Linkoping Studies in Science and Technology
Dissertations, No. 2006

Robust Stream Reasoning Under Uncertainty

Daniel de Leng

LINKOPING
UNIVERSITY

Link6ping University
Department of Computer and Information Science
Artificial Intelligence and Integrated Computer Systems
SE-581 83 Linkdping, Sweden

Linkdping 2019

Edition 1:1

© Daniel de Leng, 2019

Thesis cover: A photo taken in Norrkdping near (58.588510°N, 16.183002°W) on
July 1%t 2018, facing north-west, showing stepped waterfalls representing the
incremental transformation of streams.

ISBN 978-91-7685-013-8
ISSN 0345-7524
URLhttp://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-157633

Typeset using X3IEX

Printed by LiU-Tryck, Linkdping 2019

Dedicated to the loving memory of Joan Grace de Leng (1921-2019), a strong,
brave, and adventurous English lady who gave me this language, the courage to
move abroad, an example of perseverance, a love of Star Trek, and an appreciation
of birds. She was my grandmother, my nana, and a real-life Captain Janeway. Her
spirit has been set free, but she will be sorely missed.

POPULARVETENSKAPLIG SAMMANFATTNING

Robust inkrementell slutsatsdragning utifran osidkra
informationsstrommar

Information finns Gverallt. Mycket av detta produceras och konsumeras som informationsstrémmar. Vi
har internetsamtal, tittar pa video, och live-streamar hindelser. Overvakningskameror samlar och skic-
kar bilder kontinuerligt. Sensorer gor att vi kan kolla pa hur vadret ar just nu. Marknadsinformation goér
att vi kan kolla pa statusen for varldens bérser. Vara smartphones kan ge oss positionsinformation live
som kan delas med andra. Dessutom observerar robotar sina naromraden med hjalp av sensorer, sasom
manniskor observerar sina ndromraden med sina sinnesorgan. Dessa informationsstrémmar ger oss in-
kompletta 6gonblicksbilder av varlden dar vi befinner oss. Dock kan informationsmangden goéra det svart
att forsta varlden. Det ar darfor viktigt for autonoma system att ha formagan att forsta dessa informa-
tionsstrommar, till exempel genom automatisk slutsatsdragning. Inkrementell slutsatsdragning utifran
informationsstrémmar, som ocksa kallas for stream reasoning pa engelska, ar sarskilt relevant for auto-
noma robotsystem i den fysiska varlden. | den har avhandlingen fokuserar vi pa tva delar av problemet
gallande robust inkrementell slutsatsdragning utifran osakra informationsstrommar.

Forsta delen handlar om hur ett system svarar pa tidsrelaterade fragor om informationsstrommar. Vi kan
anvanda en tidslogik for att beskriva hdandelsen pa ett formellt satt. Dessa handelser kan till exempel
representera varden av en sarskild aktie, en finansiell transaktion mellan tva parter, eller nuvarande status
av ett robotsystem. Logiska uttryck dr anvandbara dar vi vill kontrollera om logiska specifikationer uppfylls
av ett system. En Gvertradelse av specifikationerna kan till exempel betyda att en sarskilt aktie gar ner for
fort i varde, en suspekt finansiell transaktion har upptickts, eller ett robotsystem agerar pa ett ovanligt
och otryggt satt. Eftersom det ibland saknas information ar férmagan att hantera osékerhet ett viktigt
problem.

Andra delen handlar om hur ett sadant system kan generera informationsstrémmar pa ett robust satt.
Manga slutsatsdragningstekniker for logik tar inte hansyn till ursprunget av de anvanda symbolernas tolk-
ning i logiska specifikationer. Det ar vanligt att man bara antar att informationsstrémmar som kravs ocksa
finns. Men dven om de ar direkt tillgédngliga sa kan tillgangligheten dndras 6ver tid. En potentiell [6sning
ar att beskriva vilken sorts information som kravs, i stallet for var information finns. Losningen gor att
det ar mojligt for ett system att anpassa sig nar informationsstromresurser blir otillgénglig medan de an-
vands for slutsatsdragning, genom att fortsatta generera informationsstrommen med hjalp av alternativa
resurser.

Dessa tva delar integrerades i ett ramverk for robust inkrementell slutsatsdragning utifran osakra infor-
mationsstrémmar. Ramverket stodjer resonemanget om informationen som finns i strémmar, och om
strémmarna sjalva som produkt av en strémsyntesprocess. Dessa formagor kommer att bli viktigare ju
mer informationsstrommar som genereras i var digitala varld.

POPULAIRWETENSCHAPPELIJKE SAMENVATTING

Robuust automatisch redeneren met onzekere informatiestromen

Informatie is overal. Veel van deze informatie wordt geproduceerd en geconsumeerd in de vorm van in-
formatiestromen. We houden online telefoongesprekken, kijken naar video-afleveringen, en streamen
live gebeurtenissen. Toezichtcamera’s verzamelen en versturen continu beeldmateriaal. Sensoren zor-
gen ervoor dat we actuele weersinformatie kunnen opvragen. Daarbij observeren robots hun omgeving
met hulp van sensoren, zoals mensen hun omgeving observeren met behulp van zintuigen. Dergelijke in-
formatiestromen geven ons incomplete momentopnamen van de wereld waarin we ons bevinden. Ech-
ter kan de hoeveelheid informatie het begrijpen van die wereld bemoeilijken. Het is daarom belangrijk
voor autonome systemen om deze informatiestromen te kunnen begrijpen, bijvoorbeeld door middel
van automatisch redeneren. Automatisch redeneren met informatiestromen, ook wel stream reasoning
genoemd in het Engels, is in het bijzonder relevant voor autonome systemen die zich in de fysieke we-
reld begeven. In deze scriptie concentreren we ons op twee onderdelen van het probleem van robuust
automatisch redeneren met onzekere informatiestromen.

Het eerste onderdeel gaat over hoe een systeem antwoorden kan geven op tijdsgerelateerde vragen over
informatiestromen. We kunnen een tijdslogica gebruiken om gebeurtenissen op een formele manier te
beschrijven. Die gebeurtenissen kunnen bijvoorbeeld gaan over de waarde van een bepaald aandeel,
een financiéle transactie tussen twee partijen, of de huidige status van een robotsysteem. Logische uitin-
gen zijn handig wanneer we willen controleren of een systeem zich houdt aan een logische specificatie.
Een overtreding kan bijvoorbeeld betekenen dat een bepaald aandeel te snel in waarde verliest, een ver-
dachte financiéle transactie ontdekt is, of dat een robotsysteem zich op een ongebruikelijke en gevaarlijke
manier gedraagt. Omdat er soms informatie ontbreekt is het vermogen om om te gaan met onzekerheid
een belangrijk probleem.

Het andere onderdeel gaat over hoe een dergelijk systeem informatiestromen op een robuuste wijze kan
genereren. Veel technieken voor automatisch redeneren op basis van logica houden zich niet bezig met
de oorsprong van de betekenis van de gebruikte symbolen in een logische specificatie. Het is gebruike-
lijk dat men simpelweg aanneemt dat de benodigde informatiestromen beschikbaar zijn. Echter, zelfs als
ze direct toegankelijk zijn kan die toegankelijkheid over tijd variéren. Een potenti€le oplossing is om te
beschrijven welk soort informatie benodigd is, in plaats van waar de informatie is. Dat zorgt ervoor dat
het mogelijk is voor een systeem om zich aan te passen wanneer bronnen van informatiestromen on-
toegankelijk worden terwijl ze in gebruik zijn voor automatisch redeneren. Dit kan door middel van het
genereren van alternatieve informatiestromen met hulp van alternatieve middelen.

Deze twee delen zijn geintegreerd in een raamwerk voor robuust automatisch redeneren met onzekere
informatiestromen. Het raamwerk ondersteunt het redeneren met informatie in de vorm van stromen,
en het redeneren over die stromen zelf als product van een syntheseproces. Deze vermogens worden
belangrijker naar mate er meer informatiestromen gegenereerd worden in onze digitale wereld.

vi

ABSTRACT

Vast amounts of data are continually being generated by a wide variety of data producers. This data
ranges from quantitative sensor observations produced by robot systems to complex unstructured
human-generated texts on social media. With data being so abundant, the ability to make sense of these
streams of data through reasoning is of great importance. Reasoning over streams is particularly relevant
for autonomous robotic systems that operate in physical environments. They commonly observe this en-
vironment through incremental observations, gradually refining information about their surroundings.
This makes robust management of streaming data and their refinement an important problem.

Many contemporary approaches to stream reasoning focus on the issue of querying data streams in order
to generate higher-level information by relying on well-known database approaches. Other approaches
apply logic-based reasoning techniques, which rarely consider the provenance of their symbolic inter-
pretations. In this work, we integrate techniques for logic-based stream reasoning with the adaptive
generation of the state streams needed to do the reasoning over. This combination deals with both the
challenge of reasoning over uncertain streaming data and the problem of robustly managing streaming
data and their refinement.

The main contributions of this work are (1) a logic-based temporal reasoning technique based on path
checking under uncertainty that combines temporal reasoning with qualitative spatial reasoning; (2) an
adaptive reconfiguration procedure for generating and maintaining a data stream required to perform
spatio-temporal stream reasoning over; and (3) integration of these two techniques into a stream rea-
soning framework. The proposed spatio-temporal stream reasoning technique is able to reason with
intertemporal spatial relations by leveraging landmarks. Adaptive state stream generation allows the
framework to adapt to situations in which the set of available streaming resources changes. Management
of streaming resources is formalised in the DyKnow model, which introduces a configuration life-cycle to
adaptively generate state streams. The DyKnow-ROS stream reasoning framework is a concrete realisa-
tion of this model that extends the Robot Operating System (ROS). DyKnow-ROS has been deployed on
the SoftBank Robotics NAO platform to demonstrate the system’s capabilities in a case study on run-time
adaptive reconfiguration. The results show that the proposed system — by combining reasoning over
and reasoning about streams — can robustly perform stream reasoning, even when the availability of
streaming resources changes.

This work was funded in part by the National Graduate School in Computer Science, Sweden (CUGS),
the Swedish Aeronautics Research Council (NFFP6), the Swedish Foundation for Strategic Research (SSF)
project CUAS, the Swedish Research Council (VR) Linnaeus Center CADICS, the ELLIIT Excellence Center at
Link6ping-Lund for Information Technology, and the Center for Industrial Information Technology CENIIT.

Department of Computer and Information Science
Linkdping University
SE-581 83 Link6ping, Sweden

vii

ACKNOWLEDGEMENTS

My supervisor once told me that working towards a PhD is like running a marathon;
sometimes things move slowly, and sometimes you work all the time. | sometimes
also imagine it is a bit like running your own business, where you have to make your
own decisions, and where nobody else is going to bail you out. As a PhD student you
are responsible for your own progress. You suffer your own setbacks and you reap
your own rewards. It can at times be a rollercoaster of highs and lows. Sometimes
good enough is good enough, and you have a choice to make in spending your lim-
ited time where it matters the most; other times there seems to be a lot of time, and
yet it can feel like things are going nowhere. During those times it can be difficult not
to compare yourself to others, or to question your own capabilities, but it is impor-
tant to remember that every PhD is different, both in terms of achievements as well
as expectations. What we take away from this experience is different for all of us.
For me, it gave me the opportunity to learn a lot from my own experiences as well
as those of others. It allowed me to go places, to learn new things, to meet people,
to exchange ideas, to grow socially as a person, and many more ‘scary things’.

I came to Sweden in the end of November of 2012, a day before winter buried
everything under a blanket of ice and snow, with a single suitcase and a backpack
containing a laptop and some recent papers by Fredrik Heintz. It got dark after 15:00,
and | remember how Marc, who was a fellow student who started his thesis work in
Linkoping before me, sent me a helpful welcome message assuring me that this was
perfectly normal. The first night | slept on a thin mattress in an empty apartment |
had signed up for five years prior. That first Christmas, | was invited over by Lotta (my
‘Swedish mum’) to spend Jul with her and my long-time friend Stefan (whose raving
about Sweden originally got me interested), which | appreciated tremendously. And
over the years, | had the opportunity to learn more about my new home. All these
things will stay with me as my PhD student adventure ends and another begins. But
this adventure would not have been possible without so many people, and while it
is impossible to mention all of you, you know who you are.

I want to start by thanking Fredrik for being willing to take me on as an exjobb
student back in 2012 (and John-Jules Meyer for being willing to ask on my behalf),
despite being an outsider, and for offering me to stay on afterwards as his first PhD
student. In a way | also feel lucky to have been his first PhD student because | had
the opportunity to see him develop as a supervisor as well! Fredrik’s work on the
DyKnow stream reasoning framework focused exactly on the problems | found the
most interesting, and he let me pursue my own take on those problems from the very
beginning. | am grateful for all the supervision support | received over the years. |
also want to thank Patrick Doherty for all of the valuable feedback and suggestions

for improvements over the years. | consider myself lucky to have been part of AlICS
during my PhD studies, not just for the feedback and support but also for the enter-
taining Friday fikas. | appreciated the support from all of you; Karin, Anna, Patrick,
Fredrik H, Jonas, Cyrille, Tommy, Per, Piotr, Mariusz, Karol, Olov, Mikael, Mattias,
Fredrik P, Johan, and David.

A special ‘thank you’ also goes to Anne Moe, who granted me one initial conver-
sation before (thankfully!) forcing me to practice my Swedish, and who is absolutely
indispensable to all PhD students at IDA. | also want to thank my good friend Mattias
for our frequent discussions about everything research and otherwise, and for really
helping me feel at home in Sweden. Our lunches and fikas with Erik, Jon, David and
Riley were a great way to relax or to learn new things. My hope is that we can con-
tinue our tradition of having some gaming sessions and BBQs over the weekends.

None of this would have been possible without the amazing family support |
received these past years. My husband Riley has been part of my journey for almost
five years, and | cannot even begin to express how much his love and support has
helped me cope with this stressful endeavour. He left behind everything he knew,
and moved to a country across the ocean to be here with me. None of this would
have been possible if he had not pushed me to aim high and try new things when
| was still a Master’s student. Thank you so much! | hope you realise the learned
lessons listed here — although | am sure you know them by heart — are primarily
meant as a reminder for you~

Lastly, | want to thank my extended family across several countries for their sup-
port and their patience — my parents Eric and Natasha, my father-in-law Gary and
my late mother-in-law Paige, who sadly passed away far too young and who we miss
dearly; my sister Samantha, her husband Vincent, and my energetic cousins Thomas
and Kevin, whose many adventures | hope to hear more about in our video calls; and
my brother Daryl and his fiancée Maaike. Moving abroad is ultimately a selfish act;
you end up missing out on baby showers, birthdays, and funerals. | have asked a lot
from you, and | am grateful you still welcome me back whenever the opportunity
arises. Dank jullie wel!

Daniel de Leng
Linkoping, October 2019

CONTENTS

AD | \';
Acknowledgmentsd X
xi
xv
vii
Partl: _Introduction and background 1
1 Tntroduction 3
n.1 Motivation oo 3
.2 Scope anddelimitationd 6
f.37 Methodology. 8
A.4 Contributiony e 9
n.5 Publicationy e 11
1.6 Dissertationoutling 12
2 Preliminaries 15
r.1 Introduction e 15
R.2 Viewsofstreamd. 15
p.3 Anatomyofastream. 18
2.4 Anatomyofatranstormation 19
R.5 Streamreasoning 20
0.6 ummary e e e e e e 22
Part ll: Stream reasoning under uncertainty| 23
B Reasoning about time 25
B.1 Introduction e 25
8.2 Temporal modelsandlogicd 26
B.3 Formalveriication 29
B.4 Runtimeverification 31
B.5 Formula simplification 34

Xi

B.6 Empiricalevaluation,
...............................
B Reasoning under uncertainty|
d.1 Introduction e e e e e e
a.2 Prefix progression under uncertainty
4.3 Progressiongraphgd
b4 Incremental graph progression
a.5 Progression-based monitoring
a.6 Empiricalevaluation oo,
. UMMArY o o e

p__Reasoning about spacg

pb.1 Introduction e e e e
b.2 Qualitative spatialreasoning

.3 Metric Spatio-Temporallogid
6.4 Spatio-temporal inference withRCC-8
5.5 MSTLprogression i
b.6 Empiricalevaluation 0.
...............................

Part 1ll: Adaptive stream processing

b State stream synthesig

6.1 Introduction oo
b.2 Timeddatastreamsg
6.3 Syntacticsubscriptiongo
6.4 Semanticsubscriptiony Lo oo
6.5 Synchronisation
6.6 Incorporating background knowledgeg
...............................
/' Reasoning about composition
/.1 Introduction e
V.2 Servicecomposition
/.3 DyKnowmodel o
V.4 Ontology-based model representation
...............................
B__Reasoning about perturbations
B.1 Introduction
B.2 Perturbationhandling
B.3 Updateprocedure e
B.4 Correctnesy e e e e e e e e e e e

Xii

41
41
42
46
53
58
59
62

65
65
66
67
70
75
78
83

85

87
87
89
89
92
95
99
100

101
101
102
103
110
114

B.> Any-timeextension
8.6 ummary e

Part 1V: Applied stream reasoning

9.1 Introduction e
P2 DyKnow-ROJ e
9.3 Thenodeletproxyl« « o v i v v i i e e e
9.4 Management of stream processing
9.5 Stream reasoning supportyo e e e
9.6 Empiricalevaluaton 0.

10 d
10.1 Introduction
10.2 Interactivevisualisation
10.3 Collaborative trackingoraball
10.4 Summaryo e e e e e e e e e e e

11.1 Introduction

FLZ STREAM . . o o oo oo e e e

Part V: Conclusiong

A2 Conclusions and future work

12.2 Conclusions e e e e e e e
12.3 Limitationsand openproblemy
12.4 Futurework e

xiii

129

131
131
133
134
136
141
142
143

145
145
145
147
156

157
157
157
158
159
160
162
163
164
165
166
169
171

173

175
175
177
179
181

183

A DyKnow ontology in Manchester syntax 197

Xiv

LIST OF FIGURES

.1

Synergy eftect between reasoning over streams and reasoning about

STFEAMIS] o o o e

[L.2

The stream reasoning waterfall model showing the incremental transq

formation of fast streams at a low abstraction level into slow streams af
B high abstraction level, which can elicit a response from an agent thaf
Implementsthismodel)

R.1

The stream reasoning watertall model with the transformation of

shrouded fluents into observations highlighted)

R.2

Anatomy of an irregular-timed data stream showing key concepts in red

and primitive operationsinblue) 0oL

R.3

Anatomy of a transformation, showing its structure and its relationship

ostreams] L L e e e

B.1

The stream reasoning waterfall model with the transformation of knowlq

edge Into verdicts, also known as logic-based stream reasoning, high-
lighted]

B.2

Lett: All models of the system description are also models of the formal

specification, showing correctness. Right: Some models of the system
description are not models of the formal specincation, indicating thaf
the specification Is violated by some systemtraces)

6.3

Formula trees 7(G(—=p — Fin =G a1p)) (left), and its progressed ver

sions 7 (PROGRESS(G(—p — Fio.51Gjg.31p, @))) before (middle) and af
ter (right) formula simplification. The tree nodes In light green can beg

Ellmlnafea]

6.4

Formula size over time when progressing GFq 19;p over regular state{

Eequences]

6.5

Formula size over time when progressing GFq 1;p without formula sim-l

Blll caEion]

6.6

Formula size over time when progressing G(—p — Fo.101Gjo.01p) oven{

regular state sequences! o o oo

Example progression graph for the formula Fq 51p. Vertices representl

formulas; edges are labelled with complete states to illustrate under
which logical state a formula progresses into a formula. Reflexive edgeg
for the verdicts are omitted forclarity

XV

|4.2 Example progression graph Gs(G(—p — Fjo.5Go.3p)) after receivind
state (It threetimesinarow],
|4.3 Example progression graph G7(G(—p — Fq.51Gjg 3]p))l
A.4 Leaked probability mass at termination (left), and number of iterationy
totermination(right))
A.5 Average time per iteration =20 (right))

b.l The eight qualitative spatial relations considered by RCC-8 and theirI
transitions as illustrated by regionszandy)
b.2 The probability of satishability of CSPs drawn from A(n,d.4.0) =
1A"(n, d, 4.0, 1.0) for varying numbers of regions n and varying degreeg
d. A phase transition can be observed to occur ford € (o, 15!
6.3 Average time per iteration in milliseconds for four different cases. The
top left shows the average time in milliseconds for A(n,d,4.0). Theg
top right shows an increased cost after one Iteration when separating
the dynamic component A}, (n, d, 4.0, 0.25) from the static component
1A% (n,d,4.0,0.25). The bottom row shows how the one-time overhead
Imposed by computing the static and dynamic components separately|
decreases, for three (bottom left) and five (bottom right) iterations re4q

b.4 Absolute disjunction size for varying number of regions and landmark
ratio; smallerisbetter]
b.5 Percentage of relations tully unknown for varying number of regions and
..............................

6.1 The stream reasoning watertall model with the transtormation of obser
vations into knowledge via interpretations highlighted]
6.2 Breakdown of automated query construction performance)

/.1 Hierarchical concept graph of the DyKnow ontology).

9.1 The stream reasoning waterfall model with the components within theg
stream reasoning pipeline range highlighted)
9.2 UML diagram showing the DyKnow nodelet implementation and its req
lation to standard ROS components)
9.3 Performance graph showing the different time-to-arrivals for messagey
relative to the number of hopsforalinearchain)

10.1 The stream reasoning watertall model with the agent response to ver{

dicts highlighted]
10.2 Screenshot of the interactive visualisationtool|
10.3 Humanoid lab (left) equipped with four ceiling cameras (right)|
10.4 A SoftBank Robotics NAOV4robot).
10.5 Piff and Puft’s transtormation pipeline conceptually showing the trans

formations from camera images to ball positions)

XVi

12.1 Asimplified version of the stream reasoning waterfall model|

Xvii

LIST OF TABLES

1.1 Anouthneofthisdissertation]

B.1 Rewriting rules for wits ¢, 1, x where we assume 1 # 7 # k. Symmetriqd
relationships are implicit for commutative vertices. Rules for syntactiq
sugar (i.e. Gy, Fr, —, <») follow implicitly from the rules IistedI

4.1 Empirical results illustrating the impact of removal strategies m;; and

|5.1 Definitions for the 15 RCC relationsl

6.1 The nive categories for streams when performing synchronisation using
the SYNCHRONISE procedure|

/.1 Notation for the DyKnowmodel|

10.1 Pift’'s TFs and their tags denoted by itag,., .. .,1tag,, = otag!
10.2 The Humanoid lab’s celling camera transformations and their tags deq
noted by itag,,...,2tag, = otag].

Xviii

Part |

INTRODUCTION AND BACKGROUND

Chapter

INntroduction

certain sensor observations to effectively operate in the physical world in a

safe manner. Such observations occur in the context of and across time and
space. Consequently, observations are temporally and spatially connected to each
other. The discrete observations succeed each other like snapshots that, when taken
together, tell us a story about the world we reside in. Stream reasoning is a sub-
field of Artificial Intelligence (Al) that focuses on incremental reasoning over rapidly-
available information, which we characterise as streams containing situational infor-
mation. More specifically, stream reasoning is a subfield of Knowledge Representa-
tion (KR), which is itself a subfield of Al. The focus of this dissertation is on robust
stream reasoning under uncertainty, with applications to adaptive stream process-
ing and path checking. Whereas most pre-existing stream reasoning approaches
have considered the stream as a complete and accurate representation of the state
of the world, we will make no such assumption. Furthermore, whereas path check-
ing assumes a stream is given, we will additionally consider how such a stream is
obtained. The work presented here thus considers the transformations needed for
a noisy signal to be used to draw conclusions, resulting in a broad problem domain
that reflects the realities an integrated Al-enabled system must be able to cope with.

R EAL-WORLD robotic systems must be able to interpret and reason about un-

1.1 Motivation

The world is becoming ever more interconnected. As cities grow and technology
advances, we can observe an increase in the number of sensors deployed to moni-
tor our physical environment. These developments are often characterised as smart
cities and the Internet of Things (loT). But the observations are not necessarily lim-
ited to passive sensors. They include people sharing information using mobile de-
vices, as well as more and more affordable unmanned platforms carrying cameras.

1. Introduction

Influences .
Reasoning Reasoning

over streams about streams
Facilitates

A

Figure 1.1: Synergy effect between reasoning over streams and reasoning about
streams.

The research presented here was originally inspired by a discussion of a research
project scenario in which unmanned aerial vehicles (UAVs) were to be used for gath-
ering information in the physical world. There is often a disconnect in the way peo-
ple request information and the way information systems provide that information.
Commonly, a client requesting information by default does not care how their re-
quest is fulfilled, unless specifically mentioned otherwise. If a client wants to obtain
a video feed showing the facade of a building, all that matters is that this video feed
is obtained under the constraints provided, if any. Stream reasoning can help by
providing information on demand.

Increasingly many of these information systems are safety-critical due to their
interaction with physical environments, which are often shared with human beings.
Such systems include UAVs, and may in the future also include autonomous vehi-
cles sharing the roads with human drivers. Checking whether these systems oper-
ate in accordance with their formal specifications is an important problem within
Al. Luckcuck et al] (2019) recently provided a survey on techniques for the for-
mal specification and verification of these types of systems, covering both model
checking and runtime verification approaches. For many such systems, including
autonomous robotic systems, streaming information is generated from sensor ob-
servations. Stream reasoning thus plays an increasingly important role as robots
are no longer confined to carefully crafted environments and instead have to deal
with the highly-dynamic physical world that is shared with other entities. This dy-
namic and highly complex operational environment makes it difficult or impossible
to prove a-priori that a system adheres to its specifications. Furthermore, the black
box nature of many Al models is problematic when a formal specification of a system
is needed to perform safety checks. Stream reasoning can help by reasoning about
streaming information during runtime, which is a type of runtime verification.

The contributions presented in this dissertation consequently fall under two dis-
tinct but adjoining strands; stream reasoning under uncertainty and adaptive stream
processing. Stream reasoning seeks to obtain verdicts (of some kind) from streams
of information. In many practical applications, streams are subject to uncertainty,
which must be taken into account. Stream reasoning under uncertainty is thus a type
of reasoning over streams. Conversely, adaptive stream processing utilises reason-
ing about streams, and can be regarded as meta stream reasoning. In this view, the

1.1. Motivation

streams themselves — and by extension, their properties — are of interest for the
purpose of reasoning. Both views are complementary and form the basis for the two
strands of this dissertation. As illustrated in Figure L. 7, reasoning about streams can
facilitate and strengthen reasoning over streams, and reasoning over streams can
influence the reasoning about streams: the two strands provide a natural synergy
effect wherein the whole is greater than its individual parts.

Stream reasoning under uncertainty. Stream reasoning seeks to draw conclusions
from streams of information, for example to check whether an information system is
behaving in accordance with safety specifications. A stream reasoning system needs
to handle the incremental nature of streaming information, where information can-
not be assumed to be available immediately, and where the total amount of infor-
mation in a complete stream may be arbitrarily large. Furthermore, the streaming
information may be uncertain, and therefore cannot be assumed to accurately rep-
resent an observed environment. This dissertation focuses on the problem of stream
reasoning with multiple hypotheses, each of which has a probability associated with
it. This is done by considering runtime verification for streams under uncertainty,
where we also consider qualitative spatial information.

Adaptive stream processing. In many cases, distributed information systems have
streams of information flow between their nodes. At the same time, the number
of sources for streams — such as sensors or Internet of Things (loT) devices — is
increasing. Yet most research assumes that the sources of streams as well as their
transformation services within distributed information systems are fixed and known.
While it is important to reason about which streaming resources to subscribe to,
most of today’s systems lack the capability to do so. It can therefore be argued
that it is unreasonable to assume that the streaming resources are fixed and known,
and that being able to reason about these dynamics is important for autonomous
systems in order to effectively operate in the real world. This dissertation focuses
in particular on the problem of reliably generating a stream of interest, as indicated
by a user or an information system, where the computational resources may change
over time. This is done by reasoning about streams, and in particular how streams
can be generated.

Figure [L.9 illustrates a contextual representation of stream reasoning by using a
waterfall model, inspired by the well-known (revised) JDL fusion model (Steinberg
and Bowman, 2008). The goal of an agent implementing this model is to respond
to a dynamic environment. To do so, the agent needs to produce verdicts about the
environment. For example, an agent may want to continuously check whether its
formal model of the environment holds. As long as the agent produces verdicts that
confirm that the model holds, the agent can keep operating normally. However, as
soon as there is a verdict that represents a violation, the agent can use this verdict as
a trigger to adjust its behaviour in order to maintain safety. Of course, verdicts are

1. Introduction

Shroud

Fast Fluent

Interpretation

Knowledge

Slow Verdict Response
Low _ High
abstraction * abstraction

Figure 1.2: The stream reasoning waterfall model showing the incremental transfor-
mation of fast streams at a low abstraction level into slow streams at a high abstrac-
tion level, which can elicit a response from an agent that implements this model.

highly abstract and the result of multiple steps of reasoning. They are consequently
also generated at a relatively slow pace. In the model, verdicts are produced as
the result of knowledge. Knowledge combines factual information with models that
can be based on formal theories or past experience. These models can for example
be used to compile past observational information into a compact representation.
Knowledge is obtained from interpretations of observations. An interpretation is a
representation of observations, whereas observations are for example streams of
raw sensor readings. Observations are often imprecise, but do not have to be. For
example, one can have precise observations of social media activity, and the facts
that follow from such observations correspond to states. Observations can be ob-
tained from fluents, which represent continuous, time-variant (physical) properties.
The fluents themselves are shrouded, meaning that we cannot read fluents directly
as they represent the ground truth of Nature itself. Because they are shrouded, the
act of obtaining observations from fluents introduces noise and uncertainty. If the
specifications and properties of the sensing device that produces observations are
known, however, it is possible to compensate by explicitly representing these prop-
erties using probabilistic tools, as is for example common within the area of signal
processing. The stream reasoning pipeline deals with explicit streams, and therefore
starts with observations to eventually produce verdicts. Throughout this disserta-
tion, we will regularly come back to this stream reasoning waterfall model when
considering the various subcomponents of such a stream reasoning pipeline.

1.2 Scope and delimitations

The aim of this dissertation is

to formally model, develop, and analyse methods and algorithms for
incorporating uncertain information in logic-based spatial and tem-

1.2. Scope and delimitations

poral stream reasoning; and to formally model, develop, and analyse
methods and algorithms for the adaptive generation of state streams
needed to perform this type of reasoning.

This dissertation investigates the following research questions in the pursuit of this
aim:

¢ [RQ1]: How can uncertainty be formally modelled for the purpose of logical
stream reasoning?

¢ [RQ2]: How can a spatio-temporal logic be constructed by combining spatial
and temporal formalisms, and how can statements in such a logic be tested
for satisfaction given a stream?

¢ [RQ3]: How can a stream be generated for the purpose of symbol grounding?

¢ [RQ4]: How can the procedure for generating a stream for the purpose of
runtime verification be made robust to changes that affect its ability to keep
generating such a stream?

e [RQ5]: How can the techniques developed towards answering the aforemen-
tioned research questions be leveraged in a concrete middleware framework
such as the Robot Operating System?

Adaptive stream processing. The waterfall model from Figure starts with the
problem of adaptively generating streams needed for path checking, i.e. from ob-
servations, via interpretations, to knowledge. This is referred to as adaptive stream
processing (covered in Part [Tl), which is necessary to ground symbols such that they
can be given an interpretation. One important delimitation here is that the focus
is on how to robustly generate such a stream, rather than the development of so-
phisticated methods for connecting its contents to symbols. Another delimitation
is that we will not consider the generation of new knowledge. Rather, we focus on
using pre-existing knowledge in the form of logical theories to support the reasoning
process.

Stream reasoning under uncertainty. The waterfall model then considers the
problem of drawing conclusions from this information. In the work presented
here, we specifically focus on drawing such conclusions from uncertain information
streams (covered in Part [I), i.e. stream reasoning under uncertainty. Here we will
assume that the uncertainty is explicitly given, rather than attempting to model the
uncertainty based on streaming information. The impact of this explicit uncertainty
on the reasoning process is the topic of interest. Further, the scope of this disser-
tation limits itself to the unidirectional support from adaptive stream processing to
stream reasoning under uncertainty. The described (bidirectional) synergy effect
by allowing the stream reasoning to affect the adaptive stream processing is left to
future work.

1. Introduction

Integration. The above contributions are integrated into a single architecture (cov-
ered in Part [V) for the purpose of checking the behaviour of autonomous robots,
called DyKnow. The focus is on the usability of the resulting system towards re-
search into safe autonomous robots. A system integrating DyKnow with the Robot
Operating System (ROS) is called DyKnow-ROS. The system restricts itself to produc-
ing verdicts, but does not provide any functionality to act on those verdicts, as that
ability is left outside of the scope of this dissertation.

1.3 Methodology

The methodology followed for this dissertation is designed to allow for the discovery
and investigations of new problems that arise as the result of ongoing research. It
can be categorised into three categories; theory, engineering, and deployment.

Theory. First, theoretical contributions were developed and proposed, providing a
solid foundation that doubles as a clear design specification. These theoretical con-
tributions are based on and extend previous work in the various fields. The strand
for stream reasoning under uncertainty is closely related to research in the field of
knowledge representation and reasoning, for example.

Engineering. The different theoretical results were verified empirically as soft-
ware artefacts. While the contributions themselves are general and could be im-
plemented in a variety of ways, the goal of this work was to provide a stream rea-
soning framework implementation that integrates these results in a useful manner.
This presented a number of engineering problems that were resolved as part of the
integration work. The engineering work focused in part on the applicability of the re-
sulting software artefacts. Special care was taken to make sure that the software was
easy to use by other developers, decreasing the cost of adoption. The engineering
efforts often highlighted potential theoretical problems which had to be resolved.

Deployment. Where suitable, the resulting software artefacts were deployed on
the SoftBank Robotics NAO robot platform. Since the work on state stream gener-
ation relies on underlying implemented functionality, software under development
for the RoboCup Standard Platform League (SPL) was used and adapted to work with
the stream reasoning framework. This presented an interesting test-bed for testing
the ease of integration, and highlighted various engineering problems that required
solving. The result of deployment often also yields or highlights interesting theoret-
ical questions and problems.

The theoretical foundation thus provide a basis upon which the proposed system
is built. While some of the presented results are purely theoretical in nature, the
focus lies on robotics-related application domains. By providing a formal model of
the system, the results can therefore be reproduced in other system realisations

1.4. Contributions

thanthe one presented in this dissertation, using different platforms than those used
here. This demonstrates that the results are general.

1.4 Contributions

The contributions presented in this dissertation benefit from a long line of prior
stream reasoning works, albeit under different names, spurred from requirements
in the WITAS UAV project (1997-2005) towards the development of technology for
autonomous unmanned aerial vehicles, as well as subsequent developments post-
WITAS. An overview of the WITAS project’s second phase was given by Doherty et al|
(2000), and indicated a need for reasoning about streams as follows: “In order to
understand the observed ground scenarios, to predict their extension into the near
future, and for planning the actions of the UAV itself, the system needs a declarative
representation of actions and events.” Heintz and Doherty (2001) describe the inte-
gration of chronicle recognition into the WITAS system for the purpose of recognising
event sequences such as overtakes by vehicles, using the CRS chronicle recognition
system by France Telecom (Dousson and Le Maigat, 2007). A Dynamic Object Repos-
itory (DOR) was responsible for storing fluent information pertaining to objects that
was needed by the UAV to perform chronicle recognition. The chronicle recognition
engine itself was a passive component that could be controlled by the UAV control
and active vision systems. Given today’s description of the field, the WITAS project
was one of the first systems to successfully employ what is today known as stream
reasoning — a term that would be coined years later by Della Valle et al] (2009) —
in a real-world setting.

DyKnow!l was first introduced by Heintz and Doherty| (2004d) and integrated in
the Distributed Autonomous Robotics Architecture (DARA), by Heintz and Doherty
(20043). To perform chronicle recognition, DyKnow needed to cognise objects of in-
terest, hypothesise their class, and reason continuously about their dynamics. In or-
der for DyKnow to do so, Heintz and Doherty| (2004d) recognised that “Consequently,
autonomous agents must be able to declaratively specify and re-configure the char-
acter of the data received.” The character of the data was described in terms of
rate and form, which included the way changes were modelled and approximations
were handled for time-points without observations. This led to the introduction of
the fluent stream concept, inspired by Erik Sandewall’s work on fluents. A fluent
stream could be generated by a computational unit from a particular location and
according to a provided policy which described the character of the data.

DyKnow introduced object linkage structures (also described as dynamic ob-
ject structures) to realise the ability to hypothesise object classes and, in part, to
reason about their dynamics (Heintz and Doherty, 2004d,g,0,d; Heintz et al!, 2009,
2013). Object linkage structures made it possible to make and retract class hypothe-

Ipronounced ‘dino’, as in ‘dinosaur’. Initially DyKnow was an acronym for Dynamic Knowledge Pro-
cessing. This was later extended to Dynamic Knowledge Processing and Object Management. The term
has since evolved into a pseudo-acronym.

1. Introduction

ses based on observed object dynamics, and to adjust the expected behaviour of
these objects based on the currently hypothesised class. This provided bi-directional
(bottom-up and top-down) reasoning utilising potentially many levels of abstraction
as hypotheses built upon each other. The adopting and retracting of hypotheses
is a form of reasoning under uncertainty that is complementary to the contribu-
tions presented in Part [l. As is the case in this work, high-level reasoning requires
a suitable stream to perform the reasoning over. The handling of the character of
streams thus required means to perform what was referred to as knowledge process-
ing (Heintz and Doherty, 20046,d). This was used in applications where low-level
information was continuously transformed to perform high-level reasoning, for ex-
ample for chronicle recognition tasks for traffic monitoring (Heintz et al), 2007b,3,
2008h), diagnosis (Heintz et all, 20084; Krysander et all, 2008, 2010), and execution
monitoring (Kvarnstrom et all, 2008; Doherty et al], 2009, 2013). The knowledge pro-
cessing language (KPL) was introduced by Heintz et al! (2009, 2010) and formalised
knowledge processing. The concepts introduced in the formalisation of KPL form
the basis of much of the work presented in Part [I.

A multi-agent version of DyKnow was considered by Heintz and Doherty (2008,
2010). To achieve this, a Federated DyKnow was introduced, using proxies and
speech acts to facilitate the sharing of information between instances. This work
also introduced the concept of semantic labels for interoperability between agents,
stating: “These semantic labels can then be translated by each agent to local Dy-
Know labels using whatever procedure necessary.” (Heintz and Doherty, 2008)
These semantic labels represent the precursor to later work towards semantic in-
formation integration (Heintz and Dragisid, 2012; Heintz and de Leng, 2013; de Leng
and Heintz, 2014), which this dissertation is a continuation of. The DyKnow sys-
tem has been described in terms of the JDL Fusion Model in Heintz and Doherty
(2005b,4,4, 2004), and plays an important role in the HDRC3 Distributed Hybrid De-
liberative/Reactive Architecture by Doherty et all (2014).

The work presented in this dissertation is a continuation of these earlier research
efforts. In particular, this work continues from the aforementioned efforts towards
semantic information integration, and applies them to a new proof-of-concept Dy-
Know stream reasoning architecture that is separate from HDRC3 at the time of writ-
ing. The main contributions presented in this dissertation are as follows:

1. Aformal model of a distributed stream reasoning framework was developed,
along with the formalisation of its dynamics in terms of changes to the com-
putational environment. Reconfiguration of the computational environment
allows for the generation of streams based on requests, for example to sup-
port the evaluation of a logic formula. An adaptive reconfiguration algorithm
is presented. To support adaptive reconfiguration planning, the cost of us-
ing the framework’s components is assumed to be estimated during run-time.

[RQ3, RQ4]

2. The problem of stream reasoning with uncertain state information is consid-
ered and applied in conjunction with qualitative spatial reasoning. Specifi-

10

1.5. Publications

cally, we consider the problem of path checking over infinite-length streams
where each uncertain state is represented by a discrete probability distribu-
tion over fully-known states. By keeping track of all possible hypothetical com-
plete streams we are able to incrementally keep track of the satisfaction prob-
ability of a temporal logic formula. [RQ1, RQ2]

3. The DyKnow-ROS dynamically reconfigurable stream reasoning framework
was implemented as an extension to the Robot Operating System (ROS). The
required reconfigurability strengthens ROS, which by default does not support
this ability. ROS visualisation tools were enhanced with the ability to visualise
the dynamically-changing environment. [RQ5]

1.5 Publications

These contributions are the result of a number of publications. The complete listing
of publications covered in this dissertation is as follows:

e D.deleng andF. Heintz. Stream reasoning with probabilistic state information
using progression-based path checking. Journal article under review.

¢ D. deLeng and F. Heintz. Approximate Stream Reasoning with Metric Tempo-
ral Logic under Uncertainty. In Proceedings of the 33rd AAAI Conference on
Artificial Intelligence, 2019.

¢ D. de Leng and F. Heintz. Partial-State Progression for Metric Temporal Logic.
In Proceedings of the 16th International Conference on Principles of Knowl-
edge Representation and Reasoning, 2018.

¢ D.delengand F. Heintz. Towards Adaptive Semantic Subscriptions for Stream
Reasoning in the Robot Operating System. In Proceedings of the 30th IEEE/RS)J
International Conference on Intelligent Robots and Systems, 2017.

¢ D. de Leng and F. Heintz. DyKnow: A Dynamically Reconfigurable Stream Rea-
soning Framework as an Extension to the Robot Operating System. In Pro-
ceedings of the 5th IEEE International Conference on Simulation, Modeling,
and Programming for Autonomous Robots, 2016.

¢ D. de Leng and F. Heintz. Qualitative Spatio-Temporal Stream Reasoning With
Unobservable Intertemporal Spatial Relations Using Landmarks. In Proceed-
ings of the 30th AAAI Conference on Artificial Intelligence, 2016.

¢ D. de Leng and F. Heintz. Ontology-Based Introspection in Support of Stream
Reasoning. In Proceedings of the 13th Scandinavian Conference on Artificial
Intelligence, 2015.

¢ D. de Leng and F. Heintz. Ontology-Based Introspection in Support of Stream
Reasoning. In Proceedings of the 1st Joint Ontology Workshops held at the
24th International Joint Conference on Artificial Intelligence, 2015.

11

1. Introduction

Part|| Part] Part M Part [V Part M

Introduction ~ Stream reasoning Synthesis DyKnow-ROS Conclusions

Preliminaries Uncertainty Composition Case studies Appendices
Space Perturbations Related work

Table 1.1: An outline of this dissertation.

e F. Heintz and D. de Leng. Spatio-Temporal Stream Reasoning with Incomplete
Spatial Information. In Proceedings of the 21st European Conference on Arti-
ficial Intelligence, 2014.

o D. de Leng and F. Heintz. Towards On-Demand Semantic Event Processing for
Stream Reasoning. In Proceedings of the 17th International Conference on
Information Fusion, 2014.

e F. Heintz and D. de Leng. Semantic Information Integration with Transforma-
tions for Stream Reasoning. In Proceedings of the 16th International Confer-
ence on Information Fusion, 2013.

Additionally, the following publications were also produced but will be excluded
from this dissertation because they are unrelated to the research questions or were
not peer-reviewed:

o D.deleng, M. Tiger, M. Almquist, V. Almquist, and N. Carlsson. Second Screen
Journey to the Cup: Twitter Dynamics during the Stanley Cup Playoffs. In Pro-
ceedings of the 2nd Network Traffic Measurement and Analysis Conference,
2018.

e D. de Leng. Querying Flying Robots and Other Things: Ontology-supported
stream reasoning. In XRDS: Crossroads (popular science magazine), 2015.

Lastly, the material in this dissertation is a continuation of the following Licentiate
thesis:

o D.deleng. Spatio-temporal stream reasoning with adaptive state stream gen-
eration. Licentiate thesis No. 1783, Linképing University, 2017.

1.6 Dissertation outline

This dissertation is subdivided into five separate parts, as shown in Table .7, with
each chapter covering a subset of the waterfall model shown in Figure [.2. Part |
covers an introduction and background for this dissertation. Part [] covers spatio-
temporal stream reasoning under uncertainty. This is followed by Part [T] covering
adaptive stream processing. Part [V covers applied stream reasoning and presents

12

1.6. Dissertation outline

the DyKnow-ROS stream reasoning framework alongside case studies and related
approaches. Finally, Part M concludes the dissertation.

Chapter P, titled ‘Preliminaried’, further elaborates on the concept of a stream
by considering the two different views used in this work and relates streams to the
concepts of stream processing and stream reasoning. The purpose of this chapter
is to clarify these concepts for the context of this dissertation, because there have
been various interpretations for these concepts in the literature due to the stream
reasoning research area still being fairly young.

Chapter 3, titled ‘Reasoning about fim€, focuses on traditional stream reasoning
tasks where streaming information is used in conjunction with reasoning capabilities
to yield verdicts. This chapter introduces a well-known incremental path checking
procedure and suggests improvements.

Chapter g, titled ‘Reasoning under uncertainty’, enhances the path checking pro-
cedure from the preceding chapter to also consider uncertainty. Here, uncertainty
is represented by assigning probabilities to different hypotheses, all of which are
commonly kept track of for the purpose of yielding verdicts.

Chapter [, titled ‘Reasoning about spacd’, presents an extension from tempo-
ral reasoning to qualitative spatio-temporal reasoning. Concretely, the Region Con-
nection Calculus (RCC-8) is utilised to support qualitative spatio-temporal stream
reasoning.

Chapter B, titled ‘Btate stream synthesis, discusses what is needed in order to
synthesise state streams and how to ground logical symbols in those state streams.

Chapter [}, titled ‘Reasoning about composition, takes the view of streams as
objects which are the product of potentially many stream processing steps. It illus-
trates how a configuration manager can adapt the configuration of stream process-
ing components to produce a stream in accordance with a semantic specification.

Chapter B, titled ‘Reasoning about perturbationg’, follows up on the preced-
ing chapter by also considering adaptive behaviour in the face of changes to the
availability of stream transformations. It does so both for cases where a process-
ing pipeline ‘breaks’, as well as for cases where switching to a different pipeline is
beneficial to the overall system.

Chapter [, titled ‘DyKnow-R0OGS;, takes the formal contributions from the preced-
ing chapters and combines them into a stream reasoning framework called DyKnow-
ROS. The chapter does so by connecting computations to services provided by the
framework.

Chapter [0, titled ‘Case-studied’, utilises the stream reasoning framework from
the preceding chapter in a case study. The intention is to show the applicability of
the proposed approaches on a real robot as a proof of concept.

Chapter 7, titled ‘Related worK}, relates the contributions of this dissertation to
a number of other stream reasoning systems.

Chapter [[2, titled ‘Conclusions and future worK’, discusses some of the limita-
tions of the presented contributions, lists some of the remaining open problems,
and concludes this dissertation by reiterating the contributions made and discussing
potential future work.

13

Chapter

Preliminaries

chapter considers the nature of streams; what they are and where they origi-

nate from, and how one can model and interpret them in an information sys-
tem. We focus on different views of streams and discuss the relationship between
streams and stream reasoning relative to the stream reasoning model.

S TREAMS form the foundation for the work presented in this dissertation. This

2.1 Introduction

Classical database approaches tend to only operate on what is stored and always
on everything that is stored. In contrast, stream reasoning puts constraints on how
much can be stored and always assumes to only have a fragment of the entire stream
to operate on. In this chapter, we therefore seek to describe the nature of streams,
i.e. what astream s, how it can be represented, and how it related to stream reason-
ing. Itis important to be aware of the different views that exist for stream reasoning.
In particular, streams are represented in different ways in the literature, using dif-
ferent assumptions and constraints. This occurs at both the data level, i.e. what is
contained within a stream, and the temporal level, i.e. how time plays a role in the
description of a stream. Furthermore, streams can themselves be represented as
objects with their own properties, which can be useful in applications that focus on
the generation and transformation of streams.

2.2 Views of streams

We consider two views of streams; streams as data sequences, and streams as ob-
jects.

15

2. Preliminaries

Streams as data sequences

Streams are commonly regarded as data sequences, using what we refer to as an
internal view. In the internal view, we consider the properties of the samples that
make up a stream. These samples could for example be noisy discrete observations
of continuous fluents, or even data generated from social media postings or system
logs. The samples can be used to represent instantaneous events, time periods, or
simply a logical ordering between samples. Streams as data sequences have a lot
in common with Big Data, which is a term that generally focuses on large volumes
of data and the challenges pertaining to the processing of such data. Laney (2001)
originally described the terms volume, velocity and variety as important properties
for describing data, and these properties were subsequently extended to define the
Big Data concept. The following stream properties originate from the ‘four Vs of big
data’ applied to a stream reasoning context:

Volume. One can no longer assume that the data can be collected in its entirety
prior to processing it. The volume of data may simply be too large for any practical
storage to take place. Streaming data is therefore generally assumed to be accessed
once and then lost, unless explicitly and only partially stored.

Velocity. The incremental nature of streams invokes the property of velocity,
i.e. how quickly data becomes available. Depending on the source of a data
stream one can or cannot make assumptions about its velocity. For example, user-
generated content could be highly irregular and bound to human behavioural pat-
terns, whereas sensor data in a real-time system could be assumed to have a fixed
frequency. A general stream reasoning system must be able to cope with differences
in velocity, and high velocity in particular.

Variety. Streamingdata can originate from many heterogeneous sources in various
data formats and as various data types. Examples of different data types are text,
images, and speech. Being able to interpret the data from streams in various formats
and types is important in order to effectively work with this data.

Veracity. The trustworthiness and accuracy of data is another important factor to
consider when dealing with streaming data. The trustworthiness of data is in part
based on who produced the data and who provided it; some sources may be of
poor quality or (purposely or not) misrepresent information. This may also be a
consequence of low accuracy of data.

Different stream reasoning systems focus on different aspects. For social media

tools, variety and veracity may be far less important than dealing with volume and
velocity, as the focus is user-generated unstructured data. In robot systems, veracity

16

2.2. Views of streams

Shroud

Stre
Fast Fluent om "eaSon;,
9 pipeliﬂe

Observation

Knowledge

Show Verdict Response

low _ _Hig)
abstraction * abstraction

Figure 2.1: The stream reasoning waterfall model with the transformation of
shrouded fluents into observations highlighted.

and velocity are especially important in order to deal with a rapidly-changing envi-
ronment. Figure .7 shows the observation of fluents highlighted, which is where a
lot of uncertainty enters the reasoning pipeline.

Streams as objects

An alternative external view of streams is also possible. In the external view, we
consider streams as objects with their own properties and labels. This is particularly
useful in cases where we want to consider streams as a product of computations.
Streams can be transformed, combined, or subscribed to. In this dissertation, we
consider the following properties of streams as objects:

Syntactic label. When considering streams as objects, they can be named or
anonymous. A named stream is a stream that has one or more labels associated with
it. These labels can then be used to refer to a particular stream in a system, such
that they can be subscribed to by a program, allowing the samples in the stream to
be used for processing.

Type. Streams in practice often have a type. This type provides a constraint on the
data type of the samples. By knowing the type of a stream, a program is able to
interpret the samples using the correct data type. This particular property is closely
related with the ‘variety’ property from earlier.

Semantic annotation. A semantic annotation for a stream is an additional specifi-
cation that can be associated with a stream in order to describe the semantic mean-
ing of the samples contained in the stream. Commonly a semantic annotation of a
stream is inherited from the process that led to the generation of the stream.

17

2. Preliminaries

Provenance. Provenance information for streams conveys the origin of a stream;
how, where, and by whom it was created. This type of information provides a
context which can be important in order to correctly interpret the information in
a stream. For example, it is possible for a stream to be generated from transfor-
mations applied to an external source, in which case it can be useful to know more
about said source when considering the veracity of the streaming data.

Policy. A policy for a stream is also inherited from the process that led to the gen-
eration of the stream, and describes the conditions under which a transformation is
applied. This includes properties like the frequency of a stream (which can be reg-
ular or irregular), and how missing or late samples are handled using for example
different methods of interpolation.

The above properties treat a stream as an object that can be reasoned with. While
treating streams as objects is in itself not a new idea, stream reasoning commonly
considered only the internal view for streams (see e.g. de Leng (2017); Dell’Aglio
et al] (2019)). Several of the listed properties inherit from an underlying stream
processing process, which we cover in more detail in Part [TI.

2.3 Anatomy of a stream

The internal and external views of streams both hold simultaneously, and while
they give a general idea of what a stream looks like, we have not yet considered
the anatomy of a stream that combines these two views. We use the term timed
data stream to represent a named discrete instantiation of the concept of a stream
wherein each sample is a set of time-stamped strictly-typed key-value pairs. The
time-stamps can for example be used to describe the available time, meaning the
time at which the data sample was received. An alternative time-stamp is the valid
time, which represents the time-point for which the key-value pairs hold. A formal
definition for timed data streams is given in Chapter [J. For now, however, we limit
ourselves to an informal overview.

Figure P illustrates the anatomy of a stream. It shows a graphical representa-
tion of a stream along two dimensions. The horizontal dimension represents time,
with time-point O representing the present. A stream can theoretically be infinitely
long; we may simply not know when the stream ends, so the relative time-points
run up to infinity. Along the temporal axis, we can see samples represented by ver-
tical black lines. The distance between these samples may vary, which allows us
to represent a time-line using reals. The samples are intersected by red horizontal
lines. The horizontal axis represents the stream’s bandwidth, and each horizontal
red line represents a field within a stream. Such a field can in practice be named.
The simplest form of stream however only contains one field. The intersections are
then values for observations over time. As the stream progresses, the latest value in

18

2.4. Anatomy of a transformation

Fields Value Sample
| / /

(2]
-I--a-lﬁl--.----l N I
i€

RERERRIEEEN N
|
0 n w

Relative time

Bandwidth
adAL

Figure 2.2: Anatomy of an irregular-timed data stream showing key concepts in red
and primitive operations in blue.

) Storage
-

Figure 2.3: Anatomy of a transformation, showing its structure and its relationship
to streams.

a field may change over time. Finally, the combination of fields along the bandwidth
axis represents the type of the stream.

Because a stream is a composite entity, it is possible to consider a subset of a
stream in the two different axes. We call these subsets slices, and distinguish be-
tween horizontal slices and vertical slices. A horizontal slice corresponds to a tem-
poral subset of a stream, which is commonly referred to as a window. Similarly, a
vertical slice corresponds to a volumetric subset of a stream, which we call a sub-
stream®.

2.4 Anatomy of a transformation

Transformations are functions that, given some data streams, produce a new data
stream. They therefore need to consider both the internal and external views on
data streams.

2Not to be confused with the LARS definition of a substream as per (2014, 20135), which
corresponds to a horizontal slice here.

19

2. Preliminaries

Figure R.3 shows a graphical representation of a transformation and how it con-
nects to streams. The light-blue box marks the components that make up an active
transformation, also known as a computation unit. A source is a specific type of com-
putation unit which does not take any streams as input. To the left, we can see two
streams. There are dashed arrows originating from the transformation and pointing
to fields in the two streams, although not all of them. These dashed lines represent
subscriptions for input arguments one through three of a transformation denoted by
II. This represents that whenever a new sample is observed, the most recent sam-
ples for all of the subscriptions are sent to the transformation. They are joined by
a configuration which can be set externally, and a small storage which the transfor-
mation can read from and write to. The configuration can be changed dynamically,
and controls properties such as which streams the unit is subscribed to. The result,
if any, is then sent out to the stream generator marked by ‘out’, which, over time,
generates a resulting stream. By default, a transformation is set to respond to every
change as characterised by the observation of samples from one of its subscribed-to
streams. By considering a clock stream, which sends out a time value at a regular in-
terval, the transformation can adopt a policy in which it only published new samples
whenever the time is updated.

2.5 Stream reasoning

In recent years definitions of stream reasoning have started to slowly converge. In
this dissertation, we informally define stream reasoning as follows.

Definition 2.1 (Stream reasoning). Stream reasoning is the incremental reasoning
over and about rapidly-changing information.

The intuition behind stream reasoning is that there is some potentially-infinite
length sequence over which reasoning is performed with finite computational re-
sources, commonly including storage as a bottleneck. There is also a time dimen-
sion; because the information changes rapidly, the stream reasoning process needs
to either keep up with the stream or handle any dropped samples through alterna-
tive means. The incremental nature of reasoning is also important, since it forces
any reasoning process to deal with parts of the stream rather than to consider the
stream as a whole, as is common in traditional reasoning approaches. As a logical
extension of an informal theory of streams, we consider some of the ontology (in
the metaphysical sense of the word) for stream reasoning here.

Stream reasoning has been studied for some time now, and even the defini-
tion used here slightly deviates from the one used in publications this dissertation is
based on. Other researchers have characterised stream reasoning through different
lenses; a characteristic attributable to the multidisciplinary nature of stream rea-
soning. Cugola and Margarad (20124) collectively refer to stream reasoning systems
as Information Flow Processing (IFP) systems, and provide a thorough survey of the
various approaches. The following is a brief contrast between two classes of stream

20

2.5. Stream reasoning

reasoning systems they identified; the Data Stream Management (DSM) systemsE,
and the Complex Event Processing (CEP) systems. The boundaries between DSM
and CEP systems can be blurry at times, but generally speaking, DSM systems orig-
inate from the area of databases and Database Management Systems (DBMS) and
take continuous queries that produce results for the duration that they are active
by constructing relational tables based on time windows. This is in contract with
CEP systems, where CEP is sometimes defined as methods, techniques and tools
for the continuous and timely processing of events as they occur (Eckert and Bry,
2009)8. Whereas DSM systems make use of windows, CEP systems tend to make use
of temporal orderings. The detection of a queried temporal ordering of events can
itself be seen as a complex event. Early CEP techniques include chronicle recognition
systems, which were introduced by Ghallab (1994). Chronicles are represented by
(complex) events and metric temporal constraints on those events. Chronicles can
be detected in a stream by checking for the occurrence of their composite events
relative to the metric temporal constraints. A more in-depth discussion of these
types of systems is presented as part of related work in Chapter 1.

It is important to point out that some stream reasoning efforts have chosen to
characterise themselves as stream processing efforts. While no agreed-upon formal
distinction has been developed thus far — and given that some may argue that such
a distinction does not even exist to begin with — this dissertation does also refer to
stream processing and stream reasoning. Here we consider stream reasoning to deal
with the obtaining of verdicts through reasoning processes, by combining stream-
ing information with background knowledge bases. Stream reasoning produces ei-
ther single verdicts or slow-moving streams of verdicts, and these verdicts can be
regarded as informative conclusions about an environment that aid in the decision-
making process of an agent. On the other hand, stream processing focuses on the
transformation of streaming data from one format into another by combining data
resources. If the transformations are simple, this can be done at a fast rate. Stream
processing is therefore process-centric; it focuses on how data is transformed, with-
out necessarily needing to consider the meaning of this data. Simple window-based
aggregation jobs are an example where the meaning of the values has no bearing
on the information system performing the stream processing. But the distinction
between the two is not a perfect one; there is no clear separation since the pro-
cessing needed to obtain a verdict in stream reasoning can be explained as a stream
processing task, and if the goal of a stream processing task is to obtain verdicts it is
often regarded as stream reasoning. This phenomenon can be observed with RSP
research, which often characterises itself as stream reasoning research due to the
combination of RDF streams with a background knowledge base in the form of an
ontology.

3The term ‘Data Stream Management Systems’ is commonly written as DSMS, but when contrasted
with ‘CEP systems’ it is also written as ‘DSM systems’.

“4Loosely translated from a German-language definition of CEP by Eckert and Bry (2009): “Complex
Event Processing (CEP) ist ein Sammelbegriff fiir Methoden, Techniken und Werkzeuge, um Ereignisse zu
verarbeiten wdhrend sie passieren, also kontinuierlich und zeitnah.”

21

2. Preliminaries

2.6 Summary

In this chapter, we considered an informal theory of streams. Streams can be viewed
in different ways. The interval view of streams can be aligned with the 4 V’s of Big
Data; volume, velocity, variety, and veracity. In this view, streams are regarded as
sequences of data. An alternative view is the external view of streams, which con-
siders streams as objects. In this view, streams are their own objects with associated
properties, including a label for named streams, a type related to variety, a possible
semantic annotation describing the meaning of a stream, a provenance covering the
stream’s origin, and a generation policy determining properties such as frequency
for regular streams. Both views can play a role when considering stream processing
and stream reasoning. However, these two concepts as of yet have no agreed-upon
distinction. We covered various types of stream reasoning and stream processing in
the literature to give an overview of the breadth and commonalities between the
approaches, and explained how this dissertation distinguishes between stream rea-
soning and stream processing.

22

Part 1l

STREAM REASONING UNDER UNCERTAINTY

Chapter

Reasoning about time

statements and to determine the truth value of such a statement is of great

importance to many applications, including areas such as intelligent robotics.
We refer to the evaluation of temporal statements through a temporal logical lan-
guage by using the term ‘logic-based stream reasoning’. In particular, we focus on
the problem of model checking a stream, also known as path checking.

T IME represents the core of stream reasoning. Being able to make temporal

3.1 Introduction

Temporal logics can be a powerful tool for the formal verification of programs and
systems. Given an information system, temporal logics such as Linear Temporal Logic
(LTL) (Pnueli, 1977) or Metric Temporal Logic (MTL) (Koymangd, £990) allow us to
make statements describing the correct behaviour of these systems over time. As
shown in Figure B3, by checking whether these statements are upheld — given a
stream of states containing truth values for the propositions used in making such a
statement — we can thenissue a verdict or even a stream of verdicts. The generation
of verdicts can be an expensive process, and the rate at which verdicts are produced
is therefore generally much lower than for example the rate at which observations
can be produced. Once obtained, a verdict can be used to trigger an information
system to respond accordingly.

Traditional approaches for checking the correctness — and, consequently, safety
— of a system include automata-based model checking (Wolper et all, 1983; Vardi
and Wolpet], 1994). For LTL, these automata can for example be (1990) or
(1963) w-automata when we consider non-deterministic or infinite-length
runs. However, we are instead interested in those cases where a model of the sys-
tem is unavailable, or where constructing one is infeasible. Runtime verification is
the verification of a system relative to a formal specification during run-time, and is

25

3. Reasoning about time

Shroud |
Fast
Knowledge |
Slow Verdict Response
Low _High
abstraction ™ > abstraction

Figure 3.1: The stream reasoning waterfall model with the transformation of knowl-
edge into verdicts, also known as logic-based stream reasoning, highlighted.

suitable in application domains where model checking a system a priori is infeasible,
such as the domain of autonomous robotic systems (Adolf et all, 2017; Desai et al,
2017). This can often be stated as a path checking problem (Markey and Schnoebe-
len, 2003), which is computationally simpler than satisfiability or model checking.
Concretely, a path checking problem is a decision problem in which we receive a
path and a temporal formula, and have to determine whether the provided path sat-
isfies the provided formula. Path checking w-words has previously been applied to
MTL in different forms, for example covering dense-time continuous semantics over
transition sequences (Baldor and Niu, 2012), trace-length independent monitoring
over timed words under pointwise semantics by rewriting into LTL (Ho et al], 2014),
path checking of data words under pointwise semantics (Feng et all, 2015, 2017),
and almost event-rate independent path checking of timed words under pointwise
semantics (Basin et all, 2017).

In this chapter we focus on reasoning about time, by evaluating the truth value of
logical statements. First, we introduce some temporal logics which allow us to make
statements about propositions over time. Then, we consider how these logics are
traditionally used to verify the correctness of a system a priori, under the assumption
that a model of that system is available. This is different from the case where such a
model is missing, or where we wish to do so during runtime, which is discussed next.
In particular, this dissertation opts to focus on a well-known incremental syntactic
rewriting procedure, and extends it with a formula simplification technique. Finally,
a small empirical evaluation is provided for this syntactic rewriting procedure.

3.2 Temporal models and logics

Logic-based approaches to stream reasoning are often related to temporal (modal)
logics. LTL is commonly used when dealing with linear time, and its models can
be represented using a linear time-line composed of discrete points. In contrast,

26

3.2. Temporal models and logics

Computation Tree Logic (CTL) (Clarke and Emersori, 1981) is sometimes referred to
as a branching-time logic, where the possible time-lines fan out like a tree structure.
We are primarily concerned with linear time, and therefore focus on LTL and its
extensions towards dealing with real time. In particular, we consider MTL and its
sublanguage Metric Interval Temporal Logic (MITL) (Alur et all, 1996). These logics
make it possible to more precisely specify temporal constraints. The following is an
introduction to the syntax and semantics of these logics, and the temporal models
over which those semantics are defined.

Linear Temporal Logic

The syntax for LTL determines what statements constitute well-formed formulas
(wffs), as shown below.

Definition 3.1 (LTL syntax). The syntax for propositional LTL is as follows for atomic
propositions p and well-formed formulas (wffs) ¢ and 1:

TILlpl=glove|oUy|Xe (3.1)

The operators U and X represent the temporal operators for ‘until’ and ‘next’. A
formula U holds iff ¢ is true until ¢ is true. Similarly, a formula X¢ holds iff ¢ is
true at the next time-point, meaning the tail of the w-word under consideration.

LTL also commonly makes use of syntactic sugar, which allows for abbreviations
of wffs. In this dissertation, we make use of ¢ A) =45 =(—¢ V =) for conjunc-
tions, ¢ — ¥ =g4er —¢ V o for implications, ¢ <+ ¥ =gc5 (¢ = V) A (Y — @)
for bi-implications, ¢ R ¢ =45 =(—¢ U —1)) for the ‘release’ temporal operator,
Fo =4er T U ¢ for the ‘eventually’ (‘finally’) temporal operator, G¢ =405 —F—¢ for
the ‘always’ (‘globally’) temporal operator, T =4.¢ pV —pfortruth,and L =45 =T
for contradiction. Their semantics are thus defined in terms of the semantics for
wffs.

Example 3.1 (LTL statement). Consider the following statement: “If | am in my
room, it is always the case that if the light condition of my surroundings is poor, then
the surroundings will eventually be well-lit.” This statement can be approximated as

inRoom — G(poorLight — F(goodLight)), (3.2)

where propositions inRoom, poorLight and goodLight stand for “l am in my room”,
“the light condition of my surroundings is poor”, and “the surroundings are well-lit”
respectively.

The semantics for LTL are defined in terms of w-words. To this end, let 3 denote
an alphabet based on a set of propositions denoted by P, i.e. ¥ = 27. An w-word
is then denoted by 0 = (0901 ...), i.e. 0 € . We can take a suffix of any w-word
by writing o>; for i € N, yielding 0>; = (0,041 ...). We call a suffixfori > 0 a
strict suffix, which in turn is an w-word. We can now formally define the semantics
of LTL.

27

3. Reasoning about time

Definition 3.2 (LTL semantics). Let ¢, stand for well-formed LTL formulas, and
o; for an w-word. The semantics of LTL are defined recursively for any choice of
time-point 1 € N:

o,i =piffpeo;forpe P (3.3)
0,1 = —¢iffnoto,i = ¢
o, i EoViffoil=goro,il=1
o,i = ¢ Uy iffthereisan j > isuchthato,j =1
ando, k= ¢foralli <k < j (3.6)
o,i |EXpiffoi+1E¢ (3.7)

Lastly, we use the short-hand o |= ¢ to represent o, 0 = ¢.

Metric Temporal Logic

MTL extends LTL with temporal intervals for the modal operators, restricting them
to a specific time-period. This allows for concise temporal statements such as “¢
is true for the next 10 time-points,” or “;) becomes true within the next 10 time-
points.” Crucially, MTL considers real-time events where every letter of an w-word
is associated with a time-stamp. An MTL-formula is said to be well-formed iff it
adheres to the MTL syntax, which is similar to that of LTL.

Definition 3.3 (MTL syntax). The syntax for (future-restricted) MTL for atomic
propositions p, temporal (natural) intervals I C RT, and well-formed formulas
(wffs) ¢ and 1 is as follows:

TlLlpl-¢leviloUry|eSiy|Xi¢ (3.8)

Just as for LTL, we make use of mostly the same syntactic sugar. Only the tem-
poral operators Gy, F;, and Ry have been modified to incorporate the temporal
interval I introduced for U; and X;. Additionally, the temporal operator intervals
may be omitted for cases where I = [0, o).

Example 3.2 (MTL statement). Recall the example statement: “If | am in my room, it
is always the case that if the light condition of my surroundings is poor, then the sur-
roundings will be well-lit within 10 seconds.” In M TL, this statement can be written
as follows:

inRoom — (G(poorLight — Fjy 1¢)(goodLight))), (3.9)

where propositions inRoom, poorLight and goodLight stand for “l am in my room”,
“the light condition of my surroundings is poor”, and “the surroundings are well-lit”
respectively.

The semantics of MTL takes into account the real-time nature of its logical state-
ments by considering timed w-words rather than the untimed w-words used for the

28

3.3. Formal verification

LTL semantics. A timed w-word annotates each letter of the word with a time-
stamp. The index of each letter is referred to as a time-point. Concretely, let o de-
note a timed w-word; then, o = ((0¢, 70)(01,71) ...), where o represents a letter
in X for time-point 0 and is annotated with a time-stamp 79 € R. The same holds
for all other time-points. Time-stamps are assumed to be non-decreasing, so for any
pair of time-points 7 < j it is the case for the associated time-stamps that 7; < 7;.
As before, a suffix o>; is defined to be a timed w-word ((o;, 7;)(Gi+1, Ti+1) - - -)-
We can now formally define the semantics of MTL.

Definition 3.4 (MTL semantics). Let ¢, stand for well-formed MTL formulas, o
for a timed w-word, 7 € R™ for a time-stamp, and i € N for a time-point. The
semantics of M TL are defined recursively:

o,7 EpiffpcoiforpeP (3.10)
0,7 E ¢ iffnoto,; = ¢ (3.11)
o, i EoViffo,r |Edoro,TEY (3.12)
o, 7 | ¢ Urpiffthereisat’ € I + 7; such that o, 7’ =
ando, 7' = ¢forallmy < 7" <7’ (3.13)
o,7i = ¢ Sy iffthereisat’ € I — 7; suchthat o, 7' |= 1
ando, 7' = ¢pforall 7' < 7" < 7 (3.14)

Note that the ‘next’ operator X from LTL by default is undefined in MTL
because there is no trivial ‘next’ time-stamp. However, sometimes the interval-
bounded ‘next’ operator, denoted by X;, is added as syntactic sugar, where X;¢
is defined as L. U;¢.

Metric Interval Temporal Logic

The use of intervals allows for more precise logical statements in MTL. Because of
its undecidability for satisfiability and model checking problems (Alur et all, 1996),
several restrictions to MTL were proposed, among them MITL. MITL disallows
‘punctuality’ constraints — in which temporal intervals are points — and tempo-
ral intervals to subsets I C N to get around the undecidability. We will be using
MITL alongside LTL in the remainder of this dissertation.

3.3 Formal verification

Formal verification techniques are used to check whether a system’s possible be-
haviours are in line with the formal specifications for that system, the latter of
which can be given using the previously-introduced logics. Automata are com-
monly used to represent the systems for which the correctness is to be proven.
Figure B.3 illustrates the relationship between specifications and system descrip-
tions. Automata-theoretic model checking makes use of w-automata to describe a

29

3. Reasoning about time

Specification : :
Specification

System
description

System
description

Figure 3.2: Left: All models of the system description are also models of the formal
specification, showing correctness. Right: Some models of the system description
are not models of the formal specification, indicating that the specification is vio-
lated by some system traces.

program in terms of possible state sequences, which can be regarded as streams.
These finite automata operating on (infinite-length) w-words are therefore some-
times called ‘stream automata’. For infinite-length words we instead use the set 3¢
of w-words, from which languages of infinite words can be constructed. Just as reg-
ular languages can be described by regular expressions, w-regular languages can be
described by w-regular expressions.

Example 3.3 (Finite and infinite regular languages). Suppose we have a finite alpha-
bet ¥ = {a, b}. The regular expression a(a|b)* describes any finite sequence of a’s
or b’s following a single a. These sequences describe finite-length words. We can de-
scribe w-words with w-regular expressions. As an example, consider the w-regular
expression a*b“, which describes all w-words which start with a finite sequence of
a’s followed by an infinite sequence of b’s.

We can use acceptors to recognise finite-length inputs in X*. These finite-state
automata use accept (or final) states to determine the acceptability of words: if a
word ends in an accept state of a given finite-state automaton, the word is consid-
ered to be accepted by that finite-state automaton.

Definition 3.5 (Finite-state automaton). A deterministic finite-state automaton
(FSA) A is denoted by a tuple (3, Q, qo, 0, F'), where ¥ denotes the alphabet of A,
Q denotes the set of states, qy € (Q denotes the initial state, § : Q x ¥ — () denotes
the transition function, and I’ C () denotes the set of final (accepting) states.

An FSA A can then be used to check for the acceptance of finite-length words.
These are part of the language L(.A).

Definition 3.6 (FSA acceptance). An FSA (%,Q,qo,0,F) accepts a word
(00, -..,0n—1) iff there exists a sequence of states r, ..., r,, such that ro = qq for
the initial state, r,, € F for the final state, and r; 1 = 6(r;,0;) forall0 < i < n.

30

3.4. Runtime verification

w-automata are extensions of FSA that can detect w-words. Because w-words
are of infinite length, the acceptance conditions of w-automata differs from those
of FSA. Different types of w-automata consequently exist with varying semantics in
terms of acceptance conditions, but Blichi w-automata are commonly used.

Definition 3.7 (Blichi automata). A deterministic Blichi automaton B is a type of w-
automaton over an alphabet 3 denoted by a tuple (X, Q, qo, 9, F'), where @) denotes
a finite set of states, gy € Q) denotes an initial state, § : Q x ¥ — (@ denotes the
transition relations, and F' C () denotes the set of accepting states.

An w-automaton can be said to encode a language £(B), which represents the
set of w-words accepted by 5. The concept of a run is used to formally describe such
w-words.

Definition 3.8 (Blichi run). Let r = (rg,...) denote an infinite sequence of states
r; € Q. Arun on a Blichi automaton is then an w-word o such that ry = qq for the
initial state, and r; 11 = (r;, 0;) for any i > 0.

Not all w-words that can be described by a run on an automaton 5 are also ac-
cepted by B, but those that do are part of the language £ () encoded by .

Definition 3.9 (Blchi acceptance). Let B denote a Biichi automaton (3, Q, qo, 0, F'),
and let the function inf : 0 — (@) denote a set of states that occur infinitely often. An
w-word o € ¥¥ isaccepted by B, i.e. « € L(B), iff it is the case that inf(c)NF # &,
i.e. at least one of the accept states is encountered infinitely often.

These automata are often used in the context of model checking and satisfia-
bility checking. In the case of model checking, we can describe a system in terms
of a Biichi automaton B, such that the set of w-words that are accepted by B,
correspond to the set of possible system traces. A Biichi automaton thus describes
a language £(B) C X“. LTL is commonly used to describe the properties of a
system which we want to verify. These properties can then be translated into equiv-
alent Biichi automata in various ways, by converting an LTL specification ¢ into a
Blichi automaton B,. There exist many techniques for the construction of Biichi
automata, and a survey is presented by Vardi (2007). As illustrated in Figure B.2,
if we can determine that £(B,,s) C L(Bg), we prove that the system adheres to
the formal LTL specifications. This is done by checking for the emptiness property
L(Bsys) N L(B-4) = &, meaning there are no w-words which are part of the sys-
tem’s language while also being in violation of the LTL specifications denoted by ¢.
In the case of satisfiability checking, the problem is whether there exists an w-word
that satisfies a formula ¢, which requires determining whether £(B;) # @.

3.4 Runtime verification

Model checking has as an advantage that it allows for formal correctness proofs for
systems without needing to test the system during run-time. However, to do so, it

31

3. Reasoning about time

requires a system model B,,s, which may not always be explicitly available. Instead,
runtime verification considers the case where the behaviour of a system needs to be
checked on-line during runtime. These incremental approaches commonly utilise
the equivalence

U = 1 V (¢ A X(oU)). (3.15)

This dissertation therefore focuses on the case where we can observe the system'’s
runs during run-time, also called traces or paths. The problem of path checking,
which is a type of runtime verification, is to determine whether such a trace o is a
model of a wff ¢, i.e. whether o |= ¢. Since runtime verification practically only
deals with finite time, this affects the choice of formula ¢. In particular, ¢ is picked
based on the ability of a runtime verification system to determine whether it is vi-
olated by a finite-length prefix. Kupferman and Vardi (2001) refer to these prefixes
as bad prefixes (in addition to good prefixes), and the LTL formulas for which these
prefixes exist safety properties. This leads us to the concept of safety languages,
defined as follows.

Definition 3.10 (Safety language). A a safety language is any language £ C ¥¢ for
which each word o« ¢ L has a bad prefix.

Runtime verification techniques have for example been used by Doherty et al!
(2009) for execution monitoring in autonomous UAV applications, in which path
checking of MITL formulas was used to check whether the execution of a planiis in
accordance with expectations. Path checking is sufficient for any application which
only needs to check whether a given wff is true or false for a given path, for example
to check for adherence to safety requirements. The techniques for path checking
can be roughly divided into three categories; using automata-based model checking
techniques, using proof systems, or through the use of derivatives-based syntactic
rewritings.

Automata

From an automata-theoretic perspective, it is not possible to check whether o €
L(B,) by simulating a run over ,, because the acceptance condition would require
an infinitely-long simulation. However, one important observation is that there
sometimes exist finite-length prefixes for which no extension exists that would al-
low the resulting w-word to be accepted by B,. For example, let ¢ = Gp. Any
finite-length prefix containing —p cannot be extended into an w-word that would be
accepted by B,. If a formula ¢ is a safety property, then we can construct a finite-
state automaton for —¢ and check whether a prefix o, for some n € Nis accepted
by that automaton.

Proof systems

Alternatively, LTL proof systems can be used for performing path checking. Cini
and Francalanza (2015) in particular present a local proof system which can be ap-

32

3.4. Runtime verification

Algorithm 3.1: Simplified progression

1 function PROGRESS (¢, s):

2 ifgf)z ¢1 \/qﬁgthen

s | return PROGRESS(¢1, si) V PROGRESS(¢b2, 5:)
4 elseif p = —¢; then

5 | return —~PROGRESS(¢1, s:)
[

7

8

9

else if p = ¢1 Ur ¢2 then

if I < Othen
| return L

elseif 0 € I then
10 | return PROGRESS (b2, 5:) V (PROGRESS(¢1,5:) A ¢1 Ur—1 ¢2)
1 else
12 ‘ return PRUGRESS(d)l7 Si) ANp1 Ur—1 ¢2
13 end
14 else
15 if € s; then
16 | return T
17 else
18 | return L
19 end
20 end

plied during run-time, by focusing on individual points rather than sets of points.
Their proof system allows for the construction of both satisfaction () and viola-
tion (") proofs from corresponding sets of rules. By incrementally and concurrently
constructing proofs towards both satisfaction and violation judgements, the proof
process can be in one of three modes at any given time. If the proof system finds
a satisfaction proof for ¢, then we have detected a good prefix and can terminate.
Conversely, if the proof system finds a violation proof for ¢, then we have detected
a bad prefix and can terminate. Finally, if the proof system has found neither a sat-
isfaction proof nor a violation proof, the prefix is too short to make any judgementt.
Upon termination, we furthermore have an explicit proof that can be used to explain
why a certain verdict was reached, although this proof can become very large.

Derivatives

In this dissertation, we consider as an alternative the derivatives approach to path
checking. These approaches work by applying a state to a formula to obtain a new
formula that has been evaluated for the state applied to it (see e.g. Havelund and
Rosu (2001))). This is similar to the proof system discussed above, but does not keep
track of an explanation. All of the information stored is contained within the formula
that is continuously being rewritten.

An incremental procedure for real-time path checking MITL has previously been
proposed by Bacchus and Kabanza (1998). Progression assumes complete states but
allows the temporal distance between states to vary, i.e. they support positive val-

33

3. Reasoning about time

ues for delay A € Z* between iterations. An adapted version of the progression
procedure, called PROGRESS, is shown in Algorithm B.1. It deviates from the original
progression procedure by fixing the delay parameter to A = 1, which corresponds
to the assumption that the stream is synchronised at a regular time interval. A pro-
cedure for this type of synchronisation is described in more detail in Chapter [.

Progression is a syntactic rewriting procedure which takes a formula together
with a state and a delay, and produces a new formula obtained from evaluation the
temporal interval in the input formula which is covered by the input state. This re-
sulting output formula can then be used as the input formula for the next iteration
of progression. This means that every iteration of progression has a time-complexity
which is linear in the size of the formula, but the repeated application of progres-
sion can result in exponential formula growth due to the handling of temporal inter-
vals on lines 6-13 in Algorithm B.1. Bacchus and Kabanzg (1998) further prove that
their incremental approach is correct given the semantics of MITL. We provide our
adapted version below.

Lemma 3.1: Correctness of simplified progression

The PROGRESS procedure is correct, i.e.
o,i = ¢iff 0,7+ 1 |= PROGRESS(¢, 0;) (3.16)

for traces o, time-points ¢ € N, and wffs ¢.

Proof. Follows trivially from the correctness proof for progression on MITL per Bac?
chus and Kabanza (1998) by restricting timepoints to N and fixing the delay to
A=1. |

3.5 Formula simplification

One problem caused by progression is that it naively grows a formula without re-
gard for the size-compactness of the resulting statement. To illustrate this, we can
represent formulas by formula trees, which are a special case for abstract syntax
trees.

Definition 3.11 (Formula tree). A formula tree T (¢) is an abstract syntax tree for a
wff ¢ such that

1. A,V, <> are represented by commutative binary vertices;
2. —, Uy for intervals I are represented by non-commutative binary vertices;
3. =, Gy, Fy for intervals I are represented by unary vertices; and

4. propositions in P and verdicts T, | are represented by leaf vertices.

34

3.5. Formula simplification

Glo,3)
- F[0,5] F[0,4] - F[0,5] p - F[o,s]
| SN] |
p G[o,s] G[o,s] p G[o,s} D G[0,3]
p p p p

Figure 3.3: Formula trees 7 (G(—p — Fo5Gjo,3p)) (left), and its progressed ver-
sions 7 (PROGRESS(G(—p — Fjo,5/G[o,31p, @))) before (middle) and after (right) for-
mula simplification. The tree nodes in light green can be eliminated.

The size of a formula tree, denoted by |T (¢)| for the formula tree of wff ¢, is deter-
mined by the number of vertices in T ().

Consider a wff G(—p — Fjo,5Gjo,3p). Figure B.3 (left) shows the formula tree
T (G(—p — F0,5/G[o,31p))- The space complexity can be expressed in terms of the
size of the associated formula tree. If we were to progress this formula with a com-
plete state & (i.e. p is false), we would obtain the formula represented by the for-
mula tree in Figure B3 (right) after formula simplification. However, prior to sim-
plification, strict application of the PROGRESS procedure can produce large trees as
illustrated by Figure B-3 (middle). The unsimplified formula tree has some obvious
redundancies (in light green) that could be eliminated to obtain a more concise tree.
The key however is to perform these simplifications during construction of the pro-
gressed tree as an optimisation approach. This is done during progression by check-
ing the current subtree against formula patterns and performing rewritings as shown
in Table B-1. Application of the rewriting rules then yields the formula simplifica-
tion shown in Figure B.3, which are used by the simplification procedure SIMPLIFY
shown in Algorithm B:2. A similar approach was taken by for example
(2014) for LTL, in which they call the combination of progression and formula rewrit-
ing convergent formula progression.

Theorem 3.1: Correctness of formula simplification

The formula simplification procedure SIMPLIFY as shown in Algorithm B2 is
correct, meaning that each rule ¢ in Table -1 is sound and SIMPLIFY termi-
nates after a finite number of rewritings.

35

3. Reasoning about time

Pattern =, Product

-T

-l

TV

1A

TA@

1Vve

GNP

oV P

(=)

(Up19) A (Ui) AU i, min(j k) ¥

(AU 510) V (U, 1%) AU i, max(j, k) ¥
dU[0,019 P

W XONOUAWDNRES
800S4 4K

RS
NP O

Table 3.1: Rewriting rules for wffs ¢, v, x where we assume i # j # k. Sym-
metric relationships are implicit for commutative vertices. Rules for syntactic sugar
(i.e. Gr, Fr, —, <) follow implicitly from the rules listed.

Algorithm 3.2: Formula rewriting

function SIMPLIFY (¢):
while True do

1
2
3 ¢ — ¢
4

foreach Rule ¢ in Table B3 do
> Apply rule ¢ to ¢ if applicable, otherwise keep ¢ unchanged:

5 ¢« ()
6 end
7 if ' = ¢ then
8 | return ¢
9 end
10 end

Proof. For each pattern-product pair z =, y in Table B.]), it is the case that = — y is
true for all interpretations. Additionally, because each applicable rule ¢ reduces the
size of a formula it is applied to, formula rewriting terminates after a finite number
of rewritings. |

While formula simplification does not change the conclusions progression would
otherwise yield, it does provide a deterministic method for compacting formula rep-
resentations, resulting in lower space requirements. Furthermore, the deterministic
transformations also make it possible to check the equality of two formulas by com-
paring their respective simplified formula trees, which is a feature we make use of
when considering repeated progression of formulas.

36

3.6. Empirical evaluation

10

Formula Size
[6;]

[—+— false*10; true*1

true

O Il Il Il Il Il
5 10 15 20 256 30 35 40 45 50 55

Iterations

Figure 3.4: Formula size over time when progressing GFq 10;p over regular state
sequences.

3.6 Empirical evaluation

The adapted progression procedure from Algorithm B3 combined with the appli-
cation of rewriting rules from Table B.7 was empirically evaluated. First, a baseline
evaluation is given for the standard progression procedure. This is then followed up
with a contrasting experiment where the impact of the rewriting rules is measured.
The performance of progression has been studied previously (Doherty et all, 2009),
but is included for the sake of completeness using our new implementation. The
performance of progression is closely tied to the formula being progressed and the
stream used for the progression. The evaluation of progression is therefore done
through two separate experiments with different formulas and different streams.
We primarily focus on the change in formula size over time, bearing in mind that the
time complexity of progression is linear in the size of the formula.
In the first experiment we measure the formula growth over successive progres-
sions for the formula
GFpo,10P; (3.17)

where the truth value of p is determined by a regular pattern. The the first pattern
is illustrated by a crossed (blue) line; the second pattern is illustrated by an unin-
terrupted (red) line. The first pattern shows a sequence wherein p is false for 10
time-steps and becomes true for one time-step, before repeating. This means that
the formula must grow in order to keep track of the eventually operator, for which
the interval allows a delay of up to 10 time-steps before p has to be true in order for
the formula to not be evaluated to false. The pattern uses the full duration allowed,

37

3. Reasoning about time

1500

1000]

Formula Size

500 .

‘ ——f— false*10; true*1 true

0 Il Il Il Il
5 10 15 20 25 30 35 40 45 50 55

Iterations

Figure 3.5: Formula size over time when progressing GF o 10;p without formula sim-
plification.

and once p becomes true the formula shrinks again. This shrinking and growing be-
haviour can be correctly observed in Figure B.4, where the shrinking occurs every 10
time-steps. For the second pattern, p is set to always be true. This corresponds to a
state stream in which for every state p is set to true. The nesting of temporal oper-
ators is important here. Since p is always true, the eventually operator immediately
evaluates to true as well, so the formula does not grow in size.

It is important to perform formula rewritings because they allow us to reduce
the formula size where possible, resulting in the growing and shrinking patterns ob-
served in Figure B.4. If we however disable formula rewriting, the formula’s growth
becomes unbounded, as is illustrated in Figure B.5. Progression will evaluate the
formula GF g 10p by rewriting it into GF o 10p A Fjo,91p A p. Since proposition p is
not scoped by a temporal interval, it is then replaced with the truth value for p as
specified by the state stream. Even if p is false, without simplification rules we can-
not collapse the formula. To make matters worse, each subsequent iteration will
again progress the original formula, which remains part of the progressed formula,
resulting in the unbounded growth observed in Figure B.5.

In the second experiment we similarly measure the formula growth over succes-
sive progressions for the formula

G(=p — Fl0,101G0,91P)> (3.18)

where the truth value of p is again determined by a regular pattern. Figure B.4 shows
the formula size for different stream patterns with formula rewriting enabled. Due
to the semantics of implication, this formula only grows whenever p is false. The
different state sequences show different degrees growth accordingly. In the best

38

3.7. Summary

20

16

IRV ”‘X‘T’

10 7

Formula Size

2r —O— false*1; true*40 false*10; true*10 | 1
= false*1; true*10 true

O Il Il Il Il Il Il
10 20 30 40 50 60

Iterations

Figure 3.6: Formula size over time when progressing G(—p — Fjo,10)Gjo,0p) Over
regular state sequences.

case, p is never false and the formula is never expanded. If p does become false, the
formula is expanded, and progression steps consequently take more time.

3.7 Summary

In this chapter we started with an introduction to the temporal logics, which are
useful tools for describing logical specifications and requirements of information
systems. To check the correctness of such a system, different techniques can be
used. When the logical specification of a system is known, automata-based model
checking techniques can be used. However, such a system specification is not al-
ways available, for a variety of reasons. In those cases, path checking techniques
can be applied to check the system during runtime. We looked at the syntactic for-
mula rewriting technique by Bacchus and Kabanza (1998) called progression, which
can be used to check whether a trace satisfies a formula. We showed that it can
however also be used to check whether a stream satisfies a formula under certain
constraints. We then considered a number of rewriting rules, which make it possible
to deterministically reduce the size of a formula, which in turn speeds up progres-
sion since its complexity depends on the size of the formula being progressed. The
rewriting technique also makes it possible to check for formula equality, which is a
useful property as we shall see in Chapter {.

39

Chapter

Reasoning under uncertainty

world. Just like humans, these systems only observe the world through

inherently imprecise sensors that measure the shrouded fluents of reality.
Furthermore, these sensors will only be able to observe a small part of the world,
whereas many tasks require an agent to know facts about the unobserved world.
We call this type of reasoning reasoning under uncertainty, which is a problem of
high importance within the stream reasoning community and beyond. This chapter
borrows from and extends previous work on progression-based path checking with
incomplete states (de Leng and Heintz, 2018) under uncertainty (de Leng and Heintz,
2019).

I I ANDLING uncertainty is a vital ability for systems operating in the physical

4.1 Introduction

While a common problem within Al, the problem of reasoning with uncertain in-
formation was only recently identified as a problem of high importance in the area
of stream reasoning (Dell’Aglio et all, 20174, 2019). We therefore again consider a
future-restricted MITL incremental path checking procedure under pointwise se-
mantics. This time, however, we adapt the technique for application to probabilistic
streams. Informally, these streams are represented using sets of states rather than
single states for each time-point. Each state in a set of states has a probability as-
sociated with it, corresponding to the likelihood of the hypothetical state being the
true state.

While our focus is on uncertainty represented by distributions over states, there
have been many approaches where the uncertainty is directly represented in the
logic itself. P-MTL (Tiger and HeintZ, 2016) is a probabilistic temporal logic which
allows for logical differentiation between observations and predictions. TLD (Kov{
funova and Penalozd, 2018) is a probabilistic extension of LTL which allows for tem-

41

4. Reasoning under uncertainty

poral uncertainty of event occurrences to be modelled through probabilistic distri-
butions. LTL4-C (Medhat et all, 2014) extends LTL by introducing absolute and
relative ‘counting quantifiers’, allowing for the expression and monitoring of con-
straints pertaining to a (absolute or relative) lower or upper bound on instances.
The query language TPQ (Koopmann, 2019) extends a temporal query language are
based on LTL for ontology-based data access (OBDA) by introducing a probability
operator ranging over statements in the TPQ language. Further, the work by Sato
(1995); Sato and Kameyd (2001) introduces distribution semantics for probabilistic
logic programs.

In this chapter we first formally define what a probabilistic stream is and how
it can be represented formally. We then consider the application of progression to
these streams, which requires a different approach from the usual syntactic rewrit-
ing of single formulas. Concretely, we show how to construct so-called progression
graphs that can be used to represent many formulas in an efficient manner. We then
conclude by considering an incremental construction and maintenance process for
these graphs, in line with the incremental nature of streams.

4.2 Prefix progression under uncertainty

In many practical applications, an agent is constrained by partial observability of
its environment. Nevertheless, while certain facts may not be perceived (or even
perceivable) directly, an agent can often, through reasoning, infer partial state in-
formation. Dealing with incomplete states is an important problem within the area
of stream reasoning, and one which has been identified as being in need of further
study (Dell’Aglio et all, 20173, 2019). A good example of the occurrence of incom-
plete states is qualitative spatial reasoning, which is discussed in more detail in Chap-
ter B. Given a partial model of spatial relations between regions, qualitative spatial
reasoning allows an agent to infer — for example through composition table based
reasoning — a set of possible complete models consistent with the partial model.
This set represents the set of possible hypotheses, each of which could be the ‘true’
model. Note that this set is disjunctive; we know beforehand that one of the hy-
pothetical models must be true, but we cannot be certain which one. Likewise, to
relax the constraint on complete states for progression, we consider disjunctive sets
of states called incomplete states. This is a generalisation; we could model the case
of complete states by considering only singleton incomplete states.

Model for incomplete prefixes

In the case of incomplete state streams, we want to be able to represent all of the
different hypothetical complete streams it could represent. We therefore represent
an incomplete state stream as a set of complete state streams, which are in agree-
ment for complete states but are in disagreement for incomplete states.

42

4.2. Prefix progression under uncertainty

Definition 4.1 (Incomplete state stream). An incomplete state stream of size N €
Z7F, representing N hypothetical complete streams o € p, is denoted by

p= {0(1),0(2),...,0(N)|0(i) EE“’} c v, (4.1)
Definition 4.2 (Incomplete state). An incomplete state is denoted by a set of states
Pn = {a,(f),agf), ol neNAs e ,0} c 3. (4.2)

Our goal is to extend progression to be able to process incomplete state streams
in a meaningful way. Due to its incremental nature, progression produces results
for (finite) sequences of states, and in many cases does not require the entirety of a
stream before returning a verdict (i.e. T,). Such a finite sequence of states corre-
sponds to a stream prefix.

Definition 4.3 (Prefix). A prefix for complete state streams o and incomplete state
streams p for time-points n € N is denoted by

O<n = (UO cee 0—77.71)a (4.3)
P<n = {J(<1,)L, ... ,USZD} . (4.4)

The problem with prefixes is that they are incompatible with the semantics of
temporal logics that assume infinite-length streams. Yet progression is able to pro-
duce verdicts prematurely given the right conditions. This happens when every pos-
sible infinite-length extension of a finite-length prefix satisfies certain constraints.
Following the example of Kupferman and Vardi (2001), we call such prefixes good
prefixes — and, for the converse case in which all possible infinite-length extension
of a finite-length prefix satisfies the negation of the constraints, bad prefixes.

Definition 4.4 (Prefix truth). Let o.,, and p.., be prefixes. We define prefix truth
using the short-hands

Ten = Giffon + 0" = dforallo’ € 5, (4.5)
p<n ': ¢ |ﬁ: O<n): d)fOI’ a” O<n S p<n, (46)

where we denote the concatenation of words by the ‘+’ operator.

In particular, progression is able to terminate when every possible infinite-length
extension of a finite-length prefix is a model of the formula being progressed. We
can connect progression reaching a verdict after n iterations to the satisfaction re-
lation for those n-length-prefix extensions.

Definition 4.5 (Prefix progression). We denote the repeated application of
PROGRESS to an initial formula ¢ over an n-length prefix o..,, of complete state
stream o, called prefix progression, by

PROGRESS™ (¢, 0) = PROGRESS(PROGRESS™ (...),00n_1), (4.7)

where n € N. For base-case n = 0 we have a fix-point; PROGRESS® (¢, o) = ¢.

43

4. Reasoning under uncertainty

Theorem 4.1: Soundness of prefix progression

The application of progression over prefixes is sound wrt the semantics of
MITL for any wff ¢ and prefix o<, i.e. PROGRESS™(¢,0<,,) = T implies
thato., + 0’ = ¢forallo’ € .

Proof. Assume that PROGRESS” (¢, 0<p,) = T. Sinceo<,, + 0’',n |= T forall o’ €
3¢, it is therefore the case that o.,, + ¢/,n = PROGRESS"(¢,0,,) for all o’ €
3. From the definition of prefix progression (Definition B.5), this is equivalent to
0<n + 0',n = PROGRESS(PROGRESS"!(...),0,_1) for all o’ € ¥“. Applying
Lemma B3}, the correctness of simplified progression, n times then yields o, +
o’,0 |= PROGRESS’(¢, €) for all ' € ¥* and word terminator (i.e. empty word) e,
which according to Definition .5 is equivalent to o, + o’ |= ¢. []

Theorem 4.2: Incompleteness of prefix progression

The application of progression over prefixes is incomplete wrt the semantics
of MITL for any wff ¢ and prefix o<, i.e. o<, + 0’ = ¢ forall o’ € ¥ does
not imply that PROGRESS™ (¢, 0<p) = T.

Proof. It suffices to show a counter-example to completeness. One such example
is for ¢ = Gp V F—p and an arbitrary prefix c,,. The formula ¢ is true for any
infinite-length w-word in ¥, so o, + o’ = ¢ for all o/ € X“. However, since
n is finite, there exists no n such that PROGRESS™ (¢, 0«,) = T, demonstrating
incompleteness. |

Corollary 4.1: Partial completeness of prefix progression

The application of progression over prefixes is complete for the safety frag-
ment of MITL for any wff ¢ and prefix o,.

Proof. The counter-examples to (full) completeness hinge on the choice of a wff
¢ which has no good prefixes and no counter-models. Therefore, let ¢ be a safety
property as described in Definition B.10. Due to the safety restriction it is guaranteed
forann € Z™ to exist such that PROGRESS™ (¢, 0,,) = T whenevero,, +o' = ¢
forallo’ € Xv. [|

44

4.2. Prefix progression under uncertainty

Satisfaction probability

We have thus far considered purely disjunctive sets of states as incomplete states.
This can be further enhanced by providing a probabilistic grounding for such disjunc-
tive sets. In the absence of priors, one may reasonably assign a uniform probability
distribution to the set of complete states making up an incomplete state. However,
if prior information exists, we may wish to change the probabilities of the com-
plete states such that some become more likely while others become less likely.
These probabilities are assumed to be given — for each time-point — by the incom-
plete state stream. The set of states X is associated with a time-varying, discretely-
distributed stochastic variable S,, ~ Discrete(6,,) for time-points n € N, where
O = {977"5}562 represents a probability mass function (pmf) for states s € ¥ and
time-points n € N. While the discrete distribution for S,, could under certain condi-
tions be learned, we will assume it is given. We write Pr (S,, = s) = 6, , to denote
the probability of observing a state s at time-point n € N. The conditional prob-
ability of a complete state s given an observed incomplete state p,, is denoted by

en,s) [S € pn]
ZS’EPn 9”’8/ 7

where the notation [-] represents Iverson brackets8. Similarly, we denote the (con-
ditional) probability of observing prefixes by

Pr(S,=s|pn) = (4.8)

n—1
Pr(Scn=0cn) = [[Pr(si=0i), (4.9)
=0
n—1
Pr(Scn =0<n | p<n) = H Pr(S;=o0;|pi). (4.10)
1=0

This notation makes it possible to refer to the posterior probability distribution at
time-point n by combining the prior S,, with an observation of an incomplete state

P

Definition 4.6 (Prefix satisfaction probability). The (conditional) probability of a
complete prefix o, to satisfy a wff ¢ is denoted by

P’I"(O'<n }: Cb) = P’I"(S<n = U<n) . [U<7L }: Qﬂv (4.11)
P7'(0<n l: ¢ | p<n) = PT’(S<n =0<n ‘ p<n) : [U<n ’: QZ)] (4.12)

Similarly, the probability of an incomplete prefix p,, to satisfy a wff ¢ is denoted by

Pripen @)= Y, Pr(oca ¢l p<n). (4.13)

T<n€p<n

5lverson brackets contain a Boolean statement and resolve to 1 if that statement is true, and O oth-
erwise, i.e. for a Boolean statement b, [b] = 1 iff b is true; otherwise [b] = 0.

45

4. Reasoning under uncertainty

Theorem 4.3: Monotonicity of prefix satisfaction probability

Let p denote an incomplete state stream and ¢ an arbitrary wff. The probability
of prefix satisfaction grows monotonically as n € Z™ increases, such that

Pr(pen E ¢) < Pr(pcns1 E), (4.14)
Pr(p<n = ¢) < Pr(p<nt1 = ¢). (4.15)

Proof. Per Definition .4, we can rewrite the prefix satisfaction probability into

PripcnlEd)= Y. (Pr(Scn =0<n|pen) locn E @), (4.16)

‘7<n€P<n

Pr(p<n = ¢) = Z (Pr(Scn =0<n | p<n) - [0<n = ¢]). (4.17)
O<n€pP<n

Let p, = {ag), ... ,O'SLN) } By concatenating this incomplete state with the incom-

plete prefix p,, we obtain
P<n+1 = {0<n + Ugf) |o<n € pcnand 1 <i < N} . (4.18)

Per Definition &4, if o,, = ¢ then also o, + ¢’ = ¢ for any choice of ¢’ € X.
Conversely, if o, |~ ¢ thenalso o, + o’ [~ ¢ for any choice of ¢’ € X. Therefore
the following also holds;

Ocn F @ = 0cn+0 0, (4.19)
Ocn = 0cn +0' o, (4.20)

for all o’ € p,, since p, C X. For these two cases, any extension of o, neither
increases nor decreases the prefix satisfaction probability.

However, if neither o, |= ¢ noro,, = ¢, thenitis possiblethato.,+0’ | ¢
or oy, + o' [¢ for some o’ € p,. Inthat former case, Pr(pcp+1 E ¢) >
Pr(p<n = ¢), whereas in the latter Pr(p<n1+1 = ¢) > Pr(p<n [~ ¢). This
means that in the general case Pr(p<, E ¢) < Pr(p<nt1 | ¢) and Pr(p<, -
@) < Pr(p<n+1 E ¢), which shows that the probability of prefix satisfaction grows
monotonically. |

4.3 Progression graphs

To perform progression with incomplete states, we can apply simplified progres-
sion (Algorithm [B-1) for each of the complete states represented by an incomplete
state. A graph structure can be used to leverage the property that different formu-
las progressed with different states can produce the same resulting formula, con-
straining the potential combinatoric explosion. An example of this is illustrated in

46

4.3. Progression graphs

Figure 4.1: Example progression graph for the formula Fy 5p. Vertices represent
formulas; edges are labelled with complete states to illustrate under which logical
state a formula progresses into a formula. Reflexive edges for the verdicts are omit-
ted for clarity.

Figure B3, which shows how formulas progress into formulas given some complete
state. We start with a formula we wish to progress, in this case F(o 5;p. The graph
structure follows the PROGRESS procedure by requiring that there exists a directed
edge (¢, 1, s) iff PROGRESS(¢, s) = 9. Hence we can observe 1) = Fg 4p is reach-
able from ¢ = F[o 5)p for complete state s = &, whereas ¢) = T is reachable from
¢ for complete state s = {p}. Since all vertices have an out-degree equal to |X|
— the figure omits the reflexive edges for verdict nodes for clarity — the graph is a
complete encoding of progression for Fig 5p.

These progression graphs can be represented as a type of finite state automa-
ton. Given a wff ¢, a progression graph G(¢) = (¢, V, E) can distinguish between
acceptance of both ¢ and —¢, where the latter represents a ‘rejection’ of ¢. If
T € V, that means that there exist finite-length accepting runs, which corresponds
to the existence of good prefixes. Conversely, if 1 € V, that means that there exist
finite-length rejecting runs, which corresponds to the existence of bad prefixes. So if
T € V,itis an accepting state, with the analogous holding for L. If neither T nor L
are states of G(¢), then there exist no good or bad prefixes for ¢, which means that
¢ is not a safety formula. In addition to encoding the structure of progression — and
unlike standard finite state automata — progression graphs also encode probabilistic
information in terms of probability mass associated with each formula.

47

4. Reasoning under uncertainty

Definition 4.7 (Progression graph). A progression graph is a directed graph G,,(¢) =
(¢, V, E, m,,) at time-point n consisting of a set of wffs V such that ¢ € V, a set of
directed labelled transitions

E ={(v,v',s) € V x V x ¥ | PROGRESS(v,s) =v'}, (4.21)

and a probability mass function m,, : V' — [0, 1] representing a probability distri-
bution over formulas in v € V defined as

my(v) = Z (Pr(S<n = 0<n | p<n) - [PROGRESS™ (¢,0<n) = v]), (4.22)

T<n€pP<n

and my(¢) = 1 corresponds to the base-case. We will use the a-temporal short-
hand G(¢) = (¢, V, E) when referring only to the structure of a progression graph.

Given a progression graph G, (¢), the probability mass m., () for a formula ¢
represents the probability that progression of the ‘true’ stream would have pro-
duced the formula) at time-point n. At time-point n = 0, no part of the stream
has yet been observed, and thus all of the probability mass resides in the to-be-
progressed source formula ¢. The exact process involved in incrementally updating
a progression graph given these components is presented later; for now it suffices
to assume that such a process exists. In that case, we can consider the probabilistic
counterpart to the satisfaction relation for incomplete state stream prefixes; satis-
faction probability.

Theorem 4.4: Correctness of progression graphs

Given a progression graph G,,(¢) = (¢,V, E,m,) and an incomplete state
stream prefix p_,, for any time-point n € N. Let Pr(p., =’ ¢) denote
Pr(not (p<y, = ¢ or p<y, K& @)). Then it is the case that

Pr (p<n): ¢) = mn(—r); (4-23)
Pr(p<n = ¢) = mn(L), (4.24)
Pr (p<n =’ ¢) =1— (mu(T) +my(L)). (4.25)

Proof. Per Definition f.7, the pmf m,, for verdicts is based on the sum of the proba-
bilities of the complete state stream prefixes progressing to those verdicts by time-
point n.

mn(T) = Z (PT (S<n =0<n | p<n) : [PRDGRESS"(¢, U<n) = T])a (4.26)
O<n€pP<n

mu(L) =Y (Pr(Scn =0<n|p<n) - [PROGRESS™ (¢, 02,) = L]). (4.27)

O<n€p<n

From Theorems [.7 and .2, we know that prefix progression is sound but incom-
plete.

48

4.3. Progression graphs

Consider the case where n = 0, from whichwe knowthat V' = {¢}, E = &, and
mo(¢$) = 1. This corresponds to not yet having observed any part of the incomplete
state stream p. In this case, mo(T) = [¢ = T]and mo(L) = [¢ = L].

Consider the case where T ¢ V and n > 0. That means that thereisnom <n
such that PROGRESS™* (¢, 0<,,) = T for any o, € p<,. This means that there
exists no good prefix o.,, € p<y, for ¢, som,(T) = 0. Conversely, if L ¢ V and
n > 0, then there is no m < n such that PROGRESS™ (¢, 0<,,) = L forany o, €
P<n- This means that there exists no bad prefix o.,, € p<,, for ¢, som, (L) = 0.
Both cases match the definitions for Pr (p<,, |= ¢) and Pr (p<, k= ¢) respectively.

Consider the case where T € V (or: L € V)andn > 0. Then ¢ is guaranteed
to have at least one good (or: bad) prefix due to the existence of a sequence of
edges leading from ¢ to T (or: _L). This means that ¢ is a safety property. Based on
Theorem 7 and Corollary B3, we can therefore rewrite m,,(T) and m,, (L) to

mn(T) = Z (PT (S<n =0<n | p<n) : [val € EW(U<n +0): ¢)])a

O<n€pP<n
(4.28)
mp (L) = Z (Pr(S<n = 0<n | p<n) - Vo' € ¥ (0cn + 0" [~ 9)]).
O<n€pP<n
(4.29)

This corresponds to the satisfaction probability of the observed incomplete state
stream wrt ¢, i.e.

mn(T) = Z (Pr(Scn =0<n | p<n) “[0<n F ¢])

T<n€p<n
= Pr(p<n |: ¢)7 (4.30)
mu(L) =Y (Pr(Sen=0cn|pen) - [0<n = ¢])
T<n€pP<n
= Pr(p<n £ 9)- (4.31)

Then it trivially follows from the definition of Pr(p—,, =’ ¢) that
Pr(p<n E ¢) = 1= (ma(T) +my (L)), (4.32)
which matches the original claim. [|

Given a formula ¢, a progression graph can be regarded as automaton that ac-
cepts runs o such that ¢ = ¢ whenever T is a node in that progression graph.
The opposite holds as well; a progression graph can be regarded as automaton that
accepts runs o such that o [~ ¢ whenever L is a node in that progression graph.

49

4. Reasoning under uncertainty

Theorem 4.5: Progression graphs encode good/bad prefixes

Let ¢ denote a well-formed MITL formula, G(¢) = (¢, V, E) afull progression
graph for wffs V' such that ¢ € V, and

E ={(v,v',s) € V x V x ¥ | PROGRESS(v,s) = v’} . (4.33)
We define a transition function 6z : V, X — V based on F as follows:
op : (v,8) = v forall (v,v',5) € E. (4.34)

Then let Ay, = (X,V,¢,05,{T}) and A, = (X,V,¢,dg,{L}) repre-
sent deterministic finite-state automata. Then the following two relationships
hold:

o if there exists a prefix o, such that (¢, vg, 0¢), ..., (Vn—2, T,04-1) €
E, then A, accepts o<p;

o if there exists a prefix 0, such that (¢, v, 0¢), ..., (Vp—2, L,0n_1) €
E, then A4 accepts o<y,

Proof. Follows directly from Definition B.4 describing accepting runs over FSAs. W

These relationships are due to the edges of a progression graph being based on
progression. This also means that a progression graph for a formula ¢ that lacks a
node T does not have a good prefix. Likewise, if it lacks a node L then it does not
have a bad prefix. Consequently, if a progression graph for a formula ¢ lacks both
the T and L nodes, then ¢ is not a safety property.

Corollary 4.2: Progression graphs encode safety properties

Let ¢ denote a well-formed MITL formula, and G(¢) = (¢, V, E) a full pro-
gression graph for ¢. Then ¢ is a safety property iff T € Vor L € V.

Proof. If ¢ is a safety property as per Definition B.I0, then there must exist good
or bad prefixes for ¢, which means T € V or L € V according to Theorem B.5.
Conversely, if T € V or L € V, then according to Theorem -] there exist good or
bad prefixes respectively, which per Definition B.I0 means that ¢ is a safety property.

[|

Thus far we have shown that a progression graph is an accurate snapshot of
progression over incomplete state streams for time-points n € N, where n = 0 rep-
resents the base-case before having observed any part of the stream. We have also
assumed that the structure of a graph G,,(¢) — its vertices V and edges E — remain

50

4.3. Progression graphs

fixed across time. This is an assumption we will relax shortly, but it does present
us with the worst-case space complexity of progression graphs. In the worst-case
scenario, progression will repeatedly produce new formulas such that no two non-
verdict formulas share a common child. In such a graph, each formula produces |¥|
new formulas in accordance with its out-degree. In practice, some of these formulas
will be shared, which is a necessary condition for the graph to be of finite size. This
is because of the constraints forced upon the graph’s structure by the PROGRESS
procedure from Algorithm B.1. This too therefore applies to progression graphs.

Formula simplification is beneficial to restricting the space requirements of pro-
gression graphs. Note that there is significant overlap between the trees before
and after progression, both in terms of the subtrees for the ‘eventually’ operator as
well as the unbounded ‘always’ operator. This is because the PROGRESS procedure
only recombines subtrees with logical connectives and decremented-interval tem-
poral operators. We can therefore cache parts of formula trees and use pointers
whenever we are about to construct a cached formula tree as part of the PROGRESS
procedure. The formula cache will in the worst case contain all interval-shifted sub-
formulas of the original formula ¢ for which a progression graph G(¢) — meaning
the full progression graph for ¢ — was constructed. Basin et al] (2017) refer to this
set as the set of interval-skewed subformulas (I1SF), which was originally introduced
by Thati and Rosu (2005).

Definition 4.8 (Interval-skewed subformulas). The (future-restricted®) set of
interval-skewed subformulas (ISF) is defined for wffs ¢ as

ISF(¢) = SF(¢) U{p1Ur—nop2 | p1Urg2 € SF(¢p) An € [1, max(I)]}, (4.35)
where SF'(¢) represents the inclusive set of subformulas of ¢.

For example, Figure .7 shows G(Fjo 31p) = (Fjo,3p, V, £, m,,), and for which
ISF(Fjo3p) = V \ {T,L}. Additionally, given a formula ¢, the size of its ISF is
proportional to the size of its subformula set, i.e. |ISF(¢)| «x |SF(¢)|. Taking into
account the predetermined out-degree of formula vertices, the space complexity of
a progression graph G(¢) is therefore O(|SF(¢)] - |Z|).

The use of formula simplification and formula caching in conjunction with the
progression procedure yields the REPROGRESS procedure shown in Algorithm £.1.
As the name implies, REPROGRESS is optimised for use-cases in which progression
is performed multiple times. It takes the same input information as Algorithm B.1,
plus a formula tree cache 2, which can be initialised with SF(¢). The notation
Q[¢] returns a pointer to a cached tree 7 (¢) if one already exists; otherwise one
is constructed and added to the cache first. This prevents duplicate subtrees from
being stored, and allows for subtrees to be re-used. The SIMPLIFY(v)) operation
(see Algorithm B.2) is performed by repeatedly applying the inference rules from
Table B.7 until no more rules can be applied, and returning the result.

6Basin et all (7017) additionally use the backwards-looking temporal operator ‘since’, which we do
not consider in this work, hence the ‘future-restricted’ qualifier.

51

4. Reasoning under uncertainty

Algorithm 4.1: Repeat-progression

function REPROGRESS (¢, s;, Q)
if (;5 = ¢1 \Y (}52 then

1

2

3 1) < REPROGRESS(¢1, 51, 2) V REPROGRESS (b2, s, Q)
4 1™ <= SIMPLIFY(¢))

5 return Q[y"]

6 elseif ¢ = —¢; then

7 1) < —REPROGRESS(¢1, 54,)

8 " < SIMPLIFY(q))

9 return Q[¢"]

10 elseif p = ¢1 Ur ¢2 then

1 if I < 0 then

12 | return Q[1]

13 elseif 0 € I then

14 1) + REPROGRESS(¢2, 51, 2) VV (REPROGRESS(¢1, 54, Q) A é1 Ur—1 ¢2)
15 " < SIMPLIFY(q))

16 return Q[y*]

17 else

18 ’d} — REPR.UGRESS((f)l, Si, Q) A ¢1 Ur_s ¢2
19 1* SIMPLIFY(v))

20 return Q[¢7]

21 end

22 else

23 if » € s; then

24 | return Q[T]

25 else

2 | return Q[1]

27 end

28 end

Theorem 4.6: Correctness of REPROGRESS

The REPROGRESS procedure is correct wrt simplified progression, meaning
PROGRESS(¢, s) = REPROGRESS (¢, 5, Q) (4.36)

for any wff ¢, complete state s € ¥, and cache 2.

Proof. In order for REPROGRESS to be correct, the formulas it produces need to
be equivalent to the formulas produced by PROGRESS under the same inputs. If
we ignore the caching mechanism in REPROGRESS, the procedure is identical to
PROGRESS. Since PROGRESS is correct according to Lemma .4, REPROGRESS is also
correct wrt simplified progression. |

52

4.4. Incremental graph progression

4.4 Incremental graph progression

Previously, we looked exclusively at progression graph snapshots; that is, the state
of progression graphs at specific time-points. We now focus on the transitions be-
tween these snapshots by considering how probability mass flows through a pro-
gression graph, and how a progression graph is incrementally constructed, using ac-
curate or approximate strategies. Concretely, the problem we consider here is how
to compute a progression graph G, 1(¢) given a progression graph G,, (¢) for wff ¢
at time-point n € N, where we assume for the base-case Gy (¢) = (¢, {¢} , &, mo).

Probability mass flow

Over time, we will incrementally observe an increasingly-large prefix p~,, as n in-
creases. The goal of a progression graph is to efficiently encode an arbitrarily-long
prefix for all timepoints preceding n, and to only rely on the most recent incomplete
state p,—1 to obtain G,,(¢) from G,,_1(¢). This is achieved through simultaneous
updates to the pmf m,,_1 to obtain m,,.

Lemma 4.1: Incremental updates

Let G, (), Grn—1(¢) be full progression graphs. An update from m,,_; to m,,
given an incomplete state p,,_1, where n > 0, can be characterised by the
update

mp(v) & > (M1 (v)) - Pr(Su_1 =5 pu1)). (4.37)
(v’ v,8)EE

Proof. We need to show that the full update Eq. .22 from Definition §.7 for time-
point n is equivalent to the full update for time-point m = n — 1 followed by an
incremental update at time-point n as shown in the above relationship. By plugging
Definition .7 into the incremental update rule, we get

Z (Z (PT (S<m = O<m ‘ p<m) . [PROGRESSm(d), O'<'m) = fU/])
(UI)U7S)€E T<m€EP<m
'Pr(sm=8\pm))- (4.38)

The inner sum ranging over o.,, € p<,, can be rewritten to instead range over
paths in the graph:

Z Z Pr(Scm =0<m | p<m) | - Pr(Sm = 5| pm)

(v',v,8)€EE (v ,0cm)EE™
(4.39)

53

4. Reasoning under uncertainty

Algorithm 4.2: Graph progression

1 function GRAPH-PROGRESS (G —1, pn—1,):
2 Gy (%z—hEn—lv [])
3 foreachv € V,,_; do

4 if mn—_1[v] > 0then

5 foreach s € p,, do

6 v’ <+ REPROGRESS(v, s, 2)
7 Vi < Vo Uu{v'}

8 E, + E,U{(v,0',s)}

9 end

10 foreach (v,v',s) € E, do

11 ‘ Mmn[v'] <= mp[v'] + Mmp_1[v] - Pr(Sp—1 = 8| pn—-1)
12 end

13 end

14 end

15 return (G, Q)

We can now collapse the two sums into one sum ranging over paths from ¢ to v,
appending the incomplete state p,, to the incomplete stream p_,, to obtain p,:

> Pr(Sen=0<nlpen). (4.40)
(¢7U,O'<“)6E"

Plugging the PROGRESS function back in we can rewrite the mass assignment to

mn(v) < Y (Pr(Scn=0c<n | p<n) - [PROGRESS"($,0c,) = v]), (4.41)

T<n€pP<n

which matches Eq. .27 from Definition f.7. |

We thus only have to consider those vertices with a non-zero probability mass
and their immediate neighbours when performing an update. Because the update is
performed simultaneously for all vertices, it is possible for a vertex to receive fresh
probability mass from multiple parents while distributing its own probability mass,
if any, to its children. Finally, since we know what Gy (¢) looks like for any wff ¢, we
only need to consider the most recent element of any prefix p,, without having to
store any of its preceding incomplete states.

Incremental graph construction

Because we only need to keep track of graph vertices with a non-zero probabil-
ity mass and their direct neighbours, it is not necessary to know the complete set
of vertices and edges at time-point n = 0. Instead, we can incrementally con-
struct parts of a progression graph when needed, and it is even possible to ‘forget’
parts of progression graphs when they are no longer required. We therefore pro-
pose an incremental graph construction procedure based on REPROGRESS, called

54

4.4. Incremental graph progression

e mm————————
1G (p— F[o,s] G[0_3] P) H]:

|FI0,3] Gz P NG (2p = Fio5 Gy p) [1] |

2

|F[0,2] G2 NG (op > Fs5 Gz P)l

Figure 4.2: Example progression graph G3(G(—p — Fo,5Go,3)p)) after receiving
state {&} three times in a row.

GRAPH-PROGRESS, illustrated in Algorithm f.2. The procedure starts out with the
progression graph of the previous iteration, inheriting its structure as a base-line. It
then creates a new but empty pmf for the new graph (line 2). The procedure con-
siders all formulas which had probability mass associated with them according to
the old pmf (line 4), and expands those formulas by applying REPROGRESS where
needed (lines 5-9). Since the cache is shared between calls to graph progression,
REPROGRESS benefits from the overlap between the formulas that make up the pro-
gression graph. The procedure then proportionally to p,,_; redistributes the prob-
ability mass from the previous iteration, constructing the new probability mass pmf
(lines 10-12). The resulting progression graph and updated cache are then returned
(line 15) to serve as input for the next iteration. The GRAPH-PROGRESS procedure
can be shown to be correct wrt the definition of progression graphs based on the
incremental update mechanism employed in lines 10-12.

Theorem 4.7: Correctness of GRAPH-PROGRESS

For every progression graph G,,_1, the procedure GRAPH-PROGRESS produces
a pmf m,, [v] such that

mpy [U] = Z (PT (s<n =0<n | p<n) : [PROGRESSH<¢a U<n> = ’U]),
O<n€p<n

(4.42)
meaning GRAPH-PROGRESS is correct wrt the definition of a progression graph.

Proof. Follows directly from Algorithm .2 and its application of Lemma -9 on line
11. The admissibility of REPROGRESS on line 6 follows directly from Theorem E.§.
|

55

4. Reasoning under uncertainty

G Cr > Fos

Figure 4.3: Example progression graph G7(G(—p — Fo,5)Gjo,3p))-

We can graphically illustrate the incremental construction behaviour of graph
progression by considering our previous example formula ¢ = G(-p —
Fl0,5/Glo,31p). Let us first consider the case where we receive states {T}, i.e.
p is known to be false, for three consecutive iterations. Figure .7 shows the
progression graph for ¢ at the end of the third iteration. The bottom formula,
Fi0,21Gjo,31p A (G(—=p — F0,5/G[o,31p)), has a 100% green background, indicating
it contains all of the probability mass. This matches the behaviour of the original
progression procedure. Its parent has a solid box and an age of 1, illustrating this
is a formula which held probability mass during the previous iteration. In general,
its ancestors in turn are represented using dashed boxes with corresponding ages,
indicating that these parts of the graph are dormant.

If we now consider the case in which we receive incomplete states {{p} , &},
i.e. completely unknown, where the probabilities for all time-points n > 3 are
Pr(s, = {p}) = 0.9and Pr(S,, = &) = 0.1. Figure .3 shows the resulting graphs
for iteration 7. We can observe how the probability mass has moved through the
graph, and by iteration 7 both the verdict node L and the original formula ¢ are re-
ceiving probability mass. Since mass cannot leave verdict nodes, the mass contained

56

4.4. Incremental graph progression

within them will continue to grow. As more of the progression graph is explored, its
size will also continue to grow.

Approximation strategies

One observation when looking at Figure .3 is that many formulas have gone stale,
meaning that they have not received any probability mass for some time. In the ideal
case, the stale ratio — being the ratio of stale formulas compared to the total num-
ber of formulas — of a progression graph stays close to 0 while only a few formulas
get expanded. We can use formula removal strategies to shrink the size of a progres-
sion graph, at the cost of having to reacquire them through progression if we need
them again. We call a formula removal strategy an approximation strategy when
it removed formulas that have probability mass associated with them, resulting in
leakage.

Definition 4.9 (Leakage). Assume a progression graph G,,(¢). The leaked probability
mass ¢,, is defined as

by =1= mu(v). (4.43)

veV

Definition 4.10 (Removal strategy). A removal strategy is a function 7 from progres-
sion graphs G,, to progression graphs G|, such that |G| > |G.,|. A removal strategy
is called exact iff it guarantees that ¢!, = 0; otherwise it is called approximative.

In the following, we consider some example removal strategies, both exact and
approximate:

o Default 7;;: The default strategy simply returns the same graph it was given.
It is therefore exact, but does not do anything to reduce the size of the pro-
gression graph it is applied to. It thus serves as a base-case strategy for when
no removals are performed.

¢ Maximum time-to-live 7;;;: The maximum time-to-live strategy utilises the
age of formulas by considering ‘stale’ formulas for removal. Aformulais ‘stale’
if it exceeds a predetermined MAX_AGE value. The strategy is exact since nodes
receiving probability mass have their age reset to 0, and are thus never re-
moved. Any formulas removed may be recomputed by applying the progres-
sion procedure to their direct neighbours.

¢ Maximum size 7,,,..: The maximum size strategy is more aggressive than 7,
because it puts a hard limit MAX_NODES on the size of the progression graph,
and removes formulas until this hard limit is no longer violated. It prioritises
first based on staleness, followed by low probability mass. This means that
Tmaz Will induce leakage if necessary, starting with formulas containing the
least probability mass, making the strategy approximative.

57

4. Reasoning under uncertainty

The approximation strategies act as heuristics which try to balance formula re-
moval against the overhead of reprogressing formulas and losing precision due to
leaking probability mass. The choice of parameters impacts this balance in ways
that are difficult to predict beforehand, as there exists an interaction with the in-
complete state stream and formula being progressed.

4.5 Progression-based monitoring

Progression graphs have been shown to be suitable for progression tasks that involve
incomplete state streams. However, they can also be adapted towards monitoring
tasks, where for a wff ¢ we want to know for each time-point ¢ € N whether p,i =
¢. This means that rather than a single (probabilistic) verdict, we receive such a
verdict for every time-point. In the following, we therefore consider progression-
based monitoring by ‘stacking’ progression graphs, adding a new graph to the stack
for every time-point.

Definition 4.11 (Progression graph stack). A progression graph stack is a collection
of progression graphs denoted by

G.(9) = {G10(9).921(6).-... 9" (9) } (4.44)

where each g,(ﬁ)(gb) represents a progression graph at iteration m path-checking
whether p>; |= ¢ holds for stream suffix p>;.

Each progression graph in a progression graph stack G,,(¢) has a pmf describing
the probability of an incomplete state stream prefix being a model of ¢. This means
that per Theorem (.4, for each time-point, a lower bound can be determined for
verdicts T, L. However, as the time n € Nincreases, the stack becomes too large to
store, since it approximates the size of the full stream. We can utilise the structure
of wff ¢ to limit the size of our stack. Specifically, we make use of the concept of
future reach introduced by Ho et al] (2014), which describes the maximum prefix
length required for determining the truth value of a formula.

Definition 4.12 (Future reach adapted from Ho et al! (2014)). The future reach for
an MTL formula ¢ is determined by the function F'R(¢), defined incrementally as:

FR(p)=0forallpe PU{T, L} (4.45)
FR(~¢1) = FR(¢1) (4.46)
FR(¢1V ¢a) = max(FR(¢1), FR(¢2)) (4.47)
FR(¢1Ur¢2) = sup(l) + max(FR(¢1), FR(¢2)) (4.48)

The future reach of a formula thus describes the temporal interval covered
by that formula. By limiting the prefix length for progression a formula ¢ by its
future reach F'R(¢), one is guaranteed to obtain a resulting progression graph
Grr(e) (@) for which mpprg)(T) + mpgr@g) (L) = 1. Unfortunately, this is not

58

4.6. Empirical evaluation

Algorithm 4.3: Progression-based monitor

1 function PROGRESSMON (G(¢), pn, €, Tmaz):

2 G(9)[n (mod G(6)])] < Go(6)

3 foreachi € [n — |G(¢)| + 1,n] do

4 if G(¢)[n — i] # nilthen

5 (G, Q) < GRAPH-PROGRESS(G(¢)[n — i], pn, Q)
6

7

8

9

if (Pr(pin = ¢) + Pr(pin | ¢) > Tmaz) V (i = n — |G(¢)| + 1) then
Report Pr(pi:n = @), Pr(pin [~ ¢) and £,
G(¢)[n —i] + nil

else
10 ‘ G(p)[n—i] G
11 end
12 end
13 end

14 return (G(¢), 2)

enough for wffs ¢ containing unbounded temporal operators, for which FR(¢)
approaches infinity. We can therefore further limit the prefix length to a prede-
termined constant MAX_WINDOW. This means that for those formulas ¢ for which
FR(¢) > MAX_WINDOW, we will not have finished progressing all the possible pro-
gression traces, resulting in further leakage and thus corresponding to an approxi-
mation.

Algorithm [B.3 shows the progression-based monitoring procedure
PROGRESSMON, where p;.,, denotes a substream of p from time-point ¢ to time-
point n inclusive. The procedure takes an initially-empty progression stack G(¢)
implemented as an array, a cache {2 initially initialised for formulas in SF'(¢), an
incomplete state p,,, and an early termination threshold 7,,,,. At the start of
each call, the procedure updates the stack in a round-robin fashion, overwriting
the oldest progression graph with a new progression graph. After every call, it
returns an updated progression stack G(¢) and an updated cache Q2 by applying
GRAPH-PROGRESS to each of the progression graphs in the stack. The space com-
plexity of PROGRESSMON is the same as the probability mass space complexity from
GRAPH-PROGRESS multiplied by a constant window size, which was defined to be
the smaller of F'R(¢) and MAX_WINDOW. Since the graph can be shared between all
progression graphs in the stack, no additional copies are required.

4.6 Empirical evaluation

Since the impact of the proposed removal strategies is difficult to predict, we per-
formed an empirical evaluation to measure the impact of changing the parameters
on both time and space requirements, as well as the impact of the approximative

59

4. Reasoning under uncertainty

MAX_AGE MAX_NODES Iterations MaxSize MedianSize Avg Density

00 00 226,867 15,706 15,706 0.024
5 00 226,867 11,851 1,162 0.243
1 00 226,867 4,074 335 0.665
0o 250 226,863 3,858 3,726 0.099
5 250 226,863 3,855 1,163 0.254
1 250 226,863 3,722 335 0.665
00 225 226,295 3,480 3,352 0.110
5 225 226,295 3,480 1,164 0.259
1 225 226,295 3,361 335 0.665
00 200 225,644 3,105 2,978 0.124
5 200 225,644 3,105 1,165 0.266
1 200 225,644 2,999 335 0.665
00 175 222,599 2,730 2,604 0.142
5 175 222,599 2,730 1,164 0.277
1 175 222,599 2,653 335 0.665

Table 4.1: Empirical results illustrating the impact of removal strategies m;;; and

ﬂmam .

strategy on probability mass leakage. To do so, the graph progression procedure
was implemented in Javal.

Removal strategies

Table .7 shows an empirical evaluation of the impact of changing the removal strat-
egy parameters for 7wy and m,,4.; MAX_AGE and MAX_NODES respectively. We used
the formula ¢ = G (—p — (Fjo,100] (G[o,10)P))) as a benchmarking formula, based
on its membership in the class of response formulas — described by the pattern
Gy (¢ — F 1) — which is a formula class most commonly observed in runtime ver-
ification (Dwyer et all, 1999). For our choice of stream we randomly generated in-
complete streams containing {{p}} for 80% of the samples, and let the remaining
samples be uniformly unknown, i.e. {{p}, @}. Our experiments terminated when-
ever 99% of the total probability mass was leaked or made its way into verdict nodes.
Additionally, the values for MAX_NODES were chosen such that the amount of leaked
probability mass would not exceed 1%; the impact on mass leakage was considered
separately. The best results are marked in bold-face.

The exact strategy m;;;, when configured with a low MAX_AGE value, results in a
higher average density (i.e. inverse staleness) of progression graphs, corresponding
to a high ratio of mass-bearing nodes relative to the total number of nodes. As men-
tioned previously, this does however result in an increased workload by requiring
the regeneration of previously-deleted formulas. We can also observe a decrease in
the maximum and medium progression graph size, determined by the cumulative
size of all of the contained-within formulas, indicating that the graph shrinks as ex-

’The jprogress implementation is available at https://github.com/dnleng/jprogress.

60

https://github.com/dnleng/jprogress

4.6. Empirical evaluation

x10°
1 e
~,
09 r \\ 42
\
‘g 0.8 - \\
© \
£07F S, S
£ \ 115 5
s \ £
=06 \ £
2 \ ©
Zo5¢ , 5
K \ 1 @
So4rt \ S
o \ 5
§ 0.3 \ k3]
[\
Soaf N, 108
\‘\‘
0.1 F .
\i
.~.~-
O L L L L 1 1 LT T O

20 40 60 80 100 120 140 160 180
MAX_NODES

Figure 4.4: Leaked probability mass at termination (left), and number of iterations
to termination (right).

pected. This is further affected by the choice of MAX_NODES from the 7,,,,. strategy.
By decreasing the value of MAX_NODES, we can also observe that the number of it-
erations to termination is reduced, although this is partially due to the leakage of
probability mass.

Leakage characteristics

A more detailed analysis of mass leakage is shown in Figure f.4. On the left-hand
side (corresponding to the blue dashed line), we see the leaked probability mass
at termination, which occurs when 99% of probability mass has found its way into
verdict nodes for ‘false’ and ‘unknown’. As the probability of an ‘unknown’ verdict
decreases, the probability of a L verdict — here its inverse; not shown explicitly
— increases. The switch-over, denoted by the 0.5 leaked probability mark, occurs
between MAX_NODES = 110 and MAX_NODES = 111. When we decrease the value
for MAX_NODES, the ‘unknown’ verdict dominates the ‘false’ verdict, and vice-versa.
On the right-hand side of Figure .4 (the red line) we see the iterations to termina-
tion. As is common with phase transitions, the ‘unknown’ verdicts take far less time
to compute than ‘false’ verdicts. We also observe that the iterations to termina-
tion increases at a faster rate than the ‘false’ verdict probability as it approaches 1.
This is supported by the observations made in Table .1, which showed a correlation
between progression graph size and time to termination.

The average time per iteration (in microseconds) is shown in Figure £.5 for the
same values of MAX_NODES as before. The shown times were obtained by running
jprogress on a fourth-generation Intel Xeon E5-1650 CPU (6 cores, 12 threads)

61

4. Reasoning under uncertainty

900 | 7

800 | 7

700 - 1

600 7

a1
o
o
T
I

o
o
s}
T
Il

Time per lteration (us)
8
o
1

n
o
o
T
I

100 [4

0
20 40 60 80 100 120 140 160 180

MAX_NODES

Figure 4.5: Average time per iteration =20 (right).

with 50GiB of RAM allocated to the JVM. For lower values of MAX_NODES, the time
per iteration is a bit unstable (i.e. yielding a high variance) due to the relatively low
number of iterations involved, but this value stabilises as the value of MAX_NODES
increases. This is because the first couple of iterations result in the construction
of the progression graph up to the limit imposed by MAX_NODES, after which any
extensions of the graph are followed by removals. Since the number of iterations
needed until termination increases over time, as shown in Figure .4, the initial time
penalty becomes increasingly less important for the average. We can also observe
that the time needed to perform an iteration is in the order of microseconds. This
indicates that this experimental setup can handle a high-frequency stream.

4.7 Summary

Path-checking is an important task for many safety-critical systems in which, given a
path and a temporal logic formula, a procedure must determine whether the path
satisfies the formula. Increasingly many safety-critical systems have to work with
incomplete and uncertain information, for example due to having a physical op-
erational environment shared with people. In this chapter, we therefore focused
on developing a procedure that allows for path-checking of MITL formulas, which
can be used to formally specify the desired behaviour of a system. The presented
path-checking approach is novel in that it considers situations wherein state infor-
mation may be incomplete, meaning that there may be a set of possible states, one
of which is known to be the ‘true’ state. Furthermore, we support assigning proba-
bilities to such hypothetical states. The combination of these two properties means

62

4.7. Summary

that we have to keep track of potentially many incrementally-available hypothetical
streams. The presented approach makes use of and extends the progression pro-
cedure originally introduced by Bacchus and Kabanza (1998). We are able to limit
the combinatoric explosion caused by incomplete state information by incremen-
tally constructing progression graphs that contain probability mass. To do so, we
make use of a formula simplification calculus which assists in the collapsing of po-
tentially many state streams into the same formula. While a progression graph can
in the worst case grow exponentially, the collapsing behaviour in combination with
removal heuristics can be used to limit the growth. The configuration of the heuris-
tics further allows for a trade-off between precision and speed; by choosing whether
to abandon low-probability state streams in favour of keeping the progression graph
small.

63

Chapter

Reasoning about space

press statements concerning the truth value of properties over time. Similar

to temporal statements, many autonomous robotic systems can also benefit
from or require the ability to make statements concerning spatial properties. This
chapter presents MSTL, which is a spatio-temporal logic that combines MITL with
qualitative spatial relations. We present and empirically evaluate techniques for de-
termining the truth value of MSTL-statements. We call the applications of these
techniques reasoning about space. This chapter includes and extends previously
published material (Heintz and de Leng, 2014; de Leng and HeintZ, 2016a) on spatio-
temporal stream reasoning.

I OGIC-BASED stream reasoning commonly makes use of temporal logics to ex-

5.1 Introduction

Qualitative spatio-temporal reasoning is concerned with reasoning over time and
space, in particular reasoning about spatial change (Cohn and Renz, 2008). This
chapter presents a logic for spatio-temporal stream reasoning, alongside the tools
required to incrementally evaluate spatio-temporal formulas in this logic. Further-
more, this chapter presents techniques that allow us to efficiently determine the
truth value of such a formula. Combining spatial and temporal reasoning can be ex-
tremely useful in situations wherein one deals with for example physical objects, as
it allows for the expression of spatial constraints that must hold over time. Consider
the following example concerning a quad-rotor.

Example 5.1 (Containment in a virtual box). A quad-rotor is a small unmanned aerial
vehicle that can be used in small spaces, for example indoors. In some cases, a quad-
rotor may have to share space together with humans. Safety conditions could include
restricting such a quad-rotor to a specific area of space, like a virtual box. An example

65

5. Reasoning about space

statement combining spatial and temporal constraints is as follows: “It is always the
case that if the UAV leaves the virtual box, it should be inside the virtual box within
five seconds.”

The constraints above are useful to detect situations where safety is compro-
mised. A different example concerns itself with the detection of suspicious activity
in order to prevent unsafe situations from occurring in the first place.

Example 5.2 (Perimeter monitoring). Consider a restricted area close to a public
road. The area’s perimeter is under surveillance by autonomous UAVs. A high-level
task planner is responsible for detecting and tracking intrusions. An example rule
could be expressed as: “If a moving object outside the perimeter stops moving for
more than 60 seconds, dispatch a UAV to that object.”

In the above example, a type of spatio-temporal behaviour can be detected
and responded to. Note that neither example deals with exact spatial coordinates.
Rather, spatial entities are referenced by their spatial relations. We therefore focus
on qualitative spatial relations when dealing with the spatial properties of objects.

5.2 Qualitative spatial reasoning

The Region Connection Calculus (RCC) was presented by Randell et all (1992) as a
calculus for topological reasoning over abstract regions based on their spatial rela-
tions. These regions are assumed to be composed of non-empty regions of topolog-
ical space that can be characterised in terms of sets of points. The calculus defines
and builds up spatial relations between regions from a primitive ‘connected’ relation
C(z,y), which has the intended meaning that (non-empty) regions 2 and y share at
least one point. Randell et all (1992) recursively define a set of 15 RCC relations
(including C) as shown in Table 5.1

RCC-8 is a subset of RCC that is composed of eight jointly exhaustive and pair-
wise disjoint relations that allow us to describe the topological spatial relations be-
tween regions. Using composition-table based reasoning in RCC-8 (Cui et all, 1993),
new spatial relations can be inferred from incomplete spatial knowledge. Figure .7
shows the eight qualitative relations that are considered by RCC-8 as well as their
transitions. The transitions are interesting in situations where observations of a pair
of regions yield non-adjacent spatial relations, because those intermediate and un-
observed relations can then be inferred.

Example 5.3 (Busy student). Suppose that we have a spatial configuration in which
we consider three regions student, office, and canteen. A robot observes that re-
gion student is strictly within region office, i.e. NTTP(student, office). Further, the
robot knows that region canteen is disconnected from region office, i.e. DC(canteen,
office). When asked whether the student is in the canteen, the robot cannot rely on
direct observations. In fact, the robot might even consider it likely for a student to
be in a canteen. By using the composition table for RCC-8, the robot can correctly
deduce the unobserved spatial relation DC(student, canteen).

66

5.3. Metric Spatio-Temporal Logic

Definition
Cz,y)
DC(z,y)
P(z,y)
PP(z,y)
EQ(z,y)
T=y
O(z,y)
PO(z,y)
DR(z,y)
TPP(z,y)
EC(w,y)
NTPP(z,y)

P! (z,y)
PP~!(z,y)
TPPfl(m,y)

NTPP~!(z,v)

Sdef tNY # D
=des —C(2,)

=def VZ[C(Z7fU) — C(Za y)]

Edef P(:va) A _'P(y7 .CU)
Edef P(l’,y) A P(y7 3:)
=des P(z,y) AP(y,)
=acs J2[P(2,2) AP(2,y)]

=Zdes O(z,y) A =P(z,y) A -P(y,z)

=def _‘O(CE, y)

=a4es PP(z,y) A 32[EC(z,z) A EC(2,y)]

Edef C(:L‘, y) A “O(QJ, y)
=qes PP(z,y)

A=3z[EC(z,z) A EC(z,y)]

=def P(y, 7)
=des PP(y,)
=4er TPP(y,)

=qey NTPP(y, 2)

Description
Connected
Disconnected
Part of
Proper part
Equals

Overlapping

Partially overlapping
Discrete from
Tangential proper part
Externally connected
Non-tangential
proper part

Inverse part of

Inverse proper part
Inverse tangential
proper part

Inverse non-tangential
proper part

O
O

DC EC

Table 5.1: Definitions for the 15 RCC relations.

TPP
/@\ /‘NTPP
O

AN NTPPi
PO

Figure 5.1: The eight qualitative spatial relations considered by RCC-8 and their
transitions as illustrated by regions x and y.

In the above example, the observed spatial relations are used to infer unob-
served facts about the world. This can be especially useful when there is a need for
information that is not easily observable, or even unobservable.

5.3 Metric Spatio-Temporal Logic

Several qualitative spatio-temporal reasoning formalisms have been created by com-
bining a spatial formalism with a temporal one. Examples are STCC (Gerevini and
Nebel, 2002) and ARCC-8 (Bennett et al!, 2002) which both combine RCC-8 with

67

5. Reasoning about space

Allen’s Interval Algebra (Allen, 1983). The ST; familyB (Wolter and Zakharyaschev,
2000) of spatio-temporal logics represent a language for reasoning over spatio-
temporal representations and offers such a temporalisation of RCC-8 using tempo-
ral operators. ST; member language ST, makes use of the temporal operators ‘it
will always be the case’ G, ‘at some point in the future’ F, and ‘at the next time-point’
X. lts extension ST; introduces spatio-temporal representations for spatial rela-
tions between two time-points through the ‘next’ operator, but does not attempt
to provide reasoning techniques that handle such instantaneous observations. One
problem is for example that ST, can refer to future states, which clearly causes dif-
ficulties when observations are assumed to be incremental over time. Furthermore,
the ST; family is a pure temporalisation of RCC-8 in the sense that it does not al-
low for expressing other (non-spatial) properties. This means that the domain of
discourse exclusively treats its objects as spatial entities in relation to each other. A
survey of other approaches that combine spatial and temporal reasoning techniques
is provided by Kontchakov et all (2007).

To make and evaluate statements about the spatial and temporal properties of
objects, we introduce a logic called Metric Spatio-Temporal Logic (MSTL), which
combines elements from MITL and RCC-8. MITL provides the ability to reason
over propositions in time, but does not include a spatial formalism. We extend these
languages by considering a finite domain composed of temporal objects that are spa-
tial in nature. MSTL is thus similar to ST, which temporalises RCC-8 but restricts
its language to spatial relations. Because MSTL is in part based on MITL, state-
ments in MSTL can contain both spatial relations and predicates. Note that since
we assume a finite, fixed domain of regions, these elements of MSTL are equiva-
lent to propositions, with universal and existential quantifiers being short-hands for
finite repetitions of conjunctions and disjunctions respectively.

Modelling intertemporal qualitative dynamics
Spatial relations are of the form R(r1, r2) where R is any of
{EC,EQ,DC,PO,NTTP, TPP,NTTP~!, TPP~'} (5.1)

and rq, o are spatial objects, also referred to as regions. We call this set Rg for
brevity to indicate that its elements correspond to the RCC-8 relations ‘externally
connected’, ‘equals’, ‘disconnected’, ‘non-tangential proper part’, ‘tangential proper
part’, ‘inverse non-tangential proper part’ and ‘inverse tangential proper part’ re-
spectively.

Definition 5.1 (MSTL syntax). Given an n-ary predicate P, binary spatial relation
Rs, variable or constant terms 14, . .., 7, and integers i, j € Z the following state-
ments are well-formed formulas (wffs) in MSTL:

Rg(XiThXjTQ) | P(11,...,7Tn) \Xiﬁ = X'7y (5.2)

8For consistency reasons we use the same typesetting for all logics; the original literature — as well
as the papers this chapter is based on — use a calligraphic version ST ; instead.

68

5.3. Metric Spatio-Temporal Logic

We will write T for XOT, Xt for XlT, and X~ 1 for X' as syntactic sugar. By
recursion, for wffs ¢ and 1 and variable x the following statements are also wffs in
MSTL:

oV OAY | P — Y| Va[o] | Tx[d] (5.3)

Finally, temporal notations are also defined by recursion for wff ¢, natural numbers
ni,no € N, and integers i € Z:

Xi(yb | G[n1,n2]¢ ‘ Gd) | F[n1,n2]¢ | F¢ | ¢ U[nhnz] qp (5-4)
Note that we apply the same syntactic sugar as for X over terms.

The syntax allows us to make complex spatio-temporal statements. Take for ex-
ample the following statement, where informally G means ‘it will always be the case’,
F means ‘at some point in the future’, and X means ‘at the next time-point’. The spa-
tial relation PO is contained in Rg and stands for ‘partially overlapping’.

Ver[Vealer # ea A Car(cr) A Car(ca) — (5.5)
(G(PO(Xeq, c2) A Speeding(c1) — F(PO(c1,¢2))))]]

This wff has the intended meaning ‘it is always the case that if a car is speeding and
tails another car, they will eventually collide’.

Because we are interested in statements over space and time, we make use of
spatio-temporal models for MSTL. It borrows the notion of a spatial assignment
function from the topological temporal model (tt-model) from ST;.

Definition 5.2 (Spatio-temporal model). A spatio-temporal model is a tuple of the
form M = (T,<,U, D, I, «a), where T represents a set of time-points, < repre-
sents an ordering over T', U represents the non-empty universe of the space as a set
of points, and D = (P, R) represents the domain consisting of predicates P and
spatial objects R. An interpretation I' € I maps predicates and constant terms to
‘P and R respectively for every time-point in T'. For constant terms this mapping will
be the same for all t, but for predicates this is not necessarily the case. A spatial as-
signment function « associates at every time-point in T' every spatial object label in
R to a subset of U. It is extended to interpret ‘next’ as a(X'r,t) = a(X" 7t + §)
for spatial object label r € R and integers i, j € Z.

From this definition it is clear that we are only considering objects that have
some spatial properties associated with them, expressed in the form of spatial re-
lations. Spatial objects therefore are also commonly called regions when we only
focus on temporal and spatial properties.

Definition 5.3 (MSTL semantics). The MSTL statement that a spatio-temporal for-
mula ¢ holds in M = (T, <,U, D, I,«) at time-point t € T is defined recursively

69

5. Reasoning about space

for integers i, j € Z.

Mt = P, ... 1) iff (I'(71), ..., I'(m)) € I'(P) (5.6)

Mt =V[g]iff Vr € R : M, t = ¢lz/r] (5.7)

M, t = 3z[¢]iff Ir e R : M, t = ¢lz/7] (5.8)

Mt = —¢iff Mt 1~ (5.9)

MitE oV YIf Mt = por Mt E (5.10)

Mt ¢ Uy,) 0iff 3 € [t+ty,t+to] - MU' = (5.11)
andvt" € [t,t") : M,t" E ¢

Mt = Xpiff Mt +i = ¢ (5.12)

Mt = C(Xim,Xjrg) iff a(ry,t+4) Na(ra, t+7) #0 (5.13)

From the RCC ‘connected’ spatial relation C, the usual semantics of all RCC-8rela-
tions can be recursively defined, but here they are left out for the sake of brevity.

Allowing for the ‘next’ operator to be invoked over region variables is a powerful
extension that makes it possible to refer to a particular region at the next time-point,
or by recursive application any past or future time-point.

5.4 Spatio-temporal inference with RCC-8

RCC-8 allows for both representation of observed spatial relations as well as the
inference of unobserved spatial relations. However, these observations are usually
assumed to be restricted to a single time-point rather than across different time-
points. To represent spatial relations across time-points, we can add a temporal
element. The addition of a ‘next’ operator X as initially proposed by ST can lead to
situations wherein regions at different time-points are considered. In what follows,
we explore the consequences to spatio-temporal inference when the ‘next’ operator
is used to describe relations across time-points, starting with the representation of
these relations.

Temporal constraint networks

While the ‘next’ operator allows for powerful representations, it complicates eval-
uation of those statements when we consider observations of the world to occur
within rather than across time-points. Spatial relations for regions can be partially
observed at time-point ¢ and at time-point ¢ + 1 independently, but no observations
can be made with regards to the spatial relations between regions at time-point ¢
and regions at time-point ¢ + 1. To better illustrate how these concepts relate, we
introduce the spatial relation matrix as a representation of constraint networks.

Definition 5.4 (Spatial relation matrix). Given a spatio-temporal model M, a spatial
relation matrix is an n x n matrix M* for time-point t € T where n denotes the total

70

5.4. Spatio-temporal inference with RCC-8

number of region variables | R|. For every matrix element M} . ; and region variables
ri,r; € R we have M ; = (r;Rr;) such that R C Rg and R # (). The semantics
of M are then as follows.

M}y = (riRry)iff Mt = \/ Ri(ri,r)) (5.14)
RrER

The spatial relation matrix allows us to intuitively represent spatial facts about
regions and corresponds to a complete RCC-8 network. The main diagonal always
consists of the singleton {EQ}. Further, the matrix is semi-symmetric; symmetry
holds for all relations except for NTTP and TPP, which have inverses NTTP!
and TPP ! respectively. Existing general solvers for qualitative CSPs can be used to
determine the algebraic closure of spatial relation matrices, i.e. given spatial relation
matrix M?, the algebraic closure AC'(M?) yields a spatial relation matrix N* such
that for every corresponding set of spatial relations Nf}j - ij C Rs. Asmall
example of a spatial relation matrix for regions r1, 5, 3 at time-point ¢ with partial
knowledge is shown below.

{EQ} {NTTP™'} {PO,EC}
M! = | {NTTP} {EQ} {DC} (5.15)
{PO,EC} {DC} {EQ}

Region 74 is inside of region r; but disconnected from region r3, and region ry is
partially overlapping or externally connected with region 3.

A spatial relation matrix can be extended to describe relations between multi-
ple time-points. This is a useful property because it allows us to describe relations
between regions at different time-points that are not necessarily consecutive.

Definition 5.5 (Intertemporal spatial relation matrix). An intertemporal spatial re-
lation matrix M*'+'2 js a spatial relation matrix describing the spatial relations be-
tween regions r;,7; € R such that we relate r; at time-point t, to r; at time-point
to, i.e. relating o(r;, t1) to a(r;, t2).

A spatial relation matrix M? from Definition 5.4 is then equivalent to an in-
tertemporal spatial relation matrix M%t. Intertemporal spatial relations can thus
be represented by an intertemporal spatial relation matrix. For the ‘next’ operator,
this would for example be M**+1. However, we assume that these relations are
unobservable and must somehow be inferred from our observations at time-points
tandt + 1, represented by M? and M1,

By combining the four different combinations for intertemporal spatial relation
matrices over two time-points ¢; and ¢, we can concisely describe in one matrix
the relations between regions at single time-points as well as the relations between
those regions at different time-points. This corresponds to an RCC-8 network in
which every region is contained twice, i.e. once for every time-point.

71

5. Reasoning about space

Definition 5.6 (Extended spatial relation matrix). Anextended spatial relation matrix
MUY fort; < to combines four intertemporal spatial relation matrices as follows:

(5.16)

ti,t ti,t2
ytuts _ [MB M
T Mit2otr o ptest2

In general, spatial relation matrices can be used to represent uncertainty for spa-
tial relations between regions by using non-singleton sets. This is important because
often we can not deduce that a single relation must hold. We can use extended
spatial relation matrices to talk about the spatial relations both within individual
time-points and between time-points. This makes them a suitable representation
tool for intertemporal RCC-8 networks when considering the problem of deducing
unobservable intertemporal relations.

Intratemporal inference

Intratemporal inference with RCC-8 assumes that all spatial relations are observed
within the same time-point, i.e. A% for some time-point ¢. In this case, M** rep-
resents a constraint network for a single time-point, for which it may be possible to
reduce the uncertainty of spatial relations between regions based on the observed
spatial relations between other regions. It is possible to apply composition table
based reasoning for RCC-8 to this effect. A composition table presumes regions 7,
j, and k such that the spatial relations for (7, j) and (j, k) are knowns, and presents
the possible spatial relations that may exist between regions (i, k).

Gantner et al] (2008) present the Generic Qualitative Solver (GQR) which can
be used to perform qualitative reasoning on a number of calculi, including RCC-8.
They make use of the path consistency algorithm shown in Algorithm B.3], based
on the path consistency algorithm by Mackworth (1977). The algorithm takes a
constraint network and produces a refined constraint network in O(n?) time and
O(n?) space. Path consistency continuously updates spatial relation C;;, by com-
puting C;,N(C;;50Cy), utilising a third variable j. These updates can be performed
based on a composition table.

Intertemporal inference

Sometimes we want to talk about spatial relations between regions at different time-
points. By following the example of ST, we can extend our definition of region
symbols accordingly. If ‘region’ is a region symbol, then ‘X(region)’ is also a region
symbol, such that «(X(region,t)) = «(region,t + 1). This allows us to refer to
regions at different time-points using the same region symbol ‘region’. However, this
also complicates the semantics of the mapping «. From its definition, it is clear that
we are referring to the same universe of points, but it is not clear whether o(z, t) =
a(x,t + 1) for all time-point ¢, or whether it is possible that a(x,t) # a(z,t + 1)
for some time-point ¢. In this dissertation we will assume space itself to be rigid.

72

5.4. Spatio-temporal inference with RCC-8

Algorithm 5.1: Path consistency (Gantner et all, 2008)

function PATH-CONSISTENCY ((V, C)):
Q+{(,j)|1<i<j<n}
while @ is not empty do

1
2

3

4 select and delete an (3, j) from @
5 fork < 2ton,k #iNk+# jdo
6 t + Ci N (Cy5 0 Ciix)

7 if t # Cii then

8 Cip + t

9 Cri <t~

10 Q+ QU{(i,j)}

11 end

12 t < Cii N (Cri o Ciy)

13 if t # Cy; then

14 Crj 1

15 Cip 1t~

16 Q«+ QU{(k,j)}

17 end

18 end

19 end

20 return (V,C)

Definition 5.7 (Rigid space assumption). The rigid space assumption assumes that
space itself is fixed across time, i.e.

JGteTlxeR — alx,t) # alr,t+1) (5.17)
for time T', regions R, and spatial assignment function c.

Reasoning alone thus does not allow us to say anything about intertemporal rela-
tions, represented by M*1+%2 and M ?2-!1 in extended spatial relation matrices. These
relations cannot be observed, nor can they be inferred from individual time-points.
Concretely, observations are limited to M *1-*1 and M*2-*2. This may seem counter-
intuitive, but this is because humans often assume a frame of reference when ob-
serving spatial changes over time. One way around this problem is therefore to
make assumptions about some or all intertemporal relations represented by M 12
and M*-'1 in order to establish such a frame of reference. Effectively this corre-
sponds to ‘pegging’ only these landmark regions to the space they occupy, allowing
outside space to warp relative to the landmarks and fixing the frame of reference.
The set of landmarks is indicated by LM C R. For all landmarks z € LM, the
a-mapping is fixed such that a(z,t) = a(z,t + 1) for allt € T. By using a con-
sistent set of landmarks, it is possible to infer intertemporal relations based on the
spatial relations between non-landmark and landmark regions. Additionally, since
the landmark regions are rigid, the spatial relations between landmark regions do
not change.

73

5. Reasoning about space

Definition 5.8 (Landmark). A landmark given a set of region variables R over any
two time-points t,t + 1 is a region variable r € R that is rigid between t and t + 1,
i.e. EQ(r, Xr). The set of landmarks is indicated by LM C R such that r € LM
implies that landmark r is rigid.

Example real-world landmark candidates are e.g. buildings, lakes, monuments,
trees, and roads. These physical entities are unlikely to change during the run-time
of a system, and therefore provide a reasonable frame of reference. An immediate
effect of landmarks being rigid is that their relations to other landmark regions re-
main unchanged. Effectively, the set of landmarks £M provides a possible frame of
reference with respect to which relations may change over time. Since this affects
the truth semantics of statements in MSTL, we introduce a landmark extension to
the spatio-temporal model to capture this.

Definition 5.9 (Landmark-based spatio-temporal model). A landmark-based spatio-
temporal model is a spatio-temporal model

Mepm = (T, <,U,D,I,arrm) (5.18)

and LM C R represents the landmark set. LM then restricts « such that for
all time-points t € T and all landmark regions r € LM it is the case that
alr,t) = a(rt+1).

Landmarks may introduce inconsistencies if we make observations that conflict
with the landmark-imposed restriction of a.. To illustrate how this might happen,
consider an example where at time-point ¢ we make the observation PO(rq1,72),
and at time-point ¢ 4 1 we make the observation DC(r1, 72). If we only consider the
individual time-points, there is no problem. The following extended spatial relation
matrix illustrates our ignorance of the intertemporal spatial relations M%>*2 and
M2ty
{EQ} {PO} Rs Rs
{PO} {EQ} Rs Rs

Rs Rs {EQ} {DC}
Rs Rs {DC} {EQ}

However, if we use landmarks, the choice of LM results in an assumption about
some intertemporal relations. Choosing LM = {ry, 2} is inconsistent, because it
implies that regions r; and 5 need to be partially overlapping and disconnected
at the same time, which is a contradiction. Instead picking LM = {r;} is consis-
tent, and one could imagine region r, ‘moving away from’ region 1. Naturally, the
converse holds as well if we pick region ry as our frame of reference.

We can show that consistency is guaranteed if only one landmark is chosen, and
the above example shows that this does not always hold for the case of |[LM| >
2. Picking a single landmark corresponds to the case of adding a single connection
between two disconnected RCC-8 networks for different time-points. To further
illustrate the impact of the choice of LM, consider again the scenario above and

MVt — (5.19)

74

5.5. MSTL progression

suppose we wish to evaluate the formula G(EQ(r1, Xr1)) at time-point ¢. Choosing
LM = {r1} means this formula will evaluate to True, i.e.

My, t = G(EQ(ry, Xry)). (5.20)
Choosing LM = {ry} means this formula will evaluate to False, i.e.
Myt = G(EQ(r1, X)), (5.21)
Choosing any other consistent LM we can only conclude
M, t = GEQ(r1, Xr1)) V —(G(EQ(r1, Xr1))); (5.22)

we cannot say for certain which one is true. This is specifically caused by the choice
of landmark in combination with the observations at the two time-points. The fol-
lowing two statements then hold for the same two observations described earlier:

M{r1}7t ': G(EQ(’I‘17XT1)) N _\G(EQ(T’Q,XTQ)) (523)
M{7.2}7t l: G(EQ(T‘Q,XTQ)) A ﬁG(EQ(T'l,XT'l)) (524)

This clearly shows how landmark choice shapes the frame of reference within which
MSTL statements may hold.

5.5 MSTL progression

In stream reasoning, information is assumed to become incrementally available. Re-
call that progression is a technique for evaluating temporal logic formulas where we
try to determine the truth value of the formula based on the information received
thus far. This makes it possible to sometimes determine the truth value foran MSTL
formula without having to wait for the entire stream to arrive. However, MSTL pro-
gression differs from MITL progression in that MSTL formulas can combine infor-
mation from multiple time-points due to the introduction of the ‘next’ operator over
region terms. This would first require such terms to be rewritten such that they refer
to past regions, after which progression has to potentially take into account multi-
ple states if intertemporal spatial relations are used. The former can be achieved by
adding additional rewriting rules that extract the ‘next’ operator, whereas the latter
can be achieved by using landmarks and multiple hypotheses as introduced earlier.

Rewriting rules for ‘next’

In order for progression to be applicable to MSTL, some changes are needed to deal
with the spatial relations. In particular, the application of temporal operators to spa-
tial objects needs to be handled before progression can operate on the propositions
in a wff.

By combining temporal with spatial reasoning, we effectively need both tempo-
ral and spatial evaluation methods. For every step in the progression, spatial reason-
ing is performed within that step. This however does not include spatial reasoning

75

5. Reasoning about space

between different time-points. Therefore, progression needs to be extended to han-
dle intertemporal relations that are the result of the ‘next’ operator in MSTL. This
gives rise to additional rewriting rules based on occurrences of the ‘next’ operator.

Progressing the ‘next’ operator when it occurs in front of wffs in MSTL corre-
sponds to rewriting that formula by removing the operator, i.e. during progression
X¢ is rewritten to ¢ for wff ¢. The following proofs show equivalences for occur-
rence of ‘next’ excluding intertemporal relations, and make use of the semantics
presented in Definition b.3.

Proposition 5.1 (Next and negation). ‘Not at the next time-point’ is equivalent to ‘it
is not the case at the next time-point’, i.e.

= —XR(x,y) <> X=R(x,y). (5.25)

Proof. Decomposing bi-implication into cases:

(=) Assume M,t = —XR(z,y) holds for some arbitrary M and ¢. From the
semantics of negation this means M, t = XR(z, y). According to the semantics of
X, this is equivalent to M, ¢t + 1 = R(z,y), thus

M,t+ 1 —R(z,y). Reintroducing X then yields M, t = X—R(x,y).

(<) Analogous to the above in reverse order. [|

Proposition 5.2 (Next and always). The ‘next’ operator can be integrated into the
interval of an ‘always’ operator, i.e.

': G[tth]XR(x,y) < G[t1+17t2+1]R(l’,y). (526)

Proof. Decomposing bi-implication into cases:

(=) Assume M, t |= Gy, 1+, XR(x,y) holds for some arbitrary M and ¢. From
the semantics of G, this means Vt; < t/ < t5 : M,t' = XR(z,y) holds. By defi-
nition of X, for every t’ we get M,t' + 1 = R(z,y). Reintroducing the universal
quantifier, we get Vi, + 1 <t/ <ty +1: M,¢ = R(x,y). Reintroducing G, this
yields M, t' &= G[t1+17t2+1]R<3§, Y).

(<) Analogous to the above in reverse order. [|

Proposition 5.3 (Next and eventually). The ‘next’ operator can be integrated into
the interval of an ‘eventually’ operator, i.e.

= F[tl,tz]XR(may) Ans F[t1+1,t2+1]R(3Cay)- (5.27)

Proof. Analogous to the proof of Proposition .2, replacing quantifiers ¥ and tem-
poral operators G by 3 and F respectively. |

76

5.5. MSTL progression

The ‘next’ operator can also occur inside intertemporal relations R(xz, Xy). In
this case, it is not possible to evaluate R(xz, Xy) at the current time-point, because
the relation depends on a future state of . To work around this problem, we make
use of the ‘previous’ operator X, which is the inverse of the ‘next’ operator. The
following proofs show equivalences for ‘next’ involving intertemporal relations, and
make use of the ‘previous’ operator.

Proposition 5.4 (Extract next). The ‘next’ operator can be extracted from terms, i.e.

E XR(z,y) + R(Xz, Xy). (5.28)

Proof. Decomposing bi-implication into cases:

(=) Assume M, t = XR(x, y) holds for some arbitrary M and ¢. From the seman-
tics of X, this means M, ¢ + 1 |= R(z,y). Further, we have a(z,t + 1) = a(Xz, 1)
for any region z, so we get M, t = R(Xx, Xy).

(<) Analogous to the above in reverse order. [|

Proposition 5.5 (Partially extract next). The ‘next’ operator can be subtracted from
terms, i.e.
E R(z, Xy) + XR(X z,y). (5.29)

Proof. Decomposing bi-implication into cases:

(=) Assume M, t = R(x, Xy) holds for some arbitrary M and ¢. From the seman-
tics of X over regions, we have a(z,t) = a(X™ z,t 4+ 1) and a(Xz,t) = a(z,t + 1)
for any region z. Therefore this is equivalent to

M,t+1E RX z,y) (5.30)
when applied to regions x and y respectively. Introducing X then yields

Mt EXR(X z,y). (5.31)

(<) Analogous to the above in reverse order. [|

The ability to rewrite MSTL formulas such that occurrences of ‘next’ over re-
gions are either removed or replaced by ‘previous’ is vital for stream reasoning, be-
cause it allows for the delayed evaluation of formulas so that, at the time of evalu-
ation, they only refer to the current and previous state(s) of the world. This makes
the earlier-presented landmark approach applicable in a stream reasoning context.

77

5. Reasoning about space

Algorithm 5.2: Progression adapted for MSTL

function PROGRESS-MSTL (¢, I*, {Mo, ..., Mn_1}, LM, D, G, Q):
expand quantifiers in ¢ using domain D

simplify ¢ using SIMPLIFY and Propositions 5.1-5.5 to extract ‘next’
compute AC for combinations of M; and LM used by ¢

apply the AC to I” to obtain a set of m hypotheses p = {I§, ..., I},_1}
return GRAPH-PROGRESS(G, p, Q)

o A W N R

MSTL-adapted progression with incomplete information

Recall that the simplified progression procedure, as presented in Algorithm B.7, does
not handle multiple hypotheses, while we know that composition table-based RCC-
8 reasoning can yield multiple such hypotheses corresponding to different consistent
spatial configurations. This is due to the topological space, as modelled through the
a mapping, not being directly available in practice. In Chapter f, we consider the
state stream synthesis needed to generate sets of states containing RCC-8 relations.
This provides us with a realisation of the partial knowledge about the topological
space. Given a stream containing sets of states pertaining to the RCC-8 relations, we
can then apply progression under uncertainty as presented in Chapter @. This does
however require changes to accommodate the usage of relations and predicates
with a finite domain of spatial objects.

The MSTL-adapted progression procedure PROGRESS-MSTL is shown in Algo-
rithm B.2. It takes a wff ¢, a state I, spatial relation matrices M, a set of landmarks
LM, adomain D containing spatial objects, a progression graph G, and a cache).
Note that the value of N depends on the range of the intertemporal spatial relations
occurring in ¢. It then expands the universal quantifiers in ¢ into a conjunction over
all spatial objects in D, and the existential quantifiers similarly into a disjunction. It
then simplifies the formula by using the simplification procedure in Algorithm B.3
together with the extraction rules of ‘next’. Once this is done, it computes the alge-
braic closure for the combinations of M; used in ¢, using a CSP solver. This produces
a set of possible spatial configurations, which are joined with I* to produce a set of
m hypothetical states p. These hypotheses are then fed to the progression graph as
usual, using GRAPH-PROGRESS listed in Algorithm .2,

5.6 Empirical evaluation

Thus far we introduced a logic for spatio-temporal stream reasoning and a number
of methods for the evaluation of formulas in that logic. In the following, we provide
experimental results measuring the impact of separating static and dynamic compo-
nents in RCC-8 scenarios, and the impact of landmarks on the disjunction size after
applying an algebraic closure to intertemporal RCC-8 scenarios.

78

5.6. Empirical evaluation

100

80

60

40

Probability (%)

20

n 500 20 d

Figure 5.2: The probability of satisfiability of CSPs drawn from A(n,d,4.0) =
A’(n,d,4.0,1.0) for varying numbers of regions n and varying degrees d. A phase
transition can be observed to occur for d € [5, 15].

Caching spatial relations between rigid objects

The spatial reasoning is mainly dependent on the number of variables, the number
of constraints (degree) and the label size (Renz and Nebel, 2007). In the experiments
we try to estimate the function A’(n,d, [, r) by measuring the execution time on
instances with the number of variables n, degree d, label size [and ratio of dynamic
variables r. The number of variables can be divided in a dynamic part vy = r x v
and a static part vy = v — v4. The expected degree is the expected number of
relations from a given dynamic variable to other variables. The expected label size is
the expected size of the disjunction of RCC-8 relations for a given relation between
a dynamic variable and some other variable.

Using basically the same method as Renz and Nebel (2001) we evaluate the effect
of precomputing the algebraic closure of the static variables, compared to comput-
ing the whole algebraic closure for each time-step. In accordance with the method-
ology proposed by Renz and Nebel (2001), problems are randomly generated for
different values for n and d, with the label size fixed to | = 4.0. First, nd/2 edges
are selected out of the n(n — 1)/2 possible edges, using a uniform distribution. For
these edges, one RCC-8 relation is assigned at random, and the remaining relations
are added with a probability of (I — 1)/7 for each such relation. For the remaining
edges, the universal relation is assigned. Generating problems with the help of this
methodology results in the satisfiability graph shown in Figure b.2, which also shows
the phase transition identified by Renz and Nebel (2001) by averaging over 500 runs.
The phase-transition occurs where the majority of problem instances flip from being
satisfiable to being unsatisfiable.

79

5. Reasoning about space

SRR <O
SIS

SSKS N e,
I
ST
SIS

Time (ms)

Time (ms)
Time (ms)

Figure 5.3: Average time per iteration in milliseconds for four different cases. The
top left shows the average time in milliseconds for A(n,d,4.0). The top right
shows an increased cost after one iteration when separating the dynamic compo-
nent A/,(n,d, 4.0,0.25) from the static component A’ (n, d, 4.0,0.25). The bottom
row shows how the one-time overhead imposed by computing the static and dy-
namic components separately decreases, for three (bottom left) and five (bottom
right) iterations respectively.

Using this methodology, we can separate static regions from dynamic regions
and precompute the algebraic closure for the static component before consider-
ing dynamic regions. The mean performance results of the former are denoted by
A(v, E(deg),4.0). For the mean performance results of the dynamic component
of the latter, the notation A/,(n,d,4.0,7) is used. The performance experiments
used values of d ranging from 1 to 20 with step size 1, and values of n ranging from
20 to 500 with step size 20. The value of r was chosen to be constant, » = 0.25;
similar results are obtained for different values of r, which are characterised by the
moving of the phase transition from Figure b.2. For each combination we took the
average over 100 runs. The average metric was chosen to account for the difference
in distribution between the satisfiable and unsatisfiable problem instances.

Figure B.3 shows the impact on runtime for computing the algebraic closure of
the generated CSPs by averaging over 500 runs. The top left graph shows the run-
time in milliseconds for estimating A(n, d,4.0) = A’(n,d,4.0,1.0). This is the base

80

5.6. Empirical evaluation

case without separating out a static component, hence it is equivalent to » = 1.0.
The top right graph shows what happens if we separate out the static component
Al (n,d,4.0,0.25) from the dynamic component A;(n,d, 4.0,0.25). There is clear
additional overhead for the low values of d corresponding to problems with a high
probability of satisfiability, and the converse for high values of d. However, since
the static component is only computed once, we are also interested in the impact
over time. The bottom left and bottom right graphs therefore show the average
per-run time performance after three and five runs respectively, which show the
impact of the initial overhead diminishing, After five runs, even problems around
the phase transition for n < 500 see gains as the result of separating out the static
component from the dynamic component. The choice of whether or not to separate
the two thus depends on the expected number of re-uses of the static component
A’ (n,d,4.0,0.25), which is likely to be high in the context of stream reasoning ap-
plications.

The exact times of course depend on the system on which the computations are
performed. The results listed here are the product of a system containing a fourth-
generation Intel Xeon E5-1650 CPU (6 cores, 12 threads) with access to 64GiB of
RAM, utilising the General Qualitative Reasoner (GQR)E by Gantner et all (2008),
configured for RCC-8. The results show that processing streams at over 1Hz is still
possible even for problems near the phase transition involving 500 regions.

Effectiveness and scalability of landmarks

In order to empirically evaluate MSTL with landmarks we ran experiments to test
the effectiveness and the scalability of the landmark based approach compared to
the case where no landmarks were used. In these experiments, we were only in-
terested in consistent scenarios, to capture the operational real-world domain. In
particular, we are interested in the effects of landmarks on the resulting intertem-
poral disjunction size for non-landmark to non-landmark relations.

When considering two time-points ¢; and t4, the problem of generating scenar-
ios is given a consistent scenario with landmarks for time-point ¢; generate a con-
sistent scenario with those same landmarks for time-point ¢5. To achieve this, we
make use of a variation of the scenario generation method presented earlier. Sce-
narios for a single time-point are generated based on the number of (non-landmark)
regions n and the average disjunction size [. We extend this by also considering the
number of landmarks m such that n + m = |R|, and again fixing parameter [= 4.
Our parameter combinations consist of varying numbers of regions between 20 and
200 with step size 20, and varying landmark ratios relative to the number of regions
(i.e. m/n) between 0 and 0.9 with step size 0.1.

The initial ‘seed’ for a scenario covers the landmark regions and their relations
to each other. In our experiments we generated 30 such seeds per parameter com-
bination. Here we are only interested in a consistent scenario with complete knowl-

9The GQR implementation is available at https://github.com/m-westphal/gqr.

81

https://github.com/m-westphal/gqr

5. Reasoning about space

b
©

»
o

>
IS

4.2

Disjunction size

02 0.1
0.3
05 0.4

06

Regions 200 0.9 8 Landmark Ratio

Figure 5.4: Absolute disjunction size for varying number of regions and landmark
ratio; smaller is better.

edge, so GQR is used to generate consistent interpretations of scenarios. These fully
known seeds can then be used as the basis for a larger spatial relation matrix by
adding further regions until we obtain the desired | R| regions. The number of CSPs
generated from a seed was kept constant at 20. Note that these CSPs then all share
a seed as a common component. We can therefore combine two CSPs that share a
common seed. Excluding combinations that involve the same CSP twice, given 30
seeds and 20 CSPs per seed we get 30 x (20 x (20-1))/2 = 5,700 instances for each
parameter set.

The results of our experiments are illustrated in Figures p.4 and B.5, where ev-
ery point represents the average over 5,700 instances. In Figure b.4, the number of
regions and the landmark ratio are changed to see how they affect the disjunction
size of non-landmark to non-landmark spatial relations. Here we limit ourselves
to the average over the spatial relations that are not fully unknown. The results
show that the more landmarks are added, the less uncertainty in terms of disjunc-
tion size is measured for these relations, reaching a disjunction size of about 4 for a
landmark ratio of 0.9. The landmark approach is also scalable in terms of the num-
ber of regions. This is also shown in Figure B.5, which illustrates the percentage of
non-landmark to non-landmark intertemporal relations that remain fully unknown.
Previously, we could not say anything about these relations, as illustrated by the
percentage of fully unknown relations being 100%. Using landmarks, this is reduced
to 30% for landmark ratio 0.9, but having a landmark ratio as low as 0.1 results in an
improvement of roughly 20%.

82

5.7. Summary

100

80

60

40

20

Fully unknown relations (%)

0.2

0.3
05 04

7 0.6
Landmark Ratio

0.
Regions 200 09 08

Figure 5.5: Percentage of relations fully unknown for varying number of regions and
landmark ratio.

5.7 Summary

While spatial extension to temporal reasoning have been investigated in the past,
these works have not specifically focused on the application of these resulting
spatio-temporal logics in a stream reasoning context. We presented MSTL, a met-
ric spatio-temporal logic that combines MITL and RCC-8 qualitative spatial calcu-
lus. Similar to ST, MSTL allows for the application of the ‘next’ operator to re-
gion terms, which makes it possible to express intertemporal spatial relations be-
tween regions. Since qualitative intertemporal spatial relations cannot be observed
directly, a frame of reference formed by landmark regions is used to reduce the un-
certainty of the intertemporal spatial relations. To facilitate incremental reasoning
over streams, the generation of state streams is discussed. These state streams are
used to progress MSTL formulas using an extension of the classical progression pro-
cedure for MITL. This makes it possible to apply path checking to MSTL formulas,
which is useful in applications such as execution monitoring.

83

Part Il

ADAPTIVE STREAM PROCESSING

Chapter

State stream synthesis

used to represent streams. That way a prefix of an w-word could be used
to model the observed stream, with the suffix representing the part of the
stream that is yet to be observed. The problem focused on here is how to synchro-
nise a stream that could be represented using prefixes. As this is not a primary fo-
cus for this dissertation, this chapter primarily serves as a chronological overview
based on observations made during the research, utilising parts of earlier publica-

tions (Heintz and de Leng, 2013; de Leng, 2013; de Leng and Heintz, 2014, 20153,p).

T EMPORAL models have thus far been presented as w-words, which can be

6.1 Introduction

The goal of state stream synthesis is to generate a stream containing state infor-
mation on demand. This requires utilising stream processing to capture and refine
observations such that they can be used for the grounding of logical propositional
or predicate symbols, and to synchronise potentially many such streams such that
state information can be delivered at a regular time interval.

The type of stream processing considered here is therefore different from the
type of stream processing research commonly found in the context of Big Data and
distributed systems. In those areas, the problem focus is on the speed at which
streaming data is processed. Indeed, as has also been pointed out more recently
by (2018), many stream processing tools and languages have been de-
veloped with differing emphases on for example performance (e.g. the use of win-
dows and parallelisation), generality (e.g. language extendibility), and productiv-
ity (e.g. ease of adoption). One example of a language for stream processing is the
CAL Actor Language (Eker and JannecK, 2003), which is a language for describing
low-level operations at the stream transformation level, whereas stream process-
ing languages like the Continuous Query Language (CQL) by Arasu et al] (2004) in-

87

6. State stream synthesis

Shroud

Fast

Observation

Interpretation

Knowledge |
Slow Verdict Response
Low _ High
abstraction * abstraction

Figure 6.1: The stream reasoning waterfall model with the transformation of obser-
vations into knowledge via interpretations highlighted.

stead take a SQL-like declarative approach, with the added benefit of being easy
to adopt by those familiar with SQL. An example for a larger stream processing ar-
chitecture is Apache Flink (Carbone et all, 2015), which emphasises high-velocity
distributed stream processing at a meta-level. Instead of focusing on throughput,
the work presented here focuses on the qualitative aspects of stream processing.
Of particular interest is the issue of generating a synchronised stream with state
information based on some user-requested grounding, which is characterised by a
mapping from logical propositional or predicate symbols to stream objects. This first
requires a choice of data model for streams, combined with a way of accessing parts
of individual states. Since different stream processing languages assume different
data models (e.g. RDF stream processing assumes the RDF data model for streams,
as will be discussed later in Chapter [[7), it may not be possible to use pre-existing
stream processing languages. Recall the stream reasoning waterfall shown again in
Figure B-7 with the transformation from observation to knowledge via interpreta-
tion highlighted. The data model concerns are captured by the interpretation step,
which in part deals with the problem of representation. Finally, the knowledge step
incorporates background theories and allows for implicit information to be made
explicit.

In this chapter, we consider these transitions in relation to previous work and
the lessons learned. In particular, we give an overview of different kinds of stream
subscriptions, and consider how these could be used to synthesise state streams for
the purpose of stream reasoning by applying a synchronisation procedure. We also
briefly consider the problem of incorporating background knowledge given such a
state stream. Chapters [] and B then focus on the robust maintenance of stream
subscriptions.

88

6.2. Timed data streams

6.2 Timed data streams

Timed data streams were originally informally discussed in Chapter B. They are a
specific instance of the stream concept, which we consider to be a sequence of time-
stamped values.

Definition 6.1 (Timed data stream). A timed data stream is an unbounded sequence
of time-stamped values

((l07’U07t0)7(llvvhtl)a-") (61)

where v; € V represents a (structured) value, I; € Var represents a variable name,
and t; € T represents a time-point.

The individual triplets that make up a stream are referred to as data samples.
Streams are assumed to flow from a source that generates the stream’s samples to
a receiver that consumes those samples. This connection is referred to as a chan-
nel, which can be realised by a transportation mechanism and annotated with meta-
information such as a label. These channels are closely related to subscriptions. A
subscription is a statement of interest in a sequence of data samples that conform to
a particular description provided by an interested client. Such a statement of inter-
est usually leads to the establishment of a channel between a stream provider and
the aforementioned subscribing client. Subscriptions are therefore a useful starting
point for synthesising a state stream that can be used for stream reasoning. Recall
that streams can be regarded through an internal view, in which a stream is seen
as a sequence of states, and an external view, in which a stream is seen as an ob-
ject with associated properties. Consequently, there are different interpretations of
what subscription entails. In general, a subscription can be regarded as an expres-
sion of interest with the goal of receiving said thing of interest. One might therefore
identify a stream by name subject to certain constraints as an expression of interest,
which can be regarded as a syntactic subscription. Alternatively, one might instead
identify desired states based on semantic characteristics, which can be regarded as
a semantic subscription.

6.3 Syntactic subscriptions

When setting up a syntactic subscription, one describes a desired stream by iden-
tifying one or more source streams and constraints. For example, it is common to
see multiple streams get combined and filtered according to a set of logical con-
ditions. Query languages are used to describe the specifications of such a desired
stream, and it is the task of a stream processing engine to apply the necessary oper-
ations. There is therefore a need for a query language that is designed to be compat-
ible with the stream model described informally in Chapter g, in which a stream is
characterised as a sequence of samples containing potentially multiple named fields
containing values. It is to this end that the languages SPL and FSL were developed.

89

6. State stream synthesis

VO N AW N e

=
o

1
12
13
14
1
16
17
18
19
20
21
2

[N

«

N

2
24
2
26
2
28
29
30
31
3
33
34
35

w

«

~N

[N

decl

decls
source_decl
sink_decl
compunit_decl

stream_decl
type_decl
basic_type
complex_type
type

stream
streams
stream_term

select_exprs
select_expr
where_exprs
where_expr
field_id
pstring

value

stream_constraints

stream_constraint

Listing 6.1: Formal grammar for SPL.

source_decl | sink_decl | compunit_decl |
stream_decl ;

decl \ decl SEMICOLON decls ;

'source’ type_decl STRING ;

"sink’ stream ;

'compunit’ type_decl STRING LP
type_decl (COMMA type_decl)* RP ;
"stream’ NAME EQ stream ;

basic_type | complex_type ;

NAME COLON type ;

LP basic_type (COMMA basic_type)* RP ;

"int' | 'float’' | 'string' | 'boolean’ ;

stream_term 'with' stream_constraints ;

stream | stream COMMA streams ;

STRING

| STRING LP streams RP

| 'sync’' LP streams RP

| '"merge’ LP streams RP

| LP 'select’ select_exprs 'from' stream
('where’ where_exprs)? RP ;

select_expr | select_expr COMMA select_exprs

field_id ('as' pstring)? ;

where_expr | where_expr 'and’ where_exprs ;
field_id EQ value ;

STRING | STRING DOT field_id ;

STRING | STRING? PERCENT field_id PERCENT

pstring? ;

STRING | NUMBER

stream_constraint \ stream_constraint COMMA
stream_constraints ;

"start_time’' EQ NUMBER | 'end_time' EQ
NUMBER | 'max_delay’ EQ NUMBER |

"sample_period' EQ NUMBER |
'sample_period_deviation' EQ NUMBER ;

Stream Processing Language

The Stream Processing Language (SPL) was originally designed by Hongsld (2012)
and HeintZ (2013), and was inspired by the Structured Query Language (SQL) used
in many relational database management systems (RDBMS). SPL is typically used to
filter existing streams through selection and to combine streams through merging
or synchronisation, and contains the option to set policy constraints. Additionally,
aliases can be used to resolve conflicting field names and to improve readability.

However, SPL initially had a number of issues, the most critical being the lack

of support for transformations stemming from its design. SPL was modified and

90

6.3. Syntactic subscriptions

Listing 6.2: Example SPL statements.

1 sl = select output as value from somestream where id = uavl
2 s2 = select output as value from cu(somestream, anotherstream)
where id = uavl

w

s3 = merge(sl, s2)
s4 = sync(sl, s2) with sample_period = 100
sb = select * from (select * from sl) where value =0

[SINN

extended to address these shortcomings, and its formal grammar is shown in List-
ing .. The language provides two key features: stream manipulation support and
knowledge process declaration support. The stream manipulation support allows
for the selection, synchronisation and merging of streams. Knowledge process dec-
laration support allows for the declarative specification of a stream transformation
instance by describing sources, sinks and computational units.

Example 6.1 (Example SPL statements). Consider the statements shown in Listing
B.Z. The first two statements are select statements, where the first is called a simple
select and the second a complex select. For the first statement, the stream processing
engine is asked to select the field ‘output’ from stream somestream for all samples
in which the field ‘id’ has a value equal to ‘uav1’. The resulting stream is then called
stream s1. For the second statement, the stream processing engine is requested to
use a computational unit cu, which is parameterised by two streams. A complex se-
lect differentiates itself from simple select by the invocation of computational units.
The stream processing engine in this situation first creates an internal stream pro-
duced by cu, and then uses this stream to apply a simple select in order to apply the
filtering. This resulting stream is then called stream s2. The third statement shows a
merge statement, with the intended meaning that stream s3 is constructed by com-
bining all of the samples arriving from two streams s1 and s2, which are of the same
type. The fourth statement shows a synchronisation statement. During synchronisa-
tion, a stream processing engine is requested to generate a new stream at a certain
frequency so that the values are all valid at the same time. The example statement
tells the stream processing engine to synchronise streams s1 and s2 at every 100ms,
producing a new stream s4. For each synchronised state to be generated, the pro-
cedure decides whether to wait for a data sample to arrive on the input streams,
or whether to generate such a data sample based on the previously-received data
sample from that stream. In the simplest case, such a previously-received sample is
simply repeated. The resulting synchronised stream adheres to constraints that in-
clude the requested frequency and a maximum delay for the individual data samples.
Finally, the fifth statement shows the importance of the parentheses around select
statement when ‘where’ parts are involved. In this example, the filtering is done
over the outermost select statement. However, had the parentheses been absent,
the filtering would have been done over the inner-most select statement instead.
The resulting stream is called s5.

91

6. State stream synthesis

Listing 6.3: Formal grammar for FSL.

1 decl : source_decl | sink_decl | compunit_decl ;

2 decls : decl | decl SEMICOLON decls

3 source_decl : 'source' NAME EQ path arguments? ;

4 sink_decl : 'sink' NAME EQ path arguments? ;

5 compunit_decl : 'compunit’' NAME EQ path arguments? ;

6

7 path . system_path | ros_path ;

8 system_path s ('a’..'z"|'AT..'Z7|'0" .. '9"| SLASH | DASH |
9 UNDERSCORE | DOT)+ ;

10 ros_path c('a’..'z"|'A’..'Z7 |07 .. "9 | SLASH | DASH |
1 UNDERSCORE)+ ;

12 arguments : NAME (COMMA NAME)* ;

13 NAME s(tat .z AT L2000 L9)+

Factory Specification Language

The Factory Specification Language (FSL) was developed (de Leng, 2013) to connect
transformation symbols to programs (e.g. shared objects) that perform the desired
computations, and acted as a companion language to SPL. The FSL grammar is shown
in Listing B.3, and can easily be extended to include more path types. An FSL state-
ment is converted into a ‘factory specification’. Conceptually, the factory specifi-
cation serves as a transformation, i.e. it serves as a factory for the generation of a
computation unit (with special cases being sources and sinks), which is an instance
of a transformation.

6.4 Semantic subscriptions

Semantic subscriptions are subscriptions to a certain kind of information rather than
streaming resources. For example, if a user wants to obtain temperature measure-
ments for a particular room, this interest is decoupled from any specific information
source; any resource providing the desired information suffices. The idea behind
semantic subscriptions is closely related to topics such as semantic web services util-
ising the OWL-S service ontology (Martin et all, 2007) for annotating semantic web
services, or content-centric networking (CCN) (Jacobson et all, 2009) where docu-
ments are stored at various points in the network based on demand and supplied
to users based on a specification of interest in a particular document rather than a
particular address.

Semantic Specification Language

To support semantic subscriptions in a stream reasoning setting, the Semantic Spec-
ification Language (SSL) was developed. SSL was intended to enable the declara-
tion of semantic specifications for streams and transformations as characterised

92

6.4. Semantic subscriptions

VO N AW N e

10
11
12
13
14
15

decl
stream_decl

source_decl
compunit_decl

field_features
field_feature
feature_list
feature
feature_args
feature_arg
for_part
entity
unit_list

Listing 6.4: Formal grammar for SSL.

stream_decl | source_decl | compunit_decl ;
NAME feature_list
for_part? ;

NAME 'provides' field_feature ;
"compunit’' NAME 'transforms'’
"to' field_feature ;
field_feature (COMMA field_feature)* ;

NAME COLON NAME unit_list? ;

feature (COMMA feature)* ;

NAME LP feature_args RP EQ NAME unit_list? ;
feature_arg (COMMA feature_arg)* ;
NAME alias? ;

"for’' entity (COMMA entity)* ;

sort | object ;

(OPEN unit (COMMA unit)* CLOSE) |

'stream’ "contains’

"source’
field_features

"no_unit’ ;

16 unit NAME power? ;
17 power ('+" | '=')? NUMBER ;
18 alias "as' NAME ;
19 object entity_full ;
20 sort sort_type entity_full ;
21 entity_full NAME EQ NAME ;
22 sort_type 'some’ | 'every' ;
23 NAME ('a’. 'z |'ATL'Z7|07 L 9T)+
24 NUMBER ('0".. "9)+
Listing 6.5: Example SSL statements for streams.
1 stream sl contains Altitude(uavl) = alt
2 stream s2 contains Altitude(uavl) = alt for uavl = id
3 stream s3 contains Speed(UAV) = spd for every UAV = id
4 stream s4 contains XYDist(UAV as argl, UAV as arg2) = dist for
every argl = idl, arg2 = id2

in this dissertation. The initial version of SSL was the Semantic Specification Lan-
guage for Topics (SSL7), and was used to semantically annotate middleware-specific
named transportation channels (called ‘topics’ in this case) by the ontological con-
cepts they contained (Dragisid, 2011; Heintz and Dragisid, 2012). Subsequent work
(Heintz and de Leng, 2013; de Leng, 2013) extended SSLt with units of measure-
ment and transformations, called the Semantic Specification Language for Transfor-
mations (SSLrr). SSL combines the two languages, and its full grammar is shown in

Listing [6-4.

Example 6.2 (Example SSL statements). Consider the SSL statements in Listing 6.3.
The first statement states that stream s1 contains information on the Altitude of
object uav1 in the field named ‘alt’. This is different from the second statement,
which states that stream s2 contains the same information as stream s1 with the

93

6. State stream synthesis

Listing 6.6: Example SSL statements for transformations.

[N

compunit cul transforms from Distance [m] to Speed [m.s—1]

compunit cu2 transforms from Distance [km] to Speed [mi.h—1]

compunit cu3 transforms from NumVehicles no_unit to NumUAVs
no__unit

source srcl provides Distance [m]

source src2 provides NumVehicles no_unit

w N

[CENEN

difference that this is only the case when the field named ‘id’ has the value ‘uav1’.
The last two statements make use of sorts that are specified in the object ontology.
Stream s3 contains information on the Speed for all objects in sort UAV, where the
speed information is presented in the field named ‘spd’ for the UAV object referred
to in the field named ‘id. We can see a similar construct in the semantic stream
specification for stream s4. However, here we encounter some ambiguity as the sort
UAV occurs twice. This is resolved by using an alias, in this case ‘arg1’ and ‘arg2".

SSL allows for the semantic annotations of transformations by semantically an-
notating a transformation with its input features and output feature. Alongside ev-
ery feature the assumed unit of measurement is also included. Listing [6.4 shows a
number of example SSL declarations used to describe transformation in this fash-
ion. Here, three computational units and two sources are described by a semantic
specification. The first computational unit, called cul, transforms from the feature
Distance to the feature Speed, where the temporal information in samples is utilised.
It assumes distances in metres and speeds in m/s. Computational unit cu2 performs
a similar transformation, but expects kilometres and mph respectively for its units
of measurement. Not all features have to have units of measurements, and this is
clearly shown in the case of computational unit cu3. The first source, called srci,
provides the feature Distance in metres. Just like computational units, sources can
handle features that do not assume units of measurement, as is shown for source
src2.

Automatic query construction

A combination of SPL, FSL, and SSL was used in previous work (Heintz and de Leng,
2013; de Leng, 2013) for state stream synthesis through a process called semantic
matching. In this approach, a user could describe a desired information stream by
specifying ontological concepts of interest. This vocabulary matched the one used
by SSL to annotate streaming resources, such that a stream reasoning framework
could identify matching resources by comparing the requested concepts to the re-
source annotations. Such a framework could then construct an SPL query based
on a select-merge-synchronise pattern; relevant fields were selected from source
streams, matching fields from different streams were merged, and the resulting
streams were synchronised into a single stream containing a field for every concept
of interest. This is referred to as an automated query construction process.

94

6.5. Synchronisation

140

120

100
2 80)
E Matching
g 60 Overhead
= W Extraction

40

.l .]

:] I
0 500 1000 1500 2000
Number of relevant stream semantics specifications

Figure 6.2: Breakdown of automated query construction performance.

One problem with this approach, however, is that the resulting query is static.
If anything needs to be changed, another query needs to be constructed to effect
that change. Another observed problem with such a process, is the cost involved
in constructing a query. SPL was not designed to be efficient in terms of the re-
quired query length, resulting in a disproportionate amount of time being spent on
first constructing and then executing a query. Figure B.3 (de Leng, 2013; Heintz,
2013) shows a breakdown of the performance of automated query construction as
the number of relevant streaming resources (i.e. resources that satisfy a semantic
query) increases. The extraction time refers to the time needed to parse a seman-
tic query, followed by a communication overhead, and finally the actual time spent
on constructing and executing an SPL query. These results led to a change in our
methodology for state stream synthesis; instead of constructing a query, the focus
shifted towards managing stream processing directly.

6.5 Synchronisation

The title of this dissertation refers to ‘robust stream reasoning’. Robustness in the
context of this dissertation means a resilience to changing conditions when perform-
ing stream reasoning. In particular, this requires a steady supply of states, which is
characterised as a state stream. Such a state stream has to be synthesised through
the combination of potentially multiple source streams.

For stream reasoning applications such as the runtime verification discussed pre-
viously, this state stream represents an w-word for which it is checked whether it
satisfies a logical formula. This means that the fields that make up the samples in
the state stream can be used as interpretations for the propositional symbols in that
formula. This can be considered as a type of symbol grounding. Each sample of the
state stream corresponds to a particular time-point, and the information in the fields
of that sample is valid for that time-point. While in a formal setting it is beneficial to
just consider boolean-typed fields, in a practical setting the fields’ information does

95

6. State stream synthesis

Algorithm 6.1: Synchronisation (Heintz, 2009)

function SYNCHRONISE(f1, . . ., fn, tstart, tends A, dapprozs dmaz):
foreach f; do

‘ create a buffer and set up a subscription to f;
end

tsync — tst(m"t

while tsypne < tenq do
SYNCHRONISE_AT (tsync, dapprozs dmaz)
tsync — tsync + A

end

©® N O U s W N R

o

not necessarily have to be boolean. It can be useful to make statements about ex-
pected observations, for example G[o,w] (altitude > 100). Here, the boolean con-
dition can be regarded as a greater-than built-in binary predicate taking two num-
bers. When a predicate is built-in, its interpretation given any combination of terms
is well-defined and can be regarded as part of background knowledge that does not
have to be provided via a stream. The ‘altitude’ term in this example can therefore
be grounded in a state stream that has a numeric ‘altitude’ field. This mapping can
either be established implicitly, based on string matching, or explicitly, based on a
user-provided mapping. The mappings connect symbols in a formula to fields in a
state stream. This state stream needs to first be synthesised. The procedure taken
here is to start with a subscription (of either the syntactic or semantic kind) for each
symbol mapping. The subscribed-to streams then need to be combined into one
state stream. One such synchronisation procedure is that by HeintZ (2009), called
SYNCHRONISE, which makes use of the two helper procedures SYNCHRONISE_AT
and IS_SYNCHRONISED.

The main idea behind the synchronisation procedure in Algorithm .7 is to syn-
chronise samples from different streams by their valid times for predetermined
time-points. Recall that the valid time of a sample is the time at which the infor-
mation contained within the sample is valid, and that this time can differ from the
time at which the sample becomes available to the synchronisation procedure. The
SYNCHRONISE procedure listed in Algorithm B.7 first sets up subscriptions to the
streams that need to be synchronised, denoted by f1, ..., f,. The synchronisation
procedure is then supposed to only perform its task between times t4;4,+ and tey4,
with a period of A time-units. It then simply calculates the next time at which syn-
chronisation is supposed to take place — called synchronisation time and denoted by
tsynec — and calls the SYNCHRONISE_AT procedure from Algorithm B.2 to compute
a state for this time.

Algorithm B.7 assumes that the valid times in states grow monotonically such
that receiving a sample for a specific valid time comes with the guarantee that no
further samples will arrive with valid times that precede that of the current sample.
Furthermore, approximation may be necessary because samples may not necessar-
ily have valid times for the desired synchronisation time. HeintZ (2009) therefore

96

6.5. Synchronisation

Algorithm 6.2: Synchronisation at a specific time (HeintZ, 2009)

1 function SYNCHRONISE_AT (¢, dupprox: @maz):
2 tsyne <t

3 add a time-out for time tsync + dappros

4 add a time-out for time tsyne + dmaz

5 do
6
7
8
9

wait for input or timeout
if received sample s from input stream i at time ¢ then

add sample s to buffer ¢
remove obsolete samples from buffer i
10 update the category for buffer ¢
11 else if received timeout t then
12 foreach buffer : do
13 | update the category for buffer i
14 end
15 end

16 while =IS_SYNCHRONISED (¢, dapproxs dmaz)
17 compute state at tsync

Category Description
Exact An exact value is available.
AprxFinal Approximation available; no further information expected.
AprxMore Approximation available; additional information possible.
NoAprxFinal No approximation available; no further information expected.
NoAprxMore No approximation available; additional information possible.

Table 6.1: The five categories for streams when performing synchronisation using
the SYNCHRONISE procedure.

considered five possible classifications for each stream — one based on perfect tim-
ing and another four based on combinations of approximation and delayed state
information — shown in Table B.7. At the start, each stream is classified as NoAprx-
More, as no information has yet been received to make an approximation and more
information may still arrive.

Given these categories, it is possible to consider at least two types of delay
thresholds. The first deals with the maximum delay before approximation, denoted
by dapproz, for which a time-out is set (line 3) by setting the delay relative to the
synchronisation time .. If this time-out is reached, the buffered information is
used to attempt to approximate the state at ,,,.. Depending on the approxima-
tion method used, this may require more or less state information. For example,
given quantitative state information, a linear approximation would need two sam-
ples whereas a most-recent value approximation only requires a single such sam-
ple. Likewise, for boolean values one could assume that a truth value holds unless
replaced, which is equivalent to a most-recent value approximation. These approxi-
mations are computed as part of the IS_SYNCHRONISED procedure shown in Algo-

97

6. State stream synthesis

Algorithm 6.3: Synchronisation check (HeintZ, 2009)

function IS_SYNCHRONISED (¢, dapproz, dmaz):
foreach input stream i in category NoAprxFinal do
approximate 7 with no_value

set the category of 7 to AprxFinal

end

if all input streams are in categories Exact, AprxFinal, or AprxMore and
tsync + dapproz < tnow then

7 | return True

8 elseif tsynec + dmaz < tnow then

9 foreach input stream i in category NoAprxMore do

10 approximate i with no_value

1 set the category of 7 to AprxFinal

12 end

13 return True

[T, I NS R CRY

14 else
15 | return False
16 end

rithm .3, which determines whether we can proceed to generating a synchronised
state. Similarly, the second delay type is the maximum delay, denoted by d,,, .., for
which a time-out is also set (line 4) by setting the delay relative to the synchronisa-
tion time t,yn.. This time-out is then guaranteed to lead to the computation of a
state based on the information received thus far.

Algorithm B.3 consider four cases. First, IS_SYNCHRONISED ‘approximates’ a
value tono_value (line 3) if the corresponding stream reached the maximum delay
without being able to approximate a meaningful value, leading to a reclassification
to AprxFinal (line 4). Second, if exact or approximated values exist for each stream,
and the maximum delay before approximation has been reached or exceeded, syn-
chronisation is deemed completed. Third, if the maximum delay has been reached
or exceeded, streams that lack approximation are ‘approximated’ to no_value and
reclassified to AprxFinal, after which synchronisation is deemed completed. Fi-
nally, by default, synchronisation is not yet finished. In the first three cases, how-
ever, the SYNCHRONISE_AT procedure from Algorithm .2 computes a state for ¢,
(line 17) based on the exact or approximated values for each stream. Of course, this
can be a problem if no exact value or usable approximation (i.e. a no_value that
cannot be resolved by using an incomplete state as per Definition f.7) is produced.
There is no ‘correct’ solution for producing a synchronised state in this case — Heintz
(2009) suggests notifying the system of an error or approximating the state anyway
using whatever information is available, for example based on the previous synchro-
nised state if one exists.

This finally brings us to the issue of obtaining suitable subscriptions, which is
needed for the SYNCHRONISE procedure (line 3) in Algorithm [B.1. As explained pre-
viously, there are a number of problems when relying on query construction. We

98

6.6. Incorporating background knowledge

therefore seeks to instead dynamically reconfigure stream processing based on a
user’s needs. Chapter [formalises these desired semantic subscriptions as objects
called targets, which can be satisfied by a configuration. This additionally makes
it possible to change stream processing on the fly if the need arises, which is dis-
cussed in more detail in Chapter B. The combination makes it possible to robustly
perform state stream synthesis using the synchronisation and grounding procedures
described here. The investigation of more flexible ways of grounding logical symbols
in state streams provided in this fashion is left for future work.

6.6 Incorporating background knowledge

Part of stream reasoning involves reasoning about the individual states that make
up a stream. This type of a-temporal reasoning is common, and works by combin-
ing state information (without necessarily considering the time for which it is valid)
with a background theory. In all of these cases, the reasoning can be regarded as a
function taking a state and a theory that, when combined, yield a set of states with
their individual probabilities.

An example of this is qualitative reasoning, as shown in Chapter B, which focuses
on reasoning about abstract relations rather than quantities. Commonly a set of re-
lations forms a state which can then be closed through the use of composition-table
based reasoning, where a reasoner determines whether the state is consistent and,
if so, what the possible consistent configurations are. Augmenting state streams
with spatial information can then be done in a number of ways. A straightforward
and naive method would be to collect the complete set of spatial information for a
given time-point, run it through a qualitative reasoner to infer more information on
the spatial relations, and then augment the state stream with these resulting spatial
relations.

A slightly better way would be to only augment the state stream with those spa-
tial relations that are relevant. To efficiently infer implicit spatial relations we use the
facts that relations between (rigid) variables that have not changed are the same and
the algebraic closure for the same set of variables must be computed many times
(every time some of the variables have changed). As an example, the spatial rela-
tions between static buildings do not change, so it is not necessary to compute their
spatial relations at every time-point even if they are not explicitly given. If the set
of variables is partitioned into those that are static and those that are dynamic, it
is enough to compute the algebraic closure of the constraints involving only static
variables once and then add the constraints involving at least one changing variable
when they have changed and compute the new algebraic closure. The effect is that
there is an initial cost of computing the static part while the cost for each update is
reduced (Heintz and de Leng, 2014).

Since qualitative reasoning may yield multiple consistent hypotheses, we can
generate a set of states containing each of these hypotheses together with the prob-

99

6. State stream synthesis

ability of that hypothesis. In the absence of additional information, the probability
of each hypothesis is equal to that of the others, i.e. they are uniformly distributed.

6.7 Summary

In this chapter, we considered the problem of state stream synthesis for the purpose
of generating a state stream that can be used for stream reasoning tasks as intro-
duced earlier. This particular problem is not a primary focus of this dissertation, but
nevertheless plays an important role in connecting the two strands for reasoning
over and about streams. Some earlier efforts towards automated query construc-
tion were discussed, resulting in the introduction of SPL and FSL for setting up stream
processing, and SSL for allowing streams and transformations to be semantically an-
notated. Semantic matching describes the process of finding suitable transforma-
tions or streams given a semantic specification. It was used to ultimately construct
an SPL query that would result in a state stream containing the desired informa-
tion. This approach however had a few down-sides. The automated construction of
queries before their execution was expensive. Additionally, if further changes were
needed, new queries would have to be constructed with the present configuration
of the ongoing stream processing in mind. Nevertheless, if the relevant streams are
subscribed to, they can then be synchronised using the synchronisation procedure
by Heintz (2009). In the next chapters, we consider a different approach to setting
up semantic subscriptions, which are compatible with the state stream synthesis
methodology presented here.

100

Chapter

Reasoning about composition

press statements concerning the truth value of properties over time. Stream
reasoning techniques usually do not consider where their data originates
from, and assume it to be given. However, the generation of streaming data for
the purpose of stream reasoning is an important stream processing task. We call
this ability reasoning about composition, which treats streams as objects. This chap-
ter borrows from and extends previous work on configuration modelling and plan-

ning (de Leng and Heintz, 20153,b, 2017).

I OGIC-BASED stream reasoning commonly makes use of temporal logics to ex-

7.1 Introduction

Robotic systems are getting increasingly complex, with more and more components
usually connected by some form of publish-subscribe messaging pattern. Support
for this type of integration is often provided by middleware such as the Common
Object Request Broker Architecture (CORBA) and the Robot Operating System (ROS).
The configuration of what channels a component publishes and subscribes to is of-
ten done manually or through scripts. This is both error-prone and assumes that
the set of available components does not change at run-time. However, loT devel-
opment towards for example swarmlets (Latronico et all, 2015) points to a future
in which systems are increasingly heterogeneous, decentralised and geographically
spread-out. The assumption of an unchanging or slowly changing set of available
components is therefore rapidly becoming unreasonable.

The challenge of dealing with this volatility also affects the task of transform-
ing streams with the goal of producing state streams. After all, if component sets
cannot be assumed to be constant, the task of generating a stream needs to be com-
plemented with the task of maintaining one. In this chapter, the problem of gener-
ating a state stream is therefore translated into the problem of satisfying a semantic

101

7. Reasoning about composition

subscription in a stream reasoning framework. We first consider a formalisation of
a stream reasoning framework and its dynamics, called the DyKnow model, which
allows us to frame the problem as an optimisation problem. The purpose of the for-
mal model is to be general enough such that implementation details are abstracted
away, allowing for potentially many different realisations. Lastly, with the DyKnow
model formalised, we consider a common representation of configurations relative
to an ontology.

7.2 Service composition

The problem of finding a suitable composition of transformations through reasoning
about those transformations shares a lot of similarities with the work on automatic
service composition. For example, an approach to ‘semantically-enabled sensor plug
& play’ was proposed by Broring et al] (2009), who identified challenges to achieving
sensor plug-and-play based on semantic knowledge of sensor observations. They
subsequently proposed a method for automatic plug-and-play functionality by mak-
ing use of a Sensor Bus (Broring et all, 2011) that matches services to sensors. The
approach to semantic subscriptions taken in this dissertation is more advanced than
the Sensor Bus approach in that we periodically recombine and reconnect compo-
nents whereas the Sensor Bus directly connects with information sources. Another
example is research towards Semantic Sensor Networks, which led to the develop-
ment of the Semantic Sensor Network ontology (SSN) (Compton et all, 2012). SSN
focuses on well-structured semantic descriptions of sensors. The work presented
here makes use of semantic descriptions of streaming components rather than sen-
sors by using functional descriptions of the inputs and outputs of these components.
These functional descriptions are extensions of the OWL-S service ontology (Martin
et al], 2004) applied to a streaming context.

The ability to reconfigure a system on demand is also closely related to configu-
ration planning. Automatic (re)configuration techniques have been studied in detail
(Rao and Su, 2005; Dustdar and Schreiner, 2005; Pejman et all, 2012). The work
by Tang and Parker (2005) on ASyMTRe is an example of a system geared towards
the automatic self-configuration of robot resources in order to execute a certain
task. Similar work was performed by Lundh et al] (2008) related to the Ecology of
Physically Embedded Intelligent Systems, also called the PEIS-ecology (Saffiotti et al,
2008). Given a high-level goal describing a task, a configuration planner is used to
configure a collection of robots towards the execution of the task rather than logic-
based stream reasoning. Their solution is however designed for use within the PEIS
middleware and does not easily transfer to other environments such as the ROS
middleware. Lundh (2009) further points out that their approach uses static cost
measures and could benefit from incorporating semantic knowledge. Our approach
focuses on a more advanced representation of cost, and makes use of semantic de-
scriptions for components. The SAMSON Wireless Sensor Networks (WSNs) middle-
ware by Portocarrero et al] (2014) is similar to run-time reconfigurable systems in

102

7.3. DyKnow model

Symbol Description
l; € Var Set of variables
tag,itag;, otag € Tag Set of tags
v; €V Set of (structured) values
ti €T Set of time-points
tid, cid, qid € N Set of identifiers
ing, out,chan € N Set of channels
<cid, tid, [in1,ing, . . . 7inn]T ,out, S> e CU Computation units
<tial7 flx1,...,20,8), [itagi, . .. ,itagn]T , otag> € F' Transformations
(gid, tag,chan) € T Targets
S C Var x VY States
~ C Tag x Tag Similarity relation
fV"XS—=>VxS Transformation function
e=(CU,F,T,~) Environment
s=(Cut,cu~,Ft F~, T, T7) Change set
d=e®d Update
€ =s¢
€ € Valid Set of valid environments

Table 7.1: Notation for the DyKnow model.

their consideration of a dynamic environment in which a network can be reconfig-
ured to deal with changes, albeit at a lower level. In the case of SAMSON, these
changes include faults, but also disconnection and power concerns. A survey of
other recent work towards WSN middlewares is presented by Kerasiotis et al] (2015).

None of these approaches are specifically suitable for stream reasoning frame-
works, however. Furthermore, the choice of cost measure for services is difficult.
Previous work by LundH (2009) for example notes the same difficulties and instead
simplifies the problem by assigning constant utility values. It seems more likely, how-
ever, that the cost of services would change based on the context of the operations,
which is one angle we will therefore consider here.

7.3 DyKnow model

The DyKnow model is a formalisation of stream reasoning frameworks and extends
earlier work (Heintz, 2009; Heintz et all, 2010) that considered such frameworks to
be composed of possibly many interconnected components. The formal model is
general and serves as a specification from which potentially many different realisa-
tions can be created. Table [.7 provides a complete summary for the notation used
in describing the model.

103

7. Reasoning about composition

Computational environment

A computational environment is composed of a computation graph, transformations
and targets. The computation graph consists of computation units connected by
channels.

Streams are the product of transformations, which can either refine existing
streams into new streams, or act as sources by generating streams without requir-
ing any input streams. In practice, sources often use information external to the
computational environment to generate streams, for example through sensor ob-
servations. A transformation is considered to be an annotated function that can be
instantiated as a computation unit for application within a specific configuration.

Definition 7.1 (Transformation). A transformation (TF) is an annotated stream-
generating function that takes streams as inputs. It is described by a tuple

<tid, fz1,... 20, S), [itag, . .. ,itagn]T , otag> , (7.1)

where tid € N represents a unique transformation identifier, f : V" x § — V X
S represents a partial function from input values and an initial state to an output
value and a resulting state, itag; € Tag represent tags for inputs, and otag € Tag
represents the output tag.

Definition 7.2 (Computation unit). A computation unit (CU) is a component that is
described by a tuple

<cid, tid, [in,ina, .. ., ina]" , out, 5> , (7.2)

where cid € N represents a unique identifier for CUs, tid € N represents the unique
identifier of the transformation which this CU is an instance of, in, € N U {none}
represent incoming channels, out € N U {none} represents the outgoing channel,
and S C Var x V represents the state as a relation between variables and values.

Note that there is a close relation between CUs and TFs — a CU is called an
instance of a TF iff their ¢id identifiers match.

Example 7.1 (TFs and CUs). Robots commonly use visual sensing methods to detect
and track objects of interest. Consider a ball detector that is able to detect footballs
by their round white shape with black spots. The ball detector can be represented in
terms of a transformation and a computation unit. The ball detector transformation
refers to the mathematical function describing the detection method, together with
meta-information for this function. It is annotated with tags describing its input as
camera images, and its output as bounding boxes. We can apply the transformation
by connecting it to an input stream of camera images, yielding a stream of bounding
boxes. This application of the transformation is called a computation unit. Every CU
has an identity, a reference to its corresponding TF, connections to input and outputs
channels, and state information. The state information allows the transformations
to be stateful, meaning they can retain information that makes it easier to for exam-
ple perform tracking after an initial detection.

104

7.3. DyKnow model

Lastly, the computational environment contains targets, which describe seman-
tic subscriptions for outside modules such as the stream reasoning engine. Note that
subscriptions also occur within the computational environment, but that these are
not referred to as targets because they do not reflect the global configuration goals
of the computational environment. Subscriptions of the latter kind are described by
the connections between CUs and channels as shown earlier.

Definition 7.3 (Target). A target describes a desired semantic subscription and is
denoted by a tuple
(qid, tag, chan) , (7.3)

where gid € Nis a unique (query) identifier, tag € Tag is a description of the desired
information, and chan is the channel the described stream is expected on.

Targets thus indirectly represent configuration goals for the computational envi-
ronment™ by indirectly referencing desired streams by their semantic descriptions.
These streams are generated by instantiated transformations, which in turn have
input requirements. For a given set of targets, there may be many different compu-
tation graphs which satisfy all of the input requirements and similarity relations at
different costs.

By combining these elements, we can formally describe the computational en-
vironment.

Definition 7.4 (Environment). An environment is denoted by a tuple
€= <CU7 Fa T7 N> 5 (74)

where C'U denotes a set of computation units called a computation graph, F' de-
notes a collection of transformations called a library, T denotes a set of targets called
a goal, and ~ C Tag x Tag denotes a similarity relation between tags. Elements of
environment e have short-hand representations CU ., F., T,, and ~ respectively.

An environment thus encodes the configuration of the system as well as the
state of its individual components. It is connected to streams through the collection
of channels that connect the various CUs, because they are a product of those CUs.
There is therefore a total mapping from streams to channels. Since CUs define out-
going and incoming channels, there is a clear connection between streams and their
source and destination CUs as well.

Dynamics

An environment is a representation of the state of the configuration of the compu-
tational environment. This environment may be subjected to changes over time.
These changes are represented by a change set.

10Alternatively, one can consider targets to represent constraints on channels. These constraints are
then described in terms of desired semantic descriptions.

105

7. Reasoning about composition

Definition 7.5 (Change set). A change set is a tuple
§=(CUut,CcU~,F",F~, T, T7) (7.5)

consisting of set additions and set removals denoted by superscript ‘+’ and ‘—’
respectively. The notation 04 is used as a short-hand to describe the absence of
change, ie. 6y = (9,9,9,0,9,).

Change sets can thus add and remove elements to and from the environment.
These additions and removals can also be used to for example represent tag changes
in transformations or connection changes of CUs to channels. Whenever an envi-
ronment changes in a way that can be represented using a change set, we call this
change an update. More formally, an update is the application of a change set to an
environment, yielding a new environment.

Definition 7.6 (Update). An update applying a change set ¢ to an environment < is
denoted by ¢’ = ¢ ® ¢ (alternatively: € =5 ¢’), where ® maps environments ¢ and
change set § to resulting environments ¢’ such that

CU. = (CU.uCU})\ CUy, (7.6)
F.o=(F.UFN\Fy, (7.7)
T = (T.UT;)\ Ty .

Change sets can be used to express operations of interest on environments. We
call these operations actions. In particular, we are interested in the addition and re-
moval actions for environment elements, as well as actions for changing connections
between CUs and channels.

TFs are identified by a unique tid and describe a function f(z1,...,z,,S) from
inputs and current state to an output and resulting state. They are further annotated
with tags in Tag for the inputs and the output. Common actions affecting TFs in a
computational environment are register and deregister.

Definition 7.7 (Register action). The register action covers the class of change sets
defined by the function

register (e, tid, f,itag, otag) = (@, @, {(tid, f,itag,otag)}, o, d,). (7.9)

Definition 7.8 (Deregister action). The deregister action covers the class of change
sets defined by the function

deregister(e, tid) = (&,9,9,F, d,), (7.10)
where F' = {(tid, _, _,_) € F.} and _ represents a wildcard.

Targets are composed of a (query) identifier, tag, similarity relation, and a spec-
ified channel. Like TFs, targets can be added and removed by the query and release
actions.

106

7.3. DyKnow model

Definition 7.9 (Query action). The query action covers the class of change sets de-
fined by the function

query(e, gid, tag, chan) = (&, &, &, &, {{qid, tag, chan) } ,). (7.11)

Definition 7.10 (Release action). The release action covers the class of change sets
defined by the function

release(e, qid) = (0,9,9,2,2,T), (7.12)
where T = {{qid, _, _) € T.} and _ represents a wildcard.

Like TFs and targets, CUs can also be added and removed. However, unlike with
TFs and targets, existing CUs can be connected to and disconnected from channels
as well. We therefore consider the addition and removal of CUs to be two actions in
addition to the connecting and disconnecting of existing CUs. Adding and removing
CUs is represented by the spawn and destroy actions.

Definition 7.11 (Spawn action). The spawn action covers the class of change sets
defined by the function

spawn(e, cid, tid, S) = (CU, &, 0,5, F, &), (7.13)
where CU = {<cid, tid, [none, .. ., none]T , none,S>}.

Definition 7.12 (Destroy action). The destroy action covers the class of change sets
defined by the function

destroy(e, cid) = (&,CU, 2, 0,9,), (7.14)
where CU = {{(cid,_, _, _,_) € CU_.} and _ represents a wildcard.

The spawn action thus adds a CU with a provided state to account for e.g. pa-
rameters. Since CUs encode their own connections to channels, the removal of a CU
implicitly breaks any connections to channels. When the spawn action is applied, a
CU is added such that all of its connections are set to none by default. This initial
state can then be altered by using the connect and disconnect actions, for each of
which we have to consider two variants to distinguish between inputs and output.

Definition 7.13 (Connect action). The connect action covers the class of change sets
defined by the functions

connect| (e, cid,i,chan) = (CUY,CU™,2,9,2,), (7.15)

107

7. Reasoning about composition

where CU™ and CU ™~ are defined for every {cid, tid',in’, out',S') € CU, as

inj_y
CUt = <Cid, tid’, | chan ,out’,8’> , (7.16)
g
CU™ = {{cid, tid',in’, out’,S") € CU.}, (7.17)
and its outgoing variant
connecty (e, cid, chan) = (CUT,CU~, 2,9, 9, D), (7.18)

where CU " and CU~ are defined for every (cid, tid',in’, out’,S") € CU. as

CU* = {{cid,tid',in’,chan,S")} , (7.19)
v~ = {<C7:d7 tid/,inl, OUt/a8/> S OUE} : (7.20)

Definition 7.14 (Disconnect action). The disconnect action covers the class of change
sets defined by the functions

disconnect| (e, cid, i) = connect (e, cid, i, none), (7.21)

disconnecty (e, cid) = connect4 (e, cid, none). (7.22)

Actions are useful to concisely describe common change sets, and will be used
later as part of a reconfiguration algorithm.

Cost and optimality

While there may be many different environments that would satisfy a target, not all
such environments are equally preferred. This is due to the costs associated with the
run-time expenses of maintaining such a resulting environment, and the one-time
expense of applying the change set that yields such a resulting environment. We
refer to the cost of maintaining a CU as upkeep. Likewise, the cost of instantiating a
CU is called labour. While labour is a one-time cost, upkeep accumulates over time.

The measured labour and upkeep are represented by functions from environ-
ments or change sets to cost. These global cost measures are obtained from the
individual CUs.

Definition 7.15 (Labour). Labour is the observed non-negative cost of performing
an update € ® 6 and is equal to

labour(d) = Z labour(tid(cu)). (7.23)
cue(CUT—-CU™)

108

7.3. DyKnow model

Definition 7.16 (Upkeep). The run-time cost of anenvironmente = (CU, F, T, ~) is
referred to as upkeep. Upkeep represents the observed non-negative run-time cost
for one time-unit and is calculated as

upkeep(e) = Z upkeep(cid(cu)). (7.24)
cueCU,

Labour and upkeep can be used to represent the cost of change sets and environ-
ments. This is useful when we wish to compare the ccﬂs\of different (alternative)
updates. We will make use of estimators labour and upkeep to represent the esti-
mated rather than measured labour and upkeep of change sets and environments.

A computational environment may become invalid or suboptimal as the result of
updates. This may for example happen due to changing operational costs associated
with CUs (upkeep), CUs may crash and require replacing, transformations may be-
come unavailable rendering their CU instances invalid, or new transformations may
become available for a lower cost. In order to maintain adaptive semantic subscrip-
tions, the problem is to find a change set such that, when applied to an environment,
the resulting environment is valid and update is optimal.

Definition 7.17 (Validity). An environment ¢ is valid, denoted by ¢ € Valid, iff for
every CU:

1. there exists an associated TF in F;

2. for every identifier in; there exists a CU in CU, forevery 1 < ¢ < n, i.e. ho
subscriptions to none;

3. forevery target (qid, tag, chan) in T, there exists a CU with an associated TF
such that tag ~. otag; and

4. itag; ~. otag holds for every connected pair of CUs.

We exclude change sets that yield an invalid environment when used in an up-
date. This reduces the number of applicable change sets to just those that yield en-
vironments that satisfy all targets. A pragmatic relaxation is to also allow for change
sets that satisfy some targets, if it is not possible to satisfy all targets.

By combining validity with the estimators for labour and upkeep, we obtain a
cost estimator that takes into account whether the resulting environment is valid.
A value MAX_COST is used to represent an upper limit on the cost of an update.
For updates yielding invalid environments, this is represented by a cost exceeding
MAX_COST.

Dﬁfﬂﬁon 7.18 (Cost). The cost estimator cost combining estimators u@p and
labour is defined as

labour(6) + H x upkeep(e ®6), ife®d € Valid,

. (7.25)
MAX_COST+ 1, otherwise.

c/o\st(s,é,H):{

109

7. Reasoning about composition

The cost estimator is used for determining the estimated cost of updates. An
optimal update is one that minimises the estimated cost of applying a change set
and the estimated upkeep over a predetermined horizon. It makes use of the cost
estimator and excludes updates that exceed the maximum cost, for example due to
being absent from Valid.

Definition 7.19 (Optimality). An update ' = ¢ ® §* is optimal relative to a horizon
of H time-units iff 6* € A*, where

A" = arg méin c/o\st(s, 0, H) (7.26)

subject to (@(5, 0,H) < MAX_COST

for cost estimator cost and upper bound MAX_COST.

Note that there may be many optimal change sets, in which case any can be cho-
sen. Alternatively, if no change set can make the resulting environment valid, there
are no optimal change sets. The choice of horizon determines how conservative
change sets are; if the horizon is large, upkeep starts to outweigh labour more than
in cases where the horizon is kept short. Different estimators can be used, rang-
ing from simplistic constant values to advanced predictive models whose accuracy
is used to increase or decrease the length of the next horizon.

7.4 Ontology-based model representation

The formal model for stream reasoning frameworks allows us to precisely describe
system configurations in terms of environments, and the change sets that can be ap-
plied to those environments. However, different realisations of this type of frame-
work may use different internal representations. This can lead to situations wherein
two different realisations based on the same formal model use two different repre-
sentations. Such inconsistencies can lead to difficulties if the two are expected to
interoperate.

DyKnow ontology

Semantic Web technologies were used to generate a DyKnow ontology. The Seman-
tic Web was initially proposed by Berners-Lee et al] (2001) as an approach to making
the World Wide Web machine-readable so that concepts could be formalised and
exchanged, making it a good candidate to realise semantic interoperability. The Web
Ontology Language (OWL) was described by the W3C in McGuinness et al] (2004),
and was designed to describe such ontologies. Ontologies in the Semantic Web are
based on Description Logic (DL), which makes it possible to perform inference on
them to obtain indirect knowledge. The DyKnow ontology describes the concepts
presented as part of the formal model, as well as the relations that exist between
these concepts. A concept hierarchy is shown in Figure /.3, and a more detailed

110

7.4. Ontology-based model representation

:;;’h;;.;g

'Sample Sequence'

.i. SubscriptiarD

iﬁtate Stream’

<¢w|:Thing

—)
R A T J—

a S - 8

\ - ——‘<S ource)

is-a - _ﬂ“‘\, R
F-'EramEtE:_fr

Upheep Cost Model p]
'Cnst r\-'mdel'i__l _f‘:

T \EYLabour Cost Model':>

Change Set — B

- o :
. A utput P nrD

— is-a. o
(ot i
S ——isea —

T A
_ _ \anut Fart’_/

\I?_nvlronme®

Figure 7.1: Hierarchical concept graph of the DyKnow ontology.

111

7. Reasoning about composition

description of the ontology is presented in Appendix § using Manchester syntax for
human readability.

The ontology formalises concepts such as CUs and the transformations they are
instances of. For example, the dyknow: Transformation concept is defined in DL as

Transformation C3hasName.xsd:Name (7.27)
M3hasCostModel.LabourCostModel,

where
LabourCostModel T CostModel. (7.28)

dyknow:Transformation objects can further have input and output ports using
the dyknow:hasInPort and dyknow:hasOutPort relations. The name of a dy-
know: Transformation object then corresponds to a tid; the relations to dyknow:Port
objects are used for itagy, . . ., itag, and otag; and the cost is represented by a dy-
know:LabourCostModel.

CUs are also encoded in the ontology with the dyknow:ComputationUnit con-
cept;

ComputationUnit C3hasName.xsd:Name (7.29)
M3hasCostModel.UpkeepCostModel.

CUs can be connected via a dyknow:Subscription, which is defined as

Subscription C3fromCU.ComputationUnit (7.30)
M3fromPort.OutPort
M3toCU.ComputationUnit
M3toPort.InPort
M3hasChannel.Channel,

meaning that a dyknow:Subscription must have some input and output port, as well
as some input and output CU. Further, it is associated with a dyknow:Channel, which
is used to represent the transportation mechanism over which streams can flow
from CU to CU. These channels are only required to have some name, i.e.

Channel C 3hasChannelName.xsd:string. (7.31)

The semantic representation thus matches the formal definition of computation
graphs, and adds additional concepts (i.e. channel) that are necessary for realisa-
tions of the formal model.

Finally, targets are represented using the dyknow: Target concept;

Target C3hasName.xsd:Name (7.32)
M3hasChannel.Channel
M3hasTag.Tag.

112

7.4. Ontology-based model representation

Targets are thus also extended with a channel over which the resulting stream is
expected. The dyknow:hasTag connects dyknow: Tag objects to a dyknow: Target
object. The dyknow: Tag objects are in turn connected to semantic descriptions with
the dyknow:hasTagDescription relation.

CUs, transformations and targets can be associated with dyknow:Environment
objects to clearly distinguish between different environments. This makes it possible
for a knowledge base to represent not just a representation of a local environment,
but also that of external environments, for example on different platforms. Config-
uration information can further be exchanged using a common vocabulary, allowing
agents to interpret configurations of other agents and to share them in a multi-agent
system. Furthermore, different realisations of the formal model for stream reason-
ing frameworks can use and extend the ontology while retaining interoperability.
For example, the dyknow:Channel concept does not specify a specific transporta-
tion mechanism.

Because ontologies in OWL are based on DL, we can apply inference to the on-
tological data. This makes it possible to obtain implicit information from explicit
information. One example of a potentially useful property is the transitive dy-
know:dependsOn object property, which is defined by

dependsOn C hasSubscription o fromCU. (7.33)

The dyknow:dependsOn relation for a given CU will connect it to all other CUs down
the subscription pipeline. A reasoner can be used to infer these relations for every
CU, such that the relations do not have to be provided explicitly, reducing the size of
the populated ontology. This makes it possible to easily obtain for some CU all CUs
it depends on, which can be useful for example when removing a CU to check for
broken dependencies.

Ontological extensions

The DyKnow ontology thus provides a tool to support semantic interoperability be-
tween different realisations of the formal model for stream reasoning frameworks,
even when these realisations make use of different internal representations of en-
vironments. A key observation is that the DyKnow ontology is designed to be ex-
tendible for purposes of realising the DyKnow model. These extensions can be per-
formed in different ways while retaining a cross-compatible representation. One
could thus see the DyKnow ontology as a top-level ontology. There are two sets of
expected extensions for the DyKnow ontology: system realisations and annotation
language realisations.

System realisations. The first category for ontological extensions deals with the
realisation of the DyKnow model into a concrete system. In this case, concepts such
as Channel or Transformation need an application-specific conceptualisation. These
conceptualisations are more specific than the general concepts described in the Dy-
Know ontology. For example, while a channel is assumed to have an identifier, the

113

7. Reasoning about composition

DyKnow model does not put any constraints on what this identifier may look like,
whereas a specific realisation might do so. Likewise, transformations may be re-
alised as programs, resulting in more specific properties.

Annotation language realisations. The second category deals with the realisation
of languages to annotate transformations or targets. These annotations are concep-
tualised by the DyKnow ontology using the Tag concept. A tag could be many things.
For example, a tag may simply be a simple string of text, or it might be something
more specific such as logical propositions or ontological concepts.

Different realisations can thus be represented using ontological extensions of the
DyKnow ontology, as demonstrated later. Different realisations however still under-
stand the high-level conceptualisations; a channel is a channel regardless of how it is
implemented. This makes it possible for different realisations of DyKnow to remain
compatible. While a multi-agent approach is beyond the scope of this dissertation,
the ontology serves as an important starting point for multi-agent support.

7.5 Summary

In many stream reasoning application domains, and especially in the case of robotic
systems, information enters the system at a low level of abstraction, for example as
raw sensor observations. Generating a high-level information stream requires the
ability to reason about one’s own stream refinement capabilities. This chapter for-
malised the stream reasoning framework’s computational environment as the Dy-
Know model. It does so by considering targets for formula symbols, abstract trans-
formations, concrete CUs, and channels connecting CUs. The model can be repre-
sented relative to a Semantic Web ontology, allowing other (heterogeneous) sys-
tems to reason about a system’s internal configuration.

114

Chapter

Reasoning about perturbations

pecially true for systems which are expected to run for extended periods of

time. In those situations, it is possible for system components, both hard-
ware and software, to fail. Conversely, it is possible for new and improved (exter-
nal) services to become available. Being able to cope with the loss (and capitalise on
the becoming available) of services is an important ability. We call reasoning about
such changes reasoning about perturbations. This chapter borrows from and ex-
tends previous work on configuration modelling and planning (de Leng and Heintz,

2015b,g, 2017).

S OMETIMES the context of a stream reasoning system may change. This is es-

8.1 Introduction

During the run-time of a stream reasoning system, it is possible for the environment
to change outside of its own control. We call these changes perturbations, which
can be represented in terms of change sets. Some perturbations can be relatively
harmless; for example, a transformation that is currently not in use could be dereg-
istered. Worse would be the case wherein a transformation for which CUs exist is
deregistered. In such a case, the behaviour of those CUs becomes undefined, and
they therefore require removal. Furthermore, the loss of these CUs can leave holes
in the computation graph, leaving the environment invalid. In yet another example,
a CU could crash and thereby be removed from the computation graph, resulting
in similar potential problems. These last examples are clear cases wherein a per-
turbation results in an expensive and suboptimal environment. Less clear cases are
those wherein new transformations become available. A new transformation could
be cheaper to use than the transformations currently in use by an environment, but
making this change is not critical.

115

8. Reasoning about perturbations

In this chapter, we consider a formal definition of perturbations, and present
procedures for correctly handling these perturbations. Specifically, whenever a per-
turbation occurs, the stream reasoning system needs to make changes to its config-
uration. Since many such changes may be correct, this becomes an optimisation
problem wherein the cost of a change to correct a perturbation is minimised. The
proposed procedures are any-time algorithms, allowing the stream reasoning sys-
tem to additionally choose how much resources it allocates to the perturbation han-
dling process.

8.2 Perturbation handling

A perturbation can be defined as a change set which was not expected by the stream
reasoning system. Formally, the definition of a perturbation is as follows:

Definition 8.1 (Perturbation). We can consider different types of perturbations de-
noted by d,. Short-term negative perturbations result in an immediate cost in-
crease (compared to no change) when considering an equal horizon H:

cost(e, 6, H) > cost(e,dz, H). (8.1)

When the cost does not change as the result of ¢, it is considered to be a short-term
neutral perturbation. Similarly, long-term positive perturbations make possible an
update that would result in a cost decrease, i.e.

0% [cost(e @ Oy, 0z, H) > cost(e ® §,,0", H)], (8.2)

with (inversely) long-term neutral perturbations lacking such an update. Different
perturbations can thus have different effects in the short and long term.

To handle both the short and long term repercussions of perturbations, seman-
tic subscriptions are periodically evaluated and updated to repair or improve the
underlying environment. This recurring process is referred to as the configuration
life-cycle. The life-cycle is composed of a number of phases which are repeated ev-
ery cycle, which starts with a review interval followed by a stable interval.

The purpose of the review interval is to reflect on the preceding stable interval
(if any) and to improve the environment configuration. During this interval, a stream
reasoning manager searches for a change set such that its application to the current
environment constitutes an optimal update. Whether an update is optimal is deter-
mined by a combination of labour and cumulative upkeep relative to a horizon. If an
optimal update is found (i.e. A* # ©), it is then applied; otherwise the environment
remains unchanged (i.e. 0* =). During the application of an update, the labour
costs are measured and used to update the labour estimator labour. The review
interval is then succeeded by a new stable interval.

1 short-term positive perturbations are generally ignored as they would require an outside force to
for example remove a target together with any CUs that would no longer be necessary.

116

8.3. Update procedure

Once the update produced during the review interval has been performed, the
stable interval begins. The purpose of the stable interval is to maintain uninter-
rupted streams that sﬂjﬂ/ targets, while monitoring the upkeep of the environ-
ment to update the upkeep estimator. The stable interval ends when one of two
events occur: (1) if a short-term negative perturbation is detected, the review in-
terval is started immediately in order to mitigate the increase in cost induced by
such a perturbation; and (2) if the horizon is reached, the review interval is started
as scheduled in order to check for possible improvements as the result of any long-
term positive perturbations that occurred during the stable interval.

8.3 Update procedure

Whenever the review interval is started, we search for and apply an optimal update
if one exists. We denote ¢, to represent the perturbation that started to review
cycle, if one exists; otherwise §, = dg. It is applied to a previous environment
€_1 to yield the current environment ¢y = €1 ® §,. The challenge is to find an
optimal update §* to mitigate any suboptimality induced by J,,, yielding the next
environment™ ¢, = ¢4 ® 6*. This is done through a three-step approach shown
below.

Exploration

The procedure for reconfiguration is shown in Algorithm B.1. Nodes represent CUs-
to-be that should become part of the resulting environment. The EXPLORE proce-
dure first generates a root node which is a placeholder that is used to represent
the targets (line 7). For example, if there are three targets, the root node will be a
ternary node such that the tags for every input correspond to the tags of the targets,
and the ports correspond to the desired ports of the targets. The task of EXPLORE
is to build a valid computation graph starting from the root node. To do so, it will
need to expand nodes in the graph with children satisfying that node’s inputs. The
combination of a node and an input index is therefore called a job. Jobs are kept
track of as part of the open.Jobs stack (line 3), and updated when necessary. The
choices made while building the graph are likewise stored in the trace stack (line 4).

The procedure runs by sequentially considering every job in open.Jobs and calls
the EXPAND procedure on these nodes (lines 11-23). If the EXPAND procedure suc-
ceeds, any new children have their inputs added to openJobs. Sometimes EXPAND
will find an existing node. In that case it has already been expanded as the result of
the DFS approach, and does not need its inputs added as jobs. Whenever EXPAND
fails, the failing job is returned to openJobs and backtracking is applied (lines 24-
39). EXPAND can fail when all candidates for expansion have been exhausted, ei-
ther due to having been attempted already, or because they result in the graph’s

12The perturbatione_1 ® dp is thus similar to the game-theoretical move by nature.

117

8. Reasoning about perturbations

Algorithm 8.1: Exploration procedure

vV ©® N OB W N R

P L O
® N o0 0 A W N B O

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
a1

function EXPLORE (Environment €, ChangeSet 6,):
registry < new Map()
openJobs < new Stack()
trace < new Stack()
bestTrace < new Stack()
bestCost + oo
Node root = new Node(createRoot(e))
running <— true
while running do
expansionFailure < false
while |openJobs| > 0 A —expansionFailure do
Job job < openJobs.pop()
Node next < registry[job.tid)
if EXPAND (next, trace, registry, €, dp, bestCost) then
if —next.virtual[job.port] then
‘ Add children to openJobs
end
Reset candIndex for all jobs in open.Jobs
else
expansionFailure < true
openJobs.push(job)

end

end

f |trace > 0| then

(from = to, cost) < trace.pop()

if ~expansionFailure A bestCost > cost then
bestTrace < trace U (from =; to, cost)
bestCost <+ cost

end

registry[from].children[i] < nil
registry|from|.virtual[i] < false

if ==— then

registry[to] < nil

Remove invalidated jobs from openJobs

end
openJobs.push(new Job(from,i))

else
‘ running < false
end

end
return COMPILE (bestT'race, €)

cost exceeding the current best cost. When backtracking is performed, the last ac-
tion stored in trace is reverted and a corresponding job as added. This will cause
EXPAND to try a different candidate. For every valid graph, we check whether it is
better than the currently best solution, and if so we replace it. Once no more back-

118

8.3. Update procedure

Algorithm 8.2: Node expansion

1 function EXPAND (Node node, var i, Stack trace, Map registry, Environment e,
ChangeSet 6, var bestCost):

node.children[i] < nil

node.virtual[i] < false

node.expanded < false

while —expanded A candIndex[i] < numCandidates(node.tid, ¢, i) do

candidateTID + getCandidate(node.tid, €, 6,, candIndex|i])

(from =; to, sumCost) < trace.peek()

cost < cost(candidateTID)

if registry[candidateT1D] = nil then

if sumCost + cost < bestCost then

Node child < new Node(candidateT'ID)

node.children[i] < child

node.virtual[i] < false

registrylcandidateT I D] < child

trace.push((tid —; candidateTID, sumCost + cost))

Reset inputs succeeding i

node.expanded <— true

vV O N oA W N

T O
o 0 A W N B O

-
~N

end

I
o

else

N e
o v

node.children|i] < registry[candidateT1D]
node.virtual[i] < true

trace.push((tid ~; candidateT1D, sumCost))
node.expanded < true

N NN
w N R

end
candIndex[i] < candIndex[i] + 1

NN
L

end
27 return expanded

N
o

tracking is possible, we use the best trace and convert it into a change set using the
COMPILE procedure (line 41).

Expansion

The EXPAND procedure is described in greater detail in Algorithm B.3. The procedure
is applied to a specific node and attempts to find a valid child node for a specified
input index 7. The corresponding action taken is then added to the trace. Actions
can represent the spawning of and connecting to new CUs (—), or the reusing of
nodes (~~) that were previously added to the exploration graph as part of the current
call to EXPLORE.

Every node keeps track of which candidates it has thus far considered for ex-
pansion for every input index. This is done by maintaining a candIndex array of
candidate indices, where each index corresponds to the next candidate to be at-
tempted for that input index. The procedure attempts successive candidates until it

119

8. Reasoning about perturbations

Algorithm 8.3: Compilation procedure

function COMPILE (Stack trace, Environment ¢):

0+ (9,9,0,9,0,9)

removalSet < CU.

channelMap < new Map()

cidMap + new Map()

foreach (from =; to, cost) € trace do

if to.cid € removalSet then
| removalSet \ {to.cid}

end

if = = — then

chan + getUniquelD()

channel Maplto] < chan

cid + getUniquelD()

cidMaplto.tid] < cid

0 < d U spawn(e, cid, to.tid, @) U
connect, (e, cidMap[from.tid], i, chan) U connecty (g, cid, chan)

vV ©® N OB W N R

L
o N W N B O

16 else

17 chan <+ channel Maplto]

18 d + 6 U connect (g, cidMap| from.tid], i, chan)
19 end

20 end

21 foreach cid € removalSet do

2 | 6+ §Udestroy(e, cid)

23 end

24 return 0

either finds one that works, or runs out of candidates for input index 7 (lines 5-26).
Specifically, the procedure considers transformations candidateT ID and checks if
they occur in the registry map, which maps TIDs to nodes. If a node already exists
for candidateTID, itis reused (lines 20-23), i.e. a virtual connection. Otherwise, a
new node is created iff this does not result in the cost exceeding the best cost (lines
10-18), i.e. a new connection. Finally, the procedure returns whether expansion
was successful or not (line 27).

Change set compilation

The COMPILE procedure described in Algorithm B.3 constructs a change set * from
the trace produced by EXPLORE in conjunction with EXPAND. The change set is first
composed of a number of spawn and connect actions. Spawn actions are called for
nodes representing new CUs (line 15). A newly spawned CU then needs to be con-
nected to a channel for its output port. The same channel is used to connect the
input port of the receiving CU to. For connections to existing CUs, only the receiving
CU needs to be connected with its input port. In these cases, the pre-existing chan-
nel is used to connect to. Finally, any CUs existing in the original environment that

120

8.3. Update procedure

do not occur in the trace are scheduled for destruction. This ensures that CUs that
are not in use do not linger and therefore do not accumulate upkeep.

Finding an optimal change set

To better illustrate how the three procedures interact, the following example illus-
trates two key scenarios. In the first, the environment is completely empty as it
would be when the system is first started, and a perturbation populates the envi-
ronment for the first time. The second case deals with perturbations that nega-
tively impact the environment and which must be resolved to guarantee semantic
subscriptions are maintained. As an example, consider for a horizon H = 10 an
environment ¢ = (&, F, T, ~) such that

= {(tid, f1(x), [A], B) , (8.3)
(tida, f2(z),[C], D),
(tids, f5(), [, E) ,
(tidy, f10),[], F),
(tids, f5(),[], G) };
T = {{qidy, B,101), (8.4)
(qids, D,102)},

and the similarity relation is reflexive and further includes A ~ E, A~ F, B ~ F,
and B ~ (G. We thus have an environment in which no CUs are active, five trans-
formations are registered, and two targets are registered. We will assume that the
cost estimators yield 1.0 labour and 1.0 upkeep for each of the five transformations.
Additionally, the perturbation is described by

0p=(2,2,2,2,T,9), (8.5)

meaning that the disturbance is the registration of the targets T for example by
a human operator. Since d, is a short-term negative perturbation (co > 0),
the EXPLORE(¢, d,) procedure described in Algorithm B is called to mitigate the
perturbation-induced cost increase.

After initialising the stacks and map, the root node is created. This root node is
based on the set of targets T" and is represented by a placeholder transformation
(root, &, [D, E] ,none). The first call to EXPAND is done on this root node with an
empty trace and a bestCost value corresponding to co. The expansion is performed
in a depth-first manner, starting with the first input of the root node. The candidates
are determined by the similarity relation ~. Therefore, any transformations with
an output tag equal to an input tag under consideration qualify as candidates for
expansion. The first input tag of the root node is B, which is only equal to the output
tag of transformation tid;. Since tid; does not exist in the registry, it cannot be
reused, so a new CU would have to be spawned from it. The total cost of such a CU
would be 11.0; 1.0 from the labour and 10.0 from the upkeep over the length of the

121

8. Reasoning about perturbations

horizon. Since our current cost is 0.0, adding 11.0 would not exceed the bestCost
value of 0o, so the candidate is used. The trace now consists of one entry;

[(root — tidy,11.0)]. (8.6)

The EXPAND procedure is subsequently called again for the first input index of the
node for tid;. Its input tag corresponds to A, which is similar to the output tag of
tids and tid,. Maintaining the order of transformations, tids is chosen first, result-
ing in the trace

[(tidl —0 tid?” 22.0)

) (8.7)
(root —¢ tidy, 11.0)].

Since tids has no dependencies, the search continues with the second input of the
root node, yielding tids as a candidate, followed by tid,. The first solution thus has
atrace

[(tids —so tida, 44.0), (8.8)
(root — tids, 33.0),
(tidy —o tids, 22.0),
(root — tidy, 11.0)]

and a cost of 44.0. The EXPLORE procedure then starts backtracking. The trace head

(tidg —0 tid4, 440) (89)

is first removed, and EXPAND is called on its head node tids with a best cost of 44.0.
While tids is a valid candidate, its cost would be equal or greater than the best cost
of 44.0, so EXPAND returns failure and backtracking continues. The next trace head
is

(root —1 tids, 33.0), (8.10)
for which there are no alternatives, so backtracking continues further. Next is trace

head
(tidl —0 tidg, 22.0) s (8.11)

where EXPAND is called on the tid; node, which does have an alternative candidate
tidy. Since picking tids, would not exceed the best cost, it is picked, resulting in a
trace

[(tldl —0 tid4, 220)

) (8.12)
(root —¢ tidy, 11.0)].

The EXPAND procedure returns success, but EXPLORE still has the root node as an
open job to reflect the backtracking which removed its subgraph at its second input,
so EXPAND is called on the root node. Due to the change from tids to tid, earlier

122

8.3. Update procedure

in the trace, the root node is allowed to pick tids as its candidate again. Expansion
of the tidy node subsequently yields tid4 and tids as candidates. Adhering to the
ordering, tidy is chosen first. This time, tid, already exists in the registry, so it can
be reused for free, resulting in the trace

[(tidg ~~¢ tidy, 33.0), (8.13)
(root —1 tids, 33.0),
(tidy —so tids, 22.0),
(root —q tidy,11.0)]

and a cost of 33.0. After this point, no better solutions are found, and backtracking
exhausts the trace.

The EXPLORE procedure then returns the result of applying the COMPILE proce-
dure to the trace given the environment . This procedure runs through the trace,
starting at the bottom of the stack, choosing unique channels and CU identifiers.
The first item is root —(tid;, which requires the spawning of a CU of type tid;
and its subsequent connection to the desired target channel 101. A unique channel
is randomly chosen for its input; we will assume it is channel 1. This is followed by
the spawning of a CU of type tidy, the output for which is connected to channel 1,
and which has no inputs. Then follows the spawning of a CU of type tidy whose
output is connected to channel 102 as determined by the second target, and whose
input channel us chosen to be channel 1 as it shares the source CU of type tid,. The
resulting change set then becomes §* = (CU™, @, &, &, &, &), where

CU" = {(cidy, tidy, [1],101, @), (8.14)
<Cid2, tid4, H,]., @> ,
(cids, tidy, [1],102, @) }.

The update ¢’ = ¢ ® EXPLORE(e, d,,) thus yields a resulting environment
e =(CU" F.,T.,~.). (8.15)

When this update is performed, the estimators for lm are updated based on the
observed resource usage associated with instantiating transformations.

The update above marks the end of the review interval and the start of the stable
interval. The stable interval now has a duration equal to the horizon length,
during which the estimators for upkeep are updates based on the observed resource
usage of CUs. Short-term negative perturbations could however cut this duration
short. To better illustrate the adaptivity of semantic subscriptions, we will assume
that such a perturbation indeed occurs.

For the duration from the review cycle’'s completion to the perturbation, the
targets qid; and gids ensured that there would be a stream sent over channels 101
and 102, for which the semantics are described by the tags B and D respectively.
The occurrence of the perturbation jeopardises these streams. In the worst case,

123

8. Reasoning about perturbations

no more samples are sent out on the channels, effectively freezing the streams. The
premature termination of the stable interval and start of the review interval is meant
to quickly mitigate this problem. We will assume that the perturbation corresponds
to the crash of a CU, illustrated by

dp = (&, {{cids, tids, [1],102, 5)} , &, @, &, @). (8.16)

The perturbation §,, encodes the fact that the CU of type tid; and with identity cids
has been removed from the environment. This puts a hole in the computation graph,
as streaming data from CU cidsy sent over channel 1 is no longer processed, nor is
the stream that would have resulted from that processing sent over channel 102 to
satisfy target qido. Furthermore, the estimators for labour and upkeep have been
updated since our previous optimal update, and the upkeep cost of CU cids is de-
termined to be 3.0 per time-unit instead of the estimated 1.0 per time-unit.

The EXPLORE(e’ ® d,, 0,,) procedure is run to obtain an optimal update that will
cost-efficiently resume the data stream on channel 102. The process is the same
as before, except that now we can use CUs from the environment ¢’ = ¢’ ® §,,
which are prioritised over spawning new CUs from transformations. One advantage
of reusing CUs is that no labour cost is acrued. This leads to an initial trace

[(tids ~q cidy, 51.0), (8.17)
(root —1 tids, 51.0),
(cidy —¢ cids,40.0),
(root —q cidy, 10.0)]

and a cost of 51.0; reusing cid; requires an upkeep of 10.0, reusing cids requires an
upkeep of 30.0, spawning a CU of type tids requires an upkeep of 10.0 and labour
equal to 1.0, and connecting this new CU to a CU we already paid for is cost-free.
Unfortunately, while this solution is a quick-fix of the problem, it is not the best
solution. The upkeep cost of cids has increased sharply since the last review interval.
Therefore, backtracking yields another solution which is optimal;

[(tids —o tids, 43.0) , (8.18)
(root —1 tids, 32.0),
(cidy —g tids, 21.0),
(root —q cidy,10.0)].

This way, we no longer expend resources on the upkeep of cid,, and the one-off
labour cost is insignificant with a horizon length of 10 time-units. The EXPLORE al-
gorithm next calls on COMPILE. As before, a change set is generated which spawns
and connects CUs. This time we however also destroy CU cids to remove its drain
on the upkeep, as it is never removed from the removalSet due to not occurring
in the trace. The resulting change set is therefore §* = (CUY,CU~, 2,2, 9, 9),

124

8.4. Correctness

where
CU" = {{cidy, tids,[],1, @),
<C’Ld5, tids, [2] 102 @)
<Cld6,tid5, [], >}
{<CZd2»tid47[]7 ’ >}

The application of §* to environment &” then yields a new environment
5// & 0 = <CU7 FE) T57 N€>
such that the new computation graph CU is described by

CU = { (cidy, tid, [1], 101, S) ,
(cidy, tids, [],1,2),
(cids, tidy, [2],102, @) ,
(cidg, tids, [],2, @)}

(8.19)

(8.20)

(8.21)

(8.22)

As can be seen from the environment ¢’ ® §*, we now have four CUs satisfying
the two targets. This leads to the resumption of the previously-frozen stream over
channel 102, fixing the problem caused by the most recent perturbation in a cost-

efficient manner.

8.4 Correctness

The EXPLORE procedure is designed to find an optimal update if one exists, even if
the original environment is invalid and therefore has a cost exceeding MAX_COST.
Note that while there may exist different optimal updates with the same cost, only
the first one found is selected; the others are pruned. In order to show the correct-
ness of the EXPLORE procedure, it must be shown to return an optimal update.

125

8. Reasoning about perturbations

Theorem 8.1: Correctness

The EXPLORE procedure is correct, meaning that for any environment ¢ result-
ing from a perturbation d,,, and any horizon of length H, for the set of optimal
change sets A* defined as

A" = arg m(sin 0/055(5, 0, H) (8.23)
subject to c/ogf(s, 0, H) < MAX_COST,
the following implication holds:
A* # & — EXPLORE(g, 0p) € A™, (8.24)

i.e. if some optimal change sets exist, the EXPLORE procedure will return one
of them.

Proof. The proof is based on Algorithms B3, B-2, and B-3. In particular, it is first
shown that the exploration procedure exhaustively finds all change sets § so that
€ ® 6 € Valid if the guard sumCost + cost < bestCost on line 10 in Algorithm B2
is omitted. It is then shown that the inclusion of this guard excludes suboptimal
change sets, thereby returning an optimal change set if one exists.

The EXPLORE procedure performs a depth-first expansion of the root node when
run for the first time. This sequence of operations is enforced by the stack of open
jobs; whenever more expansions are available, they are pushed to the top of the
stack. This means that when the stack is empty, no more expansions can be per-
formed, and a complete computation graph has been found. The sequence of ac-
tions resulting in this graph is maintained as a trace stack. This allows us to backtrack
by undoing actions and considering alternative candidates.

The candidates for expansion are kept track of within the nodes of the graph.
Whenever we backtrack to a node, we increment the candidate index (candIndex)
for the input index of interest. When a suitable alternative candidate is found, the
trace is updated accordingly. Since a change has been made to the graph, this means
we can reset all of the candidate indices of future jobs. This way we ensure that we
find all valid change sets.

Now consider what happens if we reinstate the cost guard. For EXPLORE to re-
turn a suboptimal solution, either there exists no solution in A* or the optimal solu-
tion is not considered in lines 9-40. The former is a contradiction with our assump-
tion that A # @. The latter can only occur if the cost guard on line 10 in EXPAND
prunes away the optimal solution. Since the guard only excludes expansions that
would lead to costs greater than the best cost, that would mean negative costs are
necessary for this to occur. But negative costs are not allowed, so EXPAND cannot
prune away the optimal solution. Therefore EXPLORE cannot return a suboptimal
solution whenever A* is non-empty. |

126

8.5. Any-time extension

8.5 Any-time extension

The EXPLORE procedure quickly finds a first solution (or finds that none exist), which
it subsequently improves on through an exhaustive consideration of alternatives.
Alternatively, the procedure could stop considering alternatives prematurely and
return the best solution found thus far. Such an any-time extension of EXPLORE is
useful in cases where an exhaustive search would take too long and we are will-
ing to sacrifice the optimality of the produced change set in favour of getting a
change set faster. We therefore consider a variant of EXPLORE which in addition
to its usual arguments takes a value timeout corresponding to the time-point after
which EXPLORE stops backtracking on its trace (line 24), effectively extending the
guard to [trace| > 0Aruntime > timeout where runtime represents the number
of time-units that passed since the procedure was started. The original correctness
criterion can then be generalised to

lim (EXPLORE(e, 6,, timeout)) € arg m(sin cost(e, 8, H) (8.25)

timeout— oo

subject to c/o§£(5, 0, H) < MAX_COST.

Given a finite value for timeout, it cannot be guaranteed that EXPLORE will re-
turn an optimal change set. In such a case the direction of exploration becomes a de-
termining factor for the quality of the result. Heuristics can be used to improve the
result quality by guiding the direction of exploration based on background knowl-
edge of the search space. Specifically, the getCandidate procedure in EXPAND im-
poses a total ordering < on the available candidates at every node. When the pro-
cedure plans to perform a spawn action, both labour and upkeep costs are acrued.
When instead an existing CU is used, labour costs are eliminated. If a previously-
expanded node can be used, all costs are eliminated. Therefore, the total order

Spawn from TFs < Reuse CUs < Reuse nodes (8.26)

would prioritise cheap options before considering more expensive ones. A perturba-
tion ¢, can provide further guidance by encoding cases in which CUs are destroyed.
If the associated transformation was not removed, the ordering of candidate trans-
formations can consider this transformation first, as it will likely provide an initial
solution fast. Finally, additional heuristics taking into account properties of trans-
formations and CUs can be considered, for example their cost, tags, or identifiers
which imply freshness.

The any-time extension of EXPLORE also allows for the inclusion of its own run-
time into the configuration cycle. The length of the horizon H is used to determine
accumulated upkeep during the stable interval. In the any-time version, we can con-
sider a configuration cycle length

H+ = Hreview + Hstable (827)
= timeout + H (8.28)

instead, which fixes the configuration cycle to a regular pattern.

127

8. Reasoning about perturbations

8.6 Summary

In this chapter, we considered the case wherein a stream reasoning system is sub-
jected to unexpected change sets, called perturbations. The ability to respond to
a perturbation with a correcting change set is important in order for such a system
to be robust. Likewise, sometimes transformations that are better than the ones
instantiated at that time become available. In those cases, the system needs to be
able to leverage the newly available transformations to reduce its computational
resource usage. Therefore, an algorithm for finding optimal updates was presented
in the context of a configuration life-cycle consisting of recurring review and stable
intervals. The algorithm can be extended to an any-time algorithm, allowing the
underlying system to additionally plan computation resource usage towards pertur-
bation handling. This allows for a trade-off between finding an optimal solution and
saving computational resources that would be expended finding such an optimal
solution.

128

Part IV

APPLIED STREAM REASONING

Chapter

DyKnow-ROS

tive stream reasoning framework can be constructed. In this chapter an

instance of such a stream reasoning framework called DyKnow-ROS is pre-
sented, which provides a realisation of the DyKnow model integrated with ROS. The
choice of implementation is however general and could be applied to other support-
ing software. The chapter presents an overview of the software architecture and
services by providing concrete realisations of the abstract components presented
previously. Finally, the framework is empirically tested to measure overhead cost re-
sulting from the indirection induced by DyKnow-ROS. This chapter uses and extends
materials that primarily focus on extending ROS with reconfigurable subscriptions
(de Leng and HeintZ, 2016b), and materials that focus on semantic subscriptions for
ROS (de Leng and Heintz, 2017).

T HROUGH the integration of the previously-presented techniques, an adap-

9.1 Introduction

The DyKnow-ROS stream reasoning framework is an extension to ROS (Quigley et all,
2009), which is a popular robot middleware used frequently in both industry and
academia. DyKnow-ROS is capable of reasoning about which streams to subscribe
to and can reconfigure the system during run-time to for example generate streams
required for spatio-temporal reasoning tasks.

ROS allows developers to write implementations as ROS nodes, which can com-
municate with each other by using services and topics. These nodes are combined
into packages, of which many have been made publicly available. Topics can be
used to connect nodes to establish a flow of information, which makes them the
implementation counterpart to the concept of channels capable of transporting in-
formation streams. Topics are advertised by publishers and can be subscribed to by
other nodes using subscribers, such that a single topic can have multiple publish-

131

9. DyKnow-ROS

Shroud

Fast

Observation

Interpretation

Knowledge |
Slow Verdict Response
Low _ High
abstraction * abstraction

Figure 9.1: The stream reasoning waterfall model with the components within the
stream reasoning pipeline range highlighted.

ers and subscribers. Services allow nodes to advertise functionality to other nodes,
which can then be requested by these nodes. Services (optionally) take a number
of arguments and can (optionally) return a result to the service caller. ROS uses
Node Handles to expose its API to developers of nodes, which packages such as Im-
age Transport augment to support efficient image transportation. Where standard
nodes correspond to individual processes when run, nodelets are run on threads
within a Nodelet Manager node. Communication between nodelets is consequently
generally more efficient than communication between nodes. Further, nodes are
instantiated either manually or through a launch file, whereas nodelets can also be
instantiated using the Nodelet Manager'’s services. This makes it possible for pro-
grams to instantiate other programs at will.

In practice, most ROS-based systems rely on sometimes large collections of re-
peatedly nested launch files to operate. It may also be necessary for a user to run
a number of launch files in a particular sequence in order for a system to function
properly. It can be quite challenging to make changes to such files to accommodate
new components, or to change configurations as part of a set-up phase. Clearly a
lot of manual configurations may be necessary to operate a ROS-based system. This
may work for small systems, but quickly becomes infeasible as systems grow to for
example hundreds of robots. Depending on the application, operator errors can be
very expensive. By applying the DyKnow model to ROS, DyKnow can benefit from
the underlying architecture provided by ROS, while providing ROS with adaptive re-
configurability. We consider this to be an extension of core ROS features. In the
performance evaluation we show that the induced overhead cost is minimal.

In this chapter, we use ROS to realise the DyKnow model and thereby realise an
adaptive spatio-temporal stream reasoning application. The choice of ROS is based
on the fact that it closely follows the DyKnow model, but other middleware could
be used as well.

132

9.2. DyKnow-ROS

9.2 DyKnow-ROS

DyKnow-ROS is a concrete realisation of the DyKnow model based on the ROS mid-
dleware. Figure p.7 shows the stream reasoning pipeline adopted by DyKnow-ROS
highlighted. In this chapter, we focus on the integration of the various steps into a
single stream reasoning framework. In particular, given a formula and a semantic
interpretation of its symbols, the full system should be able to automatically gen-
erate a state stream over which it then evaluates the provided formula. Once the
formula has been evaluated, the computational environment should automatically
be cleaned up. This combined functionality requires implementations for a stream
reasoning manager, a stream reasoning engine, a computational environment, and
their connecting interfaces.

While ROS provides most of the transportation functionality needed to support
this type of stream reasoning, its service-based interface lacks control over the way
nodelets in ROS are connected. The first step towards DyKnow-ROS is therefore
to extend this interface with additional services. By default, the nodelet manager
provides the following services:

¢ NodeletLoad: Given a nodelet name and type, the Nodelet Manager instan-
tiates a nodelet of that type, where the type is a reference to the nodelet’s
source.

¢ NodeletUnload: Given a nodelet name, the Nodelet Manager destroys that
nodelet. A nodelet cannot unload itself.

¢ NodeletList: Returns an array of nodelet names.

Nodelets can thus be added, removed, and enumerated using the Nodelet Man-
ager’s services. These services are prerequisites to the spawn and destroy actions
formally defined as part of the DyKnow model. Neither the Nodelet Manager nor
nodelets however provide services that allow for subscribers and publishers to be
changed at run-time. Developers are expected to specify configurations manually
using launch files instead — ROS was not designed for the purpose of automatic
(re)configuration.

To extend ROS with run-time reconfiguration services for subscribers and pub-
lishers in nodelets, different approaches could be taken. The architecture of
DyKnow-ROS was chosen based on three factors: ease of adoption, ease of use, and
minimal computational overhead. DyKnow-ROS does not require a custom version
of ROS, but instead provides an optional extension through the use of add-on com-
ponents that build on top of nodelets. This extension is collectively referred to as
a nodelet proxy. This allows developers to use DyKnow-ROS in some parts of their
system but not others, if they so choose. Where DyKnow-ROS replaces standard
ROS components, it sticks as closely to the original interface as possible and tries
to limit required changes to namespace changes. This was done to make it easy to
switch from standard ROS nodelets to DyKnow-ROS CUs while retaining a familiar

133

9. DyKnow-ROS

interface. Lastly, DyKnow-ROS inevitably induces overhead computational costs by
virtue of being an add-on layer on top of ROS. It seeks to keep this overhead mini-
mal by keeping it relative to the degree of control granted to DyKnow-ROS. The more
extra features from DyKnow-ROS are used, the larger the overhead.

9.3 The nodelet proxy

The flexibility offered by the Nodelet Manager makes it an excellent tool for dynam-
ically reconfiguring a ROS system. As mentioned earlier, the services offered by a
Nodelet Manager are limited to the loading and unloading of nodelets. DyKnow-
ROS therefore complements these services with the help of persistent nodelet prox-
ies that augment the ROS Node Handle. The persistent nodelet proxy is the key
component that allows DyKnow-ROS to exert a greater control over the augmented
nodelets, which are realisations of CUs. A developer establishes a nodelet proxy by
creating a DyKnow variant of the nodelet handle instead of the usual ROS nodelet
handle. Recall that the ROS nodelet handle serves as an API that can be used to
call ROS functionality, such as creating publishers and subscribers. The DyKnow-
ROS node handle instead delegates these calls to the nodelet proxy, which either
delegates to the ROS node handle or to custom DyKnow variants depending on the
functionality requested. Specifically, DyKnow-ROS provides its own publishers and
subscribers that can be used in the same way as ordinary ROS publishers and sub-
scribers. The key difference between the two lies in the indirection imposed by
DyKnow-ROS. ROS publishers and subscribers connect directly to topics; a subscriber
can name a topic and a callback method, whereas a publisher can name a topic and
a message to be sent. The DyKnow-ROS variants instead use ports, which are in turn
connected to a topic. The nodelet proxy maintains a mapping between ports and
topics, and allows for this mapping to change as the result of services that are of-
fered by the proxy. This way, ports can be associated with different topics over time,
which allows for run-time reconfiguration to occur.

To illustrate the extension, a schematic of the nodelet proxy and its relation to
a host nodelet is shown in Figure P.3. The nodelet implementation by a developer
is indicated by NodeletImpl, which extends ros::Nodelet. The developer is able to
create a dyknow::NodeHandle, which takes a ros::NodeHandle as an argument. The
dyknow::NodeHandle extends the interface provided by ros::NodeHandle, overrid-
ing some of its functionality. When a developer creates subscriptions or publishers,
DyKnow-ROS provides dyknow::Subscriber and dyknow::Publisher handles. These
are run-time reconfigurable version of the ros::Subscriber and ros::Publisher. A CU
is also able to set a callback for whenever it is reconfigured. This can be useful when
a reconfiguration requires actions to be taken by a nodelet, for example to notify
some part of the system of its new subscriptions and publishers. Further, statistics
such as the number of reconfigurations are maintained and made available.

134

9.3. The nodelet proxy

ros::Publisher
—————— 1

0.1

¢
dgknow::PublisherState 1

ros::NodeHandle

dyknow::NodeHandle

2 dgknow::Pu blisher

ros::Nodelet

dyknow::SubscriberState RJ

b
0.1

ros::Subscriber

L d¥know::subscriber

Figure 9.2: UML diagram showing the DyKnow nodelet implementation and its re-

lation to standard ROS components.

Listing 9.1: ROS echo example

1 void Echo::onInit() {

2 ros::NodeHandle nh = getMTPrivateNodeHandle () ;

3 sub = nh.subscribe("in", 1000, &Echo::callback, this);
4 pub = nh.advertise<MessageType>("out", 1000);

5%

6

7 void Echo::callback(const MessageType::ConstPtr& msg) {

8 pub.publish(msg) ;

9}

The proxy adds additional services to control the mappings between topics and
ports. It can also list for a given nodelet what topics are connected to which ports

at the time of the service call.

e GetConfig: Returns a list of ports and associated topics for the nodelet the

proxy is associated with.

e SetConfig: Takes a list of ports and topics to be connected for the nodelet the

proxy is associated with.

e GetStatistics: Returns nodelet statistics in terms of uptime, the number of
reconfigurations performed, and the number of messages sent or received

for each port.

These additional services are tied to individual CUs and allow external components
to keep track of and modify how CUs are connected to other CUs. With the addition
of these services, the lack of configuration control is resolved.

Example 9.1 (A simple echo nodelet). To illustrate the subtle differences between
standard ROS nodelets and DyKnow-ROS nodelets, we consider a simple echo unit.

135

9. DyKnow-ROS

Listing 9.2: DyKnow-ROS echo example

1 void Echo::onInit() {
2 nh = dyknow::NodeHandle (getMTPrivateNodeHandle());

3 sub = nh.subscribe("in", 1000, &Echo::callback, this);
4 pub = nh.advertise<MessageType>("out", 1000);

5}

6

7 void Echo::callback(const MessageType::ConstPtr& msg) {

8 pub.publish(msg) ;

9}

Echo units can receive messages, which they then immediately forward, without per-
forming any kind of processing on them. As such, they are one of the smallest exam-
ple nodelets. Listing .1 shows a ROS implementation of an echo unit. We can use a
local ros::NodeHandle to create a ros::Subscriber and ros::Publisher. The subscriber
is connected to the ‘in’ topic, with a callback to the ‘callback’ method. Anytime a
message arrives, this method is called. Since we are using an echo unit, the message
is immediately published on the ‘out’ topic using the publisher.

Switching to DyKnow-ROS requires some changes as shown in Listing [9.2. Cre-
ating a dyknow::NodeHandle results in the creation of a proxy behind the scenes.
When all node handles go out of scope, so does the proxy, so we store the node
handle as a member variable. The reason for requiring the proxy to be persistent is
because it hosts the reconfiguration services — if it goes out of scope, the services
become unavailable. The remainder of the code is the same, although instead of ROS
subscribers and publishers, we get a dyknow::Subscriber and a dyknow::Publisher.
The subscriber uses the ‘in’ port; we do not control what topic it is connected to. The
same holds for the producer, which is connected to the ‘out’ port.

The difference between the two code snippets is thus minimal from the perspec-
tive of the developer. However, while the syntax is largely the same, the semantics
have slightly changed. As always, a developer should be aware of these underlying
mechanisms.

9.4 Management of stream processing

The stream reasoning manager is responsible for setting up and maintaining config-
urations in support of stream reasoning. It interacts with the stream reasoning en-
gine and the computational environment, and is implemented in DyKnow-ROS as a
node — as is the stream reasoning engine. The manager can interact with the com-
putational environment with the help of the proxy services. Likewise, the stream
reasoning engine provides services which are presented later. Both sets of services
are used by the manager, which in turn provides its own set of services acting as a
client-facing interface. The services provided by the stream reasoning manager are:

136

9.4. Management of stream processing

e AddTarget: Given a target specification, store the specification under the as-
sociated label. Specifications can be overridden.

¢ RemoveTarget: Given a label, remove the target specification with that label,
if any.

¢ AddTransformation: Given a transformation specification, store the specifi-
cation under the associated label. Specifications can be overridden.

¢ RemoveTransformation: Given a label, remove the transformation specifica-
tion with that label, if any.

e Spawn: Given a transformation label and name, instantiate a nodelet of that
transformation type with the supplied name. Nodelets can be protected from
unloading. Uses NodeletLoad.

¢ Destroy: Given a name, destroy the nodelet with that name if it exists and if
it is not protected. An unprotected nodelet can destroy itself this way. Uses
NodeletUnload.

e GetModel: Returns a listing of all running DyKnow nodelets and their port-
topic connections. Also returns all stored transformation specifications.

The manager provides supporting services for changing configurations as well as
acquiring a representation of the current environment. The latter service is useful
for taking configuration snapshots, for example for the purpose of representing the
environment in a client.

We can subdivide the tasks of the stream reasoning manager into two parts. The
first is to keep track of the environment, i.e. what its current state is, what TFs exist,
what CUs exist, etc. This basically boils down to a storage task. The second is to
enforce the configuration life cycle, by regularly updating the configuration. This is
the daemon component of the manager. We consider both tasks in more detail.

Representation of configurations

The stream reasoning manager keeps track of the state of the computational envi-
ronment and provides services that can be used to change this environment. The
DyKnow model specifies an ontology for representing an environment with a well-
structured grammar. DyKnow-ROS makes use of this ontology to not just represent
the environment, but also as a grammar for specifications of transformations and
targets. Since DyKnow-ROS is a concrete realisation of the DyKnow model, it ex-
tends the DyKnow ontology to capture ROS-specifics. For example, whereas the Dy-
Know ontology uses the Channel concept, DyKnow-ROS refers to the Topic concept.
The latter is a specialisation of the former, and enforces a well-defined grammar for
topics as defined by the ROS specifications. Figure [/.1in the previous chapter illus-
trated the concept hierarchy of the DyKnow ontology, which is listed in Appendix J.
We briefly consider its extension to DyKnow-ROS here.

137

9. DyKnow-ROS

Service calls to the Add Transformation service provided by the stream reasoning
manager require a uniquely-labeled transformation specification. Recall that the
dyknow: Transformation concept is defined in DL as

Transformation CJhasName.xsd:Name (9.1)
MdhasCostModel.LabourCostModel,

where
LabourCostModel = CostModel. (9.2)

DyKnow-ROS uses the specialised concept dyknowros:ROS Transformation such that
ROSTransformation C Transformation. Concretely, the ROSTransformation is de-
fined in DL as

ROSTransformation C Transformation (9.3)
M=1 hasSource.xsd:anyURI
M3hasPort.Port,

where

hasInPort C hasPort,
hasOutPort C hasPort. (9.5)

This means that a ROSTransformation has at least one port, either an input or an
output port. Furthermore, it has exactly one source, which is represented by a URI to
a nodelet binary. This makes it possible for the manager to dynamically load specific
nodelet implementations. Lastly, ports can be annotated with tags describing the
semantics of the data flowing through those ports and the channels they connect
to. Listing .3 shows an example of a transformation specification in DyKnow-ROS.

Listing 9.3: Example transformation specification in Turtle syntax

1 :undistort a :ROSTransformation ;

2 :hasType "nodelet" ;

3 :hasSource "package/Undistort" ;
4 :hasParam [

5 a :Parameter ;

6 :hasName "configPath" ;

7 :hasType "string" ;

8 :hasValue "/path/to/configuration/caml/" .
9 1

10 :hasPort [

11 a :InPort ;

12 :hasName "rawCamera" ;

13 :hasTag [

14 a :Tag ;

15 :hasValue "RawRGB(cam1)" .
16 1 o

17 15

18 :hasPort [

19 a :0utPort ;

138

9.4. Management of stream processing

20 :hasName "undist" ;

21 :hasTag [

22 a :Tag ;

23 :hasValue "Undistorted(caml)" .
24 1.

25 1

26 rdfs:label "Undistort(caml)" .

Service calls to the AddTarget service require a target specification. Similar to
transformation specifications, target specifications make use of the dyknow: Target
concept extended to dyknowros:ROSTarget for ROS. Targets are composed of a la-
bel, channel, and tag. In the case of ROS, the channel corresponds to a topic, i.e.

ROSTarget CTarget (9.6)
M3hasTopic. Topic.

where dyknowros: Topic is a specialisation of dyknow:Channel. Topics use a stan-
dardised naming convention enforced by ROS which is similar to the way paths are
represented in Unix-based systems. Listing .4 shows an example target specifica-
tion in DyKnow-ROS.

Listing 9.4: Example target specification in Turtle syntax

:undistortSub a :R0STarget ;
:hasTopicName "/result"~“rosTopic ;
:hasTag [

a :Tag ;

:hasValue "Undistorted(caml)" .
1.
rdfs:label "undistortSub" .

N oA N e

This leaves us with CUs. While the service calls do not require CUs as arguments,
some do return them as part of the service response. Therefore, they too have a
DyKnow-ROS specification. Since nodelets act as CUs in DyKnow-ROS, we simply get

Nodelet = ComputationUnit (9.7)

for the sake of completeness.

Example 9.2 (Transformation and target specifications in DyKnow-ROS). Consider a
smart lab equipped with four similar ceiling cameras. In this example, the cameras
are using fish-eye lenses, and their positions allow them to cover most of the lab’s
ground surface area with some overlap. A transformation could be applied to the
image streams from the cameras if they are first undistorted.

A subscription to an undistorted stream from a camera called ‘cam1’ is illustrated
in Listing [2.4 as a target specification. The target is labelled undistortSub and repre-
sents the desire for a stream to be produced on the /result topic with the semantic
description Undistorted(cam1). The semantic description is part of the tagging lan-
guage and intended to represent an undistorted image stream originating from the
‘cam1’ camera.

139

9. DyKnow-ROS

Atransformation that might produce a suitable stream is illustrated in Listing [9.3.
It represents a nodelet for which the binary is referred to in package/Undistort. Note
that this binary makes no reference to a particular camera. This is because the trans-
formation combined the binary with a configuration for the ‘cam1’ camera. It does
so by providing the binary with a ‘configPath’ parameter, which the binary under-
stands to be the location of a lens model file specific to the ‘cam1’ camera. Con-
sequently, the transformation is labelled Undistort(cam1) to illustrate it is specific
to the ‘cam1’ camera eventhough the binary it uses is not. The transformation has
two ports; one input port expecting raw RGB images from the ‘cam1’ camera, and
one output port producing undistorted versions of those images. The transformation
is therefore a suitable candidate for satisfying the target, assuming that its depen-
dency on raw RGB images can be resolved.

Both transformations and targets make use of tags, which are used for semantic
annotations. The focus of this work was however not on the development of an
annotation language, but rather how one could be used in the context of the DyKnow
model. Despite this, a tagging language is necessary for the DyKnow-ROS system to
work. Therefore a simple tagging language is used when tags are explicitly specified,
with the understanding that a better tagging language can replace this placeholder
language in the future.

Configuration life-cycle daemon

The second task of the stream reasoning manager is to act as a daemon by reconfig-
uring the DyKnow-ROS configuration in accordance with the configuration life-cycle.
This requires the realisation of Algorithm B.J from the previous chapter in a ROS
environment. Additionally, functionality is needed for the observation of computa-
tional resource usage and its effect on the cost estimators.

The EXPLORE procedure and its dependencies take a computational environ-
ment ¢ and perturbation d,,, and subsequently construct an optimal change set §*
with the help of the spawn, connect, connect; and destroy actions. In DyKnow-
ROS, the environment is available and monitored by the stream reasoning manager.
Perturbations can be detected as well through the service calls that would qualify as
perturbations. For example, if a target is added, this is achieved to a service call to
the manager, thereby implicitly notifying the manager of a perturbation. As such, ¢
and 6* have counterparts in DyKnow-ROS. The same holds for the aforementioned
actions which make up §*, as each of them can be performed using the services avail-
able to the stream reasoning manager. The application of an optimal change set is
then equivalent to a sequence of service calls. The EXPLORE procedure is deviated
from in two ways. Firstly, since ROS allows nodelets to have multiple ros::Producer
instances, a CU can have multiple outputs. In such a case, the CU is said to be an
instance of multiple transformations which take the same inputs but produce dif-
ferent outputs. Secondly, CUs can be designated ‘protected’, in which case they are

140

9.5. Stream reasoning support

never destroyed by a resulting change set. This will cause the procedure to find a
best change set given that the protected CUs are kept around.

Computational resource usage is measured in terms of CPU time, specifi-
cally by combining utime and stime. Both values are obtained by reading from
/proc/$tid/statm on Linux for the corresponding thread identifier. For labour,
we measure the CPU time associated with creating new CUs. For upkeep, the CPU
time per wall time minute is accumulated by measuring the CPU times of individual
callbacks from dyknow::Subscriber and dyknow:: Timer objects. The former is useful
for CUs that react to new inputs, whereas the other is useful for CUs that run at spe-
cific time intervals. Upkeep is measured relative to a transformations, so if multiple
CUs exist for the same transformation, the upkeep would be the average CPU time
measured over all of those CUs.

Finally, the estimators need to be updated using these observations. Since the
focus of here was not on precise estimations, a simple placeholder was chosen to
fulfil the requirement of having estimators. Future work could produce better mod-
els of CPU usage. In the current state, the predicted CPU usage is simply an average
over the observed CPU usage. The cost models for labour and upkeep are referred
to as

LabourCostModel(historical AverageLabour), (9.8)
UpkeepCostModel(historical AverageUpkeep), (9.9)

in the DyKnow-ROS ontology extension.

9.5 Stream reasoning support

Reasoning over streams is performed by the stream reasoning engine in DyKnow.
This component takes as its input formulas, state streams, and grounding informa-
tion for the purpose of progression of the formulas over the provided data. Formulas
can be part of a formula group, which represents a collection of formulas that are to
be evaluated simultaneously over a single state stream. The connecting information
grounds the symbols in logical formulas to specific values in the state stream.

The stream reasoning engine provides a number of services that control the eval-
uation of formulas, as shown below.

¢ CreateGroup: Creates a formula group with an optionally provided label and
result topic. If no label or result topic are provided, DyKnow generates them
instead.

¢ DestroyGroup: Destroys a formula group by its label. This stops the progres-
sion of formulas in the group.

e StartGroup: Activates progression for a formula group identified by name.

e StopGroup: Stops the progression for a formula group by name. Cannot be
resumed.

141

9. DyKnow-ROS

o AddFormula: Adds a provided formula to a formula group identified by its
label. Yields an identifier (index) for the formula.

e RemoveFormula: Removes a formula from a formula group identified by the
group’s label and formula’s index. This can be done while a formula is being
progressed.

Each group in the stream reasoning engine is configured with parameters such
as MAX_NODES as well as policy information such as the stream frequency, which
determines how far apart time-points are in real time. Whenever a formula (includ-
ing its syntactic or semantic grounding) is added to a group, a new formula graph
consisting of a single node for the added formula is created. Starting a group will
result in the generation of a stream containing the combined propositional informa-
tion required for evaluating the formulas in the group, as well as the generation of a
group-shared formula cache. This will also lock the group, meaning it can no longer
be altered without resetting the group in its entirety to its initial state. A group thus
makes it possible to start evaluating a logical specification composed of potentially
many formulas using the same starting point. Once started, these graphs will grow
depending on the choice of parameters and the uncertainty in the stream used to
evaluate the formula. After each progressed state, the progressor will emit a verdict
status for each formula graph in the group.

9.6 Empirical evaluation

The proxy introduced by DyKnow-ROS potentially introduces an overhead in
throughput. Measuring the overhead gives insights into the cost of adopting
DyKnow-ROS.

Topic-based communication between nodelets is assumed to be faster than be-
tween nodes because nodelets are part of the same process and nodes are not.
In this experiment, we use both as benchmarks for comparison. The computa-
tion graph is a linear sequence of connected node(let)s such that each intermediate
node(let) receives from a predecessor node(let) and immediately publishes to a suc-
cessor node(let). The source produces messages containing current time-stamps at
a fixed frequency f. Every (intermediate) receiver checks that time-stamp against
the arrival time and reports the time difference. The number of node(let)s n then
corresponds to the number of message hops.

The performance results are shown in Figure p.3, where the performance graph
contrasts the number of hops to the average time-to-arrival for messages sent along
the node(let) chain. The source produced 1,000 time-stamped messages at a fre-
quency of f = 5Hz, which every receiver compared to the local time upon arrival
prior to forwarding the message. The graph illustrates the time results for DyKnow-
ROS nodelets and ROS nodelets, as well as ROS nodes. As expected, nodes are much
slower than nodelets because they have to communicate between processes. The
results for nodes put into perspective the overhead we can see for DyKnow-ROS

142

9.7. Summary

DyKnow =s=======: Modelet MNode

Time to arrival (ms)

5 10 15 20 25 30 35 40 45 50
Hops

Figure 9.3: Performance graph showing the different time-to-arrivals for messages
relative to the number of hops for a linear chain.

nodelets when compared against standard ROS nodelets, which grows slowly to
about 0.2ms after n = 50 hops. We may therefore conclude that the overhead
induced by DyKnow-ROS is negligible.

9.7 Summary

This chapter presented a realisation of the DyKnow model with the Robot Operating
System (RQOS), resulting in the DyKnow-ROS system. An extension of the services
provided by ROS is presented to support the DyKnow model. This was followed
by a concrete representation of entities in the DyKnow model with the help of the
DyKnow ontology extended for ROS. The configuration life cycle was realised by a
daemon that uses CPU time as the computational resource of choice in DyKnow-
ROS, and some simple estimators for labour and upkeep were presented. Finally,
the overhead induced by the extensions to ROS was measured and shown to be
negligible.

143

Chapter

Case-studies

ROS stream reasoning framework as a proof of concept. These case-studies
focus on particular aspects of the DyKnow-ROS framework, which in turn
translate to the stream reasoning waterfall model.

C ASE-STUDIES have been performed to show the application of the DyKnow-

10.1 Introduction

Case-studies are useful to show the functioning of an information system in a prac-
tical setting. In this chapter, we focus primarily on the visualisation and adaptive
reconfiguration functionality of the DyKnow-ROS stream reasoning framework. The
idea is to show examples of reaching verdicts which lead to a system response, as
shown in Figure fl0.]. Such a response can be internal, for example by changing the
computational environment, or external, for example by causing an agent to act.
The latter case — external responses — have been left outside the scope of this
dissertation due to the added complexity of aspects such as control.

10.2 Interactive visualisation

ROS provides a wide array of visualisation tools using a Qt-based framework. For
the visualisation of nodes and topics, rqt_graph provides a graphical user interface
that communicates with the ROS master and produces a DOT graph. While this ap-
proach works great for nodes, it fails to detect nodelets as they are threads within
the Nodelet Manager node. We therefore forked rqt_graph and replaced the com-
munication with the ROS master to instead query the stream reasoning manager
in DyKnow-ROS for its configuration model. Since ROS does not take run-time re-
configuration into consideration, we also had to switch from the manual refresh in

145

10. Case-studies

Shroud

Fast

Knowledge |
Slow Verdict Response
Low _High
abstraction * abstraction

Figure 10.1: The stream reasoning waterfall model with the agent response to ver-
dicts highlighted.

Dce

/hsv
/image /y40x30
/bgr

Figure 10.2: Screenshot of the interactive visualisation tool.

rqt_graph to a frequency-based refresh. This was combined with a control widget
to allow a user to interact with the stream reasoning manager.

A screenshot of the tool at work is shown in Figure [[0.2, where the bottom left
camera view was produced by the rqt_image_ view widget. The graph shown in the
centre panel was created using the control panel on the left. Ovals in the centre
graph correspond to nodelets, and rectangles correspond to topics. The bottom-
right image view shows the colour video stream. Since no changes were made to
the rqt_graph interface itself, this representation is natural to ROS developers.

The control panel on the left supports a number of features based on the services
provided by DyKnow-ROS. The active tab lists the currently active CUs together with
their associated transformations, the number of input ports, and the number of out-

146

10.3. Collaborative tracking of a ball

Figure 10.3: Humanoid lab (left) equipped with four ceiling cameras (right).

put ports. A library tab offers a listing of transformation specifications by label, and
allows a user to import or delete transformations. CUs can be instantiated through
the panel as well with the create panel; the user provides a name for the nodelet to
be created and a type in terms of transformation specifications. The panel shown
is the connect panel, where either a combination of two nodelets and ports are se-
lected to be connected with a topic decided by the tool, or a single port and topic
can be connected where the user gets to specify the topic name manually.

The visualisation tool gives access to all of the stream reasoning manager'’s ser-
vices, offering an interface that can be managed by human operators. As a result,
it offers the functionality expected by ROS developers as well as some extra control
over the configuration during run-time.

10.3 Collaborative tracking of a ball

This case study focuses on two NAO robots, called Piff and Puff (Swedish for Chip
'n Dale). Both Piff and Puff are capable of running a processing pipeline that takes
in sensor information and produces ball coordinates relative to the soccer field. For
the case study, we were interested in situations where semantic subscriptions could
provide added value to Piff in performing its task of tracking the ball. We consider
two cases; 1) Piff is tracking the ball but something goes wrong; and 2) Piff is tracking
the ball and Puff offers to help for a while. Piff and Puff are assumed to be part of
the same computational environment; a multi-agent system approach is beyond the
scope of this dissertation. The operational environment is provided by a humanoid
lab at Linkdping University, which is organised to support software development for
NAO robots.

The humanoid lab is equipped with a green felt RoboCup soccer field as shown
in Figure 0.3 on the left. As shown on the right, there are four cameras attached to
the ceiling over the field. The ceiling cameras are AXIS M3005-V network cameras
with a 118° angle of view, producing 1920 x 1080 images. These images can be used
for accurate positioning of objects on the field. The coordinate system uses one of

147

10. Case-studies

Figure 10.4: A SoftBank Robotics NAO V4 robot.

the field corners as its origin, relative to which the coordinates of other objects such
as balls or robots are determined.

Piff and Puff are Softbank Robotics NAO humanoid robot platforms, of which an
example is shown in Figure fl0.4. Standing upright, they are 58cm tall and weigh
5.4kg. With normal use, the battery provides 90 minutes of autonomy. The head
houses two HD cameras producing 1280 x 960 images at 30 FPS in YUV422 colour
space. One is located in the forehead and faces forward; the other is located in
the ‘mouth’ area and faces downwards. The various joints provide pose informa-
tion to the system through joint position sensors. The NAO comes equipped with
an Intel Atom Z530 processor running at 1.6GHz, with 1GB of RAM, 2GB of Flash
memory, and an 8GB Micro SDHC. The system runs the Ubuntu 14.04 LTS operating
system with the NAOqi programming framework. Our NAO platforms use a publicly-
available ROS driver® exposing the NAOgi API through ROS. More technical details
can be found in the NAO technical guide™.

13The NAO packages for ROS are documented at http://wiki.ros.org/nad (Last accessed:
September 10th, 2019)

14The NAO technical documentation is available at http://doc.aldebaran. cor (Last accessed:
September 10th, 2019)

148

http://wiki.ros.org/nao
http://doc.aldebaran.com

10.3. Collaborative tracking of a ball

Camera Segmenter

l

Detector —— Localization

Subsampler

Figure 10.5: Piff and Puff’s transformation pipeline conceptually showing the trans-
formations from camera images to ball positions.

Recovery from failures

We start with a scenario in which a user wants to perform perimeter monitoring.
That is, check whether a ball ‘breaches’ the perimeter indicated by the centre circle
on the football field and, if so, notify the user. While a toy scenario, it allows us
to consider the full DyKnow-ROS system’s operations. The user makes no assump-
tions about what equipment exists in the system; only that there is a DyKnow-ROS
instance which he or she is able to interact with. Neither does the user make any
assumptions about the availability of equipment over time. In a sense this is a nat-
ural behaviour for a non-expert user. The user queries a system'’s services and the
system tries to meet the user’s expectations to the best of its abilities. The system
further seeks to minimise the cost it incurs while satisfying the user’s needs. The
first step for a user is then to describe those needs in some language expression.
DyKnow-ROS uses temporal-logic formulas for this purpose, so the user’s inquiry is
described by a wff

GJo,1440] [InsideCircle(ball)] , (10.1)

meaning that for the next 24 hours (measured in minutes), the ball will remain within
the circle®. The statement is not intended to enforce a particular situation, but
rather specifies what is expected to happen. It might be the case that the ball leaves
the circle for whatever reason, which should then result in the statement being eval-
uated to false. However, in order to determine whether the statement is true or
false (or even unknown), a state stream is needed over which it can be evaluated.

The task of generating a state stream starts with the specification of targets.
Recall that targets are composed of a channel identifier and a tag describing the
semantics of the sought-after streaming data. The target should thus reflect that
we require information on the truth value of InsideCircle(ball), which is a predicate.
The target is illustrated in Listing [[0.1.

Listing 10.1: Target specification for InsideCircle(ball) information

1 :targetl a :ROSTarget ;

2 :hasTopicName "/targetl'
3 :hasTag [

4 a :Tag ;

rosTopic ;

15 Alternatively, qualitative spatial relations NTPP and TPP could be used.

149

10. Case-studies

TID TF label Tags
tid; pose(piff) 1)
= pose(piff)
tids bottom_cam(piff) 1]
= yuvlmage(piff)
tids subsampler(piff) yuvlmage(piff)
= imageScalePyramid(piff)
tidy segmenter(piff) imageScalePyramid(piff)
= convHull(piff, field)
tids ball_detector(piff) convHull(piff, field),

imageScalePyramid(piff)
= pixelPos(piff, ball)

tidg ball_localization(piff) pixelPos(piff, ball),
pose(piff)
= position(ball)
tid; circle_monitor(ball) position(ball)

= InsideCircle(ball)

Table 10.1: Piff’s TFs and their tags denoted by itag,, . . ., itag,, = otag.

5 :hasValue "InsideCircle(ball)" .
6] .
7 rdfs:label "InsideCircle(ball)" .

After adding this target to the environment ¢, it looks like
(@, @, {(targetl, InsideCircle(ball), /target _1)},=). (10.2)

This represents a perturbation, so the environment tries to reconfigure itself. How-
ever, since no transformations exist, no solutions are found yet, and no state stream
is generated. We can solve this by considering the situation wherein Piff registers
its transformations to the environment. Table [[0.7 shows the semantics of the set
of transformations provided by the NAO robot using a short-hand notation.

The bottom_cam TF provides a YUV image stream, which can be subscribed to
by the subsampler TF. This transformation down-samples the resolution of the three
channels into 640x480, 320x240, 160x120, 80x60, and 40x30. The segmenter TF
instances may subscribe to low-resolution Y and V channels to determine the convex
hull of the green field, ignoring the space in the image which captures things outside
of the field. This convex hull is combined with the Y channel by the ball_detector TF
to produce pixel coordinates of balls, which is then combined with pose information
by the ball_localization TF to produce ball position data, which matches the query.
Since the matrix is updated when transformations are added or removed, the result
isa 11 x 19 matrix for the 11 inputs and 19 outputs.

As the result of the perturbation, the stream reasoning manager searches for an
optimal configuration and finds one as shown conceptually in Figure [0.5. The as-
sociated change set § is the instantiation of all transformations, and the connection

150

10.3. Collaborative tracking of a ball

of the resulting CUs in accordance with their annotations. The new environment
is described by

(CU, F,{(targetl, InsideCircle(ball), /target_1)},=), (10.3)

where the set of transformations F' remains unchanged, and the set of CUs is de-
scribed by

CU = {(cidy, tidr, [/topic_1],/target_1), (10.4)
(cida, tidg, [/topic_2, /topic_6], /topic_1),
(cids, tids, [/topic_3, /topic_4], /topic_2),
(cidy, tidy, [/topic_4], /topic_3),
(cids, tids, [/topic_5], /topic_4),
(cidg, tida, |
(cidy, tidy, |

|, /topic_5),
], /topic_6)}.

Piff now produces a ball position stream on the /topic_1 topic, which can be
used by the circle monitor TF to determine whether the ball is inside the circle. This
Boolean information is then transmitted on topic /target_1 as specified by the
target targetl. The new environment results in a stream containing the informa-
tion needed for interpreting the symbols of the formula, which is synchronised, flat-
tened, and connected to the stream reasoning engine. The progression procedure
now uses the resulting state stream to incrementally evaluate the formula through
rewritings.

Unfortunately, something goes wrong and the image segmenter is unloaded,
leaving a hole in the computation graph and interrupting the flow of position in-
formation. This perturbation is detected as

dp = (@, {(cida, tidy, [/topic_4], /topic_3)},2, 2,2, D). (10.5)

The subsampler is still producing a stream of low-resolution images, but the seg-
menter no longer exists to do anything with them. The environment is now as in
Figure [I0.5 but without a segmenter. This perturbation results in the update proce-
dure generating a change set by re-using the part of C'U that still exists, but instan-
tiating a new computation unit cidg of type tid4 and reconfiguring it to subscribe to
the streams that were already being produced by the subsampler, i.e.

0" = ({{cids, tidy, [/topic_4], /topic_3)},0, 9, D, D, &). (10.6)

The detector’s subscription to the defunct segmenter is thus replaced by one to the
new segmenter, and the information flow is restored.

Some time later, Puff joins Piff on the field and registers its own transformations
in accordance with Table f0.7, where piff is replaced by puff for new TIDs 8-14.
The computational environment looks like before, but now |F.| = 14. Given the

151

10. Case-studies

possibility to generate a second pipeline for ball positions, the life-cycle daemon
nevertheless does not use the second pipeline as-is. The reason for this is that the
cost for re-using Piff’s part of the computation graph is assumed to be free, whereas
a lot of effort would have to be spent in order to instantiate Puff’s pipeline to switch
away from Piff’s stream. Only if Puff’s alternatives are significantly cheaper to make
up for the extra labour cost will the daemon switch pipelines. Since both Piff and Puff
are NAO robots with similar equipment and the same transformations, we assume
this is not the case.

At some point, Piff needs to recharge its batteries. It therefore first deregisters
its transformations from the environment, i.e.

op = (2,0,9,F,0,9), (10.7)

where |F'~| = 7 consists of the seven transformations from Table [0.1. The life-
cycle daemon correctly identifies the perturbation and starts a review interval, in
which it determines that all active CUs are now defunct. This means that there is
no longer any guarantee that the CUs provide streaming data. Thankfully, Puff’s
transformations provide a suitable replacement for the defunct CUs, leading to a
change set

S =(CUt,0U,2,9,0,9), (10.8)

where the CU additions are based on Puff’s transformations, and the CU removals
are Piff’s defunct CUs;

CU™ = {{cidy, tidz, [/topic_1],/target_1), (10.9)

(cidg, tidg, [/topic_2, /topic_6], /topic_1),
(cids, tids, [/topic_3, /topic_4], /topic_2),
(cidg, tidy, [/topic_4], /topic_3),

(cids, tids, [/topic_5], /topic_4),
(cidg, tidy, [], /topic_5),
(cidy,tidy, [], /topic_6)},

CU" = {(cidg, tid4,[/topic_T|, /target_1), (10.10)
(cidyp, tidys, [/topic_8, /topic_12|, /topic_1),
(cidyy,tidya, [/topic_9, /topic_10], /topic_2),

(cidya, tidyy, [/topic_10], /topic_9),
(cidy3, tidyo, [/topic_11], /topic_10),
(cidyg, tidg, [], /topic_11),

(cidys, tidg, [], /topic_12)}.

Note also the removal of the cidg CU which was previously used to patch a gap in
the computation graph.

After the occurrence of the perturbation §,, the stream being produced on
/target_1 is temporarily interrupted as the review interval is performed. At the

152

10.3. Collaborative tracking of a ball

end of the review interval, the change set §* will have been applied to the environ-
ment, cancelling out the suboptimality imposed by d,, by repairing the computation
graph with an alternative pipeline satisfying the target. Consequently, the formula
can be evaluated further. The system operates on a best-effort basis by quickly find-
ing ways to repair broken computation graphs, thereby minimising the interruption
in the streams used to construct a state stream for formula evaluation.

Exploitation of new optima

Continuing the scenario, Puff is currently observing the ball which has not yet left the
circle on the field, and Piff is in the process of recharging. The only transformations
available to the computational environment are therefore Puff’s. However, the lab
itself is also equipped with four cameras. These cameras can be used in unison to
generate a top-down image of the field. More importantly, these cameras could be
used to locate objects on the field, in particular NAO robots and balls. A system can
obtain the camera video feeds, stitch the images together, and perform localisation,
without the computational limitations imposed by NAO hardware.

We can thus register the ceiling camera system with the computational envi-
ronment, resulting in transformations with TIDs 15-24. The pipeline consists of the
transformations shown in Table [[0.2. The registration of these transformations con-
stitutes a perturbation

6= (2,9, Ft,2,2,2), (10.11)

where the set of added transformations | F'*| = 10 consists of the ten transforma-
tions listed in Table f0.2. Even though the perturbation did not break anything —
there is still a stream on topic /target_1 — it is nevertheless a potential long-term
positive perturbation, because the added transformations might yield cheaper-cost
solutions. If this is not the case, then §* = d4; otherwise, the stream reasoning
manager can replace part of the active pipeline with the transformations from the
ceiling cameras. Since the perturbation is not a short-term negative perturbation,
no immediate response is required, so the life-cycle daemon waits with the review
cycle until the horizon is reached or a short-term negative perturbation occurs.
Note that the ceiling camera pipeline provided by the lab lacks a transformation
that can provide InsideCircle(ball) information. This is because that pipeline does
not have the background knowledge to understand what InsideCircle means; it does
not care about the lines on the field, but only about NAO robots and balls and their
positions. However, Puff does care about the circle on the field, and therefore knows
given a position whether that position is within the circle. Assuming that the reduc-
tion in upkeep outweighs the labour cost of switching pipelines, DyKnow-ROS finds
a solution during the next review interval. It uses the entire ceiling camera pipeline
plus the circle monitor from Puff, while unloading the remaining CUs. This leads to
a change set
= (U, CU,2,9,9,9), (10.12)

153

10. Case-studies

TID
tidys

tidyg
tidyr
tidys
tidyo
tidag
tidoy
tidas

tidog

tiday

TF label
ceiling_cam(cam_1)

undistort(cam_1)
ceiling_cam(cam_2)
undistort(cam_2)
ceiling_cam(cam_3)
undistort(cam_3)
ceiling_cam(cam_4)
undistort(cam_4)

stitch(field)

ball_detector(field)

=

=

Tags

%]
rgblmageDistorted(cam_1)
rgblmageDistorted(cam_1)
rgblmage(cam_1)

(%]
rgblmageDistorted(cam_2)
rgblmageDistorted(cam_2)
rgblmage(cam_2)

%]
rgblmageDistorted(cam_3)
rgblmageDistorted(cam_3)
rgblmage(cam_3)

%]
rgblmageDistorted(cam_4)
rgblmageDistorted(cam_4)
rgblmage(cam_4)
rgblmage(cam_1),
rgblmage(cam_2),
rgblmage(cam_3),
rgblmage(cam_4)
rgblmage(field)
rgblmage(field)
position(ball)

Table 10.2: The Humanoid lab’s ceiling camera transformations and their tags de-

noted by itag, ..

.,1tag,, = otag.

where the sets of CU additions and removals are described by

154

CU™ = {{cidyq,tidy3,[/topic_8, /topic_12],/topic_1),

Cidlg, tidll,
cidy3, tido,

Cid14, tidg,

([
([
([
([
([];
([,

Cid15, tidg,

cidyy, tidya, [/topic_9, /topic_10],/topic_2),
/topic_10],/topic_9),
/topic_11],/topic_10),
/topic_11),

/topic_12)},

(10.13)

10.3. Collaborative tracking of a ball

CU" = {(cidyg, tiday, [/topic_13], /topic_7), (10.14)
(cidy7,tidas, [/topic_14,/topic_15, /topic_16,
/topic_17], /topic_13),
cidyg, tidas, [/topic_18], /topic_14),

cidao, tidig, [/topic_20], /topic_16

)

)
cidyg, tidag, [/topic_19], /topic_15),

)
ciday, tidye, [/topic_21], /topic_17),

([
([
([
([
(cidag, tiday, |
([
([
([

|, /topic_18),
cidas, tidyg, [], /topic_19),
cidag, tidy7,[], /topic_20),
cidas, tidys, [], /topic_21)}.

Note that CU cidy is not among the CUs being unloaded as it is being reused in
the new environment. The topic /topic_7 is therefore being reused as the output
channel for the CU cidqg. The resulting environment has a cheaper long-term cost
than would have been acrued by not performing the update, while still generating
a stream on /target_1 with minimal interruption. When at some point Puff also
requires recharging, it is possible for Puff to leave while keeping the circle monitor
available to the system. From that point on, the ceiling camera generate position
data which is processed by Puff off-site. The system has successfully exploited the
potential improvement to the configuration when it became available.

Cleaning up

Finally, with the field devoid of NAO robots and perhaps at the start of a new day, an
unsuspecting student enters the lab and, not realising the experimental setup, takes
the ball. The InsideCircle(ball) predicate evaluates to false, thereby violating the
formula, yielding ‘false’ as its final answer. The stream reasoning manager releases
the targets, corresponding to a perturbation

ép = (2,9,0,0,d,{(targetl, InsideCircle(ball), /target_1)}). (10.15)

With the target removed, the DyKnow-ROS life-cycle daemon immediately starts a
review interval. Since no targets exist, any active CUs are needlessly expending up-
keep cost. Therefore, all active CUs are removed while retaining the set of transfor-
mations;

0" =(9,CU.,2,0,9,9). (10.16)

Without any targets, the environment remains idle until new targets are registered,
either as the result of a formula needing evaluation or because of another purpose
for needing a semantic subscription.

155

10. Case-studies

10.4 Summary

In this chapter, we looked at some use-cases for the DyKnow-ROS stream reasoning
framework which was presented in Chapter . In particular, we first looked at the
visualisation component for the DyKnow-ROS daemon, which manages the config-
uration of the computational environment. The visualisation is an extension of the
standard ROS rqt__graph package, which has been improved by adding the ability to
visualise DyKnow-ROS nodelets. The interface also allows a user to interact with the
daemon. We next looked at a use-case involving two NAO robots, illustrating the im-
pact of the dynamic reconfigurability in cases where new transformations become
available or in which existing transformations become unavailable. The streams gen-
erated in this process can then be used with state stream synthesis in order to sup-
port the evaluation of temporal formulas. The application of DyKnow-ROS to these
use-cases serves as a proof of concept of the proposed system.

156

Chapter

Related work

tives. This chapter serves as a survey of recent and/or ongoing research

projects towards stream reasoning. The survey is not meant to be exhaus-
tive, and does not include many of the well-known stream processing tools and li-
braries. The listed works are compared to the contributions presented in this dis-
sertation. Some of the listed work refers to specific projects; others represent areas
of research of high relevance to this dissertation.

R ESEARCH towards stream reasoning has resulted in many different perspec-

11.1 Introduction

The DyKnow-ROS stream reasoning framework presented in Chapter [shares some
similarities with other stream reasoning systems. Although we covered specific re-
lated work for the various contributions throughout this dissertation, in this chapter,
we present some related work coming from the general area of stream reasoning.
In the following, a mostly chronological overview is given for stream reasoning re-
search conducted in parallel to the work presented in this dissertation, as well as
research upon which those related works are supported. In the presentation of the
related works, we also consider the similarities and differences between said works
and the DyKnow model and associated implementation on a case-by-case basis. Af-
ter covering the various related works, a high-level summary is provided, in which
we also related some of the presented works to each other.

11.2 STREAM

The Stanford Stream Data Manager (STREAM) was first introduced by
(2003) and Arasu et al] (2004) as a DSMS. The goal of the STREAM project was stated

157

11. Related work

to be “to build and evaluate a general-purpose DSMS that supports a declarative
language and can cope with high data rates and thousands of continuous queries.”
(Motwani et all, 2003) They therefore consider both data and queries to be dynamic
entities. One particular consideration was how such a system would utilise system
resources, and how approximations could be utilised to reduce resource require-
ments to fit the resources such a system has access to. This led to the development
of a language for DSMS, as well as the development of query plan sharing and ap-
proximation techniques.

The Structured Query Language (SQL) was chosen as the basis for the develop-
ment of the Continuous Query Language (CQL), and was first introduced by Arasy
et al (2003). Arasu et al! (2006) later covered CQL in more detail. The basic structure
of CQL queries follows that of SQL, but allows for the handling of streams in addition
to relations. This means that, whereas in SQL one can make use of operators to ob-
tain relations from relations (R2R), CQL supports operators for converting streams to
relations (S2R) and relations to streams (R2S). Successive applications of S2R, R2R,
and R2S operators makes it possible to perform stream transformations. For S2R
operators, CQL makes use of time-based, tuple-based, and partitioned (i.e. splitting
into substreams based on a logical condition) window operators. For R2S operators,
CQL makes use of insert, delete and relation streams, which generate streams of new
elements, old elements, and current elements respectively. Finally, R2R operators
are inherited from SQL.

Registered CQL queries are compiled into query plans, which execute the query.
These query plans are composed of operators connected by queues, and synopses
for the storage of operator state. This is similar to the configuration environments
used in DyKnow, where queues are represented by channels over which streams are
transmitted and received. Synopses can share their state to avoid duplicate compu-
tations. The STREAM system additionally contains the StreaMon (Babu and Widom,
2004) monitoring and adaptive query processing infrastructure. It is tasked with
monitoring the computational load of the components that make up the STREAM
system, and to re-optimise if necessary. The ability to re-optimise is especially im-
portant when circumstances change during the run-time of a STREAM system. Strea-
Mon thus shares similarities with the DyKnow daemon in terms of their responsibil-
ities.

11.3 Aurora and Borealis

Aurora is a model and architecture for data stream management introduced by
Abadi et al) (2003), with application to monitoring. It is the predecessor to Bore-
alis, discussed later. Aurora considers data sources to generate streams, which in
turn are processed by Aurora (operator) boxes. These boxes correspond roughly to
CUs in DyKnow terminology. The stream processing can be changed during run-time
for purposes of optimisation. Aurora specifically considers connection points, which
are storage containers residing between Aurora boxes that can cache a finite stream

158

11.4. TelegraphCQ

history. More importantly, subgraphs can be attached to or detached from these
connection points during run-time.

Aurora’s query algebra is referred to as the Aurora Stream Query Algebra
(SQuAI). It supports seven operators corresponding roughly to DyKnow transfor-
mation. The filter, map, and union operators are straightforward in their meaning,
and all three are order-agnostic in Aurora. The remaining operators — BSort, ag-
gregate, join, and resample — are order-sensitive. BSort performs an approximate
sort utilising a buffer; aggregate applies window functions together with relational
aggregation operations; join allows streams to be combined; and resample can be
used to align streams. Queries written in SQUAI are compiled into Aurora networks,
which can then be optimised during run-time.

To assist in optimising the network, run-time statistics are gathered during exe-
cution. Specifically, each Aurora box (a CU in DyKnow terminology) has its time to
process a tuple measured. Further, the selectivity — meaning the expected number
of output tuples per input — is measured to give an estimate of the cost of running a
network. The processing time is used as one of three possible ways to measure the
quality of service (QoS) for the system. Aurora relies on the user (application admin-
istrator) to provide the QoS as a function of at least the delay. Other QoS functions
pertain to the percentage of tuples delivered, and the received output values — both
of which are optional but require a user to define them. Based on QoS metrics, Au-
rora tries to reorder the Aurora boxes where possible based on the predicted quality
of the resulting graph. This is similar to DyKnow'’s configuration daemon, which can
however replace entire pipelines based on semantic annotations. Just like Aurora,
this can be done during run-time, and efforts are made to minimise the impact of
changing the network structure on the resulting streams. Unlike DyKnow, however,
Aurora has support for load shedding based on QoS information.

The work towards Aurora resulted in the exploration of distributed stream pro-
cessing. Medusa (Cherniack et all, 2003) allows for service delivery in a federated
multi-agent setting, in which nodes are administered by a single entity. Medusa
seeks to solve load management by having nodes compensate each other using eco-
nomical incentives. Borealis (Abadi et all, 2005) combines lessons from Aurora and
Medusa and provided what the authors call a ‘second generation stream process-
ing engine’. In addition to Aurora’s features, among other things, it considers revi-
sion records (i.e. corrections for prior tuples) and utilises distribution features from
Medusa. Borealis also continues efforts towards run-time query optimisation and
methods towards fault-tolerance.

11.4 TelegraphCQ

The Telegraph project at UC Berkeley focused on developing an ‘Adaptive Dataflow
Architecture’ starting in 2000. TelegraphCQ (Chandrasekaran et al!, 2003; Reiss and
Hellerstein, 2005) is a realisation of the Telegraph architecture with a focus towards
continuous query processing, and is based on the open-source PostgreSQL rela-

159

11. Related work

tional database management system. One of the key features pursued by the Tele-
graph project was adaptivity to the addition and removal of queries, by adjusting
the processing during run-time. Specifically, Chandrasekaran et al] (2003) note that
“[S]hared processing must be made robust to the addition of new queries and the
removal of old ones over time, so on-the-fly adaptivity must be an essential com-
ponent of any solution for shared processing of continuous queries.” Importantly,
Telegraph does so in conjunction with the re-optimisation of query plans.

TelegraphCQ is a modular system in which communication between modules
is handled by the Fjords APl (Madden and Franklin, 2002). It utilises components
called Eddies to execute a routing policy between modules by sending tuples back
and forth between Eddies and other modules. This makes it possible for an Eddy to
enforce a particular processing order. TelegraphCQ also makes use of State Modules
(SteMs) which can temporarily store tuples and which can be accessed by an Eddy.
Since TelegraphCQ processes potentially infinite-length streams of data which arrive
outside of the system’s control, it makes use of finite-length windows. Queries on
streams in TelegraphCQ can make use of such finite-length windows by supporting
for-loops iterating over time-points. A variable ST is used to represent the time-
point at which a query was started. The query language used extends standard SQL
with the specification of the window in a for-loop to generate a relational table over
which aggregation is applied.

TelegraphCQ shares similarities with DyKnow-ROS in multiple areas. The phi-
losophy of supporting adaptive concurrent queries is shared by both frameworks;
both DyKnow-ROS and TelegraphCQ handle the addition and removal of queries dur-
ing run-time and apply shared processing where possible. Whereas TelegraphCQ
makes use of Eddies to pass around tuples to modules, a similar function is per-
formed by the DyKnow-ROS daemon, which is tasked with reconfiguring the com-
putational environment in order to satisfy DyKnow targets. The responsibility of
SteMs is fulfilled by computation units, which have their own storage capabilities.
Whereas TelegraphCQ uses the Fjords API, DyKnow-ROS makes use of the topic and
service communication supported by ROS. Unlike TelegraphCQ, DyKnow does not
directly support windows in SPL, although transformations performing windowing
operations could be defined.

11.5 ETALIS

The Event Transaction Logic Inference System (ETALIS) was originally introduced by
Anicic et al] (2009) — as a footnote referring to a software package — for the purpose
of logic-based event processing. A comprehensive overview of the full ETALIS sys-
tem, its Prolog-based implementation, and its applications is given by Anicid (2012).

One of the main contributions put forth by ETALIS is the ETALIS Language for
Events (ELE), which is a rule-based language for event processing and reasoning that
is grounded in a formal semantics. Note however that, as with many other query
languages, the name ETALIS can thus refer to both the query language and the query

160

11.5. ETALIS

engine. ELE makes it possible to specify an ETALIS rule base, denoted by R, which
is composed of static rules R* and event rules R¢. The set R* is composed of Horn
clauses describing a background knowledge base, whereas the set R€ is composed
of temporal event patterns. These patterns describe the temporal relationship be-
tween events using a set of temporal relations that extends Allen’s interval alge-
bra (Aller], 1983) with quantitative time intervals describing windows. The compo-
sition of events then makes it possible to describe complex events utilising these
temporal patterns. To illustrate ELE’s expressivity, the following example patterns
and their natural-language interpretations have been copied from Anicid (2012) (pp
71-72):

e (P;).3 detects an occurrence of P if it happens within an interval of length
3, i.e., 3 represents the (maximum) time window.

e P, SEQ P; represents a sequence of two events, i.e., an occurrence of P, is
followed by an occurrence of P; ; here P; must end before Pj starts.

e P, AND Pj is a pattern that is detected when instances of both P, and Ps occur
no matter in which order.

e P, PAR P occurs when instances of both P; and P» happen, provided that
their intervals have a non-zero overlap.

e P, OR P is triggered for every instance of P, or P .

e P DURING (0 SEQ 6) happens when an instance of P; occurs during an inter-
val; in this case, the interval is built using a sequence of two atomic time-point
events. In general, the interval may consist of other (derived) events too.

e P35 STARTS P is detected when an instance of P starts at the same time as
an instance of P; but ends earlier.

e P, EQUALS Pjis triggered when the two events occur exactly at the same time
interval.

e NOT (Ps).[Py, P1] represents a negated pattern. It is defined by a sequence of
events (delimiting events) in the square brackets where there is no occurrence
of Pj in the interval. In order to invalidate an occurrence of the pattern, an
instance of P; must happen in the interval formed by the end time of the first
delimiting event and the start time of the second delimiting event. In this
example delimiting events are just two instances of the same event, i.e. P;.

e P53 FINISHES P, is detected when an instance of P; ends at the same time
as an instance of P, but starts later.

e P, MEETS P5 happens when the interval of an occurrence of P, ends exactly
when the interval of an occurrence of P; starts.

161

11. Related work

The task for the ETALIS engine is to generate complex events matching user-provided
event patterns. These event patterns are compared against potentially many input
event streams, and the engine may utilise high-level domain knowledge (e.g. static
rules) in conjunction with these input streams to facilitate this process. The end
product is then a stream of detected complex events.

There are some similarities between DyKnow and ETALIS with regards to ELE.
Whereas DyKnow’s stream processing support as presented in this work can be cat-
egorised as falling under DSMS rather than CEP, the prior work on object linkage
structures for DyKnow was based on chronicle recognition, which can be regarded
as an early form of CEP. ELE additionally introduces temporal ranges or windows
for otherwise qualitative temporal relations, which created some overlap with MTL
as used by DyKnow in conjunction with progression. Finally, without going into de-
tail, ETALIS also considers the problems of event retraction and out-of-order events,
which are important problems, but neither of which are currently handled by Dy-
Know.

11.6 Retalis

The Retalis (ETALIS for Robotics) framework (Ziafati et all, 2015; Ziafati, 2015) focuses
on stream reasoning within robotics applications using ROS, and is therefore closely
related to DyKnow. Retalis combines ELE with the Synchronized Logical Reasoning
(SLR) language, originally proposed by Ziafati et al] (2013). SLR is a formal logical lan-
guage for knowledge management in robotics applications, where events are used
to represent observations which may be reasoned with. SLR programs are composed
of rules represented as Horn clauses, which allows Retalis to draw conclusions from
robot observations. Retalis uses Prolog to parse and execute programs.

ELE is used to generate complex event streams, which are fed to SLR as inputs. By
adding these events as facts, the knowledge base described by SLR changes, result-
ing in the inference of new facts that can be represented as events. These events,
in turn, can be used by ELE in its generation of complex event streams. Similarly,
an ELE pattern can include SLR queries. The combination of ELE and SLR takes place
in an autonomous component called an information-engineering component (IEC) in
Retalis. Each IEC can receive and produce event streams, process queries, and main-
tains a knowledge base that gets updated incrementally upon receipt of events.

Because streams produced based on ELE patterns may be infinitely long, Retalis
is able to perform memory management (Ziafati et al], 2014) on its stored event
history by using buffers to limit the size of the knowledge base. Additionally, an
IEC must be able to specify streams of interest and be able to subscribe to those
streams, potentially during run-time. Retalis therefore supports run-time subscrip-
tions, which specify a query pattern describing an event atom and conditions on its
arguments, and a query window restricting the time interval for matching events.
Any events matching the query patterns are sent to the respective topics. Subscrip-
tions are entities with identifiers, such that one can unsubscribe by specifying the

162

11.7. T-Rex

identifier of the subscription that needs to be terminated. These run-time subscrip-
tions are set up through a ROS service hosted by a Retalis-ROS interface.

Retalis shares a lot of similarities with DyKnow due to its focus on stream rea-
soning in the domain of robotics applications. Both approaches use ROS due to its
prevalence in this area, and so both approaches could technically be used side by
side within the same system. The two approaches are complementary; whereas Re-
talis focuses on maintaining a knowledge base through incremental updates based
on event patterns, DyKnow focuses on maintaining streams of interest that can be
used by a system that builds upon the DyKnow framework. DyKnow does not explic-
itly store histories in a knowledge base, although its transformations can keep such
histories for the purpose of stream refinement. Retalis event streams are therefore
also at a higher level of abstraction compared to DyKnow’s streams, which do not
contain events but rather represent fluents. Both approaches also provide func-
tionality to set up subscriptions during run-time, but whereas Retalis pulls in event
streams for filtering in accordance with an event pattern, a DyKnow target results
in a reconfiguration based on semantic annotations. If one regards a complex event
specification as a semantic annotation, Retalis can be argued to set up and man-
age its own cyclic stream processing environment. It however exists only within an
IEC, whereas DyKnow’s computational environments are composed of structurally-
dynamic networks of stream processing nodes connected by streams.

Implementation-wise, Retalis and DyKnow both have to consider the interface
with ROS. Retalis makes use of the Python execution environment for running Retalis
programs, and employs a Retalis-ROS interface module to import ROS topic data into
an IEC represented by a ROS node. DyKnow instead makes use of a DyKnow daemon,
also represented by a ROS node, which keeps track of DyKnow proxies. These proxies
are in control of ROS subscribers and publishers, and provide ROS services to adjust
the topics they are connected to. In this sense, DyKnow is more of an extension of
the ROS framework, whereas Retalis is integrated in ROS.

11.7 T-Rex

T-RexZ8 is a CEP middleware introduced by Cugola and Margard (2012), which
makes use of the TRIO-based Event Specification Language (TESLA) (Cugola and Mar
gard, 2010) for describing complex event patterns. TRIO (Ghezzi et all, 1990) refers
to the temporal first-order logic in which the TESLA semantics is described.

A TESLA rule are composed of (at most) four clauses, in accordance with the
following structure:

define CE(Att, : Types,..., Att, : Type,)
from Pattern
where Att, = fy,..., Att, = fn

consuming ey, ..., e,

16 Also sometimes written as ‘T-REX’, but does not appear to be an acronym.

163

11. Related work

The define clause allows for a user to define the name (i.e. C'E) and payload (i.e. at-
tributes and their types) of a complex event. The from clause describes a pattern
in terms of simple events, which can include event composition through the use
of windows and aggregation. This is one of TESLA’s differentiating features, since
these types of window aggregations are more common in DSMS than in CEP sys-
tems. The (optional) where clause can be used to apply filtering on the payloads
of those simple events through the use of comparators. Finally, the (optional) con-
suming clause is used to select a consumption policy, which is another feature TESLA
supports that differentiates it from its contemporaries. A consumption policy deter-
mines whether an observed event is removed (consumed) after having been used
to generate a complex event, as well as when to stop consuming events like it. To il-
lustrate the application of the consumption policy, Cugola and Margard (2010) often
make use of a ‘fire’ event, which is triggered when a sequence of high temperatures
is followed by smoke. If the high temperature event is selected for consumption, all
high temperature events in the sequence are removed, thus requiring the detection
of new high temperature events followed by smoke before the complex ‘fire’ event
is triggered for a second time.

The T-Rex engine translates TESLA rules by compiling them into event detection
automata. It then uses these automata for efficient event notification. Cugola and
Margard (2012b) provide an extensive empirical evaluation of the T-Rex engine’s per-
formance, focussing primarily on throughput. The engine itself was written in C++,
but provides adapters for remote clients written in C++ or Java.

11.8 LARS

LARS is a Logic-based framework for Analysing Reasoning over Streams by Beck et al’
(2014, 2015) and provides a logical formalisation of stream reasoning. LARS consid-
ers stream reasoning to be logical reasoning on streaming data, and therefore takes
an approach wherein streaming data is modelled logically, i.e. as predicates. This ap-
proach shares similarities with DyKnow’s state streams, which carry the truth values
of predicates over time as well. Unlike DyKnow, however, LARS does not consider
the production of state streams.

Key contributions presented as part of the LARS framework are reported (Beck
et all, 2015) to include

1. arule-based formalism for reasoning over streams;
2. different means to refer to or abstract from time; and
3. awindow operator to this effect.

The window operator Bﬂf,ch is applied to a stream .S in order to produce a resulting
stream S’, where . indicates a window type, ch a stream choice function, and x
a vector of window parameters. The window type ¢ is used to identify a window
function w,. It maps from an input stream S, a reference (starting) time point ¢,

164

11.9. SECRET

and parameters x to a substream S’ C S. LARS has successfully modelled time-
based, tuple-based and partition-based windows, making it expressive enough to
capture languages such as CQL (Arasu et all, 2003, 2004). Implementations of LARS
reasoners for example include Laser by Bazoobandi et al! (2017), and Ticker by BecK
et all (2017).

LARS’ window operator can be used to filter elements from a stream and apply
logical reasoning to the resulting substream, thereby providing different potential
views. In the DyKnow model, a window operator would instead exist as a transfor-
mation that filters a stream based on windowing conditions, rather than be part of
the logical representation. DyKnow'’s computational environment can also make a
distinction between a filtering operation akin to the LARS substream-producing win-
dowing operation on the one hand, and the case wherein every sample contains a
window on the other hand. It is presently unclear how this distinction could be lever-
aged in the LARS framework. In conclusion, LARS shares similarities with DyKnow in
terms of reasoning with the help of transformations on streams, which allow LARS
to switch views and make logical statements on those views.

11.9 SECRET

Similar to LARS, SECRET is a model for analysing the execution semantics of stream
processing systems proposed by Botan et al] (2010). The motivation behind SECRET
is rooted in the existence of multiple stream processing engines, each with their
own capabilities and semantics, and the desire to compare the execution behaviour
of these heterogeneous stream processing engines. In particular, the heterogene-
ity manifests itself in terms of syntax, capability, and the execution model. SECRET
is (arguably loosely) named after the four dimensions it considers; scope, content,
report and tick. Dindar et al] (2013) consider these four dimensions with SECRET in
their coverage of the heterogeneity of the Coral8, STREAM, StreamBase, and Oracle
CEP stream processing engines.

SECRET considers streams to be countably infinite sets of elements s € S,
such that a stream element (or a sample in DyKnow'’s terminology) is described by
(v, t*PP 595 tid, bid). Here v denotes a relational tuple conforming to a schema
S (i.e. a table), t*PP,t3¥% < T denote the application time and system time, and
tid, bid denote tuple ID and batch ID values. This type formalisation of a stream
is similar to DyKnow, which considers named structured values that could be rep-
resented as done in SECRET. A batch B is described as a set of stream elements
such that each element making up a batch has the same t*PP as all other elements
of that same batch. State streams in DyKnow could thus be described in terms of
batches. Finally, as in LARS, SECRET describes a variety of window semantics using
the definition of a stream, where a window over a stream produces a substream.
In particular, SECRET describes time-based windows and tuple-based windows with
varying window sizes and slides.

165

11. Related work

A key motivation for SECRET was the heterogeneity in the window operations
supported by various stream processing engines. SECRET thus captures the window-
based query execution semantics along the aforementioned four dimensions. Scope
deals with the scope of a window, meaning the window intervals, given a set of pa-
rameters. Scope can be interpreted differently by different stream processing sys-
tems. Content deals with how the scope of these windows translates into the con-
tent of the produced substreams given an input stream. The content is then com-
monly sent on for processing, such as for example aggregation. When the content
becomes visible to the query processor can vary by system. Report states the condi-
tions on when content becomes visible. Lastly, tick deals with the control loop of a
stream processing engine, and in particular when it acts on a given input stream.
Given these four dimensions, Dindar et al] (2013) consider both time-based and
tuple-based windows for the aforementioned stream processing engines.

SECRET is primarily a tool for analysing different stream processing engines. As
with LARS, SECRET has some overlap with the formal specifications of DyKnow. The
main difference between LARS and SECRET appears to be the level of detail; LARS
provides high-level semantics relative to a logical model, whereas SECRET is closer to
the operational semantics of a set of pre-existing stream processing engines. In both
approaches, the semantic of the window operator were a primary point of attention.
DyKnow currently does not support window operations directly, although window-
ing does take place in the form of interval-bounded temporal operators. Neverthe-
less, SECRET's formal specification of window operations can be of use when consid-
ering similar operations such as merging and synchronisation as part of for example
state stream generation in DyKnow.

11.10 RSP

RDF Stream Processing (RSP) refers to stream processing techniques that assume
streaming data to be formatted in the RDF data format. This data format is usu-
ally represented as RDF triples, consisting of subject, predicate, and object resource
identifiers. RSP is distinct from continuous query languages due to its connection to
Semantic Web ontologies represented as knowledge graphs. The identifiers occur-
ring in triples are commonly associated with such ontologies, and an RDF stream can
then be regarded as a dynamic subgraph. Queries posed in an RSP setting may thus
pertain to both the dynamic and static parts of an ontology. A change in the dynamic
subgraph has as an important consequence that the implicit facts in the complete
graph may change as well, affecting the result of a continuous query. There are
different ways for handling the changes described by RDF streams, impacting the
performance of continuous query engines in different ways, the details of which are
outside of the scope of this dissertation.

RSP holds an interesting position within the area of stream reasoning not only
due to its large system contributions to stream reasoning in the form of query en-
gines and tools, but also due to the way it is positioned relative to stream process-

166

11.10. RSP

ing. While RSP engines — by their definition — perform stream processing tasks,
each RSP triple processed from a stream has the potential to trigger a Descrip-
tion Logic-based reasoning process, albeit atemporal, followed by unification and
window-based aggregation.? This clearly moved beyond relatively simple filtering
as provided by traditional database systems. RSP could thus be regarded as strad-
dling the Interpretation-Verdict range in the stream reasoning pipeline, with little
focus on the issue of RDF triple provenance, i.e. the issue of generating RDF triples
from real-world data while handling issues like uncertainty. This is one area where
the work presented here could potentially be adapted towards RSP. Systems like
DyKnow-ROS do not assume a specific data-type, and previous work towards this
dissertation (de Leng and HeintZ, 2014) provided an initial discussion of the suitabil-
ity of RSP engines as CUs within the scope of the DyKnow model from Chapter [4.

RSP engines

Several querying engines and languages have been designed for RSP, usually based
on a continuous version of the SPARQL query language for RDF graphs. These en-
gines are responsible for transforming RDF streams, taking into account background
knowledge in the form of an ontology. In the following, we look at some of the more
common instances.

C-SPARQL. The Continuous SPARQL (C-SPARQL) language is a pure extension of the
SPARQL query language, originally introduced syntactically in Barbieri et al] (2009,
2010d). The semantics of C-SPARQL were subsequently presented in Barbieri et al.
(20108,4), together with an execution environment by the same name. C-SPARQL
introduces keywords allowing a user to specify a stream resource to query using a
tumbling or sliding window. The resulting tables can be aggregated using aggrega-
tion functions such as sum, count, average, maximum, and minimum.

SPARQLsiream. Streaming SPARQL (SPARQLstream) is a query language by Calbimonte
et all (2010) which is based on SPARQL. It takes an ontology-based data access
(OBDA) approach to streams, where queries are written using ontological concepts.
These queries are then automatically translated to access specific streaming data re-
sources. The target language for the query rewriting is the Sensor Network Engine
query language (SNEEqI) by Galpin et al] (2009).

EP-SPARQL. Recall that CEP systems focus on the detection of complex events from
sequences of events. Event Processing SPARQL (EP-SPARQL), introduced by Anicid
etall (2011, 2012), focuses specifically on events and allows for the querying of event
patterns by their temporal relationship. As is usual for CEP systems, this means EP-
SPARQL does not use windowing and aggregation operations. Instead, sequences of

17This type of materialisation process is not necessarily performed by all RSP engines, just like not all
SPARQL query engines consider implicit facts.

167

11. Related work

events can be detected, and the temporal distance between events can be used in a
filter. EP-SPARQL, like C-SPARQL, is a pure extension of SPARQL that adds additional
keywords for describing event sequences.

EP-SPARQL is an application and extension of ETALIS; queries are compiled into
ELE rules and RDF streams and ontologies are converted into the ETALIS ELE format.

CQELS. The above RSP engines are layered ‘on top’ of pre-existing engines, i.e.
they rewrite queries into SPARQL queries or ELE facts and then utilise a SPARQL en-
gine or ETALIS implementation to perform the reasoning. Le-Phuoc et al] (2011)
point out that this amounts to what they call a ‘black box’ approach, where con-
trol of the way queries are executed is instead delegated to another engine. They
therefore proposed the Continuous Query Evaluation over Linked Streams (CQELS)
engine, which instead handles these tasks natively. This gives CQELS control over
aspects such as data encoding and caching, yielding an overall good performance.
The CQELS language itself is again an extension of the SPARQL grammar.

RSP-QL. RSP originally continued the same pattern forming the basis for efforts
such as LARS or SECRET; different RSP implementations used different semantics
for windowing operations, resulting in different answers depending on the system
used. While the representation of RDF graphs is well-defined, the content of RDF
streams is not. Furthermore, since operations on RDF graphs were time-invariant
(incorporating time into ontologies is a difficult open problem), combining streams
with ontologies resulted in different approaches. The RSP Query Language (RSP-QL)
was therefore proposed by Dell’Aglio et al) (2014) as a unifying query model to ex-
plain the heterogeneity of these various RSP languages. To this effect, it extends the
SPARQL model and bases off the CQL and SECRET models.

RSP orchestration

The orchestration of RSP beyond single engines appears to have only started re-
cently within the Semantic Web community. It shared some similarities with older
work towards semantic web services, but with a specific focus on the generation of
RDF streams and the transportation mechanism for such streams within the domain
of existing Web-based communication technologies. In the following, we look at
approaches towards the generation of RDF streams, the orchestration of RSP tools,
and the possibility of annotating RDF streams by treating them as first-class citizens.

TripleWave. As mentioned earlier, raw data streams usually do not follow the RDF
structure. This makes the distribution of such streams more complex than simply
taking existing RDF data and streaming this data. TripleWave is a framework that al-
lows users to distribute RDF streams on the web, and was originally proposed by
Mauri et al] (2016). It considers both RDF and non-RDF resources and provides
the means to stream these resources as RDF streams. For RDF resources, this in-
cludes the streaming of time-annotated datasets and the replaying of recorded RDF

168

11.11. PEIS

streams, also allowing these replays to be looped to generate an infinite-length
stream. For non-RDF resources, plugins exist that convert to JSON raw data from
for example social media or open-source encyclopedia. The resulting JSON data can
then be converted into an RDF stream. In doing so, TripleWave offers a solution to
the problem of generating RDF streams from data providers that may not necessarily
support the RDF format natively.

WeSP. Previously, we looked at several different RSP engines for querying RDF
streams. Similarly, systems such as TripleWave act as sources of such data. The
WeSP framework by Dell’Aglio et al! (20178) is tasked with connecting these sources
to graphs of potentially many RSP engines, using existing Web-based technologies
(i.e. HTTP, Websockets) for realising communication. WeSP therefore defines com-
munication protocols that can be used by different RSP engines to establish RSF
stream-based communication in a network of engines. They additionally describe
RDF documents called stream descriptors, which describe a stream at the metalevel.
This follows a similar approach taken in the development of SSL, discussed in Chap-
ter @, and the DyKnow model, presented in Chapter [7.

VoCalS. One important part of orchastration is the availability of a vocabulary to
describe streams and transformations. The Vocabulary for Cataloging and Linking
Streams and streaming services on the web (VoCaLS) was introduced by fommasini
et all (2018, 2019) for this purpose. It provides a vocabulary for annotating stream-
ing services and transformation, and makes it possible to annotate streams with
provenance information describing the process through which they are generated.
VoCalLS can thus provide a realisation of WeSP’s stream descriptors. This follows the
same line of work as presented here in Chapter [], where the DyKnow model can be
expressed using the DyKnow ontology.

11.11 PEIS

Research towards analysis of stream reasoning such as proposed as part of LARS,
SECRET and to some extent RSP generally ignores questions of integration into a
larger (eco)system. Saffiotti et all (2008) presented the PEIS ecology for Physically
Embedded Intelligent Systems. The cornerstone of the PEIS ecology is its conceptu-
alisation of physically embedded intelligent systems (PEIS) as agents that operate in
a physical environment and are themselves physical entities. Every PEIS is assumed
to at least have

1. some computational resources;

2. some communication resources; and

18pronounced ‘pace ecology’

169

11. Related work

3. sensors and/or actuators allowing the system to interact with the physical en-
vironment.

Consequently, PEIS are assumed to be heterogeneous entities with different capabil-
ities. A PEIS ecology consists of potentially many PEIS, each with their own function-
alities and communication capabilities. While the PEIS ecology considers communi-
cation problems, DyKnow instead chooses to use ROS as a commonly-used platform
that provides communication support. The PEIS ecology as a whole is intended to
solve problems in a multi-agent organisation setting by interacting with the physical
environment.

Lundh et al] (2008) focused on the problem of self-configuration and proposed
techniques for configuration planning. The underlying motivation is that in the PEIS
ecology robots can and should help other robots to collectively achieve goals com-
mon to the ecology they are part of. Functionalities are formalised in a logical rep-
resentation that can be used by general planners. Given a goal, the planner is able
to find a set of functionalities that, when activated, fulfill the goal. This approach
shares similarities with DyKnow’s semantic subscriptions. Both consider a compu-
tational environment in which functionalities can be activated or transformations
can be instantiated for a cost. However, in DyKnow this cost is estimated and may
change over time, whereas the PEIS ecology uses simple constant values. Further-
more, DyKnow's similarity relation is based on the semantic tags of transformations,
whereas the PEIS ecology matches propositional statements. Both the lack of mean-
ingful cost measures and the potential value in using semantic descriptions were
later identified (Cundh, 2009) as future work. On the other hand, the PEIS ecology is
able to model actions taken by PEIS at the level of configuration planning, whereas
DyKnow can only consider stream processing without taking into account the actions
of agents. The preconditions for transformations are not explicitly modeled in Dy-
Know either; transformations are expected to only be available when preconditions
are met, as exemplified in the synergy scenarios. DyKnow focuses to a large degree
on maintaining semantic subscriptions and therefore emphasises the need for effi-
cient and fast reconfiguration in light of failures. The PEIS ecology instead focuses
on achieving a goal in a physical environment, where the configuration of function-
alities of PEIS plays one role. DyKnow and the PEIS ecology are thus complementary
in their results, where the difference in motivations means there is a different focus.

Moving from the configuration-centric abstraction level down to the data-centric
abstraction level, Alirezaie (2015) more recently focused on the problem of stream-
ing data semantics. In particular, the focus was on bridging the semantic gap be-
tween sensor data and ontological knowledge, which is reminiscent of the sense-
reasoning gap that was the motivation (Heintz et all, 2010) behind earlier DyKnow
efforts. The semantic gap between sensor data and ontological knowledge is de-
scribed as the disconnect between quantitative sensor values and crisp high-level
knowledge encoded into ontologies. Alirezai€ (2015) focuses on two aspects. First,
correspondences between sensor data and conceptual knowledge needs to be auto-
matically determined. Second, the two types of information are combined in an in-

170

11.12. Summary

ferencing process. In particular, the focus is on enriching the sensor data, meaning it
is ‘lifted up’ to the conceptual level. This is different from DyKnow'’s approach of de-
scribing the low-level sensor information using high-level concepts, as this is purely
descriptive rather than formative. The use of CEP on semantic events obtained from
sensor information is an interesting approach currently not used by DyKnow.

Overall, the PEIS ecology shares many similarities with the DyKnow project. Both
efforts consider a larger integration problem in which stream reasoning combining
sensor data with high-level knowledge is essential for decision-making, albeit from
different angles.

11.12 Summary

The research presented in this dissertation focuses on robust stream reasoning un-
der uncertainty. In doing so, it also considers the application area of intelligent
robotics. In this overview of related work, we covered a wide area of work per-
taining to stream reasoning for various application domains.

This includes early work on DSMS for stream processing, such as STREAM with
its CQL, Aurora with its SQuAI, and TelegraphCQ with its iterable time windows;
each supporting some form of windowing to handle the potentially infinite-length
streams they process. We also discussed early CEP systems, such as ETALIS with its
ELE language generalising Allen’s interval algebra, or T-Rex with its TESLA language
that also supports window-based aggregation, further blurring the boundaries be-
tween DSMS and CEP. We also discussed the various ways RSP has pushed the
boundaries of stream reasoning, and where the term was coined originally. Some of
the RSP engines mentioned make use of some of the languages mentioned earlier;
EP-SPARQL combines ELE with SPARQL. But RSP also considers a background knowl-
edge base in the form of an ontology, which must be taken together with a stream
to perform stream reasoning. Retalis takes a similar approach, extending ELE with
knowledge base management using rules written in SLR, combining a stream with
an incrementally-updated knowledge base.

One of the lessons learned in RSP research was the difficulty in formalising the se-
mantics of RSP languages. SECRET was one formalisation of stream reasoning, con-
sidering a formal definition of streams and windows on streams. SECRET was used
in combination with CQL and SPARQL to develop RSP-QL. At around the same time,
LARS was developed to also formally describe streams and windows on streams, and
was used to describe the semantics of CQL as an illustration of its expressiveness.
The LARS framework was also realised; several implementations of reasoners for
LARS fragments exist, including Laser and Ticker.

Yet none of the above systems, with the exception of Retalis, specifically fo-
cused on intelligent robotics. This application domain has its own difficulties, in-
cluding the problem of having to cope with low-level sensor information, whereas
the above systems commonly expect crisp relational data or RDF triples. Another is-
sue is that this information may originate from different streaming resources. Some

171

11. Related work

of the early work on stream reasoning did consider a changing stream processing
environment. STREAM used the StreaMon monitoring and adaptive query process-
ing infrastructure, which tried to re-optimise the query processing whenever neces-
sary. Aurora specifically considers user-defined quality of service, and tries to opti-
mise that during run-time. Borealis was a continuation of Aurora that incorporated
Medusa, which considered a multi-agent setting in which nodes compensated each
other based on economical incentives. TelegraphCQ made use of Eddies for routing
streams, and Retalis extended ETALIS with support for run-time subscriptions that
may change dynamically.

More advanced orchestration of stream processing is less common. PEIS specif-
ically considers the sharing of information between separate physical agents to
achieve common goals. It does so by formalising the agents’ functionalities and
applying configuration planning to align these functionalities when needed. On the
RSP side, recent developments as part of WeSP considered graphs of interconnected
RSP engines communicating using standard Web-based technologies. Systems like
TripleWave focused on the generation of RDF streams from both RDF and non-RDF
data resources. This was further complemented with support for the semantic an-
notation of streaming services using VoCalS. The combination of the two can be part
of semantically-aware RSP orchestration.

The work towards DyKnow thus covers a fairly wide range of related works. On
the one hand, there is the reasoning over streams, ranging from simple processing
to logical reasoning tasks with background theories. On the other hand, there is the
support for reasoning about streams, dealing with the smart orchestration of stream
processing to achieve goals. Overall, one can regards the DyKnow system as being
similar to a hypothetical combination of Retalis with PEIS; sharing some similarities
in their features, while complementing both.

172

Part vV

CONCLUSIONS

Chapter

Conclusions and future work

sentations, integration, a concrete implementation, and a case study for ro-

bust spatio-temporal stream reasoning under uncertainty. The logic MSTL
was used to make spatio-temporal statements, and of which the truth value can be
robustly determined even in the face of incomplete information and unexpected
changes in the availability of (latent) streams. The presented work is multidisci-
plinary in nature, resulting in the focus on the development and integration of two
related strands. This chapter first provides a high-level summary of the contribu-
tions, revisits the research questions and considers open problems, before consid-
ering potential future work.

T HiS dissertation presents a logic, algorithms, formal models, semantic repre-

12.1 Overview

The results presented in this work represent the latest achievements within the
DyKnow project, divided into two integrated strands. The first strand focused on
stream reasoning under uncertainty, where we specifically looked at path checking
over sets of states representing different consistent hypotheses. This can be used
for performing spatio-temporal stream reasoning with MSTL. MSTL was presented
as an extension of MITL by incorporating RCC-8 for qualitative spatial reasoning,
allowing for spatio-temporal statements to be made. The truth value of these state-
ments can be determined incrementally using an extended version of progression.
These statements can further contain intertemporal spatial relations similar to ST;.
Importantly, we assume that these intertemporal spatial relations cannot be ob-
served directly, and thus need to be inferred. Without any additional information
about intertemporal relations, nothing is known about them. Our solution therefore
makes use of landmark regions which can reduce the uncertainty over intertemporal
spatial relations.

175

12. Conclusions and future work

Fluent

Observation

Interpretation

Knowledge

Verdict Response

Figure 12.1: A simplified version of the stream reasoning waterfall model.

The second strand focuses on the problem of generating a state stream over
which a formula can be evaluated. The symbols in a formula are therefore grounded
in a computational environment through syntactic or semantic subscriptions, such
that the truth value of these symbols depends on the data that is produced by this
underlying environment. Semantic annotations of the logical symbols (through the
use of targets) as well as the available stream transformations allow us to find suit-
able configurations of the computational environment that produce a state stream
containing the information necessary to evaluate a formula. By reconsidering the
configuration periodically, the computation graphs can be repaired or improved in
case where the underlying system changes unexpectedly. This ensures that the pro-
gression of a formula is not necessarily interrupted or fails as the result of such
changes, making the system more robust. Additionally, the configurations can be
expressed relative to a Semantic Web ontology, allowing for the exchange of config-
uration information.

The two strands were integrated into a single stream reasoning framework in
which reasoning about streams synergises with reasoning over streams. The stream
reasoning waterfall is shown once more in Figure f[2.7], and shows the various steps
from fluents down to verdicts, which may elicit a response. The resulting DyKnow
model was integrated with ROS and allows existing ROS nodelet implementations
to be used in DyKnow with minimal overhead in terms of delays and developer bur-
den. This concrete implementation was then deployed on NAO platforms, adapting
software produced by the Linképing RoboCup SPL team to be usable by DyKnow
for a case-study that highlights the added value of adaptive reconfigurability during
stream reasoning tasks.

While the focus of the work was primarily on robotic applications, the solutions
are general and do not rely on specific supporting software such as ROS. For exam-
ple, experimental CUs have been written for non-robotic domains such as Twitter,
or to interact with DigitalOcean’s cloud computing API by instantiating, managing,
and destroying virtual machines in off-platform data centres. This highlights poten-
tial applicability of the presented solutions to much broader application areas that

176

12.2. Conclusions

involve many diverse computational resources, for example smart cities or sensor
networks, making them potentially interesting to industrial applications of this kind.
The computation resources also do not necessarily have to be physical. One can
imagine virtual services that deal with areas such as advertisement, travel agencies,
or stock markets wherein financial information and their sources may change con-
tinually. In fact, many CEP languages have query examples that deal precisely with
stock market events.

12.2 Conclusions

In the introduction covered by Chapter fl, the following research questions were
posed:

¢ [RQ1]: How can uncertainty be formally modelled for the purpose of logical
stream reasoning?

[RQ2]: How can a spatio-temporal logic be constructed by combining spatial
and temporal formalisms, and how can statements in such a logic be tested
for satisfaction given a stream?

¢ [RQ3]: How can a stream be generated for the purpose of symbol grounding?

e [RQ4]: How can the procedure for generating a stream for the purpose of
runtime verification be made robust to changes that affect its ability to keep
generating such a stream?

¢ [RQ5]: How can the techniques developed towards answering the aforemen-
tioned research questions be leveraged in a concrete middleware framework
such as the Robot Operating System?

We can now revisit the contributions in this dissertation that seek to answer these
questions.

Modelling uncertainty for the purpose of logical stream reasoning

The need to model uncertainty when performing logical stream reasoning is based
on the introduction of uncertainty when making observations of an environment,
and the need to represent this uncertainty at higher levels of abstraction as well. We
focused primarily on representing uncertainty by considering multiple hypotheses,
and keeping track of these hypotheses. Chapters § and | formalised the concept of
an incomplete stream as a sequence of incomplete states, each of which represents
multiple hypotheses with potentially different probabilities. The progression proce-
dure by Bacchus and Kabanza (1998) was enhanced with rewriting rules, shown in
Table B.1, allowing for formulas to be simplified such that their length is reduced.
Since the time and space complexity of progression are based on formula size, for-
mula simplification can make progression more efficient.

177

12. Conclusions and future work

Satisfaction-checking spatio-temporal statements

We made use of progression to determine whether a stream satisfies a formula, be-
cause of the incremental nature of progression. Chapters | and [considered path
checking to determine whether a stream satisfies a logical formula, with the latter
extending this to the spatio-temporal logic MSTL. The semantics of MSTL was pro-
vided in Definition B.3 and combines MITL with RCC-8. Uncertainty in terms of
incomplete streams is propagated into the task of path checking because an incom-
plete stream represents a potentially large collection of possible complete streams.
The uncertainty is efficiently kept track of by utilising progression graphs — shown
to be correct in Theorem .4 — which keep track of a probability mass distribution
representing the probability of progression having ended up in a particular formula
given an incomplete stream prefix.

Generating a stream for symbol grounding

Symbol grounding is used to give meaning to the symbols used to represent propo-
sitions in logical formulas. Chapter | shows how subscriptions can be used to obtain
the necessary state information, and how background knowledge can be used to en-
hance such states. The chapter also showed three languages for stream processing;
SPL, SSL, and FSL. SPL and FSL allow a user to filter, combine and otherwise transform
streams using descriptive SQL-like queries, whereas SSL allows a user to semanti-
cally annotate streams and transformations. Chapter [introduces a formalisation
of the concepts of transformations, computation units, and targets. The semantic
description of transformations allows for the automatic configuration of a system to
generate a stream described by its semantics. This makes it possible for a user to
not have to care about how the stream is generated. We also looked at an ontology,
shown in Figure 7., to represent a snapshot of a computational environment.

Robust stream generation under change

Adaptive semantic subscriptions are robust to changes affecting the computational
environment’s abilities to transform streams. Chapter § formalises the concept of
a perturbation and introduced the problem of finding the optimal change set to re-
cover from a perturbation. To also utilise possible improvements, Algorithms B.7,
B.7 and B.3 use periods of exploration and exploitation as part of an update proce-
dure.

Application in a concrete middleware framework

DyKnow-ROS is an implementation of the DyKnow model in the Robot Operat-
ing System (ROS). Chapter g shows how the model can be realised by describing
the required ROS-based services. To perform reconfigurations, additional control
is needed in the form of proxies. Chapter fIJ finally covers case-studies involving

178

12.3. Limitations and open problems

DyKnow-ROS as a proof of concept by focusing on the robust generation of a stream
needed to evaluate a formula.

12.3 Limitations and open problems

While the work presented in this dissertation is interdisciplinary, this also invariably
means that there are limitations to aspects of the presented work. We therefore
focus on the limitations of the results presented, and consider some problems which
have not yet been resolved. We do so by considering the relevant parts this work
is composed of (i.e. Parts [l, [Tl, [V)) in isolation, as they represent different — albeit
related — strands.

Stream reasoning under uncertainty

Part [l focuses on contributions towards stream reasoning under uncertainty. In
this work, the emphasis was on a specific kind of stream reasoning, i.e. path check-
ing. The approach foresees the use of background theories when performing state
stream synthesis, which is required for spatio-temporal stream reasoning using
MSTL. A closer integration of state stream synthesis with progression remains an
open problem. One idea here is to encode the background knowledge into the pro-
gression graph by removing edges labelled with states which are inconsistent when
combined with the background knowledge. This could be used to further limit the
size of progression graphs. An investigation into the potential interaction between
graph-based progression and reasoning with background knowledge has also been
left for future work. Of particular interest is ASP-based reasoning, which has pre-
viously been shown (Brenton et all, 2016) to also be able to perform qualitative
spatial reasoning tasks. Another open issue concerns the potential to use verdict
streams to generate new incomplete state streams. This would allow for the rea-
soning about satisfaction probabilities within the logic itself. Finally, we considered
a specific type of uncertainty, and an investigation of additional alternatives is an
open problem. One potentially interesting approach is to consider a variant of the
probability thresholding operator P, (¢) recently proposed by Koopmann (2019)
in the context of OBDA, or to further develop a probabilistic extension of STL as
proposed by [Tiger and HeintZ (2014).

Adaptive stream processing

Part [T] focuses on contributions towards robust stream reasoning through adap-
tive stream processing. The DyKnow model seeks to reconfigure the computational
environment by attempting to reach a goal configuration represented by a set of
targets, while at the same time keeping the configuration’s cost low. The choice of
cost measures for CUs is however notoriously difficult. Previous work, for example
LundH (2009), notes the same difficulties and instead simplifies the problem by as-
signing constant utility values. It seems more likely, however, that the cost of CUs

179

12. Conclusions and future work

would change based on the context of the operations. It would be interesting to
see how well a predictive cost model could be learned in terms of computational
resource usage, and which features would be the most informative for these pre-
dictions. While the model presented in this chapter provides a framework for using
such predictions, learning good estimators is beyond the scope of this work. The
DyKnow model does consider the cost of environments, but it does not consider
the utility of the produced streams. In some implementations, a higher upkeep is
associated with a higher-quality data stream. The representation of utility and the
trade-off between cost and utility are interesting open problems. Lastly, the pre-
sented approach allows for the configuration model to be represented relative to
a Semantic Web ontology. This is done because we foresee future configurations
spanning multiple agents in a multi-agent organisation, but additional work towards
this type of support is necessary.

Applied stream reasoning

Part [V focuses on applied stream reasoning and presents a realisation of the Dy-
Know model in ROS, called DyKnow-ROS. DyKnow-ROS relies on nodelets for dy-
namic instantiation of CUs. This presents some practical problems. First, this
excludes ROS nodes, since these can only be started by command-line or via
roslaunch. Currently, node-based implementations have to be converted to
nodelets, although many support both types. The second issue is that a crash of
a nodelet brings down the nodelet manager, and thereby all CUs that are running as
part of that nodelet manager. This means that many if not all CUs crash if one does,
and recovery then requires a new nodelet manager process to be started. Some
additional engineering efforts are needed to resolve these practical issues. ROS has
some known shortcomings in terms of communication guarantees, making it less
useful for real-time applications. A new version of ROS, going by the name ROS2, is
under development. It would be interesting to see how ROS2 could be combined
with the DyKnow model for a potential DyKnow-ROS2 realisation with real-time
guarantees. Another issue is the realisation of an optimisation problem for the com-
putational environment. Targets currently only consider cost, without considering
quality. This prevents certain solutions from being chosen if they are more expen-
sive, regardless of their quality being greater than that of cheaper solutions. As an
example, sometimes redundant information can be useful. One situation wherein
this is the case is sensor fusion. Given multiple sources of position information for an
object, combining these sources may lead to a better position estimation. However,
since this requires multiple pipelines and thus more upkeep costs, these solutions
will never be chosen. It would be interesting to see how one could extend the ap-
proach presented here to a multi-target optimisation problem in which the cost is
minimised and the quality is maximised. The synergy effect is demonstrated in terms
of reasoning about streams supporting robust reasoning over streams in situations
wherein the set of available computational resources changes. We have not yet ex-
plored in detail the opposite synergy direction, wherein reasoning over streams may

180

12.4. Future work

affect the reasoning about streams. This too is a topic left for future work. Finally,
the lack of multi-agent support at this stage means that the two NAO platforms used
in this case study were part of a single DyKnow instance. Effectively it was the lab
that acted as an agent. Separating the two platforms over two different DyKnow
instances brings new challenges.

12.4 Future work

There remains a lot of potential future work in the adaptive state stream generation
strand, in addition to the limitations mentioned earlier. In particular, determining
appropriate utility measures with meaningful properties is an issue. For example, if
we can provide a higher-quality stream by fusing two probabilistic streams, there is
still a trade-off to be made in terms of the labour and upkeep such a reconfiguration
would cost. Finding a suitable trade-off between cost and utility is an important
problem especially for robot applications.

For the work pertaining to reasoning over streams under uncertainty we have
thus far focused on specific types of uncertainty. Specifically, we considered mul-
tiple hypothetical states at each time-point, resulting in multiple hypothetical com-
plete streams. Probabilities were also assigned to the individual hypothetical states.
Further efforts should be made to further develop the ability to handle uncertain
information. One potentially interesting approach is to consider a variant of the
probability thresholding operator P, (¢) recently proposed by Koopmann (2019)
in the context of OBDA. The support of probabilistic reasoning would be extremely
useful in robotic scenarios, as in many cases the information we want to use in the
crisp logical formulas is actually represented in terms of probability distributions.
While it is trivial to provide mean values, this does not handle Boolean compar-
isons nicely, as a distribution might overlap with a threshold, thus making the truth
value of the comparison inherently probabilistic. This also impacts the way state
streams are synthesised, as more meta-information is required to properly combine
probabilistic information of this kind. One interesting use-case would be that of au-
tomated fusion, wherein the underlying configuration manager takes into account
the possibility of fusing probabilistic data streams in certain contexts. Another is to
further investigate the integration of reasoning with a background theory into pro-
gression graphs, where such background theories could be used to eliminate edges
corresponding to inconsistent states.

The current stream reasoning solution is designed with a single agent in mind. By
expanding reasoning over and about streams to a multi-agent system setting, we can
consider many interesting problems in addition to the ones described above. While
there exists ongoing work into configuration of for example cloud computing sys-
tems, these approaches commonly have data centres in mind. Extending these tech-
niques and others to heterogeneous autonomous robot applications would likely be
interesting.

181

12. Conclusions and future work

Finally, further investigation of the synergy effect resulting from reasoning about
and over streams may be of interest to many problems not limited to situation
awareness. Being able to reason about one’s own percepts allows one to poten-
tially resolve inconsistencies. By reasoning about streams, an agent is able to reason
about perception itself and could thus find alternate modes of perception to either
corroborate the contradiction or contradict the inconsistent observation. This dis-
sertation presents but a few initial steps towards such an agent from the starting
point of stream reasoning.

182

Bibliography

D. J. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, M. Stonebraker,
N. Tatbul, and S. Zdonik. Aurora: a new model and architecture for data stream
management. The International Journal on Very Large Data Bases, 12(2):120-139,
2003.

D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack, J.-H. Hwang,
W. Lindner, A. Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. Zdonik. The
design of the Borealis stream processing engine. In Proceedings of the Second
Biennial Conference on Innovative Data Systems Research (CIDR), pages 277-289,
2005.

F-M. Adolf, P. Faymonville, B. Finkbeiner, S. Schirmer, and C. Torens. Stream run-
time monitoring on UAS. In Proceedings of the 17th International Conference on
Runtime Verification (RV), volume 10548, page 33, 2017.

M. Alirezaie. Bridging the Semantic Gap between Sensor Data and Ontological
Knowledge. PhD thesis, Orebro university, 2015.

J. Allen. Maintaining knowledge about temporal intervals. Communications of the
ACM, 26(11):832-843, 1983.

R. Alur, T. Feder, and T. A. Henzinger. The benefits of relaxing punctuality. Journal of
the ACM (JACM), 43(1):116-146, 1996.

D. Anicic. Event Processing and Stream Reasoning with ETALIS. PhD thesis, Karlsruhe
Institute of Technology, 2012.

D. Anicic, P. Fodor, N. Stojanovic, and R. Stiihmer. An approach for data-driven and
logic-based complex event processing. In Proceedings of the Third ACM Interna-
tional Conference on Distributed Event-Based Systems, pages 26-27, 2009.

183

Bibliography

D. Anicic, P. Fodor, S. Rudolph, and N. Stojanovic. EP-SPARQL: a unified language for
event processing and stream reasoning. In Proceedings of the 20th International
World Wide Web Conference (WWW), 2011.

D. Anicic, S. Rudolph, P. Fodor, and N. Stojanovic. Stream reasoning and complex
event processing in ETALIS. Semantic Web, 3(4):397-407, 2012.

A. Arasu, S. Babu, and J. Widom. CQL: A language for continuous queries over
streams and relations. In Proceedings of the 9th International Workshop on
Database Programming Languages (DBPL), pages 1-19. Springer, 2003.

A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito, R. Motwani, U. Srivas-
tava, and J. Widom. STREAM: The Stanford data stream management system,
pages 317-336. Stanford InfoLab, 2004.

A. Arasu, S. Babu, and J. Widom. The CQL continuous query language: semantic
foundations and query execution. The International Journal on Very Large Data
Bases, 15(2):121-142, 2006.

S.Babu and J. Widom. StreaMon: an adaptive engine for stream query processing. In
Proceedings of the 2004 ACM SIGMOD International Conference on Management
of Data, pages 931-932, 2004.

F. Bacchus and F. Kabanza. Planning for temporally extended goals. Annals of Math-
ematics and Artificial Intelligence, 22(1-2):5-27, 1998.

K. Baldor and J. Niu. Monitoring dense-time, continuous-semantics, Metric Temporal
Logic. In Proceedings of the International Conference on Runtime Verification,
pages 245-259, 2012.

D. Barbieri, D. Braga, S. Ceri, E. Della Valle, and M. Grossniklaus. C-SPARQL: SPARQL
for continuous querying. In Proceedings of the 18th International World Wide
Web Conference (WWW), 2009.

D. F. Barbieri, D. Braga, S. Ceri, E. Della Valle, and M. Grossniklaus. C-SPARQL: a con-
tinuous query language for RDF data streams. International Journal of Semantic
Computing, 4(1):3-25, 2010a.

D. F. Barbieri, D. Braga, S. Ceri, and M. Grossniklaus. An execution environment for C-
SPARQL queries. In Proceedings of the 13th International Conference on Extending
Database Technology (EDBT), pages 441-452, 2010b.

D. F. Barbieri, D. Braga, S. Ceri, E. D. Valle, and M. Grossniklaus. Querying RDF streams
with C-SPARQL. ACM SIGMOD Record, 39(1):20-26, 2010c.

D. Basin, B. N. Bhatt, and D. Traytel. Almost event-rate independent monitoring of
Metric Temporal Logic. In Proceedings of the 23rd International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, pages 94-112,
2017.

184

Bibliography

H. R. Bazoobandi, H. Beck, and J. Urbani. Expressive stream reasoning with Laser.
In Proceedings of the 16th International Semantic Web Conference (ISWC), pages
87-103, 2017.

H. Beck, M. Dao-Tran, T. Eiter, and M. Fink. Towards a logic-based framework for
analyzing stream reasoning. In Proceedings of the 3rd International Workshop on
Ordering and Reasoning (OrdRing), 2014.

H. Beck, M. Dao-Tran, T. Eiter, and M. Fink. LARS: A logic-based framework for an-
alyzing reasoning over streams. In Proceedings of the Twenty-Ninth AAAI Confer-
ence on Artificial Intelligence (AAAI), 2015.

H. Beck, T. Eiter, and C. Folie. Ticker: A system for incremental ASP-based stream
reasoning. Theory and Practice of Logic Programming, 17(5-6):744-763, 2017.

B. Bennett, A. Cohn, F. Wolter, and M. Zakharyaschev. Multi-dimensional modal
logic as a framework for spatio-temporal reasoning. Applied Intelligence, 17(3):
239-251, 2002.

T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American,
284(5):34-43, 2001.

I. Botan, R. Derakhshan, N. Dindar, L. Haas, R. J. Miller, and N. Tatbul. SECRET: a model
for analysis of the execution semantics of stream processing systems. Proceedings
of the VLDB Endowment, 3(1-2):232-243, 2010.

C. Brenton, W. Faber, and S. Batsakis. Answer set programming for qualitative spatio-
temporal reasoning: Methods and experiments. In Technical Communications of
the 32nd International Conference on Logic Programming, volume 52, pages 4:1-
4:15, 2016.

A. Broring, K. Janowicz, C. Stasch, and W. Kuhn. Semantic challenges for sensor plug
and play. In Proceedings of the 9th International Symposium on Web and Wireless
Geographical Information Systems (W2GIS), pages 72-86, 2009.

A. Broring, P. Maué, K. Janowicz, D. Nist, and C. Malewski. Semantically-enabled
sensor plug & play for the sensor web. Sensors, 11(8):7568-7605, 2011.

J. R. Blichi. On a decision method in restricted second order arithmetic. In The
Collected Works of J. Richard Blichi, pages 425-435. 1990.

J.-P. Calbimonte, O. Corcho, and A. J. Gray. Enabling ontology-based access to
streaming data sources. In Proceedings of the 9th International Semantic Web
Conference (ISWC), pages 96-111, 2010.

P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K. Tzoumas. Apache
Flink: Stream and batch processing in a single engine. volume 36, 2015.

185

Bibliography

S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein,
W. Hong, S. Krishnamurthy, S. Madden, V. Raman, F. Reiss, et al. TelegraphCQ:
Continuous dataflow processing for an uncertain world. In Proceedings of the
First Biennial Conference on Innovative Data Systems Research (CIDR), volume 2,
page 4, 2003.

M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U. Cetintemel, Y. Xing, and
S. B. Zdonik. Scalable distributed stream processing. In Proceedings of the First
Biennial Conference on Innovative Data Systems Research (CIDR), volume 3, pages
257-268, 2003.

C. Cini and A. Francalanza. An LTL proof system for runtime verification. In Proceed-
ings of the 21st International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS), pages 581-595, 2015.

E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons
using branching time temporal logic. In Proceedings of the Workshop on Logic of
Programs, pages 52-71. Springer, 1981.

A. Cohn and J. Renz. Qualitative spatial representation and reasoning. In Handbook
of Knowledge Representation, pages 869-886. Elsevier, 2008.

M. Compton et al. The SSN ontology of the W3C semantic sensor network incubator
group. Web Semantics: Science, Services and Agents on the World Wide Web, 17:
25-32, 2012.

G. Cugola and A. Margara. TESLA: a formally defined event specification language.
In Proceedings of the Fourth ACM International Conference on Distributed Event-
Based Systems (DEBS), pages 50-61, 2010.

G. Cugola and A. Margara. Processing flows of information: From data stream to
complex event processing. ACM Computing Surveys (CSUR), 44(3):15, 2012a.

G. Cugola and A. Margara. Complex event processing with T-REX. Journal of Systems
and Software, 85(8):1709-1728, 2012b.

Z.Cui, A. G. Cohn, and D. A. Randell. Qualitative and topological relationships in spa-
tial databases. In Proceedings of the Third International Symposium on Advances
in Spatial Databases (SSD), pages 296-315, 1993.

E. Della Valle, S. Ceri, F. Van Harmelen, and D. Fensel. It’s a streaming world! Rea-
soning upon rapidly changing information. IEEE Intelligent Systems, 24(6), 2009.

D. Dell’Aglio, E. Della Valle, J.-P. Calbimonte, and O. Corcho. RSP-QL semantics: A uni-
fying query model to explain heterogeneity of RDF stream processing systems.
International Journal on Semantic Web and Information Systems, 10(4):17-44,
2014.

186

Bibliography

D. Dell’Aglio, E. Della Valle, F. van Harmelen, and A. Bernstein. Stream reasoning: A
survey and outlook. Data Science, 1(1-2):59-83, 2017a.

D. Dell’Aglio, D. Le Phuoc, A. Lé Tuan, M. I. Ali, and J.-P. Calbimonte. On a web of
data streams. In Proceedings of the ISWC2017 Workshop on Decentralizing the
Semantic Web, 2017b.

D. Dell’Aglio, T. Eiter, F. Heintz, and D. Le Phuoc. Special issue on stream reasoning.
Semantic Web, 10(3):453-455, 2019. Editorial.

A. Desai, T. Dreossi, and S. A. Seshia. Combining model checking and runtime veri-
fication for safe robotics. In Proceedings of the 17th International Conference on
Runtime Verification (RV), pages 172-189, 2017.

N. Dindar, N. Tatbul, R. J. Miller, L. M. Haas, and I. Botan. Modeling the execution
semantics of stream processing engines with SECRET. The VLDB Journal, 22(4):
421-446, 2013.

P. Doherty, G. Granlund, K. Kuchcinski, E. Sandewall, K. Nordberg, E. Skarman, and
J. Wiklund. The WITAS unmanned aerial vehicle project. In Proceedings of the
14th European Conference on Artificial Intelligence (ECAI), pages 747-755, 2000.

P. Doherty, J. Kvarnstrom, and F. Heintz. A temporal logic-based planning and ex-
ecution monitoring framework for unmanned aircraft systems. Journal of Au-
tonomous Agents and Multi-Agent Systems, 19(3):332-377, 2009.

P. Doherty, F. Heintz, and J. Kvarnstrom. Robotics, temporal logic and stream rea-
soning. In Proceedings of the 19th International Conference on Logic for Program-
ming, Artificial Intelligence and Reasoning (LPAR), volume 26, pages 42-51, 2013.

P. Doherty, J. Kvarnstrom, M. Wzorek, P. Rudol, F. Heintz, and G. Conte. HDRC3: A
Distributed Hybrid Deliberative/Reactive Architecture for Unmanned Aircraft Sys-
tems, pages 849-952. 2014.

C. Dousson and P. Le Maigat. Chronicle recognition improvement using temporal
focusing and hierarchization. In Proceedings of the Twentieth International Joint
Conference on Artificial Intelligence (1JCAl), volume 7, pages 324-329, 2007.

Z. Dragisic. Semantic matching for stream reasoning. Master’s thesis, Linkoping
University, 2011.

S. Dustdar and W. Schreiner. A survey on web services composition. International
Journal of Web and Grid Services, 1(1):1-30, 2005.

M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property specifications for
finite-state verification. In Proceedings of the 21st international conference on
Software engineering, pages 411-420, 1999.

187

Bibliography

M. Eckert and F. Bry. Complex event processing (CEP). Informatik-Spektrum, 32(2):
163-167, 2009. Written in German.

J. Eker and J. Janneck. CAL language report. Technical report, 2003.

S.Feng, M. Lohrey, and K. Quaas. Path checking for MTL and TPTL over data words. In
International Conference on Developments in Language Theory, pages 326-339,
2015.

S. Feng, M. Lohrey, and K. Quaas. Path Checking for MTL and TPTL over Data Words.
Logical Methods in Computer Science, 13, 2017.

I. Galpin, C. Y. Brenninkmeijer, F. Jabeen, A. A. Fernandes, and N. W. Paton. Compre-
hensive optimization of declarative sensor network queries. In Proceedings of the
21st International Conference on Scientific and Statistical Database Management,
pages 339-360, 2009.

Z. Gantner, M. Westphal, and S. W6Ifl. GQR - a fast reasoner for binary qualita-
tive constraint calculi. In Proceedings of the 22nd AAAI Conference on Artificial
Intelligence (AAAI), pages 24-29, 2008.

A. Gerevini and B. Nebel. Qualitative spatio-temporal reasoning with RCC-8 and
Allen’s interval calculus: Computational complexity. In Proceedings of the 15th
European Conference on Artificial Intelligence (ECAI 2002), volume 2, pages 312-
316, 2002.

M. Ghallab. On chronicles: Representation, on-line recognition and learning. In
Proceedings of the Fifth International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR), pages 597-606, 1996.

C. Ghezzi, D. Mandrioli, and A. Morzenti. TRIO: A logic language for executable spec-
ifications of real-time systems. Journal of Systems and Software, 12(2):107-123,
1990.

K. Havelund and G. Rosu. Monitoring programs using rewriting. In Proceedings of the
16th Annual International Conference on Automated Software Engineering (ASE),
pages 135-143, 2001.

F. Heintz. DyKnow : A Stream-Based Knowledge Processing Middleware Framework.
PhD thesis, Linkdping University, 2009.

F. Heintz. Semantically grounded stream reasoning integrated with ROS. In Proceed-
ings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 5935-5942, 2013.

F. Heintz and P. Doherty. Chronicle recognition in the WITAS UAV project: A pre-
liminary report. In Proceedings of the Swedish Al Society Workshop, pages 1-4,
2001.

188

Bibliography

F. Heintz and P. Doherty. A distributed architecture for autonomous unmanned aerial
vehicle experimentation. In Proceedings of the 7th International Symposium on
Distributed Autonomous Robotic Systems (DARS), pages 1-10, 2004a.

F. Heintz and P. Doherty. DyKnow: An approach to middleware for knowledge pro-
cessing. Journal of Intelligent and Fuzzy Systems, 15(1):3-13, 2004b.

F. Heintz and P. Doherty. DyKnow: A framework for processing dynamic knowledge
and object structures in autonomous systems. In Proceedings of the International
Workshop on Monitoring, Security, and Rescue Techniques in Multi-Agent Systems
(MSRAS), pages 479-492, 2004c.

F. Heintz and P. Doherty. DyKnow: A framework for processing dynamic knowledge
and object structures in autonomous systems. In Proceedings of the Second Joint
SAIS/SSLS Workshop, pages 1-8, 2004d.

F. Heintz and P. Doherty. Managing dynamic object structures using hypothesis gen-
eration and validation. In Proceedings of the AAAI Workshop on Anchoring Sym-
bols to Sensor Data, pages 54-62, 2004e.

F. Heintz and P. Doherty. A knowledge processing middleware framework and its
relation to the JDL data fusion model. In Proceedings of the 8th International
Conference on Information Fusion (FUSION), pages 1-8, 2005a.

F. Heintz and P. Doherty. A knowledge processing middleware framework and its
relation to the JDL data fusion model. In Proceedings of the Third Joint SAIS/SSLS
Workshop, pages 1-10, 2005b.

F. Heintz and P. Doherty. A knowledge processing middleware framework and its re-
lation to the JDL data fusion model. In Proceedings of the Third Swedish Workshop
on Autonomous Robotics (SWAR), pages 54-55, 2005c.

F. Heintz and P. Doherty. A knowledge processing middleware framework and its
relation to the JDL data fusion model. Journal of Intelligent and Fuzzy Systems, 17
(4):335-351, 2006.

F. Heintz and P. Doherty. DyKnow federations: Distributing and merging information
among UAVs. In Proceedings of the 11th International Conference on Information
Fusion (FUSION), pages 1-7, 2008.

F. Heintz and P. Doherty. Federated DyKnow, a distributed information fusion system
for collaborative UAVs. In Proceedings of the 11th International Conference on
Control, Automation, Robotics and Vision (ICARCV), pages 1063-1069, 2010.

F. Heintz and Z. Dragisic. Semantic information integration for stream reasoning. In
Proceedings of the 15th International Conference on Information Fusion (FUSION),
2012.

189

Bibliography

F. Heintz and D. de Leng. Semantic information integration with transformations for
stream reasoning. In Proceedings of the 16th International Conference on Infor-
mation Fusion (FUSION), pages 445-452, 2013.

F. Heintz and D. de Leng. Spatio-temporal stream reasoning with incomplete spatial
information. In Proceedings of the 21st European Conference on Artificial Intelli-
gence (ECAI), pages 429-434, 2014.

F. Heintz, P. Rudol, and P. Doherty. From images to traffic behavior - a UAV tracking
and monitoring application. In Proceedings of the 10th International Conference
on Information Fusion (FUSION), pages 1-8, 2007a.

F. Heintz, P. Rudol, and P. Doherty. Bridging the sense-reasoning gap using the
knowledge processing middleware DyKnow. In Proceedings of the 30th Annual
German Conference on Artificial Intelligence (Kl), pages 460-463, 2007b.

F. Heintz, M. Krysander, J. Roll, and E. Frisk. FlexDx: A reconfigurable diagnosis
framework. In Proceedings of the 19th International Workshop on Principles of
Diagnosis (DX), pages 1-8, 2008a.

F. Heintz, J. Kvarnstrom, and P. Doherty. Knowledge processing middleware. In
Proceedings of the First International Conference on Simulation, Modeling, and
Programming for Autonomous Robots (SIMPAR), pages 147-158, 2008b.

F. Heintz, J. Kvarnstrém, and P. Doherty. A stream-based hierarchical anchoring
framework. In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 5254-5260, 2009.

F. Heintz, J. Kvarnstréom, and P. Doherty. Bridging the sense-reasoning gap: DyKnow
- stream-based middleware for knowledge processing. Journal of Advanced Engi-
neering Informatics, 24(1):14-26, 2010.

F. Heintz, J. Kvarnstrom, and P. Doherty. Stream-based hierarchical anchoring. Kin-
stliche Intelligenz, 27(2):119-128, 2013.

M. Hirzel, G. Baudart, A. Bonifati, E. Della Valle, S. Sakr, and A. Akrivi Vlachou. Stream
processing languages in the big data era. ACM SIGMOD Record, 47(2):29-40,
2018.

H.-M. Ho, J. Ouaknine, and J. Worrell. Online monitoring of Metric Temporal Logic.
In Proceedings of the 5th International Conference on Runtime Verification, pages
178-192, 2014.

A. Hongslo. Stream processing in the Robot Operating System framework. Master’s
thesis, Linkdping University, 2012.

V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, and R. L. Braynard.
Networking named content. In Proceedings of the 5th International Conference

190

Bibliography

on Emerging Networking Experiments and Technologies (CONEXT), pages 1-12,
2009.

F. Kerasiotis, C. Koulamas, C. Antonopoulos, and G. Papadopoulos. Middleware ap-
proaches for wireless sensor networks based on current trends. In Proceedings of
the 4th Mediterranean Conference on Embedded Computing (MECO), pages 244~
249, 2015.

R. Kontchakov, A. Kurucz, F. Wolter, and M. Zakharyaschev. Spatial logic + temporal
logic = ? In Handbook of Spatial Logics, pages 497-564. 2007.

P. Koopmann. Ontology-based query answering for probabilistic temporal data. In
Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI), 2019.

A. Kovtunova and R. Pefialoza. Cutting diamonds: A temporal logic with probabilistic
distributions. In Sixteenth International Conference on Principles of Knowledge
Representation and Reasoning, pages 561-570, 2018.

R. Koymans. Specifying real-time properties with Metric Temporal Logic. Real-Time
Systems, 2(4):255-299, 1990.

M. Krysander, F. Heintz, J. Roll, and E. Frisk. Dynamic test selection for reconfigurable
diagnosis. In Proceedings of the 47th IEEE Conference on Decision and Control
(CDC), pages 1066-1072, 2008.

M. Krysander, F. Heintz, J. Roll, and E. Frisk. FlexDx: A reconfigurable diagnosis
framework. Journal of Engineering Applications of Artificial Intelligence, 23(8):
1303-1313, 2010.

O. Kupferman and M. Y. Vardi. Model checking of safety properties. Journal of Formal
Methods in System Design, 19(3):291-314, 2001.

J. Kvarnstrém, F. Heintz, and P. Doherty. A temporal logic-based planning and ex-
ecution monitoring system. In Proceedings of the International Conference on
Automated Planning and Scheduling (ICAPS), pages 1-8, 2008.

D. Laney. 3d data management: Controlling data volume, velocity and variety. META
Group Research Note, 6:70, 2001.

E. Latronico, E. A. Lee, M. Lohstroh, C. Shaver, A. Wasicek, and M. Weber. A vision
of swarmlets. IEEE Internet Computing, 19(2):20-28, 2015.

D. Le-Phuoc, M. Dao-Tran, J. X. Parreira, and M. Hauswirth. A native and adaptive
approach for unified processing of linked streams and linked data. In Proceedings
of the 10th International Conference on The Semantic Web (ISWC), pages 370-
388, 2011.

D. de Leng. Extending semantic matching in DyKnow to handle indirectly-available
streams. Master’s thesis, Utrecht University, 2013.

191

Bibliography

D. de Leng. Spatio-Temporal Stream Reasoning with Adaptive State Stream Gener-
ation, volume 1783. Linkdping University Electronic Press, 2017.

D. de Leng and F. Heintz. Towards on-demand semantic event processing for stream
reasoning. In Proceedings of the 17th International Conference on Information
Fusion (FUSION), pages 1-8, 2014.

D. de Leng and F. Heintz. Ontology-based introspection in support of stream reason-
ing. In Proceedings of the 1st Joint Ontology Workshops (JOWO) co-located with
the 24th International Joint Conference on Artificial Intelligence (1JCAI), 2015a.

D. de Leng and F. Heintz. Ontology-based introspection in support of stream reason-
ing. In Proceedings of the 13th Scandinavian Conference on Artificial Intelligence
(SCAI), pages 78-87, 2015b.

D. de Leng and F. Heintz. Qualitative spatio-temporal stream reasoning with unob-
servable intertemporal spatial relations using landmarks. In Proceedings of the
30th AAAI Conference on Artificial Intelligence (AAAI), pages 957-963, 2016a.

D. de Leng and F. Heintz. DyKnow: A dynamically reconfigurable stream reasoning
framework as an extension to the Robot Operating System. In Proceedings of the
5th IEEE International Conference on Simulation, Modeling, and Programming for
Autonomous Robots (SIMPAR), pages 957-963, 2016b.

D. de Leng and F. Heintz. Towards adaptive semantic subscriptions for stream rea-
soning in the Robot Operating System. In Proceedings of the 30th IEEE/RS)J Inter-
national Conference on Intelligent Robots and Systems (IROS), pages 5445-5452,
2017.

D. de Leng and F. Heintz. Partial-state progression for stream reasoning with Metric
Temporal Logic. In Proceedings of the 16th International Conference on Principles
of Knowledge Representation and Reasoning, pages 633-634, 2018.

D. de Leng and F. Heintz. Approximate stream reasoning with Metric Temporal Logic
under uncertainty. In Proceedings of the 33rd AAAI Conference on Artificial Intel-
ligence (AAAI), 2019.

M. Luckcuck, M. Farrell, L. A. Dennis, C. Dixon, and M. Fisher. Formal specification
and verification of autonomous robotic systems: A survey. ACM Computing Sur-
veys (CSUR), 52(5):1-41, 2019.

R. Lundh. Robots that Help Each Other: Self-Configuration of Distributed Robot Sys-
tems. PhD thesis, Orebro University, 2009.

R. Lundh, L. Karlsson, and A. Saffiotti. Autonomous functional configuration of a
network robot system. Robotics and Autonomous Systems, 56(10):819-830, 2008.

A. K. Mackworth. Consistency in networks of relations. Artificial Intelligence, 8(1):
99-118, 1977.

192

Bibliography

. Madden and M. J. Franklin. Fjording the stream: An architecture for queries over
streaming sensor data. In Proceedings of the 18th International Conference on
Data Engineering (ICDE), volume 2, pages 555-566, 2002.

. Markey and P. Schnoebelen. Model checking a path. In Proceedings of the 14th In-
ternational Conference on Concurrency Theory (CONCUR), pages 251-265, 2003.

. Martin, M. Burstein, D. McDermott, S. Mcllraith, M. Paolucci, K. Sycara, D. L.
McGuinness, E. Sirin, and N. Srinivasan. Bringing semantics to web services with
OWL-S. World Wide Web, 10(3):243-277, 2007.

.Martin et al. OWL-S: Semantic markup for web services. W3C member submission,
2004,

. Mauri, J.-P. Calbimonte, D. Dell'’Aglio, M. Balduini, M. Brambilla, E. Della Valle, and
K. Aberer. Triplewave: Spreading RDF streams on the web. In Proceedings of the
15th International Semantic Web Conference (ISWC), pages 140-149, 2016.

. L. McGuinness, F. Van Harmelen, et al. OWL web ontology language overview.
W3C recommendation, 2004.

. Medhat, B. Bonakdarpour, S. Fischmeister, and Y. Joshi. Accelerated runtime ver-
ification of LTL specifications with counting semantics. In Proceedings of the 16th
International Conference on Runtime Verification (RV), pages 251-267, 2016.

. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar, G. Manku, C. OI-
ston, J. Rosenstein, and R. Varma. Query processing, resource management, and
approximation in a data stream management system. In Proceedings of the First
Biennial Conference on Innovative Data Systems Research (CIDR), 2003.

. E. Muller. Infinite sequences and finite machines. In Proceedings of the Fourth
Annual Symposium on Switching Circuit Theory and Logical Design, pages 3-16,
1963.

. Pejman, Y. Rastegari, P. M. Esfahani, and A. Salajegheh. Web service composi-
tion methods: A survey. In Proceedings of the International MultiConference of
Engineers and Computer Scientists (IMECS), volume 1, pages 560-564, 2012.

. Pnueli. The temporal logic of programs. In Proceedings of the Eighteenth Annual
Symposium on Foundations of Computer Science (SFCS), pages 46-57, 1977.

. M. T. Portocarrero, F. C. Delicato, P. F. Pires, T. C. Rodrigues, and T. V. Batista.
SAMSON: Self-adaptive middleware for wireless sensor networks. In Proceedings
of the 31st ACM/SIGAPP Symposium on Applied Computing (SAC), pages 1315-
1322, 2016.

M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler, and
A. Ng. ROS: an open-source robot operating system. In Proceedings of the 2009
IEEE International Conference on Robotics and Automation (ICRA), 2009.

193

Bibliography

D. Randell, Z. Cui, and A. Cohn. A spatial logic based on regions and connection. In
Proceedings of the 3rd International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR), pages 165-176, 1992.

J. Rao and X. Su. A survey of automated web service composition methods. In
Proceedings of the International Workshop on Semantic Web Services and Web
Process Composition (SWSWPC), volume 3387, pages 43-54, 2005.

F. Reiss and J. M. Hellerstein. Data triage: An adaptive architecture for load shed-
ding in TelegraphCQ. In Proceedings of the 21st International Conference on Data
Engineering (ICDE), pages 155-156, 2005.

J. Renz and B. Nebel. Efficient methods for qualitative spatial reasoning. Journal of
Artificial Intelligence Research, 15:289-318, 2001.

A. Saffiotti, M. Broxvall, M. Gritti, K. LeBlanc, R. Lundh, J. Rashid, B. Seo, and Y--J. Cho.
The PEIS-ecology project: vision and results. In Proceedings of the IEEE/RSJ 2008
International Conference on Intelligent Robots and Systems (IROS), 2008.

T. Sato. A statistical learning method for logic programs with distribution semantics.
In Proceedings of the 12th International Conference on Logic Programming (ICLP,
1995.

T. Sato and Y. Kameya. Parameter learning of logic programs for symbolic-statistical
modeling. Journal of Artificial Intelligence Research, 15:391-454, 2001.

Y. Shen, J. Li, Z. Wang, T. Su, B. Fang, G. Pu, W. Liu, and M. Chen. Runtime verifica-
tion by convergent formula progression. In Proceedings of the 21st Asia-Pacific
Software Engineering Conference (APSEC), pages 255-262, 2014.

A. N. Steinberg and C. L. Bowman. Revisions to the JDL data fusion model. In Hand-
book of multisensor data fusion, pages 65-88. CRC press, 2008.

F. Tang and L. Parker. ASyMTRe: Automated synthesis of multi-robot task solutions
through software reconfiguration. In Proceedings of the 2005 IEEE International
Conference on Robotics and Automation, pages 1501-1508, 2005.

P. Thati and G. Rosu. Monitoring algorithms for metric temporal logic specifications.
Electronic Notes in Theoretical Computer Science, 113:145-162, 2005.

M. Tiger and F. Heintz. Stream reasoning using temporal logic and predictive prob-
abilistic state models. In Proceedings of the 23rd International Symposium on
Temporal Representation and Reasoning (TIME), pages 196-205, 2016.

R. Tommasini, Y. A. Sedira, D. Dell'Aglio, M. Balduini, M. I. Ali, D. Le Phuoc,
E. Della Valle, and J.-P. Calbimonte. VoCalS: Vocabulary and catalog of linked
streams. In Proceedings of the 17th International Semantic Web Conference
(ISWC), pages 256-272, 2018.

194

Bibliography

R. Tommasini, D. Calvaresi, and J.-P. Calbimonte. Stream reasoning agents: Blue sky
ideas track. In Proceedings of the 18th International Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS), pages 1664-1680, 2019.

M. Y. Vardi. Automata-theoretic model checking revisited. In Proceedings of the 8th
International Conference on Verification, Model Checking, and Abstract Interpre-
tation (VMCAI), pages 137-150, 2007.

M. Y. Vardi and P. Wolper. Reasoning about infinite computations. Information and
computation, 115(1):1-37, 1994.

P. Wolper, M. Y. Vardi, and A. P. Sistla. Reasoning about infinite computation paths. In
Proceedings of the 24th Annual Symposium on Foundations of Computer Science,
pages 185-194, 1983.

F. Wolter and M. Zakharyaschev. Spatio-temporal representation and reasoning
based on RCC-8. In Proceedings of the Seventh Conference on Principles of Knowl-
edge Representation and Reasoning (KR 2000), pages 3-14, 2000.

P. Ziafati. Information Engineering in Autonomous Robot Software. PhD thesis,
Utrecht University, 2015.

P. Ziafati, M. Dastani, J.-J. Meyer, and L. van der Torre. Event-processing in au-
tonomous robot programming. In Proceedings of the 12th International Confer-
ence on Autonomous Agents and Multi-Agent Systems (AAMAS), pages 95-102,
2013.

P. Ziafati, V. Elrakaiby, M. van Zee, M. Dastani, J.-J. Meyer, L. van der Torre, and
H. Voos. Reasoning on robot knowledge from discrete and asynchronous obser-
vations. In Proceedings of the 2014 AAAI Spring Symposium Series, 2014.

P. Ziafati, M. Dastani, J.-J. Meyer, L. van der Torre, and H. Voos. Retalis language for
information engineering in autonomous robot software. IfCoLog Journal of Logics
and their Applications, 2(2):65-126, 2015.

195

Appendix

DyKnow ontology in Manchester
syntax

HE following is a listing of the DyKnow ontology used for semantic interop-
erability. It makes use of Manchester syntax to improve human readabil-
ity. The full up-to-date ontology in OWL/RDF syntax utilises the namespace

http://www.dyknow.eu/ontology/.

VN A W N e

N
VN oA WN P O

20
21
22
23
24
25
26
27
28
29
30
31

Prefix: : <http://www.dyknow.eu/ontology/dyknow#>

Prefix: dc: <http://purl.org/dc/elements/1.1/>

Prefix: owl: <http://www.w3.org/2002/07/owl#>

Prefix: rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
Prefix: rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
Prefix: skos: <http://www.w3.o0rg/2004/02/skos/core#>
Prefix: terms: <http://purl.org/dc/terms/>

Prefix: xml: <http://www.w3.org/XML/1998/namespace>
Prefix: xsd: <http://www.w3.org/2001/XMLSchema#>

Ontology: <http://www.dyknow.eu/ontology/dyknow>
<http://www.dyknow.eu/ontology/dyknow/201707>

Annotations:
terms:creator "Daniel de Leng"~™~
terms:modified "2017-07-27",

rdfs:comment "The DyKnow ontology can be used as a common representation

xsd:string,

of stream reasoning framework configurations.'"Qen,

rdfs:label "DyKnow Ontology"@en

AnnotationProperty: rdfs:comment

AnnotationProperty: rdfs:label

AnnotationProperty: terms:creator

AnnotationProperty: terms:modified

197

http://www.dyknow.eu/ontology/

DyKnow ontology in Manchester syntax

32
33
34
35
36
37
38
39
40
a1
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

Datatype:

Datatype:

Datatype:

Datatype:

Datatype:

Datatype:

rdf:

xsd:

xsd:

PlainLiteral

Name

:anyURI

:date

:dateTimeStamp

string

ObjectProperty: dependsOn

SubPropertyChain:

hasSubscription o fromCU

Characteristics:
Transitive

ObjectProperty: fromCU

DisjointWith:
toCU

Characteristics:

Functional

Domain:
Subscription

ObjectProperty: fromPort

Characteristics:

Functional

Domain:
Subscription

Range:

OutPort

ObjectProperty: hasChannel

Characteristics:
Functional

Domain:

Subscription or Target

198

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

Range:
Channel

ObjectProperty: hasCostModel

Characteristics:
Functional

ObjectProperty: hasEnvironment

Range:
Environment
ObjectProperty: hasInPort

Domain:
Transformation

Range:
InPort

InverseOf:
isInPort

ObjectProperty: hasInstance

Domain:
Transformation

InverseOf:
instanceOf
ObjectProperty: hasOutPort

Domain:
Transformation

Range:
OutPort

InverseOf:
isOutPort
ObjectProperty: hasSample

Characteristics:
Functional

Domain:
SampleSequence

Range:
Sample

199

A. DyKnow ontology in Manchester syntax
154 ObjectProperty: hasSampleSequence
155
156 Characteristics:

157 Functional

158

159 Domain:

160 Stream

161

162 Range:

163 SampleSequence
164

165

166 0ObjectProperty: hasState
167

168 Characteristics:
169 Functional

170

171 Domain:

172 StateSequence
173

174 Range:

175 State

176

177

178 0ObjectProperty: hasStateSequence
179

180 Characteristics:
181 Functional

182

183 Range:

184 StateSequence
185

186

187 0ObjectProperty: hasSubscription
188

189 Range:

190 Subscription
191

192 InverseOf:

193 toCU

194

195

196 0ObjectProperty: hasTag
197

198 Range:

199 Tag

200

201

202 ObjectProperty: hasTagDescription
203

204 Characteristics:
205 Functional

206

207 Range:

208 Tag

209

210

211 ObjectProperty: instanceOf
212

213 Range:

214 Transformation

200

215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

InverseOf:
hasInstance
ObjectProperty: isInPort

Domain:
InPort

Range:
Transformation

InverseOf:
hasInPort
ObjectProperty: isOutPort

Domain:
OutPort

Range:
Transformation

InverseOf:
hasOutPort
ObjectProperty: nextSample
Characteristics:
Functional,

Irreflexive

Domain:
Sample

Range:

Sample
ObjectProperty: nextState
Characteristics:

Functional,

Irreflexive

Domain:
State

Range:
State
ObjectProperty: toCU

DisjointWith:
fromCU

Characteristics:

201

DyKnow ontology in Manchester syntax

276
277
278
279
280
281
282
283
284

286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303

305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336

Functional

Domain:
Subscription

InverseOf:
hasSubscription
ObjectProperty: toPort

Characteristics:
Functional

Domain:
Subscription

Range:
InPort
DataProperty: hasChannelName

Characteristics:
Functional

Domain:
Channel

SubPropertyOf:
hasName
DataProperty: hasLabel

Characteristics:
Functional

Range:
xsd:Name
DataProperty: hasName
Characteristics:
Functional
DataProperty: hasPortName
SubPropertyOf:
hasName
DataProperty: hasTimeStamp

Characteristics:
Functional

Range:
xsd:dateTimeStamp

202

337
338
339
340
341
342
343
344
345
346
347
348

349
350
351
352
353
354
355
356

357
358
359
360
361
362
363
364
365
366

367
368
369
370
371
372
373

374
375
376
377
378
379
380
381
382
383

384
385

DataProperty: hasValue

Characteristics:
Functional

Class: ChangeSet

Annotations:
rdfs:comment "A change set describes changes made to an environment.
Formally the change set at least describes the additions and
removals of computation units, transformations, and targets."
Qen,
rdfs:label "Change Set'"@en

Class: Channel

Annotations:
rdfs:label "Channel'"Qen,
rdfs:comment "Channels are named transportation mechanisms for data.
"Qen

SubClassOf :
hasChannelName some xsd:string

Class: CostModel

Annotations:
rdfs:label "Cost Model"@en,
rdfs:comment "A model describing how to calculate the cost of an
update."@en

Class: Environment

Annotations:

rdfs:label "Environment'"Qen,

rdfs:comment "An environment is composed of a set of computation
units (sometimes called a computation graph), a set of
transformations, a set of targets, and a similarity relation
between tags. The environment can be changed by applying a
change set to it. This application is called an update.
Environments describe the state of a stream reasoning framework
."@en

SubClassOf:
hasName some xsd:Name
Class: InPort
Annotations:
rdfs:label "Input Port'"@en,
rdfs:comment "A port for receiving streaming data over a channel."

Qen

SubClassOf:

203

A. DyKnow ontology in Manchester syntax

386 Port

387

388 DisjointWith:

389 OutPort

390

391

392 Class: LabourCostModel

393

394 Annotations:

395 rdfs:label "Labour Cost Model"Qen,

396 rdfs:comment "A cost model for calculating the labour cost."Qen,

397 rdfs:label "Labor Cost Model"@en,

398 rdfs:comment "A cost model for calculating the labor cost."@en

399

400 SubClassOf:

401 CostModel

402

403

404 Class: OutPort

405

406 Annotations:

407 rdfs:label "Output Port"@Qen,

408 rdfs:comment "A port for transmitting streaming data over a channel.
"Qen

409

410 SubClassOf:

411 Port

412

413 DisjointWith:

414 InPort

415

416

417 Class: Parameter

418

419 Annotations:

420 rdfs:label "Parameter'"@en

421

422 SubClassOf:

423 hasLabel some xsd:Name,

424 hasValue some xsd:anyURI

425

426

427 Class: Port

428

429 Annotations:

430 rdfs:comment "The connection between a channel and a computation
unit is realised in terms of ports. Ports are named entities."
Qen,

431 rdfs:label "Port'"@en

432

433 SubClassO0f:

434 hasPortName some xsd:Name

435

436

437 Class: Sample

438

439 Annotations:

440 rdfs:label "Sample'Qen,

441 rdfs:comment "An atomic, time-stamped data point."@en

442

443 SubClassO0f:

204

444
445
446
447
448
449
450
451
452

454
455
456
457
458
459
460
461

462
463
464
465
466
467
468
469
470
471
472

473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502

hasLabel some xsd:Name,
hasTimeStamp some xsd:dateTimeStamp,
hasValue some xsd:anyURI

Class: SampleSequence

Annotations:
rdfs:label "Sample Sequence'"@en

EquivalentTo:
hasSample some Sample

Class: Sink

Annotations:

rdfs:comment "A transformation that does not produce any resulting

stream is called a sink."Qen,
rdfs:label "Sink'"Qen

SubClassOf:
Transformation,
hasOutPort exactly O OutPort

Class: Source

Annotations:

rdfs:comment "A transformation that does not take any incoming

stream is called a source."@Qen,
rdfs:label "Source'"@en

SubClassOf:
Transformation,
hasInPort exactly O InPort

Class: State

Annotations:

rdfs:comment "A state is a mapping from a variable to a value."Qen,

rdfs:label "State'@en
SubClassOf:

hasLabel some xsd:Name,

hasValue some xsd:anyURI

Class: StateSequence

Annotations:
rdfs:label "State Sequence'"@en

EquivalentTo:
hasState some State
Class: StateStream

Annotations:

A. DyKnow ontology in Manchester syntax

503 rdfs:label "State Stream"@en,

504 rdfs:comment "A stream composed of states is called a state stream.
State streams thus describe mappings from sets of variables to
sets of values for specific time-points. State streams can be
used to for example evaluate logical formulas.'"Qen

505

506 SubClassOf:

507 Stream

508

509

510 Class: Stream

511

512 Annotations:

513 rdfs:comment "A sequence of samples representing a flow of data is
called a stream."Qen,

514 rdfs:label "Stream'@Qen

515

516 EquivalentTo:

517 hasSampleSequence some SampleSequence

518

519

520 Class: Subscription

521

522 Annotations:

523 rdfs:comment "A subscription is a connection from a transmitting
port to a receiving port over a channel."@en,

524 rdfs:label "Subscription"@en

525

526 SubClassOf:

527 fromPort some Port,

528 hasChannel some Channel,

529 toPort some Port

530

531

532 Class: Tag

533

534 Annotations:

535 rdfs:label "Tag'Qen,

536 rdfs:comment "A tag is a descriptor with which concepts can be
annotated. A concrete application can extend the Tag concept to
describe an annotation language."@en

537

538 SubClassOf:

539 hasTagDescription some owl:Thing

540

541

542 Class: Target

543

544 Annotations:

545 rdfs:comment "Targets describe the semantics of a desired
information stream by using tags. Every target specifies a
channel over which this desired information should be sent.
Targets can be used to obtain adaptive semantic subscriptions
which can be maintained by a DyKnow stream reasoning manager."
Qen,

546 rdfs:label "Target'@en

547

548 SubClassOf:

549 hasChannel some Channel,

550 hasTag some Tag,

551 hasName some xsd:Name

206

552
553
554
555
556
557

558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575

Class: Transformation

Annotations:
rdfs:comment "Transformations describe stream-generating functions
over streams that can be instantiated as computation unit. The
act of instantiating a transformation results in cost being
acrued. Transformations are identifiable by a unique name."@Qen,
rdfs:label "Transformation'"@en

SubClassOf:
hasCostModel some LabourCostModel,
hasName some xsd:Name

Class: UpkeepCostModel

Annotations:
rdfs:comment "A cost model for calculating the upkeep cost."Qen,
rdfs:label "Upkeep Cost Model'"@en

SubClassOf:

CostModel

Class: owl:Thing

207

Department of Computer and Information Science

Link&pings universitet

Dissertations

Linkoping Studies in Science and Technology
Linkoping Studies in Arts and Science
Linkdping Studies in Statistics
Linkoping Studies in Information Science

Linkdping Studies in Science and Technology

No 14

No 17

No 18

No 22

No 33

No 51

No 54

No 55

No 58

No 69

No 71

No 77

No 94

No 97

No 109

No 111

No 155

No 165

No 170

No 174

Anders Haraldsson: A Program Manipulation
System Based on Partial Evaluation, 1977, ISBN 91-
7372-144-1.

Bengt Magnhagen: Probability Based Verification of
Time Margins in Digital Designs, 1977, ISBN 91-7372-
157-3.

Mats Cedwall: Semantisk analys av process-
beskrivningar i naturligt sprak, 1977, ISBN 91- 7372-
168-9.

Jaak Urmi: A Machine Independent LISP Compiler
and its Implications for Ideal Hardware, 1978, ISBN
91-7372-188-3.

Tore Risch: Compilation of Multiple File Queries in
a Meta-Database System, 1978, ISBN 91- 7372-232-4.
Erland Jungert: Synthesizing Database Structures
from a User Oriented Data Model, 1980, ISBN 91-
7372-387-8.

Sture Higglund: Contributions to the Development
of Methods and Tools for Interactive Design of
Applications Software, 1980, ISBN 91-7372-404-1.

Pir Emanuelson: Performance Enhancement in a
Well-Structured Pattern Matcher through Partial
Evaluation, 1980, ISBN 91-7372-403-3.

Bengt Johnsson, Bertil Andersson: The Human-
Computer Interface in Commercial Systems, 1981,
ISBN 91-7372-414-9.

H. Jan Komorowski: A Specification of an Abstract
Prolog Machine and its Application to Partial
Evaluation, 1981, ISBN 91-7372-479-3.

René Reboh: Knowledge Engineering Techniques
and Tools for Expert Systems, 1981, ISBN 91-7372-
489-0.

Osten Oskarsson: Mechanisms of Modifiability in
large Software Systems, 1982, ISBN 91- 7372-527-7.
Hans Lunell: Code Generator Writing Systems, 1983,
ISBN 91-7372-652-4.

Andrzej Lingas: Advances in Minimum Weight
Triangulation, 1983, ISBN 91-7372-660-5.

Peter Fritzson: Towards a Distributed Programming
Environment based on Incremental Compilation,
1984, ISBN 91-7372-801-2.

Erik Tengvald: The Design of Expert Planning
Systems. An Experimental Operations Planning
System for Turning, 1984, ISBN 91-7372- 805-5.
Christos Levcopoulos: Heuristics for Minimum
Decompositions of Polygons, 1987, ISBN 91-7870-
133-3.

James W. Goodwin: A Theory and System for Non-
Monotonic Reasoning, 1987, ISBN 91-7870-183-X.
Zebo Peng: A Formal Methodology for Automated
Synthesis of VLSI Systems, 1987, ISBN 91-7870-225-9.
Johan Fagerstrom: A Paradigm and System for
Design of Distributed Systems, 1988, ISBN 91-7870-
301-8.

No 192

No 213

No 214

No 221

No 239

No 244

No 252

No 258

No 260

No 264

No 265

No 270

No 273

No 276

No 277

No 281

No 292

No 297

No 302

No 312

No 338

Dimiter Driankov: Towards a Many Valued Logic of
Quantified Belief, 1988, ISBN 91-7870-374-3.

Lin Padgham: Non-Monotonic Inheritance for an
Object Oriented Knowledge Base, 1989, ISBN 91-
7870-485-5.

Tony Larsson: A Formal Hardware Description and
Verification Method, 1989, ISBN 91-7870-517-7.
Michael Reinfrank: Fundamentals and Logical
Foundations of Truth Maintenance, 1989, ISBN 91-
7870-546-0.

Jonas Lowgren: Knowledge-Based Design Support
and Discourse Management in User Interface
Management Systems, 1991, ISBN 91-7870-720-X.

Henrik Eriksson: Meta-Tool Support for Knowledge
Acquisition, 1991, ISBN 91-7870-746-3.

Peter Eklund: An Epistemic Approach to Interactive
Design in Multiple Inheritance Hierarchies, 1991,
ISBN 91-7870-784-6.

Patrick Doherty: NML3 - A Non-Monotonic
Formalism with Explicit Defaults, 1991, ISBN 91-
7870-816-8.

Nahid Shahmehri: Generalized
Debugging, 1991, ISBN 91-7870-828-1.

Nils Dahlbick: Representation of Discourse-
Cognitive and Computational Aspects, 1992, ISBN
91-7870-850-8.

Ulf Nilsson: Abstract Interpretations and Abstract
Machines: Contributions to a Methodology for the
Implementation of Logic Programs, 1992, ISBN 91-
7870-858-3.

Ralph Roénnquist: Theory and Practice of Tense-
bound Object References, 1992, ISBN 91-7870-873-7.
Bjorn Fjellborg: Pipeline Extraction for VLSI Data
Path Synthesis, 1992, ISBN 91-7870-880-X.

Staffan Bonnier: A Formal Basis for Horn Clause
Logic with External Polymorphic Functions, 1992,
ISBN 91-7870-896-6.

Kristian Sandahl: Developing Knowledge Manage-
ment Systems with an Active Expert Methodology,
1992, ISBN 91-7870-897-4.

Christer Backstrom: Computational Complexity of
Reasoning about Plans, 1992, ISBN 91-7870-979-2.
Mats Wirén: Studies in Incremental Natural
Language Analysis, 1992, ISBN 91-7871-027-8.
Mariam Kamkar: Interprocedural Dynamic Slicing
with Applications to Debugging and Testing, 1993,
ISBN 91-7871-065-0.

Tingting Zhang: A Study in Diagnosis Using
Classification and Defaults, 1993, ISBN 91-7871-078-
2.

Arne Jonsson: Dialogue Management for Natural
Language Interfaces - An Empirical Approach, 1993,
ISBN 91-7871-110-X.

Simin Nadjm-Tehrani: Reactive Systems in Physical
Environments: Compositional Modelling and Frame-
work for Verification, 1994, ISBN 91-7871-237-8.

Algorithmic

No 371

No 375

No 383

No 396

No 413

No 414

No 416

No 429

No 431

No 437

No 439

No 448

No 452

No 459

No 461

No 462

No 475

No 480

No 485

No 494

No 495

No 498

No 502

Bengt Savén: Business Models for Decision Support
and Learning. A Study of Discrete-Event
Manufacturing Simulation at Asea/ABB 1968-1993,
1995, ISBN 91-7871-494-X.

Ulf Soéderman: Conceptual Modelling of Mode
Switching Physical Systems, 1995, ISBN 91-7871-516-
4.

Andreas Kagedal: Exploiting Groundness in Logic
Programs, 1995, ISBN 91-7871-538-5.

George Fodor: Ontological Control, Description,
Identification and Recovery from Problematic
Control Situations, 1995, ISBN 91-7871-603-9.

Mikael Pettersson: Compiling Natural Semantics,
1995, ISBN 91-7871-641-1.

Xinli Gu: RT Level Testability Improvement by
Testability Analysis and Transformations, 1996, ISBN
91-7871-654-3.
Hua Shu: Distributed Default Reasoning, 1996, ISBN
91-7871-665-9.

Jaime Villegas: Simulation Supported Industrial
Training from an Organisational Learning
Perspective - Development and Evaluation of the
SSIT Method, 1996, ISBN 91-7871-700-0.

Peter Jonsson: Studies in Action Planning:
Algorithms and Complexity, 1996, ISBN 91-7871-704-
3.

Johan Boye: Directional Types in
Programming, 1996, ISBN 91-7871-725-6.
Cecilia Sjoberg: Activities, Voices and Arenas:
Participatory Design in Practice, 1996, ISBN 91-7871-
728-0.

Patrick Lambrix: Part-Whole Reasoning in
Description Logics, 1996, ISBN 91-7871-820-1.

Kjell Orsborn: On Extensible and Object-Relational
Database Technology for Finite Element Analysis
Applications, 1996, ISBN 91-7871-827-9.

Olof Johansson: Development Environments for
Complex Product Models, 1996, ISBN 91-7871-855-4.
Lena Strombick: User-Defined Constructions in
Unification-Based Formalisms, 1997, ISBN 91-7871-
857-0.

Lars Degerstedt: Tabulation-based Logic Program-
ming: A Multi-Level View of Query Answering,
1996, ISBN 91-7871-858-9.

Fredrik Nilsson: Strategi och ekonomisk styrning -
En studie av hur ekonomiska styrsystem utformas
och anvinds efter foretagsforvirv, 1997, ISBN 91-
7871-914-3.

Mikael Lindvall: An Empirical Study of Require-
ments-Driven Impact Analysis in Object-Oriented
Software Evolution, 1997, ISBN 91-7871-927-5.

Goran Forslund: Opinion-Based Systems: The Coop-
erative Perspective on Knowledge-Based Decision
Support, 1997, ISBN 91-7871-938-0.

Martin Skold: Active Database Management
Systems for Monitoring and Control, 1997, ISBN 91-
7219-002-7.

Hans Olsén: Automatic Verification of Petri Nets in
a CLP framework, 1997, ISBN 91-7219-011-6.

Thomas Drakengren: Algorithms and Complexity
for Temporal and Spatial Formalisms, 1997, ISBN 91-
7219-019-1.

Jakob Axelsson: Analysis and Synthesis of Heteroge-
neous Real-Time Systems, 1997, ISBN 91-7219-035-3.

Logic

No 503

No 512

No 520

No 522

No 526

No 530

No 5556

No 561

No 563

No 567

No 582

No 589

No 592

No 593

No 594

No 595

No 596

No 597

No 598

No 607

No 611

No 613

Johan Ringstrom: Compiler Generation for Data-
Parallel Programming Languages from Two-Level
Semantics Specifications, 1997, ISBN 91-7219-045-0.

Anna Moberg: Nirhet och distans - Studier av kom-
munikationsmonster i satellitkontor och flexibla
kontor, 1997, ISBN 91-7219-119-8.

Mikael Ronstrom: Design and Modelling of a
Parallel Data Server for Telecom Applications, 1998,
ISBN 91-7219-169-4.

Niclas Ohlsson: Towards Effective Fault Prevention
- An Empirical Study in Software Engineering, 1998,
ISBN 91-7219-176-7.

Joachim Karlsson: A Systematic Approach for
Prioritizing Software Requirements, 1998, ISBN 91-
7219-184-8.

Henrik Nilsson: Declarative Debugging for Lazy
Functional Languages, 1998, ISBN 91-7219-197-X.
Jonas Hallberg: Timing Issues in High-Level Synthe-
sis, 1998, ISBN 91-7219-369-7.

Ling Lin: Management of 1-D Sequence Data - From
Discrete to Continuous, 1999, ISBN 91-7219-402-2.

Eva L Ragnemalm: Student Modelling based on Col-
laborative Dialogue with a Learning Companion,
1999, ISBN 91-7219-412-X.

Jorgen Lindstrom: Does Distance matter? On geo-
graphical dispersion in organisations, 1999, ISBN 91-
7219-439-1.

Vanja Josifovski: Design, Implementation and
Evaluation of a Distributed Mediator System for
Data Integration, 1999, ISBN 91-7219-482-0.

Rita Kovordanyi: Modeling and Simulating
Inhibitory ~ Mechanisms in Mental Image
Reinterpretation - Towards Cooperative Human-
Computer Creativity, 1999, ISBN 91-7219-506-1.

Mikael Ericsson: Supporting the Use of Design
Knowledge - An Assessment of Commenting
Agents, 1999, ISBN 91-7219-532-0.

Lars Karlsson: Actions, Interactions and Narratives,
1999, ISBN 91-7219-534-7.

C. G. Mikael Johansson: Social and Organizational
Aspects of Requirements Engineering Methods - A
practice-oriented approach, 1999, ISBN 91-7219-541-
X.

Jorgen Hansson: Value-Driven Multi-Class Overload
Management in Real-Time Database Systems, 1999,
ISBN 91-7219-542-8.

Niklas Hallberg: Incorporating User Values in the
Design of Information Systems and Services in the
Public Sector: A Methods Approach, 1999, ISBN 91-
7219-543-6.

Vivian Vimarlund: An Economic Perspective on the
Analysis of Impacts of Information Technology:
From Case Studies in Health-Care towards General
Models and Theories, 1999, ISBN 91-7219-544-4.
Johan Jenvald: Methods and Tools in Computer-
Supported Taskforce Training, 1999, ISBN 91-7219-
547-9.

Magnus Merkel: Understanding and enhancing
translation by parallel text processing, 1999, ISBN 91-
7219-614-9.

Silvia Coradeschi: Anchoring symbols to sensory
data, 1999, ISBN 91-7219-623-8.

Man Lin: Analysis and Synthesis of Reactive
Systems: A Generic Layered Architecture
Perspective, 1999, ISBN 91-7219-630-0.

No 618

No 627

No 637

No 639

No 660

No 688

No 689

No 720

No 724

No 725

No 726

No 732

No 745

No 746

No 757

No 747

No 749

No 765

No 771

No 772

No 758

No 774

No 779

Jimmy Tjdder: Systemimplementering i praktiken -
En studie av logiker i fyra projekt, 1999, ISBN 91-
7219-657-2.

Vadim Engelson: Tools for Design, Interactive
Simulation, and Visualization of Object-Oriented
Models in Scientific Computing, 2000, ISBN 91-7219-
709-9.

Esa Falkenroth: Database Technology for Control
and Simulation, 2000, ISBN 91-7219-766-8.

Per-Arne Persson: Bringing Power and Knowledge
Together: Information Systems Design for Autonomy
and Control in Command Work, 2000, ISBN 91-7219-
796-X.

Erik Larsson: An Integrated System-Level Design for
Testability Methodology, 2000, ISBN 91-7219-890-7.
Marcus Bjidreland: =~ Model-based
Monitoring, 2001, ISBN 91-7373-016-5.
Joakim Gustafsson: Extending Temporal Action
Logic, 2001, ISBN 91-7373-017-3.

Carl-Johan Petri: Organizational Information Provi-
sion - Managing Mandatory and Discretionary Use
of Information Technology, 2001, ISBN 91-7373-126-
9.

Paul Scerri: Designing Agents for Systems with Ad-
justable Autonomy, 2001, ISBN 91-7373-207-9.

Tim Heyer: Semantic Inspection of Software
Artifacts: From Theory to Practice, 2001, ISBN 91-
7373-208-7.

Pir Carlshamre: A Usability Perspective on Require-
ments Engineering - From Methodology to Product
Development, 2001, ISBN 91-7373-212-5.

Juha Takkinen: From Information Management to
Task Management in Electronic Mail, 2002, ISBN 91-
7373-258-3.

Johan Aberg: Live Help Systems: An Approach to
Intelligent Help for Web Information Systems, 2002,
ISBN 91-7373-311-3.

Rego Granlund: Monitoring Distributed Teamwork
Training, 2002, ISBN 91-7373-312-1.

Henrik André-Jonsson: Indexing Strategies for Time
Series Data, 2002, ISBN 917373-346-6.

Anneli Hagdahl: Development of IT-supported
Interorganisational Collaboration - A Case Study in
the Swedish Public Sector, 2002, ISBN 91-7373-314-8.
Sofie Pilemalm: Information Technology for Non-
Profit Organisations - Extended Participatory Design
of an Information System for Trade Union Shop
Stewards, 2002, ISBN 91-7373-318-0.

Stefan Holmlid: Adapting users: Towards a theory
of use quality, 2002, ISBN 91-7373-397-0.

Magnus Morin: Multimedia Representations of Dis-
tributed Tactical Operations, 2002, ISBN 91-7373-421-
7.

Pawel Pietrzak: A Type-Based Framework for Locat-
ing Errors in Constraint Logic Programs, 2002, ISBN
91-7373-422-5.

Erik Berglund: Library Communication Among Pro-
grammers Worldwide, 2002, ISBN 91-7373-349-0.
Choong-ho Yi: Modelling Object-Oriented Dynamic
Systems Using a Logic-Based Framework, 2002, ISBN
91-7373-424-1.

Mathias Broxvall: A Study in the Computational
Complexity of Temporal Reasoning, 2002, ISBN 91-
7373-440-3.

Execution

No 793

No 785

No 800

No 808

No 821

No 823

No 828

No 833

No 852

No 867

No 872

No 869

No 870

No 874

No 873

No 876

No 883

No 882

No 887

No 889

No 893

No 910

Asmus Pandikow: A Generic Principle for Enabling
Interoperability of Structured and Object-Oriented
Analysis and Design Tools, 2002, ISBN 91-7373-479-9.

Lars Hult: Publika Informationstjénster. En studie av
den Internetbaserade encyklopedins bruksegenska-
per, 2003, ISBN 91-7373-461-6.

Lars Taxén: A Framework for the Coordination of
Complex Systems” Development, 2003, ISBN 91-
7373-604-X.

Klas Gire: Tre perspektiv pa forvantningar och
forandringar i samband med inférande av
informationssystem, 2003, ISBN 91-7373-618-X.
Mikael Kindborg: Concurrent Comics -
programming of social agents by children, 2003,
ISBN 91-7373-651-1.

Christina Olvingson: On Development of
Information Systems with GIS Functionality in
Public Health Informatics: A Requirements
Engineering Approach, 2003, ISBN 91-7373-656-2.
Tobias Ritzau: Memory Efficient Hard Real-Time
Garbage Collection, 2003, ISBN 91-7373-666-X.

Paul Pop: Analysis and Synthesis of
Communication-Intensive Heterogeneous Real-Time
Systems, 2003, ISBN 91-7373-683-X.

Johan Moe: Observing the Dynamic Behaviour of
Large Distributed Systems to Improve Development
and Testing - An Empirical Study in Software
Engineering, 2003, ISBN 91-7373-779-8.

Erik Herzog: An Approach to Systems Engineering
Tool Data Representation and Exchange, 2004, ISBN
91-7373-929-4.

Aseel Berglund: Augmenting the Remote Control:
Studies in Complex Information Navigation for
Digital TV, 2004, ISBN 91-7373-940-5.

Jo Skamedal: Telecommuting’s Implications on
Travel and Travel Patterns, 2004, ISBN 91-7373-935-9.
Linda Askenis: The Roles of IT - Studies of
Organising when Implementing and Using
Enterprise Systems, 2004, ISBN 91-7373-936-7.
Annika Flycht-Eriksson: Design and Use of Ontolo-
gies in Information-Providing Dialogue Systems,
2004, ISBN 91-7373-947-2.

Peter Bunus: Debugging Techniques for Equation-
Based Languages, 2004, ISBN 91-7373-941-3.

Jonas Mellin: Resource-Predictable and Efficient
Monitoring of Events, 2004, ISBN 91-7373-956-1.
Magnus Bang: Computing at the Speed of Paper:
Ubiquitous Computing Environments for Healthcare
Professionals, 2004, ISBN 91-7373-971-5.

Robert Eklund: Disfluency in Swedish human-
human and human-machine travel booking di-
alogues, 2004, ISBN 91-7373-966-9.

Anders Lindstrom: English and other Foreign
Linguistic Elements in Spoken Swedish. Studies of
Productive Processes and their Modelling using
Finite-State Tools, 2004, ISBN 91-7373-981-2.

Zhiping Wang: Capacity-Constrained Production-in-
ventory systems - Modelling and Analysis in both a
traditional and an e-business context, 2004, ISBN 91-
85295-08-6.

Pernilla Qvarfordt: Eyes on Multimodal Interaction,
2004, ISBN 91-85295-30-2.

Magnus Kald: In the Borderland between Strategy
and Management Control - Theoretical Framework
and Empirical Evidence, 2004, ISBN 91-85295-82-5.

No 918

No 900

No 920

No 929

No 933

No 937

No 938

No 945

No 946

No 947

No 963

No 972

No 974

No 979

No 983

No 986

No 1004

No 1005

No 1008

No 1009

No 1013

No 1016

No 1017

Jonas Lundberg: Shaping Electronic News: Genre
Perspectives on Interaction Design, 2004, ISBN 91-
85297-14-3.

Mattias Arvola: Shades of use: The dynamics of
interaction design for sociable use, 2004, ISBN 91-
85295-42-6.

Luis Alejandro Cortés: Verification and Scheduling
Techniques for Real-Time Embedded Systems, 2004,
ISBN 91-85297-21-6.

Diana Szentivanyi: Performance Studies of Fault-
Tolerant Middleware, 2005, ISBN 91-85297-58-5.
Mikael Ciker: Management Accounting as
Constructing and Opposing Customer Focus: Three
Case Studies on Management Accounting and
Customer Relations, 2005, ISBN 91-85297-64-X.

Jonas Kvarnstrom: TALplanner and Other
Extensions to Temporal Action Logic, 2005, ISBN 91-
85297-75-5.

Bourhane Kadmiry: Fuzzy Gain-Scheduled Visual
Servoing for Unmanned Helicopter, 2005, ISBN 91-
85297-76-3.

Gert Jervan: Hybrid Built-In Self-Test and Test
Generation Techniques for Digital Systems, 2005,
ISBN 91-85297-97-6.

Anders Arpteg: Intelligent Semi-Structured Informa-
tion Extraction, 2005, ISBN 91-85297-98-4.

Ola Angelsmark: Constructing Algorithms for Con-
straint Satisfaction and Related Problems - Methods
and Applications, 2005, ISBN 91-85297-99-2.

Calin Curescu: Utility-based Optimisation of
Resource Allocation for Wireless Networks, 2005,
ISBN 91-85457-07-8.

Bjorn Johansson: Joint Control
Situations, 2005, ISBN 91-85457-31-0.
Dan Lawesson: An Approach to Diagnosability
Analysis for Interacting Finite State Systems, 2005,
ISBN 91-85457-39-6.

Claudiu Duma: Security and Trust Mechanisms for
Groups in Distributed Services, 2005, ISBN 91-85457-
54-X.

Sorin Manolache: Analysis and Optimisation of
Real-Time Systems with Stochastic Behaviour, 2005,
ISBN 91-85457-60-4.

Yuxiao Zhao: Standards-Based = Application
Integration for Business-to-Business
Communications, 2005, ISBN 91-85457-66-3.

Patrik Haslum: Admissible Heuristics for
Automated Planning, 2006, ISBN 91-85497-28-2.
Aleksandra Tesanovic: Developing Reusable and
Reconfigurable Real-Time Software using Aspects
and Components, 2006, ISBN 91-85497-29-0.

David Dinka: Role, Identity and Work: Extending
the design and development agenda, 2006, ISBN 91-
85497-42-8.

Takov Nakhimovski: Contributions to the Modeling
and Simulation of Mechanical Systems with Detailed
Contact Analysis, 2006, ISBN 91-85497-43-X.
Wilhelm Dahllof: Exact Algorithms for Exact
Satisfiability Problems, 2006, ISBN 91-85523-97-6.
Levon Saldamli: PDEModelica - A High-Level Lan-
guage for Modeling with Partial Differential Equa-
tions, 2006, ISBN 91-85523-84-4.

Daniel Karlsson: Verification of Component-based
Embedded System Designs, 2006, ISBN 91-85523-79-8

in Dynamic

No 1018

No 1019

No 1021

No 1022

No 1030

No 1034

No 1035

No 1045

No 1051

No 1054

No 1061

No 1073

No 1075

No 1079

No 1083

No 1086

No 1089

No 1091

No 1106

No 1110

No 1112

No 1113

No 1120

Ioan Chisalita: Communication and Networking
Techniques for Traffic Safety Systems, 2006, ISBN 91-
85523-77-1.

Tarja Susi: The Puzzle of Social Activity - The
Significance of Tools in Cognition and Cooperation,
2006, ISBN 91-85523-71-2.

Andrzej Bednarski: Integrated Optimal Code Gener-
ation for Digital Signal Processors, 2006, ISBN 91-
85523-69-0.

Peter Aronsson: Automatic Parallelization of Equa-
tion-Based Simulation Programs, 2006, ISBN 91-
85523-68-2.

Robert Nilsson: A Mutation-based Framework for
Automated Testing of Timeliness, 2006, ISBN 91-
85523-35-6.

Jon Edvardsson: Techniques for Automatic
Generation of Tests from Programs and
Specifications, 2006, ISBN 91-85523-31-3.

Vaida Jakoniene: Integration of Biological Data,
2006, ISBN 91-85523-28-3.

Genevieve Gorrell: Generalized Hebbian
Algorithms for Dimensionality Reduction in Natural
Language Processing, 2006, ISBN 91-85643-88-2.
Yu-Hsing Huang: Having a New Pair of Glasses -
Applying Systemic Accident Models on Road Safety,
2006, ISBN 91-85643-64-5.

Asa Hedenskog: Perceive those things which cannot
be seen - A Cognitive Systems Engineering
perspective on requirements management, 2006,
ISBN 91-85643-57-2.

Cécile Aberg: An Evaluation Platform for Semantic
Web Technology, 2007, ISBN 91-85643-31-9.

Mats Grindal: Handling Combinatorial Explosion in
Software Testing, 2007, ISBN 978-91-85715-74-9.

Almut Herzog: Usable Security Policies for Runtime
Environments, 2007, ISBN 978-91-85715-65-7.
Magnus Wahlstrom: Algorithms, measures, and
upper bounds for Satisfiability and related problems,
2007, ISBN 978-91-85715-55-8.

Jesper Andersson: Dynamic Software Architectures,
2007, ISBN 978-91-85715-46-6.

Ulf Johansson: Obtaining Accurate and Compre-
hensible Data Mining Models - An Evolutionary
Approach, 2007, ISBN 978-91-85715-34-3.

Traian Pop: Analysis and Optimisation of
Distributed Embedded Systems with Heterogeneous
Scheduling Policies, 2007, ISBN 978-91-85715-27-5.
Gustav Nordh: Complexity Dichotomies for CSP-
related Problems, 2007, ISBN 978-91-85715-20-6.

Per Ola Kristensson: Discrete and Continuous Shape
Writing for Text Entry and Control, 2007, ISBN 978-
91-85831-77-7.

He Tan: Aligning Biomedical Ontologies, 2007, ISBN
978-91-85831-56-2.

Jessica Lindblom: Minding the body - Interacting so-
cially through embodied action, 2007, ISBN 978-91-
85831-48-7.

Pontus Wirnestal: Dialogue Behavior Management
in Conversational Recommender Systems, 2007,
ISBN 978-91-85831-47-0.

Thomas Gustafsson: Management of Real-Time
Data Consistency and Transient Overloads in
Embedded Systems, 2007, ISBN 978-91-85831-33-3.

No 1127

No 1139

No 1143

No 1150

No 1155

No 1156

No 1183

No 1185

No 1187

No 1204

No 1222

No 1238

No 1240

No 1241

No 1244

No 1249

No 1260

No 1262

No 1266

No 1268

No 1274

No 1281

Alexandru Andrei: Energy Efficient and Predictable
Design of Real-time Embedded Systems, 2007, ISBN
978-91-85831-06-7.

Per Wikberg: Eliciting Knowledge from Experts in
Modeling of Complex Systems: Managing Variation
and Interactions, 2007, ISBN 978-91-85895-66-3.
Mehdi Amirijoo: QoS Control of Real-Time Data
Services under Uncertain Workload, 2007, ISBN 978-
91-85895-49-6.

Sanny Syberfeldt: Optimistic Replication with For-
ward Conflict Resolution in Distributed Real-Time
Databases, 2007, ISBN 978-91-85895-27-4.

Beatrice Alenljung: Envisioning a Future Decision
Support System for Requirements Engineering - A
Holistic and Human-centred Perspective, 2008, ISBN
978-91-85895-11-3.

Artur Wilk: Types for XML with Application to
Xcerpt, 2008, ISBN 978-91-85895-08-3.

Adrian Pop: Integrated Model-Driven Development
Environments for Equation-Based Object-Oriented
Languages, 2008, ISBN 978-91-7393-895-2.

Jorgen Skageby: Gifting Technologies -
Ethnographic Studies of End-users and Social Media
Sharing, 2008, ISBN 978-91-7393-892-1.

Imad-Eldin Ali Abugessaisa: Analytical tools and
information-sharing methods supporting road safety
organizations, 2008, ISBN 978-91-7393-887-7.

H. Joe Steinhauer: A Representation Scheme for De-
scription and ~ Reconstruction of Object
Configurations Based on Qualitative Relations, 2008,
ISBN 978-91-7393-823-5.

Anders Larsson: Test Optimization for Core-based
System-on-Chip, 2008, ISBN 978-91-7393-768-9.
Andreas Borg: Processes and Models for Capacity
Requirements in Telecommunication Systems, 2009,
ISBN 978-91-7393-700-9.

Fredrik Heintz: DyKnow: A Stream-Based Know-
ledge Processing Middleware Framework, 2009,
ISBN 978-91-7393-696-5.

Birgitta Lindstrom: Testability of Dynamic Real-
Time Systems, 2009, ISBN 978-91-7393-695-8.

Eva Blomgqvist: Semi-automatic Ontology Construc-
tion based on Patterns, 2009, ISBN 978-91-7393-683-5.

Rogier Woltjer: Functional Modeling of Constraint
Management in Aviation Safety and Command and
Control, 2009, ISBN 978-91-7393-659-0.

Gianpaolo Conte: Vision-Based Localization and
Guidance for Unmanned Aerial Vehicles, 2009, ISBN
978-91-7393-603-3.

AnnMarie Ericsson: Enabling Tool Support for For-
mal Analysis of ECA Rules, 2009, ISBN 978-91-7393-
598-2.

Jiri Trnka: Exploring Tactical Command and
Control: A Role-Playing Simulation Approach, 2009,
ISBN 978-91-7393-571-5.

Bahlol Rahimi: Supporting Collaborative Work
through ICT - How End-users Think of and Adopt
Integrated Health Information Systems, 2009, ISBN
978-91-7393-550-0.

Fredrik Kuivinen: Algorithms and Hardness Results
for Some Valued CSPs, 2009, ISBN 978-91-7393-525-8.
Gunnar Mathiason: Virtual Full Replication for
Scalable Distributed Real-Time Databases, 2009,
ISBN 978-91-7393-503-6.

No 1290

No 1294

No 1306

No 1313

No 1321

No 1333

No 1337

No 1354

No 1359

No 1373

No 1374

No 1375

No 1381

No 1386

No 1419

No 1451

No 1455

No 1465

No 1490

No 1481

No 1496

Viacheslav Izosimov: Scheduling and Optimization
of Fault-Tolerant Distributed Embedded Systems,
2009, ISBN 978-91-7393-482-4.

Johan Thapper: Aspects of a Constraint
Optimisation Problem, 2010, ISBN 978-91-7393-464-0.
Susanna Nilsson: Augmentation in the Wild: User
Centered Development and Evaluation of
Augmented Reality Applications, 2010, ISBN 978-91-
7393-416-9.

Christer Thorn: On the Quality of Feature Models,
2010, ISBN 978-91-7393-394-0.

Zhiyuan He: Temperature Aware and Defect-
Probability Driven Test Scheduling for System-on-
Chip, 2010, ISBN 978-91-7393-378-0.

David Broman: Meta-Languages and Semantics for
Equation-Based Modeling and Simulation, 2010,
ISBN 978-91-7393-335-3.

Alexander Siemers: Contributions to Modelling and
Visualisation of Multibody Systems Simulations with
Detailed Contact Analysis, 2010, ISBN 978-91-7393-
317-9.

Mikael Asplund: Disconnected Discoveries:
Auvailability Studies in Partitioned Networks, 2010,
ISBN 978-91-7393-278-3.

Jana Rambusch: Mind Games Extended:
Understanding Gameplay as Situated Activity, 2010,
ISBN 978-91-7393-252-3.

Sonia Sangari: Head Movement Correlates to Focus
Assignment in Swedish, 2011, ISBN 978-91-7393-154-
0.

Jan-Erik Killhammer: Using False Alarms when
Developing Automotive Active Safety Systems, 2011,
ISBN 978-91-7393-153-3.
Mattias Eriksson: Integrated Code Generation, 2011,
ISBN 978-91-7393-147-2.

Ola Leifler: Affordances and Constraints of
Intelligent Decision Support for Military Command
and Control - Three Case Studies of Support
Systems, 2011, ISBN 978-91-7393-133-5.

Soheil Samii: Quality-Driven Synthesis and
Optimization of Embedded Control Systems, 2011,
ISBN 978-91-7393-102-1.

Erik Kuiper: Geographic Routing in Intermittently-
connected Mobile Ad Hoc Networks: Algorithms
and Performance Models, 2012, ISBN 978-91-7519-
981-8.

Sara Stymne: Text Harmonization Strategies for
Phrase-Based Statistical Machine Translation, 2012,
ISBN 978-91-7519-887-3.

Alberto Montebelli: Modeling the Role of Energy
Management in Embodied Cognition, 2012, ISBN
978-91-7519-882-8.

Mohammad Saifullah: Biologically-Based Interactive
Neural Network Models for Visual Attention and
Object Recognition, 2012, ISBN 978-91-7519-838-5.

Tomas Bengtsson: Testing and Logic Optimization
Techniques for Systems on Chip, 2012, ISBN 978-91-
7519-742-5.

David Byers: Improving Software Security by
Preventing Known Vulnerabilities, 2012, ISBN 978-
91-7519-784-5.

Tommy Firnqvist: Exploiting Structure in CSP-
related Problems, 2013, ISBN 978-91-7519-711-1.

No 1503

No 1506

No 1547

No 1551

No 1559

No 1581

No 1602

No 1652

No 1663

No 1664

No 1666

No 1680

No 1685

No 1691

No 1702

No 1715

No 1729

No 1733

No 1734

No 1746

No 1747

John Wilander: Contributions to Specification,
Implementation, and Execution of Secure Software,
2013, ISBN 978-91-7519-681-7.

Magnus Ingmarsson: Creating and Enabling the
Useful Service Discovery Experience, 2013, ISBN 978-
91-7519-662-6.

Wladimir Schamai: Model-Based Verification of
Dynamic System Behavior against Requirements:
Method, Language, and Tool, 2013, ISBN 978-91-
7519-505-6.

Henrik Svensson: Simulations, 2013, ISBN 978-91-
7519-491-2.

Sergiu Rafiliu: Stability of Adaptive Distributed
Real-Time Systems with Dynamic Resource
Management, 2013, ISBN 978-91-7519-471-4.

Usman Dastgeer: Performance-aware Component
Composition for GPU-based Systems, 2014, ISBN
978-91-7519-383-0.

Cai Li: Reinforcement Learning of Locomotion based
on Central Pattern Generators, 2014, ISBN 978-91-
7519-313-7.

Roland Samlaus: An Integrated Development
Environment with Enhanced Domain-Specific
Interactive Model Validation, 2015, ISBN 978-91-
7519-090-7.

Hannes Uppman: On Some Combinatorial
Optimization Problems: Algorithms and Complexity,
2015, ISBN 978-91-7519-072-3.

Martin Sjoélund: Tools and Methods for Analysis,
Debugging, and Performance Improvement of
Equation-Based Models, 2015, ISBN 978-91-7519-071-6.
Kristian Stavidker: Contributions to Simulation of
Modelica Models on Data-Parallel Multi-Core
Architectures, 2015, ISBN 978-91-7519-068-6.

Adrian Lifa: Hardware/Software Codesign of
Embedded Systems with Reconfigurable and
Heterogeneous Platforms, 2015, ISBN 978-91-7519-040-
2.

Bogdan Tanasa: Timing Analysis of Distributed
Embedded Systems with Stochastic Workload and
Reliability Constraints, 2015, ISBN 978-91-7519-022-8.
Hakan Warnquist: Troubleshooting Trucks -
Automated Planning and Diagnosis, 2015, ISBN 978-
91-7685-993-3.

Nima Aghaee: Thermal Issues in Testing of
Advanced Systems on Chip, 2015, ISBN 978-91-7685-
949-0.

Maria Vasilevskaya: Security in Embedded Systems:
A Model-Based Approach with Risk Metrics, 2015,
ISBN 978-91-7685-917-9.

Ke Jiang: Security-Driven Design of Real-Time
Embedded System, 2016, ISBN 978-91-7685-884-4.

Victor Lagerkvist: Strong Partial Clones and the
Complexity of Constraint Satisfaction Problems:
Limitations and Applications, 2016, ISBN 978-91-7685-
856-1.

Chandan Roy: An Informed System Development
Approach to Tropical Cyclone Track and Intensity
Forecasting, 2016, ISBN 978-91-7685-854-7.

Amir Aminifar: Analysis, Design, and Optimization
of Embedded Control Systems, 2016, ISBN 978-91-
7685-826-4.

Ekhiotz Vergara: Energy Modelling and Fairness for
Efficient Mobile Communication, 2016, ISBN 978-91-
7685-822-6.

No 1748

No 1768

No 1778

No 1798

No 1813

No 1823

No 1831

No 1851

No 1852

No 1854

No 1863

No 1879

No 1887

No 1891

No 1902

No 1903

No 1913

No 1936

No 1964

No 1967

No 1984

No 1993

Dag Sonntag: Chain Graphs - Interpretations,
Expressiveness and Learning Algorithms, 2016, ISBN
978-91-7685-818-9.

Anna Vapen: Web Authentication using Third-
Parties in Untrusted Environments, 2016, ISBN 978-
91-7685-753-3.

Magnus Jandinger: On a Need to Know Basis: A
Conceptual and Methodological Framework for
Modelling and Analysis of Information Demand in
an Enterprise Context, 2016, ISBN 978-91-7685-713-7.
Rahul Hiran: Collaborative Network Security:
Targeting Wide-area Routing and Edge-network
Attacks, 2016, ISBN 978-91-7685-662-8.

Nicolas Melot: Algorithms and Framework for
Energy Efficient Parallel Stream Computing on
Many-Core Architectures, 2016, ISBN 978-91-7685-
623-9.

Amy Rankin: Making Sense of Adaptations:
Resilience in High-Risk Work, 2017, ISBN 978-91-
7685-596-6.

Lisa Malmberg: Building Design Capability in the
Public Sector: Expanding the Horizons of
Development, 2017, ISBN 978-91-7685-585-0.

Marcus Bendtsen: Gated Bayesian Networks, 2017,
ISBN 978-91-7685-525-6.

Zlatan Dragisic: Completion of Ontologies and
Ontology Networks, 2017, ISBN 978-91-7685-522-5.
Meysam Aghighi: Computational Complexity of
some Optimization Problems in Planning, 2017, ISBN
978-91-7685-519-5.

Simon Stihlberg: Methods for Detecting Unsolvable
Planning Instances using Variable Projection, 2017,
ISBN 978-91-7685-498-3.

Karl Hammar: Content Ontology Design Patterns:
Qualities, Methods, and Tools, 2017, ISBN 978-91-
7685-454-9.

Ivan Ukhov: System-Level Analysis and Design
under Uncertainty, 2017, ISBN 978-91-7685-426-6.
Valentina Ivanova: Fostering User Involvement in
Ontology Alignment and Alignment Evaluation,
2017, ISBN 978-91-7685-403-7.

Vengatanathan Krishnamoorthi: Efficient HTTP-
based Adaptive Streaming of Linear and Interactive
Videos, 2018, ISBN 978-91-7685-371-9.

Lu Li: Programming Abstractions and Optimization
Techniques for GPU-based Heterogeneous Systems,
2018, ISBN 978-91-7685-370-2.

Jonas Rybing: Studying Simulations with
Distributed Cognition, 2018, ISBN 978-91-7685-348-1.
Leif Jonsson: Machine Learning-Based Bug
Handling in Large-Scale Software Development,
2018, ISBN 978-91-7685-306-1.

Arian Maghazeh: System-Level Design of GPU-
Based Embedded Systems, 2018, ISBN 978-91-7685-
175-3.

Mahder Gebremedhin: Automatic and Explicit
Parallelization Approaches for Equation Based
Mathematical Modeling and Simulation, 2019, ISBN
978-91-7685-163-0.

Anders Andersson: Distributed Moving Base
Driving Simulators - Technology, Performance, and
Requirements, 2019, ISBN 978-91-7685-090-9.

Ulf Kargén: Scalable Dynamic Analysis of Binary
Code, 2019, ISBN 978-91-7685-049-7.

No2001 Tim Overkamp:

How Service Ideas Are
Implemented: Ways of Framing and Addressing
Service Transformation, 2019, ISBN 978-91-7685-025-1.

No 2006 Daniel de Leng: Robust Stream Reasoning Under

Uncertainty, 2019, ISBN 978-91-7685-013-8.

Linkoping Studies in Arts and Science

No 504

No 586

No 618

No 620

No 677

No 695

Ing-Marie Jonsson: Social and Emotional
Characteristics ~ of Speech-based In-Vehicle
Information Systems: Impact on Attitude and
Driving Behaviour, 2009, ISBN 978-91-7393-478-7.
Fabian Segelstrom: Stakeholder Engagement for
Service Design: How service designers identify and
communicate insights, 2013, ISBN 978-91-7519-554-4.
Johan Blomkvist: Representing Future Situations of
Service: Prototyping in Service Design, 2014, ISBN
978-91-7519-343-4.

Marcus Mast: Human-Robot Interaction for Semi-
Autonomous Assistive Robots, 2014, ISBN 978-91-
7519-319-9.

Peter Berggren: Assessing Shared Strategic
Understanding, 2016, ISBN 978-91-7685-786-1.
Mattias Forsblad: Distributed cognition in home
environments: The prospective memory and
cognitive practices of older adults, 2016, ISBN 978-
91-7685-686-4.

Linkoping Studies in Statistics

No 9

No 10

No 11

No 13

No 14

Davood Shahsavani: Computer Experiments De-
signed to Explore and Approximate Complex Deter-
ministic Models, 2008, ISBN 978-91-7393-976-8.

Karl Wahlin: Roadmap for Trend Detection and As-
sessment of Data Quality, 2008, ISBN 978-91-7393-
792-4.

Oleg Sysoev: Monotonic regression for large
multivariate datasets, 2010, ISBN 978-91-7393-412-1.
Agné Burauskaite-Harju: Characterizing Temporal
Change and Inter-Site Correlations in Daily and Sub-
daily Precipitation Extremes, 2011, ISBN 978-91-7393-
110-6.

Mans Magnusson: Scalable and Efficient
Probabilistic Topic Model Inference for Textual Data,
2018, ISBN 978-91-7685-288-0.

Linkdéping Studies in Information Science

No1

No 2

No 3

No 4

No 5

No 6

No7

Karin Axelsson: Metodisk systemstrukturering- att
skapa samstimmighet mellan informationssystem-
arkitektur och verksamhet, 1998. ISBN 9172-19-296-8.
Stefan Cronholm: Metodverktyg och anvéndbarhet -
en studie av datorstodd metodbaserad
systemutveckling, 1998, ISBN 9172-19-299-2.

Anders Avdic: Anvindare och utvecklare - om
anveckling med kalkylprogram, 1999. ISBN 91-7219-
606-8.

Owen Eriksson: Kommunikationskvalitet hos infor-
mationssystem och affirsprocesser, 2000, ISBN 91-
7219-811-7.

Mikael Lind: Frén system till process - kriterier for
processbestamning vid verksamhetsanalys, 2001,
ISBN 91-7373-067-X.

Ulf Melin: Koordination och informationssystem i
foretag och nitverk, 2002, ISBN 91-7373-278-8.

Pir J. Agerfalk: Information Systems Actability - Un-
derstanding Information Technology as a Tool for

No 10

No 11

No 12

No 13

No 14

Business Action and Communication, 2003, ISBN 91-
7373-628-7.

Ulf Seigerroth: Att forstd och fordndra system-
utvecklingsverksamheter - en taxonomi for
metautveckling, 2003, ISBN 91-7373-736-4.

Karin Hedstrom: Spér av datoriseringens virden -
Effekter av IT i dldreomsorg, 2004, ISBN 91-7373-963-
4.

Ewa Braf: Knowledge Demanded for Action -
Studies on Knowledge Mediation in Organisations,
2004, ISBN 91-85295-47-7.

Fredrik Karlsson: Method Configuration method
and computerized tool support, 2005, ISBN 91-85297-
48-8.

Malin Nordstrom: Styrbar systemférvaltning - Att
organisera systemforvaltningsverksamhet med hjilp
av effektiva forvaltningsobjekt, 2005, ISBN 91-85297-
60-7.

Stefan Holgersson: Yrke: POLIS - Yrkeskunskap,
motivation, IT-system och andra forutsittningar for
polisarbete, 2005, ISBN 91-85299-43-X.

Benneth Christiansson, Marie-Therese
Christiansson: Motet mellan process och komponent
- mot ett ramverk for en verksamhetsnira
kravspecifikation vid anskaffning av komponent-
baserade informationssystem, 2006, ISBN 91-85643-
22-X.

