon
to its usual arguments takes a value timeout corresponding to the me-pointࢢ a[er
which EXPLORE stops backtracking on its trace (line 24), effecࢢvely extending the
guard to |trace| > 0∧runtime ≥ timeoutwhere runtime represents the number
of me-unitsࢢ that passed since the procedure was started. The original correctness
criterion can then be generalised to

lim
timeout→∞

(EXPLORE(ε, δp, timeout)) ∈ argmin
δ
ĉost(ε, δ,H) (8.25)

subject to ĉost(ε, δ,H) ≤ MAX_COST.

Given a finite value for timeout, it cannot be guaranteed that EXPLORE will re-
turn an opࢢmal change set. In such a case the direcࢢon of exploraࢢon becomes a de-
termining factor for the quality of the result. Heurisࢢcs can be used to improve the
result quality by guiding the direcࢢon of exploraࢢon based on background knowl-
edge of the search space. Specifically, the getCandidate procedure in EXPAND im-
poses a total ordering ≺ on the available candidates at every node. When the pro-
cedure plans to perform a spawn acࢢon, both labour and upkeep costs are acrued.
When instead an exisࢢng CU is used, labour costs are eliminated. If a previously-
expanded node can be used, all costs are eliminated. Therefore, the total order

Spawn from TFs ≺ Reuse CUs ≺ Reuse nodes (8.26)

would prioriࢢse cheap opࢢons before consideringmore expensive ones. A perturba-
onࢢ δp can provide further guidance by encoding cases in which CUs are destroyed.
If the associated transformaࢢon was not removed, the ordering of candidate trans-
formaࢢons can consider this transformaࢢon first, as it will likely provide an iniࢢal
soluࢢon fast. Finally, addiࢢonal heurisࢢcs taking into account properࢢes of trans-
formaࢢons and CUs can be considered, for example their cost, tags, or idenࢢfiers
which imply freshness.

The any-ࢢme extension of EXPLORE also allows for the inclusion of its own run-
meࢢ into the configuraࢢon cycle. The length of the horizonH is used to determine
accumulated upkeep during the stable interval. In the any-ࢢme version, we can con-
sider a configuraࢡon cycle length

H+ = Hreview +Hstable (8.27)
= timeout+H (8.28)

instead, which fixes the configuraࢢon cycle to a regular pa�ern.

127

8. Reasoning about perturbaࢢons

8.6 Summary

In this chapter, we considered the case wherein a stream reasoning system is sub-
jected to unexpected change sets, called perturbaࢢons. The ability to respond to
a perturbaࢢon with a correcࢢng change set is important in order for such a system
to be robust. Likewise, someࢢmes transformaࢢons that are be�er than the ones
instanࢢated at that meࢢ become available. In those cases, the system needs to be
able to leverage the newly available transformaࢢons to reduce its computaࢢonal
resource usage. Therefore, an algorithm for finding opࢢmal updates was presented
in the context of a configuraࢢon life-cycle consisࢢng of recurring review and stable
intervals. The algorithm can be extended to an any-ࢢme algorithm, allowing the
underlying system to addiࢢonally plan computaࢢon resource usage towards pertur-
baࢢon handling. This allows for a trade-off between finding an opࢢmal soluࢢon and
saving computaࢢonal resources that would be expended finding such an opࢢmal
soluࢢon.

128

Part IV

APPLIED STREAM REASONING

Chapter

9
DyKnow-ROS

T hrough the integraࢢon of the previously-presented techniques, an adap-
veࢢ stream reasoning framework can be constructed. In this chapter an
instance of such a stream reasoning framework called DyKnow-ROS is pre-

sented, which provides a realisaࢢon of the DyKnowmodel integrated with ROS. The
choice of implementaࢢon is however general and could be applied to other support-
ing so[ware. The chapter presents an overview of the so[ware architecture and
services by providing concrete realisaࢢons of the abstract components presented
previously. Finally, the framework is empirically tested tomeasure overhead cost re-
sulࢢng from the indirecࢢon induced by DyKnow-ROS. This chapter uses and extends
materials that primarily focus on extending ROS with reconfigurable subscripࢢons
(de Leng and Heintz, 2016b), and materials that focus on semanࢢc subscripࢢons for
ROS (de Leng and Heintz, 2017).

9.1 Introducࢢon

The DyKnow-ROS stream reasoning framework is an extension to ROS (Quigley et al.,
2009), which is a popular robot middleware used frequently in both industry and
academia. DyKnow-ROS is capable of reasoning about which streams to subscribe
to and can reconfigure the system during run-ࢢme to for example generate streams
required for spaࢢo-temporal reasoning tasks.

ROS allows developers to write implementaࢢons as ROS nodes, which can com-
municate with each other by using services and topics. These nodes are combined
into packages, of which many have been made publicly available. Topics can be
used to connect nodes to establish a flow of informaࢢon, which makes them the
implementaࢢon counterpart to the concept of channels capable of transporࢢng in-
formaࢢon streams. Topics are adverࢢsed by publishers and can be subscribed to by
other nodes using subscribers, such that a single topic can have mulࢢple publish-

131

9. DyKnow-ROS

Fluent

Observation

Interpretation

Knowledge

Verdict

Shroud

Slow

Fast

Low
abstraction

High
abstraction

Stream reasoning pipeline

Response

Figure 9.1: The stream reasoning waterfall model with the components within the
stream reasoning pipeline range highlighted.

ers and subscribers. Services allow nodes to adverࢢse funcࢢonality to other nodes,
which can then be requested by these nodes. Services (opࢢonally) take a number
of arguments and can (opࢢonally) return a result to the service caller. ROS uses
Node Handles to expose its API to developers of nodes, which packages such as Im-
age Transport augment to support efficient image transportaࢢon. Where standard
nodes correspond to individual processes when run, nodelets are run on threads
within aNodeletManager node. Communicaࢢon between nodelets is consequently
generally more efficient than communicaࢢon between nodes. Further, nodes are
instanࢢated either manually or through a launch file, whereas nodelets can also be
instanࢢated using the Nodelet Manager’s services. This makes it possible for pro-
grams to instanࢢate other programs at will.

In pracࢢce, most ROS-based systems rely on someࢢmes large collecࢢons of re-
peatedly nested launch files to operate. It may also be necessary for a user to run
a number of launch files in a parࢢcular sequence in order for a system to funcࢢon
properly. It can be quite challenging to make changes to such files to accommodate
new components, or to change configuraࢢons as part of a set-up phase. Clearly a
lot of manual configuraࢢons may be necessary to operate a ROS-based system. This
may work for small systems, but quickly becomes infeasible as systems grow to for
example hundreds of robots. Depending on the applicaࢢon, operator errors can be
very expensive. By applying the DyKnow model to ROS, DyKnow can benefit from
the underlying architecture provided by ROS, while providing ROS with adapࢢve re-
configurability. We consider this to be an extension of core ROS features. In the
performance evaluaࢢon we show that the induced overhead cost is minimal.

In this chapter, we use ROS to realise the DyKnow model and thereby realise an
adapࢢve spaࢢo-temporal stream reasoning applicaࢢon. The choice of ROS is based
on the fact that it closely follows the DyKnow model, but other middleware could
be used as well.

132

9.2. DyKnow-ROS

9.2 DyKnow-ROS

DyKnow-ROS is a concrete realisaࢢon of the DyKnow model based on the ROS mid-
dleware. Figure 9.1 shows the stream reasoning pipeline adopted by DyKnow-ROS
highlighted. In this chapter, we focus on the integraࢢon of the various steps into a
single stream reasoning framework. In parࢢcular, given a formula and a semanࢢc
interpretaࢢon of its symbols, the full system should be able to automaࢢcally gen-
erate a state stream over which it then evaluates the provided formula. Once the
formula has been evaluated, the computaࢢonal environment should automaࢢcally
be cleaned up. This combined funcࢢonality requires implementaࢢons for a stream
reasoning manager, a stream reasoning engine, a computaࢡonal environment, and
their connecࢢng interfaces.

While ROS provides most of the transportaࢢon funcࢢonality needed to support
this type of stream reasoning, its service-based interface lacks control over the way
nodelets in ROS are connected. The first step towards DyKnow-ROS is therefore
to extend this interface with addiࢢonal services. By default, the nodelet manager
provides the following services:

• NodeletLoad: Given a nodelet name and type, the Nodelet Manager instan-
atesࢢ a nodelet of that type, where the type is a reference to the nodelet’s
source.

• NodeletUnload: Given a nodelet name, the Nodelet Manager destroys that
nodelet. A nodelet cannot unload itself.

• NodeletList: Returns an array of nodelet names.

Nodelets can thus be added, removed, and enumerated using the Nodelet Man-
ager’s services. These services are prerequisites to the spawn and destroy acࢢons
formally defined as part of the DyKnow model. Neither the Nodelet Manager nor
nodelets however provide services that allow for subscribers and publishers to be
changed at run-ࢢme. Developers are expected to specify configuraࢢons manually
using launch files instead — ROS was not designed for the purpose of automaࢢc
(re)configuraࢢon.

To extend ROS with run-ࢢme reconfiguraࢢon services for subscribers and pub-
lishers in nodelets, different approaches could be taken. The architecture of
DyKnow-ROS was chosen based on three factors: ease of adopࢢon, ease of use, and
minimal computaࢢonal overhead. DyKnow-ROS does not require a custom version
of ROS, but instead provides an opࢢonal extension through the use of add-on com-
ponents that build on top of nodelets. This extension is collecࢢvely referred to as
a nodelet proxy. This allows developers to use DyKnow-ROS in some parts of their
system but not others, if they so choose. Where DyKnow-ROS replaces standard
ROS components, it sࢢcks as closely to the original interface as possible and tries
to limit required changes to namespace changes. This was done to make it easy to
switch from standard ROS nodelets to DyKnow-ROS CUs while retaining a familiar

133

9. DyKnow-ROS

interface. Lastly, DyKnow-ROS inevitably induces overhead computaࢢonal costs by
virtue of being an add-on layer on top of ROS. It seeks to keep this overhead mini-
mal by keeping it relaࢢve to the degree of control granted to DyKnow-ROS. Themore
extra features from DyKnow-ROS are used, the larger the overhead.

9.3 The nodelet proxy

The flexibility offered by the Nodelet Manager makes it an excellent tool for dynam-
ically reconfiguring a ROS system. As menࢢoned earlier, the services offered by a
Nodelet Manager are limited to the loading and unloading of nodelets. DyKnow-
ROS therefore complements these services with the help of persistent nodelet prox-
ies that augment the ROS Node Handle. The persistent nodelet proxy is the key
component that allows DyKnow-ROS to exert a greater control over the augmented
nodelets, which are realisaࢢons of CUs. A developer establishes a nodelet proxy by
creaࢢng a DyKnow variant of the nodelet handle instead of the usual ROS nodelet
handle. Recall that the ROS nodelet handle serves as an API that can be used to
call ROS funcࢢonality, such as creaࢢng publishers and subscribers. The DyKnow-
ROS node handle instead delegates these calls to the nodelet proxy, which either
delegates to the ROS node handle or to custom DyKnow variants depending on the
funcࢢonality requested. Specifically, DyKnow-ROS provides its own publishers and
subscribers that can be used in the same way as ordinary ROS publishers and sub-
scribers. The key difference between the two lies in the indirecࢢon imposed by
DyKnow-ROS. ROS publishers and subscribers connect directly to topics; a subscriber
can name a topic and a callback method, whereas a publisher can name a topic and
amessage to be sent. The DyKnow-ROS variants instead use ports, which are in turn
connected to a topic. The nodelet proxy maintains a mapping between ports and
topics, and allows for this mapping to change as the result of services that are of-
fered by the proxy. This way, ports can be associated with different topics over ,meࢢ
which allows for run-ࢢme reconfiguraࢢon to occur.

To illustrate the extension, a schemaࢢc of the nodelet proxy and its relaࢢon to
a host nodelet is shown in Figure 9.2. The nodelet implementaࢢon by a developer
is indicated by NodeletImpl, which extends ros::Nodelet. The developer is able to
create a dyknow::NodeHandle, which takes a ros::NodeHandle as an argument. The
dyknow::NodeHandle extends the interface provided by ros::NodeHandle, overrid-
ing some of its funcࢢonality. When a developer creates subscripࢢons or publishers,
DyKnow-ROS provides dyknow::Subscriber and dyknow::Publisher handles. These
are run-ࢢme reconfigurable version of the ros::Subscriber and ros::Publisher. A CU
is also able to set a callback for whenever it is reconfigured. This can be useful when
a reconfiguraࢢon requires acࢢons to be taken by a nodelet, for example to noࢢfy
some part of the system of its new subscripࢢons and publishers. Further, staࢢsࢢcs
such as the number of reconfiguraࢢons are maintained and made available.

134

9.3. The nodelet proxy

Figure 9.2: UML diagram showing the DyKnow nodelet implementaࢢon and its re-
laࢢon to standard ROS components.

Lisࢢng 9.1: ROS echo example
1 void Echo::onInit() {
2 ros::NodeHandle nh = getMTPrivateNodeHandle();
3 sub = nh.subscribe("in", 1000, &Echo::callback , this);
4 pub = nh.advertise <MessageType >("out", 1000);
5 }
6

7 void Echo::callback(const MessageType::ConstPtr& msg) {
8 pub.publish(msg);
9 }

The proxy adds addiࢢonal services to control the mappings between topics and
ports. It can also list for a given nodelet what topics are connected to which ports
at the meࢢ of the service call.

• GetConfig: Returns a list of ports and associated topics for the nodelet the
proxy is associated with.

• SetConfig: Takes a list of ports and topics to be connected for the nodelet the
proxy is associated with.

• GetStaࢢsࢢcs: Returns nodelet staࢢsࢢcs in terms of upࢢme, the number of
reconfiguraࢢons performed, and the number of messages sent or received
for each port.

These addiࢢonal services are edࢢ to individual CUs and allow external components
to keep track of and modify how CUs are connected to other CUs. With the addiࢢon
of these services, the lack of configuraࢢon control is resolved.

Example 9.1 (A simple echo nodelet). To illustrate the subtle differences between
standard ROS nodelets and DyKnow-ROS nodelets, we consider a simple echo unit.

135

9. DyKnow-ROS

Lisࢢng 9.2: DyKnow-ROS echo example
1 void Echo::onInit() {
2 nh = dyknow::NodeHandle(getMTPrivateNodeHandle());
3 sub = nh.subscribe("in", 1000, &Echo::callback , this);
4 pub = nh.advertise <MessageType >("out", 1000);
5 }
6

7 void Echo::callback(const MessageType::ConstPtr& msg) {
8 pub.publish(msg);
9 }

Echo units can receivemessages, which they then immediately forward, without per-
forming any kind of processing on them. As such, they are one of the smallest exam-
ple nodelets. Lisࢡng 9.1 shows a ROS implementaࢡon of an echo unit. We can use a
local ros::NodeHandle to create a ros::Subscriber and ros::Publisher. The subscriber
is connected to the ‘in’ topic, with a callback to the ‘callback’ method. Anyࢡme a
message arrives, this method is called. Since we are using an echo unit, the message
is immediately published on the ‘out’ topic using the publisher.

Switching to DyKnow-ROS requires some changes as shown in Lisࢡng 9.2. Cre-
aࢡng a dyknow::NodeHandle results in the creaࢡon of a proxy behind the scenes.
When all node handles go out of scope, so does the proxy, so we store the node
handle as a member variable. The reason for requiring the proxy to be persistent is
because it hosts the reconfiguraࢡon services — if it goes out of scope, the services
become unavailable. The remainder of the code is the same, although instead of ROS
subscribers and publishers, we get a dyknow::Subscriber and a dyknow::Publisher.
The subscriber uses the ‘in’ port; we do not control what topic it is connected to. The
same holds for the producer, which is connected to the ‘out’ port.

The difference between the two code snippets is thus minimal from the perspec-
veࢡ of the developer. However, while the syntax is largely the same, the semanࢡcs
have slightly changed. As always, a developer should be aware of these underlying
mechanisms.

9.4 Management of stream processing

The stream reasoning manager is responsible for seࢰng up and maintaining config-
uraࢢons in support of stream reasoning. It interacts with the stream reasoning en-
gine and the computaࢢonal environment, and is implemented in DyKnow-ROS as a
node — as is the stream reasoning engine. The manager can interact with the com-
putaࢢonal environment with the help of the proxy services. Likewise, the stream
reasoning engine provides services which are presented later. Both sets of services
are used by the manager, which in turn provides its own set of services acࢢng as a
client-facing interface. The services provided by the stream reasoning manager are:

136

9.4. Management of stream processing

• AddTarget: Given a target specificaࢢon, store the specificaࢢon under the as-
sociated label. Specificaࢢons can be overridden.

• RemoveTarget: Given a label, remove the target specificaࢢon with that label,
if any.

• AddTransformaࢢon: Given a transformaࢢon specificaࢢon, store the specifi-
caࢢon under the associated label. Specificaࢢons can be overridden.

• RemoveTransformaࢢon: Given a label, remove the transformaࢢon specifica-
onࢢ with that label, if any.

• Spawn: Given a transformaࢢon label and name, instanࢢate a nodelet of that
transformaࢢon type with the supplied name. Nodelets can be protected from
unloading. Uses NodeletLoad.

• Destroy: Given a name, destroy the nodelet with that name if it exists and if
it is not protected. An unprotected nodelet can destroy itself this way. Uses
NodeletUnload.

• GetModel: Returns a lisࢢng of all running DyKnow nodelets and their port-
topic connecࢢons. Also returns all stored transformaࢢon specificaࢢons.

The manager provides supporࢢng services for changing configuraࢢons as well as
acquiring a representaࢢon of the current environment. The la�er service is useful
for taking configuraࢢon snapshots, for example for the purpose of represenࢢng the
environment in a client.

We can subdivide the tasks of the stream reasoningmanager into two parts. The
first is to keep track of the environment, i.e. what its current state is, what TFs exist,
what CUs exist, etc. This basically boils down to a storage task. The second is to
enforce the configuraࢢon life cycle, by regularly updaࢢng the configuraࢢon. This is
the daemon component of the manager. We consider both tasks in more detail.

Representaࢢon of configuraࢢons

The stream reasoning manager keeps track of the state of the computaࢢonal envi-
ronment and provides services that can be used to change this environment. The
DyKnow model specifies an ontology for represenࢢng an environment with a well-
structured grammar. DyKnow-ROS makes use of this ontology to not just represent
the environment, but also as a grammar for specificaࢢons of transformaࢢons and
targets. Since DyKnow-ROS is a concrete realisaࢢon of the DyKnow model, it ex-
tends the DyKnow ontology to capture ROS-specifics. For example, whereas the Dy-
Know ontology uses the Channel concept, DyKnow-ROS refers to theTopic concept.
The la�er is a specialisaࢢon of the former, and enforces a well-defined grammar for
topics as defined by the ROS specificaࢢons. Figure 7.1 in the previous chapter illus-
trated the concept hierarchy of the DyKnow ontology, which is listed in Appendix A.
We briefly consider its extension to DyKnow-ROS here.

137

9. DyKnow-ROS

Service calls to theAddTransformation service provided by the stream reasoning
manager require a uniquely-labeled transformaࢢon specificaࢢon. Recall that the
dyknow:Transformation concept is defined in DL as

Transformation ⊑∃hasName.xsd:Name (9.1)
⊓∃hasCostModel.LabourCostModel,

where
LabourCostModel ⊑ CostModel. (9.2)

DyKnow-ROSuses the specialised conceptdyknowros:ROSTransformation such that
ROSTransformation ⊑ Transformation. Concretely, the ROSTransformation is de-
fined in DL as

ROSTransformation ⊑Transformation (9.3)
⊓=1 hasSource.xsd:anyURI
⊓∃hasPort.Port,

where

hasInPort ⊑ hasPort, (9.4)
hasOutPort ⊑ hasPort. (9.5)

This means that a ROSTransformation has at least one port, either an input or an
output port. Furthermore, it has exactly one source, which is represented by aURI to
a nodelet binary. This makes it possible for themanager to dynamically load specific
nodelet implementaࢢons. Lastly, ports can be annotated with tags describing the
semanࢢcs of the data flowing through those ports and the channels they connect
to. Lisࢢng 9.3 shows an example of a transformaࢢon specificaࢢon in DyKnow-ROS.

Lisࢢng 9.3: Example transformaࢢon specificaࢢon in Turtle syntax
1 :undistort a :ROSTransformation ;
2 :hasType "nodelet" ;
3 :hasSource "package/Undistort" ;
4 :hasParam [
5 a :Parameter ;
6 :hasName "configPath" ;
7 :hasType "string" ;
8 :hasValue "/path/to/configuration/cam1/" .
9] ;
10 :hasPort [
11 a :InPort ;
12 :hasName "rawCamera" ;
13 :hasTag [
14 a :Tag ;
15 :hasValue "RawRGB(cam1)" .
16] .
17] ;
18 :hasPort [
19 a :OutPort ;

138

9.4. Management of stream processing

20 :hasName "undist" ;
21 :hasTag [
22 a :Tag ;
23 :hasValue "Undistorted(cam1)" .
24] .
25] ;
26 rdfs:label "Undistort(cam1)" .

Service calls to the AddTarget service require a target specificaࢢon. Similar to
transformaࢢon specificaࢢons, target specificaࢢons make use of the dyknow:Target
concept extended to dyknowros:ROSTarget for ROS. Targets are composed of a la-
bel, channel, and tag. In the case of ROS, the channel corresponds to a topic, i.e.

ROSTarget ⊑Target (9.6)
⊓∃hasTopic.Topic.

where dyknowros:Topic is a specialisaࢢon of dyknow:Channel. Topics use a stan-
dardised naming convenࢢon enforced by ROS which is similar to the way paths are
represented in Unix-based systems. Lisࢢng 9.4 shows an example target specifica-
onࢢ in DyKnow-ROS.

Lisࢢng 9.4: Example target specificaࢢon in Turtle syntax
1 :undistortSub a :ROSTarget ;
2 :hasTopicName "/result"^^rosTopic ;
3 :hasTag [
4 a :Tag ;
5 :hasValue "Undistorted(cam1)" .
6] .
7 rdfs:label "undistortSub" .

This leaves us with CUs. While the service calls do not require CUs as arguments,
some do return them as part of the service response. Therefore, they too have a
DyKnow-ROS specificaࢢon. Since nodelets act as CUs in DyKnow-ROS, we simply get

Nodelet ⊑ ComputationUnit (9.7)

for the sake of completeness.

Example 9.2 (Transformaࢢon and target specificaࢢons in DyKnow-ROS). Consider a
smart lab equipped with four similar ceiling cameras. In this example, the cameras
are using fish-eye lenses, and their posiࢡons allow them to cover most of the lab’s
ground surface area with some overlap. A transformaࢡon could be applied to the
image streams from the cameras if they are first undistorted.

A subscripࢡon to an undistorted stream froma camera called ‘cam1’ is illustrated
in Lisࢡng 9.4 as a target specificaࢡon. The target is labelled undistortSub and repre-
sents the desire for a stream to be produced on the /result topic with the semanࢡc
descripࢡon Undistorted(cam1). The semanࢡc descripࢡon is part of the tagging lan-
guage and intended to represent an undistorted image stream originaࢡng from the
‘cam1’ camera.

139

9. DyKnow-ROS

A transformaࢡon thatmight produce a suitable stream is illustrated in Lisࢡng 9.3.
It represents a nodelet for which the binary is referred to in package/Undistort. Note
that this binarymakes no reference to a parࢡcular camera. This is because the trans-
formaࢡon combined the binary with a configuraࢡon for the ‘cam1’ camera. It does
so by providing the binary with a ‘configPath’ parameter, which the binary under-
stands to be the locaࢡon of a lens model file specific to the ‘cam1’ camera. Con-
sequently, the transformaࢡon is labelled Undistort(cam1) to illustrate it is specific
to the ‘cam1’ camera eventhough the binary it uses is not. The transformaࢡon has
two ports; one input port expecࢡng raw RGB images from the ‘cam1’ camera, and
one output port producing undistorted versions of those images. The transformaࢡon
is therefore a suitable candidate for saࢡsfying the target, assuming that its depen-
dency on raw RGB images can be resolved.

Both transformaࢢons and targets make use of tags, which are used for semanࢢc
annotaࢢons. The focus of this work was however not on the development of an
annotaࢢon language, but rather howone could be used in the context of theDyKnow
model. Despite this, a tagging language is necessary for the DyKnow-ROS system to
work. Therefore a simple tagging language is used when tags are explicitly specified,
with the understanding that a be�er tagging language can replace this placeholder
language in the future.

Configuraࢢon life-cycle daemon

The second task of the stream reasoning manager is to act as a daemon by reconfig-
uring the DyKnow-ROS configuraࢢon in accordance with the configuraࢢon life-cycle.
This requires the realisaࢢon of Algorithm 8.1 from the previous chapter in a ROS
environment. Addiࢢonally, funcࢢonality is needed for the observaࢢon of computa-
onalࢢ resource usage and its effect on the cost esࢢmators.

The EXPLORE procedure and its dependencies take a computaࢢonal environ-
ment ε and perturbaࢢon δp, and subsequently construct an opࢢmal change set δ∗

with the help of the spawn, connect↓, connect↑ and destroy acࢢons. In DyKnow-
ROS, the environment is available and monitored by the stream reasoning manager.
Perturbaࢢons can be detected as well through the service calls that would qualify as
perturbaࢢons. For example, if a target is added, this is achieved to a service call to
the manager, thereby implicitly noࢢfying the manager of a perturbaࢢon. As such, ε
and δ∗ have counterparts in DyKnow-ROS. The same holds for the aforemenࢢoned
acࢢonswhichmake up δ∗, as each of themcan be performedusing the services avail-
able to the stream reasoning manager. The applicaࢢon of an opࢢmal change set is
then equivalent to a sequence of service calls. The EXPLORE procedure is deviated
from in two ways. Firstly, since ROS allows nodelets to have mulࢢple ros::Producer
instances, a CU can have mulࢢple outputs. In such a case, the CU is said to be an
instance of mulࢢple transformaࢢons which take the same inputs but produce dif-
ferent outputs. Secondly, CUs can be designated ‘protected’, in which case they are

140

9.5. Stream reasoning support

never destroyed by a resulࢢng change set. This will cause the procedure to find a
best change set given that the protected CUs are kept around.

Computaࢢonal resource usage is measured in terms of CPU ,meࢢ specifi-
cally by combining utime and stime. Both values are obtained by reading from
/proc/$tid/statm on Linux for the corresponding thread idenࢢfier. For labour,
we measure the CPU meࢢ associated with creaࢢng new CUs. For upkeep, the CPU
meࢢ per wall meࢢ minute is accumulated by measuring the CPU mesࢢ of individual
callbacks from dyknow::Subscriber and dyknow::Timer objects. The former is useful
for CUs that react to new inputs, whereas the other is useful for CUs that run at spe-
cific meࢢ intervals. Upkeep is measured relaࢢve to a transformaࢢons, so if mulࢢple
CUs exist for the same transformaࢢon, the upkeep would be the average CPU meࢢ
measured over all of those CUs.

Finally, the esࢢmators need to be updated using these observaࢢons. Since the
focus of here was not on precise esࢢmaࢢons, a simple placeholder was chosen to
fulfil the requirement of having esࢢmators. Future work could produce be�er mod-
els of CPU usage. In the current state, the predicted CPU usage is simply an average
over the observed CPU usage. The cost models for labour and upkeep are referred
to as

LabourCostModel(historicalAverageLabour), (9.8)
UpkeepCostModel(historicalAverageUpkeep), (9.9)

in the DyKnow-ROS ontology extension.

9.5 Stream reasoning support

Reasoning over streams is performed by the stream reasoning engine in DyKnow.
This component takes as its input formulas, state streams, and grounding informa-
onࢢ for the purpose of progression of the formulas over the provided data. Formulas
can be part of a formula group, which represents a collecࢢon of formulas that are to
be evaluated simultaneously over a single state stream. The connecࢢng informaࢢon
grounds the symbols in logical formulas to specific values in the state stream.

The stream reasoning engine provides a number of services that control the eval-
uaࢢon of formulas, as shown below.

• CreateGroup: Creates a formula group with an opࢢonally provided label and
result topic. If no label or result topic are provided, DyKnow generates them
instead.

• DestroyGroup: Destroys a formula group by its label. This stops the progres-
sion of formulas in the group.

• StartGroup: Acࢢvates progression for a formula group idenࢢfied by name.

• StopGroup: Stops the progression for a formula group by name. Cannot be
resumed.

141

9. DyKnow-ROS

• AddFormula: Adds a provided formula to a formula group idenࢢfied by its
label. Yields an idenࢢfier (index) for the formula.

• RemoveFormula: Removes a formula from a formula group idenࢢfied by the
group’s label and formula’s index. This can be done while a formula is being
progressed.

Each group in the stream reasoning engine is configured with parameters such
as MAX_NODES as well as policy informaࢢon such as the stream frequency, which
determines how far apart me-pointsࢢ are in real .meࢢ Whenever a formula (includ-
ing its syntacࢢc or semanࢢc grounding) is added to a group, a new formula graph
consisࢢng of a single node for the added formula is created. Starࢢng a group will
result in the generaࢢon of a stream containing the combined proposiࢢonal informa-
onࢢ required for evaluaࢢng the formulas in the group, as well as the generaࢢon of a
group-shared formula cache. This will also lock the group, meaning it can no longer
be altered without reseࢰng the group in its enࢢrety to its iniࢢal state. A group thus
makes it possible to start evaluaࢢng a logical specificaࢢon composed of potenࢢally
many formulas using the same starࢢng point. Once started, these graphs will grow
depending on the choice of parameters and the uncertainty in the stream used to
evaluate the formula. A[er each progressed state, the progressor will emit a verdict
status for each formula graph in the group.

9.6 Empirical evaluaࢢon

The proxy introduced by DyKnow-ROS potenࢢally introduces an overhead in
throughput. Measuring the overhead gives insights into the cost of adopࢢng
DyKnow-ROS.

Topic-based communicaࢢon between nodelets is assumed to be faster than be-
tween nodes because nodelets are part of the same process and nodes are not.
In this experiment, we use both as benchmarks for comparison. The computa-
onࢢ graph is a linear sequence of connected node(let)s such that each intermediate
node(let) receives from a predecessor node(let) and immediately publishes to a suc-
cessor node(let). The source produces messages containing current me-stampsࢢ at
a fixed frequency f . Every (intermediate) receiver checks that me-stampࢢ against
the arrival meࢢ and reports the meࢢ difference. The number of node(let)s n then
corresponds to the number of message hops.

The performance results are shown in Figure 9.3, where the performance graph
contrasts the number of hops to the average me-to-arrivalࢢ for messages sent along
the node(let) chain. The source produced 1,000 me-stampedࢢ messages at a fre-
quency of f = 5Hz, which every receiver compared to the local meࢢ upon arrival
prior to forwarding the message. The graph illustrates the meࢢ results for DyKnow-
ROS nodelets and ROS nodelets, as well as ROS nodes. As expected, nodes aremuch
slower than nodelets because they have to communicate between processes. The
results for nodes put into perspecࢢve the overhead we can see for DyKnow-ROS

142

9.7. Summary

Figure 9.3: Performance graph showing the different me-to-arrivalsࢢ for messages
relaࢢve to the number of hops for a linear chain.

nodelets when compared against standard ROS nodelets, which grows slowly to
about 0.2ms a[er n = 50 hops. We may therefore conclude that the overhead
induced by DyKnow-ROS is negligible.

9.7 Summary

This chapter presented a realisaࢢon of the DyKnowmodel with the Robot Operaࢢng
System (ROS), resulࢢng in the DyKnow-ROS system. An extension of the services
provided by ROS is presented to support the DyKnow model. This was followed
by a concrete representaࢢon of enࢢࢢes in the DyKnow model with the help of the
DyKnow ontology extended for ROS. The configuraࢢon life cycle was realised by a
daemon that uses CPU meࢢ as the computaࢢonal resource of choice in DyKnow-
ROS, and some simple esࢢmators for labour and upkeep were presented. Finally,
the overhead induced by the extensions to ROS was measured and shown to be
negligible.

143

Chapter

10
Case-studies

C ase-studies have been performed to show the applicaࢢon of the DyKnow-
ROS stream reasoning framework as a proof of concept. These case-studies
focus on parࢢcular aspects of the DyKnow-ROS framework, which in turn

translate to the stream reasoning waterfall model.

10.1 Introducࢢon

Case-studies are useful to show the funcࢢoning of an informaࢢon system in a prac-
calࢢ seࢰng. In this chapter, we focus primarily on the visualisaࢢon and adapࢢve
reconfiguraࢢon funcࢢonality of the DyKnow-ROS stream reasoning framework. The
idea is to show examples of reaching verdicts which lead to a system response, as
shown in Figure 10.1. Such a response can be internal, for example by changing the
computaࢢonal environment, or external, for example by causing an agent to act.
The la�er case — external responses — have been le[outside the scope of this
dissertaࢢon due to the added complexity of aspects such as control.

10.2 Interacࢢve visualisaࢢon

ROS provides a wide array of visualisaࢢon tools using a Qt-based framework. For
the visualisaࢢon of nodes and topics, rqt_graph provides a graphical user interface
that communicates with the ROS master and produces a DOT graph. While this ap-
proach works great for nodes, it fails to detect nodelets as they are threads within
the Nodelet Manager node. We therefore forked rqt_graph and replaced the com-
municaࢢon with the ROS master to instead query the stream reasoning manager
in DyKnow-ROS for its configuraࢢon model. Since ROS does not take run-ࢢme re-
configuraࢢon into consideraࢢon, we also had to switch from the manual refresh in

145

10. Case-studies

Fluent

Observation

Interpretation

Knowledge

Verdict

Shroud

Slow

Fast

Low
abstraction

High
abstraction

Stream reasoning pipeline

Response

Figure 10.1: The stream reasoning waterfall model with the agent response to ver-
dicts highlighted.

Figure 10.2: Screenshot of the interacࢢve visualisaࢢon tool.

rqt_graph to a frequency-based refresh. This was combined with a control widget
to allow a user to interact with the stream reasoning manager.

A screenshot of the tool at work is shown in Figure 10.2, where the bo�om le[
camera view was produced by the rqt_image_viewwidget. The graph shown in the
centre panel was created using the control panel on the le[. Ovals in the centre
graph correspond to nodelets, and rectangles correspond to topics. The bo�om-
right image view shows the colour video stream. Since no changes were made to
the rqt_graph interface itself, this representaࢢon is natural to ROS developers.

The control panel on the le[supports a number of features based on the services
provided by DyKnow-ROS. The acࢡve tab lists the currently acࢢve CUs together with
their associated transformaࢢons, the number of input ports, and the number of out-

146

10.3. Collaboraࢢve tracking of a ball

Figure 10.3: Humanoid lab (le[) equipped with four ceiling cameras (right).

put ports. A library tab offers a lisࢢng of transformaࢢon specificaࢢons by label, and
allows a user to import or delete transformaࢢons. CUs can be instanࢢated through
the panel as well with the create panel; the user provides a name for the nodelet to
be created and a type in terms of transformaࢢon specificaࢢons. The panel shown
is the connect panel, where either a combinaࢢon of two nodelets and ports are se-
lected to be connected with a topic decided by the tool, or a single port and topic
can be connected where the user gets to specify the topic name manually.

The visualisaࢢon tool gives access to all of the stream reasoning manager’s ser-
vices, offering an interface that can be managed by human operators. As a result,
it offers the funcࢢonality expected by ROS developers as well as some extra control
over the configuraࢢon during run-ࢢme.

10.3 Collaboraࢢve tracking of a ball

This case study focuses on two NAO robots, called Piff and Puff (Swedish for Chip
’n Dale). Both Piff and Puff are capable of running a processing pipeline that takes
in sensor informaࢢon and produces ball coordinates relaࢢve to the soccer field. For
the case study, we were interested in situaࢢons where semanࢢc subscripࢢons could
provide added value to Piff in performing its task of tracking the ball. We consider
two cases; 1) Piff is tracking the ball but something goes wrong; and 2) Piff is tracking
the ball and Puff offers to help for a while. Piff and Puff are assumed to be part of
the same computaࢢonal environment; a mulࢢ-agent system approach is beyond the
scope of this dissertaࢢon. The operaࢢonal environment is provided by a humanoid
lab at Linköping University, which is organised to support so[ware development for
NAO robots.

The humanoid lab is equipped with a green felt RoboCup soccer field as shown
in Figure 10.3 on the le[. As shown on the right, there are four cameras a�ached to
the ceiling over the field. The ceiling cameras are AXIS M3005-V network cameras
with a 118° angle of view, producing 1920× 1080 images. These images can be used
for accurate posiࢢoning of objects on the field. The coordinate system uses one of

147

10. Case-studies

Figure 10.4: A So[Bank Roboࢢcs NAO V4 robot.

the field corners as its origin, relaࢢve to which the coordinates of other objects such
as balls or robots are determined.

Piff and Puff are So[bank Roboࢢcs NAO humanoid robot pla�orms, of which an
example is shown in Figure 10.4. Standing upright, they are 58cm tall and weigh
5.4kg. With normal use, the ba�ery provides 90 minutes of autonomy. The head
houses two HD cameras producing 1280 × 960 images at 30 FPS in YUV422 colour
space. One is located in the forehead and faces forward; the other is located in
the ‘mouth’ area and faces downwards. The various joints provide pose informa-
onࢢ to the system through joint posiࢢon sensors. The NAO comes equipped with
an Intel Atom Z530 processor running at 1.6GHz, with 1GB of RAM, 2GB of Flash
memory, and an 8GB Micro SDHC. The system runs the Ubuntu 14.04 LTS operaࢢng
systemwith the NAOqi programming framework. Our NAO pla�orms use a publicly-
available ROS driver13 exposing the NAOqi API through ROS. More technical details
can be found in the NAO technical guide14.

13The NAO packages for ROS are documented at http://wiki.ros.org/nao (Last accessed:
September 10th, 2019)

14The NAO technical documentaࢢon is available at http://doc.aldebaran.com (Last accessed:
September 10th, 2019)

148

http://wiki.ros.org/nao
http://doc.aldebaran.com

10.3. Collaboraࢢve tracking of a ball

Figure 10.5: Piff and Puff’s transformaࢢon pipeline conceptually showing the trans-
formaࢢons from camera images to ball posiࢢons.

Recovery from failures

We start with a scenario in which a user wants to perform perimeter monitoring.
That is, check whether a ball ‘breaches’ the perimeter indicated by the centre circle
on the football field and, if so, noࢢfy the user. While a toy scenario, it allows us
to consider the full DyKnow-ROS system’s operaࢢons. The user makes no assump-
onsࢢ about what equipment exists in the system; only that there is a DyKnow-ROS
instance which he or she is able to interact with. Neither does the user make any
assumpࢢons about the availability of equipment over .meࢢ In a sense this is a nat-
ural behaviour for a non-expert user. The user queries a system’s services and the
system tries to meet the user’s expectaࢢons to the best of its abiliࢢes. The system
further seeks to minimise the cost it incurs while saࢢsfying the user’s needs. The
first step for a user is then to describe those needs in some language expression.
DyKnow-ROS uses temporal-logic formulas for this purpose, so the user’s inquiry is
described by a wff

G[0,1440] [InsideCircle(ball)] , (10.1)

meaning that for the next 24 hours (measured inminutes), the ball will remainwithin
the circle15. The statement is not intended to enforce a parࢢcular situaࢢon, but
rather specifies what is expected to happen. It might be the case that the ball leaves
the circle for whatever reason, which should then result in the statement being eval-
uated to false. However, in order to determine whether the statement is true or
false (or even unknown), a state stream is needed over which it can be evaluated.

The task of generaࢢng a state stream starts with the specificaࢢon of targets.
Recall that targets are composed of a channel idenࢢfier and a tag describing the
semanࢢcs of the sought-a[er streaming data. The target should thus reflect that
we require informaࢢon on the truth value of InsideCircle(ball), which is a predicate.
The target is illustrated in Lisࢢng 10.1.

Lisࢢng 10.1: Target specificaࢢon for InsideCircle(ball) informaࢢon
1 :target1 a :ROSTarget ;
2 :hasTopicName "/target1"^^rosTopic ;
3 :hasTag [
4 a :Tag ;

15Alternaࢢvely, qualitaࢢve spaࢢal relaࢢons NTPP and TPP could be used.

149

10. Case-studies

TID TF label Tags
tid1 pose(piff) ∅

⇒ pose(piff)
tid2 bottom_cam(piff) ∅

⇒ yuvImage(piff)
tid3 subsampler(piff) yuvImage(piff)

⇒ imageScalePyramid(piff)
tid4 segmenter(piff) imageScalePyramid(piff)

⇒ convHull(piff, field)
tid5 ball_detector(piff) convHull(piff, field),

imageScalePyramid(piff)
⇒ pixelPos(piff, ball)

tid6 ball_localization(piff) pixelPos(piff, ball),
pose(piff)

⇒ position(ball)
tid7 circle_monitor(ball) position(ball)

⇒ InsideCircle(ball)

Table 10.1: Piff’s TFs and their tags denoted by itag1, . . . , itagn ⇒ otag.

5 :hasValue "InsideCircle(ball)" .
6] .
7 rdfs:label "InsideCircle(ball)" .

A[er adding this target to the environment ε, it looks like

⟨∅,∅, {⟨target1, InsideCircle(ball), /target_1⟩} ,=⟩ . (10.2)

This represents a perturbaࢢon, so the environment tries to reconfigure itself. How-
ever, since no transformaࢢons exist, no soluࢢons are found yet, and no state stream
is generated. We can solve this by considering the situaࢢon wherein Piff registers
its transformaࢢons to the environment. Table 10.1 shows the semanࢢcs of the set
of transformaࢢons provided by the NAO robot using a short-hand notaࢢon.

The bottom_cam TF provides a YUV image stream, which can be subscribed to
by the subsampler TF. This transformaࢢon down-samples the resoluࢢon of the three
channels into 640x480, 320x240, 160x120, 80x60, and 40x30. The segmenter TF
instancesmay subscribe to low-resoluࢢon Y and V channels to determine the convex
hull of the green field, ignoring the space in the imagewhich captures things outside
of the field. This convex hull is combined with the Y channel by the ball_detector TF
to produce pixel coordinates of balls, which is then combined with pose informaࢢon
by the ball_localization TF to produce ball posiࢢon data, which matches the query.
Since the matrix is updated when transformaࢢons are added or removed, the result
is a 11× 19matrix for the 11 inputs and 19 outputs.

As the result of the perturbaࢢon, the stream reasoning manager searches for an
opࢢmal configuraࢢon and finds one as shown conceptually in Figure 10.5. The as-
sociated change set δ is the instanࢢaࢢon of all transformaࢢons, and the connecࢢon

150

10.3. Collaboraࢢve tracking of a ball

of the resulࢢng CUs in accordance with their annotaࢢons. The new environment ε
is described by

⟨CU,F, {⟨target1, InsideCircle(ball), /target_1⟩} ,=⟩ , (10.3)

where the set of transformaࢢons F remains unchanged, and the set of CUs is de-
scribed by

CU = { ⟨cid1, tid7, [/topic_1], /target_1⟩ , (10.4)
⟨cid2, tid6, [/topic_2, /topic_6], /topic_1⟩ ,
⟨cid3, tid5, [/topic_3, /topic_4], /topic_2⟩ ,
⟨cid4, tid4, [/topic_4], /topic_3⟩ ,
⟨cid5, tid3, [/topic_5], /topic_4⟩ ,
⟨cid6, tid2, [], /topic_5⟩ ,
⟨cid7, tid1, [], /topic_6⟩}.

Piff now produces a ball posiࢢon stream on the /topic_1 topic, which can be
used by the circle monitor TF to determine whether the ball is inside the circle. This
Boolean informaࢢon is then transmi�ed on topic /target_1 as specified by the
target target1. The new environment results in a stream containing the informa-
onࢢ needed for interpreࢢng the symbols of the formula, which is synchronised, flat-
tened, and connected to the stream reasoning engine. The progression procedure
now uses the resulࢢng state stream to incrementally evaluate the formula through
rewriࢢngs.

Unfortunately, something goes wrong and the image segmenter is unloaded,
leaving a hole in the computaࢢon graph and interrupࢢng the flow of posiࢢon in-
formaࢢon. This perturbaࢢon is detected as

δp = (∅, {⟨cid4, tid4, [/topic_4], /topic_3⟩} ,∅,∅,∅,∅). (10.5)

The subsampler is sࢢll producing a stream of low-resoluࢢon images, but the seg-
menter no longer exists to do anything with them. The environment is now as in
Figure 10.5 but without a segmenter. This perturbaࢢon results in the update proce-
dure generaࢢng a change set by re-using the part of CU that sࢢll exists, but instan-
ngࢢaࢢ a new computaࢢon unit cid8 of type tid4 and reconfiguring it to subscribe to
the streams that were already being produced by the subsampler, i.e.

δ∗ = ({⟨cid8, tid4, [/topic_4], /topic_3⟩} ,∅,∅,∅,∅,∅). (10.6)

The detector’s subscripࢢon to the defunct segmenter is thus replaced by one to the
new segmenter, and the informaࢢon flow is restored.

Some meࢢ later, Puff joins Piff on the field and registers its own transformaࢢons
in accordance with Table 10.1, where piff is replaced by puff for new TIDs 8–14.
The computaࢢonal environment looks like before, but now |Fε| = 14. Given the

151

10. Case-studies

possibility to generate a second pipeline for ball posiࢢons, the life-cycle daemon
nevertheless does not use the second pipeline as-is. The reason for this is that the
cost for re-using Piff’s part of the computaࢢon graph is assumed to be free, whereas
a lot of effort would have to be spent in order to instanࢢate Puff’s pipeline to switch
away from Piff’s stream. Only if Puff’s alternaࢢves are significantly cheaper to make
up for the extra labour costwill the daemon switch pipelines. Since both Piff and Puff
are NAO robots with similar equipment and the same transformaࢢons, we assume
this is not the case.

At some point, Piff needs to recharge its ba�eries. It therefore first deregisters
its transformaࢢons from the environment, i.e.

δp = (∅,∅,∅, F−,∅,∅), (10.7)

where |F−| = 7 consists of the seven transformaࢢons from Table 10.1. The life-
cycle daemon correctly idenࢢfies the perturbaࢢon and starts a review interval, in
which it determines that all acࢢve CUs are now defunct. This means that there is
no longer any guarantee that the CUs provide streaming data. Thankfully, Puff’s
transformaࢢons provide a suitable replacement for the defunct CUs, leading to a
change set

δ∗ = (CU+, CU−,∅,∅,∅,∅), (10.8)

where the CU addiࢢons are based on Puff’s transformaࢢons, and the CU removals
are Piff’s defunct CUs;

CU− = { ⟨cid1, tid7, [/topic_1], /target_1⟩ , (10.9)
⟨cid2, tid6, [/topic_2, /topic_6], /topic_1⟩ ,
⟨cid3, tid5, [/topic_3, /topic_4], /topic_2⟩ ,
⟨cid8, tid4, [/topic_4], /topic_3⟩ ,
⟨cid5, tid3, [/topic_5], /topic_4⟩ ,
⟨cid6, tid2, [], /topic_5⟩ ,
⟨cid7, tid1, [], /topic_6⟩},

CU+ = { ⟨cid9, tid14, [/topic_7], /target_1⟩ , (10.10)
⟨cid10, tid13, [/topic_8, /topic_12], /topic_1⟩ ,
⟨cid11, tid12, [/topic_9, /topic_10], /topic_2⟩ ,
⟨cid12, tid11, [/topic_10], /topic_9⟩ ,
⟨cid13, tid10, [/topic_11], /topic_10⟩ ,
⟨cid14, tid9, [], /topic_11⟩ ,
⟨cid15, tid8, [], /topic_12⟩}.

Note also the removal of the cid8 CU which was previously used to patch a gap in
the computaࢢon graph.

A[er the occurrence of the perturbaࢢon δp, the stream being produced on
/target_1 is temporarily interrupted as the review interval is performed. At the

152

10.3. Collaboraࢢve tracking of a ball

end of the review interval, the change set δ∗ will have been applied to the environ-
ment, cancelling out the subopࢢmality imposed by δp by repairing the computaࢢon
graph with an alternaࢢve pipeline saࢢsfying the target. Consequently, the formula
can be evaluated further. The system operates on a best-effort basis by quickly find-
ing ways to repair broken computaࢢon graphs, thereby minimising the interrupࢢon
in the streams used to construct a state stream for formula evaluaࢢon.

Exploitaࢢon of new opࢢma

Conࢢnuing the scenario, Puff is currently observing the ball which has not yet le[the
circle on the field, and Piff is in the process of recharging. The only transformaࢢons
available to the computaࢢonal environment are therefore Puff’s. However, the lab
itself is also equipped with four cameras. These cameras can be used in unison to
generate a top-down image of the field. More importantly, these cameras could be
used to locate objects on the field, in parࢢcular NAO robots and balls. A system can
obtain the camera video feeds, sࢢtch the images together, and perform localisaࢢon,
without the computaࢢonal limitaࢢons imposed by NAO hardware.

We can thus register the ceiling camera system with the computaࢢonal envi-
ronment, resulࢢng in transformaࢢons with TIDs 15–24. The pipeline consists of the
transformaࢢons shown in Table 10.2. The registraࢢon of these transformaࢢons con-
sࢢtutes a perturbaࢢon

δp = (∅,∅, F+,∅,∅,∅), (10.11)

where the set of added transformaࢢons |F+| = 10 consists of the ten transforma-
onsࢢ listed in Table 10.2. Even though the perturbaࢢon did not break anything —
there is sࢢll a stream on topic /target_1— it is nevertheless a potenࢢal long-term
posiࢢve perturbaࢢon, because the added transformaࢢons might yield cheaper-cost
soluࢢons. If this is not the case, then δ∗ = δ∅; otherwise, the stream reasoning
manager can replace part of the acࢢve pipeline with the transformaࢢons from the
ceiling cameras. Since the perturbaࢢon is not a short-term negaࢢve perturbaࢢon,
no immediate response is required, so the life-cycle daemon waits with the review
cycle unࢢl the horizon is reached or a short-term negaࢢve perturbaࢢon occurs.

Note that the ceiling camera pipeline provided by the lab lacks a transformaࢢon
that can provide InsideCircle(ball) informaࢢon. This is because that pipeline does
not have the background knowledge to understandwhat InsideCirclemeans; it does
not care about the lines on the field, but only about NAO robots and balls and their
posiࢢons. However, Puff does care about the circle on the field, and therefore knows
given a posiࢢon whether that posiࢢon is within the circle. Assuming that the reduc-
onࢢ in upkeep outweighs the labour cost of switching pipelines, DyKnow-ROS finds
a soluࢢon during the next review interval. It uses the enࢢre ceiling camera pipeline
plus the circle monitor from Puff, while unloading the remaining CUs. This leads to
a change set

δ∗ = (CU+, CU−,∅,∅,∅,∅), (10.12)

153

10. Case-studies

TID TF label Tags
tid15 ceiling_cam(cam_1) ∅

⇒ rgbImageDistorted(cam_1)
tid16 undistort(cam_1) rgbImageDistorted(cam_1)

⇒ rgbImage(cam_1)
tid17 ceiling_cam(cam_2) ∅

⇒ rgbImageDistorted(cam_2)
tid18 undistort(cam_2) rgbImageDistorted(cam_2)

⇒ rgbImage(cam_2)
tid19 ceiling_cam(cam_3) ∅

⇒ rgbImageDistorted(cam_3)
tid20 undistort(cam_3) rgbImageDistorted(cam_3)

⇒ rgbImage(cam_3)
tid21 ceiling_cam(cam_4) ∅

⇒ rgbImageDistorted(cam_4)
tid22 undistort(cam_4) rgbImageDistorted(cam_4)

⇒ rgbImage(cam_4)
tid23 stitch(field) rgbImage(cam_1),

rgbImage(cam_2),
rgbImage(cam_3),
rgbImage(cam_4)

⇒ rgbImage(field)
tid24 ball_detector(field) rgbImage(field)

⇒ position(ball)

Table 10.2: The Humanoid lab’s ceiling camera transformaࢢons and their tags de-
noted by itag1, . . . , itagn ⇒ otag.

where the sets of CU addiࢢons and removals are described by

CU− = { ⟨cid10, tid13, [/topic_8, /topic_12], /topic_1⟩ , (10.13)
⟨cid11, tid12, [/topic_9, /topic_10], /topic_2⟩ ,
⟨cid12, tid11, [/topic_10], /topic_9⟩ ,
⟨cid13, tid10, [/topic_11], /topic_10⟩ ,
⟨cid14, tid9, [], /topic_11⟩ ,
⟨cid15, tid8, [], /topic_12⟩},

154

10.3. Collaboraࢢve tracking of a ball

CU+ = { ⟨cid16, tid24, [/topic_13], /topic_7⟩ , (10.14)
⟨cid17, tid23, [/topic_14, /topic_15, /topic_16,

/topic_17], /topic_13⟩,
⟨cid18, tid22, [/topic_18], /topic_14⟩ ,
⟨cid19, tid20, [/topic_19], /topic_15⟩ ,
⟨cid20, tid18, [/topic_20], /topic_16⟩ ,
⟨cid21, tid16, [/topic_21], /topic_17⟩ ,
⟨cid22, tid21, [], /topic_18⟩ ,
⟨cid23, tid19, [], /topic_19⟩ ,
⟨cid24, tid17, [], /topic_20⟩ ,
⟨cid25, tid15, [], /topic_21⟩}.

Note that CU cid9 is not among the CUs being unloaded as it is being reused in
the new environment. The topic /topic_7 is therefore being reused as the output
channel for the CU cid16. The resulࢢng environment has a cheaper long-term cost
than would have been acrued by not performing the update, while sࢢll generaࢢng
a stream on /target_1 with minimal interrupࢢon. When at some point Puff also
requires recharging, it is possible for Puff to leave while keeping the circle monitor
available to the system. From that point on, the ceiling camera generate posiࢢon
data which is processed by Puff off-site. The system has successfully exploited the
potenࢢal improvement to the configuraࢢon when it became available.

Cleaning up

Finally, with the field devoid of NAO robots and perhaps at the start of a new day, an
unsuspecࢢng student enters the lab and, not realising the experimental setup, takes
the ball. The InsideCircle(ball) predicate evaluates to false, thereby violaࢢng the
formula, yielding ‘false’ as its final answer. The stream reasoning manager releases
the targets, corresponding to a perturbaࢢon

δp = (∅,∅,∅,∅,∅, {⟨target1, InsideCircle(ball), /target_1⟩}). (10.15)

With the target removed, the DyKnow-ROS life-cycle daemon immediately starts a
review interval. Since no targets exist, any acࢢve CUs are needlessly expending up-
keep cost. Therefore, all acࢢve CUs are removed while retaining the set of transfor-
maࢢons;

δ∗ = (∅, CUε,∅,∅,∅,∅). (10.16)

Without any targets, the environment remains idle unࢢl new targets are registered,
either as the result of a formula needing evaluaࢢon or because of another purpose
for needing a semanࢢc subscripࢢon.

155

10. Case-studies

10.4 Summary

In this chapter, we looked at some use-cases for the DyKnow-ROS stream reasoning
framework which was presented in Chapter 9. In parࢢcular, we first looked at the
visualisaࢢon component for the DyKnow-ROS daemon, which manages the config-
uraࢢon of the computaࢢonal environment. The visualisaࢢon is an extension of the
standard ROS rqt_graph package, which has been improved by adding the ability to
visualise DyKnow-ROS nodelets. The interface also allows a user to interact with the
daemon. We next looked at a use-case involving twoNAO robots, illustraࢢng the im-
pact of the dynamic reconfigurability in cases where new transformaࢢons become
available or inwhich exisࢢng transformaࢢons becomeunavailable. The streams gen-
erated in this process can then be used with state stream synthesis in order to sup-
port the evaluaࢢon of temporal formulas. The applicaࢢon of DyKnow-ROS to these
use-cases serves as a proof of concept of the proposed system.

156

Chapter

11
Related work

R esearch towards stream reasoning has resulted in many different perspec-
.vesࢢ This chapter serves as a survey of recent and/or ongoing research
projects towards stream reasoning. The survey is not meant to be exhaus-

,veࢢ and does not include many of the well-known stream processing tools and li-
braries. The listed works are compared to the contribuࢢons presented in this dis-
sertaࢢon. Some of the listed work refers to specific projects; others represent areas
of research of high relevance to this dissertaࢢon.

11.1 Introducࢢon

The DyKnow-ROS stream reasoning framework presented in Chapter 9 shares some
similariࢢes with other stream reasoning systems. Although we covered specific re-
latedwork for the various contribuࢢons throughout this dissertaࢢon, in this chapter,
we present some related work coming from the general area of stream reasoning.
In the following, a mostly chronological overview is given for stream reasoning re-
search conducted in parallel to the work presented in this dissertaࢢon, as well as
research upon which those related works are supported. In the presentaࢢon of the
related works, we also consider the similariࢢes and differences between said works
and the DyKnowmodel and associated implementaࢢon on a case-by-case basis. Af-
ter covering the various related works, a high-level summary is provided, in which
we also related some of the presented works to each other.

11.2 STREAM

The Stanford StreamDataManager (STREAM)was first introduced byMotwani et al.
(2003) and Arasu et al. (2004) as a DSMS. The goal of the STREAM project was stated

157

11. Related work

to be “to build and evaluate a general-purpose DSMS that supports a declaraࢢve
language and can cope with high data rates and thousands of conࢢnuous queries.”
(Motwani et al., 2003) They therefore consider both data and queries to be dynamic
enࢢࢢes. One parࢢcular consideraࢢon was how such a system would uࢢlise system
resources, and how approximaࢢons could be uࢢlised to reduce resource require-
ments to fit the resources such a system has access to. This led to the development
of a language for DSMS, as well as the development of query plan sharing and ap-
proximaࢢon techniques.

The Structured Query Language (SQL) was chosen as the basis for the develop-
ment of the Conࢢnuous Query Language (CQL), and was first introduced by Arasu
et al. (2003). Arasu et al. (2006) later covered CQL inmore detail. The basic structure
of CQL queries follows that of SQL, but allows for the handling of streams in addiࢢon
to relaࢢons. This means that, whereas in SQL one can make use of operators to ob-
tain relaࢢons from relaࢢons (R2R), CQL supports operators for converࢢng streams to
relaࢢons (S2R) and relaࢢons to streams (R2S). Successive applicaࢢons of S2R, R2R,
and R2S operators makes it possible to perform stream transformaࢢons. For S2R
operators, CQL makes use of ,me-basedࢢ tuple-based, and parࢢࢢoned (i.e. spliࢰng
into substreams based on a logical condiࢢon) window operators. For R2S operators,
CQLmakes use of insert, delete and relaࢢon streams, which generate streams of new
elements, old elements, and current elements respecࢢvely. Finally, R2R operators
are inherited from SQL.

Registered CQL queries are compiled into query plans, which execute the query.
These query plans are composed of operators connected by queues, and synopses
for the storage of operator state. This is similar to the configuraࢢon environments
used in DyKnow, where queues are represented by channels over which streams are
transmi�ed and received. Synopses can share their state to avoid duplicate compu-
taࢢons. The STREAM system addiࢢonally contains the StreaMon (Babu andWidom,
2004) monitoring and adapࢢve query processing infrastructure. It is tasked with
monitoring the computaࢢonal load of the components that make up the STREAM
system, and to re-opࢢmise if necessary. The ability to re-opࢢmise is especially im-
portantwhen circumstances change during the run-ࢢmeof a STREAMsystem. Strea-
Mon thus shares similariࢢes with the DyKnow daemon in terms of their responsibil-
iࢢes.

11.3 Aurora and Borealis

Aurora is a model and architecture for data stream management introduced by
Abadi et al. (2003), with applicaࢢon to monitoring. It is the predecessor to Bore-
alis, discussed later. Aurora considers data sources to generate streams, which in
turn are processed by Aurora (operator) boxes. These boxes correspond roughly to
CUs in DyKnow terminology. The stream processing can be changed during run-ࢢme
for purposes of opࢢmisaࢢon. Aurora specifically considers connecࢢon points, which
are storage containers residing between Aurora boxes that can cache a finite stream

158

11.4. TelegraphCQ

history. More importantly, subgraphs can be a�ached to or detached from these
connecࢢon points during run-ࢢme.

Aurora’s query algebra is referred to as the Aurora Stream Query Algebra
(SQuAl). It supports seven operators corresponding roughly to DyKnow transfor-
maࢢon. The filter, map, and union operators are straigh�orward in their meaning,
and all three are order-agnosࢢc in Aurora. The remaining operators — BSort, ag-
gregate, join, and resample — are order-sensiࢢve. BSort performs an approximate
sort uࢢlising a buffer; aggregate applies window funcࢢons together with relaࢢonal
aggregaࢢon operaࢢons; join allows streams to be combined; and resample can be
used to align streams. Queries wri�en in SQuAl are compiled into Aurora networks,
which can then be opࢢmised during run-ࢢme.

To assist in opࢢmising the network, run-ࢢme staࢢsࢢcs are gathered during exe-
cuࢢon. Specifically, each Aurora box (a CU in DyKnow terminology) has its meࢢ to
process a tuple measured. Further, the selecࢢvity —meaning the expected number
of output tuples per input— ismeasured to give an esࢢmate of the cost of running a
network. The processing meࢢ is used as one of three possible ways to measure the
quality of service (QoS) for the system. Aurora relies on the user (applicaࢢon admin-
istrator) to provide the QoS as a funcࢢon of at least the delay. Other QoS funcࢢons
pertain to the percentage of tuples delivered, and the received output values—both
of which are opࢢonal but require a user to define them. Based on QoS metrics, Au-
rora tries to reorder the Aurora boxes where possible based on the predicted quality
of the resulࢢng graph. This is similar to DyKnow’s configuraࢢon daemon, which can
however replace enࢢre pipelines based on semanࢢc annotaࢢons. Just like Aurora,
this can be done during run-ࢢme, and efforts are made to minimise the impact of
changing the network structure on the resulࢢng streams. Unlike DyKnow, however,
Aurora has support for load shedding based on QoS informaࢢon.

The work towards Aurora resulted in the exploraࢢon of distributed stream pro-
cessing. Medusa (Cherniack et al., 2003) allows for service delivery in a federated
mulࢢ-agent seࢰng, in which nodes are administered by a single enࢢty. Medusa
seeks to solve loadmanagement by having nodes compensate each other using eco-
nomical incenࢢves. Borealis (Abadi et al., 2005) combines lessons from Aurora and
Medusa and provided what the authors call a ‘second generaࢢon stream process-
ing engine’. In addiࢢon to Aurora’s features, among other things, it considers revi-
sion records (i.e. correcࢢons for prior tuples) and uࢢlises distribuࢢon features from
Medusa. Borealis also conࢢnues efforts towards run-ࢢme query opࢢmisaࢢon and
methods towards fault-tolerance.

11.4 TelegraphCQ

The Telegraph project at UC Berkeley focused on developing an ‘Adapࢢve Dataflow
Architecture’ starࢢng in 2000. TelegraphCQ (Chandrasekaran et al., 2003; Reiss and
Hellerstein, 2005) is a realisaࢢon of the Telegraph architecture with a focus towards
conࢢnuous query processing, and is based on the open-source PostgreSQL rela-

159

11. Related work

onalࢢ database management system. One of the key features pursued by the Tele-
graph project was adapࢢvity to the addiࢢon and removal of queries, by adjusࢢng
the processing during run-ࢢme. Specifically, Chandrasekaran et al. (2003) note that
“[S]hared processing must be made robust to the addiࢢon of new queries and the
removal of old ones over ,meࢢ so on-the-fly adapࢢvity must be an essenࢢal com-
ponent of any soluࢢon for shared processing of conࢢnuous queries.” Importantly,
Telegraph does so in conjuncࢢon with the re-opࢢmisaࢢon of query plans.

TelegraphCQ is a modular system in which communicaࢢon between modules
is handled by the Fjords API (Madden and Franklin, 2002). It uࢢlises components
called Eddies to execute a rouࢢng policy between modules by sending tuples back
and forth between Eddies and other modules. This makes it possible for an Eddy to
enforce a parࢢcular processing order. TelegraphCQ also makes use of StateModules
(SteMs) which can temporarily store tuples and which can be accessed by an Eddy.
Since TelegraphCQ processes potenࢢally infinite-length streams of data which arrive
outside of the system’s control, it makes use of finite-length windows. Queries on
streams in TelegraphCQ can make use of such finite-length windows by supporࢢng
for-loops iteraࢢng over .me-pointsࢢ A variable ST is used to represent the -meࢢ
point at which a query was started. The query language used extends standard SQL
with the specificaࢢon of the window in a for-loop to generate a relaࢢonal table over
which aggregaࢢon is applied.

TelegraphCQ shares similariࢢes with DyKnow-ROS in mulࢢple areas. The phi-
losophy of supporࢢng adapࢢve concurrent queries is shared by both frameworks;
both DyKnow-ROS and TelegraphCQ handle the addiࢢon and removal of queries dur-
ing run-ࢢme and apply shared processing where possible. Whereas TelegraphCQ
makes use of Eddies to pass around tuples to modules, a similar funcࢢon is per-
formed by the DyKnow-ROS daemon, which is tasked with reconfiguring the com-
putaࢢonal environment in order to saࢢsfy DyKnow targets. The responsibility of
SteMs is fulfilled by computaࢢon units, which have their own storage capabiliࢢes.
Whereas TelegraphCQ uses the Fjords API, DyKnow-ROS makes use of the topic and
service communicaࢢon supported by ROS. Unlike TelegraphCQ, DyKnow does not
directly support windows in SPL, although transformaࢢons performing windowing
operaࢢons could be defined.

11.5 ETALIS

The Event Transacࢡon Logic Inference System (ETALIS) was originally introduced by
Anicic et al. (2009)—as a footnote referring to a so[ware package— for the purpose
of logic-based event processing. A comprehensive overview of the full ETALIS sys-
tem, its Prolog-based implementaࢢon, and its applicaࢢons is given by Anicic (2012).

One of the main contribuࢢons put forth by ETALIS is the ETALIS Language for
Events (ELE), which is a rule-based language for event processing and reasoning that
is grounded in a formal semanࢢcs. Note however that, as with many other query
languages, the name ETALIS can thus refer to both the query language and the query

160

11.5. ETALIS

engine. ELE makes it possible to specify an ETALIS rule base, denoted by R, which
is composed of staࢡc rulesRs and event rulesRe. The setRs is composed of Horn
clauses describing a background knowledge base, whereas the setRe is composed
of temporal event pa�erns. These pa�erns describe the temporal relaࢢonship be-
tween events using a set of temporal relaࢢons that extends Allen’s interval alge-
bra (Allen, 1983) with quanࢢtaࢢve meࢢ intervals describing windows. The compo-
siࢢon of events then makes it possible to describe complex events uࢢlising these
temporal pa�erns. To illustrate ELE’s expressivity, the following example pa�erns
and their natural-language interpretaࢢons have been copied from Anicic (2012) (pp
71–72):

• (P1).3 detects an occurrence of P1 if it happens within an interval of length
3, i.e., 3 represents the (maximum) meࢢ window.

• P1 SEQ P3 represents a sequence of two events, i.e., an occurrence of P1 is
followed by an occurrence of P3 ; here P1 must end before P3 starts.

• P2 ANDP3 is a pa�ern that is detectedwhen instances of bothP2 andP3 occur
no ma�er in which order.

• P1 PAR P2 occurs when instances of both P1 and P2 happen, provided that
their intervals have a non-zero overlap.

• P2 OR P3 is triggered for every instance of P2 or P3 .

• P1 DURING (0 SEQ 6) happens when an instance of P1 occurs during an inter-
val; in this case, the interval is built using a sequence of two atomic me-pointࢢ
events. In general, the interval may consist of other (derived) events too.

• P3 STARTS P1 is detected when an instance of P3 starts at the same meࢢ as
an instance of P1 but ends earlier.

• P1 EQUALSP3 is triggeredwhen the two events occur exactly at the sameࢢme
interval.

• NOT (P3).[P1, P1] represents a negated pa�ern. It is defined by a sequence of
events (delimiࢢng events) in the square brackets where there is no occurrence
of P3 in the interval. In order to invalidate an occurrence of the pa�ern, an
instance of P3 must happen in the interval formed by the end meࢢ of the first
delimiࢢng event and the start meࢢ of the second delimiࢢng event. In this
example delimiࢢng events are just two instances of the same event, i.e. P1.

• P3 FINISHES P2 is detected when an instance of P3 ends at the same meࢢ
as an instance of P2 but starts later.

• P2 MEETS P3 happens when the interval of an occurrence of P2 ends exactly
when the interval of an occurrence of P3 starts.

161

11. Related work

The task for the ETALIS engine is to generate complex eventsmatching user-provided
event pa�erns. These event pa�erns are compared against potenࢢally many input
event streams, and the engine may uࢢlise high-level domain knowledge (e.g. staࢢc
rules) in conjuncࢢon with these input streams to facilitate this process. The end
product is then a stream of detected complex events.

There are some similariࢢes between DyKnow and ETALIS with regards to ELE.
Whereas DyKnow’s stream processing support as presented in this work can be cat-
egorised as falling under DSMS rather than CEP, the prior work on object linkage
structures for DyKnow was based on chronicle recogniࢢon, which can be regarded
as an early form of CEP. ELE addiࢢonally introduces temporal ranges or windows
for otherwise qualitaࢢve temporal relaࢢons, which created some overlap with MTL
as used by DyKnow in conjuncࢢon with progression. Finally, without going into de-
tail, ETALIS also considers the problems of event retracࢢon and out-of-order events,
which are important problems, but neither of which are currently handled by Dy-
Know.

11.6 Retalis

TheRetalis (ETALIS for Roboࢢcs) framework (Ziafaࢢ et al., 2015; Ziafaࢢ, 2015) focuses
on stream reasoning within roboࢢcs applicaࢢons using ROS, and is therefore closely
related to DyKnow. Retalis combines ELE with the Synchronized Logical Reasoning
(SLR) language, originally proposed by Ziafaࢢ et al. (2013). SLR is a formal logical lan-
guage for knowledge management in roboࢢcs applicaࢢons, where events are used
to represent observaࢢonswhichmay be reasonedwith. SLR programs are composed
of rules represented as Horn clauses, which allows Retalis to draw conclusions from
robot observaࢢons. Retalis uses Prolog to parse and execute programs.

ELE is used to generate complex event streams, which are fed to SLR as inputs. By
adding these events as facts, the knowledge base described by SLR changes, result-
ing in the inference of new facts that can be represented as events. These events,
in turn, can be used by ELE in its generaࢢon of complex event streams. Similarly,
an ELE pa�ern can include SLR queries. The combinaࢢon of ELE and SLR takes place
in an autonomous component called an informaࢡon-engineering component (IEC) in
Retalis. Each IEC can receive and produce event streams, process queries, andmain-
tains a knowledge base that gets updated incrementally upon receipt of events.

Because streams produced based on ELE pa�erns may be infinitely long, Retalis
is able to perform memory management (Ziafaࢢ et al., 2014) on its stored event
history by using buffers to limit the size of the knowledge base. Addiࢢonally, an
IEC must be able to specify streams of interest and be able to subscribe to those
streams, potenࢢally during run-ࢢme. Retalis therefore supports run-ࢡme subscrip-
,onsࢡ which specify a query pa�ern describing an event atom and condiࢢons on its
arguments, and a query window restricࢢng the meࢢ interval for matching events.
Any events matching the query pa�erns are sent to the respecࢢve topics. Subscrip-
onsࢢ are enࢢࢢes with idenࢢfiers, such that one can unsubscribe by specifying the

162

11.7. T-Rex

idenࢢfier of the subscripࢢon that needs to be terminated. These run-ࢢme subscrip-
onsࢢ are set up through a ROS service hosted by a Retalis-ROS interface.

Retalis shares a lot of similariࢢes with DyKnow due to its focus on stream rea-
soning in the domain of roboࢢcs applicaࢢons. Both approaches use ROS due to its
prevalence in this area, and so both approaches could technically be used side by
side within the same system. The two approaches are complementary; whereas Re-
talis focuses on maintaining a knowledge base through incremental updates based
on event pa�erns, DyKnow focuses on maintaining streams of interest that can be
used by a system that builds upon the DyKnow framework. DyKnow does not explic-
itly store histories in a knowledge base, although its transformaࢢons can keep such
histories for the purpose of stream refinement. Retalis event streams are therefore
also at a higher level of abstracࢢon compared to DyKnow’s streams, which do not
contain events but rather represent fluents. Both approaches also provide func-
onalityࢢ to set up subscripࢢons during run-ࢢme, but whereas Retalis pulls in event
streams for filtering in accordance with an event pa�ern, a DyKnow target results
in a reconfiguraࢢon based on semanࢢc annotaࢢons. If one regards a complex event
specificaࢢon as a semanࢢc annotaࢢon, Retalis can be argued to set up and man-
age its own cyclic stream processing environment. It however exists only within an
IEC, whereas DyKnow’s computaࢢonal environments are composed of structurally-
dynamic networks of stream processing nodes connected by streams.

Implementaࢢon-wise, Retalis and DyKnow both have to consider the interface
with ROS. Retalismakes use of the Python execuࢢon environment for running Retalis
programs, and employs a Retalis-ROS interfacemodule to import ROS topic data into
an IEC represented by a ROS node. DyKnow insteadmakes use of a DyKnowdaemon,
also represented by a ROSnode, which keeps track of DyKnowproxies. These proxies
are in control of ROS subscribers and publishers, and provide ROS services to adjust
the topics they are connected to. In this sense, DyKnow is more of an extension of
the ROS framework, whereas Retalis is integrated in ROS.

11.7 T-Rex

T-Rex16 is a CEP middleware introduced by Cugola and Margara (2012b), which
makes use of the TRIO-based Event Specificaࢡon Language (TESLA) (Cugola andMar-
gara, 2010) for describing complex event pa�erns. TRIO (Ghezzi et al., 1990) refers
to the temporal first-order logic in which the TESLA semanࢢcs is described.

A TESLA rule are composed of (at most) four clauses, in accordance with the
following structure:

define CE(Att1 : Type1, . . . , Attn : Typen)

from Pattern

whereAtt1 = f1, . . . , Attn = fn

consuming e1, . . . , en
16Also someࢢmes wri�en as ‘T-REX’, but does not appear to be an acronym.

163

11. Related work

The define clause allows for a user to define the name (i.e.CE) and payload (i.e. at-
tributes and their types) of a complex event. The from clause describes a pa�ern
in terms of simple events, which can include event composiࢢon through the use
of windows and aggregaࢢon. This is one of TESLA’s differenࢢaࢢng features, since
these types of window aggregaࢢons are more common in DSMS than in CEP sys-
tems. The (opࢢonal) where clause can be used to apply filtering on the payloads
of those simple events through the use of comparators. Finally, the (opࢢonal) con-
suming clause is used to select a consumpࢢon policy, which is another feature TESLA
supports that differenࢢates it from its contemporaries. A consumpࢢon policy deter-
mines whether an observed event is removed (consumed) a[er having been used
to generate a complex event, as well as when to stop consuming events like it. To il-
lustrate the applicaࢢon of the consumpࢢon policy, Cugola andMargara (2010) o[en
make use of a ‘fire’ event, which is triggered when a sequence of high temperatures
is followed by smoke. If the high temperature event is selected for consumpࢢon, all
high temperature events in the sequence are removed, thus requiring the detecࢢon
of new high temperature events followed by smoke before the complex ‘fire’ event
is triggered for a second .meࢢ

The T-Rex engine translates TESLA rules by compiling them into event detecࢢon
automata. It then uses these automata for efficient event noࢢficaࢢon. Cugola and
Margara (2012b) provide an extensive empirical evaluaࢢon of the T-Rex engine’s per-
formance, focussing primarily on throughput. The engine itself was wri�en in C++,
but provides adapters for remote clients wri�en in C++ or Java.

11.8 LARS

LARS is a Logic-based framework forAnalysingReasoning over Streams by Beck et al.
(2014, 2015) and provides a logical formalisaࢢon of stream reasoning. LARS consid-
ers stream reasoning to be logical reasoning on streaming data, and therefore takes
an approachwherein streaming data ismodelled logically, i.e. as predicates. This ap-
proach shares similariࢢes with DyKnow’s state streams, which carry the truth values
of predicates over meࢢ as well. Unlike DyKnow, however, LARS does not consider
the producࢢon of state streams.

Key contribuࢢons presented as part of the LARS framework are reported (Beck
et al., 2015) to include

1. a rule-based formalism for reasoning over streams;

2. different means to refer to or abstract from ;meࢢ and

3. a window operator to this effect.

The window operator⊞xι,ch is applied to a stream S in order to produce a resulࢢng
stream S′, where ι indicates a window type, ch a stream choice funcࢢon, and x
a vector of window parameters. The window type ι is used to idenࢢfy a window
funcࢢon wι. It maps from an input stream S, a reference (starࢢng) meࢢ point t,

164

11.9. SECRET

and parameters x to a substream S′ ⊆ S. LARS has successfully modelled -meࢢ
based, tuple-based and parࢢࢢon-based windows, making it expressive enough to
capture languages such as CQL (Arasu et al., 2003, 2006). Implementaࢢons of LARS
reasoners for example include Laser by Bazoobandi et al. (2017), and Ticker by Beck
et al. (2017).

LARS’ window operator can be used to filter elements from a stream and apply
logical reasoning to the resulࢢng substream, thereby providing different potenࢢal
views. In the DyKnow model, a window operator would instead exist as a transfor-
maࢢon that filters a stream based on windowing condiࢢons, rather than be part of
the logical representaࢢon. DyKnow’s computaࢢonal environment can also make a
disࢢncࢢon between a filtering operaࢢon akin to the LARS substream-producing win-
dowing operaࢢon on the one hand, and the case wherein every sample contains a
windowon the other hand. It is presently unclear how this disࢢncࢢon could be lever-
aged in the LARS framework. In conclusion, LARS shares similariࢢes with DyKnow in
terms of reasoning with the help of transformaࢢons on streams, which allow LARS
to switch views and make logical statements on those views.

11.9 SECRET

Similar to LARS, SECRET is a model for analysing the execuࢢon semanࢢcs of stream
processing systems proposed by Botan et al. (2010). The moࢢvaࢢon behind SECRET
is rooted in the existence of mulࢢple stream processing engines, each with their
own capabiliࢢes and semanࢢcs, and the desire to compare the execuࢢon behaviour
of these heterogeneous stream processing engines. In parࢢcular, the heterogene-
ity manifests itself in terms of syntax, capability, and the execuࢢon model. SECRET
is (arguably loosely) named a[er the four dimensions it considers; scope, content,
report and tick. Dindar et al. (2013) consider these four dimensions with SECRET in
their coverage of the heterogeneity of the Coral8, STREAM, StreamBase, and Oracle
CEP stream processing engines.

SECRET considers streams to be countably infinite sets of elements s ∈ S,
such that a stream element (or a sample in DyKnow’s terminology) is described by
⟨v, tapp, tsys, tid, bid⟩. Here v denotes a relaࢢonal tuple conforming to a schema
S (i.e. a table), tapp, tsys ∈ T denote the applicaࢢon meࢢ and system ,meࢢ and
tid, bid denote tuple ID and batch ID values. This type formalisaࢢon of a stream
is similar to DyKnow, which considers named structured values that could be rep-
resented as done in SECRET. A batch B is described as a set of stream elements
such that each element making up a batch has the same tapp as all other elements
of that same batch. State streams in DyKnow could thus be described in terms of
batches. Finally, as in LARS, SECRET describes a variety of window semanࢢcs using
the definiࢢon of a stream, where a window over a stream produces a substream.
In parࢢcular, SECRET describes me-basedࢢ windows and tuple-based windows with
varying window sizes and slides.

165

11. Related work

A key moࢢvaࢢon for SECRET was the heterogeneity in the window operaࢢons
supported by various streamprocessing engines. SECRET thus captures thewindow-
based query execuࢢon semanࢢcs along the aforemenࢢoned four dimensions. Scope
deals with the scope of a window, meaning the window intervals, given a set of pa-
rameters. Scope can be interpreted differently by different stream processing sys-
tems. Content deals with how the scope of these windows translates into the con-
tent of the produced substreams given an input stream. The content is then com-
monly sent on for processing, such as for example aggregaࢢon. When the content
becomes visible to the query processor can vary by system. Report states the condi-
onsࢢ on when content becomes visible. Lastly, ckࢢ deals with the control loop of a
stream processing engine, and in parࢢcular when it acts on a given input stream.
Given these four dimensions, Dindar et al. (2013) consider both me-basedࢢ and
tuple-based windows for the aforemenࢢoned stream processing engines.

SECRET is primarily a tool for analysing different stream processing engines. As
with LARS, SECRET has some overlap with the formal specificaࢢons of DyKnow. The
main difference between LARS and SECRET appears to be the level of detail; LARS
provides high-level semanࢢcs relaࢢve to a logicalmodel, whereas SECRET is closer to
the operaࢢonal semanࢢcs of a set of pre-exisࢢng stream processing engines. In both
approaches, the semanࢢc of thewindowoperatorwere a primary point of a�enࢢon.
DyKnow currently does not support window operaࢢons directly, although window-
ing does take place in the form of interval-bounded temporal operators. Neverthe-
less, SECRET’s formal specificaࢢon of window operaࢢons can be of use when consid-
ering similar operaࢢons such as merging and synchronisaࢢon as part of for example
state stream generaࢢon in DyKnow.

11.10 RSP

RDF Stream Processing (RSP) refers to stream processing techniques that assume
streaming data to be forma�ed in the RDF data format. This data format is usu-
ally represented as RDF triples, consisࢢng of subject, predicate, and object resource
idenࢢfiers. RSP is disࢢnct from conࢢnuous query languages due to its connecࢢon to
Semanࢢc Web ontologies represented as knowledge graphs. The idenࢢfiers occur-
ring in triples are commonly associatedwith such ontologies, and an RDF stream can
then be regarded as a dynamic subgraph. Queries posed in an RSP seࢰng may thus
pertain to both the dynamic and staࢢc parts of an ontology. A change in the dynamic
subgraph has as an important consequence that the implicit facts in the complete
graph may change as well, affecࢢng the result of a conࢢnuous query. There are
different ways for handling the changes described by RDF streams, impacࢢng the
performance of conࢢnuous query engines in different ways, the details of which are
outside of the scope of this dissertaࢢon.

RSP holds an interesࢢng posiࢢon within the area of stream reasoning not only
due to its large system contribuࢢons to stream reasoning in the form of query en-
gines and tools, but also due to the way it is posiࢢoned relaࢢve to stream process-

166

11.10. RSP

ing. While RSP engines — by their definiࢢon — perform stream processing tasks,
each RSP triple processed from a stream has the potenࢢal to trigger a Descrip-
onࢢ Logic-based reasoning process, albeit atemporal, followed by unificaࢢon and
window-based aggregaࢢon.17 This clearly moved beyond relaࢢvely simple filtering
as provided by tradiࢢonal database systems. RSP could thus be regarded as strad-
dling the Interpretaࢢon–Verdict range in the stream reasoning pipeline, with li�le
focus on the issue of RDF triple provenance, i.e. the issue of generaࢢng RDF triples
from real-world data while handling issues like uncertainty. This is one area where
the work presented here could potenࢢally be adapted towards RSP. Systems like
DyKnow-ROS do not assume a specific data-type, and previous work towards this
dissertaࢢon (de Leng and Heintz, 2014) provided an iniࢢal discussion of the suitabil-
ity of RSP engines as CUs within the scope of the DyKnow model from Chapter 7.

RSP engines

Several querying engines and languages have been designed for RSP, usually based
on a conࢢnuous version of the SPARQL query language for RDF graphs. These en-
gines are responsible for transforming RDF streams, taking into account background
knowledge in the form of an ontology. In the following, we look at some of themore
common instances.

C-SPARQL. The Conࢡnuous SPARQL (C-SPARQL) language is a pure extension of the
SPARQL query language, originally introduced syntacࢢcally in Barbieri et al. (2009,
2010c). The semanࢢcs of C-SPARQL were subsequently presented in Barbieri et al.
(2010b,a), together with an execuࢢon environment by the same name. C-SPARQL
introduces keywords allowing a user to specify a stream resource to query using a
tumbling or sliding window. The resulࢢng tables can be aggregated using aggrega-
onࢢ funcࢢons such as sum, count, average, maximum, and minimum.

SPARQLStream. Streaming SPARQL (SPARQLStream) is a query languageby Calbimonte
et al. (2010) which is based on SPARQL. It takes an ontology-based data access
(OBDA) approach to streams, where queries are wri�en using ontological concepts.
These queries are then automaࢢcally translated to access specific streaming data re-
sources. The target language for the query rewriࢢng is the Sensor Network Engine
query language (SNEEql) by Galpin et al. (2009).

EP-SPARQL. Recall that CEP systems focus on the detecࢢonof complex events from
sequences of events. Event Processing SPARQL (EP-SPARQL), introduced by Anicic
et al. (2011, 2012), focuses specifically on events and allows for the querying of event
pa�erns by their temporal relaࢢonship. As is usual for CEP systems, this means EP-
SPARQL does not use windowing and aggregaࢢon operaࢢons. Instead, sequences of

17This type of materialisaࢢon process is not necessarily performed by all RSP engines, just like not all
SPARQL query engines consider implicit facts.

167

11. Related work

events can be detected, and the temporal distance between events can be used in a
filter. EP-SPARQL, like C-SPARQL, is a pure extension of SPARQL that adds addiࢢonal
keywords for describing event sequences.

EP-SPARQL is an applicaࢢon and extension of ETALIS; queries are compiled into
ELE rules and RDF streams and ontologies are converted into the ETALIS ELE format.

CQELS. The above RSP engines are layered ‘on top’ of pre-exisࢢng engines, i.e.
they rewrite queries into SPARQL queries or ELE facts and then uࢢlise a SPARQL en-
gine or ETALIS implementaࢢon to perform the reasoning. Le-Phuoc et al. (2011)
point out that this amounts to what they call a ‘black box’ approach, where con-
trol of the way queries are executed is instead delegated to another engine. They
therefore proposed the Conࢡnuous Query Evaluaࢡon over Linked Streams (CQELS)
engine, which instead handles these tasks naࢢvely. This gives CQELS control over
aspects such as data encoding and caching, yielding an overall good performance.
The CQELS language itself is again an extension of the SPARQL grammar.

RSP-QL. RSP originally conࢢnued the same pa�ern forming the basis for efforts
such as LARS or SECRET; different RSP implementaࢢons used different semanࢢcs
for windowing operaࢢons, resulࢢng in different answers depending on the system
used. While the representaࢢon of RDF graphs is well-defined, the content of RDF
streams is not. Furthermore, since operaࢢons on RDF graphs were me-invariantࢢ
(incorporaࢢng meࢢ into ontologies is a difficult open problem), combining streams
with ontologies resulted in different approaches. The RSP Query Language (RSP-QL)
was therefore proposed by Dell’Aglio et al. (2014) as a unifying query model to ex-
plain the heterogeneity of these various RSP languages. To this effect, it extends the
SPARQL model and bases off the CQL and SECRET models.

RSP orchestraࢢon

The orchestraࢢon of RSP beyond single engines appears to have only started re-
cently within the Semanࢢc Web community. It shared some similariࢢes with older
work towards semanࢢc web services, but with a specific focus on the generaࢢon of
RDF streams and the transportaࢢonmechanism for such streams within the domain
of exisࢢng Web-based communicaࢢon technologies. In the following, we look at
approaches towards the generaࢢon of RDF streams, the orchestraࢢon of RSP tools,
and the possibility of annotaࢢng RDF streams by treaࢢng them as first-class ciࢢzens.

TripleWave. As menࢢoned earlier, raw data streams usually do not follow the RDF
structure. This makes the distribuࢢon of such streams more complex than simply
taking exisࢢng RDF data and streaming this data. TripleWave is a framework that al-
lows users to distribute RDF streams on the web, and was originally proposed by
Mauri et al. (2016). It considers both RDF and non-RDF resources and provides
the means to stream these resources as RDF streams. For RDF resources, this in-
cludes the streaming of me-annotatedࢢ datasets and the replaying of recorded RDF

168

11.11. PEIS

streams, also allowing these replays to be looped to generate an infinite-length
stream. For non-RDF resources, plugins exist that convert to JSON raw data from
for example social media or open-source encyclopedia. The resulࢢng JSON data can
then be converted into an RDF stream. In doing so, TripleWave offers a soluࢢon to
the problemof generaࢢng RDF streams fromdata providers thatmay not necessarily
support the RDF format naࢢvely.

WeSP. Previously, we looked at several different RSP engines for querying RDF
streams. Similarly, systems such as TripleWave act as sources of such data. The
WeSP framework by Dell’Aglio et al. (2017b) is tasked with connecࢢng these sources
to graphs of potenࢢally many RSP engines, using exisࢢng Web-based technologies
(i.e. HTTP, Websockets) for realising communicaࢢon. WeSP therefore defines com-
municaࢢon protocols that can be used by different RSP engines to establish RSF
stream-based communicaࢢon in a network of engines. They addiࢢonally describe
RDF documents called stream descriptors, which describe a stream at themetalevel.
This follows a similar approach taken in the development of SSL, discussed in Chap-
ter 6, and the DyKnow model, presented in Chapter 7.

VoCaLS. One important part of orchastraࢢon is the availability of a vocabulary to
describe streams and transformaࢢons. The Vocabulary for Cataloging and Linking
Streams and streaming services on the web (VoCaLS) was introduced by Tommasini
et al. (2018, 2019) for this purpose. It provides a vocabulary for annotaࢢng stream-
ing services and transformaࢢon, and makes it possible to annotate streams with
provenance informaࢢon describing the process through which they are generated.
VoCaLS can thus provide a realisaࢢon ofWeSP’s stream descriptors. This follows the
same line of work as presented here in Chapter 7, where the DyKnow model can be
expressed using the DyKnow ontology.

11.11 PEIS

Research towards analysis of stream reasoning such as proposed as part of LARS,
SECRET and to some extent RSP generally ignores quesࢢons of integraࢢon into a
larger (eco)system. Saffioࢰ et al. (2008) presented the PEIS ecology18 for Physically
Embedded Intelligent Systems. The cornerstone of the PEIS ecology is its conceptu-
alisaࢢon of physically embedded intelligent systems (PEIS) as agents that operate in
a physical environment and are themselves physical enࢢࢢes. Every PEIS is assumed
to at least have

1. some computaࢢonal resources;

2. some communicaࢢon resources; and

18Pronounced ‘pace ecology’

169

11. Related work

3. sensors and/or actuators allowing the system to interact with the physical en-
vironment.

Consequently, PEIS are assumed to be heterogeneous enࢢࢢeswith different capabil-
iࢢes. A PEIS ecology consists of potenࢢally many PEIS, each with their own funcࢢon-
aliࢢes and communicaࢢon capabiliࢢes. While the PEIS ecology considers communi-
caࢢon problems, DyKnow instead chooses to use ROS as a commonly-used pla�orm
that provides communicaࢢon support. The PEIS ecology as a whole is intended to
solve problems in a mulࢢ-agent organisaࢢon seࢰng by interacࢢng with the physical
environment.

Lundh et al. (2008) focused on the problem of self-configuraࢢon and proposed
techniques for configuraࢢon planning. The underlying moࢢvaࢢon is that in the PEIS
ecology robots can and should help other robots to collecࢢvely achieve goals com-
mon to the ecology they are part of. Funcࢢonaliࢢes are formalised in a logical rep-
resentaࢢon that can be used by general planners. Given a goal, the planner is able
to find a set of funcࢢonaliࢢes that, when acࢢvated, fulfill the goal. This approach
shares similariࢢes with DyKnow’s semanࢢc subscripࢢons. Both consider a compu-
taࢢonal environment in which funcࢢonaliࢢes can be acࢢvated or transformaࢢons
can be instanࢢated for a cost. However, in DyKnow this cost is esࢢmated and may
change over ,meࢢ whereas the PEIS ecology uses simple constant values. Further-
more, DyKnow’s similarity relaࢢon is based on the semanࢢc tags of transformaࢢons,
whereas the PEIS ecologymatches proposiࢢonal statements. Both the lack ofmean-
ingful cost measures and the potenࢢal value in using semanࢢc descripࢢons were
later idenࢢfied (Lundh, 2009) as future work. On the other hand, the PEIS ecology is
able to model acࢢons taken by PEIS at the level of configuraࢢon planning, whereas
DyKnow can only consider streamprocessingwithout taking into account the acࢢons
of agents. The precondiࢢons for transformaࢢons are not explicitly modeled in Dy-
Know either; transformaࢢons are expected to only be available when precondiࢢons
are met, as exemplified in the synergy scenarios. DyKnow focuses to a large degree
on maintaining semanࢢc subscripࢢons and therefore emphasises the need for effi-
cient and fast reconfiguraࢢon in light of failures. The PEIS ecology instead focuses
on achieving a goal in a physical environment, where the configuraࢢon of funcࢢon-
aliࢢes of PEIS plays one role. DyKnow and the PEIS ecology are thus complementary
in their results, where the difference in moࢢvaࢢons means there is a different focus.

Moving from the configuraࢢon-centric abstracࢢon level down to the data-centric
abstracࢢon level, Alirezaie (2015) more recently focused on the problem of stream-
ing data semanࢢcs. In parࢢcular, the focus was on bridging the semanࢢc gap be-
tween sensor data and ontological knowledge, which is reminiscent of the sense-
reasoning gap that was the moࢢvaࢢon (Heintz et al., 2010) behind earlier DyKnow
efforts. The semanࢢc gap between sensor data and ontological knowledge is de-
scribed as the disconnect between quanࢢtaࢢve sensor values and crisp high-level
knowledge encoded into ontologies. Alirezaie (2015) focuses on two aspects. First,
correspondences between sensor data and conceptual knowledge needs to be auto-
maࢢcally determined. Second, the two types of informaࢢon are combined in an in-

170

11.12. Summary

ferencing process. In parࢢcular, the focus is on enriching the sensor data, meaning it
is ‘li[ed up’ to the conceptual level. This is different from DyKnow’s approach of de-
scribing the low-level sensor informaࢢon using high-level concepts, as this is purely
descripࢢve rather than formaࢢve. The use of CEP on semanࢢc events obtained from
sensor informaࢢon is an interesࢢng approach currently not used by DyKnow.

Overall, the PEIS ecology sharesmany similariࢢeswith the DyKnowproject. Both
efforts consider a larger integraࢢon problem in which stream reasoning combining
sensor data with high-level knowledge is essenࢢal for decision-making, albeit from
different angles.

11.12 Summary

The research presented in this dissertaࢢon focuses on robust stream reasoning un-
der uncertainty. In doing so, it also considers the applicaࢢon area of intelligent
roboࢢcs. In this overview of related work, we covered a wide area of work per-
taining to stream reasoning for various applicaࢢon domains.

This includes early work on DSMS for stream processing, such as STREAM with
its CQL, Aurora with its SQuAl, and TelegraphCQ with its iterable meࢢ windows;
each supporࢢng some form of windowing to handle the potenࢢally infinite-length
streams they process. We also discussed early CEP systems, such as ETALIS with its
ELE language generalising Allen’s interval algebra, or T-Rex with its TESLA language
that also supports window-based aggregaࢢon, further blurring the boundaries be-
tween DSMS and CEP. We also discussed the various ways RSP has pushed the
boundaries of stream reasoning, and where the termwas coined originally. Some of
the RSP engines menࢢoned make use of some of the languages menࢢoned earlier;
EP-SPARQL combines ELE with SPARQL. But RSP also considers a background knowl-
edge base in the form of an ontology, which must be taken together with a stream
to perform stream reasoning. Retalis takes a similar approach, extending ELE with
knowledge base management using rules wri�en in SLR, combining a stream with
an incrementally-updated knowledge base.

Oneof the lessons learned in RSP researchwas the difficulty in formalising the se-
manࢢcs of RSP languages. SECRET was one formalisaࢢon of stream reasoning, con-
sidering a formal definiࢢon of streams and windows on streams. SECRET was used
in combinaࢢon with CQL and SPARQL to develop RSP-QL. At around the same ,meࢢ
LARSwas developed to also formally describe streams andwindows on streams, and
was used to describe the semanࢢcs of CQL as an illustraࢢon of its expressiveness.
The LARS framework was also realised; several implementaࢢons of reasoners for
LARS fragments exist, including Laser and Ticker.

Yet none of the above systems, with the excepࢢon of Retalis, specifically fo-
cused on intelligent roboࢢcs. This applicaࢢon domain has its own difficulࢢes, in-
cluding the problem of having to cope with low-level sensor informaࢢon, whereas
the above systems commonly expect crisp relaࢢonal data or RDF triples. Another is-
sue is that this informaࢢon may originate from different streaming resources. Some

171

11. Related work

of the early work on stream reasoning did consider a changing stream processing
environment. STREAM used the StreaMon monitoring and adapࢢve query process-
ing infrastructure, which tried to re-opࢢmise the query processing whenever neces-
sary. Aurora specifically considers user-defined quality of service, and tries to opࢢ-
mise that during run-ࢢme. Borealis was a conࢢnuaࢢon of Aurora that incorporated
Medusa, which considered a mulࢢ-agent seࢰng in which nodes compensated each
other based on economical incenࢢves. TelegraphCQ made use of Eddies for rouࢢng
streams, and Retalis extended ETALIS with support for run-ࢢme subscripࢢons that
may change dynamically.

More advanced orchestraࢢon of stream processing is less common. PEIS specif-
ically considers the sharing of informaࢢon between separate physical agents to
achieve common goals. It does so by formalising the agents’ funcࢢonaliࢢes and
applying configuraࢢon planning to align these funcࢢonaliࢢes when needed. On the
RSP side, recent developments as part ofWeSP considered graphs of interconnected
RSP engines communicaࢢng using standard Web-based technologies. Systems like
TripleWave focused on the generaࢢon of RDF streams from both RDF and non-RDF
data resources. This was further complemented with support for the semanࢢc an-
notaࢢon of streaming services using VoCaLS. The combinaࢢon of the two can be part
of semanࢢcally-aware RSP orchestraࢢon.

The work towards DyKnow thus covers a fairly wide range of related works. On
the one hand, there is the reasoning over streams, ranging from simple processing
to logical reasoning tasks with background theories. On the other hand, there is the
support for reasoning about streams, dealingwith the smart orchestraࢢon of stream
processing to achieve goals. Overall, one can regards the DyKnow system as being
similar to a hypotheࢢcal combinaࢢon of Retalis with PEIS; sharing some similariࢢes
in their features, while complemenࢢng both.

172

Part V

CONCLUSIONS

Chapter

12
Conclusions and future work

T his dissertaࢢon presents a logic, algorithms, formal models, semanࢢc repre-
sentaࢢons, integraࢢon, a concrete implementaࢢon, and a case study for ro-
bust spaࢢo-temporal stream reasoning under uncertainty. The logic MSTL

was used to make spaࢢo-temporal statements, and of which the truth value can be
robustly determined even in the face of incomplete informaࢢon and unexpected
changes in the availability of (latent) streams. The presented work is mulࢢdisci-
plinary in nature, resulࢢng in the focus on the development and integraࢢon of two
related strands. This chapter first provides a high-level summary of the contribu-
,onsࢢ revisits the research quesࢢons and considers open problems, before consid-
ering potenࢢal future work.

12.1 Overview

The results presented in this work represent the latest achievements within the
DyKnow project, divided into two integrated strands. The first strand focused on
stream reasoning under uncertainty, where we specifically looked at path checking
over sets of states represenࢢng different consistent hypotheses. This can be used
for performing spaࢢo-temporal stream reasoningwithMSTL.MSTLwas presented
as an extension of MITL by incorporaࢢng RCC-8 for qualitaࢢve spaࢢal reasoning,
allowing for spaࢢo-temporal statements to be made. The truth value of these state-
ments can be determined incrementally using an extended version of progression.
These statements can further contain intertemporal spaࢢal relaࢢons similar to ST1.
Importantly, we assume that these intertemporal spaࢢal relaࢢons cannot be ob-
served directly, and thus need to be inferred. Without any addiࢢonal informaࢢon
about intertemporal relaࢢons, nothing is known about them. Our soluࢢon therefore
makes use of landmark regionswhich can reduce the uncertainty over intertemporal
spaࢢal relaࢢons.

175

12. Conclusions and future work

Fluent

Observation

Interpretation

Knowledge

Verdict

Shroud

Response

Figure 12.1: A simplified version of the stream reasoning waterfall model.

The second strand focuses on the problem of generaࢢng a state stream over
which a formula can be evaluated. The symbols in a formula are therefore grounded
in a computaࢢonal environment through syntacࢢc or semanࢢc subscripࢢons, such
that the truth value of these symbols depends on the data that is produced by this
underlying environment. Semanࢢc annotaࢢons of the logical symbols (through the
use of targets) as well as the available stream transformaࢢons allow us to find suit-
able configuraࢢons of the computaࢢonal environment that produce a state stream
containing the informaࢢon necessary to evaluate a formula. By reconsidering the
configuraࢢon periodically, the computaࢢon graphs can be repaired or improved in
case where the underlying system changes unexpectedly. This ensures that the pro-
gression of a formula is not necessarily interrupted or fails as the result of such
changes, making the system more robust. Addiࢢonally, the configuraࢢons can be
expressed relaࢢve to a SemanࢢcWeb ontology, allowing for the exchange of config-
uraࢢon informaࢢon.

The two strands were integrated into a single stream reasoning framework in
which reasoning about streams synergises with reasoning over streams. The stream
reasoning waterfall is shown once more in Figure 12.1, and shows the various steps
from fluents down to verdicts, which may elicit a response. The resulࢢng DyKnow
model was integrated with ROS and allows exisࢢng ROS nodelet implementaࢢons
to be used in DyKnow with minimal overhead in terms of delays and developer bur-
den. This concrete implementaࢢon was then deployed on NAO pla�orms, adapࢢng
so[ware produced by the Linköping RoboCup SPL team to be usable by DyKnow
for a case-study that highlights the added value of adapࢢve reconfigurability during
stream reasoning tasks.

While the focus of the work was primarily on roboࢢc applicaࢢons, the soluࢢons
are general and do not rely on specific supporࢢng so[ware such as ROS. For exam-
ple, experimental CUs have been wri�en for non-roboࢢc domains such as Twi�er,
or to interact with DigitalOcean’s cloud compuࢢng API by instanࢢaࢢng, managing,
and destroying virtual machines in off-pla�orm data centres. This highlights poten-
alࢢ applicability of the presented soluࢢons to much broader applicaࢢon areas that

176

12.2. Conclusions

involve many diverse computaࢢonal resources, for example smart ciࢢes or sensor
networks, making them potenࢢally interesࢢng to industrial applicaࢢons of this kind.
The computaࢢon resources also do not necessarily have to be physical. One can
imagine virtual services that deal with areas such as adverࢢsement, travel agencies,
or stock markets wherein financial informaࢢon and their sources may change con-
.nuallyࢢ In fact, many CEP languages have query examples that deal precisely with
stock market events.

12.2 Conclusions

In the introducࢢon covered by Chapter 1, the following research quesࢢons were
posed:

• [RQ1]: How can uncertainty be formally modelled for the purpose of logical
stream reasoning?

• [RQ2]: How can a spaࢢo-temporal logic be constructed by combining spaࢢal
and temporal formalisms, and how can statements in such a logic be tested
for saࢢsfacࢢon given a stream?

• [RQ3]: How can a stream be generated for the purpose of symbol grounding?

• [RQ4]: How can the procedure for generaࢢng a stream for the purpose of
runࢢme verificaࢢon be made robust to changes that affect its ability to keep
generaࢢng such a stream?

• [RQ5]: How can the techniques developed towards answering the aforemen-
onedࢢ research quesࢢons be leveraged in a concrete middleware framework
such as the Robot Operaࢢng System?

We can now revisit the contribuࢢons in this dissertaࢢon that seek to answer these
quesࢢons.

Modelling uncertainty for the purpose of logical stream reasoning

The need to model uncertainty when performing logical stream reasoning is based
on the introducࢢon of uncertainty when making observaࢢons of an environment,
and the need to represent this uncertainty at higher levels of abstracࢢon aswell. We
focused primarily on represenࢢng uncertainty by considering mulࢢple hypotheses,
and keeping track of these hypotheses. Chapters 3 and 4 formalised the concept of
an incomplete stream as a sequence of incomplete states, each of which represents
mulࢢple hypotheses with potenࢢally different probabiliࢢes. The progression proce-
dure by Bacchus and Kabanza (1998) was enhanced with rewriࢢng rules, shown in
Table 3.1, allowing for formulas to be simplified such that their length is reduced.
Since the meࢢ and space complexity of progression are based on formula size, for-
mula simplificaࢢon can make progression more efficient.

177

12. Conclusions and future work

Saࢢsfacࢢon-checking spaࢢo-temporal statements

Wemade use of progression to determine whether a stream saࢢsfies a formula, be-
cause of the incremental nature of progression. Chapters 4 and 5 considered path
checking to determine whether a stream saࢢsfies a logical formula, with the la�er
extending this to the spaࢢo-temporal logicMSTL. The semanࢢcs ofMSTLwas pro-
vided in Definiࢢon 5.3 and combines MITL with RCC-8. Uncertainty in terms of
incomplete streams is propagated into the task of path checking because an incom-
plete stream represents a potenࢢally large collecࢢon of possible complete streams.
The uncertainty is efficiently kept track of by uࢢlising progression graphs — shown
to be correct in Theorem 4.4 — which keep track of a probability mass distribuࢢon
represenࢢng the probability of progression having ended up in a parࢢcular formula
given an incomplete stream prefix.

Generaࢢng a stream for symbol grounding

Symbol grounding is used to give meaning to the symbols used to represent propo-
siࢢons in logical formulas. Chapter 6 shows how subscripࢢons can be used to obtain
the necessary state informaࢢon, and how background knowledge can be used to en-
hance such states. The chapter also showed three languages for stream processing;
SPL, SSL, and FSL. SPL and FSL allow a user to filter, combine and otherwise transform
streams using descripࢢve SQL-like queries, whereas SSL allows a user to semanࢢ-
cally annotate streams and transformaࢢons. Chapter 7 introduces a formalisaࢢon
of the concepts of transformaࢢons, computaࢢon units, and targets. The semanࢢc
descripࢢon of transformaࢢons allows for the automaࢢc configuraࢢon of a system to
generate a stream described by its semanࢢcs. This makes it possible for a user to
not have to care about how the stream is generated. We also looked at an ontology,
shown in Figure 7.1, to represent a snapshot of a computaࢢonal environment.

Robust stream generaࢢon under change

Adapࢢve semanࢢc subscripࢢons are robust to changes affecࢢng the computaࢢonal
environment’s abiliࢢes to transform streams. Chapter 8 formalises the concept of
a perturbaࢢon and introduced the problem of finding the opࢢmal change set to re-
cover from a perturbaࢢon. To also uࢢlise possible improvements, Algorithms 8.1,
8.2 and 8.3 use periods of exploraࢢon and exploitaࢢon as part of an update proce-
dure.

Applicaࢢon in a concrete middleware framework

DyKnow-ROS is an implementaࢢon of the DyKnow model in the Robot Operat-
ing System (ROS). Chapter 9 shows how the model can be realised by describing
the required ROS-based services. To perform reconfiguraࢢons, addiࢢonal control
is needed in the form of proxies. Chapter 10 finally covers case-studies involving

178

12.3. Limitaࢢons and open problems

DyKnow-ROS as a proof of concept by focusing on the robust generaࢢon of a stream
needed to evaluate a formula.

12.3 Limitaࢢons and open problems

While the work presented in this dissertaࢢon is interdisciplinary, this also invariably
means that there are limitaࢢons to aspects of the presented work. We therefore
focus on the limitaࢢons of the results presented, and consider some problemswhich
have not yet been resolved. We do so by considering the relevant parts this work
is composed of (i.e. Parts II, III, IV) in isolaࢢon, as they represent different — albeit
related — strands.

Stream reasoning under uncertainty

Part II focuses on contribuࢢons towards stream reasoning under uncertainty. In
this work, the emphasis was on a specific kind of stream reasoning, i.e. path check-
ing. The approach foresees the use of background theories when performing state
stream synthesis, which is required for spaࢢo-temporal stream reasoning using
MSTL. A closer integraࢢon of state stream synthesis with progression remains an
open problem. One idea here is to encode the background knowledge into the pro-
gression graph by removing edges labelled with states which are inconsistent when
combined with the background knowledge. This could be used to further limit the
size of progression graphs. An invesࢢgaࢢon into the potenࢢal interacࢢon between
graph-based progression and reasoning with background knowledge has also been
le[for future work. Of parࢢcular interest is ASP-based reasoning, which has pre-
viously been shown (Brenton et al., 2016) to also be able to perform qualitaࢢve
spaࢢal reasoning tasks. Another open issue concerns the potenࢢal to use verdict
streams to generate new incomplete state streams. This would allow for the rea-
soning about saࢢsfacࢢon probabiliࢢes within the logic itself. Finally, we considered
a specific type of uncertainty, and an invesࢢgaࢢon of addiࢢonal alternaࢢves is an
open problem. One potenࢢally interesࢢng approach is to consider a variant of the
probability thresholding operator P>p(ϕ) recently proposed by Koopmann (2019)
in the context of OBDA, or to further develop a probabilisࢢc extension of STL as
proposed by Tiger and Heintz (2016).

Adapࢢve stream processing

Part III focuses on contribuࢢons towards robust stream reasoning through adap-
veࢢ stream processing. The DyKnow model seeks to reconfigure the computaࢢonal
environment by a�empࢢng to reach a goal configuraࢢon represented by a set of
targets, while at the same meࢢ keeping the configuraࢢon’s cost low. The choice of
cost measures for CUs is however notoriously difficult. Previous work, for example
Lundh (2009), notes the same difficulࢢes and instead simplifies the problem by as-
signing constant uࢢlity values. It seems more likely, however, that the cost of CUs

179

12. Conclusions and future work

would change based on the context of the operaࢢons. It would be interesࢢng to
see how well a predicࢢve cost model could be learned in terms of computaࢢonal
resource usage, and which features would be the most informaࢢve for these pre-
dicࢢons. While the model presented in this chapter provides a framework for using
such predicࢢons, learning good esࢢmators is beyond the scope of this work. The
DyKnow model does consider the cost of environments, but it does not consider
the uࢢlity of the produced streams. In some implementaࢢons, a higher upkeep is
associated with a higher-quality data stream. The representaࢢon of uࢢlity and the
trade-off between cost and uࢢlity are interesࢢng open problems. Lastly, the pre-
sented approach allows for the configuraࢢon model to be represented relaࢢve to
a Semanࢢc Web ontology. This is done because we foresee future configuraࢢons
spanningmulࢢple agents in a mulࢢ-agent organisaࢢon, but addiࢢonal work towards
this type of support is necessary.

Applied stream reasoning

Part IV focuses on applied stream reasoning and presents a realisaࢢon of the Dy-
Know model in ROS, called DyKnow-ROS. DyKnow-ROS relies on nodelets for dy-
namic instanࢢaࢢon of CUs. This presents some pracࢢcal problems. First, this
excludes ROS nodes, since these can only be started by command-line or via
roslaunch. Currently, node-based implementaࢢons have to be converted to
nodelets, although many support both types. The second issue is that a crash of
a nodelet brings down the nodelet manager, and thereby all CUs that are running as
part of that nodelet manager. This means that many if not all CUs crash if one does,
and recovery then requires a new nodelet manager process to be started. Some
addiࢢonal engineering efforts are needed to resolve these pracࢢcal issues. ROS has
some known shortcomings in terms of communicaࢢon guarantees, making it less
useful for real-ࢢme applicaࢢons. A new version of ROS, going by the name ROS2, is
under development. It would be interesࢢng to see how ROS2 could be combined
with the DyKnow model for a potenࢢal DyKnow-ROS2 realisaࢢon with real-ࢢme
guarantees. Another issue is the realisaࢢon of an opࢢmisaࢢon problem for the com-
putaࢢonal environment. Targets currently only consider cost, without considering
quality. This prevents certain soluࢢons from being chosen if they are more expen-
sive, regardless of their quality being greater than that of cheaper soluࢢons. As an
example, someࢢmes redundant informaࢢon can be useful. One situaࢢon wherein
this is the case is sensor fusion. Givenmulࢢple sources of posiࢢon informaࢢon for an
object, combining these sources may lead to a be�er posiࢢon esࢢmaࢢon. However,
since this requires mulࢢple pipelines and thus more upkeep costs, these soluࢢons
will never be chosen. It would be interesࢢng to see how one could extend the ap-
proach presented here to a mulࢢ-target opࢢmisaࢢon problem in which the cost is
minimised and the quality ismaximised. The synergy effect is demonstrated in terms
of reasoning about streams supporࢢng robust reasoning over streams in situaࢢons
wherein the set of available computaࢢonal resources changes. We have not yet ex-
plored in detail the opposite synergy direcࢢon, wherein reasoning over streamsmay

180

12.4. Future work

affect the reasoning about streams. This too is a topic le[for future work. Finally,
the lack of mulࢢ-agent support at this stagemeans that the two NAO pla�orms used
in this case study were part of a single DyKnow instance. Effecࢢvely it was the lab
that acted as an agent. Separaࢢng the two pla�orms over two different DyKnow
instances brings new challenges.

12.4 Future work

There remains a lot of potenࢢal future work in the adapࢢve state stream generaࢢon
strand, in addiࢢon to the limitaࢢons menࢢoned earlier. In parࢢcular, determining
appropriate uࢢlity measures with meaningful properࢢes is an issue. For example, if
we can provide a higher-quality stream by fusing two probabilisࢢc streams, there is
sࢢll a trade-off to be made in terms of the labour and upkeep such a reconfiguraࢢon
would cost. Finding a suitable trade-off between cost and uࢢlity is an important
problem especially for robot applicaࢢons.

For the work pertaining to reasoning over streams under uncertainty we have
thus far focused on specific types of uncertainty. Specifically, we considered mul-
pleࢢ hypotheࢢcal states at each ,me-pointࢢ resulࢢng in mulࢢple hypotheࢢcal com-
plete streams. Probabiliࢢes were also assigned to the individual hypotheࢢcal states.
Further efforts should be made to further develop the ability to handle uncertain
informaࢢon. One potenࢢally interesࢢng approach is to consider a variant of the
probability thresholding operator P>p(ϕ) recently proposed by Koopmann (2019)
in the context of OBDA. The support of probabilisࢢc reasoning would be extremely
useful in roboࢢc scenarios, as in many cases the informaࢢon we want to use in the
crisp logical formulas is actually represented in terms of probability distribuࢢons.
While it is trivial to provide mean values, this does not handle Boolean compar-
isons nicely, as a distribuࢢon might overlap with a threshold, thus making the truth
value of the comparison inherently probabilisࢢc. This also impacts the way state
streams are synthesised, as more meta-informaࢢon is required to properly combine
probabilisࢢc informaࢢon of this kind. One interesࢢng use-case would be that of au-
tomated fusion, wherein the underlying configuraࢢon manager takes into account
the possibility of fusing probabilisࢢc data streams in certain contexts. Another is to
further invesࢢgate the integraࢢon of reasoning with a background theory into pro-
gression graphs, where such background theories could be used to eliminate edges
corresponding to inconsistent states.

The current stream reasoning soluࢢon is designedwith a single agent inmind. By
expanding reasoning over and about streams to amulࢢ-agent system seࢰng, we can
consider many interesࢢng problems in addiࢢon to the ones described above. While
there exists ongoing work into configuraࢢon of for example cloud compuࢢng sys-
tems, these approaches commonly have data centres inmind. Extending these tech-
niques and others to heterogeneous autonomous robot applicaࢢons would likely be
interesࢢng.

181

12. Conclusions and future work

Finally, further invesࢢgaࢢon of the synergy effect resulࢢng from reasoning about
and over streams may be of interest to many problems not limited to situaࢢon
awareness. Being able to reason about one’s own percepts allows one to poten-
allyࢢ resolve inconsistencies. By reasoning about streams, an agent is able to reason
about percepࢢon itself and could thus find alternate modes of percepࢢon to either
corroborate the contradicࢢon or contradict the inconsistent observaࢢon. This dis-
sertaࢢon presents but a few iniࢢal steps towards such an agent from the starࢢng
point of stream reasoning.

182

Bibliography

D. J. Abadi, D. Carney, U. Çeࢢntemel,M. Cherniack, C. Convey, S. Lee,M. Stonebraker,
N. Tatbul, and S. Zdonik. Aurora: a new model and architecture for data stream
management. The Internaࢡonal Journal on Very LargeData Bases, 12(2):120–139,
2003.

D. J. Abadi, Y. Ahmad, M. Balazinska, U. Çeࢢntemel, M. Cherniack, J.-H. Hwang,
W. Lindner, A. Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. Zdonik. The
design of the Borealis stream processing engine. In Proceedings of the Second
Biennial Conference on Innovaࢡve Data Systems Research (CIDR), pages 277–289,
2005.

F.-M. Adolf, P. Faymonville, B. Finkbeiner, S. Schirmer, and C. Torens. Stream run-
meࢢ monitoring on UAS. In Proceedings of the 17th Internaࢡonal Conference on
Runࢡme Verificaࢡon (RV), volume 10548, page 33, 2017.

M. Alirezaie. Bridging the Semanࢡc Gap between Sensor Data and Ontological
Knowledge. PhD thesis, Örebro university, 2015.

J. Allen. Maintaining knowledge about temporal intervals. Communicaࢡons of the
ACM, 26(11):832–843, 1983.

R. Alur, T. Feder, and T. A. Henzinger. The benefits of relaxing punctuality. Journal of
the ACM (JACM), 43(1):116–146, 1996.

D. Anicic. Event Processing and Stream Reasoning with ETALIS. PhD thesis, Karlsruhe
Insࢢtute of Technology, 2012.

D. Anicic, P. Fodor, N. Stojanovic, and R. Stühmer. An approach for data-driven and
logic-based complex event processing. In Proceedings of the Third ACM Interna-
onalࢡ Conference on Distributed Event-Based Systems, pages 26–27, 2009.

183

Bibliography

D. Anicic, P. Fodor, S. Rudolph, and N. Stojanovic. EP-SPARQL: a unified language for
event processing and stream reasoning. In Proceedings of the 20th Internaࢡonal
World Wide Web Conference (WWW), 2011.

D. Anicic, S. Rudolph, P. Fodor, and N. Stojanovic. Stream reasoning and complex
event processing in ETALIS. Semanࢡc Web, 3(4):397–407, 2012.

A. Arasu, S. Babu, and J. Widom. CQL: A language for conࢢnuous queries over
streams and relaࢢons. In Proceedings of the 9th Internaࢡonal Workshop on
Database Programming Languages (DBPL), pages 1–19. Springer, 2003.

A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito, R. Motwani, U. Srivas-
tava, and J. Widom. STREAM: The Stanford data stream management system,
pages 317–336. Stanford InfoLab, 2004.

A. Arasu, S. Babu, and J. Widom. The CQL conࢢnuous query language: semanࢢc
foundaࢢons and query execuࢢon. The Internaࢡonal Journal on Very Large Data
Bases, 15(2):121–142, 2006.

S. Babu and J.Widom. StreaMon: an adapࢢve engine for streamquery processing. In
Proceedings of the 2004 ACM SIGMOD Internaࢡonal Conference onManagement
of Data, pages 931–932, 2004.

F. Bacchus and F. Kabanza. Planning for temporally extended goals. Annals of Math-
emaࢡcs and Arࢡficial Intelligence, 22(1-2):5–27, 1998.

K. Baldor and J. Niu. Monitoring dense-ࢢme, conࢢnuous-semanࢢcs,Metric Temporal
Logic. In Proceedings of the Internaࢡonal Conference on Runࢡme Verificaࢡon,
pages 245–259, 2012.

D. Barbieri, D. Braga, S. Ceri, E. Della Valle, and M. Grossniklaus. C-SPARQL: SPARQL
for conࢢnuous querying. In Proceedings of the 18th Internaࢡonal World Wide
Web Conference (WWW), 2009.

D. F. Barbieri, D. Braga, S. Ceri, E. Della Valle, and M. Grossniklaus. C-SPARQL: a con-
nuousࢢ query language for RDF data streams. Internaࢡonal Journal of Semanࢡc
Compuࢡng, 4(1):3–25, 2010a.

D. F. Barbieri, D. Braga, S. Ceri, andM. Grossniklaus. An execuࢢon environment for C-
SPARQL queries. In Proceedings of the 13th Internaࢡonal Conference on Extending
Database Technology (EDBT), pages 441–452, 2010b.

D. F. Barbieri, D. Braga, S. Ceri, E. D. Valle, andM.Grossniklaus. Querying RDF streams
with C-SPARQL. ACM SIGMOD Record, 39(1):20–26, 2010c.

D. Basin, B. N. Bha�, and D. Traytel. Almost event-rate independent monitoring of
Metric Temporal Logic. In Proceedings of the 23rd Internaࢡonal Conference on
Tools and Algorithms for the Construcࢡon and Analysis of Systems, pages 94–112,
2017.

184

Bibliography

H. R. Bazoobandi, H. Beck, and J. Urbani. Expressive stream reasoning with Laser.
In Proceedings of the 16th Internaࢡonal Semanࢡc Web Conference (ISWC), pages
87–103, 2017.

H. Beck, M. Dao-Tran, T. Eiter, and M. Fink. Towards a logic-based framework for
analyzing stream reasoning. In Proceedings of the 3rd Internaࢡonal Workshop on
Ordering and Reasoning (OrdRing), 2014.

H. Beck, M. Dao-Tran, T. Eiter, and M. Fink. LARS: A logic-based framework for an-
alyzing reasoning over streams. In Proceedings of the Twenty-Ninth AAAI Confer-
ence on Arࢡficial Intelligence (AAAI), 2015.

H. Beck, T. Eiter, and C. Folie. Ticker: A system for incremental ASP-based stream
reasoning. Theory and Pracࢡce of Logic Programming, 17(5-6):744–763, 2017.

B. Benne�, A. Cohn, F. Wolter, and M. Zakharyaschev. Mulࢢ-dimensional modal
logic as a framework for spaࢢo-temporal reasoning. Applied Intelligence, 17(3):
239–251, 2002.

T. Berners-Lee, J. Hendler, and O. Lassila. The Semanࢢc Web. Scienࢡfic American,
284(5):34–43, 2001.

I. Botan, R. Derakhshan, N. Dindar, L. Haas, R. J.Miller, andN. Tatbul. SECRET: amodel
for analysis of the execuࢢon semanࢢcs of streamprocessing systems. Proceedings
of the VLDB Endowment, 3(1-2):232–243, 2010.

C. Brenton,W. Faber, and S. Batsakis. Answer set programming for qualitaࢢve spaࢢo-
temporal reasoning: Methods and experiments. In Technical Communicaࢡons of
the 32nd Internaࢡonal Conference on Logic Programming, volume 52, pages 4:1–
4:15, 2016.

A. Bröring, K. Janowicz, C. Stasch, andW. Kuhn. Semanࢢc challenges for sensor plug
and play. In Proceedings of the 9th Internaࢡonal Symposium onWeb andWireless
Geographical Informaࢡon Systems (W2GIS), pages 72–86, 2009.

A. Bröring, P. Maué, K. Janowicz, D. Nüst, and C. Malewski. Semanࢢcally-enabled
sensor plug & play for the sensor web. Sensors, 11(8):7568–7605, 2011.

J. R. Büchi. On a decision method in restricted second order arithmeࢢc. In The
Collected Works of J. Richard Büchi, pages 425–435. 1990.

J.-P. Calbimonte, O. Corcho, and A. J. Gray. Enabling ontology-based access to
streaming data sources. In Proceedings of the 9th Internaࢡonal Semanࢡc Web
Conference (ISWC), pages 96–111, 2010.

P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K. Tzoumas. Apache
Flink: Stream and batch processing in a single engine. volume 36, 2015.

185

Bibliography

S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein,
W. Hong, S. Krishnamurthy, S. Madden, V. Raman, F. Reiss, et al. TelegraphCQ:
Conࢢnuous dataflow processing for an uncertain world. In Proceedings of the
First Biennial Conference on Innovaࢡve Data Systems Research (CIDR), volume 2,
page 4, 2003.

M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U. Ceࢢntemel, Y. Xing, and
S. B. Zdonik. Scalable distributed stream processing. In Proceedings of the First
Biennial Conference on Innovaࢡve Data Systems Research (CIDR), volume 3, pages
257–268, 2003.

C. Cini and A. Francalanza. An LTL proof system for runࢢme verificaࢢon. In Proceed-
ings of the 21st Internaࢡonal Conference on Tools and Algorithms for the Con-
strucࢡon and Analysis of Systems (TACAS), pages 581–595, 2015.

E. M. Clarke and E. A. Emerson. Design and synthesis of synchronizaࢢon skeletons
using branching meࢢ temporal logic. In Proceedings of the Workshop on Logic of
Programs, pages 52–71. Springer, 1981.

A. Cohn and J. Renz. Qualitaࢢve spaࢢal representaࢢon and reasoning. In Handbook
of Knowledge Representaࢡon, pages 869–886. Elsevier, 2008.

M. Compton et al. The SSN ontology of theW3C semanࢢc sensor network incubator
group. Web Semanࢡcs: Science, Services and Agents on the World Wide Web, 17:
25–32, 2012.

G. Cugola and A. Margara. TESLA: a formally defined event specificaࢢon language.
In Proceedings of the Fourth ACM Internaࢡonal Conference on Distributed Event-
Based Systems (DEBS), pages 50–61, 2010.

G. Cugola and A. Margara. Processing flows of informaࢢon: From data stream to
complex event processing. ACM Compuࢡng Surveys (CSUR), 44(3):15, 2012a.

G. Cugola and A. Margara. Complex event processing with T-REX. Journal of Systems
and So[ware, 85(8):1709–1728, 2012b.

Z. Cui, A. G. Cohn, and D. A. Randell. Qualitaࢢve and topological relaࢢonships in spa-
alࢢ databases. In Proceedings of the Third Internaࢡonal Symposium on Advances
in Spaࢡal Databases (SSD), pages 296–315, 1993.

E. Della Valle, S. Ceri, F. Van Harmelen, and D. Fensel. It’s a streaming world! Rea-
soning upon rapidly changing informaࢢon. IEEE Intelligent Systems, 24(6), 2009.

D. Dell’Aglio, E. Della Valle, J.-P. Calbimonte, and O. Corcho. RSP-QL semanࢢcs: A uni-
fying query model to explain heterogeneity of RDF stream processing systems.
Internaࢡonal Journal on Semanࢡc Web and Informaࢡon Systems, 10(4):17–44,
2014.

186

Bibliography

D. Dell’Aglio, E. Della Valle, F. van Harmelen, and A. Bernstein. Stream reasoning: A
survey and outlook. Data Science, 1(1-2):59–83, 2017a.

D. Dell’Aglio, D. Le Phuoc, A. Lê Tuán, M. I. Ali, and J.-P. Calbimonte. On a web of
data streams. In Proceedings of the ISWC2017 Workshop on Decentralizing the
Semanࢡc Web, 2017b.

D. Dell’Aglio, T. Eiter, F. Heintz, and D. Le Phuoc. Special issue on stream reasoning.
Semanࢡc Web, 10(3):453–455, 2019. Editorial.

A. Desai, T. Dreossi, and S. A. Seshia. Combining model checking and runࢢme veri-
ficaࢢon for safe roboࢢcs. In Proceedings of the 17th Internaࢡonal Conference on
Runࢡme Verificaࢡon (RV), pages 172–189, 2017.

N. Dindar, N. Tatbul, R. J. Miller, L. M. Haas, and I. Botan. Modeling the execuࢢon
semanࢢcs of stream processing engines with SECRET. The VLDB Journal, 22(4):
421–446, 2013.

P. Doherty, G. Granlund, K. Kuchcinski, E. Sandewall, K. Nordberg, E. Skarman, and
J. Wiklund. The WITAS unmanned aerial vehicle project. In Proceedings of the
14th European Conference on Arࢡficial Intelligence (ECAI), pages 747–755, 2000.

P. Doherty, J. Kvarnström, and F. Heintz. A temporal logic-based planning and ex-
ecuࢢon monitoring framework for unmanned aircra[systems. Journal of Au-
tonomous Agents and Mulࢡ-Agent Systems, 19(3):332–377, 2009.

P. Doherty, F. Heintz, and J. Kvarnström. Roboࢢcs, temporal logic and stream rea-
soning. In Proceedings of the 19th Internaࢡonal Conference on Logic for Program-
ming, Arࢡficial Intelligence and Reasoning (LPAR), volume 26, pages 42–51, 2013.

P. Doherty, J. Kvarnström, M. Wzorek, P. Rudol, F. Heintz, and G. Conte. HDRC3: A
Distributed Hybrid Deliberaࢡve/Reacࢡve Architecture for Unmanned Aircra[Sys-
tems, pages 849–952. 2014.

C. Dousson and P. Le Maigat. Chronicle recogniࢢon improvement using temporal
focusing and hierarchizaࢢon. In Proceedings of the Twenࢡeth Internaࢡonal Joint
Conference on Arࢡficial Intelligence (IJCAI), volume 7, pages 324–329, 2007.

Z. Dragisic. Semanࢢc matching for stream reasoning. Master’s thesis, Linköping
University, 2011.

S. Dustdar and W. Schreiner. A survey on web services composiࢢon. Internaࢡonal
Journal of Web and Grid Services, 1(1):1–30, 2005.

M. B. Dwyer, G. S. Avrunin, and J. C. Corbe�. Pa�erns in property specificaࢢons for
finite-state verificaࢢon. In Proceedings of the 21st internaࢡonal conference on
So[ware engineering, pages 411–420, 1999.

187

Bibliography

M. Eckert and F. Bry. Complex event processing (CEP). Informaࢡk-Spektrum, 32(2):
163–167, 2009. Wri�en in German.

J. Eker and J. Janneck. CAL language report. Technical report, 2003.

S. Feng,M. Lohrey, and K. Quaas. Path checking forMTL and TPTL over datawords. In
Internaࢡonal Conference on Developments in Language Theory, pages 326–339,
2015.

S. Feng, M. Lohrey, and K. Quaas. Path Checking for MTL and TPTL over Data Words.
Logical Methods in Computer Science, 13, 2017.

I. Galpin, C. Y. Brenninkmeijer, F. Jabeen, A. A. Fernandes, and N. W. Paton. Compre-
hensive opࢢmizaࢢon of declaraࢢve sensor network queries. In Proceedings of the
21st Internaࢡonal Conference on Scienࢡfic and Staࢡsࢡcal DatabaseManagement,
pages 339–360, 2009.

Z. Gantner, M. Westphal, and S. Wölfl. GQR – a fast reasoner for binary qualita-
veࢢ constraint calculi. In Proceedings of the 22nd AAAI Conference on Arࢡficial
Intelligence (AAAI), pages 24–29, 2008.

A. Gerevini and B. Nebel. Qualitaࢢve spaࢢo-temporal reasoning with RCC-8 and
Allen’s interval calculus: Computaࢢonal complexity. In Proceedings of the 15th
European Conference on Arࢡficial Intelligence (ECAI 2002), volume 2, pages 312–
316, 2002.

M. Ghallab. On chronicles: Representaࢢon, on-line recogniࢢon and learning. In
Proceedings of the Fi[h Internaࢡonal Conference on Principles of Knowledge Rep-
resentaࢡon and Reasoning (KR), pages 597–606, 1996.

C. Ghezzi, D. Mandrioli, and A.Morzenࢢ. TRIO: A logic language for executable spec-
ificaࢢons of real-ࢢme systems. Journal of Systems and So[ware, 12(2):107–123,
1990.

K. Havelund andG. Roşu. Monitoring programs using rewriࢢng. In Proceedings of the
16th Annual Internaࢡonal Conference on Automated So[ware Engineering (ASE),
pages 135–143, 2001.

F. Heintz. DyKnow : A Stream-Based Knowledge ProcessingMiddleware Framework.
PhD thesis, Linköping University, 2009.

F. Heintz. Semanࢢcally grounded stream reasoning integrated with ROS. In Proceed-
ings of the IEEE/RSJ Internaࢡonal Conference on Intelligent Robots and Systems
(IROS), pages 5935–5942, 2013.

F. Heintz and P. Doherty. Chronicle recogniࢢon in the WITAS UAV project: A pre-
liminary report. In Proceedings of the Swedish AI Society Workshop, pages 1–4,
2001.

188

Bibliography

F. Heintz and P. Doherty. A distributed architecture for autonomous unmanned aerial
vehicle experimentaࢢon. In Proceedings of the 7th Internaࢡonal Symposium on
Distributed Autonomous Roboࢡc Systems (DARS), pages 1–10, 2004a.

F. Heintz and P. Doherty. DyKnow: An approach to middleware for knowledge pro-
cessing. Journal of Intelligent and Fuzzy Systems, 15(1):3–13, 2004b.

F. Heintz and P. Doherty. DyKnow: A framework for processing dynamic knowledge
and object structures in autonomous systems. In Proceedings of the Internaࢡonal
Workshop onMonitoring, Security, and Rescue Techniques inMulࢡ-Agent Systems
(MSRAS), pages 479–492, 2004c.

F. Heintz and P. Doherty. DyKnow: A framework for processing dynamic knowledge
and object structures in autonomous systems. In Proceedings of the Second Joint
SAIS/SSLS Workshop, pages 1–8, 2004d.

F. Heintz and P. Doherty. Managing dynamic object structures using hypothesis gen-
eraࢢon and validaࢢon. In Proceedings of the AAAI Workshop on Anchoring Sym-
bols to Sensor Data, pages 54–62, 2004e.

F. Heintz and P. Doherty. A knowledge processing middleware framework and its
relaࢢon to the JDL data fusion model. In Proceedings of the 8th Internaࢡonal
Conference on Informaࢡon Fusion (FUSION), pages 1–8, 2005a.

F. Heintz and P. Doherty. A knowledge processing middleware framework and its
relaࢢon to the JDL data fusion model. In Proceedings of the Third Joint SAIS/SSLS
Workshop, pages 1–10, 2005b.

F. Heintz and P. Doherty. A knowledge processing middleware framework and its re-
laࢢon to the JDL data fusionmodel. In Proceedings of the Third SwedishWorkshop
on Autonomous Roboࢡcs (SWAR), pages 54–55, 2005c.

F. Heintz and P. Doherty. A knowledge processing middleware framework and its
relaࢢon to the JDL data fusion model. Journal of Intelligent and Fuzzy Systems, 17
(4):335–351, 2006.

F. Heintz and P. Doherty. DyKnow federaࢢons: Distribuࢢng andmerging informaࢢon
among UAVs. In Proceedings of the 11th Internaࢡonal Conference on Informaࢡon
Fusion (FUSION), pages 1–7, 2008.

F. Heintz and P. Doherty. Federated DyKnow, a distributed informaࢢon fusion system
for collaboraࢢve UAVs. In Proceedings of the 11th Internaࢡonal Conference on
Control, Automaࢡon, Roboࢡcs and Vision (ICARCV), pages 1063–1069, 2010.

F. Heintz and Z. Dragisic. Semanࢢc informaࢢon integraࢢon for stream reasoning. In
Proceedings of the 15th Internaࢡonal Conference on Informaࢡon Fusion (FUSION),
2012.

189

Bibliography

F. Heintz and D. de Leng. Semanࢢc informaࢢon integraࢢon with transformaࢢons for
stream reasoning. In Proceedings of the 16th Internaࢡonal Conference on Infor-
maࢡon Fusion (FUSION), pages 445–452, 2013.

F. Heintz and D. de Leng. Spaࢢo-temporal stream reasoning with incomplete spaࢢal
informaࢢon. In Proceedings of the 21st European Conference on Arࢡficial Intelli-
gence (ECAI), pages 429–434, 2014.

F. Heintz, P. Rudol, and P. Doherty. From images to traffic behavior - a UAV tracking
and monitoring applicaࢢon. In Proceedings of the 10th Internaࢡonal Conference
on Informaࢡon Fusion (FUSION), pages 1–8, 2007a.

F. Heintz, P. Rudol, and P. Doherty. Bridging the sense-reasoning gap using the
knowledge processing middleware DyKnow. In Proceedings of the 30th Annual
German Conference on Arࢡficial Intelligence (KI), pages 460–463, 2007b.

F. Heintz, M. Krysander, J. Roll, and E. Frisk. FlexDx: A reconfigurable diagnosis
framework. In Proceedings of the 19th Internaࢡonal Workshop on Principles of
Diagnosis (DX), pages 1–8, 2008a.

F. Heintz, J. Kvarnström, and P. Doherty. Knowledge processing middleware. In
Proceedings of the First Internaࢡonal Conference on Simulaࢡon, Modeling, and
Programming for Autonomous Robots (SIMPAR), pages 147–158, 2008b.

F. Heintz, J. Kvarnström, and P. Doherty. A stream-based hierarchical anchoring
framework. In Proceedings of the IEEE/RSJ Internaࢡonal Conference on Intelligent
Robots and Systems (IROS), pages 5254–5260, 2009.

F. Heintz, J. Kvarnström, and P. Doherty. Bridging the sense-reasoning gap: DyKnow
- stream-based middleware for knowledge processing. Journal of Advanced Engi-
neering Informaࢡcs, 24(1):14–26, 2010.

F. Heintz, J. Kvarnström, and P. Doherty. Stream-based hierarchical anchoring. Kün-
stliche Intelligenz, 27(2):119–128, 2013.

M. Hirzel, G. Baudart, A. Bonifaࢢ, E. Della Valle, S. Sakr, and A. Akrivi Vlachou. Stream
processing languages in the big data era. ACM SIGMOD Record, 47(2):29–40,
2018.

H.-M. Ho, J. Ouaknine, and J. Worrell. Online monitoring of Metric Temporal Logic.
In Proceedings of the 5th Internaࢡonal Conference on Runࢡme Verificaࢡon, pages
178–192, 2014.

A. Hongslo. Stream processing in the Robot Operaࢢng System framework. Master’s
thesis, Linköping University, 2012.

V. Jacobson, D. K. Sme�ers, J. D. Thornton,M. F. Plass, N. H. Briggs, andR. L. Braynard.
Networking named content. In Proceedings of the 5th Internaࢡonal Conference

190

Bibliography

on Emerging Networking Experiments and Technologies (CoNEXT), pages 1–12,
2009.

F. Kerasioࢢs, C. Koulamas, C. Antonopoulos, and G. Papadopoulos. Middleware ap-
proaches for wireless sensor networks based on current trends. In Proceedings of
the 4th Mediterranean Conference on Embedded Compuࢡng (MECO), pages 244–
249, 2015.

R. Kontchakov, A. Kurucz, F. Wolter, and M. Zakharyaschev. Spaࢢal logic + temporal
logic = ? In Handbook of Spaࢡal Logics, pages 497–564. 2007.

P. Koopmann. Ontology-based query answering for probabilisࢢc temporal data. In
Proceedings of the 33rd AAAI Conference on Arࢡficial Intelligence (AAAI), 2019.

A. Kovtunova and R. Peñaloza. Cuࢰng diamonds: A temporal logic with probabilisࢢc
distribuࢢons. In Sixteenth Internaࢡonal Conference on Principles of Knowledge
Representaࢡon and Reasoning, pages 561–570, 2018.

R. Koymans. Specifying real-ࢢme properࢢes with Metric Temporal Logic. Real-Time
Systems, 2(4):255–299, 1990.

M. Krysander, F. Heintz, J. Roll, and E. Frisk. Dynamic test selecࢢon for reconfigurable
diagnosis. In Proceedings of the 47th IEEE Conference on Decision and Control
(CDC), pages 1066–1072, 2008.

M. Krysander, F. Heintz, J. Roll, and E. Frisk. FlexDx: A reconfigurable diagnosis
framework. Journal of Engineering Applicaࢡons of Arࢡficial Intelligence, 23(8):
1303–1313, 2010.

O. Kupferman andM. Y. Vardi. Model checking of safety properࢢes. Journal of Formal
Methods in System Design, 19(3):291–314, 2001.

J. Kvarnström, F. Heintz, and P. Doherty. A temporal logic-based planning and ex-
ecuࢢon monitoring system. In Proceedings of the Internaࢡonal Conference on
Automated Planning and Scheduling (ICAPS), pages 1–8, 2008.

D. Laney. 3d datamanagement: Controlling data volume, velocity and variety.META
Group Research Note, 6:70, 2001.

E. Latronico, E. A. Lee, M. Lohstroh, C. Shaver, A. Wasicek, and M. Weber. A vision
of swarmlets. IEEE Internet Compuࢡng, 19(2):20–28, 2015.

D. Le-Phuoc, M. Dao-Tran, J. X. Parreira, and M. Hauswirth. A naࢢve and adapࢢve
approach for unified processing of linked streams and linked data. In Proceedings
of the 10th Internaࢡonal Conference on The Semanࢡc Web (ISWC), pages 370–
388, 2011.

D. de Leng. Extending semanࢢc matching in DyKnow to handle indirectly-available
streams. Master’s thesis, Utrecht University, 2013.

191

Bibliography

D. de Leng. Spaࢡo-Temporal Stream Reasoning with Adapࢡve State Stream Gener-
aࢡon, volume 1783. Linköping University Electronic Press, 2017.

D. de Leng and F. Heintz. Towards on-demand semanࢢc event processing for stream
reasoning. In Proceedings of the 17th Internaࢡonal Conference on Informaࢡon
Fusion (FUSION), pages 1–8, 2014.

D. de Leng and F. Heintz. Ontology-based introspecࢢon in support of stream reason-
ing. In Proceedings of the 1st Joint Ontology Workshops (JOWO) co-located with
the 24th Internaࢡonal Joint Conference on Arࢡficial Intelligence (IJCAI), 2015a.

D. de Leng and F. Heintz. Ontology-based introspecࢢon in support of stream reason-
ing. In Proceedings of the 13th Scandinavian Conference on Arࢡficial Intelligence
(SCAI), pages 78–87, 2015b.

D. de Leng and F. Heintz. Qualitaࢢve spaࢢo-temporal stream reasoning with unob-
servable intertemporal spaࢢal relaࢢons using landmarks. In Proceedings of the
30th AAAI Conference on Arࢡficial Intelligence (AAAI), pages 957–963, 2016a.

D. de Leng and F. Heintz. DyKnow: A dynamically reconfigurable stream reasoning
framework as an extension to the Robot Operaࢢng System. In Proceedings of the
5th IEEE Internaࢡonal Conference on Simulaࢡon, Modeling, and Programming for
Autonomous Robots (SIMPAR), pages 957–963, 2016b.

D. de Leng and F. Heintz. Towards adapࢢve semanࢢc subscripࢢons for stream rea-
soning in the Robot Operaࢢng System. In Proceedings of the 30th IEEE/RSJ Inter-
naࢡonal Conference on Intelligent Robots and Systems (IROS), pages 5445–5452,
2017.

D. de Leng and F. Heintz. Parࢢal-state progression for stream reasoning with Metric
Temporal Logic. In Proceedings of the 16th Internaࢡonal Conference on Principles
of Knowledge Representaࢡon and Reasoning, pages 633–634, 2018.

D. de Leng and F. Heintz. Approximate stream reasoning with Metric Temporal Logic
under uncertainty. In Proceedings of the 33rd AAAI Conference on Arࢡficial Intel-
ligence (AAAI), 2019.

M. Luckcuck, M. Farrell, L. A. Dennis, C. Dixon, and M. Fisher. Formal specificaࢢon
and verificaࢢon of autonomous roboࢢc systems: A survey. ACM Compuࢡng Sur-
veys (CSUR), 52(5):1–41, 2019.

R. Lundh. Robots that Help Each Other: Self-Configuraࢡon of Distributed Robot Sys-
tems. PhD thesis, Örebro University, 2009.

R. Lundh, L. Karlsson, and A. Saffioࢰ. Autonomous funcࢢonal configuraࢢon of a
network robot system. Roboࢡcs andAutonomous Systems, 56(10):819–830, 2008.

A. K. Mackworth. Consistency in networks of relaࢢons. Arࢡficial Intelligence, 8(1):
99–118, 1977.

192

Bibliography

S. Madden and M. J. Franklin. Fjording the stream: An architecture for queries over
streaming sensor data. In Proceedings of the 18th Internaࢡonal Conference on
Data Engineering (ICDE), volume 2, pages 555–566, 2002.

N.Markey and P. Schnoebelen. Model checking a path. In Proceedings of the 14th In-
ternaࢡonal Conference on Concurrency Theory (CONCUR), pages 251–265, 2003.

D. Marࢢn, M. Burstein, D. McDermo�, S. McIlraith, M. Paolucci, K. Sycara, D. L.
McGuinness, E. Sirin, and N. Srinivasan. Bringing semanࢢcs to web services with
OWL-S. World Wide Web, 10(3):243–277, 2007.

D.Marࢢn et al. OWL-S: Semanࢢcmarkup forweb services.W3Cmember submission,
2004.

A. Mauri, J.-P. Calbimonte, D. Dell’Aglio, M. Balduini, M. Brambilla, E. Della Valle, and
K. Aberer. Triplewave: Spreading RDF streams on the web. In Proceedings of the
15th Internaࢡonal Semanࢡc Web Conference (ISWC), pages 140–149, 2016.

D. L. McGuinness, F. Van Harmelen, et al. OWL web ontology language overview.
W3C recommendaࢡon, 2004.

R. Medhat, B. Bonakdarpour, S. Fischmeister, and Y. Joshi. Accelerated runࢢme ver-
ificaࢢon of LTL specificaࢢons with counࢢng semanࢢcs. In Proceedings of the 16th
Internaࢡonal Conference on Runࢡme Verificaࢡon (RV), pages 251–267, 2016.

R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar, G. Manku, C. Ol-
ston, J. Rosenstein, and R. Varma. Query processing, resource management, and
approximaࢢon in a data stream management system. In Proceedings of the First
Biennial Conference on Innovaࢡve Data Systems Research (CIDR), 2003.

D. E. Muller. Infinite sequences and finite machines. In Proceedings of the Fourth
Annual Symposium on Switching Circuit Theory and Logical Design, pages 3–16,
1963.

E. Pejman, Y. Rastegari, P. M. Esfahani, and A. Salajegheh. Web service composi-
onࢢ methods: A survey. In Proceedings of the Internaࢡonal MulࢡConference of
Engineers and Computer Scienࢡsts (IMECS), volume 1, pages 560–564, 2012.

A. Pnueli. The temporal logic of programs. In Proceedings of the Eighteenth Annual
Symposium on Foundaࢡons of Computer Science (SFCS), pages 46–57, 1977.

J. M. T. Portocarrero, F. C. Delicato, P. F. Pires, T. C. Rodrigues, and T. V. Baࢢsta.
SAMSON: Self-adapࢢve middleware for wireless sensor networks. In Proceedings
of the 31st ACM/SIGAPP Symposium on Applied Compuࢡng (SAC), pages 1315–
1322, 2016.

M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler, and
A. Ng. ROS: an open-source robot operaࢢng system. In Proceedings of the 2009
IEEE Internaࢡonal Conference on Roboࢡcs and Automaࢡon (ICRA), 2009.

193

Bibliography

D. Randell, Z. Cui, and A. Cohn. A spaࢢal logic based on regions and connecࢢon. In
Proceedings of the 3rd Internaࢡonal Conference on Principles of Knowledge Rep-
resentaࢡon and Reasoning (KR), pages 165–176, 1992.

J. Rao and X. Su. A survey of automated web service composiࢢon methods. In
Proceedings of the Internaࢡonal Workshop on Semanࢡc Web Services and Web
Process Composiࢡon (SWSWPC), volume 3387, pages 43–54, 2005.

F. Reiss and J. M. Hellerstein. Data triage: An adapࢢve architecture for load shed-
ding in TelegraphCQ. In Proceedings of the 21st Internaࢡonal Conference on Data
Engineering (ICDE), pages 155–156, 2005.

J. Renz and B. Nebel. Efficient methods for qualitaࢢve spaࢢal reasoning. Journal of
Arࢡficial Intelligence Research, 15:289–318, 2001.

A. Saffioࢰ,M. Broxvall, M. Griࢰ, K. LeBlanc, R. Lundh, J. Rashid, B. Seo, and Y.-J. Cho.
The PEIS-ecology project: vision and results. In Proceedings of the IEEE/RSJ 2008
Internaࢡonal Conference on Intelligent Robots and Systems (IROS), 2008.

T. Sato. A staࢢsࢢcal learning method for logic programs with distribuࢢon semanࢢcs.
In Proceedings of the 12th Internaࢡonal Conference on Logic Programming (ICLP,
1995.

T. Sato and Y. Kameya. Parameter learning of logic programs for symbolic-staࢢsࢢcal
modeling. Journal of Arࢡficial Intelligence Research, 15:391–454, 2001.

Y. Shen, J. Li, Z. Wang, T. Su, B. Fang, G. Pu, W. Liu, and M. Chen. Runࢢme verifica-
onࢢ by convergent formula progression. In Proceedings of the 21st Asia-Pacific
So[ware Engineering Conference (APSEC), pages 255–262, 2014.

A. N. Steinberg and C. L. Bowman. Revisions to the JDL data fusion model. In Hand-
book of mulࢡsensor data fusion, pages 65–88. CRC press, 2008.

F. Tang and L. Parker. ASyMTRe: Automated synthesis of mulࢢ-robot task soluࢢons
through so[ware reconfiguraࢢon. In Proceedings of the 2005 IEEE Internaࢡonal
Conference on Roboࢡcs and Automaࢡon, pages 1501–1508, 2005.

P. Thaࢢ and G. Roşu. Monitoring algorithms for metric temporal logic specificaࢢons.
Electronic Notes in Theoreࢡcal Computer Science, 113:145–162, 2005.

M. Tiger and F. Heintz. Stream reasoning using temporal logic and predicࢢve prob-
abilisࢢc state models. In Proceedings of the 23rd Internaࢡonal Symposium on
Temporal Representaࢡon and Reasoning (TIME), pages 196–205, 2016.

R. Tommasini, Y. A. Sedira, D. Dell’Aglio, M. Balduini, M. I. Ali, D. Le Phuoc,
E. Della Valle, and J.-P. Calbimonte. VoCaLS: Vocabulary and catalog of linked
streams. In Proceedings of the 17th Internaࢡonal Semanࢡc Web Conference
(ISWC), pages 256–272, 2018.

194

Bibliography

R. Tommasini, D. Calvaresi, and J.-P. Calbimonte. Stream reasoning agents: Blue sky
ideas track. In Proceedings of the 18th Internaࢡonal Conference on Autonomous
Agents and Mulࢡ-Agent Systems (AAMAS), pages 1664–1680, 2019.

M. Y. Vardi. Automata-theoreࢢc model checking revisited. In Proceedings of the 8th
Internaࢡonal Conference on Verificaࢡon, Model Checking, and Abstract Interpre-
taࢡon (VMCAI), pages 137–150, 2007.

M. Y. Vardi and P. Wolper. Reasoning about infinite computaࢢons. Informaࢡon and
computaࢡon, 115(1):1–37, 1994.

P.Wolper, M. Y. Vardi, and A. P. Sistla. Reasoning about infinite computaࢢon paths. In
Proceedings of the 24th Annual Symposium on Foundaࢡons of Computer Science,
pages 185–194, 1983.

F. Wolter and M. Zakharyaschev. Spaࢢo-temporal representaࢢon and reasoning
based on RCC-8. In Proceedings of the Seventh Conference on Principles of Knowl-
edge Representaࢡon and Reasoning (KR 2000), pages 3–14, 2000.

P. Ziafaࢢ. Informaࢡon Engineering in Autonomous Robot So[ware. PhD thesis,
Utrecht University, 2015.

P. Ziafaࢢ, M. Dastani, J.-J. Meyer, and L. van der Torre. Event-processing in au-
tonomous robot programming. In Proceedings of the 12th Internaࢡonal Confer-
ence on Autonomous Agents and Mulࢡ-Agent Systems (AAMAS), pages 95–102,
2013.

P. Ziafaࢢ, Y. Elrakaiby, M. van Zee, M. Dastani, J.-J. Meyer, L. van der Torre, and
H. Voos. Reasoning on robot knowledge from discrete and asynchronous obser-
vaࢢons. In Proceedings of the 2014 AAAI Spring Symposium Series, 2014.

P. Ziafaࢢ, M. Dastani, J.-J. Meyer, L. van der Torre, and H. Voos. Retalis language for
informaࢢon engineering in autonomous robot so[ware. IfCoLog Journal of Logics
and their Applicaࢡons, 2(2):65–126, 2015.

195

Appendix

A
DyKnow ontology in Manchester
syntax

T he following is a lisࢢng of the DyKnow ontology used for semanࢢc interop-
erability. It makes use of Manchester syntax to improve human readabil-
ity. The full up-to-date ontology in OWL/RDF syntax uࢢlises the namespace

http://www.dyknow.eu/ontology/.
1 Prefix: : <http://www.dyknow.eu/ontology/dyknow#>
2 Prefix: dc: <http://purl.org/dc/elements/1.1/>
3 Prefix: owl: <http://www.w3.org/2002/07/owl#>
4 Prefix: rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
5 Prefix: rdfs: <http://www.w3.org/2000/01/rdf-schema#>
6 Prefix: skos: <http://www.w3.org/2004/02/skos/core#>
7 Prefix: terms: <http://purl.org/dc/terms/>
8 Prefix: xml: <http://www.w3.org/XML/1998/namespace >
9 Prefix: xsd: <http://www.w3.org/2001/XMLSchema#>
10
11
12
13 Ontology: <http://www.dyknow.eu/ontology/dyknow>
14 <http://www.dyknow.eu/ontology/dyknow/201707>
15
16 Annotations:
17 terms:creator "Daniel de Leng"^^xsd:string,
18 terms:modified "2017-07-27",
19 rdfs:comment "The DyKnow ontology can be used as a common representation

of stream reasoning framework configurations."@en,
20 rdfs:label "DyKnow Ontology"@en
21
22 AnnotationProperty: rdfs:comment
23
24
25 AnnotationProperty: rdfs:label
26
27
28 AnnotationProperty: terms:creator
29
30
31 AnnotationProperty: terms:modified

197

http://www.dyknow.eu/ontology/

A. DyKnow ontology in Manchester syntax

32
33
34 Datatype: rdf:PlainLiteral
35
36
37 Datatype: xsd:Name
38
39
40 Datatype: xsd:anyURI
41
42
43 Datatype: xsd:date
44
45
46 Datatype: xsd:dateTimeStamp
47
48
49 Datatype: xsd:string
50
51
52 ObjectProperty: dependsOn
53
54 SubPropertyChain:
55 hasSubscription o fromCU
56
57 Characteristics:
58 Transitive
59
60
61 ObjectProperty: fromCU
62
63 DisjointWith:
64 toCU
65
66 Characteristics:
67 Functional
68
69 Domain:
70 Subscription
71
72
73 ObjectProperty: fromPort
74
75 Characteristics:
76 Functional
77
78 Domain:
79 Subscription
80
81 Range:
82 OutPort
83
84
85 ObjectProperty: hasChannel
86
87 Characteristics:
88 Functional
89
90 Domain:
91 Subscription or Target
92

198

93 Range:
94 Channel
95
96
97 ObjectProperty: hasCostModel
98
99 Characteristics:
100 Functional
101
102
103 ObjectProperty: hasEnvironment
104
105 Range:
106 Environment
107
108
109 ObjectProperty: hasInPort
110
111 Domain:
112 Transformation
113
114 Range:
115 InPort
116
117 InverseOf:
118 isInPort
119
120
121 ObjectProperty: hasInstance
122
123 Domain:
124 Transformation
125
126 InverseOf:
127 instanceOf
128
129
130 ObjectProperty: hasOutPort
131
132 Domain:
133 Transformation
134
135 Range:
136 OutPort
137
138 InverseOf:
139 isOutPort
140
141
142 ObjectProperty: hasSample
143
144 Characteristics:
145 Functional
146
147 Domain:
148 SampleSequence
149
150 Range:
151 Sample
152
153

199

A. DyKnow ontology in Manchester syntax

154 ObjectProperty: hasSampleSequence
155
156 Characteristics:
157 Functional
158
159 Domain:
160 Stream
161
162 Range:
163 SampleSequence
164
165
166 ObjectProperty: hasState
167
168 Characteristics:
169 Functional
170
171 Domain:
172 StateSequence
173
174 Range:
175 State
176
177
178 ObjectProperty: hasStateSequence
179
180 Characteristics:
181 Functional
182
183 Range:
184 StateSequence
185
186
187 ObjectProperty: hasSubscription
188
189 Range:
190 Subscription
191
192 InverseOf:
193 toCU
194
195
196 ObjectProperty: hasTag
197
198 Range:
199 Tag
200
201
202 ObjectProperty: hasTagDescription
203
204 Characteristics:
205 Functional
206
207 Range:
208 Tag
209
210
211 ObjectProperty: instanceOf
212
213 Range:
214 Transformation

200

215
216 InverseOf:
217 hasInstance
218
219
220 ObjectProperty: isInPort
221
222 Domain:
223 InPort
224
225 Range:
226 Transformation
227
228 InverseOf:
229 hasInPort
230
231
232 ObjectProperty: isOutPort
233
234 Domain:
235 OutPort
236
237 Range:
238 Transformation
239
240 InverseOf:
241 hasOutPort
242
243
244 ObjectProperty: nextSample
245
246 Characteristics:
247 Functional ,
248 Irreflexive
249
250 Domain:
251 Sample
252
253 Range:
254 Sample
255
256
257 ObjectProperty: nextState
258
259 Characteristics:
260 Functional ,
261 Irreflexive
262
263 Domain:
264 State
265
266 Range:
267 State
268
269
270 ObjectProperty: toCU
271
272 DisjointWith:
273 fromCU
274
275 Characteristics:

201

A. DyKnow ontology in Manchester syntax

276 Functional
277
278 Domain:
279 Subscription
280
281 InverseOf:
282 hasSubscription
283
284
285 ObjectProperty: toPort
286
287 Characteristics:
288 Functional
289
290 Domain:
291 Subscription
292
293 Range:
294 InPort
295
296
297 DataProperty: hasChannelName
298
299 Characteristics:
300 Functional
301
302 Domain:
303 Channel
304
305 SubPropertyOf:
306 hasName
307
308
309 DataProperty: hasLabel
310
311 Characteristics:
312 Functional
313
314 Range:
315 xsd:Name
316
317
318 DataProperty: hasName
319
320 Characteristics:
321 Functional
322
323
324 DataProperty: hasPortName
325
326 SubPropertyOf:
327 hasName
328
329
330 DataProperty: hasTimeStamp
331
332 Characteristics:
333 Functional
334
335 Range:
336 xsd:dateTimeStamp

202

337
338
339 DataProperty: hasValue
340
341 Characteristics:
342 Functional
343
344
345 Class: ChangeSet
346
347 Annotations:
348 rdfs:comment "A change set describes changes made to an environment.

Formally the change set at least describes the additions and
removals of computation units, transformations , and targets."
@en,

349 rdfs:label "Change Set"@en
350
351
352 Class: Channel
353
354 Annotations:
355 rdfs:label "Channel"@en,
356 rdfs:comment "Channels are named transportation mechanisms for data.

"@en
357
358 SubClassOf:
359 hasChannelName some xsd:string
360
361
362 Class: CostModel
363
364 Annotations:
365 rdfs:label "Cost Model"@en,
366 rdfs:comment "A model describing how to calculate the cost of an

update."@en
367
368
369 Class: Environment
370
371 Annotations:
372 rdfs:label "Environment"@en,
373 rdfs:comment "An environment is composed of a set of computation

units (sometimes called a computation graph), a set of
transformations , a set of targets , and a similarity relation
between tags. The environment can be changed by applying a
change set to it. This application is called an update.
Environments describe the state of a stream reasoning framework
."@en

374
375 SubClassOf:
376 hasName some xsd:Name
377
378
379 Class: InPort
380
381 Annotations:
382 rdfs:label "Input Port"@en,
383 rdfs:comment "A port for receiving streaming data over a channel."

@en
384
385 SubClassOf:

203

A. DyKnow ontology in Manchester syntax

386 Port
387
388 DisjointWith:
389 OutPort
390
391
392 Class: LabourCostModel
393
394 Annotations:
395 rdfs:label "Labour Cost Model"@en,
396 rdfs:comment "A cost model for calculating the labour cost."@en,
397 rdfs:label "Labor Cost Model"@en,
398 rdfs:comment "A cost model for calculating the labor cost."@en
399
400 SubClassOf:
401 CostModel
402
403
404 Class: OutPort
405
406 Annotations:
407 rdfs:label "Output Port"@en,
408 rdfs:comment "A port for transmitting streaming data over a channel.

"@en
409
410 SubClassOf:
411 Port
412
413 DisjointWith:
414 InPort
415
416
417 Class: Parameter
418
419 Annotations:
420 rdfs:label "Parameter"@en
421
422 SubClassOf:
423 hasLabel some xsd:Name,
424 hasValue some xsd:anyURI
425
426
427 Class: Port
428
429 Annotations:
430 rdfs:comment "The connection between a channel and a computation

unit is realised in terms of ports. Ports are named entities."
@en,

431 rdfs:label "Port"@en
432
433 SubClassOf:
434 hasPortName some xsd:Name
435
436
437 Class: Sample
438
439 Annotations:
440 rdfs:label "Sample"@en,
441 rdfs:comment "An atomic, time-stamped data point."@en
442
443 SubClassOf:

204

444 hasLabel some xsd:Name,
445 hasTimeStamp some xsd:dateTimeStamp ,
446 hasValue some xsd:anyURI
447
448
449 Class: SampleSequence
450
451 Annotations:
452 rdfs:label "Sample Sequence"@en
453
454 EquivalentTo:
455 hasSample some Sample
456
457
458 Class: Sink
459
460 Annotations:
461 rdfs:comment "A transformation that does not produce any resulting

stream is called a sink."@en,
462 rdfs:label "Sink"@en
463
464 SubClassOf:
465 Transformation ,
466 hasOutPort exactly 0 OutPort
467
468
469 Class: Source
470
471 Annotations:
472 rdfs:comment "A transformation that does not take any incoming

stream is called a source."@en,
473 rdfs:label "Source"@en
474
475 SubClassOf:
476 Transformation ,
477 hasInPort exactly 0 InPort
478
479
480 Class: State
481
482 Annotations:
483 rdfs:comment "A state is a mapping from a variable to a value."@en,
484 rdfs:label "State"@en
485
486 SubClassOf:
487 hasLabel some xsd:Name,
488 hasValue some xsd:anyURI
489
490
491 Class: StateSequence
492
493 Annotations:
494 rdfs:label "State Sequence"@en
495
496 EquivalentTo:
497 hasState some State
498
499
500 Class: StateStream
501
502 Annotations:

205

A. DyKnow ontology in Manchester syntax

503 rdfs:label "State Stream"@en,
504 rdfs:comment "A stream composed of states is called a state stream.

State streams thus describe mappings from sets of variables to
sets of values for specific time-points. State streams can be
used to for example evaluate logical formulas."@en

505
506 SubClassOf:
507 Stream
508
509
510 Class: Stream
511
512 Annotations:
513 rdfs:comment "A sequence of samples representing a flow of data is

called a stream."@en,
514 rdfs:label "Stream"@en
515
516 EquivalentTo:
517 hasSampleSequence some SampleSequence
518
519
520 Class: Subscription
521
522 Annotations:
523 rdfs:comment "A subscription is a connection from a transmitting

port to a receiving port over a channel."@en,
524 rdfs:label "Subscription"@en
525
526 SubClassOf:
527 fromPort some Port,
528 hasChannel some Channel ,
529 toPort some Port
530
531
532 Class: Tag
533
534 Annotations:
535 rdfs:label "Tag"@en,
536 rdfs:comment "A tag is a descriptor with which concepts can be

annotated. A concrete application can extend the Tag concept to
describe an annotation language."@en

537
538 SubClassOf:
539 hasTagDescription some owl:Thing
540
541
542 Class: Target
543
544 Annotations:
545 rdfs:comment "Targets describe the semantics of a desired

information stream by using tags. Every target specifies a
channel over which this desired information should be sent.
Targets can be used to obtain adaptive semantic subscriptions
which can be maintained by a DyKnow stream reasoning manager."
@en,

546 rdfs:label "Target"@en
547
548 SubClassOf:
549 hasChannel some Channel ,
550 hasTag some Tag,
551 hasName some xsd:Name

206

552
553
554 Class: Transformation
555
556 Annotations:
557 rdfs:comment "Transformations describe stream-generating functions

over streams that can be instantiated as computation unit. The
act of instantiating a transformation results in cost being
acrued. Transformations are identifiable by a unique name."@en,

558 rdfs:label "Transformation"@en
559
560 SubClassOf:
561 hasCostModel some LabourCostModel ,
562 hasName some xsd:Name
563
564
565 Class: UpkeepCostModel
566
567 Annotations:
568 rdfs:comment "A cost model for calculating the upkeep cost."@en,
569 rdfs:label "Upkeep Cost Model"@en
570
571 SubClassOf:
572 CostModel
573
574
575 Class: owl:Thing

207

Department of Computer and Information Science
Linköpings universitet

Dissertations

Linköping Studies in Science and Technology
Linköping Studies in Arts and Science

Linköping Studies in Statistics
Linköping Studies in Information Science

Linköping Studies in Science and Technology
No 14 Anders Haraldsson: A Program Manipulation

System Based on Partial Evaluation, 1977, ISBN 91-
7372-144-1.

No 17 Bengt Magnhagen: Probability Based Verification of
Time Margins in Digital Designs, 1977, ISBN 91-7372-
157-3.

No 18 Mats Cedwall: Semantisk analys av process-
beskrivningar i naturligt språk, 1977, ISBN 91- 7372-
168-9.

No 22 Jaak Urmi: A Machine Independent LISP Compiler
and its Implications for Ideal Hardware, 1978, ISBN
91-7372-188-3.

No 33 Tore Risch: Compilation of Multiple File Queries in
a Meta-Database System, 1978, ISBN 91- 7372-232-4.

No 51 Erland Jungert: Synthesizing Database Structures
from a User Oriented Data Model, 1980, ISBN 91-
7372-387-8.

No 54 Sture Hägglund: Contributions to the Development
of Methods and Tools for Interactive Design of
Applications Software, 1980, ISBN 91-7372-404-1.

No 55 Pär Emanuelson: Performance Enhancement in a
Well-Structured Pattern Matcher through Partial
Evaluation, 1980, ISBN 91-7372-403-3.

No 58 Bengt Johnsson, Bertil Andersson: The Human-
Computer Interface in Commercial Systems, 1981,
ISBN 91-7372-414-9.

No 69 H. Jan Komorowski: A Specification of an Abstract
Prolog Machine and its Application to Partial
Evaluation, 1981, ISBN 91-7372-479-3.

No 71 René Reboh: Knowledge Engineering Techniques
and Tools for Expert Systems, 1981, ISBN 91-7372-
489-0.

No 77 Östen Oskarsson: Mechanisms of Modifiability in
large Software Systems, 1982, ISBN 91- 7372-527-7.

No 94 Hans Lunell: Code Generator Writing Systems, 1983,
ISBN 91-7372-652-4.

No 97 Andrzej Lingas: Advances in Minimum Weight
Triangulation, 1983, ISBN 91-7372-660-5.

No 109 Peter Fritzson: Towards a Distributed Programming
Environment based on Incremental Compilation,
1984, ISBN 91-7372-801-2.

No 111 Erik Tengvald: The Design of Expert Planning
Systems. An Experimental Operations Planning
System for Turning, 1984, ISBN 91-7372- 805-5.

No 155 Christos Levcopoulos: Heuristics for Minimum
Decompositions of Polygons, 1987, ISBN 91-7870-
133-3.

No 165 James W. Goodwin: A Theory and System for Non-
Monotonic Reasoning, 1987, ISBN 91-7870-183-X.

No 170 Zebo Peng: A Formal Methodology for Automated
Synthesis of VLSI Systems, 1987, ISBN 91-7870-225-9.

No 174 Johan Fagerström: A Paradigm and System for
Design of Distributed Systems, 1988, ISBN 91-7870-
301-8.

No 192 Dimiter Driankov: Towards a Many Valued Logic of
Quantified Belief, 1988, ISBN 91-7870-374-3.

No 213 Lin Padgham: Non-Monotonic Inheritance for an
Object Oriented Knowledge Base, 1989, ISBN 91-
7870-485-5.

No 214 Tony Larsson: A Formal Hardware Description and
Verification Method, 1989, ISBN 91-7870-517-7.

No 221 Michael Reinfrank: Fundamentals and Logical
Foundations of Truth Maintenance, 1989, ISBN 91-
7870-546-0.

No 239 Jonas Löwgren: Knowledge-Based Design Support
and Discourse Management in User Interface
Management Systems, 1991, ISBN 91-7870-720-X.

No 244 Henrik Eriksson: Meta-Tool Support for Knowledge
Acquisition, 1991, ISBN 91-7870-746-3.

No 252 Peter Eklund: An Epistemic Approach to Interactive
Design in Multiple Inheritance Hierarchies, 1991,
ISBN 91-7870-784-6.

No 258 Patrick Doherty: NML3 - A Non-Monotonic
Formalism with Explicit Defaults, 1991, ISBN 91-
7870-816-8.

No 260 Nahid Shahmehri: Generalized Algorithmic
Debugging, 1991, ISBN 91-7870-828-1.

No 264 Nils Dahlbäck: Representation of Discourse-
Cognitive and Computational Aspects, 1992, ISBN
91-7870-850-8.

No 265 Ulf Nilsson: Abstract Interpretations and Abstract
Machines: Contributions to a Methodology for the
Implementation of Logic Programs, 1992, ISBN 91-
7870-858-3.

No 270 Ralph Rönnquist: Theory and Practice of Tense-
bound Object References, 1992, ISBN 91-7870-873-7.

No 273 Björn Fjellborg: Pipeline Extraction for VLSI Data
Path Synthesis, 1992, ISBN 91-7870-880-X.

No 276 Staffan Bonnier: A Formal Basis for Horn Clause
Logic with External Polymorphic Functions, 1992,
ISBN 91-7870-896-6.

No 277 Kristian Sandahl: Developing Knowledge Manage-
ment Systems with an Active Expert Methodology,
1992, ISBN 91-7870-897-4.

No 281 Christer Bäckström: Computational Complexity of
Reasoning about Plans, 1992, ISBN 91-7870-979-2.

No 292 Mats Wirén: Studies in Incremental Natural
Language Analysis, 1992, ISBN 91-7871-027-8.

No 297 Mariam Kamkar: Interprocedural Dynamic Slicing
with Applications to Debugging and Testing, 1993,
ISBN 91-7871-065-0.

No 302 Tingting Zhang: A Study in Diagnosis Using
Classification and Defaults, 1993, ISBN 91-7871-078-
2.

No 312 Arne Jönsson: Dialogue Management for Natural
Language Interfaces - An Empirical Approach, 1993,
ISBN 91-7871-110-X.

No 338 Simin Nadjm-Tehrani: Reactive Systems in Physical
Environments: Compositional Modelling and Frame-
work for Verification, 1994, ISBN 91-7871-237-8.

No 371 Bengt Savén: Business Models for Decision Support
and Learning. A Study of Discrete-Event
Manufacturing Simulation at Asea/ABB 1968-1993,
1995, ISBN 91-7871-494-X.

No 375 Ulf Söderman: Conceptual Modelling of Mode
Switching Physical Systems, 1995, ISBN 91-7871-516-
4.

No 383 Andreas Kågedal: Exploiting Groundness in Logic
Programs, 1995, ISBN 91-7871-538-5.

No 396 George Fodor: Ontological Control, Description,
Identification and Recovery from Problematic
Control Situations, 1995, ISBN 91-7871-603-9.

No 413 Mikael Pettersson: Compiling Natural Semantics,
1995, ISBN 91-7871-641-1.

No 414 Xinli Gu: RT Level Testability Improvement by
Testability Analysis and Transformations, 1996, ISBN
91-7871-654-3.

No 416 Hua Shu: Distributed Default Reasoning, 1996, ISBN
91-7871-665-9.

No 429 Jaime Villegas: Simulation Supported Industrial
Training from an Organisational Learning
Perspective - Development and Evaluation of the
SSIT Method, 1996, ISBN 91-7871-700-0.

No 431 Peter Jonsson: Studies in Action Planning:
Algorithms and Complexity, 1996, ISBN 91-7871-704-
3.

No 437 Johan Boye: Directional Types in Logic
Programming, 1996, ISBN 91-7871-725-6.

No 439 Cecilia Sjöberg: Activities, Voices and Arenas:
Participatory Design in Practice, 1996, ISBN 91-7871-
728-0.

No 448 Patrick Lambrix: Part-Whole Reasoning in
Description Logics, 1996, ISBN 91-7871-820-1.

No 452 Kjell Orsborn: On Extensible and Object-Relational
Database Technology for Finite Element Analysis
Applications, 1996, ISBN 91-7871-827-9.

No 459 Olof Johansson: Development Environments for
Complex Product Models, 1996, ISBN 91-7871-855-4.

No 461 Lena Strömbäck: User-Defined Constructions in
Unification-Based Formalisms, 1997, ISBN 91-7871-
857-0.

No 462 Lars Degerstedt: Tabulation-based Logic Program-
ming: A Multi-Level View of Query Answering,
1996, ISBN 91-7871-858-9.

No 475 Fredrik Nilsson: Strategi och ekonomisk styrning -
En studie av hur ekonomiska styrsystem utformas
och används efter företagsförvärv, 1997, ISBN 91-
7871-914-3.

No 480 Mikael Lindvall: An Empirical Study of Require-
ments-Driven Impact Analysis in Object-Oriented
Software Evolution, 1997, ISBN 91-7871-927-5.

No 485 Göran Forslund: Opinion-Based Systems: The Coop-
erative Perspective on Knowledge-Based Decision
Support, 1997, ISBN 91-7871-938-0.

No 494 Martin Sköld: Active Database Management
Systems for Monitoring and Control, 1997, ISBN 91-
7219-002-7.

No 495 Hans Olsén: Automatic Verification of Petri Nets in
a CLP framework, 1997, ISBN 91-7219-011-6.

No 498 Thomas Drakengren: Algorithms and Complexity
for Temporal and Spatial Formalisms, 1997, ISBN 91-
7219-019-1.

No 502 Jakob Axelsson: Analysis and Synthesis of Heteroge-
neous Real-Time Systems, 1997, ISBN 91-7219-035-3.

No 503 Johan Ringström: Compiler Generation for Data-
Parallel Programming Languages from Two-Level
Semantics Specifications, 1997, ISBN 91-7219-045-0.

No 512 Anna Moberg: Närhet och distans - Studier av kom-
munikationsmönster i satellitkontor och flexibla
kontor, 1997, ISBN 91-7219-119-8.

No 520 Mikael Ronström: Design and Modelling of a
Parallel Data Server for Telecom Applications, 1998,
ISBN 91-7219-169-4.

No 522 Niclas Ohlsson: Towards Effective Fault Prevention
- An Empirical Study in Software Engineering, 1998,
ISBN 91-7219-176-7.

No 526 Joachim Karlsson: A Systematic Approach for
Prioritizing Software Requirements, 1998, ISBN 91-
7219-184-8.

No 530 Henrik Nilsson: Declarative Debugging for Lazy
Functional Languages, 1998, ISBN 91-7219-197-X.

No 555 Jonas Hallberg: Timing Issues in High-Level Synthe-
sis, 1998, ISBN 91-7219-369-7.

No 561 Ling Lin: Management of 1-D Sequence Data - From
Discrete to Continuous, 1999, ISBN 91-7219-402-2.

No 563 Eva L Ragnemalm: Student Modelling based on Col-
laborative Dialogue with a Learning Companion,
1999, ISBN 91-7219-412-X.

No 567 Jörgen Lindström: Does Distance matter? On geo-
graphical dispersion in organisations, 1999, ISBN 91-
7219-439-1.

No 582 Vanja Josifovski: Design, Implementation and
Evaluation of a Distributed Mediator System for
Data Integration, 1999, ISBN 91-7219-482-0.

No 589 Rita Kovordányi: Modeling and Simulating
Inhibitory Mechanisms in Mental Image
Reinterpretation - Towards Cooperative Human-
Computer Creativity, 1999, ISBN 91-7219-506-1.

No 592 Mikael Ericsson: Supporting the Use of Design
Knowledge - An Assessment of Commenting
Agents, 1999, ISBN 91-7219-532-0.

No 593 Lars Karlsson: Actions, Interactions and Narratives,
1999, ISBN 91-7219-534-7.

No 594 C. G. Mikael Johansson: Social and Organizational
Aspects of Requirements Engineering Methods - A
practice-oriented approach, 1999, ISBN 91-7219-541-
X.

No 595 Jörgen Hansson: Value-Driven Multi-Class Overload
Management in Real-Time Database Systems, 1999,
ISBN 91-7219-542-8.

No 596 Niklas Hallberg: Incorporating User Values in the
Design of Information Systems and Services in the
Public Sector: A Methods Approach, 1999, ISBN 91-
7219-543-6.

No 597 Vivian Vimarlund: An Economic Perspective on the
Analysis of Impacts of Information Technology:
From Case Studies in Health-Care towards General
Models and Theories, 1999, ISBN 91-7219-544-4.

No 598 Johan Jenvald: Methods and Tools in Computer-
Supported Taskforce Training, 1999, ISBN 91-7219-
547-9.

No 607 Magnus Merkel: Understanding and enhancing
translation by parallel text processing, 1999, ISBN 91-
7219-614-9.

No 611 Silvia Coradeschi: Anchoring symbols to sensory
data, 1999, ISBN 91-7219-623-8.

No 613 Man Lin: Analysis and Synthesis of Reactive
Systems: A Generic Layered Architecture
Perspective, 1999, ISBN 91-7219-630-0.

No 618 Jimmy Tjäder: Systemimplementering i praktiken -
En studie av logiker i fyra projekt, 1999, ISBN 91-
7219-657-2.

No 627 Vadim Engelson: Tools for Design, Interactive
Simulation, and Visualization of Object-Oriented
Models in Scientific Computing, 2000, ISBN 91-7219-
709-9.

No 637 Esa Falkenroth: Database Technology for Control
and Simulation, 2000, ISBN 91-7219-766-8.

No 639 Per-Arne Persson: Bringing Power and Knowledge
Together: Information Systems Design for Autonomy
and Control in Command Work, 2000, ISBN 91-7219-
796-X.

No 660 Erik Larsson: An Integrated System-Level Design for
Testability Methodology, 2000, ISBN 91-7219-890-7.

No 688 Marcus Bjäreland: Model-based Execution
Monitoring, 2001, ISBN 91-7373-016-5.

No 689 Joakim Gustafsson: Extending Temporal Action
Logic, 2001, ISBN 91-7373-017-3.

No 720 Carl-Johan Petri: Organizational Information Provi-
sion - Managing Mandatory and Discretionary Use
of Information Technology, 2001, ISBN 91-7373-126-
9.

No 724 Paul Scerri: Designing Agents for Systems with Ad-
justable Autonomy, 2001, ISBN 91-7373-207-9.

No 725 Tim Heyer: Semantic Inspection of Software
Artifacts: From Theory to Practice, 2001, ISBN 91-
7373-208-7.

No 726 Pär Carlshamre: A Usability Perspective on Require-
ments Engineering - From Methodology to Product
Development, 2001, ISBN 91-7373-212-5.

No 732 Juha Takkinen: From Information Management to
Task Management in Electronic Mail, 2002, ISBN 91-
7373-258-3.

No 745 Johan Åberg: Live Help Systems: An Approach to
Intelligent Help for Web Information Systems, 2002,
ISBN 91-7373-311-3.

No 746 Rego Granlund: Monitoring Distributed Teamwork
Training, 2002, ISBN 91-7373-312-1.

No 757 Henrik André-Jönsson: Indexing Strategies for Time
Series Data, 2002, ISBN 917373-346-6.

No 747 Anneli Hagdahl: Development of IT-supported
Interorganisational Collaboration - A Case Study in
the Swedish Public Sector, 2002, ISBN 91-7373-314-8.

No 749 Sofie Pilemalm: Information Technology for Non-
Profit Organisations - Extended Participatory Design
of an Information System for Trade Union Shop
Stewards, 2002, ISBN 91-7373-318-0.

No 765 Stefan Holmlid: Adapting users: Towards a theory
of use quality, 2002, ISBN 91-7373-397-0.

No 771 Magnus Morin: Multimedia Representations of Dis-
tributed Tactical Operations, 2002, ISBN 91-7373-421-
7.

No 772 Pawel Pietrzak: A Type-Based Framework for Locat-
ing Errors in Constraint Logic Programs, 2002, ISBN
91-7373-422-5.

No 758 Erik Berglund: Library Communication Among Pro-
grammers Worldwide, 2002, ISBN 91-7373-349-0.

No 774 Choong-ho Yi: Modelling Object-Oriented Dynamic
Systems Using a Logic-Based Framework, 2002, ISBN
91-7373-424-1.

No 779 Mathias Broxvall: A Study in the Computational
Complexity of Temporal Reasoning, 2002, ISBN 91-
7373-440-3.

No 793 Asmus Pandikow: A Generic Principle for Enabling
Interoperability of Structured and Object-Oriented
Analysis and Design Tools, 2002, ISBN 91-7373-479-9.

No 785 Lars Hult: Publika Informationstjänster. En studie av
den Internetbaserade encyklopedins bruksegenska-
per, 2003, ISBN 91-7373-461-6.

No 800 Lars Taxén: A Framework for the Coordination of
Complex Systems´ Development, 2003, ISBN 91-
7373-604-X.

No 808 Klas Gäre: Tre perspektiv på förväntningar och
förändringar i samband med införande av
informationssystem, 2003, ISBN 91-7373-618-X.

No 821 Mikael Kindborg: Concurrent Comics -
programming of social agents by children, 2003,
ISBN 91-7373-651-1.

No 823 Christina Ölvingson: On Development of
Information Systems with GIS Functionality in
Public Health Informatics: A Requirements
Engineering Approach, 2003, ISBN 91-7373-656-2.

No 828 Tobias Ritzau: Memory Efficient Hard Real-Time
Garbage Collection, 2003, ISBN 91-7373-666-X.

No 833 Paul Pop: Analysis and Synthesis of
Communication-Intensive Heterogeneous Real-Time
Systems, 2003, ISBN 91-7373-683-X.

No 852 Johan Moe: Observing the Dynamic Behaviour of
Large Distributed Systems to Improve Development
and Testing – An Empirical Study in Software
Engineering, 2003, ISBN 91-7373-779-8.

No 867 Erik Herzog: An Approach to Systems Engineering
Tool Data Representation and Exchange, 2004, ISBN
91-7373-929-4.

No 872 Aseel Berglund: Augmenting the Remote Control:
Studies in Complex Information Navigation for
Digital TV, 2004, ISBN 91-7373-940-5.

No 869 Jo Skåmedal: Telecommuting’s Implications on
Travel and Travel Patterns, 2004, ISBN 91-7373-935-9.

No 870 Linda Askenäs: The Roles of IT - Studies of
Organising when Implementing and Using
Enterprise Systems, 2004, ISBN 91-7373-936-7.

No 874 Annika Flycht-Eriksson: Design and Use of Ontolo-
gies in Information-Providing Dialogue Systems,
2004, ISBN 91-7373-947-2.

No 873 Peter Bunus: Debugging Techniques for Equation-
Based Languages, 2004, ISBN 91-7373-941-3.

No 876 Jonas Mellin: Resource-Predictable and Efficient
Monitoring of Events, 2004, ISBN 91-7373-956-1.

No 883 Magnus Bång: Computing at the Speed of Paper:
Ubiquitous Computing Environments for Healthcare
Professionals, 2004, ISBN 91-7373-971-5.

No 882 Robert Eklund: Disfluency in Swedish human-
human and human-machine travel booking di-
alogues, 2004, ISBN 91-7373-966-9.

No 887 Anders Lindström: English and other Foreign
Linguistic Elements in Spoken Swedish. Studies of
Productive Processes and their Modelling using
Finite-State Tools, 2004, ISBN 91-7373-981-2.

No 889 Zhiping Wang: Capacity-Constrained Production-in-
ventory systems - Modelling and Analysis in both a
traditional and an e-business context, 2004, ISBN 91-
85295-08-6.

No 893 Pernilla Qvarfordt: Eyes on Multimodal Interaction,
2004, ISBN 91-85295-30-2.

No 910 Magnus Kald: In the Borderland between Strategy
and Management Control - Theoretical Framework
and Empirical Evidence, 2004, ISBN 91-85295-82-5.

No 918 Jonas Lundberg: Shaping Electronic News: Genre
Perspectives on Interaction Design, 2004, ISBN 91-
85297-14-3.

No 900 Mattias Arvola: Shades of use: The dynamics of
interaction design for sociable use, 2004, ISBN 91-
85295-42-6.

No 920 Luis Alejandro Cortés: Verification and Scheduling
Techniques for Real-Time Embedded Systems, 2004,
ISBN 91-85297-21-6.

No 929 Diana Szentivanyi: Performance Studies of Fault-
Tolerant Middleware, 2005, ISBN 91-85297-58-5.

No 933 Mikael Cäker: Management Accounting as
Constructing and Opposing Customer Focus: Three
Case Studies on Management Accounting and
Customer Relations, 2005, ISBN 91-85297-64-X.

No 937 Jonas Kvarnström: TALplanner and Other
Extensions to Temporal Action Logic, 2005, ISBN 91-
85297-75-5.

No 938 Bourhane Kadmiry: Fuzzy Gain-Scheduled Visual
Servoing for Unmanned Helicopter, 2005, ISBN 91-
85297-76-3.

No 945 Gert Jervan: Hybrid Built-In Self-Test and Test
Generation Techniques for Digital Systems, 2005,
ISBN 91-85297-97-6.

No 946 Anders Arpteg: Intelligent Semi-Structured Informa-
tion Extraction, 2005, ISBN 91-85297-98-4.

No 947 Ola Angelsmark: Constructing Algorithms for Con-
straint Satisfaction and Related Problems - Methods
and Applications, 2005, ISBN 91-85297-99-2.

No 963 Calin Curescu: Utility-based Optimisation of
Resource Allocation for Wireless Networks, 2005,
ISBN 91-85457-07-8.

No 972 Björn Johansson: Joint Control in Dynamic
Situations, 2005, ISBN 91-85457-31-0.

No 974 Dan Lawesson: An Approach to Diagnosability
Analysis for Interacting Finite State Systems, 2005,
ISBN 91-85457-39-6.

No 979 Claudiu Duma: Security and Trust Mechanisms for
Groups in Distributed Services, 2005, ISBN 91-85457-
54-X.

No 983 Sorin Manolache: Analysis and Optimisation of
Real-Time Systems with Stochastic Behaviour, 2005,
ISBN 91-85457-60-4.

No 986 Yuxiao Zhao: Standards-Based Application
Integration for Business-to-Business
Communications, 2005, ISBN 91-85457-66-3.

No 1004 Patrik Haslum: Admissible Heuristics for
Automated Planning, 2006, ISBN 91-85497-28-2.

No 1005 Aleksandra Tešanovic: Developing Reusable and
Reconfigurable Real-Time Software using Aspects
and Components, 2006, ISBN 91-85497-29-0.

No 1008 David Dinka: Role, Identity and Work: Extending
the design and development agenda, 2006, ISBN 91-
85497-42-8.

No 1009 Iakov Nakhimovski: Contributions to the Modeling
and Simulation of Mechanical Systems with Detailed
Contact Analysis, 2006, ISBN 91-85497-43-X.

No 1013 Wilhelm Dahllöf: Exact Algorithms for Exact
Satisfiability Problems, 2006, ISBN 91-85523-97-6.

No 1016 Levon Saldamli: PDEModelica - A High-Level Lan-
guage for Modeling with Partial Differential Equa-
tions, 2006, ISBN 91-85523-84-4.

No 1017 Daniel Karlsson: Verification of Component-based
Embedded System Designs, 2006, ISBN 91-85523-79-8

No 1018 Ioan Chisalita: Communication and Networking
Techniques for Traffic Safety Systems, 2006, ISBN 91-
85523-77-1.

No 1019 Tarja Susi: The Puzzle of Social Activity - The
Significance of Tools in Cognition and Cooperation,
2006, ISBN 91-85523-71-2.

No 1021 Andrzej Bednarski: Integrated Optimal Code Gener-
ation for Digital Signal Processors, 2006, ISBN 91-
85523-69-0.

No 1022 Peter Aronsson: Automatic Parallelization of Equa-
tion-Based Simulation Programs, 2006, ISBN 91-
85523-68-2.

No 1030 Robert Nilsson: A Mutation-based Framework for
Automated Testing of Timeliness, 2006, ISBN 91-
85523-35-6.

No 1034 Jon Edvardsson: Techniques for Automatic
Generation of Tests from Programs and
Specifications, 2006, ISBN 91-85523-31-3.

No 1035 Vaida Jakoniene: Integration of Biological Data,
2006, ISBN 91-85523-28-3.

No 1045 Genevieve Gorrell: Generalized Hebbian
Algorithms for Dimensionality Reduction in Natural
Language Processing, 2006, ISBN 91-85643-88-2.

No 1051 Yu-Hsing Huang: Having a New Pair of Glasses -
Applying Systemic Accident Models on Road Safety,
2006, ISBN 91-85643-64-5.

No 1054 Åsa Hedenskog: Perceive those things which cannot
be seen - A Cognitive Systems Engineering
perspective on requirements management, 2006,
ISBN 91-85643-57-2.

No 1061 Cécile Åberg: An Evaluation Platform for Semantic
Web Technology, 2007, ISBN 91-85643-31-9.

No 1073 Mats Grindal: Handling Combinatorial Explosion in
Software Testing, 2007, ISBN 978-91-85715-74-9.

No 1075 Almut Herzog: Usable Security Policies for Runtime
Environments, 2007, ISBN 978-91-85715-65-7.

No 1079 Magnus Wahlström: Algorithms, measures, and
upper bounds for Satisfiability and related problems,
2007, ISBN 978-91-85715-55-8.

No 1083 Jesper Andersson: Dynamic Software Architectures,
2007, ISBN 978-91-85715-46-6.

No 1086 Ulf Johansson: Obtaining Accurate and Compre-
hensible Data Mining Models - An Evolutionary
Approach, 2007, ISBN 978-91-85715-34-3.

No 1089 Traian Pop: Analysis and Optimisation of
Distributed Embedded Systems with Heterogeneous
Scheduling Policies, 2007, ISBN 978-91-85715-27-5.

No 1091 Gustav Nordh: Complexity Dichotomies for CSP-
related Problems, 2007, ISBN 978-91-85715-20-6.

No 1106 Per Ola Kristensson: Discrete and Continuous Shape
Writing for Text Entry and Control, 2007, ISBN 978-
91-85831-77-7.

No 1110 He Tan: Aligning Biomedical Ontologies, 2007, ISBN
978-91-85831-56-2.

No 1112 Jessica Lindblom: Minding the body - Interacting so-
cially through embodied action, 2007, ISBN 978-91-
85831-48-7.

No 1113 Pontus Wärnestål: Dialogue Behavior Management
in Conversational Recommender Systems, 2007,
ISBN 978-91-85831-47-0.

No 1120 Thomas Gustafsson: Management of Real-Time
Data Consistency and Transient Overloads in
Embedded Systems, 2007, ISBN 978-91-85831-33-3.

No 1127 Alexandru Andrei: Energy Efficient and Predictable
Design of Real-time Embedded Systems, 2007, ISBN
978-91-85831-06-7.

No 1139 Per Wikberg: Eliciting Knowledge from Experts in
Modeling of Complex Systems: Managing Variation
and Interactions, 2007, ISBN 978-91-85895-66-3.

No 1143 Mehdi Amirijoo: QoS Control of Real-Time Data
Services under Uncertain Workload, 2007, ISBN 978-
91-85895-49-6.

No 1150 Sanny Syberfeldt: Optimistic Replication with For-
ward Conflict Resolution in Distributed Real-Time
Databases, 2007, ISBN 978-91-85895-27-4.

No 1155 Beatrice Alenljung: Envisioning a Future Decision
Support System for Requirements Engineering - A
Holistic and Human-centred Perspective, 2008, ISBN
978-91-85895-11-3.

No 1156 Artur Wilk: Types for XML with Application to
Xcerpt, 2008, ISBN 978-91-85895-08-3.

No 1183 Adrian Pop: Integrated Model-Driven Development
Environments for Equation-Based Object-Oriented
Languages, 2008, ISBN 978-91-7393-895-2.

No 1185 Jörgen Skågeby: Gifting Technologies -
Ethnographic Studies of End-users and Social Media
Sharing, 2008, ISBN 978-91-7393-892-1.

No 1187 Imad-Eldin Ali Abugessaisa: Analytical tools and
information-sharing methods supporting road safety
organizations, 2008, ISBN 978-91-7393-887-7.

No 1204 H. Joe Steinhauer: A Representation Scheme for De-
scription and Reconstruction of Object
Configurations Based on Qualitative Relations, 2008,
ISBN 978-91-7393-823-5.

No 1222 Anders Larsson: Test Optimization for Core-based
System-on-Chip, 2008, ISBN 978-91-7393-768-9.

No 1238 Andreas Borg: Processes and Models for Capacity
Requirements in Telecommunication Systems, 2009,
ISBN 978-91-7393-700-9.

No 1240 Fredrik Heintz: DyKnow: A Stream-Based Know-
ledge Processing Middleware Framework, 2009,
ISBN 978-91-7393-696-5.

No 1241 Birgitta Lindström: Testability of Dynamic Real-
Time Systems, 2009, ISBN 978-91-7393-695-8.

No 1244 Eva Blomqvist: Semi-automatic Ontology Construc-
tion based on Patterns, 2009, ISBN 978-91-7393-683-5.

No 1249 Rogier Woltjer: Functional Modeling of Constraint
Management in Aviation Safety and Command and
Control, 2009, ISBN 978-91-7393-659-0.

No 1260 Gianpaolo Conte: Vision-Based Localization and
Guidance for Unmanned Aerial Vehicles, 2009, ISBN
978-91-7393-603-3.

No 1262 AnnMarie Ericsson: Enabling Tool Support for For-
mal Analysis of ECA Rules, 2009, ISBN 978-91-7393-
598-2.

No 1266 Jiri Trnka: Exploring Tactical Command and
Control: A Role-Playing Simulation Approach, 2009,
ISBN 978-91-7393-571-5.

No 1268 Bahlol Rahimi: Supporting Collaborative Work
through ICT - How End-users Think of and Adopt
Integrated Health Information Systems, 2009, ISBN
978-91-7393-550-0.

No 1274 Fredrik Kuivinen: Algorithms and Hardness Results
for Some Valued CSPs, 2009, ISBN 978-91-7393-525-8.

No 1281 Gunnar Mathiason: Virtual Full Replication for
Scalable Distributed Real-Time Databases, 2009,
ISBN 978-91-7393-503-6.

No 1290 Viacheslav Izosimov: Scheduling and Optimization
of Fault-Tolerant Distributed Embedded Systems,
2009, ISBN 978-91-7393-482-4.

No 1294 Johan Thapper: Aspects of a Constraint
Optimisation Problem, 2010, ISBN 978-91-7393-464-0.

No 1306 Susanna Nilsson: Augmentation in the Wild: User
Centered Development and Evaluation of
Augmented Reality Applications, 2010, ISBN 978-91-
7393-416-9.

No 1313 Christer Thörn: On the Quality of Feature Models,
2010, ISBN 978-91-7393-394-0.

No 1321 Zhiyuan He: Temperature Aware and Defect-
Probability Driven Test Scheduling for System-on-
Chip, 2010, ISBN 978-91-7393-378-0.

No 1333 David Broman: Meta-Languages and Semantics for
Equation-Based Modeling and Simulation, 2010,
ISBN 978-91-7393-335-3.

No 1337 Alexander Siemers: Contributions to Modelling and
Visualisation of Multibody Systems Simulations with
Detailed Contact Analysis, 2010, ISBN 978-91-7393-
317-9.

No 1354 Mikael Asplund: Disconnected Discoveries:
Availability Studies in Partitioned Networks, 2010,
ISBN 978-91-7393-278-3.

No 1359 Jana Rambusch: Mind Games Extended:
Understanding Gameplay as Situated Activity, 2010,
ISBN 978-91-7393-252-3.

No 1373 Sonia Sangari: Head Movement Correlates to Focus
Assignment in Swedish, 2011, ISBN 978-91-7393-154-
0.

No 1374 Jan-Erik Källhammer: Using False Alarms when
Developing Automotive Active Safety Systems, 2011,
ISBN 978-91-7393-153-3.

No 1375 Mattias Eriksson: Integrated Code Generation, 2011,
ISBN 978-91-7393-147-2.

No 1381 Ola Leifler: Affordances and Constraints of
Intelligent Decision Support for Military Command
and Control – Three Case Studies of Support
Systems, 2011, ISBN 978-91-7393-133-5.

No 1386 Soheil Samii: Quality-Driven Synthesis and
Optimization of Embedded Control Systems, 2011,
ISBN 978-91-7393-102-1.

No 1419 Erik Kuiper: Geographic Routing in Intermittently-
connected Mobile Ad Hoc Networks: Algorithms
and Performance Models, 2012, ISBN 978-91-7519-
981-8.

No 1451 Sara Stymne: Text Harmonization Strategies for
Phrase-Based Statistical Machine Translation, 2012,
ISBN 978-91-7519-887-3.

No 1455 Alberto Montebelli: Modeling the Role of Energy
Management in Embodied Cognition, 2012, ISBN
978-91-7519-882-8.

No 1465 Mohammad Saifullah: Biologically-Based Interactive
Neural Network Models for Visual Attention and
Object Recognition, 2012, ISBN 978-91-7519-838-5.

No 1490 Tomas Bengtsson: Testing and Logic Optimization
Techniques for Systems on Chip, 2012, ISBN 978-91-
7519-742-5.

No 1481 David Byers: Improving Software Security by
Preventing Known Vulnerabilities, 2012, ISBN 978-
91-7519-784-5.

No 1496 Tommy Färnqvist: Exploiting Structure in CSP-
related Problems, 2013, ISBN 978-91-7519-711-1.

No 1503 John Wilander: Contributions to Specification,
Implementation, and Execution of Secure Software,
2013, ISBN 978-91-7519-681-7.

No 1506 Magnus Ingmarsson: Creating and Enabling the
Useful Service Discovery Experience, 2013, ISBN 978-
91-7519-662-6.

No 1547 Wladimir Schamai: Model-Based Verification of
Dynamic System Behavior against Requirements:
Method, Language, and Tool, 2013, ISBN 978-91-
7519-505-6.

No 1551 Henrik Svensson: Simulations, 2013, ISBN 978-91-
7519-491-2.

No 1559 Sergiu Rafiliu: Stability of Adaptive Distributed
Real-Time Systems with Dynamic Resource
Management, 2013, ISBN 978-91-7519-471-4.

No 1581 Usman Dastgeer: Performance-aware Component
Composition for GPU-based Systems, 2014, ISBN
978-91-7519-383-0.

No 1602 Cai Li: Reinforcement Learning of Locomotion based
on Central Pattern Generators, 2014, ISBN 978-91-
7519-313-7.

No 1652 Roland Samlaus: An Integrated Development
Environment with Enhanced Domain-Specific
Interactive Model Validation, 2015, ISBN 978-91-
7519-090-7.

No 1663 Hannes Uppman: On Some Combinatorial
Optimization Problems: Algorithms and Complexity,
2015, ISBN 978-91-7519-072-3.

No 1664 Martin Sjölund: Tools and Methods for Analysis,
Debugging, and Performance Improvement of
Equation-Based Models, 2015, ISBN 978-91-7519-071-6.

No 1666 Kristian Stavåker: Contributions to Simulation of
Modelica Models on Data-Parallel Multi-Core
Architectures, 2015, ISBN 978-91-7519-068-6.

No 1680 Adrian Lifa: Hardware/Software Codesign of
Embedded Systems with Reconfigurable and
Heterogeneous Platforms, 2015, ISBN 978-91-7519-040-
2.

No 1685 Bogdan Tanasa: Timing Analysis of Distributed
Embedded Systems with Stochastic Workload and
Reliability Constraints, 2015, ISBN 978-91-7519-022-8.

No 1691 Håkan Warnquist: Troubleshooting Trucks –
Automated Planning and Diagnosis, 2015, ISBN 978-
91-7685-993-3.

No 1702 Nima Aghaee: Thermal Issues in Testing of
Advanced Systems on Chip, 2015, ISBN 978-91-7685-
949-0.

No 1715 Maria Vasilevskaya: Security in Embedded Systems:
A Model-Based Approach with Risk Metrics, 2015,
ISBN 978-91-7685-917-9.

No 1729 Ke Jiang: Security-Driven Design of Real-Time
Embedded System, 2016, ISBN 978-91-7685-884-4.

No 1733 Victor Lagerkvist: Strong Partial Clones and the
Complexity of Constraint Satisfaction Problems:
Limitations and Applications, 2016, ISBN 978-91-7685-
856-1.

No 1734 Chandan Roy: An Informed System Development
Approach to Tropical Cyclone Track and Intensity
Forecasting, 2016, ISBN 978-91-7685-854-7.

No 1746 Amir Aminifar: Analysis, Design, and Optimization
of Embedded Control Systems, 2016, ISBN 978-91-
7685-826-4.

No 1747 Ekhiotz Vergara: Energy Modelling and Fairness for
Efficient Mobile Communication, 2016, ISBN 978-91-
7685-822-6.

No 1748 Dag Sonntag: Chain Graphs – Interpretations,
Expressiveness and Learning Algorithms, 2016, ISBN
978-91-7685-818-9.

No 1768 Anna Vapen: Web Authentication using Third-
Parties in Untrusted Environments, 2016, ISBN 978-
91-7685-753-3.

No 1778 Magnus Jandinger: On a Need to Know Basis: A
Conceptual and Methodological Framework for
Modelling and Analysis of Information Demand in
an Enterprise Context, 2016, ISBN 978-91-7685-713-7.

No 1798 Rahul Hiran: Collaborative Network Security:
Targeting Wide-area Routing and Edge-network
Attacks, 2016, ISBN 978-91-7685-662-8.

No 1813 Nicolas Melot: Algorithms and Framework for
Energy Efficient Parallel Stream Computing on
Many-Core Architectures, 2016, ISBN 978-91-7685-
623-9.

No 1823 Amy Rankin: Making Sense of Adaptations:
Resilience in High-Risk Work, 2017, ISBN 978-91-
7685-596-6.

No 1831 Lisa Malmberg: Building Design Capability in the
Public Sector: Expanding the Horizons of
Development, 2017, ISBN 978-91-7685-585-0.

No 1851 Marcus Bendtsen: Gated Bayesian Networks, 2017,
ISBN 978-91-7685-525-6.

No 1852 Zlatan Dragisic: Completion of Ontologies and
Ontology Networks, 2017, ISBN 978-91-7685-522-5.

No 1854 Meysam Aghighi: Computational Complexity of
some Optimization Problems in Planning, 2017, ISBN
978-91-7685-519-5.

No 1863 Simon Ståhlberg: Methods for Detecting Unsolvable
Planning Instances using Variable Projection, 2017,
ISBN 978-91-7685-498-3.

No 1879 Karl Hammar: Content Ontology Design Patterns:
Qualities, Methods, and Tools, 2017, ISBN 978-91-
7685-454-9.

No 1887 Ivan Ukhov: System-Level Analysis and Design
under Uncertainty, 2017, ISBN 978-91-7685-426-6.

No 1891 Valentina Ivanova: Fostering User Involvement in
Ontology Alignment and Alignment Evaluation,
2017, ISBN 978-91-7685-403-7.

No 1902 Vengatanathan Krishnamoorthi: Efficient HTTP-
based Adaptive Streaming of Linear and Interactive
Videos, 2018, ISBN 978-91-7685-371-9.

No 1903 Lu Li: Programming Abstractions and Optimization
Techniques for GPU-based Heterogeneous Systems,
2018, ISBN 978-91-7685-370-2.

No 1913 Jonas Rybing: Studying Simulations with
Distributed Cognition, 2018, ISBN 978-91-7685-348-1.

No 1936 Leif Jonsson: Machine Learning-Based Bug
Handling in Large-Scale Software Development,
2018, ISBN 978-91-7685-306-1.

No 1964 Arian Maghazeh: System-Level Design of GPU-
Based Embedded Systems, 2018, ISBN 978-91-7685-
175-3.

No 1967 Mahder Gebremedhin: Automatic and Explicit
Parallelization Approaches for Equation Based
Mathematical Modeling and Simulation, 2019, ISBN
978-91-7685-163-0.

No 1984 Anders Andersson: Distributed Moving Base
Driving Simulators – Technology, Performance, and
Requirements, 2019, ISBN 978-91-7685-090-9.

No 1993 Ulf Kargén: Scalable Dynamic Analysis of Binary
Code, 2019, ISBN 978-91-7685-049-7.

No 2001 Tim Overkamp: How Service Ideas Are
Implemented: Ways of Framing and Addressing
Service Transformation, 2019, ISBN 978-91-7685-025-1.

No 2006 Daniel de Leng: Robust Stream Reasoning Under
Uncertainty, 2019, ISBN 978-91-7685-013-8.

Linköping Studies in Arts and Science
No 504 Ing-Marie Jonsson: Social and Emotional

Characteristics of Speech-based In-Vehicle
Information Systems: Impact on Attitude and
Driving Behaviour, 2009, ISBN 978-91-7393-478-7.

No 586 Fabian Segelström: Stakeholder Engagement for
Service Design: How service designers identify and
communicate insights, 2013, ISBN 978-91-7519-554-4.

No 618 Johan Blomkvist: Representing Future Situations of
Service: Prototyping in Service Design, 2014, ISBN
978-91-7519-343-4.

No 620 Marcus Mast: Human-Robot Interaction for Semi-
Autonomous Assistive Robots, 2014, ISBN 978-91-
7519-319-9.

No 677 Peter Berggren: Assessing Shared Strategic
Understanding, 2016, ISBN 978-91-7685-786-1.

No 695 Mattias Forsblad: Distributed cognition in home
environments: The prospective memory and
cognitive practices of older adults, 2016, ISBN 978-
91-7685-686-4.

Linköping Studies in Statistics
No 9 Davood Shahsavani: Computer Experiments De-

signed to Explore and Approximate Complex Deter-
ministic Models, 2008, ISBN 978-91-7393-976-8.

No 10 Karl Wahlin: Roadmap for Trend Detection and As-
sessment of Data Quality, 2008, ISBN 978-91-7393-
792-4.

No 11 Oleg Sysoev: Monotonic regression for large
multivariate datasets, 2010, ISBN 978-91-7393-412-1.

No 13 Agné Burauskaite-Harju: Characterizing Temporal
Change and Inter-Site Correlations in Daily and Sub-
daily Precipitation Extremes, 2011, ISBN 978-91-7393-
110-6.

No 14 Måns Magnusson: Scalable and Efficient
Probabilistic Topic Model Inference for Textual Data,
2018, ISBN 978-91-7685-288-0.

Linköping Studies in Information Science
No 1 Karin Axelsson: Metodisk systemstrukturering- att

skapa samstämmighet mellan informationssystem-
arkitektur och verksamhet, 1998. ISBN 9172-19-296-8.

No 2 Stefan Cronholm: Metodverktyg och användbarhet -
en studie av datorstödd metodbaserad
systemutveckling, 1998, ISBN 9172-19-299-2.

No 3 Anders Avdic: Användare och utvecklare - om
anveckling med kalkylprogram, 1999. ISBN 91-7219-
606-8.

No 4 Owen Eriksson: Kommunikationskvalitet hos infor-
mationssystem och affärsprocesser, 2000, ISBN 91-
7219-811-7.

No 5 Mikael Lind: Från system till process - kriterier för
processbestämning vid verksamhetsanalys, 2001,
ISBN 91-7373-067-X.

No 6 Ulf Melin: Koordination och informationssystem i
företag och nätverk, 2002, ISBN 91-7373-278-8.

No 7 Pär J. Ågerfalk: Information Systems Actability - Un-
derstanding Information Technology as a Tool for

Business Action and Communication, 2003, ISBN 91-
7373-628-7.

No 8 Ulf Seigerroth: Att förstå och förändra system-
utvecklingsverksamheter - en taxonomi för
metautveckling, 2003, ISBN 91-7373-736-4.

No 9 Karin Hedström: Spår av datoriseringens värden –
 Effekter av IT i äldreomsorg, 2004, ISBN 91-7373-963-

4.
No 10 Ewa Braf: Knowledge Demanded for Action -

Studies on Knowledge Mediation in Organisations,
2004, ISBN 91-85295-47-7.

No 11 Fredrik Karlsson: Method Configuration method
and computerized tool support, 2005, ISBN 91-85297-
48-8.

No 12 Malin Nordström: Styrbar systemförvaltning - Att
organisera systemförvaltningsverksamhet med hjälp
av effektiva förvaltningsobjekt, 2005, ISBN 91-85297-
60-7.

No 13 Stefan Holgersson: Yrke: POLIS - Yrkeskunskap,
motivation, IT-system och andra förutsättningar för
polisarbete, 2005, ISBN 91-85299-43-X.

No 14 Benneth Christiansson, Marie-Therese
Christiansson: Mötet mellan process och komponent
- mot ett ramverk för en verksamhetsnära
kravspecifikation vid anskaffning av komponent-
baserade informationssystem, 2006, ISBN 91-85643-
22-X.

