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Abstract

This thesis considers computer-assisted troubleshooting of heavy vehicles such as
trucks and buses. In this setting, the person that is troubleshooting a vehicle prob-
lem is assisted by a computer that is capable of listing possible faults that can
explain the problem and gives recommendations of which actions to take in order
to solve the problem such that the expected cost of restoring the vehicle is low. To
achieve this, such a system must be capable of solving two problems: the diagno-
sis problem of finding which the possible faults are and the decision problem of
deciding which action should be taken.

The diagnosis problem has been approached using Bayesian network models.
Frameworks have been developed for the case when the vehicle is in the workshop
only and for remote diagnosis when the vehicle is monitored during longer periods
of time.

The decision problem has been solved by creating planners that select actions
such that the expected cost of repairing the vehicle is minimized. New methods,
algorithms, and models have been developed for improving the performance of the
planner.

The theory developed has been evaluated on models of an auxiliary braking
system, a fuel injection system, and an engine temperature control and monitoring
system.

This work has been supported Scania CV AB and FFI – Fordonsstrategisk
Forskning och Innovation.
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Populärvetenskaplig
sammanfattning

Denna avhandling behandlar datorstödd felsökning av tunga fordon så som lastbi-
lar och bussar. Moderna lastbilar och bussar består av flera mekaniska, hydrauliska,
och elektroniska system som samverkar för att ge fordonet önskat beteende. När ett
fel uppstår som gör att någon av fordonets högnivåfunktioner inte fungerar som den
ska kan det vara svårt för en mekaniker att felsöka fordonet utan datorstöd. Ett ex-
empel på ett sådant fel kan vara att fordonet inte uppnår fullt arbetstryck i bränslein-
sprutningssystemet. Detta kan ha många orsaker, t.ex. fel på en bränsleledning,
insprutare, reglerventil, bränsletryckgivare eller bränslepump. För att lösa detta
måste mekanikern utföra flera mätningar och eventuellt provbyta vissa potentiellt
trasiga komponenter. Detta kan bli både tidskrävande och dyrt. Mekanikern kan
då behöva datorstöd för att effektivisera felsökningen.

Idag används redan datorer vid felsökning i verkstad. Dessa används fram-
förallt för att hämta ut information ur fordonets styrenheter så som mätvärden och
eventuella fellarm som utlösts av fordonets interna diagnossystem. Vid den typ av
felsökning som avses i denna avhandling, använder personen som felsöker fordonet
datorn för att få förklaringar på möjliga fel som kan ha orsakat de upplevda prob-
lemen och för att få stöd i vilka felsökande åtgärder som är lämpliga att ta. Datorn
tolkar då samband mellan mätdata, observerade symptom och fel för att beräkna
vilka av dessa fel som troligast förklarar de observationer som gjorts på just det
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fordon som mekanikern har framför sig. Det är möjligt att observationerna kan
förklaras av flera fel. Beslutsstöd ges genom att datorn beräknar kostnadseffek-
tiviteten av de möjliga åtgärder som kan tas. En åtgärd kan t.ex. vara en reparation
eller en mätning med syftet att skilja på möjliga fel.

Problemet med att beräkna vilka fel som är troligast benämns som diagnosprob-
lemet. Problemet med att beräkna vilken eller vilka åtgärder som är kostnadseffek-
tivast benämns som beslutsproblemet. I denna avhandling studeras olika metoder
för att lösa dessa problem i sammanhanget felsökning av lastbilar.

För diagnosproblemet har framförallt metoder baserade på Bayesianska nät-
verks-modeller studerats. Dessa modeller lämpar sig väl när samband mellan fel
och mätbara observationer är osäkra. Detta gäller i synnerhet mekaniska fel som
kan bete sig olika beroende på exakt hur den felande komponenten gått sönder. I
avhandlingen har flera metoder baserade på Bayesianska nätverk utvecklats. Både
för fallet då fordonet befinner sig i en verkstad och då fordonet befinner sig på
väg. Det kan vara väldigt beräkningsintensivt att beräkna sannolikheten för fel
givet observationer för ett fordon som beskrivits med en Bayesiansk nätverksmod-
ell. Genom att begränsa strukturen i nätverken kan man bygga modeller som är
mindre beräkningsintensiva. Metoderna som presenteras i avhandlingen är även
utformade för att underlätta arbetet med att bygga och underhålla modeller för
flera fordon som kan se olika ut. Detta är viktigt för att kunna tillämpa metoderna
inom industrin.

Beslutsproblemet har angripits genom att skapa automatiska planerare som kan
välja ut åtgärder så att den förväntade kostnaden att reparera fordonet minimeras.
Denna typ av metoder är kraftfulla när det krävs en lång serie av åtgärder för att
identifiera och åtgärda felet på fordonet. En nackdel är att de är notoriskt beräkn-
ingsintensiva. Nya metoder och algoritmer har utvecklats för att förbättra befintliga
planeringsmetoder i det avseendet. Algoritmer för automatisk planering använder
ofta sökheuristiker för att värdera olika alternativ. Detta är funktioner som ger
en skattning av den förväntade reparationskostnaden innan en fullständig plan har
beräknats. Ju bättre skattningen är desto effektivare blir planeraren. I avhandlingen
presenteras flera nyutvecklade sökheuristiker som är tillämpbara för automatisk
planering. En annan metod som presenteras i avhandlingen låter den automatiska
planeraren abstrahera bort de åtgärder som behövs för att ta isär eller sätta ihop
komponenter innan en särskild mätning eller reparation kan utföras. Detta gör
planeringen effektivare genom att färre åtgärder behöver beaktas.

Teorin som har utvecklats har utvärderats på modeller av flera system på en
modern lastbil; ett hydrauliskt bromssystem, ett bränsleinsprutningssystem, och ett
system för reglering och övervakning av motortemperaturen. Resultaten är lovande
inför byggandet av framtidens felsökningsstöd.
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Chapter 1

Introduction

In the context of mechanical and electronic systems, troubleshooting is the process
of finding and correcting faults on such a system [131]. The purpose of this the-
sis has been to study and develop methods for computer-assisted troubleshooting
of motor vehicles, in particular trucks and buses. In this setting, the person per-
forming the troubleshooting is assisted by a computer which lists possible faults
and recommends actions that can be taken to proceed in the troubleshooting. To
achieve this, the computer must solve two problems: the diagnosis problem of find-
ing which faults are likely given the current available information, and the plan-
ning problem of deciding which action or actions should be taken next. The person
performing the troubleshooting is typically a workshop mechanic but in other sce-
narios it can be a help-desk operator trying to solve a vehicle problem remotely.
The troubleshooting is successful if the problem-cause is remedied, and it is better
if the cost of performing the troubleshooting is lower.

1.1 Background and Motivation
In recent years heavy duty trucks have gone from being purely mechanical systems
to being complex computerized electromechanical systems [35]. Increased require-
ments on safety and environmental performance have led to the development of
several new subsystems that are coordinated by a distributed system of electronic
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Chapter 1. Introduction

control units (ECU:s) that communicate internally over an in-vehicle network, e.g.
a CAN bus. For example, a modern electronic braking system can perform brake
blending by coordinating the gear box with the exhaust, hydraulic, and conven-
tional braking systems to achieve the requested braking torque [112]. Systems
such as the Exhaust Gas Recycling (EGR) system which directs parts of the ex-
haust gases back into the cylinders to reduce combustion temperature [114, 140]
and the Selective Catalytic Reduction (SCR) system which injects urea into the
exhaust gases to chemically remove nitrous gases (NOx) [117] have been devel-
oped to meet the new higher demands on environmental performance. The system
for Adaptive Cruise Control (ACC) controls engine speed and braking torque to
maintain the vehicle’s distance to other vehicles ahead [113]. When the high-level
functionality of such a complex system fails it can be difficult to identify the root
cause based on the observed symptoms, e.g. excessive wear on the conventional
brakes, high NOx levels in exhaust gases, or the ACC failing to maintain correct
distance. A mechanic needs to understand how the system is implemented to be
able to find the problem-cause. This can be difficult because many of these sys-
tems are new and integrate the functions of many components. E.g. a failure on the
retarder control valve can cause the hydraulic brake to become less efficient thus
increasing the load on the conventional brakes because of incorrect brake blend-
ing. Failures for which the mechanics are unable to locate the causes are a costly
problem for the industry [120]. A tool for computer-assisted troubleshooting ca-
pable of pointing out suspected faults and recommending suitable troubleshooting
actions can help mechanics and other decision makers solve vehicle problems more
cost-efficiently.

Computers are already a frequently used tool in the workshops today. Using
software tools, the workshop mechanic can connect to the On-Board Diagnostic
(OBD) system on the vehicle to read out diagnostic information from the ECU:s,
set parameters, and run diagnostic tests [118, 141] (see Figure 1.1). The OBD sys-
tem monitors the vehicle during operation. When a failure is detected, it is signaled
by generating a Diagnostic Trouble Code (DTC) which identifies particular failure
types using a standardized format [130]. Ideally, each DTC exactly points out
the problem-causing component and thereby removes the need for troubleshoot-
ing. This is true for many types of electrical faults, but for mechanical faults
and high-level function failures, multiple problem-causes may share a common
DTC, e.g. the DTC that is generated when high NOx values are measured. When
troubleshooting, the mechanic will therefore also gather information from other
sources such as the driver, visual inspections, and tests. If the computer-assisted
troubleshooting system should be useful, it too must be able to use information
from these sources.
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Figure 1.1: Software tool used to connect to OBD system.

It is important that the troubleshooting is cost-efficient. The cost of trou-
bleshooting includes the repair cost, which comes from the time spent by the me-
chanic, the spare parts needed, and other resources consumed such as oils and
coolant. Additionally, trucks and buses are typically used in commercial applica-
tions where the total cost of operating the vehicles directly affects the profit for the
vehicle owner. Therefore, when a vehicle problem occurs, it is also important to
consider the downtime of the vehicle which can be much longer than the time spent
in the workshop. A troubleshooting system that can help reduce both the expected
repair cost and the vehicle downtime can yield great economic savings.

For example, the repair and maintenance costs for long-haulage heavy trucks
can stand for as much as 10000 e per year [44]. When an unexpected breakdown
occurs, the economic loss for the owner of a long-haulage truck can be on average
1000 e each time [56]. To safeguard against unexpected losses, the vehicle owner
can buy a repair and maintenance contract from the service provider for a fixed
price [81, 115, 142]. Some of these contracts also compensate the vehicle owner for
downtime and unexpected breakdowns [116, 143]. This gives the service provider
reason to provide a service solution that is cost-efficient with regards to both repair
and downtime costs as this can improve their margins on these contracts.

1.2 Problem Formulation
We will generalize from road vehicles and look upon the object that we trou-
bleshoot as a system consisting of components. Some of these components can
have the status faulty and should be repaired. We do not know with certainty
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Problem
solved?Yes

No

Troubleshooting starts

User performs action

Troubleshooter
recommends action

Troubleshooting problem declared solved

Figure 1.2: The troubleshooting process.

which of the components are faulty, but we can make observations from which we
can draw conclusions about the status of the components. The system is said to be
fault-free when none of the components which constitute the system are faulty. The
troubleshooting problem is to sequentially select and perform one action at a time
until the system is declared fault-free. The troubleshooting problem is successfully
solved if the system actually is fault-free when it is declared to be fault-free.

We want a solution to the troubleshooting problem where a user performs ac-
tions recommended by a system for computer-assisted troubleshooting. We call
this system the troubleshooter. Figure 1.2 shows how action recommendations by
the troubleshooter are interleaved with action executions by the user until the trou-
bleshooting problem can be declared solved. The actions performed by the user
can affect the state of the system and its environment and gain information through
observations. This information is used by the troubleshooter when computing the
next recommendation.

When the system to troubleshoot is a truck or bus, the user can be the mechanic
in the workshop or a help-desk operator performing troubleshooting remotely. The
observations can consist of information such as DTC:s from the OBD system, prob-
lem descriptions by the vehicle owner, and feedback regarding which actions have
been performed and their outcomes. The troubleshooter would also need product
information describing the configuration of the specific vehicle at hand and opera-
tional statistics such as mileage and operational hours.

4



1.2. Problem Formulation

Problems formulated similarly to the troubleshooting problem are commonly
separated in the literature into two parts: the diagnostic problem and the decision
problem [37, 47, 62, 75, 90, 132, 146]. The diagnostic problem is about determin-
ing the status of the components given currently available information. The deci-
sion problem is about deciding which action to do next. When decisions should be
planned several steps ahead, this is the planning problem. When solving the deci-
sion problem, one needs to understand the consequences of actions. This includes
solving the diagnosis problem, and partially [62, 75] or fully [90, 146] solving the
planning problem.

There are several variations of these problem formulations of which a subset is
addressed in this thesis.

1.2.1 The Diagnostic Problem

A diagnosis is commonly defined as a statement that describes a reason for a prob-
lem or an act of finding diagnoses [84]. In this thesis the description of the cause
of a problem will be specified in terms of a set components in the system that
are faulty. The entity generating the diagnosis is the diagnoser. The purpose of
a diagnoser can be fault detection or fault isolation [22]. For fault detection, we
want to discriminate the case where no component is faulty from the case where at
least one component is faulty. It is often important that faults are detected as soon
as possible after a fault has occurred. For fault isolation, we want to know more
specifically which diagnoses are possible. There are several possible formulations
of the problem of fault isolation described in the literature.

• Finding consistent or minimal diagnoses. A diagnosis is said to be consistent
if it is consistent with the model describing the system and the observations
made. A consistent diagnosis is said to be minimal if there is no other consis-
tent diagnosis whose set of faulty components is a subset of the set of faulty
components for the minimal diagnosis [39]. When it is possible that multiple
components can be faulty, the number of consistent diagnoses is exponential
in the number of components. Therefore, finding all minimal diagnoses is
often preferred over finding all consistent diagnoses. In particular if a model
that only describes the nominal behavior of the components is used, then
the set of all minimal diagnoses characterizes the set of all consistent diag-
noses because any diagnosis with a larger set of faulty components is also
consistent with this model [39].

• Finding the most likely diagnosis. Another possible goal of the fault isolation
is to estimate a single diagnosis that best fits the observations. Often, a
machine learning method such as Support Vector Machines [34] or Neural
Networks [82] can be used (see e.g. [66, 110, 147]).
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• Finding a probability distribution for the possible diagnoses. When a more
detailed view of the possible diagnoses is needed, the purpose of fault isola-
tion can be to compute the probability distribution over all diagnoses given
the observations:

Pr(diagnosis|observations). (1.1)

When multiple faults are possible, the number of possible diagnoses grows
exponentially with the number of components. Therefore the set of possible
diagnoses is sometimes limited to those with at most a certain number of
faulty components [78]. Another possibility is to compute only the marginal
probability of each fault given the observations:

Pr(fault|observations). (1.2)

In this thesis the goal of the diagnoser is to compute probability distributions
of the possible diagnoses, either as complete diagnoses (1.1) or marginalized fault
probabilities (1.2). The probability distribution provides more detailed information
of the health state of the vehicle which is useful when solving the decision problem.
In addition to this, the diagnoser may need to compute the probability that a new
observation has a particular outcome given previous observations:

Pr(outcome of new observation|observations) (1.3)

so that the consequence of making an observation can be evaluated when making
decisions.

Another problem that needs to be addressed in order to build a practical and
functional troubleshooter in an industrial setting is how the models needed by the
troubleshooter should be created and maintained in an efficient way. The work
effort needed for model creation and maintenance needs to be balanced with the
accuracy and precision of the models in order to achieve a desirable performance
of the troubleshooting system as a whole.

Model creation can be a manual process where models are created by domain
experts and it can be an automatic process where the models are learned from data.
This thesis primarily considers models that are created by domain experts, but
methods for learning parameters from statistical data are also studied. A method
that solely relies on model learning from statistical data risks having too little data
for new vehicle types. However, learning methods can be a powerful tool to im-
prove the quality of a manually created models over time.

Modern automotive vehicles are modular in design [91]. This means that many
unique instantiations of vehicles can be created from only a set of few modules
(Figure 1.3). This needs to be taken into consideration when creating the models
because it is not feasible to create a unique model for every possible vehicle in-
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Figure 1.3: Modular design of vehicles allows many unique instantiations to be
created from a set of few modules.

stantiation. Either the models are created so that they fit many instantiations of the
vehicles or different models are created for each module so that it is possible to
combine these into a vehicle-specific model automatically.

1.2.2 The Decision Problem

The actions that we can perform to solve the troubleshooting problem can belong
to the following categories:

• repair actions that make a faulty component non-faulty for example by re-
placing or repairing it,

• observing actions that gain information by making an observation for exam-
ple making a measurement, performing a test, or asking a question, and

• other actions that manipulate the vehicle in some other way such as prepar-
ing for a repair or an observation by disassembling obstructing parts.

It is not necessarily the case that every sequence of actions that solves the trou-
bleshooting problem has sufficient quality to be considered good troubleshooting.
For example, a sequence of actions that repairs every component on the system
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would certainly solve the troubleshooting problem, but it would also likely be pro-
hibitively time-consuming and expensive. The problem of selecting the next action
or sequence of actions should therefore be done with regard to a performance mea-
sure, e.g. the cost.

Each action that we can perform has a cost. We define the cost of repair to be
the sum of the costs of all actions that are performed until the troubleshooting ses-
sion can be terminated because the problem is believed to be solved. Assume that
all that the troubleshooter knows of the vehicle at a given moment (what has been
done and what has been observed) can be represented with a state of information s.

Definition 1.1 (Cost of Repair). For a given state of information s, the cost of
repair is

CR(s) =

{
0 if the troubleshooting session can be terminated in state s,

cost(a,s)+CR(sa) otherwise,
(1.4)

where a is the action performed in state s, cost(a,s) is the cost of performing the
action a in state s, and sa is the next state after performing action a in state s and
observing its outcome.

The state of information is affected by the outcomes of the actions and these can
only be known after the action has been performed. Therefore we can only compute
the cost of repair like this once we have observed the outcomes of all actions. Also,
depending on the outcome of the action we can decide to perform different actions.
If we know the probability distribution of the outcomes, the expected cost of repair
(ECR) is a cost measure that can be used before-hand:

Definition 1.2 (Expected Cost of Repair). For a given state of information s, the
expected cost of repair is

ECR(s) =

{
0 if the troubleshooting session can be terminated in state s,

cost(a,s)+∑
o∈Ωa

Pr(o|a,s)ECR(so,a) otherwise,
(1.5)

where a is the action performed in state s, cost(a,s) is the cost of performing the
action a in state s, Ωa is the set of possible outcomes of the action a, Pr(o|a,s) is
the probability that the action a has the outcome o in state s, and so,a is the state
after action a is performed and outcome o is seen.
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In this thesis the ECR is the primary performance measure for the decision prob-
lem. In all troubleshooting it is desirable that the ECR is small and in optimal
troubleshooting the ECR is minimal. The minimal ECR is:

ECR∗(s) =





0 if the troubleshooting session can be terminated in state s,

min
a∈A

cost(a,s)+∑
o∈Ωa

Pr(o|a,s)ECR∗(so,a) otherwise.

(1.6)
where A is the set of all possible actions that can be performed.

The decision problem can either be solved offline or online. When solved
offline, a full conditional plan of actions is created before the troubleshooting is
started. When solved online, a conditional plan of actions is only partially created,
if at all, each time the troubleshooter is asked to recommend an action. Figure 1.4
shows the full conditional plan of actions for a very small example of troubleshoot-
ing problems with the engine temperature. In general, the problem of deciding
which actions to perform so that optimal troubleshooting is achieved is compu-
tationally intractable [100]. Instead, the decision problem is solved suboptimally
by trading off the ECR with computation time, e.g. by only computing the plan a
limited number of steps ahead and then using a heuristic to estimate the remaining
ECR. In near-optimal troubleshooting, decisions are made so that the difference
between the achieved ECR and the optimal ECR is within a provable bound. In this
thesis, we typically consider the problem of near-optimal troubleshooting. When
optimal solutions are computed these are only used as reference.

The difficulty of solving the decision problem also depends on how the cost and
effects of actions are modeled. For example, the action cost can be modeled to be
a unit cost that is the same for all actions, a constant cost specific for each action,
or a cost that is dependent on the state of the system or on the order in which the
actions are performed. Actions can also have constraints that limit when they can
be performed.

In this thesis we consider the decision problem for two different scenarios of
vehicle troubleshooting:

• Workshop troubleshooting where the vehicle is located at a workshop and
the possible actions are primarily actions for performing repairs and obser-
vations. Sometimes we also include assembly and disassembly actions that
gain access to different components and measurement points on the vehicle
and an action for ending an ongoing troubleshooting session.

• Integrated remote and workshop troubleshooting where the vehicle can ei-
ther be on the road or in the workshop and we have additional actions for
running remote tests, making reservations at workshops, and transporting the
vehicle to a workshop. The integrated remote and workshop troubleshooting
problem differs from the workshop troubleshooting problem in that there are
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Remote test: Sweep the gauges in the ICL

Temp gauge will not sweep Temp gauge sweeps

Continue normal operation for 11 day(s)

then drive to workshop 'Stockholm-

Kungens Kurva - Scania-Bilar Sverige AB'

Replace the ICL

End session

Book �rst time at workshop

'Södertälje-Hovsjö -

Scania-Bilar Sverige AB'

Wait for 0 day(s) then drive to workshop

'Södertälje-Hovsjö - Scania-Bilar Sverige AB'

Inspect the thermostat

Faulty Not faulty

Replace the thermostat

End session

Inspect the coolant temp. sensor

Faulty Not faulty

Replace the coolant temp. sensor

End session

Replace the EMS control unit

Warm up engine and check temp. in ICL

Low Normal

End sessionReplace the COO control unit

Warm up engine and check temp. in ICL

Low Normal

End sessionReplace the yellow CAN bus

Warm up engine and check temp. in ICL

Low Normal

End sessionReplace the red CAN bus

End session

Figure 1.4: A full conditional troubleshooting plan for a very small example of
troubleshooting a problem with the engine temperature.
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more choices and that the time scope of the plans is larger. Instead of a cou-
ple of hours, the duration of a single troubleshooting session can span over
several weeks. This means that the cost models must take greater consider-
ation to costs related to the downtime of the vehicle as this becomes more
important for the decision making.

1.3 Outline of Thesis
The thesis is organized into two parts. The first part introduces the topic and gives
an overview of the research contributions from all the research done for this the-
sis. This chapter presented the background and motivation for the research and
the different problem formulations considered. The following chapter presents the
theoretical background and goes through some related work in the areas of diag-
nosis and decision making. The third chapter presents and summarizes the main
contributions from all publications made for this thesis.

The second part of the thesis consists of a collection of five selected research
papers that represent the core of the contributions. These are two published confer-
ence papers [6, 9], two published journal papers [8, 11], and one submitted journal
manuscript [12].
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Chapter 2

Theoretical Background

In Section 1.2 we separated the troubleshooting problem into two subproblems,
the diagnostic problem and the decision problem. In this chapter we will give an
overview of the research areas related to these problem formulations.

2.1 Diagnosis
A general approach to the diagnostic problem in the literature is model-based di-
agnosis where a model is used for correlating the inputs and outputs of the system
with the presence of faults. This model can for example explicitly represent the
behavior of the system using a model derived from expert knowledge. It can also
be a black-box model learned from process data collected from the system.

The major research areas and approaches to model-based diagnosis are dis-
cussed below. Of these research areas, it is primarily the probabilistic approaches
for diagnosis that are considered in this thesis.

2.1.1 Fault Detection and Isolation

The Fault Detection and Isolation (FDI) approach to diagnosis originated in the
area of automatic control research. For thorough reviews of the FDI approach, see
e.g. [22, 64, 136, 137]. A typical FDI model describes the nominal behavior of the
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system using a state space model of differential algebraic equations (DAE:s):

dx/dt = f (x(t),u(t))
y(t) = g(x(t),u(t))

(2.1)

where the state vector x(t), the input vector u(t), and the output vector y(t) are
vectors of continuous variables, and the behavioral model f and the observation
model g are functions of the input and state vectors [136]. As many laws of physics
are DAE:s, this type of model can with high precision capture the behavior of
dynamic mechanical, hydraulic, and electrical systems.

To achieve fault detection, a subset of the input and output variables are ob-
served with the observation vector z. If the observation vector makes (2.1) incon-
sistent, we can conclude that the system is not behaving nominally and there must
be a fault present. If the observation vector is such that (2.1) is analytically redun-
dant, i.e. it is possible to find unique solutions for all the unknowns using only a
subset of the equations, then it can be possible to further pinpoint the location of
the fault by analyzing which subsets of the equations are inconsistent.

A residual generator is a model for detecting inconsistencies between the ex-
pected and actual behavior of the system using the observation vector as input. The
output of the residual generator, the residual, is a scalar r such that r(z) = 0 if and
only if (2.1) is consistent with regard to z. In practice r(z) will never be zero be-
cause of process noise, but this can be overcome by thresholding the value using
statistical tests [18]. Two different approaches for creating residual generators are
the parity space approach [31] and the structural approach [14]. For both these
approaches different subsets of the equations in the system model are transformed
to make the residual generators. If each equation is associated with a component,
then each residual generator can be associated with a set of components. When a
residual is non-zero, that indicates that there is a fault on at least one of the com-
ponents associated with that residual generator.

Given an accurate model of the nominal behavior, the FDI methods can become
very powerful in detecting faults. It is even possible to detect faults that have
not explicitly been modeled because anything that deviates from nominal behavior
is considered a fault. When applied to on-board diagnosis of vehicles, the FDI
approach has been shown to be successful in detecting even very small sensor and
actuator faults [135]. However, creating FDI models requires detailed knowledge
of the behavior of the system which can require great effort to obtain.
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2.1.2 Consistency-Based Diagnosis

In consistency-based diagnosis, the task is to infer which of the system’s compo-
nents have deviating behavior in order to explain inconsistencies between expected
and observed system behavior. Consistency-based diagnosis was originally for-
mulated in first-order logic [39, 98], where the model of the system is a triple
〈SD,COMPS,OBS〉 where:

• SD is the system description, a set of first-order sentences,

• COMPS are the system components, a finite set of constants,

• OBS are the observations, also a set of first-order sentences.

A special predicate AB is used such that AB(c) means that component c behaves
abnormally, i.e. component c is faulty. In the simplest case, faulty components
have arbitrary behavior and only the nominal behavior of the system is modeled.
Then each sentence in the system description is on the form:

¬AB(c)→ φ

where φ is an arbitrary logical formula describing the behavior of the component c
when it is not faulty. Figure 2.1 shows a small logical circuit with three multipliers
and two adders commonly used in the literature when explaining consistency-based
diagnosis [37]. The model for this circuit is:

SD : ¬AB(M1)→ X = A ·C
¬AB(M2)→ Y = B ·D
¬AB(M3)→ Z =C ·R
¬AB(A1)→ F = X +Y

¬AB(A2)→ G = Y +Z

COMPS : M1,M2,M3,A1,A2

OBS : A = 3,B = 2,C = 2,D = 3,E = 3,F = 10,G = 12

.
In consistency-based diagnosis, a consistent diagnosis is a set ∆ ⊆ COMPS of

components such that if all components in ∆ are faulty and all others are non-faulty,
then the system model is consistent, i.e.

SD∪OBS∪{AB(c) : c ∈ ∆}∪{¬AB(c) : c ∈ COMPS\∆}

is consistent.
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Figure 2.1: A small logical circuit [37].

When only the nominal behavior is modeled, all diagnoses that are supersets
of a consistent diagnosis are also consistent. Therefore, one is typically interested
in finding only the minimal diagnoses, where a minimal diagnosis is a consistent
diagnosis ∆ such that there exist no other diagnosis ∆′ ⊂ ∆ that is a consistent
diagnosis.

The common approach to computing the minimal diagnoses is to first identify
all minimal conflict sets. When only nominal behavior is modeled, a minimal con-
flict set is a minimal set of components of which at least one component must be
faulty in order to explain the observations, i.e. the set of components C ⊆ COMPS
is a minimal conflict set if and only if:

SD∪OBS |=
∨

c∈C

AB(c)

and for all C′ ⊂C
SD∪OBS 6|=

∨

c∈C′
AB(c).

Let C be the set of all minimal conflict sets. Then each consistent diagnosis ∆ is a
hitting set of C. As such ∆ has at least one element in common with every conflict
set in C, i.e. for all C ∈ C: ∆∩C 6= /0. Given C, the set of all minimal diagnoses can
be computed by solving the minimal set covering problem and thereby finding all
minimal hitting sets to C. The set of all minimal conflict sets can for example be
computed with an Assumption-based Truth Maintenance System [37] and the HS-
tree algorithm [98]. The minimal conflict sets for the example are {M1,M2,A1}
(because the correct answer F = 12 is expected unless one of these are faulty)
and {M1,M3,A1,A2} (because if M1 and A1 are not faulty then Y = 4 and thereby
G = 10 is expected unless one of M3 and A2 is faulty; on the other hand if M3 and
A2 are not faulty then Y = 6 and thereby F = 12 is expected unless one of M1 and
A1 is faulty). The minimal diagnoses are {M1}, {A1}, {M2,M3}, and {M2,A2}.
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reboot?reboot?

reboot!
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IRebootIAmBack

IAmBack

rebooting

reboot?
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Figure 2.2: Example of a Discrete Event System [54].

It is also possible to have system models where faulty behavior is modeled ex-
plicitly [38, 88]. The consistency-based diagnosis approach can also be combined
with the FDI approach by creating residual generators such that each non-zero
residual maps to a conflict set [14, 33]. Consistency-based methods can then be
used to compute consistent diagnoses.

A model for consistency-based diagnosis can be generated from wiring dia-
grams and other system specifications once models for individual components are
created. Consistency-based diagnosis using logical models has been shown to per-
form well for isolating faults in large real-world applications such as electronic
circuits [74].

2.1.3 Discrete Event Systems

In the Discrete Event Systems approach, the system to be diagnosed is modeled
with a set of states that the system can be in and a set of events that can cause
the system to transition between states. Figure 2.2 shows an example of a small
Discrete Event System [54]. Some of the events occur due to faults (reboot!) and
some, but not all, of the events give rise to observations (IReboot, IAmBack).

The diagnosis task is to estimate which sequences of events that possibly can
have occurred, in particular those sequences that include fault events. For example,
if the system in Figure 2.2 is known to initially be in state O and we observe the
events "IReboot" and "IAmBack", two possible sequences of events are

reboot?→ IReboot→ rebooting→ IAmBack

which contain no fault events, and

reboot!→ IReboot→ IAmBack

which contain the fault event "reboot!".
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Discrete Event Systems are particularly suited for modeling large distributed
systems such as communications networks where no single entity has access to all
information. Each node in the distributed systems can be modeled with its own set
of states and messages sent between the nodes are modeled as events. Common
modeling and solution methods for Discrete Event Systems are based on Petri Nets
[51] and state automata [95, 149].

2.1.4 Data-Driven Methods

Data-driven methods for diagnosis rely primarily on data collected from the sys-
tem. The model that is used is learned from this data and it does not necessarily
need to represent any real physical relations of the system. Using methods from
the machine learning field, the goal is typically to output the single diagnosis that
best matches the observed data. It is a two-step process: first a model is learned
from large amounts of data and then the model is used to compute diagnoses.

Learning can be supervised or unsupervised, and for diagnosis, primarily su-
pervised learning methods have been employed.

In supervised learning, the data that is used for learning the model is labeled
with the true diagnosis of the system from which it was collected. The data
D = {(x1,y1) . . .(xn,yn)} consists of examples (xi,yi) where xi is a set of observed
values of features of the system (e.g. signal values and symptoms) and yi is the
label (e.g. the diagnosis at the time). The model is a function that maps the out-
come space of the features to labels and it is is learned from the data using some
machine-learning method. Once learned, this function can be used to classify new
examples where only the values of the features are known. Supervised learning
methods that have been applied for diagnosis include Support Vector Machines
[34, 65, 107, 110] where different classes are separated with a hyperplane with
maximal margin (see Figure 2.3), Decision Forests where several decision trees
vote on the class [123], Neural Networks where a network of sigmoid functions is
learned to fit the data [66, 71, 147], and Case-Based Reasoning where classification
is done by identifying similar examples in the data [16, 77, 147].

In unsupervised learning the data is collected without knowledge of the sys-
tem’s state, i.e. D = {x1, . . . ,xn}. When unsupervised learning has been applied to
diagnosis, the unlabeled data is clustered to detect anomalies which can be due to
faults or impending faults [134].

A benefit with data-driven methods is that there is no need for extensive knowl-
edge engineering. However, to learn complex dependencies large quantities of data
is needed which can be hard to obtain, especially for infrequent faults.
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Margin

Margin

Support Vector

Support Vectors

Optimal Separating
Hyperplane

Figure 2.3: Example of a linear Support Vector Machine for a two-dimensional
feature space. The two classes negative (-) and positive (+) are separated with a
line with maximal margin [110].

2.1.5 Probabilistic Approaches

Probabilistic approaches for diagnosis are needed when the goal is to compute the
probabilities of diagnoses or faults (equations (1.1) and (1.2)).

Example 2.1. Figure 2.4 shows a diagram of a very simplified common rail fuel
injection system with two fuel injectors connected to a pressurized fuel rail. In
this example, there can be faults on the fuel pump and the fuel injectors. Any of
these faults can cause the fuel pressure in the fuel rail to become low. When this
pressure is low, this can cause the output effect in the cylinders to become low.
A faulty fuel injector can also directly cause the cylinder output effect to become
low. The behavior of the faults can vary depending on the severity and nature of
the faults.

A common approach to modeling dependencies between faults and observa-
tions that are probabilistic is by using a graphical model such as Bayesian net-
works [93]. The nodes in a Bayesian network are random variables and the edges
are probabilistic dependencies such that each random variable Xi is conditionally
independent given its parents pa(Xi) in the graph:

p(X1, . . . ,Xn) =
n

∏
i=1

p(Xi|pa(Xi)).

Each variable Xi is associated with a conditional probability distribution (CPD)
p(Xi|pa(Xi)). If the variables are discrete random variables the CPD is sometimes
called a conditional probability table (CPT). Figure 2.5 shows an example of a
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Figure 2.4: Diagram of a simplified common rail fuel injection system.

Bayesian network graph for the system in Example 2.1 with binary variables Finj.1,
Finj.2, Fpump, Opres., Oeff.1, and Oeff.1. In this model the faults are assumed to occur
independently and there is an edge to each observable symptom from its causes.

In the context of diagnosis, the Bayesian network model provides CPD:s that
describe the behavior of observable properties of the system given its diagnosis.
The prior distribution is the joint probability distribution over the possible diag-
noses, in this example the distribution p(Finj.1,Finj.2,Fpump). The likelihood is the
probability of making a specific observations given a known diagnosis, e.g. the
probability of observing the fuel pressure being low given that we know whether
the fuel injectors and the fuel pump are faulty or not:

Pr(Opres. = low|Finj.1,Finj.2,Fpump).

The posterior distribution is the probability distribution of the diagnoses given
known observations, e.g.:

p(Finj.1,Finj.2,Fpump|Opres.).

This is computed by the diagnoser in a process called inference. Sometimes only
the marginalized fault probabilities are needed. Then inference would be to com-
pute, e.g.:

Pr(Fi = faulty|Opres.) for i = inj.1, inj.2,pump.

Many inference algorithms rely on Bayes’ rule to compute posterior probabili-
ties from known likelihoods and priors:

p(posterior) ∝ Pr(likelihood)p(prior).
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Finj.1

Fuel injector 1
[not faulty, faulty]

Finj.2

Fuel injector 2
[not faulty, faulty]

Fpump

Fuel pump
[not faulty, faulty]

Oeff.1

Cylinder 1, output effect
[normal, low]

Oeff.2

Cylinder 2, output effect
[normal, low]

Opres.

Fuel pressure
[normal, low]

Figure 2.5: Bayesian network for diagnosis of the system described in Exam-
ple 2.1.

Exact inference using even the most efficient inference algorithms, e.g. the Junc-
tion Tree algorithm [76], is in general intractable [32]. Faster inference can be
achieved if the network has special structure, e.g. by being singly connected [92]
or only having CPT:s that are Noisy-Or distributions [61, 63]. Faster inference can
also be achieved by performing approximate inference, e.g. by sampling [148].

Existing probabilistic approaches for diagnosis vary in how modeling and in-
ference is made. A dynamic Bayesian network [41] can be used to model systems
that vary over time. A Bayesian network that is not dynamic is said to be static.
When static Bayesian networks are used the observation variables are often symp-
toms and test results rather than direct sensor values, e.g. "Fuel pressure is lower
than expected" [27, 62, 72, 99, 139]. In distinction to the FDI methods for di-
agnosis, the static model is incapable of simulating the system and less efficient
for fault detection. Instead static Bayesian networks are often used in applica-
tions of sequential decision making and troubleshooting when a fault has already
been detected [62, 67, 75]. A diagnostic system based on the FDI approach can
be combined with a Bayesian network based diagnoser by using the residuals as
observations in the static network [139].

Dynamic Bayesian networks can be used when the model is created using a
physical description of the system such as a bond-graph [103, 104, 105] or residual
equations [119, 145]. Non-stationary Dynamic Bayesian networks [102] can be
used to model event driven troubleshooting processes [3].

Bayesian network models for diagnosis can be created manually by experts
using a modeling tool, e.g. [42, 68, 80, 124]. There are also methods for automatic
generation of diagnostic Bayesian networks from other sources common in the
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industry, such as Failure Mode and Effects Analysis (FMEA) [48] and Fault Tree
Analysis [23]. Models such as Object-Oriented Bayesian networks can be used to
simplify modeling when many systems with shared structure are modeled [70].

It is also possible to use data-driven methods to learn Bayesian networks from
data, either both the structure and parameters or parameters only, see e.g. [49, 96,
122]. If data is scarce, it is possible to combine model learning from data with
manual model creation where the data is used to tune model parameters whose
initial values are provided by experts [96]. When a Bayesian approach to model
learning is used, the original model parameters θ are associated with a probability
distribution p(θ) that describe our uncertainty in their correctness. If we have
collected data D from the system and know its likelihood given the parameters, we
can compute a new probability distribution p(θ |D) which takes into account the
knowledge of this data:

p(θ |D) ∝ Pr(D|θ)p(θ).

This distribution can for example be computed using conjugate priors for certain
specific model types. For more general models it is possible to use sampling tech-
niques such as Gibbs sampling [50] and the Metropolis-Hastings algorithm [60].

There are other probabilistic methods for diagnosis that do not rely on using
Bayesian networks. Some of these methods are related to the FDI approach where
the model is a probabilistic state space model where in (2.1) f and g are instead
probability distributions. If the model is linear and the distributions are normal
distributions the Kalman filter [69] can be used for exact inference, see e.g. [57].
For general models and distributions it is common to use a particle filter [53], where
the posterior distribution is estimated with particles representing possible system
states which are weighted with their likelihood, see e.g. [36, 86, 138].

Another probabilistic approach is based on consistency-based diagnosis. First
the set of minimal diagnoses is computed as described in Section 2.1.2. Then the
probabilities of diagnoses are estimated by letting the probabilities of inconsistent
diagnoses be zero and letting the probabilities of consistent diagnoses be propor-
tional to their prior probabilities [37].

2.2 Decision Making
In Section 1.2 we formulated the decision problem to be about deciding which
action to perform next when troubleshooting the system. In this section we will
discuss three existing approaches to decision making in the context of troubleshoot-
ing:

• the decision theoretic approach where alternative decisions are evaluated
heuristically based on their expected utility without necessarily considering
all future decisions,
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• the automated planning approach where a decision is made by creating and
evaluating a complete or almost complete plan for solving the troubleshoot-
ing problem, and

• the case-based reasoning approach where decisions are made based on pre-
vious experience of which decisions have been taken before in similar situa-
tions.

We will emphasize the decision theoretic and automated planning approaches as it
are these approaches that are used in the thesis.

To explain the approaches we will use a very small example problem:

Example 2.2. Consider the troubleshooting problem described in Example 2.1.
Assume that there are three possible troubleshooting actions: replace injectors
(both injectors are replaced at the same time), replace fuel pump, and check rail
pressure (pressure is low if and only if faults are present). Let the cost of these
action be 90, 40, and 10 respectively. At the onset of troubleshooting there is a
single fault. There is a 25% chance this is the fuel pump and a 75% chance that
this is one of the injectors.

When there is a finite number of actions and each action has a finite number of
outcomes, a naive method for finding the optimal decision is by using a decision
tree. The decision tree shows every possible sequence of actions that leads to a
solution of the problem together with the costs of the actions and the probability of
possible actions.

A decision tree for Example 2.2 is shown in Figure 2.6. The decision tree has
three types of nodes: decision nodes (squares), chance nodes (circles), and end
nodes (triangles). At a decision node a decision can be made by selecting one of
the branches where each branch corresponds to a possible action. If the action
has multiple outcomes, it is followed by a chance node whose outgoing branches
correspond to the possible outcomes of the action. The end nodes are labeled with
the total cost and probability of reaching there from the root node. The decision
maker can then use the tree to select the decisions that give the most favorable set of
outcomes. For example, choosing to first replace the injectors then check whether
this solved the problem, and if the pressure is still low replace the fuel pump, gives
a 25% chance of a total troubleshooting cost of 140 and a 75 % chance of a total
troubleshooting cost of 100, thus an expected cost of repair of 110 which is optimal
in this example. In the decision tree in Figure 2.6 we have omitted actions that do
not advance the troubleshooting, e.g. pressure check when we already know the
pressure and replacements of already replaced components.

Decision trees have been used for many types of decision problems, especially
in the areas of economics and game-theory [106]. However when there are more
alternative actions and the sequences of decisions needed to reach an end node are
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130
(100 %)

130
(100 %)

100
(75 %)

50
(25 %)

140
(25 %)

140
(75 %)

Replac
e inj. (90)

Replace pump (40)

Replace pump (40)

Check pres. (10)

Replace inj. (90)

Check pres. (10)

Low (25 %)

Normal (75 %)

Low (75 %)

Normal (25 %)

Replace pump (40)

Replace inj. (90)

Figure 2.6: A decision tree for Example 2.2. Decision nodes are shown with
squares, chance nodes with circles, and end nodes with triangles.

longer, the decision tree method obviously becomes intractable as the decision tree
becomes immensely large. We will use it here for Example 2.2 with the purpose of
explaining other approaches to decision making.

2.2.1 The Decision-Theoretic Approach

The common decision-theoretic approach to making the decision problem tractable
is to prune the decision tree at a certain depth k. Depending on whether we want to
minimize the expected cost or maximize the expected utility of the tree, a heuris-
tic function is used to estimate the minimal/maximal expected cost/utility of the
remaining tree below the pruned branch. Without loss of generality we will as-
sume that the goal is always to minimize the cost rather than to maximize the
utility as this is typically the case in the context of troubleshooting. A decision
can be computed from the pruned tree by recursively selecting the action that min-
imizes/maximizes the expected cost/utility for each decision node. This is some-
times referred to as k-step look-ahead search [109].

Assume that a state s can be used to describe everything we know of which
actions have been performed and which observations have been seen (note that this
state is not the same as the actual state of the system, which is unknown). The
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k-step look-ahead search decision for state s is the action a∗(s) where:

a∗(s) = argmin
a∈A

(
cost(a,s)+∑

o∈Ωa

Pr(o|a,s)ck−1(so,a)
)

(2.2)

where A is the set of all possible actions that we can choose from, cost(a,s) is the
cost of performing action a in state s, Pr(o|a,s) is the probability that the action a
has the outcome o in state s out of the possible outcomes Ωa, so,a is the state of the
system after the action a with outcome o has been performed in state s, and ck is
the k-step look-ahead cost:

ck(s) =





min
a∈A

(
cost(a,s)+∑

o∈Ωa

Pr(o|a,s)ck−1(so,a)
)

if k > 0

h(s) if k = 0,

where h is a real-valued heuristic function. Typically the value of k is 1, but differ-
ent decision-theoretic approaches differ on how the outcome probabilities and the
heuristic function are computed.

If the diagnostic approach that is used is based on Bayesian networks, then it
is straightforward to compute the outcome probabilities. However, when a proba-
bilistic consistency-based diagnostic method as described in Section 2.1.5 is used,
then the outcome probability is not readily available. One solution is then to as-
sume that all outcomes that are consistent with the model and the current observa-
tions are equally likely [37].

When only observing actions are considered, it is common to use a heuristic
based on the information entropy of the probability distribution over faults and
diagnoses, see e.g. [37, 46, 101, 150]. The information entropy of the probability
distribution of a random variable is a measure of how much more information is
needed to learn the true value of the variable [55]. Let Pr(d|s) be the probability of
having the diagnosis d given state s. Then the entropy of s is:

H(s) =−∑
d

Pr(d|s) logPr(d|s).

Look-ahead search with k = 1 and a heuristic based on information entropy has
empirically been shown to be remarkably efficient in finding sequences of observ-
ing actions that find the true diagnosis at a low expected cost [40]. By directly
computing the conditional entropy of the state given a tentative action, it is possi-
ble to completely avoid the need of computing outcome probabilities when k = 1
[150].

By weighting together the entropy heuristic with other heuristics it is possible
to consider decision problems that also include repair actions. Sun and Weld [132]
defines such a heuristic:

hsun(s) = cHH(s)+∑
d

Pr(d|s)crep(d) (2.3)
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where cH is a weighting constant for the entropy, and crep(d) is the cost of repairing
all faults in d.

If we would apply one-step look-ahead search together with this heuristic to-
gether to the problem in Example 2.2 using cH = 10 (average cost of all observing
actions), then in the initial state s0 the decision would be to first replace the in-
jectors using the action ainj, because the expected cost of this decision is in (2.2)
evaluated to:

cost(ainj.,s0)+∑
o∈Ωainj

Pr(o|ainj,s0)hsun(so,ainj) =

90−10(0.75log0.75+0.25log0.25)+0.25 ·40≈ 108.1

compared to when the fuel pump is replaced using the action apump:

cost(apump,s0)+∑
o∈Ωapump

Pr(o|apump,s0)hsun(so,apump) =

40−10(0.25log0.25+0.75log0.75)+0.75 ·90≈ 115.6.

Heckerman et al. [62] describes another heuristic for troubleshooting that is
derived from the exact solution of an alternate simpler problem. In this simpler
problem, the set of available actions is reduced to only include repair actions (that
remove a specific fault and that are immediately followed by a system check that
can determine whether the system is fault free or not) and inspection actions (that
deterministically determine whether a specific fault is present or not). It is also
assumed that there is exactly one fault present and that action costs are state inde-
pendent. For this simpler problem, it is possible to efficiently compute the optimal
expected cost of repair analytically by considering a troubleshooting strategy where
each fault is inspected in a particular order and repairs are made whenever a fault
is found to be present. If this order is such that:

pi

Co
i
≥ pi+1

Co
i+1

where pi is the probability of the ith fault being present and Co
i is the inspection

cost for this fault, then this troubleshooting strategy is optimal for the simplified
problem. For a system with n possible faults the minimal expected cost of repair
using this troubleshooting strategy is:

ECR∗heck(s) =
n

∑
i=1

((
1−

i−1

∑
j=1

p j

)
Co

i + piCr
i

)
(2.4)

where Cr
i is the repair cost for fault i. If there exists an inspection action for a

fault i, then Co
i is the cost of that action and Cr

i is the cost of the repair action plus
the cost of the system check action. If there is no inspection action for this fault,
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the inspection is made by first repairing the fault and then performing the system
check. In this case Co

i is the cost of the repair action plus the system check and
Cr

i = 0.
In practice there are not many troubleshooting problems that are like this sim-

plified problem. However if we define a heuristic

hheck(s) = ECR∗heck(s), (2.5)

we get a heuristic that has been shown to be useful together with look-ahead search
on more complex decisions problems, see e.g. [62, 75]. There are also extensions
to this approach where the action costs can depend on the state and repair actions
are not immediately followed by a system check [89, 90].

In Example 2.2 there are no inspection actions and the observation action qual-
ifies as a system check so the inspection cost is 100 for the injectors and 50 for the
fuel pump. In the initial state, the ratio is 0.0075 for the injectors and 0.005 for the
fuel pump meaning that the injectors should be replaced first. The heuristic value
in the initial state is 100+0.25 ·50 = 112.5.

2.2.2 The Automated Planning Approach

In the automated planning approach for decision making, the decisions are made
by creating and evaluating a complete or almost complete plan for solving the
troubleshooting problem. If needed by the user, the entire plan can be provided to
the user immediately. Otherwise only the first action in the plan can be shown to
the user as in the decision-theoretic approach.

Because the state of the system is unknown and observing actions can have
multiple outcomes which we only know the probabilities of, the planning problem
is probabilistic and partially observable. These types of problems can be modeled
with Partially Observable Markov Decision Processes (POMDP:s) which is a gen-
eral mathematical framework for sequential decision processes with incomplete
knowledge (see e.g. [28]).

POMDP:s

A discrete POMDP can be described with a tuple 〈S,A,O, t, p,c,γ〉 where:

• S is the state space, a finite set of states the system can be in,

• A is the action space, a finite set of actions that can be performed,

• O is the observation space, a finite set of observations that can be seen after
performing an action,
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• t : S ×A×S 7→ [0,1] is the transition function, a probability distribution
such that t(s,a,s′) is the probability that state s′ is reached if action a is
performed in state s,

• p : S ×A×S ×O 7→ [0,1] is the observation function, a probability distri-
bution such that p(s,a,s′,o) is the probability of making observation o when
state s′ is reached by performing action a in state s,

• c : S ×A 7→ R is the cost function where c(s,a) is the cost of performing
action a in state s (in the typical definition of POMDP:s this is a reward
function r, but in the context of troubleshooting a cost function is more suit-
able), and

• γ ∈ [0,1] is the discount factor, a parameter for weighting the costs of future
actions.

Example 2.3. A POMDP for the troubleshooting problem in Example 2.2 can be
defined as follows:

S = {s0,s1,s2} where in state s0 the system has no faults, in state s1 one
of the injectors is faulty, and in state s2 the fuel pump is
faulty.

A= {a0,a1,a2,a3} where action a0 is a no-op action signaling the end of the
troubleshooting session, action a1 replaces the injectors,
action a2 replaces the fuel pump, and action a3 observes
the fuel pressure.

O = {o0,o1} where, if action a3 is performed, o0 is the observation that
the fuel pressure is nominal and o1 is the observation that
it is low. For all other actions, the observations have no
particular meaning and o0 is observed by default.

t(s,a,s′) =





1 if a ∈ {a0,a3} and s = s′,

1 if a = a1 and (s,s′) ∈ {(s0,s0),(s1,s0),(s2,s2)},
1 if a = a2 and (s,s′) ∈ {(s0,s0),(s1,s1),(s2,s0)},
0 otherwise.

p(s,a,s′,o) =





1− p(s,a,s′,o1) if o = o0,

1 if a = a3 and s ∈ {s1,s2},
0 otherwise.

28



2.2. Decision Making

c(s,a) =





0 if a = a0 and s = s0,

90 if a = a1

40 if a = a2

10 if a = a3

∞ otherwise.

γ =1.

Because the true state is not known, our belief regarding which this state is
is represented with a belief state. A belief state is a probability distribution over
S such that b(s) is the probability that state s is the true state. The belief state
space B is the set of all possible belief states. By performing actions and making
observations we evolve the belief state. When an action a is performed in a belief
state b and the observation o is seen, a new belief state ba,o is reached where:

ba,o(s′) =
∑

s∈S
p(s,a,s′,o)t(s,a,s′)b(s)

p̄(b,a,o)
for all s′ ∈ S, (2.6)

and
p̄(b,a,o) = ∑

s,s′′∈S
p(s,a,s′′,o)t(s,a,s′′)b(s) (2.7)

is the belief state transition probability for observation outcome o of a in b.
Problems formulated as POMDP:s are usually solved by finding an optimal or

suboptimal policy, which is a function π : B 7→ A that maps every belief state to
an action. The expected cost of a policy π is given by a value function Vπ : B 7→ R
where:

Vπ(b) = c̄(b,a)+ γ ∑
o∈O

p̄(b,a,o)V (ba,o), (2.8)

where a = π(b), and c̄(b,a) = ∑s∈S b(s)c(s,a). A plan can be obtained from a
policy by applying the policy to all belief states that are reachable from a given
initial belief state. A reachable belief state is a belief state that can be reached from
the initial belief state by multiple applications of (2.6) with a non-zero belief state
transition probability.

An optimal policy is a policy π∗ such that

π
∗(b) = argmin

a∈A

(
c̄(b,a)+ γ ∑

o∈O
p̄(b,a,o)π∗(ba,o)

)
. (2.9)

When the discount factor γ < 1, the influence of future actions on the expected
cost decreases exponentially with the number of steps into the future and the ex-
pected cost of any policy is finite. However when γ = 1, c is non-negative, and
there exist goal states for which the optimal expected cost is zero, the expected
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cost is only finite for policies guaranteed to reach a goal state. Then the POMDP is
said to be a goal POMDP [24]. By identifying (2.8) and (2.9) with (1.5) and (1.6),
we see that the troubleshooting problem as we defined it in Section 1.2 is a goal
POMDP.

It is computationally intractable to compute an optimal policy for all but triv-
ially small POMDP:s [28]. However, there are many approximate algorithms ca-
pable of computing good suboptimal policies to larger POMDPs. Notable among
these are the algorithms based on Point-Based Value Iteration [97] (see e.g. [73,
121, 125, 126, 129]). Many of these use knowledge of a known initial belief state
b0 and focus on finding policies that are good in the reachable belief state space.

Because the belief state space is continuous, it is difficult to efficiently repre-
sent policies. However the optimal value function is concave (or convex if a reward
function is used) and can be approximated with arbitrary precision by taking the
minimum of a set of |S|-dimensional hyperplanes [128]. The point-based algo-
rithms represent these hyperplanes with a set of vectors Γ called α-vectors and
each α-vector α ∈ Γ is associated with an action action(α). The set Γ defines a
policy πΓ where πΓ(b) = action(α∗b ) where α∗b is the α-vector that has the smallest
value in b:

α
∗
b = argmin

α∈Γ
∑
s∈S

b(s)α(s).

The value function of πΓ is approximated by the function VΓ where

VΓ(b) = ∑
s∈S

b(s)α∗b (s).

The initial set of α-vectors in Γ can for example be obtained by creating one α-
vector for every action and letting α(s) be the cost of performing action(α) repeat-
edly. The suboptimal policy πΓ is then incrementally improved by performing so
called backups on selected belief states. When a belief state b is backed up, a new
α-vector is added to Γ:

Γ
′ = Γ∪{argmin

βa:a∈A
∑
s∈S

b(s)βa(s)} (2.10)

where each βa is an α-vector associated with the action a and for all s ∈ S:

βa(s) = c(s,a)+ γ ∑
o∈O

∑
s′∈S

p(s,a,s′,o)t(s,a,s′)βa,o(s′) (2.11)

and βa,o are α-vectors for each action a ∈A and observation o ∈O corresponding
to the best policy in the next belief state ba,o:

βa,o = argmin
α∈Γ

∑
s∈S

ba,o(s)α(s).
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Figure 2.7: The value of VΓ(b) for all b ∈ B for Example 2.4 forms a concave
surface.

Example 2.4. Consider the POMDP model in Example 2.3. Let the set of α-
vectors be initialized to Γ = {α0,α1,α2} where α0 = (0,∞,∞), α1 = (90,90,∞),
α2 = (40,∞,40), and for i = 0,1,2, action(αi) = ai. When backing up an arbitrary
selected belief state b = (0.0,0.5,0.5) by applying (2.10) on b, we evaluate (2.11)
for each action and βa0 = (0,∞,∞), βa1 = (130,130,130), βa2 = (130,130,130),
βa3 = (10,∞,∞) of which βa1 is minimal in the b and therefore α3 = βa1 is added
to Γ. Further applications of (2.10) on arbitrary selected belief states yields:

i b αi action(αi)

4 (0.5,0,0.5) (10,∞,50) a3

5 (0.5,0.5,0) (10,100,∞) a3

6 (0,0.2,0.8) (50,140,50) a2

7 (0,0.8,0.2) (100,100,140) a1

8 (0.5,0.1,0.4) (10,150,60) a3

9 (0.5,0.4,0.1) (10,110,150) a3

Figure 2.7 shows the value of VΓ(b) for all b ∈ B for Example 2.4. New facets
are formed when α-vectors that are minimal for some region of the B are added
to Γ. The vectors α0, α1, α2, α4, and α5 are only finite for a subspace of B and
therefore shown only with a point or a line. The vector α3 is dominated everywhere
by other α-vectors and does therefore not appear in the graph.

The backup operation is central to all point-based POMDP solvers, but they
vary on how α-vectors are initialized and how belief states are selected for backups.
If the belief states are selected appropriately, VΓ(b0) converges toward the optimal
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value Vπ∗(b0) as the number of backups goes to infinity [125]. Also if the initial
set of α-vectors are initialized so that VΓ(b) is greater than or equal to the optimal
value, VΓ(b) will remain greater than or equal to the optimal value after backups.
The point-based algorithms are anytime algorithms, which means that they can
at any time return the currently best policy found. This is a useful property in
real-time applications. However, the computational complexity of the POMDP is
not avoided. The size of Γ increases as more backups are performed causing the
backup operation to become more and more computationally expensive. To keep
the size of Γ down many algorithms include a pruning step to remove unneeded
α-vectors such as the vector α3 in Example 2.4.

It is sometimes possible to represent a POMDP as a factored POMDP model
where the states are represented with sets of random variables and the transition and
observation functions are represented as Bayesian networks [25]. Then properties
such as conditional independence between the variables can be exploited for more
efficient representation of belief states and backup operations. Further, if certain
state variables are fully observable, POMDP models such as Mixed Observability
Markov Decision Processes can leverage this [13].

There are not many existing applications of POMDP:s for decision making in
diagnosis and troubleshooting. Benazera and Chanthery [20] discusses potential
applications of POMDPs for repair and maintenance planning and Williams [146]
uses a POMDP for a spoken dialog troubleshooting system.

Belief MDP:s

When the discount factor γ = 1, the performance of many of the point-based
methods breaks down. It is possible to transform a POMDP into a continuous
fully observable Markov Decision Process (MDP) by replacing the state space
with the belief state space [28]. This is called a belief MDP, and for a POMDP
〈S,A,O, t, p,c,γ〉, the belief MDP is a tuple 〈B,A,τ, c̄,γ〉 where:

• B is the state space, the previous belief state space, an |S|-dimensional hy-
percube,

• A is the action space, same as before,

• τ : B×A×B 7→ [0,1] is the transition function, where

τ(b,a,b′) =

{
p̄(b,a,o) if b′ = ba,o for some o ∈ O,

0 otherwise,

and ba,o and p̄(b,a,o) are given by (2.6) and (2.7).

• c̄ : B×A 7→ R is the cost function where c̄(b,a) = ∑
s∈S

b(s)c(s,a).
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Policies for belief MDP:s can be computed using ordinary methods for MDP:s
that are capable of handling state spaces of infinite size. When a goal POMDP is
transformed into a belief MDP and there is a known initial belief state b0, the MDP
is sometimes called a Stochastic Shortest Path Problem (SSPP) [21]. Problems
formulated as goal POMDP:s can often be solved more efficiently as belief MDP:s
using ordinary MDP solution methods [24].

A large family of algorithms for computing near-optimal policies for these
types of MDP:s are derivatives of the Real Time Dynamic Programming (RTDP)
algorithm [17]. The RTDP algorithm computes a partial policy π and estimates its
expected cost with a value function f that is defined for an enumerated subset of
the state space. It explores the state space randomly through a series of depth first
random walks starting from the initial state. Such a random walk is called a trial
and it is a recursive function consisting of two steps:

1. A backup is performed on the current state b by doing a Bellman update
[19]:

f (b)←min
a∈S

(
c̄(b,a)+ γ ∑

b′∈succ(a,b)

τ(b,a,b′) f (b′)
)

(2.12)

π(b)← argmin
a∈S

(
c̄(b,a)+ γ ∑

b′∈succ(a,b)

τ(b,a,b′) f (b′)
)

(2.13)

where succ(a,b) = {b′ ∈ B : τ(b,a,b′)> 0} is the set of successor states of
state b given action a.

2. Unless a stopping condition is met, the function is called again using a ran-
domly selected state in succ(π(b),b) as the current state. A trial can be
stopped if e.g. f (b) = 0, a certain recursion depth is achieved, or a timeout
occurs.

Because the belief state space is continuous and the policy is defined over a
finite set of states, a complete policy is never created. However, when used in a
real-time setting where the policy is recomputed after every decision, the complete
policy is not needed. If the value function is initialized to a value lower than the
optimal expected cost and any state that is reachable from the initial state using the
current policy is backed up with a non-zero probability, then the value function and
policy will converge towards the optimal ones in the initial state [17]. RTDP-based
algorithms benefit from using strong heuristics when initializing the value function.
Many also use two value functions giving two-sided bounds on the optimal value
function (see e.g. [83, 108, 127]).

It is also possible to find solutions to SSPP:s using algorithms based on the
AO* search algorithm [87]. The solution is then not a policy but a conditional
plan of actions. The AO* algorithm is a heuristic search algorithm for acyclic
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a3 a2

a2 a1
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Figure 2.8: A small example of an AND/OR graph with a possible solution high-
lighted in bold. Hyperedges are drawn with directed edges joined by a small arc.

AND/OR graphs. An AND/OR graph for an SSPP is a directed hypergraph where
the nodes correspond to decision points, each labeled with a belief state, and the
edges are hyperedges, each labeled with an action directed to one other node for
each possible outcome of that action. The root node in this graph is labeled with
the initial belief state. A solution to an AND/OR graph G is a subgraph G′ such that
it is rooted in the initial belief state and every non-leaf node in G that is reachable
in G′ has exactly one outgoing edge, i.e. a single decision is made at every decision
point. This subgraph represents a conditional plan. The cost of a solution G′ rooted
in a belief state b is the expected cost of reaching a leaf node from b:

V (b) = c̄(b,π(b))+ ∑
o∈O

p̄(b,π(b),o)V (bπ(b),o) (2.14)

where π(b) is the action corresponding to the outgoing edge of the node labeled
with b in G′.

Figure 2.8 shows an example of an AND/OR graph for Example 2.3 rooted in
a belief state b0 where b0(s1) = 0.75 and b0(s2) = 0.25 (same as Example 2.2).
The optimal solution is highlighted in bold. This AND/OR graph corresponds to
the decision tree in shown Figure 2.6.

The AO* algorithm finds the optimal solution by iteratively expanding a search
graph that is a subgraph of the full AND/OR graph. At all times, the algorithm
records the lowest-cost solution for this subgraph. For each node of the search
graph, a value function is used to represent an estimate of the solution cost from
that node to the goal. The search graph is expanded by selecting a leaf node in
the current solution that is not a leaf node in the full AND/OR graph. Whenever
a node has been expanded, changes to the values of other nodes and the current
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best solution are propagated back to the root by performing Bellman updates on
all ancestor nodes. A heuristic function is used to assign costs to unexpanded
leaf nodes. The algorithm stops when no more nodes can be expanded. Then the
solution costs of all nodes in the search graph are minimal. Like the A* algorithm
[59], from which the AO* algorithm borrows its name, the final solution will be
optimal if the heuristic is an admissible heuristic that does not overestimate the
optimal expected cost.

The basic AO* algorithm cannot handle problems with cycles in the AND/OR
graph, but variants such as the LAO* algorithm [58] can handle more general
AND/OR graphs with cycles.

See e.g. [4, 29] for applications of the AO* algorithm for diagnosis and trou-
bleshooting.

2.2.3 Case-Based Reasoning

The Case-Based Reasoning approach to making decisions for diagnosis and trou-
bleshooting is to take decisions based on which decisions have been made previ-
ously when similar observations have been seen (see e.g. [45, 77] for a general
overview). When Case-Based Reasoning is applied to troubleshooting, situational
information regarding which observations were seen and which repair action re-
solved the problem is stored in a case library, whenever the troubleshooting of the
system has been successfully completed. Then when another system needs trou-
bleshooting, the current observations are matched with similar cases in the case
library. If the same repair action has resolved the problem for all or most of the
matching cases, this action will be recommended to the user. Otherwise observ-
ing actions can be recommended in order to discriminate between cases in the case
library. The case library can initially be filled with cases from manual troubleshoot-
ing sessions and then, as more cases are successfully solved using the Case-Based
Reasoning system, the quality of the recommended decisions improves over time
[43].

There are several applications of Case-Based Reasoning for troubleshooting
in the literature (see e.g. [16, 30, 43, 52]). However, these applications do not
explicitly consider the problem of making decisions that minimize the expected
cost of repair. Also, being purely data-driven, they require large amounts of data
from comparable systems to function effectively.
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Chapter 3

Contributions

This chapter gives a detailed overview of the troubleshooting framework that has
been developed. The research has led to contributions within four related research
areas: the overall troubleshooting framework, diagnosis, planning, and applica-
tions. Table 3.1 shows, for each of the publications authored or co-authored by
the author of this thesis, in which of the research areas related to the problem for-
mulation there has been a contribution. The following sections will discuss the
contributions made in all of these publications in some detail. The publications
[6, 8, 9, 11, 12] constitute the most significant contributions and these are appended
as Papers A–E in the second part of the thesis.

3.1 Troubleshooting Framework
This thesis work has led to the development of a framework for computer assisted
off-board troubleshooting that can be applied to vehicles in the workshop and re-
motely to vehicles on the road. For the case when the vehicle is in the workshop
only, the framework is presented in part in [1, 4, 8] and in full in [7]. An extension
of the framework so that remote troubleshooting can be supported is presented in
[11, 12]. Prototype implementations of the framework have been created for a hy-
draulic braking system [7, 8], an engine temperature control system, [11], and a
fuel injection system [12].
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Title Fram
ew

ork

Diag
no

sis

Plan
nin

g

App
lic

ati
on

[1] Troubleshooting when Action Costs are De-
pendent with Application to a Truck Engine

x x

[2] A Heuristic for Near-Optimal Troubleshooting
Using AO*

x x

[3] Modeling and Troubleshooting with Interven-
tions Applied to an Auxiliary Truck Braking
System

x x

[4] Anytime Near-Optimal Troubleshooting Ap-
plied to a Auxiliary Truck Braking System

x x

[5] Planning as Heuristic Search for Incremental
Fault Diagnosis and Repair

x x

[6] Iterative Bounding LAO* x

[7] Computer-Assisted Troubleshooting for Effi-
cient Off-board Diagnosis

x x x x

[8] Modeling and Inference for Troubleshooting
with Interventions Applied to a Heavy Truck
Auxiliary Braking System

x x x

[9] Exploiting Fully Observable and Deterministic
Structures in Goal POMDPs

x

[10] Improving the Maintenance Planning of Heavy
Trucks using Constraint Programming

x x

[11] Guided Integrated Remote and Workshop
Troubleshooting of Heavy Trucks

x x

[12] A Modeling Framework for Troubleshooting
Automotive Systems

x x x

Table 3.1: Research areas in which contributions have been made for each publi-
cation authored or co-authored by the author of this thesis. The above publications
are also listed in the same order first in the bibliographic references section of this
thesis.
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Figure 3.1: Overview of the troubleshooting framework.

Figure 3.1 shows an overview of the troubleshooting framework. The users
of the troubleshooter can either be in the workshop together with the vehicle (e.g.
mechanics) or interact with the vehicle remotely (e.g. helpdesk personnel). They
use the troubleshooter to get recommendations of actions, estimates of the expected
cost, and explanations of possible diagnoses. When a user has executed an action
on the vehicle, the action result is fed back to the troubleshooter afterward by the
user. It is also possible that the troubleshooter directly executes an action on the
vehicle (e.g. remote tests) and retrieves the action results by itself.

The troubleshooter consists of four modules, the event handler, the state han-
dler, the diagnoser, and the planner:
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• The event handler is the module with which users interact. It retrieves and
stores dynamic diagnostic information about the vehicle in a database for
diagnostic information in the form of events. The events describe changes
related to the vehicle, e.g., that a component is repaired, an observation is
made, and the vehicle is operated. The event handler uses the state handler
to obtain a state description of the vehicle by providing it with a previous
state and a sequence of events that have occurred since that state was com-
puted. The state includes information about the probabilities of possible
faults given the events, which can be presented to the user. To obtain action
recommendations and estimates of the expected cost, the event handler uses
the planner by providing it with an initial state to start planning from.

• The state handler is responsible for computing the state of the vehicle given
a previous state and a sequence of events. It also provides the planner with
information about which actions are possible given a state, what these actions
cost, and which other states each action can reach with which probability.
For this it uses an action model that contains information of which actions
there are and their costs, preconditions, and effects. The action model is
compiled to be specific for the current vehicle of the troubleshooting session
using vehicle information stored in a separate database. When computing
new states and the probabilities of reaching them, the state handler uses the
diagnoser to compute fault and outcome probabilities.

• The diagnoser is responsible for providing the state handler with fault and
outcome probabilities. Depending on the implementation of the diagnoser,
these probabilities are computed given a set of previous observations [11]
or a previous probability distribution and a new event [1, 4, 7, 8, 12]. The
diagnoser uses a diagnostic model that describes probabilistic dependencies
between component faults and observations. As with the action model, the
diagnostic model is compiled to be specific for the current vehicle of the
troubleshooting session using the vehicle information.

• The planner is responsible for providing the event handler with action rec-
ommendations and estimates of the expected cost. It uses the state handler
to get information of which actions are possible for a given state, what their
costs are, and which states are reached with which probability.

The framework is designed so that different implementations of the modules
can with some limitations be used interchangeably. The information that the state
handler provides to the planner is general enough so that different planning al-
gorithms can be plugged in and tested with different settings and heuristics. For
example, information of primitive actions, such as removing bolts and screws in or-
der to reach a component to replace or perform tests on, can be hidden away from
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the view of the planner inside the state handler and be replaced with macro actions
consisting of sequences of primitive actions. Then, the same implementation of the
planner that operates on the primitive actions can be used with the macro actions
(see e.g. [1, 4, 9]).

Different diagnosers can be used as long as they can provide the needed fault
and outcome probabilities. For example in [1, 4, 5, 7, 11] the diagnosers are imple-
mented using static Bayesian networks, and in [3, 7, 8, 12] non-stationary dynamic
Bayesian networks are used.

3.2 Diagnosis
Several contributions have been made for this thesis on how to solve the diagnosis
problem and how to implement a diagnoser. In [3] and [8] (Paper B), a novel
method for making diagnosis using non-stationary Bayesian networks (nsDBN)
is presented. In [7], further improvements and generalizations of this method are
made where the nsDBN is converted back into a single static Bayesian network.
In [12] (Paper E), a novel diagnostic framework using dynamic Bayesian networks
is presented. This framework is better suited for integrated remote and workshop
troubleshooting where the troubleshooting sessions span over longer periods of
time. For this framework, it is described how model parameters can be learned
from statistical data and several different inference methods are evaluated.

3.2.1 Troubleshooting with Interventions using nsDBN:s

If it is possible to actively change the health state of components by either mak-
ing repairs or operating the vehicle, then it can be problematic to model the trou-
bleshooting process using an ordinary stationary Bayesian network like the one
shown in Figure 2.5. These types of actions change the value of random variables
in the network in a non-random way. Such a change is called an intervention and
it influences how inference can be made in the network [94]. In other approaches
[62, 75], interventions due to repairs are handled by enforcing a rule that requires
the user to verify whether the last repair action solved the problem or not. If the re-
pair did not solve the problem, then we know that there was no fault on the repaired
component and we can treat the repair as an ordinary observation of the health state
of that component being non-faulty. If the repair did solve the problem we know
that the system has no faults and further inference is not needed. However, when
troubleshooting trucks the cost of verifying whether a repair has solved the problem
can be large in comparison with the cost of the repairs themselves. Enforcing this
rule of mandatory problem verifications can make troubleshooting unnecessarily
expensive and therefore novel methods for modeling the troubleshooting process
are needed.

41



Chapter 3. Contributions

In [8] we propose to model the troubleshooting process with an event-driven
nsDBN. In distinction to an ordinary dynamic Bayesian network, each time slice of
an nsDBN can have a different structure and different conditional probability distri-
butions [102]. In our case these differences come from repairs and the operations of
the vehicle which generate events that are interventions. For each new event, a new
time slice is added to the nsDBN whose structure and parameters are dependent on
the event. Straight-forward inference in such a network using ordinary methods is
intractable because the size of the network grows over time. The proposed solution
is to use a static Bayesian network and manipulate the structure and parameters of
this network using a set of rules for each new event. The manipulation according
to these rules ensures that inference in this static network is equivalent to inference
in the full nsDBN for the types of queries needed in troubleshooting.

Figure 3.2 shows an example from the paper of how such a static network is
manipulated. In the model, random variables are classified as either persistent
or non-persistent and probabilistic dependencies are classified as either instant or
non-instant. A random variable is persistent when its value is dependent on the
random variable corresponding to itself in a previous time slice (gray nodes). Oth-
erwise it is non-persistent (white nodes). An instant dependency between variables
(solid line) is present between the variables in every time-slice. A non-instant de-
pendency between variables (dashed line) is present only after operation events.
After other events, the child variable is dependent on the random variable corre-
sponding to itself in the time slice after the most recent operation event. A limi-
tation of the proposed method is that the equivalence between the static network
and the nsDBN only holds if there is at least one operation event between any two
repair events.

An extension to the method presented above is proposed in [7]. This method
does not have the same limitation and therefore the events can occur in arbitrary
order. The solution is to keep two copies of the persistent variables, one represent-
ing their values at the time before the last operation event and another representing
their values at the current time. Figure 3.3 shows an example of the static Bayesian
network representation of an nsDBN using this method. Every non-instant edge
from a persistent variable appears in the static Bayesian network as an edge from
the copy of the persistent variable at the time before the operation event and every
instant edge from a persistent variable appears from its copy at the current time.
Theoretical results show that given a probability distribution over all the persistent
variables, inference in the static Bayesian network is equivalent to inference in the
nsDBN for the relevant query types. An apparent weakness with this method is the
requirement to have to know the probability distribution over the persistent vari-
ables both at the current time and at the time of the last operation event. However,
it is shown that it is sufficient to only keep a probability distribution over the per-
sistent variables at the time of the last operation event and the set of repair events
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shown to the left and the corresponding static Bayesian network is shown to the
right. Persistent variables are highlighted in gray and non-instant edges are dashed.

that have occurred since that time. Then, the probabilities of the persistent vari-
ables at the current time can be derived from this probability distribution and the
known repair events. This method is shown to be feasible for making diagnostic
inference on a model of a subsystem of a truck: an auxiliary braking system with
20 components that can have faults.

3.2.2 Diagnostic Framework for Integrated Remote and Work-
shop Troubleshooting

In the previous methods presented in Section 3.2.1 it is assumed that no new faults
are introduced during operation events. This is because the frameworks are in-
tended to be used when the vehicle is in the workshop during the entire trou-
bleshooting session. In the workshop, vehicles are typically operated for time
periods in the order of minutes. This can be compared to the mean time between
failures for components which is in the order of years. In [12] a novel diagnos-
tic framework is proposed that is intended to be used when the planning of trou-
bleshooting actions that can be performed remotely while the vehicle is on the road
is integrated with the planning of the troubleshooting actions that are carried out in
the workshop. In this case, the time from the moment when the first observation
of a problem occurs and remote troubleshooting can be initiated until the time the
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vehicle leaves the workshop and the troubleshooting session ends can be several
weeks. Over time periods of this length it is not feasible to assume that the persis-
tent variables remain unchanged during operation. While awaiting an appropriate
time for making a workshop visit, new faults can occur and the behavior of faults
can change so that previously observed symptoms disappear and new symptoms
appear.

In the proposed solution, the diagnostic model of the vehicle is modeled with
different types of random variables representing components, faults, symptoms,
faults causing symptoms, and observations. Figure 3.4 shows the topology of de-
pendencies between these variables for a small example with a single component: a
rail pressure sensor that can have three different types of faults. The model is mod-
ular in the sense that several component-level submodels can be combined into a
complete model to match the configuration of a particular vehicle. Each of these
submodels can be created and parameterized independently.

The presence of a fault i at time t is modeled with a fault variable F t
i which

is a random variable that can either have the value present (P) or the value not
present (NP). The process of faults occurring during operation is modeled using
a homogenous Poisson process. When this model is used, faults are considered
to be equally probable to occur at any time during operation and there exist exact
and efficient methods for computing probabilities and learning parameters from
statistical data. The probability of having a fault at time t2 is only dependent on
the probability of having a fault at a previous time point t1 and the number of
kilometers traveled since then:

Pr(F t2
i = P) = Pr(F t1

i = P)+
(
1− e−λfail,i(m(t2)−m(t1))

)
Pr(F t1

i = NP)

where λfail,i is a parameter that describes the mean time (in operated kilometers)
between failures for fault i and m(t) is the mileage at time t.

A novel model is used for modeling how symptoms are caused by faults. This
model is similar to the Noisy-Or distribution [63] where a symptom can be present
only if there is a fault present that causes the symptom. The Noisy-Or model is
extended with a model describing how symptoms can appear and disappear inter-
mittently as the vehicle is operated. The causing of a symptom j by a fault i at
time t (a symptom-cause) is modeled with a symptom-cause variable St

i, j which
is a random variable that can either have the value active (A) or not active (NA).
A symptom (modeled with a symptom variable) is present if any of its symptom-
causes are present. Unless its fault is present, a symptom-cause cannot be active,
but if the fault is present then the symptom-cause does not necessarily have to be
active. A parameter pi, j models the probability that a symptom-cause becomes ac-
tive when the fault i occurs. If the fault should already be present and the vehicle
is operated for some time, then the symptom cause may transition from active to
non-active and vice versa. The frequency of these transitions is controlled with a
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parameter λi, j called the symptom-cause inertia. If the vehicle is operated between
times t1 and t2, then with probability e−λi, j(m(t2)−m(t1)) the symptom cause will re-
main the same, otherwise it will be active with probability pi, j. The distribution of
St

i, j depends on two parameters, pi, j and λi, j. Assume that the vehicle is operated
from time t1 to time t2. The probability that the symptom cause is present at time
t2 is:

Pr(St2
i, j = A) = Pr(F t1

i = NP)pi, j
(
1− e−λfail,i(m(t2)−m(t1))

)

+Pr(F t1
i = P)

(
Pr(St1

i, j = NA)pi, j
(
1− e−λi, j(m(t2)−m(t1))

)

+Pr(St1
i, j = A)

(
e−λi, j(m(t2)−m(t1))+ pi, j

(
1− e−λi, j(m(t2)−m(t1))

)))
.

These symptoms represent what is actually true on the system. However, an
external observer may be unable to correctly observe this. What is observable by
the external observer is modeled with binary observation variables. If an observa-
tion should depend on several symptoms, a logical function is used to map every
possible combination of the values of these symptoms into a binary response. The
value of this function is represented with a logical variable. Typically there is a
one-to-one correspondence between the value of a symptom variable or a logical
variable and its corresponding observation variable. However, if it is possible that
the external observer perceives the symptoms erroneously, e.g. due to measure-
ment noise, the probabilities of having a false positive or a false negative result of
observations are modeled with Bernoulli distributions.

When an event occurs, a new set of variables is representing the vehicle af-
ter this event. The CPT:s of these variables depend on the occurred event which
means that this model is also an nsDBN. As previously mentioned, making infer-
ence directly in an nsDBN is intractable. Instead of finding a static Bayesian net-
work equivalent of the nsDBN, we explore several different approximate inference
methods based on the Boyen-Koller inference algorithm for dynamic Bayesian net-
works [26]. For this, a new model for approximately representing the probability
distribution over the persistent variables (the fault and symptom-cause variables)
is proposed that combines a single fault model with a multiple fault model. Also,
a new inference algorithm is presented that is capable of making inference in lin-
ear time when the network has a certain structure. This algorithm is inspired by
the Quickscore algorithm for two-layer networks with only Noisy-Or CPT:s [61].
The different inference methods using different representations of the probability
distributions are evaluated both empirically and theoretically with regard to cor-
rectness and efficiency. It is shown that the approximate inference using the new
inference algorithm together with the new method for representing the probability
distributions is feasible for models with thousands of possible faults.
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The framework also includes methods for learning parameters from data based
on a combination of conjugate priors and maximum à posteriori estimates. These
methods are also evaluated both empirically and theoretically and it is shown that
it is possible to learn model parameters from reasonable amounts of statistical data
in the form of warranty reports.

3.3 Planning
Several contributions have been made on how to improve the planner. In [6] (Pa-
per A), a novel algorithm is proposed for problems formulated as Stochastic Short-
est Path Problems (SSPP:s). This algorithm, Iterative Bounding LAO*, is a general
algorithm that has properties that make it more suitable for planning troubleshoot-
ing problems than other comparable algorithms. In [1, 4], a method is presented for
separating actions that assemble and disassemble parts of the vehicle from those
that make observations and repair faults. Using this method, the planning prob-
lem can be solved more efficiently using standard planning algorithms. In [9]
(Paper C), this method is generalized so that it can be applied on any problem
formulated as a goal-POMDP. Novel heuristics that can be used by the different
planning algorithms are described in [2, 5, 7]. In [11] (Paper D) an extension to the
troubleshooting framework is presented where remote and workshop troubleshoot-
ing is integrated. The planner used in this framework is responsible for planning
actions from the instant a fault is detected on the road until the vehicle leaves the
workshop where both repair costs and vehicle downtime costs are considered. A
novel planning algorithm is proposed that achieves this.

3.3.1 Iterative Bounding LAO*

Iterative Bounding LAO* (IBLAO*) finds near-optimal solutions to problems for-
mulated as SSPP:s. It is based on the algorithm LAO* [58] (see Section 2.2.2) and
uses two search heuristics to guide the search. Just as LAO*, it searches the state
space from an initial state until a conditional plan of actions is found that achieves
the goal for every possible action outcome. During search it keeps track of esti-
mates of the minimal expected cost to reach the goal from each searched state. In
distinction to LAO*, it uses two estimates for the minimal expected cost for each
searched state s: a lower bound estimate fl(s) and an upper bound estimate fu(s).
During search the distance between the estimated bounds is iteratively narrowed
over time towards the minimal expected cost.

A lower bound policy πl and an upper bound policy πu are defined such that
for each state s, πl(s) is the action that minimizes the lower bound and πu(s) is
the action that minimizes the upper bound. In each iteration of the algorithm, the
values of the estimates and the policies are updated on selected states by applying
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the backup operations, (2.12) and (2.13), on these. The states that are backed up
are selected from the fringe nodes of the solution graph of the lower bound policy.
For previously unsearched states, the bounds must be initialized using heuristics hl

and hu such that for all states s,

fl(s) = hl(s)≤V ∗(s)≤ hu(s) = fu(s)

where V ∗(s) is the minimal expected cost to reach the goal from state s. Then
after each backup, the new values of the estimates, f ′l (s) and f ′u(s), will be closer
or equally close to the minimal expected cost than the previous values, fl(s) and
fu(s):

fl(s)≤ f ′l (s)≤V ∗(s)≤ f ′u(s)≤ fu(s).

Also, it is shown that the minimal expected cost of using the upper bound policy
is smaller or equal than the upper bound if the upper bound heuristic is uniformly
improvable, i.e. if fu(s) = hu(s) for all states s then after backing up s, f ′u(s) ≤
hu(s). In practice, this is achieved if the upper bound heuristic is derived from a
real policy that solves the problem suboptimally.

The novelty of IBLAO* is the mechanism for expanding the search graph so
that the total number of needed expansions is kept small. States to expand the
search graph with are selected from those fringe nodes that have a high probability
of being reached with the lower bound policy and where the relative difference
between the upper and lower bound is large. During search, the algorithm can
output solutions to the SSPP with proven bounds at any time. The user can monitor
the bounds at run time and use these to decide when a solution with sufficient
quality is found. It is also shown how IBLAO* can be used together with weighted
heuristics for faster initial convergence of the bounds.

Two-sided bounds have been used in other algorithms for SSPP:s that are based
on the RTDP algorithm [83, 108, 127]. In empirical tests on benchmark prob-
lems, IBLAO* requires significantly fewer state expansions at the cost of a higher
overhead when propagating bounds because it performs more state backups. For
troubleshooting problems it is computationally intensive to expand states because
this requires inference in a Bayesian network. Then the lower number of state
expansions for IBLAO* is a clear advantage.

3.3.2 Assembly and Disassembly Actions

When troubleshooting a vehicle in a workshop, many actions are performed that
do not directly serve to make an observation or a repair, e.g. actions that disassem-
ble components in order to reach parts of the vehicle where a component can be
repaired and actions that reassemble the vehicle after the troubleshooting is com-
pleted. The cost of these actions needs to be considered during planning because it
can stand for a significant part of the total troubleshooting cost.
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When the evidence at time t is an observation, et = {Oti=
o}, the belief state is updated according to Bayes’ rule.

bt(c) =
P (Oti=o|c, e1:t−1)bt−1(c)

ρe1:t

(3)

where ρe1:t
is a normalization constant designating the like-

lihood of the observation et given e1:t−1.
A repair of a component Ci has to be treated differently

from just observing that Ci = NF since the repair causes
the component to be non-faulty. Using the notation from
(Pearl 2000) we denote the evidence that a repair is made at
time t as et = do(Cti=NF ), and the belief state is updated
by moving probability mass from a state where Ci = F to
one where Ci = NF ,

bt(c) =

{
ϕi(bt−1(c) + bt−1(c′)) if ci = F
(1− ϕi)(bt−1(c) + bt−1(c′)) if ci = NF

(4)

where c′ = (c′1, . . . , c
′
N ), c′j = cj for j 6= i, and c′i = F

and ϕi is the probability that the repair fails and the action
instead causes the component to be faulty. Each probability
ϕi i ∈ [1, N ] is known à priori and can be regarded as the
probability that the replacement component is faulty from
the factory.

For the heavy vehicle domain, we model the observations
with no variance. If there is previous evidence for Oi and no
repair has been made to any of the parents of Oi in the BN
at a later time, this repeated observation will give the same
result, i.e. if
∃et′@et′′ ∈ e1:t−1, 0 ≤ t′ < t′′ ≤ t− 1,

et′ = {Ot
′
i =o

′}, et′′ = do(Ct
′′
j =NF ), Cj ∈ pa(Oi) (5)

then
P (Oti=o|c, e1:t−1) =

{
1 if o′ = o
0 if o′ = ¬o (6)

otherwise the conditional probability of making the obser-
vation is looked up in its CPT:

P (Oti=o|ct, e1:t−1) = P (Oi=o|c) (7)

4.3 Configuration State
The degree of disassembly of the system is described by the
configuration state which is completely observable. Each
disassemblable part of the system is represented by a config-
uration variable that can be in one of the modes assembled
or disassembled . These variables relate to each other ac-
cording to a directed acyclic graph describing how the dis-
assemblable parts are attached to each other. For a configu-
ration variable K to be assembled all its children also needs
to be assembled and for K to be disassembled all its par-
ents must be disassembled . An example of this graph for a
hydraulic braking system is shown in Figure 2. For example
if we want to remove the propeller shaft K7 the oil in the
retarder K1 and the oil in the gearbox K4 must be drained.

4.4 Action Model
Each action is modeled with a cost, a set of precondi-
tions, and an ordered set of effects. The cost is a con-
stant corresponding to the amount of time required to per-
form the action and the amount of resources consumed.
The preconditions are conjunctions of expressions of the
type K = k where K is a configuration variable and
k ∈ {assembled , disassembled}. To perform an action, all
its preconditions must be true. The effects can be to repair
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Figure 2: Graph showing dependencies between configura-
tion variables of an auxiliary braking system.

a component, do(C=NF ), to observe the value of an ob-
servation variable, observe(O), or to change the mode of a
configuration variable, do(K=k). The effects are ordered
since it makes a difference if an observation is made before
a repair or after. Each action that has effects that change the
mode of configuration variables has preconditions that are
consistent with the constraints defined by the configuration
graph.

5 Simplifying the Model
The observer’s diagnostic engine, D1 in Figure 1, updates
the belief state as described in Section 4.2 using the com-
plete model. We argue that better decisions can be made in
limited time if the planner uses a simplified model that ig-
nores model features with small probabilities. The model
used by the planner’s diagnostic engine D2 is obtained by
applying a filtering function fε with the filtering parameter
ε to the parameters p of the current belief state, the CPT:s in
the BN, and the probabilities of failed repairs:

fε(p) =




0 if p ≤ ε.
p if ε < p < 1− ε.
1 if p ≥ 1− ε.

(8)

Since the probability mass in the belief state must be equal
to 1, it is normalized after filtering. In the belief state we
only have to enumerate the probabilities of faults and com-
binations of faults with a probability greater than zero. After
filtering, the belief state that the planner is initiated with has
a maximum size of 1/ε. Also, when a belief state bt is up-
dated after an observationOt+1

i =o each entry bt+1(c) where
P (Oi=o|c) = 0 can be removed. Because the time required
to update a belief state is dependent of its size, a large ε
speeds up planning. However, the parameter ε must be cho-
sen carefully since an ε too large may cause the planner to
make suboptimal choices because of lost information.

In the heavy vehicle domain the values of all observation
variables from the OBD are observed by the test drive ac-
tion. The planner can avoid treating all possible outcomes
of these observations by clustering them into a single obser-
vation variable that indicates when there exists a faulty com-

Figure 3.5: The assembly graph for a hydraulic braking system [5].

In [4] it is proposed to separate the planning of observing and repairing actions
from the planning of the actions that assemble or disassemble decomposable parts
of the vehicle. These decomposable parts are represented with binary variables
called assembly variables that can either be in the state assembled or disassembled.
For every assembly variable there is an assembly action that makes the variable
assembled and a disassembly action that makes the variable disassembled. Each
action that can be performed on the vehicle has a precondition that describes which
assembly variables must be assembled and which must be disassembled for the
action to be executable.

The preconditions of the assembly and disassembly actions are modeled with
an assembly graph which is a directed acyclic graph that describes in which or-
der decomposable parts of the vehicle must be disassembled. Figure 3.5 shows an
example of such a graph for a hydraulic braking system. In order to assemble an
assembly variable, all children of this variable in the assembly graph must be as-
sembled, and, vice versa, in order to disassemble an assembly variable, all parents
of this variable must be disassembled. The sequence of assembly and disassem-
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bly actions needed to fulfill the precondition of another action can be computed
quickly through a topological search of this graph (see Algorithm 4 in [7]). Then a
macro action is created by joining this sequence of actions with the intended repair
or observing action.

During planning, the planning algorithm only needs to consider these macro
actions because the assembly and disassembly actions are hidden away in the cost
function. The benefit with this approach is that a goal state can be reached in
much fewer steps which thereby potentially reduces the size of the search graph.
Empirical tests on a troubleshooting model of an auxiliary braking system shows
that this approach can speed planning up with several orders of magnitude (see
Table 5.7 in [7]).

3.3.3 Exploiting Deterministic Structures

In [9], a generalization of the above method of abstracting away assembly and dis-
assembly actions is proposed. This is a general theory that can be applied to any
problem modeled as a factored goal-POMDP. It is based on the principle that ac-
tions that deterministically affect only variables that are fully observable can be
abstracted away just as we previously abstracted away the assembly and disassem-
bly actions. The input to the method is a factored goal-POMDP 〈S,A,O, t, p,c,1〉
with initial state s0.

First the goal-POMDP model is preprocessed in a three step process identifying
the fully observable variables and the actions that can be abstracted away. In the
first step, the model is scanned so that fully observable variables can be identified.
A variable is found to be fully observable if its value is known in the initial state
and every action either deterministically manipulates it or makes an observation
that uniquely identifies its value. The variables that are not fully observable are
said to be partially observable. Each state s ∈ S can then be separated into a fully
observable part fo(s) indicating the values of the fully observable variables, and
a partially observable part po(s) indicating the values of the partially observable
variables.

In the second step, the action set A is transformed so that all actions can be
assigned valid FO-preconditions. A FO-precondition of an action is a boolean
function of the fully observable part of the state. To be a valid FO-precondition, it
must hold that for all states where the FO-precondition evaluates to true, the effect
of the action must be similar with regard to its cost and its effect on the partially
observable part of the state. An action a is defined to have similar effect in the
states si,s j if:

c(a,si) = 0 iff c(a,s j) = 0
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and for all partially observable variables V :

Pr(V = v|si,a)





= 0 if Pr(V = v|s j,a) = 0,

∈ (0,1) if Pr(V = v|s j,a) ∈ (0,1),

= 1 if Pr(V = v|s j,a) = 1.

where Pr(V = v|s,a) is the probability that executing action a in state s results
in a state where V has the value v. In general, not all actions in the original ac-
tion set have valid FO-preconditions. However, an action for which valid FO-
preconditions cannot be found can be partitioned into multiple actions with valid
FO-preconditions for non-overlapping subsets of the state space.

In the third step, the actions are classified as either support actions or relevant
actions where a support action is an action that only deterministically manipulates
fully observable variables, and a relevant action is an action that can gain informa-
tion of the belief state or manipulate a state variable in a way that a support action
cannot. When comparing to the previous approach, the assembly and disassem-
bly actions would be classified as support actions and the observing and repairing
actions would be classified as relevant actions.

When a planning algorithm needs to know which actions are applicable in a
given belief state, a macro action is created for each relevant action by computing
the sequences of support actions needed to satisfy the FO-precondition of that ac-
tion. This can be done using any shortest path algorithm such as the A* algorithm
[59].

Theoretical results show that the method is complete, i.e. if there exists a solu-
tion to the Goal-POMDP with a finite cost, then such a solution can be found in the
transformed model. Because of the way that valid FO-preconditions are defined, it
does not matter in which fully observable state that a relevant action is performed
as long as the FO-precondition is true.

A drawback with the method is that when the model has many actions that
behave differently in different parts of the state space, the number of relevant ac-
tions can increase significantly because of the splitting of actions. However when
the actions are such that they are only applicable in very small parts of the state
space, the method can instead speed up planning significantly. This is the case for
problems similar to the troubleshooting problem and empirical results support this
claim.

3.3.4 Heuristics

Many planning algorithms that can be used for the troubleshooting problem benefit
from search heuristics. In [2] a heuristic is proposed where parameters are learned
using training data from simpler problem instances. Some planning algorithms,
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such as the IBLAO* algorithm, require that the heuristics are either lower or upper
bounds of the minimal expected cost. In [7] several such heuristics are proposed
that can be used in various settings of the troubleshooting problem.

Lower Bound Heuristics

When the SSPP is a belief-MDP, it is possible to create a lower bound heuristic
by solving a simplified problem where the true state is fully observable [15]. The
heuristic estimate of the expected cost in a belief state can then be obtained by
weighting the probability of being in a particular state with the cost of solving the
problem when the system is known to be in that state. When applied to the trou-
bleshooting problem this is equivalent to assuming that we can always determine
which fault is present with zero cost. For each fault that is possible, the optimal
plan for repairing the now known fault is deterministic and can easily be computed.
In [7] this is called the full observability heuristic hfo:

hfo(b) = ∑
d

Pr(d|b)crep(d,b)

where Pr(d|b) is the probability of having the diagnosis d given belief state b and
crep(d,b) is the cost of repairing all faults in d given the fully observable part of b.

A drawback of the full observability heuristic is that it does not consider the
costs of the observing actions that might be needed to solve the problem. When
only observing actions are considered, it is common to use the entropy of the belief
state as a measure of the expected cost to solve the problem (see Section 2.2.1).
We will call this the entropy heuristic hent:

hent(b) = H(b)cH

where H(b) = ∑s b(s) log2(b(s)) is the entropy of belief state b and cH is a con-
stant. If cH is the smallest cost of reducing the entropy by 1 using any sequence of
observing actions, then hent is a lower bound.

Because the entropy heuristic only considers the cost of observing actions and
the full observability heuristic only considers the cost of repair actions it is natural
to form another heuristic by summing these two as in [132]. In [2], it is proposed
to use such a combined heuristic where the value of cH is learned from training
data collected from previously solved problem instances for better planning per-
formance. However, the heuristic obtained by straight-forwardly adding hfo to hent

is not a lower bound because it does not consider that repair actions also can reduce
the entropy of the belief state. In [7], a new heuristic that combines hfo and hent so
that it becomes a lower bound is proposed. This is the combined heuristic hcomb:

hcomb(b) = hfo(b)+max
(

0,H(b)−∑
d

Pr(d|b)Hrep(d)
)

cH
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where Hrep(d) is the maximal entropy that can be removed by repairing all faults
in the diagnosis d. It is shown both theoretically and empirically that this heuristic
is a lower bound and that it is stronger than both hent and hfo individually. The
above formulation of the combined heuristic assumes that all repair actions are
perfect, i.e. attempted repairs always succeed, and that it is not possible to end the
troubleshooting session early by accepting a penalty cost for the remaining faults.
However, in [7] further variations of this heuristic are proposed that allow both
imperfect repairs and the possibility to end troubleshooting sessions early.

Upper Bound Heuristics

If it is possible to efficiently compute the expected cost of a known plan or policy
that is guaranteed to solve the troubleshooting problem this can be used as an upper
bound heuristic. Such a heuristic will be uniformly improvable (see Section 3.3.1).
The heuristic hheck described in Section 2.2.1 is such a heuristic which can be used
when there can be at most a single fault, action costs are constant, and it is possible
to verify whether faults on the system are present or not (i.e. a system check) [62].

In [7] two novel upper bound heuristics are proposed. The first heuristic is
for the case where multiple faults can be present and the action costs are state
dependent (e.g. because they are macro actions as described in Section 3.3.2). The
second heuristic is for the case when there can also be imperfect repairs (i.e. there
is a probability that the fault remains after an attempted repair of it), it is possible
to end the troubleshooting session early, and there is no system check available.
Both heuristics are based on the idea of evaluating a plan consisting of a sequence
of smaller partial plans each ensuring that a suspected fault is removed.

The first heuristic has two types of partial plans. The first one is for faults that
can be inspected, i.e. there exists an action that can verify whether the fault is
present or not, and the second one is for those faults that are not observable:

1. Inspect whether the fault is present or not. If it is not present, continue to the
partial plan for the next fault. Otherwise, repair the fault and then perform
a system check. If the system now is non-faulty, end the troubleshooting
session, otherwise continue to the partial plan for the next fault.

2. Immediately repair the fault and then perform a system check. If the system
now is non-faulty, end the troubleshooting session, otherwise continue to the
partial plan for the next fault.

After each partial plan is executed, the troubleshooting session is either ended or
it is continued with the next partial plan. In this way the full plan never branches
out and therefore it is possible to compute its expected cost efficiently from any
given belief state in time linear with the number of faults. The ordering of these
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partial plans is arbitrary for the sake of the heuristic being an upper bound, but the
best performance has been experienced when they are ordered by their probabil-
ity/inspection cost ratios as for the heuristic hheck described in Section 2.2.1.

When repairs are imperfect we cannot be sure that repairing a faulty component
really removes the fault. Further if we cannot make a system check we cannot
know if an attempted repaired has succeeded. However, if the troubleshooting
session can be ended early, not all faults must be successfully repaired. The second
heuristic uses five types of partial plans, each representing alternative methods of
either verifying that a fault is not present or ignoring it until the troubleshooting
session is ended. Each partial plan is evaluated for each fault and the partial plan
with the lowest expected cost is selected. The last three partial plans can only be
used for faults that can be inspected. The five partial plans are the following:

1. Immediately accept the risk that the fault is present (adding the expected
penalty for this to the expected cost of this plan), then continue to the partial
plan for the next fault.

2. Repair the fault, then continue with partial plan 1 for this fault.

3. Repair the fault and then inspect it. If the fault is still present, repeat these
two actions until the fault is no longer observed to be present. Then continue
to the partial plan for the next fault.

4. Inspect the fault. If it is not present continue to the partial plan for the next
fault. Otherwise continue with partial plan 2.

5. Inspect the fault. If it is not present continue to the partial plan for the next
fault. Otherwise continue with partial plan 3.

Like the previous one, this heuristic can also be evaluated in time linear in the
number of faults. In experiments with a troubleshooting model of a hydraulic
braking system, it is shown that this heuristic improves the quality of decisions
computed using IBLAO* when planning time is limited [7].

3.3.5 Integrated Remote and Workshop Troubleshooting

In [11] a novel troubleshooting framework is presented for integrated remote and
workshop troubleshooting. Then troubleshooting starts at the instant a fault is de-
tected on the road and ends when the vehicle leaves the workshop. The types of
actions that are available for planning are:

• reservation actions that make new reservations at specific workshops,

• transport actions that take the vehicle to the next planned workshop visit,

• observing actions (remote or in-workshop),
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• repair actions, and

• the end session action that ends the troubleshooting session.

The planner needs to consider both the direct costs from making repairs and
observations and the indirect costs from the vehicle downtime experienced by the
vehicle owner. Making unnecessary visits to the workshop is costly for the vehicle
owner. To reduce the overall expected cost, remote tests can be run on the vehicle
so that diagnoses where the suspected faults are serious enough to require imme-
diate attention are separated from those where the faults are such that it can be
expected to be less costly to wait until the next already scheduled workshop visit
than having to disrupt operations and schedule a new workshop visit.

Downtime costs are modeled into the cost functions of the reservation and
transport actions. For a reservation action, the cost is a constant representing the
additional costs the vehicle owner has because of disturbances in the work sched-
ule when having to perform an unexpected workshop visit. The cost of transport
actions depends on how the vehicle is transported to the next planned workshop
visit. Three options are available. Either the vehicle is operated normally until the
time of the next planned workshop visit, the vehicle is put on hold until the time of
the next planned workshop visit and then it drives there, or the vehicle is towed to
the workshop and then put on hold until the time of the visit. The cost of operat-
ing normally depends on the duration of the operation and the severity of present
faults. The cost of being put on hold depends on the duration of the time being
put on hold. The cost of towing depends on the distance to the workshop. To be
able to correctly compute these costs, the state that previously only represented the
diagnostic aspects of the vehicle is extended with variables that represent the time
and location of the vehicle and the next planned workshop visit.

To be able to compute decisions with reasonable constraints on computation
time, a new planning algorithm is needed. The new algorithm is a look-ahead
search algorithm based on the algorithm of Langseth and Jensen [75] described in
Section 2.2.1. It can compute suboptimal decisions in time linear in the number
of actions and the time for computing and evaluating new states (which depends
on the inference method used by the diagnoser and the heuristics used). If the
vehicle is in the workshop the algorithm proceeds much like Langseth and Jensen’s
algorithm. However, when the vehicle is not in the workshop, it needs to reason
about the best way of transporting the vehicle to the workshop and whether remote
testing is needed. The cost model of transport actions is conceived so that the costs
increase monotonically with the time and distance to the next workshop visit. Then
it is only necessary to compare the cases where the vehicle is transported to the
currently next planned workshop visit with those where the vehicle is transported
to the nearest workshop at the earliest possible time.
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The new algorithm can be used together with any of the previously described
methods for implementing the diagnoser, abstracting away assembly and disas-
sembly actions, and computing heuristics. For a clearer presentation, the diagnoser
used in the paper is a conventional static Bayesian network.

3.4 Applications
During the development of the troubleshooting framework, three real subsystems
of a heavy truck have been used as application examples: an auxiliary truck braking
system called the retarder, a common-rail fuel injection system called the XPI
system (eXtreme high Pressure fuel Injection system), and an engine temperature
control and monitoring system. In this section, we will describe these systems and
how they have been used in the different contributions.

3.4.1 The Retarder

The retarder is an auxiliary hydraulic braking system that allows braking of the
truck without applying the conventional brakes. The system consists of a combina-
tion of mechanical, hydraulic, pneumatic, and electronic parts that are controlled
by an electronic control unit (ECU). This is typical for systems on heavy vehicles.
The most challenging faults to troubleshoot are internal oil leakages, air leakages,
and certain mechanical faults that cannot be isolated by the on-board diagnostic
system.

Figure 3.6 shows a schematic of the retarder. The central component of the
retarder is the torus which consists of two parts, a rotor (1) and a stator (2). The
rotor rotates with the engine and the stator is rigidly fixed with the retarder housing.
When engaged, the volume in the torus is filled with oil causing friction between
the rotor and stator which is converted to braking torque that is transferred via the
retarder axle (3) to the propeller shaft (4) in the gear box. This friction heats up
the oil which needs to be cooled off by circulating it through a cooler (8) using
the pump (5). The amount of braking torque is proportional to the engine speed
and the amount of oil in the system. At full effect and high engine speed, the
retarder can generate braking torque of a magnitude that is comparable with the
full engine torque. To engage the retarder, oil is taken from the oil sump and
inserted into the system through the accumulator valve (12). Smaller adjustments
of the amount of oil in the system are made using a control valve (6). To disengage
the retarder, the safety valve (10) is opened and the torus is drained of oil. The
valves are controlled by the ECU through a pneumatic valve block (7) using inputs
from sensors that measure the coolant temperature (13), the oil temperature (14),
and the oil pressure (15).
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Figure 3.6: Schematic of the retarder

When modeling the retarder, the first step was to let experts identify all system
components that were known to fail. Then the experts listed all observations that
could occur because of a failure on a given component. For each dependency
parameters were estimated by the experts. To reduce the number of parameters
needing to be set, leaky noisy-OR distributions [63] were used to model CPT:s
with many dependent variables. In total, the diagnostic model has 20 components
which can be faulty and 25 observations. The planning model has 68 actions.
Information about their costs, effects, and preconditions was obtained from the
workshop manual [111] and a proprietary database containing standard times for
all the actions. The assembly graph is modeled with 13 assembly variables using
information from the workshop manual.

In [4, 5], a static Bayesian network model of the retarder is used and in [3, 7, 8]
nsDBN models are used. The planning model is used in [4, 5, 7, 8]. A detailed
presentation of the nsDBN model and its parameters can be found in [7].

3.4.2 The XPI System

The XPI system is responsible for dosing the correct amount of diesel fuel into
the cylinders. It is a common rail fuel injection system, which means that highly
pressurized fuel is stored in an accumulator called the common rail before being
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Figure 3.7: An overview of the XPI system and its main components.

injected into the cylinders. Using this high pressure, the fuel can be injected in
multiple sprays with a high degree of control independently of the piston positions
for maximized fuel efficiency and environmental performance.

Figure 3.7 shows an overview of the XPI system and its main components.
The low pressure pump (LPP) circulates fuel from the fuel tank through the fuel
filters. Then the inlet metering valve (IMV) directs some of this fuel to the high
pressure pump (HPP) so that the fuel pressure in the common rail, as measured by
the pressure sensor, is as commanded by the engine management system (EMS).
From the common rail, fuel is directed to the injectors through a high pressure line
and a connector. When commanded by the EMS, the injectors spray fuel into the
cylinders through a small micrometer-sized valve. Excess fuel from the injectors
is returned to the low pressure side through the return fuel rail. There is also a
mechanical dump valve that protects the common rail from excessive pressures by
releasing fuel into the return fuel rail.
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The on-board diagnosis system on the vehicle is very capable of detecting and
isolating electrical faults on the injectors, the IMV, and the rail pressure sensor.
However mechanical faults and leakage problems are typically only detectable by
observing that it is not possible to gain the commanded pressure in the common
rail. If this happens a diagnostic trouble code (DTC) is generated that indicates
that the rail pressure is below the commanded pressure. Some of the faults that
are indistinguishable by the on-board diagnostic system can be distinguished by
additional testing either remotely or at the workshop. For example, a mechanic can
measure the return fuel pressure by mounting a pressure meter on the return fuel
line or measure the output effect of the cylinders by running a test on the EMS.
Other faults can only be distinguished by trial and error. However, the mechanic
must take care when troubleshooting the XPI system because many components
on the high pressure side must be completely replaced with new components if
they are removed because of strict cleanliness requirements. Because of this, the
consequences of performing unnecessary actions on the high pressure side can be
costly.

A diagnostic model of the XPI system is used in the diagnostic framework for
integrated remote and workshop troubleshooting described in Section 3.2.2. This
model has been developed together with domain experts and it has 19 components,
47 faults, 86 symptoms, and 89 observations. Also, 527 symptom cause variables
and 15 auxiliary variables were needed to model all dependencies between faults,
symptoms, and observations.

Of the observations, 36 variables correspond to DTC:s that can be generated
by the on-board diagnostic system. The behavior of the DTC:s is well documented
with regard to which faults they are sensitive for. 9 observations are for symptoms
that a driver can experience. Some of these are vague and can be caused by many
faults, e.g. "high fuel consumption" and "loss of function", which makes it diffi-
cult for the expert to correctly assess the parameters. However, these symptoms
are often reported in the warranty claims and can be learned from that source in-
stead. The remaining 44 observations are for tests that can be run in the workshop.
The parameters for these cannot be learned from the warranty data. However the
workshop tests are developed by in-house engineers which makes it easier to set
parameter values with great confidence.

This model was validated by simulating the instructions from a troubleshooting
tree in the workshop manual used by the mechanics and comparing whether the
output of the diagnoser agrees with the information found in the manual. Along all
paths in the troubleshooting tree, the diagnoser assigns the highest probabilities to
the components listed as possible explanations in the manual.
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Figure 3.8: An overview of the engine temperature control and monitoring appli-
cation example [11].

Another model of the XPI system is also used in [1, 2]. This is a different model
than the above, where instead the diagnostic model is a static Bayesian network.
This model was developed by students in a series of master-theses [79, 85, 133,
144].

3.4.3 Engine Temperature Control and Monitoring System

A small application example of the engine temperature control and monitoring sys-
tem is used in [11]. The purpose of this application example is to demonstrate the
concept of integrated remote and workshop troubleshooting on a real truck in a
setting where a useful remote diagnostic test could be implemented on a vehicle
that is unprepared for remote diagnosis without making invasive modifications. In
the scenario used in the paper, the driver has called the help desk after observing
that the engine temperature appears low despite that the engine has been running
for some time. Nothing else that could indicate problems has been observed, and
a decision needs to be taken whether it is safe to continue driving until the next
scheduled maintenance occasion or if it could be a serious fault requiring immedi-
ate attention.

An overview of the system is shown in Figure 3.8. The components that can
cause this problem are the coolant temperature sensor, the thermostat, the engine
control unit (EMS), the coordinator control unit (COO), the instrument cluster
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(ICL), and two data communication buses, the red CAN bus (used by the EMS),
and the yellow CAN bus (used by the ICL). The thermostat uses a bimetal to regu-
late the engine temperature by opening a valve when the engine reaches operating
temperature. If it is stuck open, the engine cannot attain operating temperature.
The engine temperature as measured by the temperature sensor is relayed via the
EMS, the red CAN bus, the COO, and the yellow CAN bus to the ICL where it
is presented to the driver on the temperature gauge. A fault at either place in this
chain can cause the temperature to appear low. A fault on the ICL that prevents
it from displaying the correct engine temperature is considered to be a minor fault
that does not require immediate attention. A remote test that sweeps the gauges in
the ICL can discriminate between such a fault and other more serious faults on the
engine.

The resulting diagnostic model is a static Bayesian network with 57 variables
of which 14 represent different faults that can cause the observed problem, and 22
represent observations that can be seen together with any of these faults. There are
27 actions of which there are 7 repair actions, 8 observing actions, 3 reservation
actions, and 9 transport actions. Figure 1.4 shows the optimal troubleshooting plan
for the scenario described above when the next scheduled workshop visit is in 11
days.
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Chapter 4

Conclusions

The purpose of this thesis has been to study and develop methods for computer-
assisted troubleshooting of heavy vehicles such as trucks and buses. In this type
of troubleshooting, the person that is troubleshooting a vehicle problem is assisted
by a computer that is capable of listing possible faults that can explain the problem
and gives recommendations of which actions to take in order to solve the problem
so that the expected cost of restoring the vehicle is low. To achieve this, such a
system must be capable of solving two tasks: the diagnosis problem of finding
which the possible faults are and the planning problem of deciding which action
should be taken.

The diagnosis problem has been approached using Bayesian network models.
Diagnostic frameworks using event-driven non-stationary dynamic Bayesian net-
works have been developed for diagnosing the vehicle during troubleshooting. The
frameworks can be applied in settings where either the vehicle is in the workshop
only, or the troubleshooting needs to start as soon as a problem is detected on the
road in which case the vehicle is monitored during longer periods of time. The
models can be created using expert knowledge and the model parameters can be
tuned using statistical data. It is shown how necessary operations such as com-
puting fault and outcome probabilities can be done efficiently. The models are
modular in the same way as the vehicles are, and therefore models of complete
vehicles can be made specific for each vehicle while each individual submodel can
be created and trained independently.
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For the planning problem, planners have been created that select actions so
that the expected cost of repairing the vehicle is minimized. For this new methods
have been developed for increasing the efficiency of existing planning algorithms.
By separating diagnostic actions such as tests and repairs from other preparatory
actions, the number of steps required to reach a goal state in the planners’ search
graph can become smaller. This has been shown specifically for the troubleshoot-
ing problem and more generally for a larger class of problems. New search heuris-
tics provide better lower and upper bound estimates of the minimal expected cost
allowing the planners to converge faster. Also completely new planning algorithms
have been developed. The new algorithm Iterative Bounding LAO* can compute
action recommendations with provable bounds on the optimal expected cost when
it is formulated as a stochastic shortest path problem. It uses a smaller search graph
when compared with other comparable existing algorithms. For the case when re-
mote is integrated with the workshop diagnosis, the planner also needs to consider
the problem of deciding when and where to visit a workshop. A novel algorithm
has been developed that in linear time can compute recommendations of actions in
this setting.

The theory developed for this thesis has been evaluated on models of subsys-
tems that are characteristic for troubleshooting heavy vehicles: an auxiliary braking
system, a fuel injection system, and an engine temperature control and monitoring
system.

The theoretical methods presented in this thesis are believed to be mature
enough to be evaluated in a larger scale on real vehicles in real workshops. Fully
functioning, such a system for computer-assisted troubleshooting can generate
large cost savings for both workshops and vehicle owners. This is also important
for the vehicle manufacturers in order to remain competitive in the future.
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