
“Lic” — 2015/8/10 — 15:07 — page i — #1

Linköping Studies in Science and Technology

Licentiate Thesis No. 1722

Efficient Temporal Reasoning with
Uncertainty

by

Mikael Nilsson

Department of Computer and Information Science
Linköping University

SE-581 83 Linköping, Sweden

Linköping 2015

“Lic” — 2015/8/10 — 15:07 — page ii — #2

This is a Swedish Licentiate’s Thesis

Swedish postgraduate education leads to a doctor’s degree and/or a licentiate’s degree.
A doctor’s degree comprises 240 ECTS credits (4 year of full-time studies).

A licentiate’s degree comprises 120 ECTS credits.

Copyright c© 2015 Mikael Nilsson

ISBN 978-91-7685-991-9
ISSN 0280–7971

Printed by LiU Tryck 2015

URL: http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-119409

“Lic” — 2015/8/10 — 15:07 — page iii — #3

Abstract
Automated Planning is an active area within Artificial Intelligence. With the help of comput-
ers we can quickly find good plans in complicated problem domains, such as planning for
search and rescue after a natural disaster. When planning in realistic domains the exact dura-
tion of an action generally cannot be predicted in advance. Temporal planning therefore tends
to use upper bounds on durations, with the explicit or implicit assumption that if an action
happens to be executed more quickly, the plan will still succeed. However, this assumption is
often false. If we finish cooking too early, the dinner will be cold before everyone is at home
and can eat. Simple Temporal Networks with Uncertainty (STNUs) allow us to model such
situations. An STNU-based planner must verify that the temporal problems it generates are
executable, which is captured by the property of dynamic controllability (DC). If a plan is not
dynamically controllable, adding actions cannot restore controllability. Therefore a planner
should verify after each action addition whether the plan remains DC, and if not, backtrack.
Verifying dynamic controllability of a full STNU is computationally intensive. Therefore, in-
cremental DC verification algorithms are needed.

We start by discussing two existing algorithms relevant to the thesis. These are the very first
DC verification algorithm called MMV (by Morris, Muscettola and Vidal) and the incremen-
tal DC verification algorithm called FastIDC, which is based on MMV.

We then show that FastIDC is not sound, sometimes labeling networks as dynamically con-
trollable when they are not. We analyze the algorithm to pinpoint the cause and show how
the algorithm can be modified to correctly and efficiently detect uncontrollable networks.

In the next part we use insights from this work to re-analyze the MMV algorithm. This algo-
rithm is pseudo-polynomial and was later subsumed by first an O(n5) algorithm and then an
O(n4) algorithm. We show that the basic techniques used by MMV can in fact be used to cre-
ate an O(n4) algorithm for verifying dynamic controllability, with a new termination criterion
based on a deeper analysis of MMV. This means that there is now a comparatively easy way
of implementing a highly efficient dynamic controllability verification algorithm. From a the-
oretical viewpoint, understanding MMV is important since it acts as a building block for all
subsequent algorithms that verify dynamic controllability. In our analysis we also discuss a
change in MMV which reduces the amount of regression needed in the network substantially.

In the final part of the thesis we show that the FastIDC method can result in traversing part
of a temporal network multiple times, with constraints slowly tightening towards their final
values. As a result of our analysis we then present a new algorithm with an improved traver-
sal strategy that avoids this behavior. The new algorithm, EfficientIDC, has a time complexity
which is lower than that of FastIDC. We prove that it is sound and complete.

This research work was funded in part by CUGS (the National Graduate School in Computer Science,
Sweden), the Swedish Research Council (VR) Linnaeus Center CADICS, the ELLIIT network organi-
zation for Information and Communication Technology, the Swedish Foundation for Strategic Research
(CUAS Project), the EU FP7 project SHERPA (grant agreement 600958), and Vinnova NFFP6 Project
2013-01206

Department of Computer and Information Science
Linköping University

SE-581 83 Linköping, Sweden

“Lic” — 2015/8/10 — 15:07 — page iv — #4

Acknowledgements
The writing of this thesis and the research behind have required hard work. It would not have
been possible without the support of many people, to whom I am grateful.

I would like to thank both my supervisors: Patrick Doherty and Jonas Kvarnström. Patrick
for suggesting the research topic and giving me the opportunity to pursue it. Jonas for mak-
ing sure that all co-authored publications were of the highest quality. That we never had a
rejection testifies to this.

For reviewing and suggesting improvements of the thesis I would like to thank: Patrick
Doherty, Jonas Kvarnström, Håkan Warnqvist, Daniel de Leng and Olov Andersson.

I am also grateful for discussions with past and present members at the AIICS divi-
sion: Olov Andersson, Cyrille Berger, Gianpaolo Conte, Fredrik Heintz, Karol Korwel, David
Landén, Daniel de Leng, Martin Magnusson, Tommy Persson, Piotr Rudol, Andrzej Szalas,
Mattias Tiger, Håkan Warnqvist, Mariusz Wzorek.

During my years at IDA I have also had assistance from administrative personnel and
would especially like to thank Karin Hendry and Anne Moe.

Finally I would like to thank Linda and our parents for unconditional and untiring sup-
port over the years.

“Lic” — 2015/8/10 — 15:07 — page v — #5

Contents

1 Introduction 3
1.1 Temporal Planning . 7
1.2 Contributions . 9
1.3 Outline . 10

2 Temporal Formalisms 11
2.1 Simple Temporal Problems . 13

2.1.1 Distance Graph Representation 15
2.1.2 Consistency Checking 17

2.2 Execution of STNs . 18
2.2.1 Dispatching STNs . 19
2.2.2 Edge Filtering . 26
2.2.3 Direct Dispatchability Verification 32

2.3 The Dispatch Back-Propagation Approach 34
2.4 Simple Temporal Networks with Uncertainty 38

2.4.1 Different Controllabilities 40
2.4.2 Complexity of Verifying Controllabilities 44
2.4.3 Extended Distance Graph Representation 45
2.4.4 Execution of STNUs 46

3 Algorithms for Verifying Dynamic Controllability 48
3.1 The MMV Algorithm . 49
3.2 The FastIDC Algorithm . 55

3.2.1 Comparing MMV and FastIDC 60
3.3 Conclusion . 60

4 FastIDC Analysis and Correction 61
4.1 A Misclassified STNU . 61
4.2 Problem Analysis . 62

v

“Lic” — 2015/8/10 — 15:07 — page vi — #6

vi Contents

4.2.1 Reasons for Failure . 64
4.2.2 Resolving the Problem 65

4.3 The Sound FastIDC Algorithm 67
4.3.1 General and Unordered Reductions 68
4.3.2 The Sound Algorithm 69

4.4 FastIDC Correctness . 71
4.5 Conclusion . 74

5 A Tighter Complexity Result for the MMV Algorithm 75
5.1 A Deeper Comparison between FastIDC and MMV 75
5.2 Focus Propagation in FastIDC Derivations 78
5.3 The GlobalDC Algorithm . 82
5.4 A Revised MMV Algorithm 86
5.5 Conclusion . 88

6 The EfficientIDC Algorithm 89
6.1 Complexity of FastIDC . 89
6.2 The EfficientIDC Algorithm . 93
6.3 EfficientIDC Processing Example 99
6.4 Correctness of the EfficientIDC Algorithm 102
6.5 Run-time Complexity of EfficientIDC 104
6.6 Conclusion . 107

7 Related and Future Work 108

8 Conclusion 110

“Lic” — 2015/8/10 — 15:07 — page 1 — #7

List of Figures

1.1 Example of a consistent STP in graph form. 5

2.1 Example of a consistent STP in graph form. 16
2.2 Example of a consistent STN and its distance graph. 16
2.3 Example of a consistent STN and its distance graph dual. . . 23
2.4 Dispatching the STN in Figure 2.3. 23
2.5 Example of a consistent STN where dispatch fails due lack

of propagation between nodes. 24
2.6 The all-pairs shortest paths of the STN example. 26
2.7 The two cases of upper domination. 28
2.8 The two cases of lower domination. 30
2.9 The two cases of back-propagation used by the DBP algorithm. 35
2.10 Example STNU cooking scenario. 39
2.11 Example of a weakly controllable STPU. 40
2.12 Example of a strongly and a dynamically controllable STPUs 42
2.13 Different types of controllability for STPUs 43

3.1 Example of pseudo-controllability as a necessity for dynamic
controllability. 50

3.2 Example of a pseudo-controllable STNU which is not dy-
namically controllable. 51

3.3 Tightenings (derivations) of the MMV algorithm. 53
3.4 Tightening example. 54
3.5 Why APSP edges must be added to the working graph. . . . 55
3.6 MMV derivations in EDG format. 57
3.7 BackPropagate-Tighten Derivation Rules. 59

4.1 Original graph, dispatchable and dynamically controllable. . 61
4.2 After BackPropagate-Tighten is executed. 62

1

“Lic” — 2015/8/10 — 15:07 — page 2 — #8

2 List of Figures

4.3 Initial consistent and dispatchable STN. 63
4.4 Graph where an STN inconsistency is missed. 63
4.5 A negative weight cycle with at least one positive edge. ID

will derive a negative cycle with the same weight and fewer
edges. 67

4.6 FastIDC derivation rules D1-D9. 68
4.7 Why general reduction is needed. 69

5.1 Classical derivations in EDG format. 76
5.2 Simple regression when the edge is negative. 78
5.3 Situation where D2 or D6 is applied. 81
5.4 Example graph in quiescence. 83
5.5 Derivations resulting from adding the i→ e edge. 84
5.6 The critical chain of edge ac, derived in Figure 5.5. 84
5.7 Critical chain compressed using shortest paths. 85

6.1 Why depth first is a suboptimal strategy. 90
6.2 High complexity scenario part 1. 91
6.3 High complexity scenario part 2. 92
6.4 Initial EDG. 100
6.5 Derivation of the smaller scenario. 101
6.6 Example scenario for conditional edges. 102
6.7 Dijkstra Distance Graph of the small scenario. 102
6.8 Result of processing current = X. 103

“Lic” — 2015/8/10 — 15:07 — page 3 — #9

Chapter 1

Introduction

Automated Planning is the area of Artificial Intelligence which studies the
problem of finding plans, which could be sequences of actions, for achiev-
ing objectives. There are many different types of automated planners. They
have in common that the end result is a plan detailing which available ac-
tions to perform in order to be able to reach the goal. It is the goal of this
thesis to provide an efficient algorithm allowing automated planners to rea-
son about time in realistic environments. The environments are realistic in
the sense that they may contain events which cannot be controlled, only
observed. In the rest of this introductory chapter we will introduce these
ideas as well as use cases for planners in more detail.

Simple Temporal Problems. Time and concurrency are increasingly con-
sidered essential in automated planning, with temporal representations
varying widely in expressivity. Many temporally expressive planners make
use of well-known temporal formalisms that have been extensively stud-
ied in their own right. One such well-known temporal formalism is that
of Simple Temporal Problems (STPs, Dechter et al. [9]), which will be for-
mally defined in the next chapter. In this formalism there are events and
requirement constraints between pairs of these. The formalism can be used
to reason about the possibility of assigning timepoints to the events in a
way that respects all constraints. This concept, known as consistency, is
central to reasoning with STPs.

From a planning perspective it is clear that the start and end of every ac-
tion in a plan can be represented by STP events. Constraints between start
and end events can then be used to model action durations. The planner
can also use STP constraints as ordering constraints between pairs of ac-

3

“Lic” — 2015/8/10 — 15:07 — page 4 — #10

4 Chapter 1. Introduction

tions that must be executed in a specific order. We now present an example
scenario which can be modeled by an STP.

Example 1. I am at my vacation house in a remote area somewhere where the
weather is nice. Suddenly I feel the need to read a good book. I may then enlist
the help of an online bookstore which has the book in question and which can also
deliver it to my vacation house. I visit the bookstore web page and order the book to
be delivered by Unmanned Aerial Vehicle (UAV) to my location. However due to
safety concerns delivery will take place at a safe designated area which is close by
my vacation house. We then agree on a time of delivery and the bookstore promises
that the delivery will be within 10 minutes of the agreed upon time. They also
require that I am not more than 5 minutes late when signing off the delivery, so
that the UAV may return for its next delivery run.

Figure 1.1 shows an STP built from the described scenario. The STP is
shown in graph form, where nodes represent events and labeled edges rep-
resent requirement constraints. When STPs are shown in graph form they
are referred to as Simple Temporal Networks or STNs (to be detailed later).
Here we have also modeled that the UAV has deliveries prior to mine, and
we have included requirement constraints that specify time bounds for all
actions: Deliveries, Fly, Wait and Walk. They connect the events which mark
the start and end of the actions. For example, the interval [33, 40] on the Fly
action is used to model the fact that flying between the UAV start location
and the designated delivery location can take between 33 and 40 minutes.

Given this STP, it is possible to reason about the existence of a consistent
assignment of timepoints to all events that satisfies all constraints. How-
ever, a limitation within the STP formalism is that reasoning about consis-
tency is limited to the case where the planner chooses all times for when
events happen. In a realistic setting this is not possible, since if the plan-
ner’s actions are used to model real world tasks, the durations of these may
be affected by outside influences. An example of this is the time it takes to
for the UAV to fly in the scenario. According to our model, we believe it
takes between 33 and 40 minutes to fly the distance. However, it is not up
to us to choose what the exact duration will be. We can only find out the
outcome of the duration after we have actually seen the UAV execute the
fly action. Consistency is necessary, but not sufficient if we want to model
realistic domains.

Simple Temporal Problems with Uncertainty. A richer temporal formal-
ism which deals with the problem just described is provided by STPs with
Uncertainty (STPUs, Vidal and Ghallab [44]). This formalism contains both

“Lic” — 2015/8/10 — 15:07 — page 5 — #11

5

Start
Deliveries UAV Starts UAV at

Location

Delivery

I Leave Home I am at
Location

[180,240] [33,40]

[5,10]

[0,5]

[0,10]

Deliveries Fly

Walk

Wait

Wait

Event
Action

[Min,Max]

Figure 1.1: Example of a consistent STP in graph form.

controlled events, which are the only events available in the STP formalism,
and uncontrollable events, corresponding to events which we cannot fully
control. An event becomes uncontrollable if it is the target of a contingent
constraint. Contingent constraints are used to model uncontrollable action
durations with lower and upper bounds on durations. STPUs can be dis-
played in graph form in the same way as STPs can be displayed as STNs.
The graph form of the STPU is called STNU and will be defined in Chapter
2.

For STPUs, the interesting issue is not only whether the problem is
consistent but how controllable events should be assigned timepoints, de-
pending on our knowledge about those uncontrollable outcomes that have
already occurred. This leads to the concept of controllability. Depending
on which assumption is made regarding information about uncontrollable
events, three different controllability types are identified [42, 44]. We will
discuss all three in detail in Section 2.4.1. Most importantly, it is reasonable
to assume that a realistic system that is executing a plan corresponding to
an STPU can make decisions about plan execution dynamically when re-
ceiving information about uncontrollable events that have occurred. If an
STPU allows us to devise a strategy for incrementally scheduling controlled
events (starting actions) given that we immediately receive information
when a contingent event occurs (an action ends), it is dynamically control-
lable (DC) and can be efficiently executed by what is called a dispatching

“Lic” — 2015/8/10 — 15:07 — page 6 — #12

6 Chapter 1. Introduction

algorithm.
When this work began, four algorithms had been published that oper-

ated directly on a complete STNU to determine whether it was dynamically
controllable.

1. MMV (from the authors’ surnames: Morris, Muscettola and Vidal)
[21]. This is the first non-exponential algorithm for verifying dynamic
controllability. Because of this we will refer to it also as the classical
algorithm. All later algorithms make use of the ideas and the core
proof given in the MMV paper.

The algorithm works by applying a set of tightening rules to triangles,
which are triples of nodes in the STNU that are connected by edges in
specific ways. A tightening rule is applied if there is an implicit con-
straint between the nodes in the triangle. The implicit constraint is
then turned explicit by being added to the STNU as a new constraint
(edge), or by tightening an already existing constraint (decreasing the
value of an edge label). MMV continually applies tightening rules
until quiescence, when no more tightenings can be derived, or the
evaluation of a simple criterion verifies that the STNU is not dynam-
ically controllable. We will see the algorithm presented in detail in
Chapter 3. A beneficial property of this algorithm is that it is easily
implemented.

The algorithm is pseudo-polynomial1, but the ideas from MMV can
be used in conjunction with ideas from the next algorithm, FastIDC,
to create a modified MMV algorithm which is O(n4). The details are
presented in Chapter 5.

2. FastDC/FastIDC [34] builds on MMV but applies the derivations in
only one temporal direction, towards the start of the temporal net-
work. Of the two algorithms FastDC is a full DC verification algo-
rithm whereas FastIDC is an incremental version. We will present
FastIDC in Chapter 3. As will be seen, a difference between this ap-
proach and MMV is that MMV focuses on triangles whereas the other
algorithms take an edge-focused approach.

The run-time of FastDC was conjectured to be O(n3), but we show
that the incremental FastIDC is Ω(n4) (see Chapter 6) which makes
this conjecture less likely to be true.

1An algorithm is pseudo-polynomial if its running time is polynomial in the numeric value of
the input, but is exponential in the length of the input (the number of bits required to represent
it).

“Lic” — 2015/8/10 — 15:07 — page 7 — #13

1.1. Temporal Planning 7

3. MM (again from the authors’ surnames: Morris and Muscettola) [20]
builds on the theory of MMV but uses new, less intuitive derivation
rules. Its run-time complexity is O(n5) which is an improvement over
the pseudo-polynomial complexity of MMV.

4. The Morris algorithm [17] builds in turn on MM. Its theory and es-
pecially analysis depends on several new complex concepts taking it
further from the simple intuition behind MMV. This was the fastest
algorithm when our work started. It runs in O(n4).

Above, we also presented FastIDC, which is a FastDC derivative. This
was the only known algorithm for incremental DC verification prior to our
work. The algorithm verifies whether an STNU that was originally DC re-
mains DC after changes are made to it.

Note that the complexities presented are worst case run-times. There is
no official test suite for comparing actual run-times on typical problems.

1.1 Temporal Planning

The use of temporal reasoning in an automated planner can be further mo-
tivated by the following example scenario.

Example 2. Imagine a large scale disaster, such as a tsunami or earthquake, strikes
an area making roads impassable and travel in the affected region dangerous. In
the area there may be several people at various locations and they are now in need
of assistance. If one has access to unmanned aerial vehicles (UAVs), these could
be used to help. In this scenario it is assumed that there exist one or more depots
where UAVs and supplies are located. The supplies could be different kinds of
medicine, food and for instance communication devices with longer range than
mobile phones.

A first task for a fleet of UAVs would be to use different sensors to scan the
area and detect people. The sensors could include heat cameras, normal cameras
and sound sensors. Step two would then be to get the needed supplies out to these
persons. In order to do so, larger UAVs may use carriers to move a large amount of
supplies at once. Forward supply depots may be set up so that smaller UAVs flying
single deliveries do not need to fly all the way back to the depot when reloading.

The area also needs continuous monitoring to detect people moving into it.
Since UAVs have a limited fly time, the UAVs that do the monitoring need to
replace each other over time.

“Lic” — 2015/8/10 — 15:07 — page 8 — #14

8 Chapter 1. Introduction

It is clear that an automated planner can help humans to find a plan in such
a complex scenario. Temporal aspects of the plan include ordering between
UAVs entering a depot. Deadlines will have to be met for delivering emer-
gency medicine and there are limited life spans for some medicines leading
to different deadlines. When leaving supplies at remote depots, the depots
should not be unguarded for too long to discourage looters. The same is
true for watching pathways entering the area.

We see that temporal reasoning of some kind is needed to adequately
model the scenario. It is not sufficient to model the temporal relations be-
tween actions in a plan using an ordinary STP, since there are many un-
controllable aspects that affect the durations of actions. These include, but
are not limited to, weather, flight paths of other UAVs and manned aircraft,
as well as other built in uncertainties in the actions (e.g. how long it takes
to connect a winch to a supply crate). STPUs on the other hand offer a
temporal model that allows us to model these uncontrollable aspects.

Automated planning is often based on search through a specific search
space. When a successor of a given search node is created, most search
strategies used in planning never loosen or remove existing constraints.
For example, sequential forward search will add a new action at the end of
a plan, which requires adding two new events and several new constraints
to an STPU. Partial-order planners may add an action at any point in the
existing plan, but still only add events and constraints to the STPU, and
similarly for many other search strategies.

For these types of automated planners, if the STPU corresponding to
a search node is not dynamically controllable, then no descendant of the
search node can have a dynamically controllable STPU. Searching further
along the same branch can only lead to more constraints in a network
where there already is a violation, which cannot restore dynamic control-
lability. Therefore a planner can verify after each search step whether the
plan remains DC, and if not, backtrack in order to prune the search tree as
early as possible.

Testing dynamic controllability takes non-trivial time. Therefore, one
can benefit greatly from using an incremental DC verification algorithm
rather than redoing the analysis for each new action or constraint. This pre-
cludes the use of the four algorithms discussed above. The work presented
in this thesis starts with the FastIDC algorithm [32, 33], which was the only
available incremental DC verification algorithm prior to our contributions.

FastIDC supports incremental tightening/addition of constraints, which
can be used for efficient planning, as well as incremental loosening or re-

“Lic” — 2015/8/10 — 15:07 — page 9 — #15

1.2. Contributions 9

moval. As argued above, most search strategies used in planning never
loosen or remove constraints when a successor of a given search node is
created. Therefore, this thesis will only focus on tightening/addition of
constraints.

To summarize the introduction we have seen that automated planners
can make use of temporal formalisms to reason about time. In order to
efficiently be able to reason about uncertainty through the use of STPUs,
an efficient incremental DC verification algorithm is needed. As mentioned
briefly in the beginning of this chapter: it is the goal of this thesis to provide
such an algorithm for integration with a planner capable of handling large
problems with the complexity levels seen in this section.

1.2 Contributions

The contributions of this thesis appear in their respective context. There-
fore, they are located in various places of the thesis. To make them clear we
summarize them in this section. The details pertaining to each contribution
can be found in the specified sections.

The following are the larger contributions of the thesis:

1. The FastIDC algorithm presented by Stedl and Williams [33] and Shah
et al. [32] incrementally verifies dynamic controllability, which is es-
sential when generating plans with the full expressivity of Simple
Temporal Networks with Uncertainty. We have shown that the al-
gorithm in certain cases fails to detect that networks are not dynami-
cally controllable, which could potentially lead to planners accepting
invalid plans. The problem was localized to the incremental dispatch-
ability and consistency checking part of the BackPropagate-Tighten al-
gorithm. We then analyzed the properties of the problem, resulting in
a modification ensuring that inconsistencies will be detected while re-
taining the incremental properties of the algorithm. The modification
does not increase the worst case run-time of the algorithm.

This contribution appeared in [24].
The details of this contribution can be found in Chapter 4.

2. The classical MMV algorithm is pseudo-polynomial. We prove that
the ideas from MMV can be used in conjunction with ideas from Fast-

IDC to create a modified MMV, which has a run-time of O(n4). The
modified algorithm is an excellent and viable option for determining

“Lic” — 2015/8/10 — 15:07 — page 10 — #16

10 Chapter 1. Introduction

whether an STNU is dynamically controllable. The modified algo-
rithm preserves the results relating to MMV, with the exception of its
improved complexity, and therefore offers a simpler and more intu-
itive theory than later algorithms. We also show that a large part of
work done by MMV can be avoided, as it does not provide informa-
tion that affects the result of the algorithm.

This contribution appeared in [25].
The details of this contribution can be found in Chapter 5.

3. We show that a corrected version of FastIDC in the worst case takes
Ω(n4) time to handle one incremental change. We then proceed to
present a new algorithm that uses additional analysis together with a
different traversal strategy to avoid this behavior. The new algorithm,
EfficientIDC, has an amortized O(n3) time complexity. We prove that
it is sound and complete.

This contribution appeared in [26].
The details of this contribution can be found in Chapter 6.

Additional contributions, which have not yet been published elsewhere,
include the following:

1. Proof that MMV must use all edges from the All-Pairs Shortest Paths
(APSP) graph in order to be correct (see Chapter 3).

2. Proof that Direct Dispatchability Verification (see Section 2.2.3) can be
done correctly with the help of a filtering algorithm.

1.3 Outline

In Chapter 2 the STN and STNU formalisms are presented along with re-
lated concepts and properties. Chapter 3 introduces the MMV and FastIDC

algorithms that the thesis work is based upon. This chapter also contains
observations and experiences gained while implementing the algorithms.
Chapter 4 points out a flaw in FastIDC and gives an efficient solution for
it. In Chapter 5 insights from FastIDC are used to propose a revised MMV
algorithm with a worst case run-time of O(n4). This is followed by the pre-
sentation of a new algorithm in Chapter 6: EfficientIDC, which subsumes
the corrected version of FastIDC. The new algorithm has a better worst case
complexity of amortized O(n3). Related work is reviewed in Chapter 7 and
final conclusions are presented in Chapter 8.

“Lic” — 2015/8/10 — 15:07 — page 11 — #17

Chapter 2

Temporal Formalisms

The study of temporal reasoning has a long history in computer science.
For example, “Mechanization of Temporal Knowledge” by Kahn [15] dates
back to 1975. There exist many different temporal formalisms. Many of
these can be used to define events and constraints between these. The
simplest and most popular of these event-based formalisms is the Simple
Temporal Problem (STP), which was defined by Dechter et al. [9]. We have
already seen an example of this in Chapter 1. In more detail a Simple Tem-
poral Problem consists of a set of real variables x1, . . . , xn and a set of con-
straints Tij = [aij, bij], i 6= j limiting the temporal distance aij ≤ xj− xi ≤ bij
between the variables. These constraints can also be expressed equivalently
as xj − xi ∈ [aij, bij].

There are many extensions to the STP formalism. One branch of ex-
tensions is based on increasing the expressivity of the constraints. For ex-
ample, the Temporal Constraint Satisfaction Problem (TCSP) allows each con-
straint to express a time difference which must be in one of several disjoint
intervals [9]. Constraints such as t2 − t1 ∈ [a, b] ∪ [c, d] ∪ [r, f] can be rep-
resented in this formalism. A further extension is made in the Disjunctive
Temporal Problem (DTP) formalism [35]. Constraints in DTPs can contain
disjunctions between ordinary STP constraints. This allows constraints of
the type t2 − t1 ∈ [a, b] ∨ t4 − t3 ∈ [c, d] to be represented.

An orthogonal branch of extensions introduces uncertainty, a concept
that was introduced in the previous chapter. In these formalisms uncertain
durations can be represented by the use of contingent constraints. Uncer-
tain durations represented by contingent constraints lead to uncontrollable
events which are assigned timepoints by external processes. These for-
malisms require that the bounds of the uncontrollable durations are known.

11

“Lic” — 2015/8/10 — 15:07 — page 12 — #18

12 Chapter 2. Temporal Formalisms

Since the extension branches of formalisms mentioned so far are orthogo-
nal it is possible to combine them. This gives the Simple Temporal Problem
with Uncertainty (STPU) [44], Temporal Constraint Satisfaction Problem with
Uncertainty (TCSPU) [40], and Disjunctive Temporal Problem with Uncertainty
(DTPU) [41].

The Probabilistic Simple Temporal Problem (PSTP) can be seen as an ex-
tension of STPUs in which durations are still uncertain, but their outcomes
are modeled by probabilistic density functions [37]. In this formalism it
therefore becomes interesting to reason about the likelihood of execution
scenarios which do not violate constraints.

Conditional Temporal Problems (CTP) extend STPs by allowing choices to
be made within the problem depending on facts that become known at
execution time [38]. In this formalism events can be labeled by choice labels
and different choices enable different constraints which must be satisfied.
Another formalism which allows representation of choice is that of Temporal
Plan Networks (TPN) [16], which allows more programming-like structures
such as loops.

There are also temporal formalisms that are not STP-based. Allen’s in-
terval algebra [1] and the point algebra [46] are two such examples. Allen’s
interval algebra can be used to compare time intervals to each other in a
qualitative way. Thirteen different relations can be defined when compar-
ing two intervals. These are: before, meets, overlaps, starts, during, finishes
and equal. Point algebra is similar but compares only the qualitative rela-
tions between timepoints.

We will now discuss two further orthogonal aspects of temporal for-
malisms. The first aspect is how time is modeled, the second is which type
of relations that exist in the formalism.

Discrete vs. Continuous: Time can be discrete or continuous, an aspect
which is often modeled by using a set of integers or reals to represent events
in time. When the underlying granularity of time is decided upon, events
can be fixed in time. Two events can then be used to define the start and
end of an interval.

Qualitative vs. Quantitative: Relations between events and intervals
can be either qualitative or quantitative. The qualitative relations use sym-
bolic comparisons. Results can be before or after as in Allen’ interval alge-
bra. Good sources for knowledge about qualitative temporal constraints
are given by [11], [45], [31] and [8]. Quantitative relations instead use met-
ric expressions to relate events and intervals. Simple Temporal Problems
and their derivatives fall into this category.

“Lic” — 2015/8/10 — 15:07 — page 13 — #19

2.1. Simple Temporal Problems 13

A planner can be designed to use a temporal formalism to be able to rea-
son about and use temporal constraints. Depending on which formalism
is chosen, the planner will have different capabilities. As temporal for-
malisms add a higher complexity to the already high planning complexity,
many planners reason about time through built-in mechanisms. For in-
stance, the forward chaining planner TALplanner [10] represents time ex-
plicitly by time-stamping states as it incrementally builds a plan. Therefore,
while it does not explicitly create constraints it can still reason about them.

To be able to plan search and rescue missions, support for uncertainty is
a requirement. It is unrealistic to presume that no external influences exist.
Among the mentioned formalisms both DTP and TCSP are NP-hard [29].
Therefore it is not realistic to base a planner on DTPU or TCSPU although
these formalisms have high expressivity. The most realistic choice falls on
STPU which is a formalism in which reasoning is polynomial. In this the-
sis we will therefore focus on STPUs and to some extent STPs since many
concepts transfer from STPs to STPUs. Although it is common to think
of advancing time in quanta (often integer times), there are no limitations
to STPs or STPUs when it comes to deciding if they should be applied to
reason about discrete or continuous time.

2.1 Simple Temporal Problems

In this section we give the definition for the basis of temporal reasoning in
this thesis, Simple Temporal Problems. We also present interesting proper-
ties that are closely tied to the definition.

Definition 1 (Simple Temporal Problem (STP) [9]).
A simple temporal problem (STP) consists of a set of real variables x1, . . . , xn

and constraints Tij = [aij, bij], i 6= j limiting the temporal distance aij ≤ xj −
xi ≤ bij between the variables.

The definition does not specify the values that are allowed for the aij and
bij bounds. They are by default real-valued since they relate real-valued
variables. However, the bounds are often allowed to take on the values
±∞ which have special meaning. An upper bound bij = ∞ means that
the constraint does not constrain the maximum time difference between
the involved variables. Similarly a lower bound aij = −∞ means that the
constraint does not constrain the minimum time difference between the in-
volved variables.

“Lic” — 2015/8/10 — 15:07 — page 14 — #20

14 Chapter 2. Temporal Formalisms

Note that the definition mentions temporal distance. This is only a formality
associated with the perspective taken, where we want to relate temporal
events. As we will see later (Section 2.1.1), STP constraints can also be
encoded as distances in graphs. Reasoning with STPs can then be done by
more general methods for finding shortest paths in graphs.

Reasoning with STPs. We now provide several definitions related to rea-
soning with STPs. The definitions in the rest of this section were all speci-
fied by Dechter et al. [9].

• An STP is consistent if there is an assignment of real values to the
variables, x1, . . . , xn, so that all constraints Tij are satisfied. Such an
assignment is also referred to as a solution to the STP.

• A constraint interval, Tij, which can be shrunk without losing any
solution is called redundant.

• When no constraint interval is redundant the STP is minimal.

Many of the algorithms used for solving STPs will both determine if the
STP is consistent and find its minimal constraint intervals [9, 29].

Since STP constraints only constrain the relative difference between vari-
able values, it is not possible to relate the variables to absolute values. For
example, if 〈t1 = 0, t2 = 2〉 is a solution to a small STP, then 〈t1 = x, t2 =

x + 2〉 must be a solution for every x ∈ R. To be able to relate variables to
absolute values, a special variable, called a Temporal Reference (TR) [27, 28],
is often introduced. Intuitively the TR denotes the start of time in the STP
and it is defined to occur at time 0. To ensure that no other event occurs
before TR, constraints Tij = [0, ∞], with i being the index of the TR, can be
introduced for all j.

For the next definition we need to discuss partial assignments of values
to the STP variables. We say that a partial assignment to an STP is consis-
tent if the assignment do not violate any of the constraints that constrains
the assigned variables. With the help of a partial assignment we now de-
scribe the concept of a decomposable STP [9]. An STP is decomposable if any
consistent partial assignment can be extended to a full assignment which
is consistent. A decomposable STP can be used to generate solutions by
assigning one variable at a time, respecting the choices made so far. If the
assignments are done with increasing values, this is a direct way of carry-
ing out execution as we will see in Section 2.2.

“Lic” — 2015/8/10 — 15:07 — page 15 — #21

2.1. Simple Temporal Problems 15

As a side note we want to point out that the constraint represented by
the interval aij ≤ xj − xi ≤ bij can be viewed as a pair of inequalities
xj − xi ≤ bij and xi − xj ≤ −aij. By representing all constraints in this
way we get a system of inequalities. These systems have been studied ex-
tensively in the area of operations research. However many of the solution
methods available there, e.g. the simplex method [7], are aimed at linear
programming problems where optimization is an integral part. STPs are
simpler than general linear programming problems, which for instance al-
low constraints between more than two variables, and therefore we will see
simpler algorithms that are faster when solving these problems.

Simple Temporal Networks

The temporal constraints of STPs are binary. Therefore, they always capture
a relation between exactly two events. Because of this any STP can be put
into graph form where nodes correspond to events and edges to relations
between events.

Definition 2 (Simple Temporal Network (STN) [9]).
Given an STP with variables x1, . . . , xp and constraints Tij = [aij, bij] a Simple
Temporal Network (STN) for this STP is a graph 〈N, E〉 consisting of nodes
N = {n1, . . . , np} and edges E = {eij = (ni, nj)|Tij ∈ STP}. Each edge eij in
the STN is labeled by the interval [aij, bij].

Although STPs and STNs are equivalent representations of the same tem-
poral problem, it is more common to see references to STNs in the context
of planning and shortest path algorithms [39] and STPs in constraint solv-
ing contexts [9].

Figure 2.1 shows an example of an STP in its STN graph form. In the
example each edge is labeled with the interval that constrains the events
corresponding to the nodes connected by the edge. Therefore the label
[10, 20] between t1 and t2 means that 10 ≤ t2 − t1 ≤ 20. If the assign-
ment t1 = 0, t2 = 20, t3 = 10, t4 = 25 is made, all constraints are satisfied
and hence the STP has a solution. It is therefore consistent.

2.1.1 Distance Graph Representation

There exists another graph representation which is equivalent to that of the
STN but is easier to work with since it allows working with only one of
the interval bounds at a time. The graph representation is called a distance
graph and we now describe how it is constructed from an STN [9].

“Lic” — 2015/8/10 — 15:07 — page 16 — #22

16 Chapter 2. Temporal Formalisms

t2

t3

t1 t4

[10,20]

[10,15] [10,20]

[5,10]

t2

t3

t1 t4
r

[10,20]

[10,15] [10,20]

[5,10]

t2

t3

t1 t4

20

-10

-10
-10

15

-5

10

20

Figure 2.1: Example of a consistent STP in graph form.

t2

t3

t1 t4

[10,20]

[10,15] [10,20]

[5,10]

t2

t3

t1 t4
r

[10,20]

[10,15] [10,20]

[5,10]

t2

t3

t1 t4

20

-10

-10
-10

15

-5

10

20

Figure 2.2: Example of a consistent STN and its distance graph.

For each time variable xi(i = 1, . . . , n), create a node labeled ti. Then split
the STN constraints into two inequalities each, and let the values of the
inequality bounds be the weights of directed edges between the two nodes:

• The constraint xj − xi ≤ bij becomes an edge i → j with weight bij.
This can be read “j can never be later than bij after i”.

• The constraint xi − xj ≤ −aij becomes an edge j → i with weight
−aij. This can be read “i can never be later than −aij after j”, which
can also be expressed as ‘i is at least aij before j’.

Figure 2.2 shows an example of an STN and its distance graph. When con-
structing the distance graph, edges corresponding to upper bounds of ∞
and lower bounds of −∞ are left out. This means for example that only
one edge is used to model the constraint [−∞, 25] and similarly for [13, ∞].

In a consistent STN, aij ≤ bij due to the definition of the constraints.
Furthermore, with the help of the distance graph it is easy to see that Tij =

[a, b] is equivalent to Tji = [−b,−a].

“Lic” — 2015/8/10 — 15:07 — page 17 — #23

2.1. Simple Temporal Problems 17

We want to point out that the value for the lower bound becomes negated
in the distance graph. A constraint [−a, b] where a ≥ 0 and b > 0 is trans-
lated into two positive edges in the distance graph. This means that this
constraint does not constrain the nodes to happen in a specific order. If two
nodes are related by such a constraint in a minimal STN, they are unordered.
If instead there is a constraint [a, b] where a, b > 0 between the nodes they
are ordered, i.e. i must always happen before j.

As mentioned before each edge encodes an inequality. It is possible to
calculate the sum of the inequalities along a path of edges. For instance we
can add the inequalities corresponding to the edges t1 → t3 → t4 → t2

from Figure 2.2. This gives

t3 − t1 ≤ 15

t4 − t3 ≤ 20

t2 − t4 ≤ −5

t2 − t1 ≤ 30

In general a path from X to Y gives a sum that can be expressed as a bound
on Y, Y ≤ X + sum o f weights. If the path is a cycle we get an expression of
the type X ≤ X + sum o f cycle weights. We see that if the sum is negative
the event X must be assigned a timepoint before itself which is impossi-
ble. It can be proven that an STN is consistent if and only if its distance
graph contains no negative cycle [9]. Assuming there is no negative cycle
in the distance graph (thus a consistent STN), it is possible to calculate the
shortest path distances between all nodes. A complete graph where every
edge i → j has a weight that equals the (possibly infinite) shortest path
distance between i and j is called a d-graph [9]. Because the term d-graph
can easily be confused with the term distance graph, we will instead use
the more intuitive term All-Pairs Shortest Paths graph or APSP graph in this
thesis. For a consistent STN, it is shown that the constraints correspond-
ing to the edges in the APSP graph represent a decomposable STN with
minimal constraints [9].

2.1.2 Consistency Checking

We mentioned previously that an STP can be regarded either as a constraint
satisfaction problem or as a shortest path problem. Taking a constraint ap-
proach allows tests of consistency by applying techniques from the con-

“Lic” — 2015/8/10 — 15:07 — page 18 — #24

18 Chapter 2. Temporal Formalisms

straint reasoning domain. These include full, directional and partial path
consistency techniques [8]. Constraint-based techniques can also leverage
concepts such as the induced width [27, 28] of the constraint graph. The
fastest algorithms use triangulation sub-algorithms [27, 47] to process con-
straints in an efficient order. Published algorithms includes DPC [9], PPC
[28], ∆STP [47] and P3C [27]. Regardless of approach, the worst case com-
plexity for verifying consistency is O(n3) where n is the number of events.

We saw earlier that the consistency of an STP can be established by de-
tecting the absence of negative cycles in the corresponding distance graph
[9]. This can be done by use of the Floyd-Warshall algorithm [6], again in
O(n3). For sparse graphs Johnson’s algorithm [6] gives a slightly better
complexity at O(n2 log n + n|E|), where |E| is the number of edges in the
graph.

Although the constraint methods have more detailed complexity results
(based for instance on induced width of graphs and other graph theoretic
properties) than the distance methods [29], only the latter have been trans-
ferred to STNUs.

2.2 Execution of STNs

Simple Temporal Networks can be used to schedule events. For a temporal
planner, the start and end of each action are events needing scheduling.
Suppose a planner has generated a plan for which the corresponding STN
is consistent. This means that there is at least one solution to the STN.
Therefore there is at least one assignment of timepoints to the variables
which satisfies all constraints. Each such assignment corresponds to one
execution schedule for the plan. There may be several such schedules and
to execute the plan one of these have to be chosen.

There are two alternative ways of choosing a solution:

1. Choose a complete solution before execution. This can be done for in-
stance incrementally if the STN is decomposable. The chosen solution
may optimize some condition, for instance makespan, which is defined
to be the difference in time between the earliest and the latest time-
points in the schedule. If all events in the STN are completely control-
lable by the execution system, this way of deciding which schedule
to execute works well. As soon as the solution is decided upon, exe-
cution starts the actions corresponding to the events in the order and
at the timepoints chosen in the solution.

“Lic” — 2015/8/10 — 15:07 — page 19 — #25

2.2. Execution of STNs 19

2. Gradually, dynamically choose during execution when to start and
finish actions. This is a harder alternative for several reasons. First,
a partial solution must be gradually extended and the choices made
must be such that it is possible to extend the partial solution to a full
solution. Second, even if the STN is decomposable, so that this is
always possible, timepoints for events must be chosen in the order
they are executed. The fact that any partial solution can be extended
to a complete solution is not sufficient if all such extensions require
an action to be executed “10 minutes ago”.

There are advantages of dynamic execution. It is sometimes possi-
ble to introduce flexibility to handle actions whose durations are not
entirely controllable by the executor. This is a way of reaching a bit
towards the flexibility of STNUs, but without any guarantees. The is-
sue was discussed by Muscettola et al. [23] and further developed by
Tsamardinos [36] and Tsamardinos et al. [39]. A short discussion of
flexibility is included in Section 2.2.1. An algorithm which can assign
times dynamically as described herein is called a dispatcher [36].

We continue in the next section by presenting a dispatcher: An execution
algorithm which for a certain class of STNs can assign timepoints to events
dynamically during execution. We then discuss a way of verifying if an
STN belongs to the class of networks the dispatcher can execute. Fast ver-
ification and execution is dependent on edge filtering which is covered in
Section 2.2.2. In Section 2.3 we present the DBP algorithm which can con-
vert an STN to an equivalent STN that has the same solutions as the origi-
nal, and belongs to the class of STNs a dispatcher can execute correctly.

The DBP algorithm is an integral part of the FastIDC algorithm (Chapter
3) for STNUs. We will also see that the execution of STNs is related to the
execution of STNUs.

2.2.1 Dispatching STNs

In the context of STNs, assigning values to the variables is called execution
[39]. In this context it is assumed that variables are assigned values in order
of increasing value. This captures the situation where actions are started
and ended as time is progressing. Different assignments to the variables
give different execution scenarios. An STN is executable if there is an execu-
tion scenario which satisfies all constraints. Note that this is equivalent to
the STN being consistent. The context determines the terminology used.

“Lic” — 2015/8/10 — 15:07 — page 20 — #26

20 Chapter 2. Temporal Formalisms

An execution algorithm called a dispatcher was proposed by Muscettola
et al. [23]. The algorithm uses the distance graph of an STN to facilitate the
execution. Execution by the algorithm is referred to as dispatch of an STN.

Definition 3 (Directly Dispatchable STN [This Thesis]). An STN is di-
rectly dispatchable if it can be dispatched correctly by the dispatcher without
modification.

Definition 4 (Dispatchable STN [This Thesis]). An STN is dispatchable if
it is directly dispatchable or can be made directly dispatchable through the addition
of a set of constraints that preserve the original set of solutions to the STN.

In essence, the process of making an STN dispatchable will compute a
set of constraints that are already implicit in the STN and add these con-

straints explicitly to the graph. For example, given edges A
[10,20]−−−→ B and

B
[10,20]−−−→ C, we may infer and add A

[20,40]−−−→ C. This does not change the set
of solutions, but makes the constraint between A and C more explicit.

If a consistent STN is not directly dispatchable, it can always be made
so by addition of constraints, as will be seen later in this chapter. This
means that the concepts of dispatchability, consistency and executability
are equivalent, but different from direct dispatchability.

Notation. Two concepts used when selecting the next node to execute are
defined by Muscettola et al. [23]. A node n is a predecessor of another node p,
if there is a negative edge n ← p. As an example, in Figure 2.2 node t3 is
a predecessor of node t4 since there is a negative edge from t4 to t3. A

negative edge, t3
−10←−− t4, encodes a positive lower bound in the opposite

direction so that t4 is required by the constraint to execute at a timepoint
at least 10 time units after t3. A node becomes enabled when all its prede-
cessors in the distance graph have been executed. In the example of Figure
2.2, t4 becomes enabled when both t2 and t3 have been executed.

The notation Ti is used by [23] to refer to the chosen execution time
of node i. Furthermore, a start time point which is executed at time 0 is
defined. This is equivalent to the temporal reference (TR) that we use
throughout this thesis.

Execution Windows. During execution the dispatcher associates each node
i with a time interval [lbi, ubi] representing the dispatcher’s current knowl-
edge about the time interval in which the node must be executed to avoid
violating constraints. This interval is referred to as the execution window of

“Lic” — 2015/8/10 — 15:07 — page 21 — #27

2.2. Execution of STNs 21

Algorithm 1: Dispatcher [23]

function DISPATCH(G - STN)

enabled← {Temporal-Reference}
executed← {}
currentTime← 0
while not all nodes are executed do

Remove e from enabled, for which
currentTime ∈ [LowerBound(e), UpperBound(e)]

set execution time of e to currentTime
add e to executed
update execution windows of neighbors to e
add all nodes which become enabled to enabled
wait until
currentTime ∈ [min(LowerBound(enabled)), min(UpperBound(enabled))]

end

the node [32]. The execution window is initialized to [0, 0] for the TR and
[0, ∞] for all other nodes. During execution the execution windows will
shrink as constraints from neighboring nodes affect them. Note that nodes
that have been executed can be forgotten about since they were safely exe-
cuted and their execution times cannot be altered [23].

Propagation of Bounds. The dispatcher uses the edges of the distance
graph to propagate execution window bounds. For simplicity we say that
execution window bounds are propagated via nodes at execution time while
in fact it is the algorithm which propagates the bounds as nodes are exe-
cuted.

Whenever a node i is executed, so that its execution time Ti becomes

known, every positive edge i b−→ j with b > 0 will result in the propagation
of an upper bound of Ti + b to node j. If the existing execution window
for j was [lbj, ubj], the new window becomes [lbj, min(Ti + b, ubj)] because
the tightest limits must be chosen to accommodate all constraints.

Similarly, every negative edge i −a←− j (note the reversed order), with
a ≥ 0, will propagate a lower bound of value Ti + a to j. The resulting
execution window for j becomes [max(Ti + a, lbj), ubj] in this case. Note
that 0 is treated as negative. Therefore, lower bounds will be propagated
along 0-weight edges.

“Lic” — 2015/8/10 — 15:07 — page 22 — #28

22 Chapter 2. Temporal Formalisms

Dispatcher Algorithm. Algorithm 1 lists the pseudo-code for the dispatcher
[23]. The algorithm keeps two sets, enabled containing enabled nodes and
executed containing executed nodes. It loops until all nodes are executed.
In each iteration it executes one node, e by setting its execution time to the
current time. The node is then moved from enabled to executed and all the
execution windows for neighboring nodes are updated as described before.
Any node which becomes enabled due to the execution of e is put in en-
abled. Time is then advanced until the next node is chosen, which happens
when currentTime is somewhere in the interval [min(LowerBound(enabled)),
min(UpperBound(enabled))]. Here the minimum is taken over all nodes in
enabled. To start a new iteration, it is sufficient that currentTime exceeds the
lower bound of one node. The algorithm must choose a time within the
time interval limited by the lowest upper bound of any node in enabled.
Also, the algorithm cannot postpone execution of any node until after its
upper bound is passed, or execution will fail.

The algorithm does not specify the exact time within [min(LowerBound
(enabled)), min(UpperBound(enabled))] chosen for currentTime. There are
two reasons for this. First, by having a least commitment approach, the
dispatch algorithm can produce all possible execution scenarios. Secondly,
if the end times of some tasks are not controllable by the executor, the dis-
patcher can be modified to “execute” action end nodes when notified that
the action actually ended, as long as this happens within each node’s ex-
ecution window. The dispatch approach then permits a degree of uncon-
trollability without using the more complex concept of STNUs (see Section
2.4).

A greedy alternative would be to always execute a node as soon as pos-
sible, i.e. when currentTime reaches its lower bound. This approach clearly
gives the lowest makespan, but excludes most scenarios and provides less
flexibility. In a multi-agent environment, maximum flexibility gives the
agents maximum freedom to choose when to execute their task. This makes
it easier for them to combine tasks from different schedules.

Example. We will now go through an example dispatch of an STN. Fig-
ure 2.3 shows a consistent STN and its distance graph. Figure 2.4 shows
how the dispatcher may update execution windows while dispatching the
example graph. The steps of the execution are outlined below:

a) At the start all execution windows are [0, ∞] except for the temporal
reference’s which is [0, 0].

b) Execution of node 0 at time 0 leads to propagation of bounds along both

“Lic” — 2015/8/10 — 15:07 — page 23 — #29

2.2. Execution of STNs 23

2

3

1

0

[5,10]

[5,10][5,10]

[10,20]

[0,∞]

[0,∞]

[0,∞] [0,∞]

2

3

1

0

[5,10]

[5,10][5,10]

[10,20]

[10,20]

[5,10]

[0,0] [0,∞]

2

3

1

0

[5,10]

[5,10][5,10]

[10,20]

[10,20]

[8,8]

[0,0] [13,18]

2

3

1

0

[5,10]

[5,10][5,10]

[10,20]

[12,12]

[8,8]

[0,0] [17,18]

2

3

1

0

[5,10]

[5,10][5,10]

[10,20]

2

3

1

0

10 10

10

-5

-5 -5

-10

20

2

3

1

0

[5,10]

[5,10][5,10]

[10,20]

[0,∞]

[0,∞]

[0,∞] [0,∞]

2

3

1

0

[5,10]

[5,10][5,10]

[10,20]

[10,20]

[5,10]

[0,0] [0,∞]

2

3

1

0

[5,10]

[5,10][5,10]

[10,20]

[10,20]

[5,5]

[0,0] [10,15]

2

3

1

0

[5,10]

[5,10][5,10]

[10,20]

[11,11]

[5,5]

[0,0] [10,15]

a) b)

c) d)

a) b)

c) d)

[16,21]

2

3

1

0

10 10

10

-5

-5 -5

-10

15

20-15

0

5

Figure 2.3: Example of a consistent STN and its distance graph dual.

2

3

1

0

[5,10]

[5,10][5,10]

[10,20]

[0,∞]

[0,∞]

[0,0] [0,∞]

2

3

1

0

[5,10]

[5,10][5,10]

[10,20]

[10,20]

[5,10]

[0,0] [0,∞]

2

3

1

0

[5,10]

[5,10][5,10]

[10,20]

[10,20]

[8,8]

[0,0] [13,18]

2

3

1

0

[5,10]

[5,10][5,10]

[10,20]

[12,12]

[8,8]

[0,0] [17,18]

2

3

1

0

[5,10]

[5,10][5,10]

[10,20]

2

3

1

0

10 10

10

-5

-5 -5

-10

20

2

3

1

0

[5,10]

[5,10][5,10]

[10,20]

[0,∞]

[0,∞]

[0,0] [0,∞]

2

3

1

0

[5,10]

[5,10][5,10]

[10,20]

[10,20]

[5,10]

[0,0] [0,∞]

2

3

1

0

[5,10]

[5,10][5,10]

[10,20]

[10,20]

[5,5]

[0,0] [10,15]

2

3

1

0

[5,10]

[5,10][5,10]

[10,20]

[11,11]

[5,5]

[0,0] [10,15]

a) b)

c) d)

a) b)

c) d)

[16,21]

2

3

1

0

10 10

10

-5

-5 -5

-10

15

20-15

0

5

Figure 2.4: Dispatching the STN in Figure 2.3.

the outgoing positive and the incoming negative edges. This enables
nodes 1 and 2 since all nodes that are sources of incoming constraints
towards node 1 and 2, with positive lower bounds, have been executed
(namely node 0).

c) The dispatcher chooses to execute node 2 at time 8 which leads to a
propagation of tighter bounds to node 3. The new bounds become
[13, 18] but node 3 does not become enabled.

d) Node 1 is executed at time 12 and bounds are again propagated to node 3.

“Lic” — 2015/8/10 — 15:07 — page 24 — #30

24 Chapter 2. Temporal Formalisms

2

3

1

0

[5,10]

[5,10][5,10]

[10,20]

[0,∞]

[0,∞]

[0,0] [0,∞]

2

3

1

0

[5,10]

[5,10][5,10]

[10,20]

[10,20]

[5,10]

[0,0] [0,∞]

2

3

1

0

[5,10]

[5,10][5,10]

[10,20]

[10,20]

[8,8]

[0,0] [13,18]

2

3

1

0

[5,10]

[5,10][5,10]

[10,20]

[12,12]

[8,8]

[0,0] [17,18]

2

3

1

0

[5,10]

[5,10][5,10]

[10,20]

2

3

1

0

10 10

10

-5

-5 -5

-10

20

2

3

1

0

[5,10]

[5,10][5,10]

[10,20]

[0,∞]

[0,∞]

[0,0] [0,∞]

2

3

1

0

[5,10]

[5,10][5,10]

[10,20]

[10,20]

[5,10]

[0,0] [0,∞]

2

3

1

0

[5,10]

[5,10][5,10]

[10,20]

[10,20]

[5,5]

[0,0] [10,15]

2

3

1

0

[5,10]

[5,10][5,10]

[10,20]

[11,11]

[5,5]

[0,0] [10,15]

a) b)

c) d)

a) b)

c) d)

[16,21]

2

3

1

0

10 10

10

-5

-5 -5

-10

15

20-15

0

5

Figure 2.5: Example of a consistent STN where dispatch fails due lack of
propagation between nodes.

The upper bound propagated is 22. Since node 3 already has an upper
bound of 18, which is tighter than 22, the upper bound is not changed.
The final execution window for node 3 becomes [17, 18] and the node
is now enabled. The dispatcher may choose to execute node 3 at time
17 or 18 arriving at a valid execution scenario where all constraints are
met.

Note that each node is assigned a timepoint that is later than the timepoints
previously assigned. This means that execution can be carried out while
new timepoints are assigned. There is no need to wait until the full solution
is decided upon.

Direct Dispatchability. The dispatcher is only guaranteed to work if the
existing constraints between nodes in the STN are explicit enough so that
the algorithm propagates tight enough bounds. For the STN in Figure 2.3
this is not the case. We saw previously that the dispatcher made choices
that led to a successful execution. It could have made other choices. Fig-
ure 2.5 shows what happens if the dispatcher decides to execute T2 = 5
(Figure 2.5c). The execution window for node 3 becomes [10, 15]. When

“Lic” — 2015/8/10 — 15:07 — page 25 — #31

2.2. Execution of STNs 25

the dispatcher follows this decision by choosing a low T1 value of 11 in the
last step (Figure 2.5d), the bounds propagated to node 3 will be too high:
[16, 21]. This means that the intersection between the interval propagated
from node 1 and that propagated from node 2 is empty, so that no time-
point satisfies them both. To prevent this situation the choice of T2 must
affect the possible choices for T1.

Figure 2.6 shows the APSP graph for the example STN, which has a
different set of constraints but exactly the same solutions. According to
this graph there is in fact a constraint between node 2 and node 1 that was
implicit in the original STN formulation. The constraint requires the differ-
ence to be within [0, 5]. We can also see that T1 must be below 15. If an STN
is missing edges, as in the [0, 5] case, or edges are too loose, as in the case
with the [10, 20] constraint between 0 and 1, dispatch may fail. From this
intuition we formulate and prove the following lemma:

Lemma 1. (Direct Dispatchability) [This thesis] Let G be a consistent STN
and G’ be the APSP STN version of G. We now assume that G and G’ are dis-
patched simultaneously and that all timepoints that are assigned to events in G are
also assigned to the corresponding events in G’. Then G is directly dispatchable
if and only if, for all execution scenarios of G, all execution windows for enabled
nodes in G are sub-intervals of the execution windows for the corresponding en-
abled nodes in G’

Proof. We start with the “if’-part. We know that G’ is dispatchable. We
also know that any edge present in G is present in G’ and the edge in G’
can only be tighter. Therefore the dispatch of G’ will allow as many execu-
tion scenarios as possible. This is because the APSP version of an STN is
a minimal decomposition. The minimality of G’ means that no constraint
contains redundant values, if any constraint interval is reduced at least one
execution scenario is lost. That G’ is a decomposition means that for any
allowed timepoint assignment to an event, with respect to constraints, as-
signments to the other events can be made so that the resulting execution
scenario is valid. If all choices for the dispatch of G are within the choices
allowed for G’, G can clearly be directly dispatched.

Now we prove the “only if”-part. Suppose that there exists an execu-
tion scenario for G, such that an execution window for the enabled node
n during dispatch of G is not a sub-interval of the corresponding window
for the enabled node n’ in G’. This means that the dispatcher may chose a
time for n which cannot be assigned to n’. But dispatching G’ allows all
possible valid execution scenarios. Therefore the scenario executed by the
dispatcher for G cannot be valid and dispatch is incorrect. Therefore G is

“Lic” — 2015/8/10 — 15:07 — page 26 — #32

26 Chapter 2. Temporal Formalisms

in this case not directly dispatchable.

It is not trivial to use this lemma to prove that an STN is directly dispatch-
able. We present a novel efficient solution to the direct dispatchability ver-
ification problem in Section 2.2.3. Before this can be done the concept of
edge filtering must be presented.

2

3

1

0

[5,10]

[5,10][5,10]

[10,20]

[0,∞]

[0,∞]

[0,∞] [0,∞]

2

3

1

0

[5,10]

[5,10][5,10]

[10,20]

[10,20]

[5,10]

[0,0] [0,∞]

2

3

1

0

[5,10]

[5,10][5,10]

[10,20]

[10,20]

[8,8]

[0,0] [13,18]

2

3

1

0

[5,10]

[5,10][5,10]

[10,20]

[12,12]

[8,8]

[0,0] [17,18]

2

3

1

0

[5,10]

[5,10][5,10]

[10,20]

2

3

1

0

10 10

10

-5

-5 -5

-10

20

2

3

1

0

[5,10]

[5,10][5,10]

[10,20]

[0,∞]

[0,∞]

[0,∞] [0,∞]

2

3

1

0

[5,10]

[5,10][5,10]

[10,20]

[10,20]

[5,10]

[0,0] [0,∞]

2

3

1

0

[5,10]

[5,10][5,10]

[10,20]

[10,20]

[5,5]

[0,0] [10,15]

2

3

1

0

[5,10]

[5,10][5,10]

[10,20]

[11,11]

[5,5]

[0,0] [10,15]

a) b)

c) d)

a) b)

c) d)

[16,21]

2

3

1

0

10 10

10

-5

-5 -5

-10

15

20-15

0

5

Figure 2.6: The all-pairs shortest paths of the STN example.

2.2.2 Edge Filtering

One way to make an STN directly dispatchable is to add edges between
all nodes with weights corresponding to the costs of the shortest paths be-
tween nodes, i.e. add all edges from the APSP graph. This makes sure that
any decision made by the dispatcher will be propagated by the dispatcher
to limit its later choices of timepoints for events. A problem with a complete
graph, such as the APSP graph, is that once a timepoint has been decided
for an event, the dispatcher must propagate this decision to affect the ex-
ecution windows of all non-executed nodes. Therefore the dispatcher will
have to carry out on average Θ(n2) propagations in each iteration for a to-
tal of Θ(n3) propagations altogether during execution. The idea behind the
dispatcher, as mentioned before, is to execute plans in real-time to be able
to accommodate a small amount of uncontrollability in action durations.
As a reminder, the alternative to dispatching execution is to choose time-
points for the events before the actual execution of plans. This results in a
static time schedule which has a lower probability of success in scenarios
with uncontrollable durations. A concern for dispatching is if an STN has a
high degree of connectedness. Then propagations by the dispatcher during
execution may become a bottleneck affecting real-time performance.

“Lic” — 2015/8/10 — 15:07 — page 27 — #33

2.2. Execution of STNs 27

If there are several paths along which the dispatcher may propagate the
same information, some of these paths can be removed without affecting
the direct dispatchability of the STN. This is observed by Muscettola et al.
[23] who presents so called domination rules that can be used to remove
unnecessary edges from the graph. Before discussing these rules we re-
mind the reader that when the dispatcher executes a plan, upper bounds
on execution windows are propagated by positive edges and lower bounds
by negative edges (in the reverse direction). There is a difference in the im-

portance of these edges. A positive edge i b−→ j means that the execution
of j should not be later than b time units from when i is executed. Notice
that this says nothing about which node should executed first. A negative
edge however always means precedence. A negative edge i −a←− j requires
that i is executed at least a time units before j. Edges with weight zero are
a bit special and can be regarded in both ways. The procedure presented in
this section considers zero weight edges as non-negative and groups them
with positive edges. The DBP algorithm, presented in Section 2.3, consid-
ers zero weight edges as negative. We want to point out this difference in
definitions so that the reader is not confused.

The idea proposed by Muscettola et al. [23] is that given a directly dis-
patchable STN, redundancy in propagation can be reduced by removing
certain edges. These edges are dominated by others and they can be discov-
ered by applying a triangle rule. The triangle rule has two conditions, one
for when a positive edge is dominated and can be removed and one for
when a negative edge is dominated and can be removed. An algorithm is
also given which filters out any unneeded edges from a directly dispatch-
able STN. The algorithm runs in O(|V|3) where V is the set of nodes in the
STN.

The intuition behind the domination rules is that some edges will be
used by the dispatcher to propagate looser or identical bounds compared to
propagation along other edges, and so only the tightest of the propagation
paths is required. This intuition leads to the following definitions:

Definition 5 (Domination [23]). A non-negative edge AC is upper-dominated
by another non-negative edge BC, both having C as target, if the upper bound
propagated by the dispatcher during dispatch along BC is always at least as tight
as the upper bound propagated by the dispatcher along the AC edge.

A negative edge, AC, is similarly lower-dominated by another negative edge
AB, both having A as source, if the dispatch propagation of a lower bound along
AB is always at least as tight as the corresponding propagation along AC.

Theorem 1 states the requirements for when domination applies. In the fol-

“Lic” — 2015/8/10 — 15:07 — page 28 — #34

28 Chapter 2. Temporal Formalisms

lowing theorem and proof, |AB| represents the weight of the edge between
nodes A and B.

Theorem 1. (Triangle Rule) [36]
In an STN where the associated distance graph satisfies the triangle inequality:

1. A non-negative edge AC is upper-dominated by another non-negative edge
BC if and only if |AB|+ |BC| = |AC|.

2. A negative edge AC is lower-dominated by another negative edge AB if and
only if |AB|+ |BC| = |AC|.

A

B

x

zy

C A

B

x

z-y

C

A

B

-x

-z-y

C A

B

-x

z-y

C

A

B

x

-zy

C A

B

-x

-zy

C

a) b)

a) b)

Figure 2.7: The two cases of upper domination.

Proof. This was originally given a brief proof in Muscettola et al. [23]. Here
we provide a more detailed proof that should be easier to follow.

The proof is divided into two parts, each of which covers one domina-
tion type. Throughout the proof we will use a triangle with nodes A, B
and C as shown in Figure 2.7. The absolute weight of the edges will be de-
noted by the variables x, y and z. These variables will therefore always be
positive, and expressions such as −x always represent negative weights.

Recall that TA is used to denote the execution time of node A.

Upper Domination (1). For upper domination, Figure 2.7a shows the case
when AB has a non-negative weight and Figure 2.7b when its weight is
negative. These are the only two cases of interest, since both AC and BC
are required to be non-negative. The proof will be split in these two cases
due to the fact that different argumentation is possible depending on the
sign of the weights.

“Lic” — 2015/8/10 — 15:07 — page 29 — #35

2.2. Execution of STNs 29

Upper Domination (1) / “if”. Assume that |AB|+ |BC| = |AC|. We must
then show that the AC edge is dominated by the BC edge.

Upper Domination (1) / “if” / non-negative. We start with the case in
Figure 2.7a. Since all edges have non-negative weights, there is no forced
ordering between when A, B and C are executed. We will therefore exam-
ine each ordering in turn and show that the upper bound of TA + x, on the
node C, can be achieved without AC. In other words, we want to show
that TC ≤ TA + x without the AC edge. From the assumption we know
that y + z = x and can therefore use the following two facts: x ≥ y and
x ≥ z.

If TC ≤ TA this is trivially shown since x ≥ 0 in cases where upper
domination is applicable.

If TA < TC ≤ TB, i.e. A is executed before B, the upper bound of y
affects the choices for when the dispatcher executes B so that TB ≤ TA + y
and hence TC ≤ TA + y ≤ TA + x since y ≤ x. Therefore AC is upper
dominated if this execution order is chosen by the dispatcher.

The next case we need to verify is TA ≤ TB < TC. From the ordering
we know that B is executed before TA + y. At that time an upper bound is
propagated to C: TB + z ≤ TA + z + y = TA + x so the propagated bound
is never larger than TA + x, and it is in place before C is executed making
sure that TC ≤ TA + x as required.

The last case is if TB ≤ TA which trivially makes TB ≤ TA + y and the
same argument applies again. In conclusion, by removing AC the upper
bound on TC is not loosened, hence AC is upper dominated by BC.

Upper Domination (1) / “if” / negative. In Figure 2.7b, |AB| is negative.
This means that A and B are ordered so that TB < TA, since a negative edge
propagates a positive lower bound. In this instance we have TA ≥ TB + y.
Therefore, the upper bound of TB + z is propagated to C before A executes.
Again, there are two possible execution orders: TC ≤ TA and TC > TA.

If TC ≤ TA then trivially TC ≤ TA + x since x ≥ 0.
If TC > TA, then the upper bound propagated via A, TA + x ≥ TB +

y + x = TB + z so the bound propagated via AC cannot be tighter than the
bound propagated vi the BC edge. Therefore in both possible orderings AC
is upper dominated by BC.

Upper Domination (1) / “only if”. To conclude the proof of part 1 we show
that if |AB|+ |BC| 6= |AC|, AC cannot be upper dominated by BC. We first
see that |AB| + |BC| < |AC| is not possible in the distance graph of the
STN since it was assumed to satisfy the triangle inequality which states
that |AB|+ |BC| ≥ |AC|.

“Lic” — 2015/8/10 — 15:07 — page 30 — #36

30 Chapter 2. Temporal Formalisms

If |AB|+ |BC| > |AC| and the edge weights match the scenario in Fig-
ure 2.7a where all edges have positive weights, there exists a dispatch sce-
nario in which the upper bound propagated via BC is TA + y + z > TA + x.
This means that the upper bound propagated via BC in this dispatch sce-
nario is not at as tight as the bound propagated via the AC edge and hence
the requirement of upper domination: “...is always at least as tight...”, is
not satisfied.

If |AB|+ |BC| > |AC| and the edge weights match the scenario in Fig-
ure 2.7b there is a dispatch scenario in which A is executed as soon as pos-
sible, i.e. y time units after B, giving C the upper bound TB + y + x =

TB + x − (−y) = TB + |AC| − |AB| < TB + |BC| and so we see that the
upper bound propagated via BC is not as tight as the upper bound propa-
gated via AC. Therefore BC cannot upper dominate AC.

A

B

x

zy

C A

B

x

z-y

C

A

B

-x

-z-y

C A

B

-x

z-y

C

A

B

x

-zy

C A

B

-x

-zy

C

a) b)

a) b)

Figure 2.8: The two cases of lower domination.

Lower Domination (2). We now continue with part 2 of the proof. Fig-
ure 2.8 shows the corresponding two cases of lower domination. The dif-
ference between the cases is the sign of the BC edge. Recall that zero is
non-negative.

Lower Domination (2) / “if”. To show lower domination the requirement
becomes that TA ≥ TC + x in all cases.

Lower Domination (2) / “if” / all negative. In Figure 2.8a all three edges
are negative. Therefore TC < TB < TA, so B executes before A and the
lower bound of AB is applied to A. We have TB ≥ TC + z, and therefore
the lower bound propagated via B becomes TB + y ≥ TC + y + z = TC + x,
which is required for lower domination.

“Lic” — 2015/8/10 — 15:07 — page 31 — #37

2.2. Execution of STNs 31

Lower Domination (2) / “if” / one positive. In Figure 2.8b, C is unordered
relative to B. However, we still have TA > TB and TA > TC. From the
fact that −x = −y + z and z ≥ 0 it follows that −y ≤ −x (i.e. y ≥ x).
Combined with the upper bound definition TC ≤ TB + z, we get TB + y =

TB + z + (y− z) ≥ TC + (y− z) = TC + x since −x = −y + z and therefore
x = y − z. To summarize, TA ≥ TB + y ≥ TC + x, which is required for
lower domination.

Lower Domination (2) / “only if”. To conclude the proof of part 2 we show
that if |AB|+ |BC| 6= |AC|, AC cannot be lower dominated by BA. Again
|AB|+ |BC| < |AC| is not possible since it violates the triangle inequality
assumption.

If |AB|+ |BC| > |AC| and the edge weights match the scenario in Fig-
ure 2.8a there is a dispatch scenario where the lower bound propagated via
AB is TC + z + y < TC + x since |AB|+ |BC| > |AC| ⇔ −y− z > −x ⇔
y + z < x. This means that there is a scenario in which the lower bound
propagated via AC is tighter than the lower bound propagated via AB and
therefore AC cannot be lower dominated by AB.

If |AB|+ |BC| > |AC| and the edge weights match the scenario in Fig-
ure 2.8b there is a dispatch scenario where the lower bound propagated via
AC is TB + z + x. This scenario happens if C is executed as late as possible.
In this scenario the lower bound propagated via AB is TB + y < TB + z + x
since |AB| + |BC| > |AC| ⇔ −y + z > −x ⇔ y < z + x. Therefore the
bound propagated by AC is tighter and AB cannot lower dominate AC.

The filtering algorithm for creating minimal directly dispatchable distance
graphs makes use of the dominance relation. Since there is no mixing be-
tween signs in domination, the filtering can take care of positive and nega-
tive edges separately.

Algorithm 2 shows the pseudo-code for the filtering algorithm. The
algorithm shown is the first filtering algorithm by Muscettola et al. [23]
with complexity O(|V|3) (where |V| is the number of nodes in the graph).
A faster, more advanced version exists [36]. It has a run-time complexity
of O(|V||E|+ |V|2 log |V|) (where |E| is the number of edges in the initial
graph). It is shown that that the dominance relation is an equivalence re-
lation [23]. All edges in an equivalence class dominate each other. The
equivalence classes form a partial order since domination is shown to be
a transitive relation. It is further shown that if only one edge from each
top-level equivalence class is kept the resulting filtered network becomes
minimal and dispatchable.

“Lic” — 2015/8/10 — 15:07 — page 32 — #38

32 Chapter 2. Temporal Formalisms

Algorithm 2: Edge Filtering [23]

function MINIMUM DISPATCHABLE(G - STN)

Calculate the APSP-graph using Johnson’s or Floyd-Warshall’s algorithm
for each triangle in the APSP-graph do

check dominance of the edges
if one edge dominates another then

mark the dominated edge
end
if both edges dominate each other then

make sure one of them is marked
end

end
return a graph consisting of all unmarked edges

The algorithm first calculates the dispatchable APSP graph for the STN.
It then goes through all triangles and marks the dominated edges. In case
two edges dominate each other, one is kept unmarked. Then all marked
edges are removed and the resulting graph is returned. It is shown that the
strategy for marking edges ensures that only one edge from each top-level
equivalence class is kept in the final graph.

We now have the machinery needed to present the direct dispatchability
verification algorithm.

2.2.3 Direct Dispatchability Verification

STNs are not normally dispatched in their original form. As shown in the
previous section they need to be processed and additional constraints must
be added before dispatchability is attained. The added constraints have the
effect of relaying all the needed information for dispatch to succeed. How-
ever, in some cases the original STN cannot be altered. This prevents the
standard procedure presented in the previous section where the algorithm
first calculates the APSP graph to ensure dispatchability. The reason for
not altering the STN may be that execution is distributed or that nodes
are owned by separate entities so that new constraints between nodes can-
not be imposed on the global STN. It could also be caused by the fact that
communication can only follow certain paths, along the edges in the STN.
Regardless of which reason that is preventing alteration of the STN, it is
important to verify whether the given STN can be dispatched. There does
not exist any algorithm for verifying this property. Therefore, we present a

“Lic” — 2015/8/10 — 15:07 — page 33 — #39

2.2. Execution of STNs 33

new solution based on the following lemma:

Lemma 2. [This thesis] Let the dominance equivalence classes of a consistent
STN G be defined as in the previous section [36]. Then G is directly dispatchable
if and only if for each dominance equivalence class of G, G either contains at least
one edge from that class or contains at least one edge from a class ordered before it
in the preorder induced by the dominance relation.

Proof. “if”: An STN which contains one edge from each dominance equiv-
alence class, or a class ordered before it, is directly dispatchable. This fol-
lows from the theory of filtering where it is proven that such an STN is
minimal and directly dispatchable [36]. Since such an STN is minimal it is
not affected by any additional edges in G, they cannot increase or decrease
the execution intervals created during dispatch. An increase is impossible
since adding more constraints cannot prevent the existing ones from lim-
iting the execution intervals. A decrease is impossible since the STN was
already minimal.

“only if”: We now show that a consistent directly executable STN must
contain an edge from each dominance equivalence class, or a class ordered
before it in the preorder induced by the dominance relation.

Suppose for contradiction that no edge from a certain dominance class,
or class ordered before it, were present in the STN. Let T be the target node
if it is an upper domination equivalence class and the source node if it is
a lower domination equivalence class. All the edges from the involved
equivalence classes propagate the same upper/lower bound to T relative
to the temporal reference. This can be seen by inspection of the triangle
theorem (Theorem 1) where the bound propagated is relative to A. It is
clear that other dominations of the same edge must relate to nodes which
relate to A and since this is related to the temporal reference we can relate
the bounds directly to this for any equivalence class. Since the dispatcher
propagates the tightest possible execution windows along the edges in the
dominance classes by virtue of them representing a minimal STN, the fact
that the contradicting STN does not contain any of these edges means that
any bounds propagated to T will create an interval which is not a subset
of the execution window propagated in the APSP version of the STN. By
Lemma 1 this STN cannot be directly dispatchable.

Algorithm 3 is based on Lemma 2 and verifies direct dispatchability. The
algorithm first builds the equivalence classes used by the filtering algo-
rithm (Algorithm 2) presented in section 2.2.2. Since the filtering algorithm

“Lic” — 2015/8/10 — 15:07 — page 34 — #40

34 Chapter 2. Temporal Formalisms

Algorithm 3: Direct Dispatchability Verification

function VERIFY DIRECT DISPATCHABILITY(G - STN)

Build the dominance equivalence classes
using a modified MINIMUM DISPATCHABLE

Construct the partial order of the classes
for each equivalence class with order o do

if G contains no edge in a class ≤ o then
return false

end
end
return true

does not output these directly, a modified version is needed. The filtering
algorithm produces a minimal dispatchable result. The verification algo-
rithm may need to verify an STN which is dispatchable but not minimal.
Therefore it does not suffice to compare the STN to the result of the filtering
algorithm. Instead the criterion of Lemma 2 is used directly. Algorithm 3
checks if any of the classes are not covered, either directly by an edge from
the class being in the STN, or indirectly if an edge in a class ordered before
is included. If all classes are covered the algorithm returns true, otherwise
false.

2.3 The Dispatch Back-Propagation Approach

In this section we present an excerpt of a larger algorithm. Stedl and Williams
[33] introduce the concept of Dispatch Back-Propagation (DBP) as part of
their Fast-DC algorithm. The Fast-DC algorithm is the basis for the FastIDC

algorithm which is the focus of our research. Similar to the edge filtering
in the previous section, the DBP algorithm works in the distance graph of
the STN. Addition of a new constraint to an STN is seen as a tightening of
an existing constraint (with infinite bounds).

The idea behind DBP is that if a constraint i → j is tightened this will
not affect how the dispatcher dispatches nodes that are executed after j.
Any propagation along edges during dispatch to nodes executed after j are
not affected by the actual time assigned to j. Their constraints toward j are
all relative to j’s assigned time. Therefore, in order to keep a dispatchable
STN dispatchable after a constraint is tightened, only nodes that are exe-
cuted before j need to be checked for possible inconsistency. Since different

“Lic” — 2015/8/10 — 15:07 — page 35 — #41

2.3. The Dispatch Back-Propagation Approach 35

execution scenarios may execute nodes in different order, some nodes may
be either before or after the node j depending on the scenario. Recall that
the dispatcher may assign any execution time to a node as long as it is
within the execution window of the node.

The effect of tightening the i → j constraint is that the execution win-
dow for j becomes narrower. Then the STN distance graph may become
non-dispatchable and the STN even inconsistent (remember that consistent
STNs cannot always be directly dispatched through their distance graph).
In order to detect inconsistencies, and preserve dispatchability, the DBP al-
gorithm imposes new constraints on any direct path along which an incon-
sistency could be propagated. The DBP algorithm will detect if the tighter
constraint leads to the STN not being dispatchable anymore, with exceptions.
We will see in Chapter 4 that there are cases in which it fails to detect non-
dispatchability correctly. The solution to this problem is an important result
of this thesis.

In more detail, DBP visits all possible predecessors of j and imposes
new constraints on these to preserve dispatchability. This is done recur-
sively, affecting the predecessors of j’s predecessors, and so on towards
the start of the STN until either no more predecessors exist or DBP detects
that dispatchability cannot be preserved. Figure 2.9 shows the two cases
of back-propagation which are needed to preserve dispatchability or de-
tect non-dispatchability. The bold edges in the figure are the result of DBP
propagation. As mentioned before, 0 is treated as a negative edge by DBP,
Fast-DC and FastIDC.

A

C

z

DBP 1

-x
z-x

A

C

-z

DBP 2

y
y-z

B B

Figure 2.9: The two cases of back-propagation used by the DBP algorithm.

“Lic” — 2015/8/10 — 15:07 — page 36 — #42

36 Chapter 2. Temporal Formalisms

The DBP-1 propagation is triggered if a positive edge AB is tightened and
remains positive. The triggering condition for adding or tightening edge
AC is that BC is an outgoing negative edge. The rationale is that an upper
bound which is propagated from A to B may be threatened by an incoming
lower bound from C. If the lower bound requires B to execute after the
upper bound’s requirement then the STN is inconsistent. By adding the
AC edge, DBP forces C to be executed enough time before B so that the
time propagated by the lower bound cannot be above the upper bound.

The DBP-2 propagation is triggered if a negative edge AB is tightened or
a previously positive edge AB is tightened to a negative value. It will add
or tighten edge CA if there is a positive incoming edge CB. The rationale is
now the opposite. A lower bound propagated via A will lead to propaga-
tion of a bound to B that may be threatened by an upper bound propagated
via C. By adding the CA edge, the DBP algorithm makes sure that A will
not be executed too late, preventing an empty execution window for B.

DBP propagations are focused on the tightened edge. If the current
focus is disregarded, the triangles become isomorphic. An incoming posi-
tive edge is followed by an outgoing negative edge producing a tightening
from the source of the positive edge to the target of the negative edge. The
weight of the tightened edge is the sum of the weights of the other two
edges.

Algorithm 4 lists the pseudo-code of the DBP algorithm. This algorithm
is not given directly in the paper on Fast-DC [34] where the concept is first
presented. It is only included as an integrated part of Fast-DC.

The algorithm starts with the tightened edge and then recursively ap-
plies the back-propagation rules where applicable. First the algorithm checks
if it is tightening a loop. A positive loop results when DBP is called with
node A equal to node C in Figure 2.9. This is a case of testing local con-
sistency between two nodes. A positive loop cannot be further recursed
and presents no threat to dispatchability. A negative loop is the result of
discovering an inconsistency. In case such an edge is found the algorithm
returns false.

If the tightened edge is not a self-loop, DBP checks if it can apply DBP-
1 or DBP-2. After each application, a recursive call is made to verify that
the STN is still dispatchable. If any of the recursions fail, false is returned.
Otherwise no inconsistencies were found and true is returned. The STN, G,
contains the tightened edges derived by DBP. This should be kept for use
in future invocations of the algorithm.

If the DBP algorithm returns false, the STN which was just processed

“Lic” — 2015/8/10 — 15:07 — page 37 — #43

2.3. The Dispatch Back-Propagation Approach 37

Algorithm 4: Dispatch Back-Propagation

function DISPATCH BACK-PROPAGATION(G - STN, e - tightened edge)
if Source(e) = Target(e) then

if Weight(e) ≥ 0 then
return true // positive loop

else
return false // negative loop

if e is positive then
for each negative edge f with Source(f) = Target(e) do

if !DISPATCH BACK-PROPAGATION(G, tighten according to DBP-1) then
return false

end
else

for each positive edge f with Target(f) = Source(e) do
if !DISPATCH BACK-PROPAGATION(G, tighten according to DBP-2) then

return false

end
end
return true

cannot be dispatched and hence is inconsistent. The self-loops encountered
by the algorithm are never added to the distance graph. Therefore the STP
definition is not violated by the use of these edges. It is possible to inter-
leave filtering of edges [36] as presented in Section 2.2.2 since this does not
affect dispatchability.

In Chapter 4 we analyze DBP further as a cause of FastIDC failures.
We end by remarking that it is possible to come up with an STN with n
nodes where DBP is as expensive as an all-pairs shortest-path calculation,
i.e. Θ(n3).

Comparison between APSP and DBP

The two triangles in Figure 2.9 both show derivations of shortest paths.
If tightening the AB edge produces a shorter path between A and C, the
AC edge is updated to reflect this. Therefore, DBP applies a subset of the
tightenings that would be done if an APSP algorithm were used. There
are four types of triangle interaction between two edges dependent on the
edge signs: plus-plus, plus-minus, minus-plus and minus-minus. All these
interactions are applied in APSP calculations, but only the plus-minus com-

“Lic” — 2015/8/10 — 15:07 — page 38 — #44

38 Chapter 2. Temporal Formalisms

bination is applied by the DBP algorithm. This is all that is needed to
ensure dispatchability, assuming there are no negative cycles (which is a
case which we will discuss in Chapter 4). Plus-minus interaction derives
shortest paths along negative edges. This means that the path is derived
towards nodes that are executed earlier. If a consistent STN is built using
calls to DBP, all nodes will have shortest path distances towards the tem-
poral reference.

An interesting property is that, since dispatchability is maintained, any
consistent STN can be dispatched after it was processed through DBP. This
means that even though not all edges in the STN distance graph have
weights that are the shortest distances between nodes, these shorter dis-
tances are in fact recovered during execution / dispatch. If this did not
happen, execution windows would allow values outside those of the min-
imal STN which would cause dispatch to fail. Therefore, for a consistent
STN, DBP does a “lazy”-APSP calculation which shifts the work done to
the STN so that less work is done during processing and more during exe-
cution.

2.4 Simple Temporal Networks with Uncertainty

We have now seen the basic concepts relating to STNs: Distance graphs,
consistency verification, execution, and dispatchability. These will now be
discussed in the more general model of temporal problems where uncer-
tainty is allowed. We start with the core definition:

Definition 6 (Simple Temporal Problem with Uncertainty (STPU) [44]).
A simple temporal problem with uncertainty (STPU) consists of a number
of real variables x1, . . . , xn, divided into two disjoint sets of controlled events
R and contingent events C. An STPU also contains a number of requirement
constraints Rij = [aij, bij] limiting the distance aij ≤ xj− xi ≤ bij, and a number
of contingent constraints Cij = [cij, dij] limiting the distance cij ≤ xj − xi ≤
dij. For the constraints Cij we require that xj ∈ C and 0 < cij < dij < ∞.

Controlled events can be assigned timepoints by choice. The timepoints at
which contingent events occur can only be observed and they are therefore
sometimes also referred to as observable events or uncontrollable events. Re-
quirement constraints are constraints that are required to hold in the STPU.
A contingent constraint is used to describe the uncertainty of a process that
is started at one event, which may or may not be controllable, and ends in
a contingent event.

“Lic” — 2015/8/10 — 15:07 — page 39 — #45

2.4. Simple Temporal Networks with Uncertainty 39

[35,40]

[-5,5]

Requirement Constraint

Contingent Constraint

[x,y]

[x,y]

Start
Driving

Wife at
HomeDrive

Start
Cooking

Dinner
Ready

[25,30]

Cook
Wife at
Store

[30,60] Shopping Waiting

Figure 2.10: Example STNU cooking scenario.

Requirement constraints can be placed between any types of events. In
contrast, it makes no sense to allow two contingent constraints to end in the
same contingent event. This would correspond to stating that timepoint t
is the timepoint when both action A and action B end, but it is impossible to
guarantee that such a timepoint will exist except in the trivial case where
both actions actually have a single known predefined duration.

STPUs in graph form are called STNs with Uncertainty (STNUs). We
now give an example of a scenario which can be modeled by an STNU.

Example 3. Suppose that a man wants to surprise his wife with some nice cooked
food after she returns from shopping. For the surprise to be pleasant he does not
want her to have to wait too long for the meal after returning home. He also does
not want to finish cooking the meal too early so it has to lay waiting. We can
model this scenario with an STNU as shown in Figure 2.10. Here the durations of
shopping, driving and cooking are uncontrollable (but bounded). This is modeled
by using contingent constraints between the start and end events of each action.
The fact that the meal should be done within a certain time of the wife’s arrival
is modeled by a requirement constraint which must be satisfied for the scenario
to be correctly executed. The question arising from the scenario is: can we guar-
antee that the requirement constraint is satisfied regardless of the outcomes of the
uncontrollable durations, assuming that these are observable.

We will return to the question posed in this example later in this chapter.

Wait Constraints. In addition to the types of constraints already existing
in an STNU, some algorithms can also generate wait constraints that make
certain implicit requirements explicit for use in further computations and
execution of the STNU.

“Lic” — 2015/8/10 — 15:07 — page 40 — #46

40 Chapter 2. Temporal Formalisms

Definition 7 (Wait Constraint [21]).
A wait constraint, or wait, between the nodes A and C is a constraint AC with
annotation 〈B, t〉. This constraint is respected if execution of node C is not allowed
to take place until either B has occurred or t units of time have elapsed since A
occurred.

Here B is called the conditioning node of the constraint and it must be an
uncontrollable event. We will see how wait constraints can be derived in
certain situations by the MMV algorithm (Chapter 3).

2.4.1 Different Controllabilities

A C

D

B

Requirement Constraint

Contingent Constraint

A C

D

B

[60,120]

[30,90]

[60,120]

[30,90]

[120,150]

A C

D

B

[30,90]

[120,180]
[60,120]

[150,240]

E
[30,60]

Requirement Constraint

Contingent Constraint

Figure 2.11: Example of a weakly controllable STPU.

For STNUs, consistency is insufficient. Instead, the interesting question is
whether an STNU is controllable in a certain way.

The definitions of controllability often use the notion of a projection.
A projection of an STNU is an STN where a value from each contingent
constraint interval is chosen to represent the contingent constraint in the
STN. The contingent constraint is converted to a requirement constraint in
the projection process. Intuitively a projection is what is got after assigning
a fixed duration to each uncontrollable duration.

Two types of controllability are defined by Vidal and Ghallab [44]. An
STNU is strongly controllable if it is possible to assign the controlled events
a single set of timepoints so that every projection of the resulting STNU is
a consistent STN. This means that there is a universal solution that can be

“Lic” — 2015/8/10 — 15:07 — page 41 — #47

2.4. Simple Temporal Networks with Uncertainty 41

determined in advance and used regardless of which timepoints the con-
tingent events take from their domains. An STNU is weakly controllable if
every projection is consistent. This means that for every outcome of the
uncontrollable durations it is possible to assign timepoints to the control-
lable events so that the corresponding projection is consistent. On the other
hand, actually doing this may require either luck or knowledge about the
future.

The example in Figure 2.11 is not strongly controllable. There is no sin-
gle timepoint for C that is consistent both when AD = 150 and AD = 240.
However, given a projection of timepoints for the contingent events B and
D, we can set C = D − 80 and get a consistent network, which shows
that the example network is weakly controllable. However, we cannot set
C = D− 80 until we actually observe the time where D occurred, at which
point it is too late to execute C.

It is clear that strong controllability implies weak controllability. Net-
works that are strongly controllable can be executed, but there exist net-
works that can be executed that are not strongly controllable. Weak con-
trollability on the other hand gives not much help in deciding whether an
STNU can be executed since it assumes a projection and at execution time
not all timepoints for contingent events are known. When executing a con-
trollable event, the timepoints available to assign to it may depend on a
contingent event that has not yet been observed. This scenario cannot be
captured by weak controllability. Hence a better model is needed to handle
execution scenarios.

Vidal and Fargier [42] defines this more useful type of controllability.
Dynamic controllability for an STNU is defined as the possibility to ex-
ecute the network consistently, given at each timepoint knowledge of all
contingent events that have happened up to this point in time. Dynamic
controllability captures the real situation of executing in a dynamic envi-
ronment. An execution procedure trying to schedule a controllable event
that is dependent on a contingent event which has not yet been observed
knows this and can compensate for it when deciding the execution time-
point for the controllable event. The concept of dynamic controllability is
essential to this thesis. It is formally defined via the concept of dynamic
execution strategy.

Definition 8 (Dynamic Execution Strategy [42]).
A dynamic execution strategy is a strategy for assigning timepoints to con-
trollable events during execution, given that at each point in time, it is known
which contingent events have already occurred. The strategy must ensure that all

“Lic” — 2015/8/10 — 15:07 — page 42 — #48

42 Chapter 2. Temporal Formalisms

A C

D

B

Requirement Constraint

Contingent Constraint

A C

D

B

[60,120]

[30,90]

[60,120]

[30,90]

[120,150]

A C

D

B

[30,90]

[120,180]
[60,120]

[150,240]

E
[30,60]

Requirement Constraint

Contingent Constraint

a) b)

Figure 2.12: Example of a strongly and a dynamically controllable STPUs

requirement constraints will be respected regardless of the outcomes for the contin-
gent events.

Definition 9 (Dynamically Controllable (DC) [42]).
An STNU is dynamically controllable (DC) if there exists a dynamic execution
strategy for it.

We now return to the example in Figure 2.10. A dynamic execution strategy
is to start cooking 10 time units after receiving a call that the wife starts
driving home. This guarantees that cooking is done within the required
time, since she will arrive at home 35 to 40 time units after starting to drive
and the dinner will be ready 35 to 40 time units after she started driving.

In contrast the example in Figure 2.11 is not dynamically controllable.
Assuming without loss of generality that A = 0. We cannot start C after 90
since then if D is observed at 150 we violate the CD constraint by getting a
value on the link that is less than 60. We cannot start C before 90 or at 90
since then the CD constraint will be violated if D is not observed until 240
leading to a value for the CD constraint at above 120.

Figure 2.12 shows two variations of the same example. In 2.12a, if A
is set to 0 and C to 60, the constraint CD will be satisfied as the possible
values will be in the range [120− 60, 150− 60] = [60, 90] ⊆ [60, 120]. This
means that the example is strongly controllable since C = 60 works for all
the contingent values on D.

The example in Figure 2.12b is a bit different from the earlier examples.

“Lic” — 2015/8/10 — 15:07 — page 43 — #49

2.4. Simple Temporal Networks with Uncertainty 43

Again assume that the time of the earliest node E is set to 0 for simplic-
ity. Here the value of A will be observed somewhere in the interval 30 to
60 after the execution of E. Then D in turn will be observed 120 to 180
after A. It is not possible to assign a value to C that works for all values
of D (150 ≤ D ≤ 240 which is similar to the first example). So the net-
work is not strongly controllable. It is however dynamically controllable.
To see this we observe that if we know the time at A we find ourselves
at this point in time in a scenario similar to that in Figure 2.12a where we
can choose C = A + 60 to get an interval for the CD constraint that is
[120− 60, 180− 60] = [60, 120]. Hence the time of D will satisfy the con-
straint.

In comparison to the other types of controllability, dynamic fits in-between
the others. This means that we have strong⇒ dynamic⇒ weak.

Figure 2.13 shows the knowledge that is used in the respective ways of
controllability. We see that strong controllability cannot make use of any
knowledge about the actual timings of the network. In contrast to this,
weak controllability makes use of the complete knowledge of all uncertain
timings. In-between we find the most realistic type of controllability, which
is dynamic controllability. If we take the perspective of an autonomous
agent executing a plan, it knows what has happened and plans for the fu-
ture.

time
start now end

time
start now end

time
start now end

Strong Controllability

Dynamic Controllability

Weak Controllability

KnownUnknown

Figure 2.13: Different types of controllability for STPUs

“Lic” — 2015/8/10 — 15:07 — page 44 — #50

44 Chapter 2. Temporal Formalisms

DC STNUs can be executed by a dispatcher taking uncontrollable events
into account. The algorithm required depends on whether the STNU has
been preprocessed. A dispatcher for STNUs processed by the MMV algo-
rithm will be presented later.

2.4.2 Complexity of Verifying Controllabilities

Vidal and Fargier [42] classify the different controllability problems in terms
of complexity. Determining strong controllability is found to be in P since
it is possible to take the worst case outcome of a projected STP and check if
this is consistent. The worst case is seen when considering the outcome of a
contingent event to be the latest timepoint in all constraints were the upper
limit is constrained and similarly that it occurs at the earliest possible time-
point in constraints constraining the lower limit. We again use the example
in Figure 2.11 to show this. When checking the constraint D − C ≤ 120
we get the worst case by assuming the upper bound D = 240 and when
checking the constraint D− C ≥ 60 we assume the lower bound D = 150.

Determining weak controllability is found to be in co-NP. This is due to
the fact that if we want to check if the network is not weakly controllable
it suffices to check the lower and upper bounds of each constraint. Using
only the extreme bounds is justified, since if a violation is caused by a value
inside an interval, the extremes of the interval would also expose this. A
naive algorithm for finding violations can check all combinations. This can
be done by a non-deterministic Turing machine in polynomial time.

The complexity of determining dynamical controllability is discussed
by Vidal and Fargier [43]. In this article there are conjectures of the com-
plexity classes of both weak and dynamic controllability. The three control-
lability problems are reformulated using existential and universal quanti-
fiers. Strong controllability is characterized by a list of existential quanti-
fiers outside the scope of an expression which is a conjunction of universal
quantifiers for each constraint. This can be solved in polynomial time.

Dynamic controllability is characterized as a game against nature where
each side take turns choosing. Nature has a universal operator and the ex-
ecuting entity has an existential operator. The view of dynamic control-
lability as a game has recently surfaced through the use of Timed Game
Automata (TGA). This angle of pursuit will be discussed in Chapter 7.
Through the game characterization, verifying dynamic controllability was
believed to be PSPACE-complete. A later result in Morris and Muscettola
[22] conjectured it to be NP-complete. In Chapter 3 we see it is in fact in P.

Weak controllability can be characterized by an expression where each

“Lic” — 2015/8/10 — 15:07 — page 45 — #51

2.4. Simple Temporal Networks with Uncertainty 45

uncontrollable node corresponds to a universal quantifier and each control-
lable node an existential quantifier. In the expression all universal quanti-
fiers are outside the scope of the existential quantifiers. The expression
encodes the concept that for all possible timepoints of all contingent events
there exist timepoints for the controlled events so that the resulting net-
work is consistent. The authors believed at the time that this would be sim-
pler to check than dynamic controllability, which at the time was believed
to be PSPACE-complete. Hence they conjectured that weak controllability
was co-NP-complete which as later shown to be correct by reduction from
the 3-coloring problem [19].

This section has followed the evolving view on the DC verification prob-
lem over time. We now continue with a more algorithm-based focus.

2.4.3 Extended Distance Graph Representation

In the same way as we saw previously for STNs, an STNU always has
an equivalent extended distance graph [34] (in the original paper they were
called CDGU for Conditional Distance Graph with Uncertainty, but since
there are no CDGs or DGUs we chose to rename it to a more fitting name).

Definition 10 (Extended Distance Graph (EDG) [34]).
An extended distance graph (EDG) is a directed multi-graph with weighted
edges of 5 kinds: Positive requirement, negative requirement, positive contingent,
negative contingent and conditional.

Requirement edges and contingent edges in an STNU are translated into
pairs of edges of the corresponding type in a manner similar to what was
previously described for STNs. The conditional edges mentioned in the defi-
nition, first used by Stedl [34], are used to represent the wait constraints that
are derived by some algorithms (see Chapter 3). The direction of a con-
ditional edge is intentionally opposite to that of the wait it encodes. This
makes the conditional edge more similar to a negative requirement edge in
the same direction, the difference being the condition. Conditional edges
are never present in the initial EDG, but they can be derived from other
constraints through calculations discussed in Chapter 3. We now give a
formal definition of a conditional edge:

Definition 11 (Conditional Edge [34]).
A conditional edge CA annotated 〈B,−w〉 encodes a conditional constraint: C
must execute after B or at least w time units after A, whichever comes first. The
node B is called the conditioning node of the constraint/edge.

“Lic” — 2015/8/10 — 15:07 — page 46 — #52

46 Chapter 2. Temporal Formalisms

Algorithm 5: STNU Dispatcher [21]

function DISPATCH(G - STNU)

enabled← {Temporal-Reference}
executed← {}
currentTime← 0
repeat

minTime← mine∈enabledlowerBound(e)
Advance time until uncontrollable event observed or
currentTime = minTime
if uncontrollable event e observed then

execute← e
Remove any waits conditioned on e

end
else

execute← any live event in enabled whose waits are satisfied
end
executed← executed∪ {execute}
enabled← enabled\{execute}
Assign currentTime to execute
Propagate execution bounds along constraints to neighboring events
enabled← enabled ∪ {newly enabled events}

until All nodes are executed

2.4.4 Execution of STNUs

How an STNU can be executed depends on which algorithm is used to
verify its DC status. All algorithms except the Morris algorithm produce,
as a side effect of verification, an STNU that can be dispatched by the dis-
patcher in Algorithm 5, or a slight variation of this for FastDC which uses
conditional edges.

This dispatcher which was originally presented in [21] is shown here
in a different format. The dispatcher uses two distinct conditions to deter-
mine whether an event e can be executed. First, e must be enabled, mean-
ing that all events that must be executed before it have actually been exe-
cuted. These events can be found through the outgoing negative require-
ment edges, similarly to how it is done when dispatching STNs (Section
2.2). Second, e must be live, meaning that it is within its permitted execu-
tion window. These execution windows are related to the constraints from
the original STNU and cannot be determined in advance. Instead they are
initialized to [0, ∞] and then dynamically updated as events actually oc-

“Lic” — 2015/8/10 — 15:07 — page 47 — #53

2.4. Simple Temporal Networks with Uncertainty 47

cur during execution. Observations of uncontrollable events are handled
through the same mechanism, causing the execution windows of “depen-
dent” nodes to be updated. When an event becomes enabled, its execution
window is guaranteed to be fully updated. For example, suppose that Start
Cooking in Figure 2.10 is executed at time 50. Then, and only then, can we
infer that Dinner Ready must occur within the interval [75, 80].

STNUs processed by the Morris algorithm need intermediate process-
ing [12, 13] before they can be executed.

“Lic” — 2015/8/10 — 15:07 — page 48 — #54

Chapter 3

Algorithms for Verifying
Dynamic Controllability

There exist two types of DC verification algorithms, full and incremental.
A full verification algorithm is used to process a whole STNU in one go.
The best places to apply these algorithms are to full plans for which there is
no prior information of DC status. Incremental algorithms repeatedly ver-
ify the DC status of an STNU as small incremental changes are made to it.
These algorithms are well suited for use in most types of automated plan-
ning. In particular, many planners are based on incrementally extending
plan candidates with new actions and constraints. If such a planner deter-
mines that a particular plan candidate is not dynamically controllable, none
of its descendants can be dynamically controllable, since the descendants
can never weaken the current constraints in the STNU. Then the planner
can verify after each action addition whether the plan remains DC, and
if not, it can safely backtrack without missing solutions. This allows the
planner to prune infeasible parts of the search tree as soon as possible.

In this chapter we present the “classical” MMV algorithm for determin-
ing dynamic controllability [21]. It is an example of a full algorithm. We
then present the FastIDC algorithm [32, 33] which was the only known in-
cremental algorithm at the time our work started. FastIDC does support in-
cremental tightening/addition of constraints, which is needed by planners
based on incrementally extending plans. FastIDC also supports incremen-
tal loosening/removal of constraints, which is not strictly required by these
types of planners.

As a final note it should be said that any full algorithm trivially is an

48

“Lic” — 2015/8/10 — 15:07 — page 49 — #55

3.1. The MMV Algorithm 49

Algorithm 6: Original MMV Algorithm [21]
procedure DynamicallyControllable? (network W)

1. Compute the All-Pairs graph for W.

If W is not pseudo-controllable then

return false.

2. Select any triangle such that

v is non-negative. Introduce any tightenings

required by the Precede case and any waits

required by the Unordered case.

3. Do all possible regressions of waits, while

converting unconditional waits to lower bounds.

Also introduce lower bounds as provided by the

general reduction.

4. If steps 2 and 3 do not produce any new

(or tighter) constraints, then return true,

otherwise go to 1.

incremental algorithm since it can regard the STNU together with the in-
crement as a full STNU.

3.1 The MMV Algorithm

The MMV algorithm has appeared twice in work by Morris et al. [20, 21].
In the first paper it was presented as in Algorithm 6. In the second paper
it was presented in a more concise form which is shown in Algorithm 7.
These algorithms share the same worst case complexity, but may process
the graph differently due to different selection order for triangles. Algo-
rithm 7 is easier to explain and so we will mainly use this in the thesis.

Pseudo-controllability. The algorithm builds on the concept of pseudo-
controllability, a necessary but not sufficient requirement for dynamic con-
trollability. Figure 3.1 shows how pseudo-controllability can be used when
verifying dynamic controllability.

Figure 3.1a shows an example STNU which contains two uncontrollable
actions which are modeled by contingent constraint and one requirement
constraint that constrains the total time of the two actions. This STNU is
not dynamically controllable since the actions may take up to 60 time units
whereas the constraint only allows for a maximum of 30 time units. This is

“Lic” — 2015/8/10 — 15:07 — page 50 — #56

50 Chapter 3. Algorithms for Verifying Dynamic Controllability

A B C
[10,30] [10,30]

[0,30]

a)

A B C
[10,30] [10,30]

[0,30]

b)

A B C
[10,20] [10,20]

[20,30]
c)

A B C
[10,30] [10,30]

[20,40]

Requirement Constraint

Contingent Constraint

Figure 3.1: Example of pseudo-controllability as a necessity for dynamic
controllability.

detected by a pseudo-controllability check.
The first step is to convert the STNU to an STN, as shown in Figure

3.1b. This is done by replacing contingent constraints with requirement
constraints having the same bounds. However, to detect if the STNU is not
dynamically controllable it is not enough to test its STN version for con-
sistency, since this only determines if there are possible durations for the
actions for which the total duration meets the requirement. For example,
a consistent solution to the example in Figure 3.1b is A=12, B=12, C=24,
which satisfies all requirement constraints.

Suppose we take this one step further to create the corresponding min-
imal STN, as seen in Figure 3.1c. Here only values that will definitely pre-
vent consistency have been removed from the constraint bounds. For ex-
ample, the original STN cannot be consistent if the temporal distance be-
tween A and C is less than 20. Therefore the original constraint interval of
[0, 30] is squeezed to [20, 30] in the minimal STN. This is not a problem for
the original STNU since squeezing a requirement constraint only limits the
possible choices, and as long as there is at least one value in the interval dy-
namic controllability may still be possible. However, the interval between
A and B is squeezed from [10, 30] to [10, 20]. If this is translated back to
the STNU this means that there are several values of the original contingent
constraint that are not allowed. If the first action takes 25 time units, which
is a possible outcome for the STNU, the requirement constraint cannot be
satisfied, and so the STNU cannot be dynamically controllable.

The procedure of testing pseudo-controllability is then as follows:

“Lic” — 2015/8/10 — 15:07 — page 51 — #57

3.1. The MMV Algorithm 51

A B C
[10,30] [10,30]

[0,30]

a)

A B C
[10,30] [10,30]

[0,30]
b)

A B C
[10,20] [10,20]

[20,30]
b)

A B C
[10,30] [10,30]

[20,40]

Figure 3.2: Example of a pseudo-controllable STNU which is not dynami-
cally controllable.

1. Convert the STNU into an STN by converting contingent constraints
into requirement constraints.

2. Compute the minimal STN (see Chapter 2, page 14).

3. If the STN is found to be inconsistent, the STNU cannot be DC. If
there is no possibility for consistency when assigning timepoints to
events, this will not become possible by letting external forces assign
a subset of the timepoints.

4. Compare all contingent constraints in the STNU with their corre-
sponding constraints in the minimal STN. If any of these constraints
are squeezed the STNU cannot be DC.

5. If non-DC was not detected in steps 3 or 4, the STNU is pseudo-
controllable.

While pseudo-controllability is a necessary condition for DC, it is not suf-
ficient. Figure 3.2 shows an example STNU which is pseudo-controllable.
The corresponding STN is directly minimal and consistent, and does not
result in a squeeze. The AB constraint that was squeezed in the previous
example can now also take on the full duration of 30, since in this case it
is possible that the second duration is 10, and so no values can be pruned
from either of these two constraints. But it is still possible that the total
duration is 60 which violates the AC constraint and so the STNU is not DC.

In order to detect STNUs that are not DC but pseudo-controllable MMV
additionally uses STNU-specific tightening rules, also called derivation rules,
which make constraints that were previously implicit in the STNU explicit
(Figure 3.3). Each tightening rule can be applied to a “triangle” of nodes if
the constraints and requirements of the rule are matched. The result of ap-
plying a tightening is a new or tightened constraint, shown as bold edges in
the leftmost part of the triangle. Note that unordered reduction generates
wait constraints, which cannot be present in the original STNU.

“Lic” — 2015/8/10 — 15:07 — page 52 — #58

52 Chapter 3. Algorithms for Verifying Dynamic Controllability

Algorithm 7: Recent MMV Algorithm [20]

Boolean procedure determineDC()

repeat
if not pseudo-controllable then

return false

else
forall the triangles ABC do

tighten ABC using the tightenings in Figure 3.3
end

until no tightenings were found
return true

Figure 3.4 shows an example of how MMV could apply a tightening. In
Figure 3.4a a contingent constraint and a requirement constraint meet in
the node B. If we look at the tightenings in Figure 3.3 we see that the ex-
ample in 3.4a matches the “Precedes Reduction” rule. This allows MMV
to derive the bold edge in the final figure, Figure 3.4c. We use this exam-
ple to informally reason about why this rule is applicable. In doing so we
will first derive the intermediate constraint in Figure 3.4b which contains
only the lower bound. Then we will conclude with deriving also the upper
bound for a total constraint equal to that of 3.4c. Suppose that node A was
executed at time 0. If node C was executed at time 3 there is a possibility
that the upper bound, 20, on CB is violated since B may occur at time 25
which is 22 time units after C. If the STNU is dynamically controllable this
cannot happen. We can increase the start time of C and apply the same
reasoning until we reach time 5. At this time a long duration of AB cannot
lead to a violation of the upper CB bound. From this we conclude that C
must be executed after time 5, or 5 time units after A for the STNU to be
DC. Therefore we can infer the lower bound of 5 which is shown in Figure
3.4b. There is as of yet no upper bound decided so we leave it blank, ’ ’, for
now.

To reason about the upper bound we focus on how late we can start C
compared to A. If C is executed at time 20, with A still being executed at
0, B could be observed at time 21 which violates the lower bound of CB
stating that B should be at least 5 time units after C. By adjusting down-
wards and reapplying the same reasoning we see that we can infer an upper
bound of 15 on the time between A and C. So in order for the STNU to be
DC we can in this situation infer a constraint [5, 15] between A and C.

“Lic” — 2015/8/10 — 15:07 — page 53 — #59

3.1. The MMV Algorithm 53

Requirement Constraint

Contingent Constraint

Wait Constraint

A

C

B
[x,y]

[u,v][y-v,x-u]

Requires: u ≥ 0

A

C

B
[x,y]

[u,v]<B,y-v>

Requires: u < 0 ≤ v

A

D

C<B,y>

[u,v]<B,y-v>

D

[u,v]<B,y-u>

Requires: y ≥ 0, B ≠ C

A

C

B
[x,y]

<B,u>
[u,∞]

Requires: u ≤ x Requires: u > x

A C<B,y>

[x,y]

[x,y]

<B,y>

Requires: -

A

C

B
[x,y]

<B,u>
[x,∞]

Figure 3.3: Tightenings (derivations) of the MMV algorithm.

Algorithm 7 shows that MMV consists of an outer loop, where it first ver-
ifies pseudo-controllability and transfers all tighter constraints found by
the associated APSP calculation into the STNU, then applies all possible
tightenings through the inner loop. If an STNU is not DC, the tighten-
ings will eventually produce sufficient explicit constraints for the pseudo-
controllability test to detect this [21].

The complexity of MMV is said to be O(Un3) where U is a measure
of the size of the domain (the number of constraints times the quotient of
the largest and smallest constraint bounds) [21]. This comes from a cost
of O(n3) per iteration and the fact that each iteration must tighten at least
one constraint by an amount at least the size of the smallest bound. In
the worst case this can occur repeatedly until a negative cycle is formed.
Since the complexity bound depends on the size of constraint bounds, it is
pseudo-polynomial.

Clarifications. Both descriptions of Algorithm 6 [21] and Algorithm 7 [20]
are quite concise and omit certain facts that are essential for using the algo-
rithms. In particular, it is not specified whether the APSP graph computed

“Lic” — 2015/8/10 — 15:07 — page 54 — #60

54 Chapter 3. Algorithms for Verifying Dynamic Controllability

A

C

B
[20,25]

[5,20]

A

C

B
[20,25]

[5,20][5,_]

A

C

B
[20,25]

[5,20][5,15]

a) b)

c)

Figure 3.4: Tightening example.

in step 1 is also used in steps 2 and 3, or whether those steps use the original
network W. This needs to be clarified.

The authors use Johnson’s Algorithm [6] to compute the APSP graph.
It is a known fact that this algorithm is more efficient than the much sim-
pler Floyd-Warshall [6] algorithm only for sparse graphs. This contradicts
the intuition that the APSP distance calculated in part 1 should be used to
determine edge distances for the triangles. If these calculated edges were
added to the work graph, it would no longer be sparse and there would be
no use for Johnson’s Algorithm.

Despite this, we now prove that the algorithm must use the APSP graph
when finding triangles to apply tightenings to. We do this with a counterex-
ample. Figure 3.5 shows an example of an EDG for an STNU. The left graph
is the starting scenario for the MMV algorithm. The right graph shows
the addition of constraints derived through the use of the Precedes Reduc-
tion. If the test for pseudo-controllability was run without adding derived
shorter distances, the distances between A and D would be AD : 30 and
DA : −30 and there would be no negative cycle detected.

However, if the shortest distance edges DB : 20 and BD : −20 was
added to the graph another application of the Precedes Reduction would
give AD : 30 and DA : −80. Now clearly the APSP calculation would
find a negative cycle. This shows that all the APSP edges must be added to
the graph in which tightenings are found and applied. It also shows that

“Lic” — 2015/8/10 — 15:07 — page 55 — #61

3.2. The FastIDC Algorithm 55

E

B

A

20

60
-10

-10

100

-50

30

-10

C

D

10

E

B

A

20

60
-10

-10

100

-50

30

-10

C

D

10
-40

40

Requirement Constraint Contingent Constraint

Figure 3.5: Why APSP edges must be added to the working graph.

Floyd-Warshall’s algorithm is the algorithm of choice when testing pseudo-
controllability.

There are two additional issues which need to be mentioned to suc-
cessfully implement the algorithm. Tightening rules can be matched by
regarding contingent constraints as requirement constraints. This is not so
strange since a contingent constraint implies a weaker requirement con-
straint with the same bounds. Furthermore requirement constraints can be
turned around so that [a, b] becomes [−b,−a] in the opposite direction, in
order to match tightening rules.

A final note is that all wait constraints conditioned on the same node
will have the same source, the source of the contingent constraint where
the conditioning node is present. This can be seen on close inspection of
the rules in Figure 3.3.

3.2 The FastIDC Algorithm

We now present the part of the FastIDC algorithm which handles additions
and tightening of constraints. This part is called the BackPropagate-Tighten
algorithm, however as it is the only part of FastIDC we will work with, we
will refer to it also as FastIDC.

The Backpropagate-Tighten algorithm (Algorithm 8) presented in [32]

“Lic” — 2015/8/10 — 15:07 — page 56 — #62

56 Chapter 3. Algorithms for Verifying Dynamic Controllability

uses a combination of the tightening rules for MMV (see Figure 3.3) and the
Dispatch Back-Propagation (DBP) algorithm for STNs (see Section 2.3). The
derivation rules of MMV are translated to the Extended Distance Graph
format (EDG, see Section 2.4.3) which is the working representation used
by Backpropagate-Tighten. Figure 3.6 shows a direct translation of the
MMV derivation rules into EDG form. Backpropagate-Tighten uses a sub-
set of these derivation rules together with DBP rules to form its own set of
derivation rules. Figure 3.7 shows the final set of rules used by Backpropagate-
Tighten. There is another special derivation rule that were not listed among
the original derivation rules, but instead mentioned in the text. It is only
discussed in the first paper by Stedl [34]. The rule is called unconditional
reduction and is a mixture of the unconditional and general reductions of
MMV. The result is applied when unconditional reduction is matched, but
the resulting edge is that of general reduction. We will come back to dis-
cussing this derivation rule in Chapter 4.

The derivation rules of Backpropagate-Tighten are applied recursively
similarly to how DBP applies its rules. This makes Backpropagate-Tighten
apply derivations in a specific order, instead of arbitrarily which is the case
for MMV.

In the presentation of FastIDC there is no mention of how to handle
contingent edges. Two correct possibilities exist:

1. Contingent edges are required to be added before adding any other
edges having the same target node. This is the approach we have
taken and will use throughout this thesis. From a planning perspec-
tive it is natural that an action is first decided upon before constraints
are put on its end time.

2. After adding a contingent constraint, reprocess all constraints that
connect to the target node of the contingent constraint. This is more
cumbersome and would affect the readability of most algorithms pre-
sented in this thesis.

FastIDC Details. Being incremental, FastIDC assumes that at some point a
dynamically controllable STNU was already constructed by FastIDC itself
(as a start, the empty STNU is trivially DC). Now one or more requirement
edges e1, . . . , en have been added or tightened, together with zero or more
contingent edges and zero or more new nodes, resulting in the graph G.
FastIDC should then determine whether G is DC.

It can be seen in Algorithm 8 that FastIDC first adds the newly modified
or added requirement edges to a queue, Q. The queue is sorted in order of

“Lic” — 2015/8/10 — 15:07 — page 57 — #63

3.2. The FastIDC Algorithm 57

Precedes Reduction 1 & 2

A

C

B
-u

-x

x-u

A

C

B
v

yv-y

Unordered Reduction

A

C

B
v

y<B,v-y>

Simple Regression 1 & 2

A

D

C
<B,-y>

v
<B,v-y>

Contingent Regression

A

D

C
<B,-y>

<B,u-y>

Unconditional
Reduction

A

C

B
-x

-u
<B,-u>

General
Reduction

A

C

B
-x

-x
<B,-u>

y

-x -x

v

-u

A

D

C
<B,-y>

<B,-v-y>
-v

Requirement
Contingent
Conditional

Figure 3.6: MMV derivations in EDG format.

decreasing distance to the temporal reference (TR), a node always executed
before all other nodes at time zero. Therefore edges connecting to nodes
closer to the “end” of the STNU will be dequeued before edges connecting
to nodes closer to the “start”. This will to some extent prevent duplication
of effort by the algorithm, but is not essential for correctness or for under-
standing the derivation process.

In each iteration an edge ei is dequeued from Q.
A positive loop (an edge of positive weight from a node to itself) rep-

resents a trivially satisfied constraint that can be skipped. A negative loop
entails that a node must be executed before itself, which violates DC and is
reported.

If ei is not a loop, FastIDC determines whether one or more of the deriva-
tion rules in Figure 3.7 can be applied with ei as focus. In the figure the top-
most edge is always the focus edge and the leftmost is the derived edge.

For example, consider rule D1. This rule will be matched if ei is a pos-

“Lic” — 2015/8/10 — 15:07 — page 58 — #64

58 Chapter 3. Algorithms for Verifying Dynamic Controllability

Algorithm 8: BackPropagate-Tighten [32]

function BackPropagate-TightenG, e1, . . . , en

Q← sort e1, . . . , en by distance to temporal reference
(order important for efficiency, irrelevant for correctness)

for each modified edge ei in ordered Q do
if IS-POS-LOOP(ei) then SKIP ei
if IS-NEG-LOOP(ei) then return false

for each rule (Figure 3.7) applicable with ei as focus do
if edge zi in G is modified or created then

if G is squeezed then return false

if not BackPropagate-Tighten(G, zi) then return false

end
end

end
return true

itive requirement edge, there is a negative contingent edge from its target
B to some other node C, and there is a positive contingent edge from C to
B. Then a new edge (the AC conditional edge) can be derived. This edge is
only added to the EDG if it is strictly tighter than any existing edge between
the same nodes.

More intuitively, D1 represents the situation where an action is started
at C and ends at B, with an uncontrollable duration in the interval [x, y].
The focus edge AB represents the fact that B, the end of the action, must
not occur more than v time units after A. This can be represented more
explicitly with a conditional constraint AC labeled 〈B, v− y〉: If B has oc-
curred (the action has ended), it is safe to execute A. If at most v− y time
units remain until C (equivalently, at least y− v time units have passed after
C), no more than v time units can remain until B occurs, so it is also safe to
execute A.

Whenever a new edge is created or an existing edge is tightened, a
check is done to see if the new edge squeezes the graph. This test is dif-
ferent from pseudo-controllability test that MMV uses to detect squeezes.
FastIDC considers the graph squeezed if there is a local negative cycle or a
contingent edge is squeezed. Since FastIDC works in the EDG there can be
several edges of the five different types going in both directions between
two nodes. This means that a contingent edge may even be squeezed by
a conditional edge. When a new edge is added this means that it must be
checked against all edges, in both directions, between the nodes it connects.

“Lic” — 2015/8/10 — 15:07 — page 59 — #65

3.2. The FastIDC Algorithm 59

Requirement Edge

Contingent Edge

Conditional Edge

Derived Edge (leftmost)

Focus Edge (topmost)

A

C

B
v

-x
y

<B,v-y>

1

A

C

B
v

-xv-x

4

A

D

C
<B,-y>

-u
v

<B,u-y>

2

A

C

B
v

<D,-x>

<D,v-x>

5

A

D

C
<B,-y>

v
<B,v-y>

3

A

C

B
-u

-x
y

x-u

6

A

C

B
-u

y
y-u

7

B ≠ D

A ≠ D

Figure 3.7: BackPropagate-Tighten Derivation Rules.

As an example, suppose FastIDC derives a requirement edge BA of weight
w, for example w = −12, representing the fact that B must occur at least 12
time units after A. Suppose there is also a contingent edge BA of weight
w′ > w, for example w′ = −10, representing the fact that an action started
at A and ending at B may in fact take as little as 10 time units to execute.
Then there are situations where nature may violate the requirement edge
constraint, and the STNU is not DC. Scenarios like this example are de-
tected in the local squeeze test.

If the tests are passed and the derived edge is tighter than any existing
edges in the same position, FastIDC is called recursively to take care of any
derivations caused by this new edge. Although perhaps not easy to see at a
first glance, all derivations lead to new edges that are closer to the temporal
reference. Derivations therefore have a direction and will eventually stop.
We will discuss this fact in detail in Chapter 5. When no more derivations
can be done the algorithm returns true to testify that the STNU is DC. If

“Lic” — 2015/8/10 — 15:07 — page 60 — #66

60 Chapter 3. Algorithms for Verifying Dynamic Controllability

FastIDC returns true after processing an EDG this EDG can be dispatched
directly by the dispatcher in algorithm 5.

3.2.1 Comparing MMV and FastIDC

In Chapter 5 we will relate the work performed by MMV to that of FastIDC.
Here we point out the three main differences between the two algorithms.

1. Representation. FastIDC does not work in the standard STNU repre-
sentation but uses the EDG graph (see Section 2.4.3) instead.

2. Derivation rules. Partly due to the new representation, FastIDC uses
different derivation rules.

3. Traversal order. FastIDC uses a significantly different graph traver-
sal order. MMV traverses a graph iteratively, and in each iteration, it
considers all “triangles” in a graph in arbitrary order. FastIDC, in con-
trast, uses the concept of focus edges. A focus edge is an edge that was
tightened and may lead to other constraints being tightened. Fast-

IDC only applies derivation rules to focus edges. If this leads to new
tightened edges it will recursively continue to apply the derivation
rules until quiescence. Intuitively, this guarantees that all possible
consequences of any tightening are covered by the algorithm.

3.3 Conclusion

In this chapter we presented the original versions of the MMV and Back-

Propagate-Tighten algorithms that the thesis results are based on. We also
presented a proof that MMV must use all edges from the APSP graph which
was very unclear from previous publications of the algorithm.

“Lic” — 2015/8/10 — 15:07 — page 61 — #67

Chapter 4

FastIDC Analysis and
Correction

During early integration of the FastIDC algorithm with a planner we dis-
covered that the algorithm was not correct. In some cases it would classify
an STNU as DC when it was not. In this chapter we first give an example
to show that FastIDC is unsound. We then analyze the algorithm, pinpoint
the cause, and show how the algorithm can be modified to correctly detect
uncontrollable networks.

4.1 A Misclassified STNU

We now show an STNU that BackPropagate-Tighten fails to classify as non-
DC.

Figure 4.1 shows an example network where U occurs uncontrollably
between 5 and 50 time units after A. The network is dispatchable and DC.

A B C
7

-5

10

-5

10

-5
D

10

-5

U

50 -5

Figure 4.1: Original graph, dispatchable and dynamically controllable.

61

“Lic” — 2015/8/10 — 15:07 — page 62 — #68

62 Chapter 4. FastIDC Analysis and Correction

A B C
7

1

-5

10

-5

10

-5
D

10

-5

U
-15

50 -5

2
-103

-3

Figure 4.2: After BackPropagate-Tighten is executed.

Figure 4.2 shows the same network after requirement edge À has been
added by a planner, stating that U must occur at least 15 time units after D,
and BackPropagate-Tighten has been executed. Rule 6 is matched with UD
as its focus, resulting in a new edge Á: Nature could decide there will be as
few as 5 time units between A and U, so there must be at least 10 time units
between D and A. The only remaining match is for rule 7, resulting in edge
Â.

No negative self-loop is generated. Will the algorithm consider G to be
squeezed? In MMV this was tested globally using an all-pairs shortest path
(APSP) algorithm. This would be extremely inefficient in an incremental
algorithm, and indeed Stedl and Williams [33] and Shah et al. [32] state
that APSP algorithms are not used. Then a local check for squeezing must
be used, and there are no edges that locally imply that the bounds on the
distance between A and U are squeezed. Therefore, BPT will return true

– but the graph is not DC: The path UDCBA shows U must be at least 30
after A, while the edge UA shows U may be observed as little as 5 time
units after A, violating the DC requirement.

4.2 Problem Analysis

To determine why BackPropagate-Tighten can miss the fact that a graph is
not DC, we take a closer look at the steps indicated in Figure 4.2. It is clear
that the graph was initially DC and dispatchable. When an edge À was
added, the distance graph remained globally consistent. However, since
this edge involved a contingent event (U), we could derive an additional
edge Á that would not have been entailed in an ordinary STN. This re-
sulted in a negative cycle and an inconsistent graph.

“Lic” — 2015/8/10 — 15:07 — page 63 — #69

4.2. Problem Analysis 63

A

B C
7

-3

9
40

-5 -30

9
7

7

-4 -3

-3

Figure 4.3: Initial consistent and dispatchable STN.

A

B C
7

-3

9
40

-5 -30

9
7

7

-4 -3

-3

5-25
12

-18
3

4
-9

5
-2

Figure 4.4: Graph where an STN inconsistency is missed.

BackPropagate-Tighten should detect such cycles. In fact, Shah et al. [32]
explicitly states that if we have a dispatchable distance graph for an ordi-
nary STN, then tighten or add an edge, and recursively apply only rules 4
and 7 and check for negative self-cycles, this “will either expose a direct incon-
sistency or result in a dispatchable graph”.

Below we will call the recursive application of rules 4 and 7 Incremental
Dispatchability (ID), as it was originally called in Stedl [34]. To demonstrate
more clearly how ID works without reference to STNUs, we turn to the
pure STN in Figure 4.3, which is dispatchable.

Suppose the dashed constraint À is added as shown in Figure 4.4, lead-
ing to a negative cycle and a non-dispatchable graph. Incremental Dis-
patchability will use rules 4 and 7 to derive edges Á–Ä, after which no
further edges can be derived except for positive self-loops, which we omit
as they neither indicate inconsistency nor lead to the generation of addi-
tional edges. As ID fails to find a negative self-loop it considers the re-

“Lic” — 2015/8/10 — 15:07 — page 64 — #70

64 Chapter 4. FastIDC Analysis and Correction

sulting graph consistent and dispatchable, which it is not. Why does this
happen, and what can we do about it while retaining the gained efficiency
of BackPropagate-Tighten as compared to full APSP calculations?

4.2.1 Reasons for Failure

To see why ID fails we compare it to MMV, which detects negative cycles
by running an APSP algorithm. This is equivalent to repeatedly taking all

edge pairs A x−→ B
y−→ C and deriving/tightening edges A

x+y−−→ C. In ID,
rules 4 and 7 only consider edge pairs where x > 0 and y ≤ 0, which is part
of the reason for its efficiency.

Lemma STN-DBP provided by Shah et al. [32] proves that these deriva-
tions are valid. The motivation for why they should also be sufficient is
quite intuitive and based on the fact that as long as a dispatcher ensures
that each scheduling decision it makes is consistent with the past, it will
also be possible to consistently schedule any future events. In other words,
any constraint that could possibly be inferred from the occurrence of future
events has already been explicitly applied to the current event through new
edges derived when the graph was made dispatchable.

As ID requires that the graph was dispatchable before the tightening or
addition, it is argued that ID also only has to consider consistency with past
events: “To maintain the dispatchability of the STN when a constraint is tightened
by a fast re-planner, we only need to make the modified constraint consistent with
past scheduling decisions, since during execution, the bounds on events are only
influenced by preceding events” [32]. Thus, when a positive constraint AB is
tightened, rule 4 only considers how this will affect nodes C forced to be in
the past from B, and similarly for rule 7.

This reasoning presumes that there is a well-defined past at each node,
towards which the recursion can proceed. This is true when a graph known
to be dispatchable is executed, but now we are verifying whether a change
preserves dispatchability. In Figure 4.4 we violated dispatchability and
could deduce both that C must be before A and vice versa: The STN is
inconsistent, and so is the concept of “past”.

Since ID determines that A must be before B, and B before C, it does not
derive a new edge from AB and BC. The reasoning is again that at execu-
tion time, A must occur before B, and then the dispatcher will propagate
the resulting constraints towards C in the future. This holds for all com-
binations of negative edges, so the negative cycle is never shortened to a
negative self-loop and is therefore missed.

“Lic” — 2015/8/10 — 15:07 — page 65 — #71

4.2. Problem Analysis 65

4.2.2 Resolving the Problem

One possible means of resolving this problem would be to fall back on de-
tecting negative cycles using for example incremental APSP calculations or
incremental directed path consistency [4] algorithms. But this would lead
to the same inefficiency that back-propagation was intended to avoid. For
the best possible performance, we would prefer to determine whether we
can benefit from the work that is already done when new edges are derived
by ID and BackPropagate-Tighten.

We therefore observe Figure 4.4 more closely and find that it contains
not only a negative cycle but a cycle consisting entirely of negative edges,
ACBA. It turns out that this will always be the case when ID fails to dis-
cover an inconsistency.

In the following we assume that any path is simple, i.e. does not contain
a repeated node, and that any cycle is simple, i.e. contains only one path
from each node to itself.

Lemma 3 (Nilsson et al. [24]). Consider all paths of a given weight n between
two nodes N and N′ in a distance graph that was constructed incrementally by
ID. The shortest of these paths, in terms of the number of edges, must have one of
the following forms:

1. It contains only positive edges.

2. It consists of at least one negative edge followed by zero or more positive
edges.

Proof. If a path with the smallest number of edges does not have this form,
it must at some point contain a positive edge followed by a negative edge:
N · · · A +−→ B −−→ C · · ·N′. Either when the edge AB was added/tightened
or when the edge BC was added/tightened, ID would have used rule 4 or 7
to derive a new edge A → C whose weight was the sum of the weights of
A → B and B → C. There would then exist a path between N and N′ with
the same weight but fewer edges, leading to a contradiction.

Theorem 2 (Nilsson et al. [24]). Let G be a consistent and dispatchable distance

graph constructed using ID. Assume that the edge A
f−→ B is added or tightened

in G and that the corresponding STN is then inconsistent. Then after applying
ID, there will be a cycle in the distance graph consisting of only negative edges.

Proof. By induction. Suppose that after adding or tightening an edge in G
but before applying ID, G is inconsistent. Then G has at least one negative

“Lic” — 2015/8/10 — 15:07 — page 66 — #72

66 Chapter 4. FastIDC Analysis and Correction

cycle according to Dechter et al. [9]. Let Ck be a negative cycle in G with
the smallest number of edges. Let k ≥ 1 be the number of edges in Ck.

Basis: If k = 1, there is already a cycle of only one negative edge. This
cycle will remain after applying ID, because ID never removes edges and
never increases edge weights.

Induction assumption: The theorem holds for k− 1.
Induction step: Does the theorem hold for k, where k > 1?
First, if all edges in Ck are negative, then they will remain negative after

ID and the theorem holds. Otherwise, at least one edge in the cycle is posi-
tive, but there must also be at least one negative edge (else Ck could not be
negative).

We know Ck consists of the newly tightened or added edge A
f−→ B to-

gether with some non-empty path from B to A. If there exist other paths
from B to A of the same weight, they cannot have fewer edges – otherwise
there would have been a shorter negative cycle than Ck, violating the as-
sumption. Thus, the path from B to A included in Ck has the fewest edges
among all paths from B to A of the same weight, and Lemma 3 is applica-
ble.

Suppose that the new value of f is negative. As the entire cycle did not
consist of negative edges, there must be at least one positive edge on the
path from B to A. This together with the lemma shows that there must be
a positive edge X → A at the end of that path, for some node X. Since the
edge A → B was altered, ID will apply rule 7 to derive an edge X → B,
yielding a cycle with the same negative weight but with k− 1 edges. By the
induction assumption, ID will then reduce this cycle to a negative-edge-
only cycle.

Suppose instead that the new value of f is positive. As the cycle was
negative, the path from B to A must have negative weight, so case 2 of the
lemma must hold and the path must begin with a negative edge B → Y.
Since the edge A → B was altered, ID will apply rule 4 to derive a new
edge A → Y, again yielding a cycle with the same negative weight but
with k − 1 edges. By the induction assumption, ID will then reduce this
cycle to a negative-edge-only cycle.

Intuitively this can be seen from the example in Figure 4.5. The example
contains a negative weight cycle which includes a positive edge. By the
derivation rules the positive edge with weight d will react with the nega-
tive −e edge and in doing so creating a “short-cut” with the sum of their
weights as weight. This can continue until the derived edge is a negative
“short-cut” which we know it will eventually become since the negative

“Lic” — 2015/8/10 — 15:07 — page 67 — #73

4.3. The Sound FastIDC Algorithm 67

Figure 4.5: A negative weight cycle with at least one positive edge. ID will
derive a negative cycle with the same weight and fewer edges.

weight sum of the cycle outweighs the positive weights. If there are sev-
eral positive edges in different positions along the cycle the same reasoning
can be applied to them all.
As shown in Figure 4.4, tightening an edge can indeed yield a cycle of mul-
tiple negative edges, which is not detected by ID. This is still problematic,
but we have now verified that it suffices to detect negative-edge-only cy-
cles rather than arbitrary negative cycles also containing positive edges. To
detect these we do not need to take edge weights into account.

We therefore incrementally build an unweighted Cycle Checking (CC)
graph containing the same nodes as the ID distance graph and with a di-
rected edge exactly where the distance graph has a negative edge. Since
edge weights can only be decreased and not increased, edges in the CC
graph will never be removed. Also, tightening an already negative edge
does not change the CC graph.

We then find cycles in the CC graph using an efficient incremental topo-
logical ordering algorithm which does not need to take edge weights into
account. Since ID generates many negative edges for propagating time
bounds during dispatch, an algorithm for dense graphs appears best suited.
One such algorithm has a run-time of O(n2 log n) for incrementally cycle-
checking a graph with n nodes and a maximum of O(n2) edges [2]. This
is dominated by the run-time of BackPropagate-Tighten, which was empir-
ically shown [33] to be around O(n3) in practice and in worst case Ω(n4)

which will be shown in Chapter 6.

4.3 The Sound FastIDC Algorithm

Before we present the sound version of BackPropagate-Tighten, we present
the full set of derivation rules as promised in Chapter 3. The derivation

“Lic” — 2015/8/10 — 15:07 — page 68 — #74

68 Chapter 4. FastIDC Analysis and Correction

A

C

B
v

-x
y

<B,v-y>

A

C

B
v

-xv-x

A

D

C
<B,-y>

-u
v

<B,u-y>

A

C

B
v

<D,-x>
<D,v-x>

A

D

C
<B,-y>

v
<B,v-y>

A

C

B
-u

-x
yx-u

A

C

B
-u

y
y-u

B ≠ D

A ≠ D

Requirement Edge
Contingent Edge
Conditional Edge

Derived Edge – Leftmost
Focus Edge – Topmost (except in D8/D9)

A

C

B
-x

-u
<B,-u>

A

C

B
-x

-x
<B,-u>

u ≤ x u > x

Removed Edge

Figure 4.6: FastIDC derivation rules D1-D9.

rules are shown in Figure 4.6 where we have added D8 and D9 which cor-
respond to the identical reduction rules presented by Morris et al. [21] but
are here shown in EDG form.

4.3.1 General and Unordered Reductions

In the original FastIDC presentation the use of unconditional/general re-
ductions were confounded. As we will show here, they are both needed in
the same situations as for the original MMV algorithm.

First, Figure 4.7 shows what happens if FastIDC (or MMV) would omit

“Lic” — 2015/8/10 — 15:07 — page 69 — #75

4.3. The Sound FastIDC Algorithm 69

B

D

A

C

E F5

5

5

<D,-5>

<B,-5>

<F,-5>

10

10

10

-2

-2
-2

Figure 4.7: Why general reduction is needed.

general reduction. Suppose the graph in the figure is built incrementally.
When adding the CB, ED and AF edges, the conditional edges CA, EC and
AE will be derived. FastIDC would then terminate with a positive veri-
fication of DC. However, the triangle of conditional edges means that all
involved nodes (A/C/E) need to be executed after each other, an inconsis-
tency which is not discovered. The edge derived by general reduction is
entailed by the conditional edge and resolves this problem.

Regarding Unconditional Reduction, suppose the CB edge in Figure 4.7
had weight 9, giving the CA edge weight −1. Now C needs to execute
1 time unit after A or when B is observed. Since B cannot be observed
until at least 2 time units after A, the conditional part of the constraint is of
no consequence and a requirement edge of weight −1 can be inferred by
Unconditional Reduction. Note that this situation does not trigger general
reduction (D9). Therefore, the conditional edge would not cause a negative
cycle of requirement edges if it were not for the Unconditional Reduction.
We see that in order for the algorithm to work correctly in this situation,
Unconditional Reduction is needed.

4.3.2 The Sound Algorithm

Now that we have seen the full set of derivation rules we are ready to
present the sound version of the FastIDC algorithm, see Algorithm 9. It
is similar to the original BackPropagate-Tighten but additionally contains
pseudo-code for managing and making use of a CCGraph for cycle check-
ing (see below). In order to give a complete description of the algorithm
we repeat the identical parts of the description for BackPropagate-Tighten

here.
Being incremental, FastIDC assumes that at some point a dynamically

“Lic” — 2015/8/10 — 15:07 — page 70 — #76

70 Chapter 4. FastIDC Analysis and Correction

Algorithm 9: FastIDC – sound version [24]

function FAST-IDC(G, e1, . . . , en)

Q← sort e1, . . . , en by distance to temporal reference
(order important for efficiency, irrelevant for correctness)

for each modified edge ei in ordered Q do
if IS-POS-LOOP(ei) then SKIP ei
if IS-NEG-LOOP(ei) then return false

for each rule (Figure 4.6) applicable with ei as focus do
if edge zi in G is modified or created then

Update CCGraph
if Negative cycle created in CCGraph then return false

if G is squeezed then return false

if not FAST-IDC(G, zi) then
return false

end
end

end
return true

controllable STNU was already constructed (for example, the empty STNU
is trivially DC). Now one or more requirement edges e1, . . . , en have been
added or tightened, together with zero or more contingent edges and zero
or more new nodes, resulting in the graph G. FastIDC should then deter-
mine whether G is DC.

The algorithm works in the EDG of the STNU. First it adds the newly
modified or added requirement edges to a queue, Q (a contingent edge
must be added before any other constraint is added to its target node and
is then handled implicitly through requirement edges). The queue is sorted
in order of decreasing distance to the temporal reference (TR), a node always
executed before all other nodes at time zero. Therefore edges connecting
to nodes closer to the “end” of the STNU will be dequeued before edges
connecting to nodes closer to the “start”. This will to some extent prevent
duplication of effort by the algorithm, but is not essential for correctness or
for understanding the derivation process.

In each iteration an edge ei is dequeued from Q.
A positive loop (an edge of positive weight from a node to itself) rep-

resents a trivially satisfied constraint that can be skipped. A negative loop
entails that a node must be executed before itself, which violates DC and is
reported.

“Lic” — 2015/8/10 — 15:07 — page 71 — #77

4.4. FastIDC Correctness 71

If ei is not a loop, FastIDC determines whether one or more of the deriva-
tion rules in Figure 4.6 can be applied with ei as focus. The topmost edge
in the figure is the focus in all rules except D8 and D9, where the focus is
the conditional edge 〈B,−u〉. Note that rule D8 is special: The derived re-
quirement edge represents a stronger constraint than the conditional focus
edge, so the conditional edge is removed.

An example of how D1 is applied can be found in section 3.2 on page
57.

Whenever a new edge is created, the corrected FastIDC tests whether a
cycle containing only negative edges is generated. The test is performed
by keeping the nodes in an incrementally updated topological order rela-
tive to negative edges. The unlabeled graph which is used for keeping the
topological order is called the CCGraph. It contains the same nodes as the
EDG and has an edge between two nodes if and only if there is a negative
edge between them in the EDG. See [24] for further information.

After this a check is done to see if the new edge squeezes a contingent
constraint. Suppose FastIDC derives a requirement edge BA of weight w,
for example w = −12, representing the fact that B must occur at least 12
time units after A. Suppose there is also a contingent edge BA of weight
w′ > w, for example w′ = −10, representing the fact that an action started
at A and ending at B may in fact take as little as 10 time units to execute.
Then there are situations where nature may violate the requirement edge
constraint, and the STNU is not DC. The squeeze test also checks for local
consistency in the same way as the original FastIDC algorithm does. This
means that it tests all different edges coexisting between the involved nodes
to see if there is any inconsistency.

If the tests are passed and the edge is tighter than any existing edges in
the same position, FastIDC is called recursively to take care of any deriva-
tions caused by this new edge. Although perhaps not easy to see at a first
glance, all derivations lead to new edges that are closer to the temporal
reference. Derivations therefore have a direction and will eventually stop.
When no more derivations can be done the algorithm returns true to testify
that the STNU is DC. If FastIDC returns true after processing an EDG this
EDG can be dispatched directly by the dispatcher in Algorithm 5.

4.4 FastIDC Correctness

Now that the correct pseudo-code and complete set of derivation rules have
been shown we give a proof that the sound algorithm is in fact sound. In

“Lic” — 2015/8/10 — 15:07 — page 72 — #78

72 Chapter 4. FastIDC Analysis and Correction

Chapter 5 we perform an analysis of the similarities and differences be-
tween MMV and FastIDC. There we also give the MMV tightening rules in
EDG form. It might help to look at the first section in this chapter when
reading this quite long proof.

Theorem 3 (FastIDC Correctness [25]). Given a dynamically controllable STNU
and a set new constraints that are added to the STNU, the sound version of Fast-

IDC, shown in Algorithm 9, correctly verifies dynamic controllability of the result-
ing STNU.

Proof. First we prove that FastIDC does not derive stronger constraints than
MMV and then that it derives enough to be correct.

First: FastIDC cannot derive stronger constraints than MMV does. This
follows since MMV applies its derivations and shortest path calculations
to all triangles of nodes until quiescence, and thus the recursive traversal
performed by FastIDC clearly cannot process a focus edge that MMV does
not process. Further, every derivation rule applied by FastIDC is also used
by MMV: D4 and D7 are implicitly performed through APSP calculations,
while the other rules are directly applied.

Second: FastIDC derives enough constraints to be able to classify STNUs
identically to how MMV would classify them. There are two cases of clas-
sification for an STNU: Non-DC or DC.

Case 1: FastIDC indicates that the STNU is not DC. Then applying the
derivation rules has resulted in the detection of a negative cycle or a local
squeeze. The constraints generated by MMV would be at least as strong
and would therefore also result in a negative cycle or local squeeze. The
pseudo-controllability test used by MMV would detect this, signaling that
the STNU is not DC. Since MMV is correct, FastIDC was also correct in this
case.

Case 2: FastIDC indicates that the STNU is DC. We will show that it is
dispatchable by the dispatcher in algorithm 5, which in turn entails that
there must exist a dynamic execution strategy (the one applied by the dis-
patcher). Thus, the STNU is DC and FastIDC is correct.
Proving this requires some knowledge of the dispatcher (algorithm 5). When
the dispatcher executes or observes the execution of a node, execution bounds
are propagated to all neighboring nodes. Upper bounds are propagated
along positive edges, while lower bounds are propagated “backwards”
along negative edges, which includes all conditional edges.

To unify the cases in the following discussion we assume that when
an uncontrollable event is observed, an execution window for the event
is propagated to it containing only the observed time. This approach lets

“Lic” — 2015/8/10 — 15:07 — page 73 — #79

4.4. FastIDC Correctness 73

us compare propagated bounds from both controllable and uncontrollable
nodes.

Now, let G be a DC STNU constructed through repeated applications
of FastIDC. Add one or more edges e1, . . . , en, and assume that FastIDC

(G, e1, . . . , en) classifies G as DC. We then know that:

1. It does not contain a cycle consisting only of negative requirement
edges, as this would have been detected by the CCGraph.

2. It does not contain a cycle consisting only of negative requirement
edges and conditional edges, since general reduction (D9) would have
created a cycle of negative requirement edges from this.

Therefore it is not possible for the dispatcher to end up in a deadlock where
no nodes are executable. Theoretically there could, however, be one or
more combined outcomes of the uncontrollable events for which execution
will fail because the propagation of execution bounds results in an empty
execution window for some event.

Assume that this happens: At least one node receives an empty execu-
tion window. Let X be the first node for which this happens during the
propagation procedure. The execution window was initially [0, ∞], and
must have been intersected with at least two propagated execution win-
dows that do not overlap, so that the upper bound of X is below its lower
bound. The upper bound and lower bound must then be caused by prop-
agation from distinct nodes. Thus we have a triangle AXB in the EDG
where an incoming edge AX has constrained the upper bound of X and an
outgoing edge XB has constrained the lower bound of X.

We will now consider all possible edge types for these incoming and
outgoing edges and show that in each case, FastIDC would in fact have
derived an additional constraint ensuring that the execution window for X
could not have become empty. First, suppose the upper bound for X was
propagated from a contingent constraint AX. The lower bound might then
have originated in:

1. A negative requirement edge XB. Then rule D6 would have gen-
erated a constraint AB constraining the relative timing between the
execution of A and that of B. This constraint would have prevented
the intervals propagated from A and B to X from having an empty
intersection.

2. A conditional edge XB, in which case X would be “protected” in a
similar way by a constraint generated by D2.

“Lic” — 2015/8/10 — 15:07 — page 74 — #80

74 Chapter 4. FastIDC Analysis and Correction

Second, suppose that the upper bound for X was propagated from a posi-
tive requirement edge AX. The lower bound might have originated in:

1. A negative requirement edge XB: X protected by D4 or D7.

2. A conditional edge XB: X protected by D3 or D5.

3. A contingent constraint XB: X protected by D1.

Note that we treat contingent edges as a whole constraint since they col-
lapse the interval to a point and therefore it does not matter if the positive
or negative edge is considered as propagating the time value.

Thus, for X to receive an empty execution window, A or B (or both)
must also have received an empty execution window from the propaga-
tion of AB together with the other constraints in the EDG. Furthermore,
since they propagated constraints to X, they must have been dispatched
before X. This contradicts the assumption that X was the first node to re-
ceive an empty execution window. Since no additional assumptions were
made about X, no node can receive an empty time window during dis-
patch. The dispatcher together with the processed STNU therefore consti-
tute a dynamic execution strategy, and the STNU is DC.

4.5 Conclusion

In this chapter we proved that the FastIDC algorithm (see Chapter 3) was
unsound. We also showed that it is possible to correct the flaw in the orig-
inal algorithm without impacting the run-time complexity. We provided a
corrected algorithm as well as additional derivation rules which we proved
are needed. The final contribution in this chapter was a full proof that Fast-

IDC as given here is correct.

“Lic” — 2015/8/10 — 15:07 — page 75 — #81

Chapter 5

A Tighter Complexity Result
for the MMV Algorithm

In this chapter we re-analyze MMV and prove that with a small modifi-
cation it is in fact O(n4) – the algorithm merely needs to stop earlier. The
intuition behind the analysis is that not all of MMV’s derivations and tight-
enings are necessary: Only a certain core of derivations actually matters for
verifying dynamic controllability, and when the STNU is DC, this core is
free of cyclic derivations. This can be exploited through a small change to
MMV. Stopping at the right time also preserves another aspect of MMV: the
result is dispatchable, unlike the result of Morris’ algorithm.

5.1 A Deeper Comparison between FastIDC and
MMV

The property of dynamic controllability is “monotonic” in the sense that if
an STNU is not DC, it can never be made DC by further adding or tight-
ening constraints. Therefore, the non-incremental verification performed by
MMV is equivalent to starting with an empty STNU (which is trivially DC)
and incrementally adding one edge at a time, verifying with MMV at each
step that the STNU remains DC. This procedure allows a comparison be-
tween MMV and FastIDC even though MMV only work with full STNUs
and FastIDC only work with incrementally built STNUs.

To compare the derivation rules used by MMV to those of FastIDC, we
first need a translation into EDG format. This is shown in Figure 5.1 where

75

“Lic” — 2015/8/10 — 15:07 — page 76 — #82

76 Chapter 5. A Tighter Complexity Result for the MMV Algorithm

Precedes Reduction 1 & 2

A

C

B
-u

-x

x-u

A

C

B
v

yv-y

Unordered Reduction

A

C

B
v

y<B,v-y>

Simple Regression 1 & 2

A

D

C
<B,-y>

v
<B,v-y>

Contingent Regression

A

D

C
<B,-y>

<B,u-y>

Unconditional
Reduction

A

C

B
-x

-u
<B,-u>

General
Reduction

A

C

B
-x

-x
<B,-u>

y

-x -x

v

-u

A

D

C
<B,-y>

<B,-v-y>
-v

Requirement
Contingent
Conditional

Figure 5.1: Classical derivations in EDG format.

similar to before the bold edges are derived. Precedes Reduction (PR) is split
in two since it adds two edges. Simple Regression (SR) is also split in two,
one version regressing over a positive edge and one regressing over a neg-
ative edge. All variables used as weights are considered positive, i.e.,−u is
a negative number (with Unconditional Reduction as an exception since it
also matches when −u is positive). The additional requirements from Fig-
ure 3.3 still apply but are omitted for clarity. Most are encoded by the edge
types – for instance in unordered reduction, only a positive requirement
edge can match the rule, making the v > 0 requirement implicit. We now
see the following similarities between figures 4.6 and 5.1:

• Precedes Reduction 1 (PR1) is identical to D6.

• Unordered Reduction is equivalent to D1. However without the extra
requirement (u ≥ 0) used by MMV to distinguish between applying
PR2 and unordered reduction, FastIDC will always apply Unordered

“Lic” — 2015/8/10 — 15:07 — page 77 — #83

5.1. A Deeper Comparison between FastIDC and MMV 77

Reduction, even when MMV instead would apply PR2. It can be
shown that if the situation calls for an application of PR2, FastIDC de-
rives the same edge as MMV through conversion of the conditional
edge resulting from D1 into a requirement edge (via Unconditional
Reduction, D8). If the application of PR2 directly leads to non-DC
detection, FastIDC also detects this directly. So PR and Unordered
Reduction are handled by D1, D6 and D8 together.

• Simple Regression 1 is equivalent to D3 and D5. The only difference
between D3 and D5 is which edge is regarded as focus.

• Contingent Regression is identical to D2.

• Unconditional Reduction is identical to D8.

• General Reduction is identical to D9.

Thus, the only significant differences are:

• FastIDC derivations has no counterpart to Simple Regression 2.

• D4 and D7 have no counterpart rules in MMV. These derive shortest
path distances towards earlier nodes in the STNU. This derivation is
present and handled by the APSP calculation in MMV.

We conclude that MMV and FastIDC derivations, with the exception of SR2,
are identical. They are however applied in a different order. MMV uses
unordered triangle selection and global APSP calculations whereas Fast-

IDC only follow derivation stemming from focus edges. We also want to
remind that MMV is a full DC verification algorithm whereas FastIDC is
incremental, but by building the full STNU incrementally their work and
results can be directly compared.

If we examine the differences closer it can be seen that SR2 is not needed,
not even by MMV. Figure 5.2 shows the situation where a conditional edge
CA is regressed over an incoming negative requirement edge DC. Adding
a constraint DA to ”bridge” two consecutive negative edges is always re-
dundant both for execution and for DC verification. From an execution
perspective this is easily seen since C is always executed before D which
ensures that the chain of constraints is respected without the addition of
DA. From a verification perspective this can be seen since the derived con-
straint is in fact weaker than the two original constraints. If B is executed
before C the DA constraint ”forgets” about the −v constraint which must
still be fulfilled. So the original two constraints are not only sufficient to

“Lic” — 2015/8/10 — 15:07 — page 78 — #84

78 Chapter 5. A Tighter Complexity Result for the MMV Algorithm

A

D

C

-v

<B,-y>

<B,-v-y>

Figure 5.2: Simple regression when the edge is negative.

Table 5.1: The derived edges compared to the focus edges.
Rule Effect
D1 The target of the derived edge is an earlier node.
D2,D6 The source of the derived edge is an earlier node.
D3,D7 The source of the derived edge is an earlier or unordered node.
D4,D5 The target of the derived edge is an earlier node.
D8,D9 The derived edge connects the same nodes.

guarantee the DA constraint: They are tighter and so the DA constraint
can be skipped. We will come back to the implications of leaving SR2 out
in the final section (Section 5.4).

5.2 Focus Propagation in FastIDC Derivations

If we apply rules D1–D9 in Figure 4.6, every derived edge has a uniquely
defined “parent”: The focus edge of the derivation rule. Unless this edge
was already present in the original graph, it (recursively) also has a parent.
This leads to the following definition.

Definition 12 (Derived Chain, Nilsson et al. [25]).
Edges that are derived through Figure 4.6 derivations are part of a derived chain,
where the parent of each edge is the focus edge used to derive it.

We observe the following:

• A contingent constraint orders the nodes it constrains. In EDG form
we see this by the fact that the target of a negative contingent edge is
always executed before its source.

• Either D8 or D9 is applicable to any conditional edge. Thus there will
always be an order between its nodes set by the negative requirement

“Lic” — 2015/8/10 — 15:07 — page 79 — #85

5.2. Focus Propagation in FastIDC Derivations 79

edge from D8/D9: The target node of a conditional constraint is al-
ways executed before its source.

This leads directly to the facts in Table 5.1. Here, node n1 is considered
earlier than n2 if n1 must be executed before n2 in every dynamic execution
strategy and for all duration outcomes. Similarly, node n1 is considered
unordered relative to n2 if their order can differ depending on strategy or
outcome.

We now consider the structure of derived chains in DC STNUs. The
focus will be on the direction and weight of each derived edge, ignoring
whether edges are negative, positive, requirement or conditional (but still
keeping track of contingent edges).

Lemma 4 (Nilsson et al. [25]). Suppose all rules in Figure 4.6 are applied to the
EDG of a dynamically controllable STNU until no more rules are applicable. Then,
all derived chains are acyclic: No derivation rule has generated an edge having the
same source and target as an ancestor of its parent edge along the current chain.

Proof. Note that in the definition of acyclic, we allow “cycles” of length 1.
These can only be created by applications of D8–D9 in a DC STNU.

For D1–D7, each derived edge shares one node with its parent focus
edge, but has another source or target. We can then track how the source
and target of the focus edge changes through the chain.

Table 5.1 shows that only derivation rules D1, D4 or D5 result in a differ-
ent target for the derived edge compared to the focus edge. The new target
has always “moved” along a negative edge, so it must be executed earlier
than the target of the focus edge. Since the STNU is DC, its associated STN
cannot have negative cycles. Thus, if the target changes along a chain, it
cannot “cycle back” to a previously visited target.

Rules D2, D3, D6 and D7 result in a different source for the derived edge.
This source may be earlier or later than the source of the focus edge, so
these rules can be applied in a sequence where the source of the focus edge
“leaves” a node n and eventually “returns”. Suppose that this happens
and the target n′ has not changed. This must occur through applications of
rules D2, D3, and/or D6–D9. No such derivation step decreases the weight
of the focus edge. Therefore, when the source returns to n, the new edge
to be derived between n and n′ cannot be tighter than the one that already
exists. No new edge is actually derived. Thus, if the source changes along
a chain, it cannot “cycle back” to a previously visited source.

This fact together with the previous lemma limits the length of a derived
chain to 2n2 since we have at most n2 distinct ordered source/target pairs

“Lic” — 2015/8/10 — 15:07 — page 80 — #86

80 Chapter 5. A Tighter Complexity Result for the MMV Algorithm

and can at most have one application of D8/D9 in-between source/target
movements. The use of chains to reach an upper bound on iterations is
inspired by Morris and Muscettola [20] where an upper bound of O(n5) is
reached for the MM algorithm.

Note that FastIDC derivations together with local consistency checks
and global cycle detection is sufficient to guarantee that all implicit con-
straints represented by a chain of negative edges are respected, or non-DC
is reported. There is no need to add these implicit constraints but the next
proof will make use of the fact that they exist.

Some derivations carried out by FastIDC can be proven not to affect the
DC verification process, and hence we would like to avoid doing these.
These can both be derivations of weaker constraints and constraints that
are implicitly checked even if they are not explicitly present in the EDG. In
order to single out the needed derivations we define critical chains.

Definition 13 (Critical Chain, Nilsson et al. [25]).
A critical chain is a derived chain in which all derivations are needed to correctly
classify the STNU. If any derivation in the chain was missing, a non-DC STNU
might be misclassified as DC.

Given a focus edge, one or more derivations may be applicable. Those
that would extend the current critical chain into a non-critical one can be
skipped without affecting classification. We therefore identify some criteria
that are satisfied in all critical chains.

Lemma 5 (Nilsson et al. [25]). Given a DC STNU:

1. A D1 derivation for a specific contingent constraint C can only be part of a
critical chain once.

2. At most one derivation of type D2 and D6 involving a specific contingent
constraint C can be part of a critical chain.

Proof sketch: Part 1 is shown as in the proof of Lemma 4: The target cannot
come back for another D1 application to the same contingent node.

We use Figure 5.3 to illustrate the situation when D2 or D6 is applied
over the contingent ab constraint. The rightmost part of this figure is an
arbitrary triangle abc where one of the rules is applicable, while the leftmost
part is motivated by the proof below.

In the following we do not care if the edges are conditional or require-
ment: Only the weights of the derived edges are important. We follow

“Lic” — 2015/8/10 — 15:07 — page 81 — #87

5.2. Focus Propagation in FastIDC Derivations 81

Figure 5.3: Situation where D2 or D6 is applied.

a critical chain and see how the source and target change as we contin-
ually derive new edges. Applying D2 or D6 gives a new edge ac where
the source changes from b to a. We now investigate how derivations can
move the source back to b and show that all derivations using the edge
which resulted from moving the source back to b are redundant. We al-
ready know that the source can only move back to b if the target moves
from c. Otherwise there would be a cycle contradicting Lemma 4. So there
must be a list, 〈c, . . . , y〉 of one or more nodes that the target moves along.
Since the source moves only over positive edges (using the weight of the
negative in case of contingent) there must be another list 〈a, . . . , x〉 that
the source moves over before reaching b again. The final edge derived be-
fore reaching b is xy, whose edge will be a sum of negative weights along
〈c, . . . , y〉where negative requirement edges and positive contingent edges
contribute, and positive weights along 〈a, . . . , x〉 where positive require-
ment edges and negative contingent edges contribute. For the source to
return to b, the weight of xy must be negative and there must be a positive
edge bx. Then we can apply a rule deriving the edge by. We can determine
that this edge is redundant by applying derivations to it. If by is positive
it is redundant since there is a tighter implicit constraint along the strictly
negative bcy path, as discussed before the lemma. If by is negative we ap-
ply derivation to move the source towards x. In this way we continue to
apply derivations until we get a positive edge zy or the source reaches x.
If this happens the derived edge must have a larger value than the already
present xy edge, and be redundant, or we have derived a cycle contradict-
ing Lemma 4. This can also be seen by observing that derivations start with
the weight of xy, which can only increase along the derivation chain.

If we instead get a positive edge zy along the derivations we can show
that there is a tighter constraint implicit here. We know z 6= x. When first

“Lic” — 2015/8/10 — 15:07 — page 82 — #88

82 Chapter 5. A Tighter Complexity Result for the MMV Algorithm

Algorithm 10: The GlobalDC Algorithm

function GLOBAL-DC(G - STNU)

Interesting← {All edges of G}
repeat

for each edge e in G do
Interesting← Interesting\{e}
for each rule (Figure 4.6) applicable with e as focus do

Derive new edges zi
for each added edge zi do

Interesting← Interesting ∪ {zi}
if not locally consistent then return false

if negative cycle created then return false

end
end

end
until Interesting is empty
return true

deriving xy there was a negative edge from z to some node t in the 〈c, . . . , y〉
list. If t = y we arrive with a larger weighted edge (positive) ty this time
and it is redundant. If t 6= y there is an implicit tighter negative constraint
zty. So again the zt edge is redundant.

So by is already explicitly or implicitly covered and hence redundant for
DC-verification. Therefore it is not part of a critical chain.

This entails that along a critical chain each contingent constraint can only
be part of at most two derivations: One using D1 and one using D2 or D6.

5.3 The GlobalDC Algorithm

We will apply the lemma above to the new algorithm GlobalDC (Algorithm
10). Given a full STNU this algorithm applies the derivation rules of Figure
4.6 globally, i.e., with all edges as focus in all possible triangles (giving an
inner iteration O(n3) run-time). It does this until there are no more changes
detected over a global iteration, i.e. the Interesting set is empty. The struc-
ture of GlobalDC is hence directly inspired by the Bellman-Ford algorithm
[6]. Non-DC STNUs are detected in the same way as FastIDC, by checking
locally for inconsistencies and squeezed contingent constraints, and glob-
ally for negative cycles.

“Lic” — 2015/8/10 — 15:07 — page 83 — #89

5.3. The GlobalDC Algorithm 83

i

h

gf

ec

b

da

-

-

+

+

+

+

+
+

+

+

+

+- -

-

-

-
-

dc bc be fe ge he ieac
D6D7D7D7D1D3D3+UR

bc be he ieac
D6D7D1D3+UR

i

h

gf

ec

b

da

-

-

+

+

+

+

+
+

+
+

Figure 5.4: Example graph in quiescence.

This full DC algorithm can be compared with how an incremental algo-
rithm (FastIDC) could be used to verify full DC, i.e., by adding edges from
the full graph one at a time and doing derivations until done. Note that the
order in which the derivation rules are applied to edges does not affect the
correctness of FastIDC, only its run-time.

Given a DC STNU, GlobalDC will use the same derivation rules as Fast-

IDC and therefore cannot generate tighter constraints. Since the same mech-
anism is used for detecting non-DC STNUs, both FastIDC and GlobalDC
will indicate that the STNU is DC.

Given a non-DC STNU, there exists a sequence of derivations that will
let FastIDC decide this. Since GlobalDC performs all possible derivations
in each iteration, it will do all derivations that FastIDC does in the same se-
quence. Again, the same mechanism is used for detecting non-DC STNUs,
and both FastIDC and GlobalDC will indicate that the STNU is non-DC.

The key to analyzing the complexity of GlobalDC is the realization that
we can stop deriving new constraints as soon as we have derived all crit-
ical chains: These are the only derivations that are required for detecting
whether the STNU is DC or not.

From the discussion after Lemma 4 we see that any derived chain has a
length bounded by 2n2. This is then true also for the longest critical chain
derived by the algorithm.

An example will illustrate how we can shrink the length of critical chains.
Figure 5.4 shows a graph where no more derivations can be made. In Fig-
ure 5.5 a negative edge ie is added to the graph and GlobalDC is used to
update the graph with this increment.

Figure 5.6 shows the critical chain of edge ac at this point. Here we see

“Lic” — 2015/8/10 — 15:07 — page 84 — #90

84 Chapter 5. A Tighter Complexity Result for the MMV Algorithm

i

h

gf

ec

b

da

-

-

+

+

+

+

+
+

+

+

+

+- -

-

-

-
-

dc bc be fe ge he ieac
D6D7D7D7D1D3D3+UR

bc be he ieac
D6D7D1D3+UR

i

h

gf

ec

b

da

-

-

+

+

+

+

+
+

+
+

Figure 5.5: Derivations resulting from adding the i→ e edge.

D6D7D7D7D1D3D3+UR

D6D7D1D3+URFigure 5.6: The critical chain of edge ac, derived in Figure 5.5.

as mentioned before that the source of the derived edge can move many
times in sequence without the target moving in-between. In the exam-
ple chain this is shown by the sequential D7 derivations. For requirement
edges in general such a sequence may also include D4 derivations. Condi-
tional edges can also induce sequences of moving sources through deriva-
tion rules D3 and D5.

All these derivations (D4/D7 and D3/D5) leading to sequential move-
ment of the source require it to pass over requirement edges. If we had
access to the shortest paths along requirement edges all these movements
could in fact be derived in one global iteration. The source would be moved
to all destinations at once and would not be replaced later since it had al-
ready followed a shortest path making the derived edge as tight as possi-
ble. Of course derivation rules may change the shortest paths, but if we
added an APSP calculation to every global iteration we would compress
the critical chains so that there would be no repeated application of sources
moving along requirement constraints.

Figure 5.7 shows how several applications of D7 and two D3s are com-
pressed by the availability of shortest path edges.
GlobalDC with the addition of APSP calculations in each inner iteration is
still sound and complete since the APSP calculations only make more im-
plicit constraints explicit. The run-time complexity is also preserved since

“Lic” — 2015/8/10 — 15:07 — page 85 — #91

5.3. The GlobalDC Algorithm 85D6D7D7D7D1D3D3+UR

D6D7D1D3+UR

Figure 5.7: Critical chain compressed using shortest paths.

each inner iteration was already O(n3) (applying rules to all focus edges).
We now give an upper bound of the critical chain length:

Lemma 6 (Nilsson et al. [25]). The length of the longest critical chain in Glob-
alDC with APSP is ≤ 7n.

Proof. To be able to prove this we need the results of Lemma 5. We will
refer to derivations that can only occur once along a critical chain, i.e. D1,
D2 and D6, as limited derivations.

What is the longest sequence in a critical chain consisting only of re-
quirement edges such that it does not use any limited derivations? The only
non-limited derivation rules that result in a requirement edge are D4, D7
and D8/D9. The last two require a conditional edge as focus, and can there-
fore only be at the start of such a sequence. We know that due to APSP there
can only be one of D4/D7 in a row. Therefore the longest requirement-
only sequence not using limited derivations starts with D8/D9 which is
followed by D4/D7 for a total length of 2.

The longest sequence consisting of only conditional edges not using
limited derivations must start with D5. It can then be continued only by
D3. As we have access to shortest paths there can be at most one D3 in any
sequence of only conditional edges.

In summary the longest sequences of the same type, requirement or
conditional, not using limited derivations, are of length 2.
It is not possible to interleave the length-2 sequences of conditional edges
with requirement edges more than once without changing the conditioning
node of the conditional edges. To see this suppose we have a requirement
edge which derives a conditional edge conditioned on B. This means that
the edge is pointing towards A being the start of the contingent duration
ending in B. If derivations now takes this edge into a requirement edge
this edge must point towards A as well since the only way of going from
conditional to requirement is via D8/D9 which preserves the target. If the
target of the requirement edge later were to move (such targets only move
forwards) it would become impossible to later invoke D5 for going back to
conditional, because D5 requires the requirement edge to point towards a
node that is after A. So in order for derivations to come back to a condi-
tional edge again by D5 the target must stay at A. But then D5 cannot be

“Lic” — 2015/8/10 — 15:07 — page 86 — #92

86 Chapter 5. A Tighter Complexity Result for the MMV Algorithm

applicable, for the same reason: It must point towards a node after A. So it
is not possible to interleave these sequences.

This gives us the longest possible sequence without using limited deriva-
tions. It starts with a requirement sequence followed by a conditional se-
quence again followed by a requirement sequence. Such a sequence can
have a length of at most 6. An issue here is that if a conditional edge con-
ditioned on for instance B is part of the chain a D1 derivation involving B
cannot also occur in the chain since this contingent constraint has already
been passed. This means that it does not matter which of derivation D1 or
D5 is used to introduce a conditioning node into the chain. The limitation
applies to them both.

In conclusion this lets us construct an upper bound on the number of
derivations in a critical chain. We have sequences of length 6 and these are
interleaved with the n derivations of type D2 and D6 for a total of at most
7n derivations.

Therefore all critical chains will have been generated after at most 7n it-
erations of GlobalDC. If we can iterate 7n times without detecting that an
STNU is non-DC, it must be DC. With a limitation of 7n iterations, Glob-
alDC verifies DC in O(n4).

5.4 A Revised MMV Algorithm

We have described a new algorithm called GlobalDC and seen that it is
O(n4). Compared to MMV, the following similarities and differences exist.

1. GlobalDC and MMV both interleave the application of derivation
rules with the calculation of APSP distances and the detection of local
inconsistencies and negative cycles. In MMV some of this is hidden in
the pseudo-controllability test, but the actual conditions being tested
are equivalent.

2. GlobalDC works in an EDG whereas MMV works in an STNU ex-
tended with wait constraints. These structures represent the same
underlying constraints and the difference is not essential.

3. Third, GlobalDC lacks SR2, which is half of the original Simple Re-
gression (SR) rule. As discussed before SR2 can be removed from
MMV. This change will greatly speed it up in practice. Since MMV
runs in an APSP graph it is reasonable to expect, on average, half of

“Lic” — 2015/8/10 — 15:07 — page 87 — #93

5.4. A Revised MMV Algorithm 87

the nodes to be after a derived wait. This change will then cut the
needed regression in MMV to half of that of the original version.

4. Fourth, GlobalDC stops after 7n iterations.

These similarities lead to the following theorem:

Theorem 4 (Nilsson et al. [25]). The classical MMV algorithm for deciding
dynamic controllability of an STNU can, with the small modifications shown in
Algorithm 11, decide dynamic controllability in time O(n4).

Proof. According to the four points just listed, the differences between MMV
and GlobalDC that affect the resulting STNU are: 1) the use of SR2 by MMV
and that 2) MMV may continue to apply derivations after all critical chains
have been derived. The theorem about critical chains carries directly over
from FastIDC derivations to MMV tightenings. Therefore, it never takes
MMV more than 7n iterations to derive all critical chains of an STNU. It is
also possible to remove SR2 as discussed earlier without affecting the cor-
rectness of the algorithm. Algorithm 11 is a revised version of MMV which
does not apply SR2 and stops after at most 7n iterations. It is correct and
since the inner loop takes O(n3) time the whole algorithm has a run-time
in O(n4).

Algorithm 11: The revised MMV Algorithm

function Revised-MMV(G - STNU)

Interesting← {All edges of G}
iterations← 0
repeat

if not pseudo-controllable (G) then
return false

Compare edges and add all edges which were changed since last
iteration to Interesting
for each edge e in Interesting do

Interesting← Interesting\{e}
for each triangle ABC containing e do

tighten ABC according to figure 5.1 except SR2
end

end
iterations← iterations + 1

until Interesting is empty or iterations = 7n
return true

“Lic” — 2015/8/10 — 15:07 — page 88 — #94

88 Chapter 5. A Tighter Complexity Result for the MMV Algorithm

A further improvement in algorithm 11 as compared to the original MMV
is that it will only process triangles which can lead to derivations of new
edges. This is facilitated by keeping track of edges that have been tightened
in previous iterations, through use of the Interesting set. If a triangle could
not be used to derive new edges when tried in one iteration, this cannot
happen in later iterations unless at least one of its edges is tightened.

5.5 Conclusion

We have proven that with a small modification the classical “MMV” dy-
namic controllability algorithm, which in its original form is pseudo-polynomial,
finishes in O(n4) time. The modified algorithm is an excellent and vi-
able option for determining whether an STNU is dynamically controllable.
Compared to other algorithms, it offers a simpler and more intuitive theory.
We also showed indirectly that there is no reason for MMV to regress over
negative edges, a result that can be used to improve performance further.

“Lic” — 2015/8/10 — 15:07 — page 89 — #95

Chapter 6

The EfficientIDC Algorithm

In this chapter we start with analyzing the FastIDC algorithm seen in Chap-
ter 3. We show that a small incremental change may result in the algorithm
traversing part of a temporal network multiple times, with constraints slowly
tightening towards their final values. We find that in the worst case it
takes Ω(n4) time for FastIDC to handle one incremental change. We then
present a new algorithm that uses additional analysis together with a dif-
ferent traversal strategy to avoid this behavior. The new algorithm has a
time complexity of amortized O(n3), and we prove that it is sound and
complete.

6.1 Complexity of FastIDC

The complexity of FastIDC was not known when we started to work with
it. Instead we performed the analysis in this section, which together with
other experiences lead to the EfficientIDC algorithm. We first discuss the
edge processing order, then propose an improvement, and finally show
that even with the improvement FastIDC has a bad run-time complexity.

Edge processing order. Following [32], the initial list of modified edges
is processed in order of distance to the temporal reference, but all edges
derived by FastIDC itself are handled recursively and depth-first. The small
example in Figure 6.1 shows why this is a suboptimal strategy for selecting
focus edges. In this example the positive edges are present in the initial
graph. All edges in the graph are requirement edges.

The negative IA edge is added as the only edge in this example incre-
ment. Thus FastIDC is called and Q will contain only e1 = IA : −100.

89

“Lic” — 2015/8/10 — 15:07 — page 90 — #96

90 Chapter 6. The EfficientIDC Algorithm

5

6

7

4

2

5

6

7

4

3

-100

-95

-91

-93

Figure 6.1: Why depth first is a suboptimal strategy.

This leads to derivation of the GA : −95. The depth first strategy then
derives FA : −91, and additional edges moving toward the start of the
STNU. However at a later step the IA and FI edges will be used to derive
a strictly smaller weight FA : −93 (shown by the bold edge in the figure).
This derivation will then propagate to decrease the weights of all the previ-
ously derived edges. In the worst case, a number of paths of positive edges
from A to I, proportional to the total number of paths, may be traversed
in reverse by FastIDC as new negative weights are incrementally derived.
There is an exponential number of different paths in a graph which makes
this worst case suboptimal.

An Improved Search Strategy. As noted above, the algorithm as published
sorts the initial list of modified edges but processes newly derived edges
depth first. This can be improved by keeping a global priority queue Q
of modified edges. When a new edge is derived, it is not processed re-
cursively but added at the proper place in this queue. The algorithm then
iterates until the queue of modified edges is empty. The effect is that in each
iteration the algorithm chooses among all known modified edges the one
that is the furthest from the temporal reference, as was perhaps intended
by the authors but not realized in the pseudo-code.

A Lower Bound on Time Complexity. An example will now show that
even with the improved search strategy, the worst case run-time complex-
ity of FastIDC is still Ω(n4) when processing the tightening of one edge.

The left part of Figure 6.2 shows a part of an EDG created by FastIDC

when incrementally adding constraints to an STNU. The figure contains
three categories of nodes: A, B and C nodes. All B nodes are connected
in sequence by edges of weight 1 as illustrated in the figure. So are the A

“Lic” — 2015/8/10 — 15:07 — page 91 — #97

6.1. Complexity of FastIDC 91

3

0

1

3

0

1

0

1

1

94

200

1

2

22

1
1

1

-250

-50

100

98

96

2

-251

3

0

1

3

0

1

0
22

-249

-1501

2

Figure 6.2: High complexity scenario part 1.

nodes, except the one with highest index. A0 is connected to all B nodes
by edges whose weights increase with the indices of B nodes. There is also
one edge of weight 100 from each B node to each A node. These |A| · |B|
edges are omitted in the figure for clarity.

The nodes in the figure are ordered from left to right by path distance to
the temporal reference node (TR), which is not shown in the figures. This
means that there are negative edges or paths from the nodes to the TR and
that these are more negative the further to the right in the figure a node is
placed. Recall that negative edges are sorted in the FastIDC queue by the
distance from their source node to the TR.

FastIDC derives edges by giving higher priority to negative edges whose
source nodes are closer to the end of the EDG. The example in Figure
6.2 contains a shortest path A0, B0, B1, B2, B3 from the end towards earlier
nodes. However this order works against FastIDC since derivation rule D7
derives tighter constraints in the opposite direction (the source of the de-
rived edge is that of the positive edge). We will exemplify this now.

Suppose the C0 ←− B3 edge shown in bold in the right part of Figure 6.2
is added or tightened to a weight of −250 and that FastIDC is called with
this edge as e1. FastIDC will find two applicable derivations where this is
the focus edge. Both derivations are instances of D7, resulting in C0 ←− B2

and C0 ←− A0 being created and placed in the queue.
In the next iteration, C0 ←− A0 has the highest priority (because A0 is

farther from the TR than B2 is), and will be taken from the queue. When
processing this edge, derivations using D7 will combine it with the “hid-
den” edges Bi −→ A0 with weight 100 to derive |B| edges C0 ←− Bi. These
are all put in the queue. An edge C0 ←− A1 with weight −149 will also be

“Lic” — 2015/8/10 — 15:07 — page 92 — #98

92 Chapter 6. The EfficientIDC Algorithm

3

0

1

3

0

1

0
22

-249

-148

-150

-149

52

1

2

3

0

1

3

0

1

0
22

49

1

2

-1

1

-250

Figure 6.3: High complexity scenario part 2.

generated and ends up in front of the queue (Figure 6.3).
When C0 ←− A1 is taken for processing, |B| new edges are derived

through combination with Bi −→ A1, but these are discarded since they
have higher weights than the previously derived edges in their positions.
An edge C0 ←− A2 with weight −148 is also derived and will be processed
first. Processing this leads to a similar procedure, again with |B| edges dis-
carded. The edge C0 ←− A3 is among those derived. Since it has a positive
weight it is sorted by its target node’s (C0) distance to the TR and therefore
ends up last in the queue. The left part of Figure 6.3 shows the current
situation.

At this point the edges from C0 ←− Bi will be taken from the queue
and not lead to any derivations until C0 ←− B2 is processed. This is used
to derive tighter C0 ←− B1 and C0 ←− A0 edges which in turn follow the
pattern just described leading to tightenings of the C0 ←− Ai edges. This
happens again when C0 ←− B0 and C0 ←− A0 are tightened. At this point
the C0 ←− A3 edge reaches its final weight 49. The queue is then processed
until C0 ←− A3 is removed as the last edge in the queue. This leads to
derivation of C1 ←− A3 with weight −1 which in turn leads to C1 ←− B3 of
weight 1 and C2 ←− B3 with weight−250. Here we again have an edge from
B3 with weight −250. FastIDC will then continue the exact same sequence
as before but now deriving edges toward C2 instead of C0.

It is possible that |A|, |B| and |C| are all O(n) and follow the same pat-
tern as in the example. Then there are O(n) spins around the A− B cycle
as the target of the negative C ←− B edges traverses all C nodes. Each spin
around the cycle takes O(n3) time: There are O(n) updates to Cx ←− A0

“Lic” — 2015/8/10 — 15:07 — page 93 — #99

6.2. The EfficientIDC Algorithm 93

and each of these updates the O(n) Cx ←− Ai edges, each of which tries to
update the O(n) Cx ←− B edges. The worst case complexity of one call to
FastIDC must therefore be at least O(n4).

Unfortunately, even though the structure in the example requires the
addition of many edges that are handled quickly by FastIDC, the complex-
ity cannot be amortized to reach a lower value. The problem is that FastIDC

will always pay the full O(n4) price each time the C0 ←− B3 edge in the ex-
ample is tightened. This may happen as part of other tightenings or by
direct change many times as the final STNU is built. Therefore, it cannot
be assumed that there are cheaper increments that can pay for the more
expensive ones.

One cause of this high complexity is the existence of a region of nodes
(the A and B nodes) where there is at least initially no forced ordering be-
tween the nodes. In the next section we present the EfficientIDC algorithm.
This algorithm presents a novel way of handling these regions, among
other things.

6.2 The EfficientIDC Algorithm

We now present the Efficient Incremental Dynamic Controllability check-
ing algorithm (Algorithm 12, EfficientIDC or EIDC for short). The key to
EIDC’s efficiency is the use of focus nodes instead of focus edges. When
EIDC tightens an edge, it adds the target and sometimes also the source of
this edge as new focus nodes to be processed. When EIDC processes a focus
node n, it applies all derivation rules that have an incoming edge to n as
focus edge, guaranteeing that no tightenings are missed.

The use of a focus node allows EIDC to use a modified version of Dijk-
stra’s algorithm to efficiently process parts of an EDG in a way that avoids
the repetitive intermediate edge tightenings performed by FastIDC that we
just saw in the previous section. The key to understanding this is that
derivation rules essentially calculate shortest distances. For example, rule
D4 states that if we have tightened edge AB and there is an edge BC, an
edge AC may have to be tightened to indicate the length of the shortest
path between A and C. Dijkstra’s algorithm cannot be applied indiscrimi-
nately, since there are complex interactions between the different kinds of
edges, but can still be applied in certain important cases.

The final tightening performed for each edge will be identical in EIDC

and FastIDC, which is required for correctness. An extensive example will
be provided below.

“Lic” — 2015/8/10 — 15:07 — page 94 — #100

94 Chapter 6. The EfficientIDC Algorithm

As in FastIDC, the EDG is associated with a CCGraph used for detecting
cycles of negative edges. The graph also helps EIDC determine in which
order to process nodes: In reverse temporal order, from the “end” towards
the “start”, taking care of incoming edges to one node in each iteration.
A difference compared to FastIDC is that EIDC keeps the transitive closure
of negative edges in the CCGraph. This facilitates the correct ordering of
nodes that are indirectly ordered.

The EDG is also associated with a Dijkstra Distance Graph (DDG), a new
structure used for the modified Dijkstra algorithm as described below. To
simplify the presentation, EIDC will be given one new or tightened require-
ment edge e at a time. In practice, an outer loop would be used to handle a
set of changes. This set could then be sorted before presented to EIDC in a
way similar to how FastIDC handles a set of changes.

The EfficientIDC algorithm. The EIDC algorithm is shown in Algorithm 12.
First, the target of e is added to todo, a set of focus nodes to be processed.

If e is a negative requirement edge, a corresponding edge is added to
the CCGraph C which keeps track of all negative edges. If this causes a
negative cycle, G is not DC. Otherwise, the source of e is also added to todo
for processing.

Iteration. As long as there are nodes to process:
A node to process, current, is selected and removed from todo. Incoming

negative edges e to the chosen node n must not originate in a node also
marked as todo. In that case, Source(e) should be processed first, since this
has the potential of adding new incoming edges to n and we must make
sure we have found all these at the time we start processing n in order to
be correct.

As long as todo is not empty there is always a todo node satisfying this
criterion, or there would be a cycle of negative edges which would have
been detected.

Then it is time to process all existing incoming edges to current. This
may derive more incoming edges and push some towards earlier nodes.
current is processed by three helper functions that are shown in Algorithms
13 to 15.

Incoming conditional edges are processed similarly to FastIDC focus edges
using ProcessCond. This is equivalent to applying rules D2, D3, D8 and D9,
but is done for a larger part of the graph in a single step compared to Fast-

IDC.
There are only O(n) contingent constraints in an EDG and hence only

O(n) conditioning nodes (nodes that are the target of a contingent con-

“Lic” — 2015/8/10 — 15:07 — page 95 — #101

6.2. The EfficientIDC Algorithm 95

Algorithm 12: The EfficientIDC Algorithm

function EfficientIDC(EDG G, DDG D, CCGraph C, edge e)

todo← {Target(e)}
if e is negative and e /∈ C then

add e to C
if negative cycle detected then return false

todo← todo ∪{Source(e)}
end

while todo 6= ∅ do
current← pop some n from todo where
∀e ∈ Incoming(C, n) : Source(e) /∈ todo

ProcessCond(G, D, current)
ProcessNegReq(G, D, current)
ProcessPosReq(G, current)
for each edge e added or modified in G in this iteration do

if Target (e) 6= current then
todo← todo ∪{Target(e)}

end
if e is a negative requirement edge and e /∈ C then

add e to C
if negative cycle detected then return false

todo← todo ∪{Target(e), Source(e)}
end

end
if G is squeezed then return false

end
return true

straint). All times in conditional constraints/edges are measured towards
the source of the contingent constraint. Therefore, all conditional constraints
conditioned on the same node have the same target.

It is important to note that EIDC processes conditional edges condi-
tioned on the same node separately. This is possible because FastIDC does
not “mix” conditional edges with different conditioning nodes in any of the
rules, so they cannot be derived “from each other”.

For each conditioning node c, the function finds all edges that are con-
ditioned on c and have current as target. We now in essence want to create
a single source shortest path tree rooted in current. Derivations over posi-
tive requirement edges traverse the edges in reverse order, and so the DDG
contains these edges in reverse order. Derivations over contingent edges

“Lic” — 2015/8/10 — 15:07 — page 96 — #102

96 Chapter 6. The EfficientIDC Algorithm

Algorithm 13: Process Conditional Edges

function ProcessCond(EDG G, DDG D, Node current)

allcond← IncomingCond(current, G)

condnodes← {n ∈ G | n is the conditioning node of some e ∈ allcond}
for each c ∈ condnodes do

edges← {e ∈ allcond | conditioning node of e is c}
minw← |min{weight(e) : e ∈ edges)}|
add minw to the weight of all e ∈ edges
for e ∈ edges do

add e to D with reversed direction
end
LimitedDijkstra(current, D, minw)

for all nodes n reached by LimitedDijkstra do
e← cond. edge (n→ current), weight Dist (n) - minw
if e is a tightening then

add e to G
apply D8 and D9 to e

end
Revert all changes to D

end
return

follows the negative contingent edge, but the distance used in the deriva-
tion is the positive weight of this, so this is also contained in the DDG. The
section of the graph which can be traversed contains only positive weight
edges and so Dijkstra’s algorithm can be used to find the shortest paths.
The only remaining issue is that the edges connecting the source of the tree
we want to build are negative and in reverse order. Since only one of these
edges will be used by each path, there is no risk of negative cycles so they
could be used directly. However, when EIDC reverses the edges it also adds
a positive weight to them to make all edges used by the Dijkstra calcula-
tion positive. The added weight, minw, is the absolute value of the most
negative edge weight of the incoming conditional edges. This value also
serves as a cut-off for stopping the Dijkstra calculation. Once the distance
is longer than minw the derived result will be a positive edge which cannot
further react to cause more derivations. Running Dijkstra calculations will
in a single call derive a final set of shortest distances that FastIDC might
have had to perform a large number of iterations to converge towards. An
example in the next section shows how this is carried out.

“Lic” — 2015/8/10 — 15:07 — page 97 — #103

6.2. The EfficientIDC Algorithm 97

The function checks whether any calculated shortest distance leads to the
derivation of a tighter edge, corresponding to applying D2 and D3 over the
processed part of the graph. If so, it directly applies the “special” derivation
rules D8 and D9, which convert conditional edges to requirement edges, or
adds a requirement edge parallel to the conditional edge.

Because of D8/D9, ProcessCond may generate new incoming require-
ment edges for current, which is why it must be called before incoming
requirement edges are processed.

Incoming negative requirement edges are processed using ProcessNegReq.
This function is almost identical to ProcessCond with the only differences
being that the edges are negative requirement instead of conditional and
because of this there is no need to apply the D8 and D9 derivations or to
handle different conditioning nodes. Applying the calculated shortest dis-
tances in this case corresponds to applying the derivation rules D6 and D7.

Algorithm 14: Process Negative Requirement Edges

function ProcessNegReq(EDG G, DDG D, Node current)

edges← IncomingNegReq(current, G)

minw← |min{weight(e) : e ∈ edges)}|
add minw to the weight of all e ∈ edges
for e ∈ edges do

add e to D with reversed direction
end
LimitedDijkstra(current, D, minw)

for all nodes n reached by LimitedDijkstra do
e← req. edge (n→ current) of weight Dist (n) - minw
if e is a tightening then add e to G

end
Revert all changes to D
return

This function may generate new incoming positive requirement edges for cur-
rent, which is why it must be called before incoming requirement edges are
processed.

Incoming positive requirement edges are processed using ProcessPosReq,
which applies rules D1, D4 and D5. These are the rules that may advance
derivation towards earlier nodes. By deriving a new edge targeting an ear-
lier node, the node is put in todo by the main algorithm.

After processing incoming edges. These are the only possible types of fo-

“Lic” — 2015/8/10 — 15:07 — page 98 — #104

98 Chapter 6. The EfficientIDC Algorithm

Algorithm 15: Process Positive Requirement Edges

function ProcessPosReq(EDG G, Node current)

for each e ∈ IncomingPosReq(current, G) do
apply derivation rule D1, D4 and D5 with e as focus edge
for each derived edge f do

if f is conditional edge then
apply derivations D8-D9 with f as focus edge

end
if derived edge is a tightening then

add it to G
end

end
end
return

cus edge in FastIDC derivations. Therefore all focus edges that could possi-
bly have given rise to the current focus node have now been processed.

EIDC then checks all edges that were derived by the helper functions.
Edges that do not have current as a target need to be processed, so their
targets are added to todo. If there is a negative requirement edge that is
not already in the CCGraph, this edge represents a new forced ordering be-
tween two nodes. It must then update the CCGraph and check for negative
cycles. If a new edge is added to the CCGraph both the source and the target
of the edge will be added to todo.

Finally, EIDC verifies that there is no local squeeze when a new edge is
added, precisely as FastIDC does.

Updating the CCGraph. A novel feature of EIDC as compared to FastIDC

is that the CCGraph now contains the transitive closure of all edges added
to it. This prevents reprocessing when new orders are found through Pro-

cessPosReq. How the transitive closure is derived will be discussed later.

Updating the DDG graph. The DDG graph contains weights and direc-
tions of edges that FastIDC derivations use to derive new edges, and is
needed to process edges effectively. Edges in the DDG have no type, only
weights that are always positive. The DDG contains:

1. The positive requirement edges of the EDG, in reverse direction

2. The negative contingent edges of the EDG, with weights replaced by
their absolute values

“Lic” — 2015/8/10 — 15:07 — page 99 — #105

6.3. EfficientIDC Processing Example 99

To make the algorithm easier to read, updates to the DDG have been omit-
ted. Updating the DDG is straight forward and quite simple. When a posi-
tive edge is added to the EDG it is added to the DDG in reversed direction.
Negative contingent edges also have to be added to the DDG (with the
absolute value of their weight as new weight). In case a positive require-
ment edge disappears from the EDG, because it was tightened to a negative
weight, it is removed from the DDG.

Before we process an example STNU we want to point to a specific as-
pect of the algorithm. We can see that D4 and D7 are the same rule with
different focus. Both ProcessNegReq and ProcessPosReq apply this rule. The
responsibility of ProcessNegReq is to efficiently find all incoming edges to
current over areas of positive weights (the problem regions of FastIDC)
whereas ProcessPosReq is used to find those nodes that are affected by find-
ing new edges targeting current. So ProcessPosReq main responsibility is to
find those nodes that must be processed in coming iterations.

6.3 EfficientIDC Processing Example

We now go through a detailed example of how EIDC processes the three
kinds of incoming edges. Like before, dashed edges represent conditional
constraints, filled arrowheads represent contingent constraints, and solid
lines with unfilled arrowheads represent requirement constraints.

Fig. 6.4 shows an initial EDG constructed by incrementally calling EIDC

with one new edge at a time. We will initially focus on the nodes and edges
marked in black, while the gray part will be discussed at a later stage.

In the example we add a new requirement edge
−10

Y ←− Z as shown in the
rightmost part of Fig. 6.5. When we call EIDC for this edge, both Y and
Z will be added to todo. Z must be processed first because of the order-
ing between Z and Y. Since Z has no incoming conditional or negative
requirement edges only ProcessPosReq will be applied. This results in the

bold requirement edges a 25−→ Y and b 30−→ Y. The node Y is then selected
as current in the next iteration. Even though Y has an incoming negative
edge, no new derivations are done by ProcessNegReq. However, Y also has
two incoming positive requirement edges that are processed (using D1) to

generate the conditional edges X
〈Y,−25〉←−−−− a and X

〈Y,−20〉←−−−− b. Two nega-

tive requirement edges, X −9←− a and X −9←− b, are also derived alongside
the conditional edges due to D9 but these are not stronger than the already
existing identical edges. Since there were already edges from X ←− a and

“Lic” — 2015/8/10 — 15:07 — page 100 — #106

100 Chapter 6. The EfficientIDC Algorithm

X Y

X

a

b

10

20

10

10

10 10

-5-5

-10

-5

-5

-5

10 -6

<Y,-25>

<Y,-20>

Y Z

50

-9 -10

50

25

30

40

35

a

10

20

10

10

10
-5-5

-10

-5

-5

10 -6
Z

50

-9

50

35

b

10

-5 40

-9

1

-9

1

-9

1

-9

1

Figure 6.4: Initial EDG.

X ←− b in the CCGraph, a and b are not added to todo. However, X is
added as the target of a newly derived edge is always added to todo. Since
the derived edges are not incoming to Y they require no further processing
at the moment. This leaves only X in the todo set for the next iteration.

In the next iteration, X is selected as current. No more edges will be
derived in the rightmost black part of the example EDG, so we focus on
the previously gray part of the EDG shown in Fig. 6.6. We see that X
has two incoming conditional edges with the same conditioning node Y.
These edges are processed together, resulting in a minw value of 25. After
adding edges corresponding to the reversed conditional edges, each with a
weight increase of minw, we get the DDG that is used for Dijkstra calcula-
tions when processing X. The DDG is shown in Fig. 6.7. Recall that in the
DDG all positive edges are present with reversed direction and all negative
contingent edges are present with positive weight. Note that the weight 1
edges from X are left out of the DDG in Fig. 6.7. These are present in the
DDG but cannot be used when X is current since using them would require
that the source and target of the conditional edge used for derivation was
the same. This is a degenerate case which cannot occur in the EDG. Such
an edge would either be removed before addition or responsible for non-
DC of the STNU. In Fig. 6.7 we have labeled each node with its shortest
distance from X in the DDG.

Processing current = X gives rise to the bold edges in Fig. 6.8. We

“Lic” — 2015/8/10 — 15:07 — page 101 — #107

6.3. EfficientIDC Processing Example 101

X Y

X

a

b

10

20

10

10

10 10

-5-5

-10

-5

-5

-5

10 -6

<Y,-25>

<Y,-20>

Z

50

-9 -10

50

25

30

40

35

a

10

20

10

10

10
-5-5

-10

-5

-5

10 -6
Z

50

-9

50

35

b

10

-5 40

-9

1

-9

1

-9

1

-9

1

Y

Figure 6.5: Derivation of the smaller scenario.

consider how the−9 edge is created. First the distance from X to the source
node of the−9 edge is calculated by Dijkstra’s algorithm. This is 16 (see Fig.
6.7). Subtraction of 25 gives a conditional edge with weight −9. However,
since the lower bound of the contingent constraint involving X is 9, D8 is
then applied to remove the conditional edge and create a requirement edge
with weight −9. The distance calculation corresponds in this case to what
FastIDC would derive by applying first D3 and then D6, starting with the

conditional
〈Y,−25〉

X ←− a edge as focus.
The example shows how EIDC adds minw to the negative edges from

the source to get positive edges for Dijkstra’s algorithm to work with. It
also shows why outgoing DDG edges from current cannot be used when
calculating the Dijkstra distances from current.

Note that there is no reason to follow incoming DDG edges to current
since these only create loops from current to current. Any such positive
loop could be removed and a negative loop would be discovered as a local
inconsistency in the step immediately before it would be added.

Finally, all new derived edges need to be checked so they do not squeeze
existing edges, and negative edges should be added to the cycle checking
graph when needed.

“Lic” — 2015/8/10 — 15:07 — page 102 — #108

102 Chapter 6. The EfficientIDC Algorithm

a

b

10

20

10

10

10

10

-5-5

-10

-5

-5
-5

10 -6

<Y,-25>

<Y,-20>

a

b

10

20

10

10

10

10

6

0

5

X

X

1

1

-9

-9

Figure 6.6: Example scenario for conditional edges.

0

10

515

16

26
10

20

10

10

10

10

6

0

5

X

a

b

10

20

10

10

10

10

-5-5

-10

-5

-5

-5

10 -6

<Y,-25>

<Y,-20>

X

<Y,-15>

<Y,-10>

-9

1

Figure 6.7: Dijkstra Distance Graph of the small scenario.

6.4 Correctness of the EfficientIDC Algorithm

The following lemma states the correctness of the algorithm based on the
corrected version of FastIDC as proven in Chapter 4. Since FastIDC may
update the same edge more than once when processing an increment the
lemma compares the EDG of EfficientIDC against the final result of FastIDC.
In the proof it is assumed for simplicity that each call consists of only one
edge tightening/addition. Any increment consisting of more changes can
be broken down to several without affecting the end results, thus preserv-

“Lic” — 2015/8/10 — 15:07 — page 103 — #109

6.4. Correctness of the EfficientIDC Algorithm 103

0

10

515

16

26
10

20

10

10

10

10

6

0

5

X

a

b

10

20

10

10

10

10

-5-5

-10

-5

-5

-5

10 -6

<Y,-25>

<Y,-20>

X

<Y,-15>

<Y,-10>

-9

1

Figure 6.8: Result of processing current = X.

ing correctness.

Lemma 7 (Nilsson et al. [26]). Let G be an EDG of a DC STNU and e be a single
tightened edge in G. Let G′ be the graph produced by FastIDC (G, e) and let G′′

be the graph produced by EfficientIDC (G, e). Then G′ = G′′. Additionally, the
algorithms agree on whether the corresponding STNU is dynamically controllable.

Proof. First, the derivation rules of FastIDC only generate sound conclu-
sions. The derivations performed by EIDC are either through direct use of
FastIDC derivation rules or through the use of Dijkstra in a way that corre-
sponds directly to repeated application of derivation rules. Therefore EIDC

is sound in terms of edge generation.
Second, completeness requires that for every tightened edge, all appli-

cable derivation rules are applied. When an edge is tightened, EIDC always
adds the target node to todo. All nodes in todo will eventually be processed,
and when a node current is removed from todo, all derivation rules applica-
ble with any incoming edge as focus are applied.

This means that any tightened edge that would be a focus edge of Fast-

IDC has its target node added to todo and is then later processed as current.
At this time all the same derivation rules as FastIDC are applied to the edge,
although some may be applied through the use of Dijkstra’s algorithm. So
all edges derived by FastIDC are derived by EIDC, although perhaps in dif-
ferent order, and some intermediate edges that are overwritten by FastIDC

will be skipped by EIDC. Thus, the algorithms eventually derive the same
edges. Since they both check the DC property in the same way they also

“Lic” — 2015/8/10 — 15:07 — page 104 — #110

104 Chapter 6. The EfficientIDC Algorithm

agree on which STNUs are DC and which are not.

6.5 Run-time Complexity of EfficientIDC

We first discuss the complexity of deriving the transitive closure of the neg-
ative edges in the CCGraph. This can be done in O(n2) when processing
a node. First, all negative requirement edges that was derived in this iter-
ation are added to the CCGraph. Then, for each of the edges that targets
current, all their sources and via them, all their CCGraph predecessors are
collected. These are then connected in the CCGraph to all CCGraph suc-
cessors of current. This simple algorithm is enough to guarantee that the
transitive closure is found. The complexity is within O(n2) since there are
O(n) incoming edges and sources, each which requires at most O(n) time
to find the predecessors. Connecting these possible O(n) predecessors to
the possible O(n) successors of current takes at most O(n2) time.

We now present the run-time of EfficientIDC in a theorem.

Theorem 5 (Nilsson et al. [26]). The run-time of EfficientIDC when processing
one tightened or added edge is O(n4) in worst case but O(n3) amortized, where n
is the number of nodes.

Proof. When EIDC adds a negative requirement edge e, it checks whether
this is already represented in the CCGraph. If not (e /∈ C), the edge previ-
ously had positive weight (possibly ∞), and its new negative weight repre-
sents a new forced ordering.

First, assume this does not happen: Whenever a new negative requirement
edge e is created, it is already in C. This means that no node is added
to todo as the source of a derived edge (with the exception of the exter-
nally added edge). Therefore, the only derivations which cause nodes to be
added to todo are those which add them as targets, namely those handled
by ProcessPosReq (derivation rules D1, D4 or D5). It can be seen from Fig-
ure 4.6 that these are only applicable if there is a negative edge between the
previous focus edge target and the derived edge target.

Since we assumed no new negative edges are derived, all negative edges
along which nodes can be added to todo are present from the start. If a node
X is added to todo and selected for processing, there can be no other node
in todo which has a path of negative edges to X. This would be caught by
the transitive closure in the CCGraph and X would have not have been se-
lected in that case. Therefore, once X is processed it cannot be added to

“Lic” — 2015/8/10 — 15:07 — page 105 — #111

6.5. Run-time Complexity of EfficientIDC 105

todo again. We now continue to analyze the complexity of EIDC under this
assumption.

Complexity 1. Since each node can be selected as current at most once, the
main while loop iterates O(n) times.

In each iteration, the incoming positive requirement edges for current
can be processed in O(n2) time: Each derivation is O(1) and there are at
most O(n) incoming positive edges which can find at most O(n) outgoing
edges for derivations.

Processing incoming conditional and negative requirement edges is more
complicated, due to the use of Dijkstra’s algorithm. Conditional edges re-
quire slightly more work than negative requirement edges and therefore
provide an upper bound for both types. The cost of updating the DDG
used for Dijkstra calculations is O(1) per edge change which is hidden in
the normal cost of adding edges. The following list shows the complexity
of the different steps done when processing conditional edges conditioned
on one node.

1. Add conditional edges to the DDG, O(n)

2. Find minw among these, O(n)

3. Replace weights on the negative contingent edges, O(n)

4. Run the limited Dijkstra’s algorithm O(n2)

5. Add new conditional/requirement edges to the EDG, O(n)

6. Remove conditional edges from the DDG, O(n)

7. Update the transitive closure in the CCGraph, O(n2)

This sums to O(n2) for processing all conditional edges conditioned on
one node. Taking care of all conditioning nodes throughout the EDG causes
the procedure to be carried out O(n) times and incurs an O(n3) aggregated
cost.

It follows from the described procedure that processing negative re-
quirement edges for current takes O(n2) time.

Each outer loop adds O(n2) new edges. Checking local consistency of
these takes O(n2) time. Adding the new edges to the CCGraph takes accu-
mulated O(n3) time over the whole increment.

The final step is to choose the next current node for processing and this
is done by picking any node from todo that has no predecessors in todo. In
practice a list of candidates is kept which is updated every time a node has

“Lic” — 2015/8/10 — 15:07 — page 106 — #112

106 Chapter 6. The EfficientIDC Algorithm

been removed from todo. This is done in O(n2) and is done once in each
outer iteration, for a total within O(n3).

Second, we consider what happens when new orderings are found and
added to C while processing an increment.

Let X be the node that was found to be ordered after current. Finding all
incoming edges to current depends on the fact that all nodes ordered after it,
including X, must have been processed before current. If X was processed
after current, edges targeting current that could be derived via X may be
missed and the algorithm would not be complete. These are however the
only edges targeting current that would be missed. So the algorithm goes
back to process X and then reprocesses current to find these edges.

An order such as the one just discovered can only be found when pro-
cessing a node that is ordered after current or when processing current. The
new edge must be derived through interaction of a positive edge and a
negative edge targeting current, i.e. it would be found at current or when
processing the source of the negative edge which is by definition ordered
after current. If the new order is found when processing any other node
ordered after current there is no need for reprocessing as the requirement
for finding all edges at current is satisfied.

Complexity 2. New orderings that lead to reprocessing of nodes are de-
tected when the node needing reprocessing is being processed as current.
Therefore, the cost for reprocessing is only that of one iteration in the algo-
rithm per new ordering found. Over the course of constructing an STNU
there can be O(n2) new orderings found, however each may only affect the
same node O(n) times. This is important since the cost of processing a node
is O(n2) plus any processing of conditional edges for up to a total of O(n3),
for instance if this node is the target of a maximum of conditional edges in
the STNU. Regardless of how the cost of processing conditional nodes is
spread throughout the STNU they may be involved in reprocessing O(n)
times in the worst case. Therefore, in the worst case, all O(n2) orderings are
found in the same iteration, leading to a worst case complexity of O(n4) for
one increment.

However, considering that the algorithm is O(n3) if no new orders are
detected, it is possible to amortize the cost on the number of nodes added
to the STNU. For the amortized analysis, each time a node is added we first
save the O(n3) cost that may later be needed for reprocessings related to the
new node. One node may be the cause of at most O(n) reprocessings, each
costing O(n2) for positive and negative requirement edges. There is also
the possibility of an accumulated cost of O(n3) for all possible conditional

“Lic” — 2015/8/10 — 15:07 — page 107 — #113

6.6. Conclusion 107

reprocessings. Therefore, the total reprocessing cost that can be caused by
the addition of one node is bounded by O(n3). If we now instead save the
O(n3) cost per added or tightened edge, to amortize the incremental cost,
there will be even more accumulated resources since there must be at least
one added edge per node. We conclude that the amortized cost of adding
or tightening an edge is O(n3).

6.6 Conclusion

A new way of incrementally testing dynamic controllability is presented. It
is more efficient than FastIDC but provides the same result, both in form of
EDG and DC classification. Higher efficiency is gained by observing that
FastIDC is inefficient when deriving constraints over unordered sections in
the EDG. EIDC overcomes this by applying Dijkstra’s algorithm to quickly
derive all constraints over such sections. The EDG processed by EIDC is
dispatchable since it contains the same constraints as FastIDC.

“Lic” — 2015/8/10 — 15:07 — page 108 — #114

Chapter 7

Related and Future Work

Recently an algorithm for full DC verification which is O(n3) was pub-
lished by Morris [18]. We wish to clarify the relation between this work and
his. Though these algorithms have similar complexity results and share
certain concepts, they were developed independently. They also use differ-
ent graph representations and different rules for updating the graphs, and
the key ideas underlying EIDC [26] were submitted and finalized before the
publication of Morris’ paper.

Future work includes a rigorous comparison of the algorithms and com-
parison of their relative performance in practice. To do this a good set of
benchmarks is needed. Finding this is a large study in itself since bench-
marks would need to include random STNUs, STNUs from planners and
STNUs with certain properties (for instance magic loops [14]).

It is possible to do both full and incremental DC verification in O(n3).
Can we do better? For STNs O(n2) incremental algorithms exist. There are
also several results for STNs by Planken [27, 28, 30] which may be transfer-
able to STNUs.

Among related work we further find the MM and Morris algorithms
which we only mentioned in the introduction chapter since all our work
was based on the other track of algorithms (MMV → FastIDC). Both the
MM and Morris algorithm are outdated now as they are subsumed by the
new algorithm from Morris.

A lot of related work has gone into executing the networks. For this
thesis we focused on DC verification, but after this is done execution is the
natural next step. Hunsberger has published several interesting results on
execution [12, 13].

Recently several papers [3, 5] have examined the use of Timed Game

108

“Lic” — 2015/8/10 — 15:07 — page 109 — #115

109

Automata (TGA) for both verification and execution of STNUs. These so-
lutions work on a smaller scale and do not exploit the inherent structure of
STNUs as distance graphs. Therefore they are more useful in networks that
are small in size but involve choice and resources which cannot be handled
by pure STNU algorithms.

“Lic” — 2015/8/10 — 15:07 — page 110 — #116

Chapter 8

Conclusion

In this thesis we have pointed out a flaw in the FastIDC algorithm which
makes the algorithm unsound. We have then analyzed its cause and pro-
vided a fix, correcting it. This included adding a novel structure for incre-
mental cycle checking while making use of work done by the FastIDC algo-
rithm in order to keep the efficiency while making the algorithm sound. We
also showed that two additional derivation rules are needed and provided
a correctness proof for the sound version of the FastIDC algorithm.

We continued to use insights from FastIDC and applied those to the
MMV algorithm. An algorithm which we showed had no need of one of
its derivations, SR2. We also showed that the algorithm must work with all
APSP edges. The final result related to the MMV algorithm consisted of a
small change which allowed it to become O(n4), which is on par with the
best existing algorithm at the time our paper were published.

We then turned back to FastIDC and analyzed the run-time which was
found to be in Ω(n4). The analysis inspired us to come up with the Efficient-

IDC algorithm which has an amortized run-time of O(n3). This is the final
contribution of the thesis.

110

“Lic” — 2015/8/10 — 15:07 — page 111 — #117

Bibliography

[1] James F Allen. Maintaining knowledge about temporal intervals.
Communications of the ACM, 26(11):832–843, 1983.

[2] M.A. Bender, J.T. Fineman, S. Gilbert, and R.E. Tarjan. A new approach
to incremental cycle detection and related problems. arXiv preprint
arXiv:1112.0784, 2011.

[3] Amedeo Cesta, Alberto Finzi, Simone Fratini, Andrea Orlandini,
and Enrico Tronci. Analyzing Flexible Timeline-based Plans. In
Proceedings of the 19th European Conference on Artificial Intelligence
(ECAI), pages 471–476, 2010. URL http://dx.doi.org/10.3233/

978-1-60750-606-5-471.

[4] N. Chleq. Efficient algorithms for networks of quantitative temporal
constraints. In Proceedings of CONSTRAINTS-95, pages 40–45, 1995.

[5] Alessandro Cimatti, Luke Hunsberger, Andrea Micheli, and Marco
Roveri. Using Timed Game Automata to Synthesize Execution Strate-
gies for Simple Temporal Networks with Uncertainty. In Proceedings
AAAI, 2014.

[6] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E.
Leiserson. Introduction to Algorithms. McGraw-Hill Higher Education,
2001. ISBN 0070131511.

[7] G.B. Dantzig. Linear programming and extensions. Princeton University
Press, 1998. ISBN 978-0-69105-913-6.

[8] R. Dechter. Constraint processing. Morgan Kaufmann, 2003. ISBN 978-
1-55860-890-0.

[9] Rina Dechter, Itay Meiri, and Judea Pearl. Temporal constraint net-
works. Artificial Intelligence, 49(1-3):61–95, 1991. URL http://dx.doi.

org/10.1016/0004-3702(91)90006-6.

111

“Lic” — 2015/8/10 — 15:07 — page 112 — #118

112 Bibliography

[10] Patrick Doherty and Jonas Kvarnström. TALPLANNER - A temporal
logic-based planner. The AI Magazine, 22(3):95–102, 2001. ISSN 0738-
4602.

[11] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning:
Theory and Practice. Morgan Kaufmann, Amsterdam, 2004. ISBN 978-
1-55860-856-6.

[12] Luke Hunsberger. A fast incremental algorithm for managing the exe-
cution of dynamically controllable temporal networks. In Proceedings
of the 17th International Symposium on Temporal Representation and Rea-
soning (TIME), pages 121–128, 2010.

[13] Luke Hunsberger. A faster execution algorithm for dynamically con-
trollable STNUs. In Proceedings of the 20th International Symposium on
Temporal Representation and Reasoning (TIME), 2013.

[14] Luke Hunsberger. Magic loops in simple temporal networks with un-
certainty. In Fifth International Conference on Agents and Artificial Intel-
ligence (ICAART-2013). SciTePress, 2013.

[15] K. M. Kahn. Mechanization of temporal knowledge. Technical report,
Cambridge, MA, USA, 1975.

[16] P. Kim, B.C. Williams, and M. Abramson. Executing reactive, model-
based programs through graph-based temporal planning. In Proceed-
ings of the 17th international joint conference on Artificial intelligence (IJ-
CAI), pages 487–493, San Francisco, CA, USA, 2001. Morgan Kauf-
mann Publishers Inc. ISBN 1-55860-812-5, 978-1-558-60812-2.

[17] Paul Morris. A structural characterization of temporal dynamic con-
trollability. In Proceedings of the 12th International Conference on Princi-
ples and Practice of Constraint Programming (CP), volume 4204 of Lecture
Notes in Computer Science, pages 375–389. Springer, 2006. ISBN 3-540-
46267-8.

[18] Paul Morris. Dynamic Controllability and Dispatchability Relation-
ships. In Proceedings of the 11th Conference on Integration of AI and
OR Techniques in Constraint Programming (CPAIOR), pages 464–479.
Springer, 2014. ISBN 978-3-319-07045-2. URL http://dx.doi.org/

10.1007/978-3-319-07046-9_33.

[19] Paul Morris and Nicola Muscettola. Managing temporal uncertainty
through waypoint controllability. In Proceedings of the 16th international

“Lic” — 2015/8/10 — 15:07 — page 113 — #119

Bibliography 113

joint conference on Artificial intelligence (IJCAI), pages 1253–1258, San
Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc.

[20] Paul Morris and Nicola Muscettola. Temporal dynamic controllability
revisited. In Proceedings of the 20th National Conference on Artificial In-
telligence (AAAI), pages 1193–1198. AAAI Press / The MIT Press, 2005.

[21] Paul Morris, Nicola Muscettola, and Thierry Vidal. Dynamic con-
trol of plans with temporal uncertainty. In Proceedings of the 17th In-
ternational Joint Conference on Artificial Intelligence (IJCAI), pages 494–
499, San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc.
ISBN 1-55860-812-5, 978-1-558-60812-2.

[22] Paul H. Morris and Nicola Muscettola. Execution of temporal plans
with uncertainty. In Proceedings of the Seventeenth National Conference
on Artificial Intelligence and Twelfth Conference on Innovative Applications
of Artificial Intelligence, pages 491–496. AAAI Press / The MIT Press,
2000. ISBN 0-262-51112-6.

[23] Nicola Muscettola, Paul H. Morris, and Ioannis Tsamardinos. Refor-
mulating temporal plans for efficient execution. In Proceedings of the
6th International Conference on Principles of Knowledge Representation and
Reasoning (KR’98), pages 444–452, 1998.

[24] Mikael Nilsson, Jonas Kvarnström, and Patrick Doherty. Incremental
dynamic controllability revisited. In Proceedings of the 23rd International
Conference on Automated Planning and Scheduling (ICAPS), 2013.

[25] Mikael Nilsson, Jonas Kvarnström, and Patrick Doherty. Classical
Dynamic Controllability Revisited: A Tighter Bound on the Classi-
cal Algorithm. In Proceedings of the 6th International Conference on
Agents and Artificial Intelligence (ICAART), pages 130–141, 2014. doi:
10.5220/0004815801300141.

[26] Mikael Nilsson, Jonas Kvarnström, and Patrick Doherty. Efficient-
IDC: A Faster Incremental Dynamic Controllability Algorithm. In Pro-
ceedings of the 24th International Conference on Automated Planning and
Scheduling (ICAPS), 2014.

[27] L. Planken, M. de Weerdt, and R. van der Krogt. P3C: A new algorithm
for the simple temporal problem. In Proceedings of the International
Conference on Automated Planning and Scheduling (ICAPS), pages 256–
263, 2008.

“Lic” — 2015/8/10 — 15:07 — page 114 — #120

114 Bibliography

[28] Léon Planken, Mathijs de Weerdt, and Neil Yorke-Smith. Incremen-
tally solving stns by enforcing partial path consistency. In Proceedings
of the 20th International Conference on Automated Planning and Schedul-
ing (ICAPS), pages 129–136, 2010. URL http://www.aaai.org/ocs/

index.php/ICAPS/ICAPS10/paper/view/1447.

[29] Léon R. Planken. New algorithms for the simple temporal
problem. Master’s thesis, Delft University of Technology, Jan-
uary 2008. URL http://www.st.ewi.tudelft.nl/~planken/Papers/

mscthesis.pdf.

[30] L.R. Planken, M.M. de Weerdt, and C. Witteveen. Optimal Temporal
Decoupling in Multiagent Systems. In Proceedings of the Ninth Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS). IFAAMAS, 2010.

[31] Eddie Schwalb and Lluı́s Vila. Temporal constraints: A survey. Con-
straints, 3(2/3):129–149, 1998.

[32] Julie A. Shah, John Stedl, Brian C. Williams, and Paul Robertson.
A fast incremental algorithm for maintaining dispatchability of par-
tially controllable plans. In Mark S. Boddy, Maria Fox, and Sylvie
ThiÃ c©baux, editors, Proceedings of the 17th International Conference
on Automated Planning and Scheduling (ICAPS), pages 296–303. AAAI
Press, 2007. ISBN 978-1-57735-344-7. URL http://dblp.uni-trier.

de/db/conf/aips/icaps2007.html#ShahSWR07.

[33] John Stedl and Brian Williams. A fast incremental dynamic controlla-
bility algorithm. In Proceedings of the ICAPS Workshop on Plan Execu-
tion: A Reality Check, 2005.

[34] John L. Stedl. Managing temporal uncertainty under limited commu-
nication: A formal model of tight and loose team coordination. Mas-
ter’s thesis, Massachusetts Institute of Technology, 2004.

[35] K. Stergiou and M. Koubarakis. Backtracking algorithms for disjunc-
tions of temporal constraints. Artificial Intelligence, 120(1):81–117, 2000.

[36] I. Tsamardinos. Reformulating temporal plans for efficient execution.
Master’s thesis, University of Pittsburgh, 2000.

[37] I. Tsamardinos, M.E. Pollack, and S. Ramakrishnan. Assessing the
probability of legal execution of plans with temporal uncertainty. In

“Lic” — 2015/8/10 — 15:07 — page 115 — #121

Bibliography 115

Proceedings of ICAPS’03 Workshop on Planning Under Uncertainty and
Incomplete Information, 2003.

[38] I. Tsamardinos, T. Vidal, and M.E. Pollack. CTP: A new constraint-
based formalism for conditional, temporal planning. Constraints, 8(4):
365–388, 2003.

[39] Ioannis Tsamardinos, Nicola Muscettola, and Paul Morris. Fast trans-
formation of temporal plans for efficient execution. In Proceedings of
the 15th National Conference on Artificial Intelligence / 10th Conference on
Innovative Applications of Artificial Intelligence (AAAI/IAAI), pages 254–
261, Menlo Park, CA, USA, 1998. American Association for Artificial
Intelligence. ISBN 0-262-51098-7.

[40] K. Brent Venable, Michele Volpato, Bart Peintner, and Neil Yorke-
Smith. Weak and dynamic controllability of temporal problems with
disjunctions and uncertainty. In COPLAS 2010: ICAPS Workshop on
Constraint Satisfaction Techniques for Planning and Scheduling Problems,
2010.

[41] K.B. Venable and N. Yorke-Smith. Disjunctive temporal planning with
uncertainty. In 19th International Joint Conference on Artificial Intelligence
(IJCAI), pages 1721–22, 2005.

[42] T. Vidal and H. Fargier. Contingent durations in temporal CSPs: From
consistency to controllabilities. In Proceedings of the 4th International
Workshop on Temporal Representation and Reasoning (TIME), page 78,
Washington, DC, USA, 1997. IEEE Computer Society. ISBN 0-8186-
7937-9.

[43] Thierry Vidal and Hèléne Fargier. Handling contingency in temporal
constraint networks: from consistency to controllabilities. Journal of
Experimental and Theoretical Artificial Intelligence, 11:23–45, 1998.

[44] Thierry Vidal and M. Ghallab. Dealing with uncertain durations in
temporal constraints networks dedicated to planning. In Proceedings
of the 12th European Conference on Artificial Intelligence (ECAI), pages
48–52, 1996.

[45] L. Vila. A survey on temporal reasoning in artificial intelligence. Ai
Communications, 7(1):4–28, 1994.

[46] Marc B Vilain and Henry A Kautz. Constraint propagation algorithms
for temporal reasoning. In AAAI, volume 86, pages 377–382, 1986.

“Lic” — 2015/8/10 — 15:07 — page 116 — #122

116 Bibliography

[47] Lin Xu and Berthe Y. Choueiry. A new efficient algorithm for solv-
ing the simple temporal problem. In 10th International Symposium on
Temporal Representation and Reasoning / 4th International Conference on
Temporal Logic (TIME-ICTL 2003), 8-10 July 2003, Cairns, Queensland,
Australia, page 212, 2003. doi: 10.1109/TIME.2003.1214898. URL
http://dx.doi.org/10.1109/TIME.2003.1214898.

“Lic” — 2015/8/10 — 15:07 — page 117 — #123

Department of Computer and Information Science

Linköpings universitet

Licentiate Theses

Linköpings Studies in Science and Technology

Faculty of Arts and Sciences

No 17 Vojin Plavsic: Interleaved Processing of Non-Numerical Data Stored on a Cyclic Memory. (Available at: FOA,

Box 1165, S-581 11 Linköping, Sweden. FOA Report B30062E)

No 28 Arne Jönsson, Mikael Patel: An Interactive Flowcharting Technique for Communicating and Realizing Al-

gorithms, 1984.

No 29 Johnny Eckerland: Retargeting of an Incremental Code Generator, 1984.

No 48 Henrik Nordin: On the Use of Typical Cases for Knowledge-Based Consultation and Teaching, 1985.

No 52 Zebo Peng: Steps Towards the Formalization of Designing VLSI Systems, 1985.

No 60 Johan Fagerström: Simulation and Evaluation of Architecture based on Asynchronous Processes, 1985.

No 71 Jalal Maleki: ICONStraint, A Dependency Directed Constraint Maintenance System, 1987.

No 72 Tony Larsson: On the Specification and Verification of VLSI Systems, 1986.

No 73 Ola Strömfors: A Structure Editor for Documents and Programs, 1986.

No 74 Christos Levcopoulos: New Results about the Approximation Behavior of the Greedy Triangulation, 1986.

No 104 Shamsul I. Chowdhury: Statistical Expert Systems - a Special Application Area for Knowledge-Based Computer

Methodology, 1987.

No 108 Rober Bilos: Incremental Scanning and Token-Based Editing, 1987.

No 111 Hans Block: SPORT-SORT Sorting Algorithms and Sport Tournaments, 1987.

No 113 Ralph Rönnquist: Network and Lattice Based Approaches to the Representation of Knowledge, 1987.

No 118 Mariam Kamkar, Nahid Shahmehri: Affect-Chaining in Program Flow Analysis Applied to Queries of Pro-

grams, 1987.

No 126 Dan Strömberg: Transfer and Distribution of Application Programs, 1987.

No 127 Kristian Sandahl: Case Studies in Knowledge Acquisition, Migration and User Acceptance of Expert Systems,

1987.

No 139 Christer Bäckström: Reasoning about Interdependent Actions, 1988.

No 140 Mats Wirén: On Control Strategies and Incrementality in Unification-Based Chart Parsing, 1988.

No 146 Johan Hultman: A Software System for Defining and Controlling Actions in a Mechanical System, 1988.

No 150 Tim Hansen: Diagnosing Faults using Knowledge about Malfunctioning Behavior, 1988.

No 165 Jonas Löwgren: Supporting Design and Management of Expert System User Interfaces, 1989.

No 166 Ola Petersson: On Adaptive Sorting in Sequential and Parallel Models, 1989.

No 174 Yngve Larsson: Dynamic Configuration in a Distributed Environment, 1989.

No 177 Peter Åberg: Design of a Multiple View Presentation and Interaction Manager, 1989.

No 181 Henrik Eriksson: A Study in Domain-Oriented Tool Support for Knowledge Acquisition, 1989.

No 184 Ivan Rankin: The Deep Generation of Text in Expert Critiquing Systems, 1989.

No 187 Simin Nadjm-Tehrani: Contributions to the Declarative Approach to Debugging Prolog Programs, 1989.

No 189 Magnus Merkel: Temporal Information in Natural Language, 1989.

No 196 Ulf Nilsson: A Systematic Approach to Abstract Interpretation of Logic Programs, 1989.

No 197 Staffan Bonnier: Horn Clause Logic with External Procedures: Towards a Theoretical Framework, 1989.

No 203 Christer Hansson: A Prototype System for Logical Reasoning about Time and Action, 1990.

No 212 Björn Fjellborg: An Approach to Extraction of Pipeline Structures for VLSI High-Level Synthesis, 1990.

No 230 Patrick Doherty: A Three-Valued Approach to Non-Monotonic Reasoning, 1990.

No 237 Tomas Sokolnicki: Coaching Partial Plans: An Approach to Knowledge-Based Tutoring, 1990.

No 250 Lars Strömberg: Postmortem Debugging of Distributed Systems, 1990.

No 253 Torbjörn Näslund: SLDFA-Resolution - Computing Answers for Negative Queries, 1990.

No 260 Peter D. Holmes: Using Connectivity Graphs to Support Map-Related Reasoning, 1991.

No 283 Olof Johansson: Improving Implementation of Graphical User Interfaces for Object-Oriented Knowledge- Bases,

1991.

No 298 Rolf G Larsson: Aktivitetsbaserad kalkylering i ett nytt ekonomisystem, 1991.

No 318 Lena Srömbäck: Studies in Extended Unification-Based Formalism for Linguistic Description: An Algorithm for

Feature Structures with Disjunction and a Proposal for Flexible Systems, 1992.

No 319 Mikael Pettersson: DML-A Language and System for the Generation of Efficient Compilers from Denotational

Specification, 1992.

No 326 Andreas Kågedal: Logic Programming with External Procedures: an Implementation, 1992.

No 328 Patrick Lambrix: Aspects of Version Management of Composite Objects, 1992.

No 333 Xinli Gu: Testability Analysis and Improvement in High-Level Synthesis Systems, 1992.

No 335 Torbjörn Näslund: On the Role of Evaluations in Iterative Development of Managerial Support Systems, 1992.

No 348 Ulf Cederling: Industrial Software Development - a Case Study, 1992.

No 352 Magnus Morin: Predictable Cyclic Computations in Autonomous Systems: A Computational Model and Im-

plementation, 1992.

No 371 Mehran Noghabai: Evaluation of Strategic Investments in Information Technology, 1993.

No 378 Mats Larsson: A Transformational Approach to Formal Digital System Design, 1993.

“Lic” — 2015/8/10 — 15:07 — page 118 — #124

No 380 Johan Ringström: Compiler Generation for Parallel Languages from Denotational Specifications, 1993.

No 381 Michael Jansson: Propagation of Change in an Intelligent Information System, 1993.

No 383 Jonni Harrius: An Architecture and a Knowledge Representation Model for Expert Critiquing Systems, 1993.

No 386 Per Österling: Symbolic Modelling of the Dynamic Environments of Autonomous Agents, 1993.

No 398 Johan Boye: Dependency-based Groudness Analysis of Functional Logic Programs, 1993.

No 402 Lars Degerstedt: Tabulated Resolution for Well Founded Semantics, 1993.

No 406 Anna Moberg: Satellitkontor - en studie av kommunikationsmönster vid arbete på distans, 1993.

No 414 Peter Carlsson: Separation av företagsledning och finansiering - fallstudier av företagsledarutköp ur ett agent-

teoretiskt perspektiv, 1994.

No 417 Camilla Sjöström: Revision och lagreglering - ett historiskt perspektiv, 1994.

No 436 Cecilia Sjöberg: Voices in Design: Argumentation in Participatory Development, 1994.

No 437 Lars Viklund: Contributions to a High-level Programming Environment for a Scientific Computing, 1994.

No 440 Peter Loborg: Error Recovery Support in Manufacturing Control Systems, 1994.

FHS 3/94 Owen Eriksson: Informationssystem med verksamhetskvalitet - utvärdering baserat på ett verksamhetsinriktat och

samskapande perspektiv, 1994.

FHS 4/94 Karin Pettersson: Informationssystemstrukturering, ansvarsfördelning och användarinflytande - En komparativ

studie med utgångspunkt i två informationssystemstrategier, 1994.

No 441 Lars Poignant: Informationsteknologi och företagsetablering - Effekter på produktivitet och region, 1994.

No 446 Gustav Fahl: Object Views of Relational Data in Multidatabase Systems, 1994.

No 450 Henrik Nilsson: A Declarative Approach to Debugging for Lazy Functional Languages, 1994.

No 451 Jonas Lind: Creditor - Firm Relations: an Interdisciplinary Analysis, 1994.

No 452 Martin Sköld: Active Rules based on Object Relational Queries - Efficient Change Monitoring Techniques, 1994.

No 455 Pär Carlshamre: A Collaborative Approach to Usability Engineering: Technical Communicators and System

Developers in Usability-Oriented Systems Development, 1994.

FHS 5/94 Stefan Cronholm: Varför CASE-verktyg i systemutveckling? - En motiv- och konsekvensstudie avseende

arbetssätt och arbetsformer, 1994.

No 462 Mikael Lindvall: A Study of Traceability in Object-Oriented Systems Development, 1994.

No 463 Fredrik Nilsson: Strategi och ekonomisk styrning - En studie av Sandviks förvärv av Bahco Verktyg, 1994.

No 464 Hans Olsén: Collage Induction: Proving Properties of Logic Programs by Program Synthesis, 1994.

No 469 Lars Karlsson: Specification and Synthesis of Plans Using the Features and Fluents Framework, 1995.

No 473 Ulf Söderman: On Conceptual Modelling of Mode Switching Systems, 1995.

No 475 Choong-ho Yi: Reasoning about Concurrent Actions in the Trajectory Semantics, 1995.

No 476 Bo Lagerström: Successiv resultatavräkning av pågående arbeten. - Fallstudier i tre byggföretag, 1995.

No 478 Peter Jonsson: Complexity of State-Variable Planning under Structural Restrictions, 1995.

FHS 7/95 Anders Avdic: Arbetsintegrerad systemutveckling med kalkylprogram, 1995.

No 482 Eva L Ragnemalm: Towards Student Modelling through Collaborative Dialogue with a Learning Companion,

1995.

No 488 Eva Toller: Contributions to Parallel Multiparadigm Languages: Combining Object-Oriented and Rule-Based

Programming, 1995.

No 489 Erik Stoy: A Petri Net Based Unified Representation for Hardware/Software Co-Design, 1995.

No 497 Johan Herber: Environment Support for Building Structured Mathematical Models, 1995.

No 498 Stefan Svenberg: Structure-Driven Derivation of Inter-Lingual Functor-Argument Trees for Multi-Lingual

Generation, 1995.

No 503 Hee-Cheol Kim: Prediction and Postdiction under Uncertainty, 1995.

FHS 8/95 Dan Fristedt: Metoder i användning - mot förbättring av systemutveckling genom situationell metodkunskap och

metodanalys, 1995.

FHS 9/95 Malin Bergvall: Systemförvaltning i praktiken - en kvalitativ studie avseende centrala begrepp, aktiviteter och

ansvarsroller, 1995.

No 513 Joachim Karlsson: Towards a Strategy for Software Requirements Selection, 1995.

No 517 Jakob Axelsson: Schedulability-Driven Partitioning of Heterogeneous Real-Time Systems, 1995.

No 518 Göran Forslund: Toward Cooperative Advice-Giving Systems: The Expert Systems Experience, 1995.

No 522 Jörgen Andersson: Bilder av småföretagares ekonomistyrning, 1995.

No 538 Staffan Flodin: Efficient Management of Object-Oriented Queries with Late Binding, 1996.

No 545 Vadim Engelson: An Approach to Automatic Construction of Graphical User Interfaces for Applications in

Scientific Computing, 1996.

No 546 Magnus Werner : Multidatabase Integration using Polymorphic Queries and Views, 1996.

FiF-a 1/96 Mikael Lind: Affärsprocessinriktad förändringsanalys - utveckling och tillämpning av synsätt och metod, 1996.

No 549 Jonas Hallberg: High-Level Synthesis under Local Timing Constraints, 1996.

No 550 Kristina Larsen: Förutsättningar och begränsningar för arbete på distans - erfarenheter från fyra svenska företag.

1996.

No 557 Mikael Johansson: Quality Functions for Requirements Engineering Methods, 1996.

No 558 Patrik Nordling: The Simulation of Rolling Bearing Dynamics on Parallel Computers, 1996.

No 561 Anders Ekman: Exploration of Polygonal Environments, 1996.

No 563 Niclas Andersson: Compilation of Mathematical Models to Parallel Code, 1996.

“Lic” — 2015/8/10 — 15:07 — page 119 — #125

No 567 Johan Jenvald: Simulation and Data Collection in Battle Training, 1996.

No 575 Niclas Ohlsson: Software Quality Engineering by Early Identification of Fault-Prone Modules, 1996.

No 576 Mikael Ericsson: Commenting Systems as Design Support—A Wizard-of-Oz Study, 1996.

No 587 Jörgen Lindström: Chefers användning av kommunikationsteknik, 1996.

No 589 Esa Falkenroth: Data Management in Control Applications - A Proposal Based on Active Database Systems,

1996.

No 591 Niclas Wahllöf: A Default Extension to Description Logics and its Applications, 1996.

No 595 Annika Larsson: Ekonomisk Styrning och Organisatorisk Passion - ett interaktivt perspektiv, 1997.

No 597 Ling Lin: A Value-based Indexing Technique for Time Sequences, 1997.

No 598 Rego Granlund: C3Fire - A Microworld Supporting Emergency Management Training, 1997.

No 599 Peter Ingels: A Robust Text Processing Technique Applied to Lexical Error Recovery, 1997.

No 607 Per-Arne Persson: Toward a Grounded Theory for Support of Command and Control in Military Coalitions, 1997.

No 609 Jonas S Karlsson: A Scalable Data Structure for a Parallel Data Server, 1997.

FiF-a 4 Carita Åbom: Videomötesteknik i olika affärssituationer - möjligheter och hinder, 1997.

FiF-a 6 Tommy Wedlund: Att skapa en företagsanpassad systemutvecklingsmodell - genom rekonstruktion, värdering och

vidareutveckling i T50-bolag inom ABB, 1997.

No 615 Silvia Coradeschi: A Decision-Mechanism for Reactive and Coordinated Agents, 1997.

No 623 Jan Ollinen: Det flexibla kontorets utveckling på Digital - Ett stöd för multiflex? 1997.

No 626 David Byers: Towards Estimating Software Testability Using Static Analysis, 1997.

No 627 Fredrik Eklund: Declarative Error Diagnosis of GAPLog Programs, 1997.

No 629 Gunilla Ivefors: Krigsspel och Informationsteknik inför en oförutsägbar framtid, 1997.

No 631 Jens-Olof Lindh: Analysing Traffic Safety from a Case-Based Reasoning Perspective, 1997

No 639 Jukka Mäki-Turja:. Smalltalk - a suitable Real-Time Language, 1997.

No 640 Juha Takkinen: CAFE: Towards a Conceptual Model for Information Management in Electronic Mail, 1997.

No 643 Man Lin: Formal Analysis of Reactive Rule-based Programs, 1997.

No 653 Mats Gustafsson: Bringing Role-Based Access Control to Distributed Systems, 1997.

FiF-a 13 Boris Karlsson: Metodanalys för förståelse och utveckling av systemutvecklingsverksamhet. Analys och värdering

av systemutvecklingsmodeller och dess användning, 1997.

No 674 Marcus Bjäreland: Two Aspects of Automating Logics of Action and Change - Regression and Tractability,

1998.

No 676 Jan Håkegård: Hierarchical Test Architecture and Board-Level Test Controller Synthesis, 1998.

No 668 Per-Ove Zetterlund: Normering av svensk redovisning - En studie av tillkomsten av Redovisningsrådets re-

kommendation om koncernredovisning (RR01:91), 1998.

No 675 Jimmy Tjäder: Projektledaren & planen - en studie av projektledning i tre installations- och systemutveck-

lingsprojekt, 1998.

FiF-a 14 Ulf Melin: Informationssystem vid ökad affärs- och processorientering - egenskaper, strategier och utveckling,

1998.

No 695 Tim Heyer: COMPASS: Introduction of Formal Methods in Code Development and Inspection, 1998.

No 700 Patrik Hägglund: Programming Languages for Computer Algebra, 1998.

FiF-a 16 Marie-Therese Christiansson: Inter-organisatorisk verksamhetsutveckling - metoder som stöd vid utveckling av

partnerskap och informationssystem, 1998.

No 712 Christina Wennestam: Information om immateriella resurser. Investeringar i forskning och utveckling samt i

personal inom skogsindustrin, 1998.

No 719 Joakim Gustafsson: Extending Temporal Action Logic for Ramification and Concurrency, 1998.

No 723 Henrik André-Jönsson: Indexing time-series data using text indexing methods, 1999.

No 725 Erik Larsson: High-Level Testability Analysis and Enhancement Techniques, 1998.

No 730 Carl-Johan Westin: Informationsförsörjning: en fråga om ansvar - aktiviteter och uppdrag i fem stora svenska

organisationers operativa informationsförsörjning, 1998.

No 731 Åse Jansson: Miljöhänsyn - en del i företags styrning, 1998.

No 733 Thomas Padron-McCarthy: Performance-Polymorphic Declarative Queries, 1998.

No 734 Anders Bäckström: Värdeskapande kreditgivning - Kreditriskhantering ur ett agentteoretiskt perspektiv, 1998.

FiF-a 21 Ulf Seigerroth: Integration av förändringsmetoder - en modell för välgrundad metodintegration, 1999.

FiF-a 22 Fredrik Öberg: Object-Oriented Frameworks - A New Strategy for Case Tool Development, 1998.

No 737 Jonas Mellin: Predictable Event Monitoring, 1998.

No 738 Joakim Eriksson: Specifying and Managing Rules in an Active Real-Time Database System, 1998.

FiF-a 25 Bengt E W Andersson: Samverkande informationssystem mellan aktörer i offentliga åtaganden - En teori om

aktörsarenor i samverkan om utbyte av information, 1998.

No 742 Pawel Pietrzak: Static Incorrectness Diagnosis of CLP (FD), 1999.

No 748 Tobias Ritzau: Real-Time Reference Counting in RT-Java, 1999.

No 751 Anders Ferntoft: Elektronisk affärskommunikation - kontaktkostnader och kontaktprocesser mellan kunder och

leverantörer på producentmarknader, 1999.

No 752 Jo Skåmedal: Arbete på distans och arbetsformens påverkan på resor och resmönster, 1999.

No 753 Johan Alvehus: Mötets metaforer. En studie av berättelser om möten, 1999.

“Lic” — 2015/8/10 — 15:07 — page 120 — #126

No 754 Magnus Lindahl: Bankens villkor i låneavtal vid kreditgivning till högt belånade företagsförvärv: En studie ur ett

agentteoretiskt perspektiv, 2000.

No 766 Martin V. Howard: Designing dynamic visualizations of temporal data, 1999.

No 769 Jesper Andersson: Towards Reactive Software Architectures, 1999.

No 775 Anders Henriksson: Unique kernel diagnosis, 1999.

FiF-a 30 Pär J. Ågerfalk: Pragmatization of Information Systems - A Theoretical and Methodological Outline, 1999.

No 787 Charlotte Björkegren: Learning for the next project - Bearers and barriers in knowledge transfer within an

organisation, 1999.

No 788 Håkan Nilsson: Informationsteknik som drivkraft i granskningsprocessen - En studie av fyra revisionsbyråer,

2000.

No 790 Erik Berglund: Use-Oriented Documentation in Software Development, 1999.

No 791 Klas Gäre: Verksamhetsförändringar i samband med IS-införande, 1999.

No 800 Anders Subotic: Software Quality Inspection, 1999.

No 807 Svein Bergum: Managerial communication in telework, 2000.

No 809 Flavius Gruian: Energy-Aware Design of Digital Systems, 2000.

FiF-a 32 Karin Hedström: Kunskapsanvändning och kunskapsutveckling hos verksamhetskonsulter - Erfarenheter från ett

FOU-samarbete, 2000.

No 808 Linda Askenäs: Affärssystemet - En studie om teknikens aktiva och passiva roll i en organisation, 2000.

No 820 Jean Paul Meynard: Control of industrial robots through high-level task programming, 2000.

No 823 Lars Hult: Publika Gränsytor - ett designexempel, 2000.

No 832 Paul Pop: Scheduling and Communication Synthesis for Distributed Real-Time Systems, 2000.

FiF-a 34 Göran Hultgren: Nätverksinriktad Förändringsanalys - perspektiv och metoder som stöd för förståelse och

utveckling av affärsrelationer och informationssystem, 2000.

No 842 Magnus Kald: The role of management control systems in strategic business units, 2000.

No 844 Mikael Cäker: Vad kostar kunden? Modeller för intern redovisning, 2000.

FiF-a 37 Ewa Braf: Organisationers kunskapsverksamheter - en kritisk studie av ”knowledge management”, 2000.

FiF-a 40 Henrik Lindberg: Webbaserade affärsprocesser - Möjligheter och begränsningar, 2000.

FiF-a 41 Benneth Christiansson: Att komponentbasera informationssystem - Vad säger teori och praktik?, 2000.

No. 854 Ola Pettersson: Deliberation in a Mobile Robot, 2000.

No 863 Dan Lawesson: Towards Behavioral Model Fault Isolation for Object Oriented Control Systems, 2000.

No 881 Johan Moe: Execution Tracing of Large Distributed Systems, 2001.

No 882 Yuxiao Zhao: XML-based Frameworks for Internet Commerce and an Implementation of B2B e-procurement,

2001.

No 890 Annika Flycht-Eriksson: Domain Knowledge Management in Information-providing Dialogue systems, 2001.

FiF-a 47 Per-Arne Segerkvist: Webbaserade imaginära organisationers samverkansformer: Informationssystemarkitektur

och aktörssamverkan som förutsättningar för affärsprocesser, 2001.

No 894 Stefan Svarén: Styrning av investeringar i divisionaliserade företag - Ett koncernperspektiv, 2001.

No 906 Lin Han: Secure and Scalable E-Service Software Delivery, 2001.

No 917 Emma Hansson: Optionsprogram för anställda - en studie av svenska börsföretag, 2001.

No 916 Susanne Odar: IT som stöd för strategiska beslut, en studie av datorimplementerade modeller av verksamhet som

stöd för beslut om anskaffning av JAS 1982, 2002.

FiF-a-49 Stefan Holgersson: IT-system och filtrering av verksamhetskunskap - kvalitetsproblem vid analyser och be-

slutsfattande som bygger på uppgifter hämtade från polisens IT-system, 2001.

FiF-a-51 Per Oscarsson: Informationssäkerhet i verksamheter - begrepp och modeller som stöd för förståelse av infor-

mationssäkerhet och dess hantering, 2001.

No 919 Luis Alejandro Cortes: A Petri Net Based Modeling and Verification Technique for Real-Time Embedded

Systems, 2001.

No 915 Niklas Sandell: Redovisning i skuggan av en bankkris - Värdering av fastigheter. 2001.

No 931 Fredrik Elg: Ett dynamiskt perspektiv på individuella skillnader av heuristisk kompetens, intelligens, mentala

modeller, mål och konfidens i kontroll av mikrovärlden Moro, 2002.

No 933 Peter Aronsson: Automatic Parallelization of Simulation Code from Equation Based Simulation Languages, 2002.

No 938 Bourhane Kadmiry: Fuzzy Control of Unmanned Helicopter, 2002.

No 942 Patrik Haslum: Prediction as a Knowledge Representation Problem: A Case Study in Model Design, 2002.

No 956 Robert Sevenius: On the instruments of governance - A law & economics study of capital instruments in limited

liability companies, 2002.

FiF-a 58 Johan Petersson: Lokala elektroniska marknadsplatser - informationssystem för platsbundna affärer, 2002.

No 964 Peter Bunus: Debugging and Structural Analysis of Declarative Equation-Based Languages, 2002.

No 973 Gert Jervan: High-Level Test Generation and Built-In Self-Test Techniques for Digital Systems, 2002.

No 958 Fredrika Berglund: Management Control and Strategy - a Case Study of Pharmaceutical Drug Development,

2002.

FiF-a 61 Fredrik Karlsson: Meta-Method for Method Configuration - A Rational Unified Process Case, 2002.

No 985 Sorin Manolache: Schedulability Analysis of Real-Time Systems with Stochastic Task Execution Times, 2002.

No 982 Diana Szentiványi: Performance and Availability Trade-offs in Fault-Tolerant Middleware, 2002.

No 989 Iakov Nakhimovski: Modeling and Simulation of Contacting Flexible Bodies in Multibody Systems, 2002.

No 990 Levon Saldamli: PDEModelica - Towards a High-Level Language for Modeling with Partial Differential

Equations, 2002.

No 991 Almut Herzog: Secure Execution Environment for Java Electronic Services, 2002.

“Lic” — 2015/8/10 — 15:07 — page 121 — #127

No 999 Jon Edvardsson: Contributions to Program- and Specification-based Test Data Generation, 2002.

No 1000 Anders Arpteg: Adaptive Semi-structured Information Extraction, 2002.

No 1001 Andrzej Bednarski: A Dynamic Programming Approach to Optimal Retargetable Code Generation for Irregular

Architectures, 2002.

No 988 Mattias Arvola: Good to use! : Use quality of multi-user applications in the home, 2003.

FiF-a 62 Lennart Ljung: Utveckling av en projektivitetsmodell - om organisationers förmåga att tillämpa

projektarbetsformen, 2003.

No 1003 Pernilla Qvarfordt: User experience of spoken feedback in multimodal interaction, 2003.

No 1005 Alexander Siemers: Visualization of Dynamic Multibody Simulation With Special Reference to Contacts, 2003.

No 1008 Jens Gustavsson: Towards Unanticipated Runtime Software Evolution, 2003.

No 1010 Calin Curescu: Adaptive QoS-aware Resource Allocation for Wireless Networks, 2003.

No 1015 Anna Andersson: Management Information Systems in Process-oriented Healthcare Organisations, 2003.

No 1018 Björn Johansson: Feedforward Control in Dynamic Situations, 2003.

No 1022 Traian Pop: Scheduling and Optimisation of Heterogeneous Time/Event-Triggered Distributed Embedded

Systems, 2003.

FiF-a 65 Britt-Marie Johansson: Kundkommunikation på distans - en studie om kommunikationsmediets betydelse i

affärstransaktioner, 2003.

No 1024 Aleksandra Tešanovic: Towards Aspectual Component-Based Real-Time System Development, 2003.

No 1034 Arja Vainio-Larsson: Designing for Use in a Future Context - Five Case Studies in Retrospect, 2003.

No 1033 Peter Nilsson: Svenska bankers redovisningsval vid reservering för befarade kreditförluster - En studie vid

införandet av nya redovisningsregler, 2003.

FiF-a 69 Fredrik Ericsson: Information Technology for Learning and Acquiring of Work Knowledge, 2003.

No 1049 Marcus Comstedt: Towards Fine-Grained Binary Composition through Link Time Weaving, 2003.

No 1052 Åsa Hedenskog: Increasing the Automation of Radio Network Control, 2003.

No 1054 Claudiu Duma: Security and Efficiency Tradeoffs in Multicast Group Key Management, 2003.

FiF-a 71 Emma Eliason: Effektanalys av IT-systems handlingsutrymme, 2003.

No 1055 Carl Cederberg: Experiments in Indirect Fault Injection with Open Source and Industrial Software, 2003.

No 1058 Daniel Karlsson: Towards Formal Verification in a Component-based Reuse Methodology, 2003.

FiF-a 73 Anders Hjalmarsson: Att etablera och vidmakthålla förbättringsverksamhet - behovet av koordination och

interaktion vid förändring av systemutvecklingsverksamheter, 2004.

No 1079 Pontus Johansson: Design and Development of Recommender Dialogue Systems, 2004.

No 1084 Charlotte Stoltz: Calling for Call Centres - A Study of Call Centre Locations in a Swedish Rural Region, 2004.

FiF-a 74 Björn Johansson: Deciding on Using Application Service Provision in SMEs, 2004.

No 1094 Genevieve Gorrell: Language Modelling and Error Handling in Spoken Dialogue Systems, 2004.

No 1095 Ulf Johansson: Rule Extraction - the Key to Accurate and Comprehensible Data Mining Models, 2004.

No 1099 Sonia Sangari: Computational Models of Some Communicative Head Movements, 2004.

No 1110 Hans Nässla: Intra-Family Information Flow and Prospects for Communication Systems, 2004.

No 1116 Henrik Sällberg: On the value of customer loyalty programs - A study of point programs and switching costs,

2004.

FiF-a 77 Ulf Larsson: Designarbete i dialog - karaktärisering av interaktionen mellan användare och utvecklare i en

systemutvecklingsprocess, 2004.

No 1126 Andreas Borg: Contribution to Management and Validation of Non-Functional Requirements, 2004.

No 1127 Per-Ola Kristensson: Large Vocabulary Shorthand Writing on Stylus Keyboard, 2004.

No 1132 Pär-Anders Albinsson: Interacting with Command and Control Systems: Tools for Operators and Designers,

2004.

No 1130 Ioan Chisalita: Safety-Oriented Communication in Mobile Networks for Vehicles, 2004.

No 1138 Thomas Gustafsson: Maintaining Data Consistency in Embedded Databases for Vehicular Systems, 2004.

No 1149 Vaida Jakoniené: A Study in Integrating Multiple Biological Data Sources, 2005.

No 1156 Abdil Rashid Mohamed: High-Level Techniques for Built-In Self-Test Resources Optimization, 2005.

No 1162 Adrian Pop: Contributions to Meta-Modeling Tools and Methods, 2005.

No 1165 Fidel Vascós Palacios: On the information exchange between physicians and social insurance officers in the sick

leave process: an Activity Theoretical perspective, 2005.

FiF-a 84 Jenny Lagsten: Verksamhetsutvecklande utvärdering i informationssystemprojekt, 2005.

No 1166 Emma Larsdotter Nilsson: Modeling, Simulation, and Visualization of Metabolic Pathways Using Modelica,

2005.

No 1167 Christina Keller: Virtual Learning Environments in higher education. A study of students’ acceptance of edu-

cational technology, 2005.

No 1168 Cécile Åberg: Integration of organizational workflows and the Semantic Web, 2005.

FiF-a 85 Anders Forsman: Standardisering som grund för informationssamverkan och IT-tjänster - En fallstudie baserad på

trafikinformationstjänsten RDS-TMC, 2005.

No 1171 Yu-Hsing Huang: A systemic traffic accident model, 2005.

FiF-a 86 Jan Olausson: Att modellera uppdrag - grunder för förståelse av processinriktade informationssystem i

transaktionsintensiva verksamheter, 2005.

No 1172 Petter Ahlström: Affärsstrategier för seniorbostadsmarknaden, 2005.

No 1183 Mathias Cöster: Beyond IT and Productivity - How Digitization Transformed the Graphic Industry, 2005.

No 1184 Åsa Horzella: Beyond IT and Productivity - Effects of Digitized Information Flows in Grocery Distribution, 2005.

No 1185 Maria Kollberg: Beyond IT and Productivity - Effects of Digitized Information Flows in the Logging Industry,

2005.

No 1190 David Dinka: Role and Identity - Experience of technology in professional settings, 2005.

“Lic” — 2015/8/10 — 15:07 — page 122 — #128

No 1191 Andreas Hansson: Increasing the Storage Capacity of Recursive Auto-associative Memory by Segmenting Data,

2005.

No 1192 Nicklas Bergfeldt: Towards Detached Communication for Robot Cooperation, 2005.

No 1194 Dennis Maciuszek: Towards Dependable Virtual Companions for Later Life, 2005.

No 1204 Beatrice Alenljung: Decision-making in the Requirements Engineering Process: A Human-centered Approach,

2005.

No 1206 Anders Larsson: System-on-Chip Test Scheduling and Test Infrastructure Design, 2005.

No 1207 John Wilander: Policy and Implementation Assurance for Software Security, 2005.

No 1209 Andreas Käll: Översättningar av en managementmodell - En studie av införandet av Balanced Scorecard i ett

landsting, 2005.

No 1225 He Tan: Aligning and Merging Biomedical Ontologies, 2006.

No 1228 Artur Wilk: Descriptive Types for XML Query Language Xcerpt, 2006.

No 1229 Per Olof Pettersson: Sampling-based Path Planning for an Autonomous Helicopter, 2006.

No 1231 Kalle Burbeck: Adaptive Real-time Anomaly Detection for Safeguarding Critical Networks, 2006.

No 1233 Daniela Mihailescu: Implementation Methodology in Action: A Study of an Enterprise Systems Implementation

Methodology, 2006.

No 1244 Jörgen Skågeby: Public and Non-public gifting on the Internet, 2006.

No 1248 Karolina Eliasson: The Use of Case-Based Reasoning in a Human-Robot Dialog System, 2006.

No 1263 Misook Park-Westman: Managing Competence Development Programs in a Cross-Cultural Organisation - What

are the Barriers and Enablers, 2006.
FiF-a 90 Amra Halilovic: Ett praktikperspektiv på hantering av mjukvarukomponenter, 2006.

No 1272 Raquel Flodström: A Framework for the Strategic Management of Information Technology, 2006.

No 1277 Viacheslav Izosimov: Scheduling and Optimization of Fault-Tolerant Embedded Systems, 2006.

No 1283 Håkan Hasewinkel: A Blueprint for Using Commercial Games off the Shelf in Defence Training, Education and

Research Simulations, 2006.

FiF-a 91 Hanna Broberg: Verksamhetsanpassade IT-stöd - Designteori och metod, 2006.

No 1286 Robert Kaminski: Towards an XML Document Restructuring Framework, 2006.

No 1293 Jiri Trnka: Prerequisites for data sharing in emergency management, 2007.

No 1302 Björn Hägglund: A Framework for Designing Constraint Stores, 2007.

No 1303 Daniel Andreasson: Slack-Time Aware Dynamic Routing Schemes for On-Chip Networks, 2007.

No 1305 Magnus Ingmarsson: Modelling User Tasks and Intentions for Service Discovery in Ubiquitous Computing,

2007.

No 1306 Gustaf Svedjemo: Ontology as Conceptual Schema when Modelling Historical Maps for Database Storage, 2007.

No 1307 Gianpaolo Conte: Navigation Functionalities for an Autonomous UAV Helicopter, 2007.

No 1309 Ola Leifler: User-Centric Critiquing in Command and Control: The DKExpert and ComPlan Approaches, 2007.

No 1312 Henrik Svensson: Embodied simulation as off-line representation, 2007.

No 1313 Zhiyuan He: System-on-Chip Test Scheduling with Defect-Probability and Temperature Considerations, 2007.

No 1317 Jonas Elmqvist: Components, Safety Interfaces and Compositional Analysis, 2007.

No 1320 Håkan Sundblad: Question Classification in Question Answering Systems, 2007.

No 1323 Magnus Lundqvist: Information Demand and Use: Improving Information Flow within Small-scale Business

Contexts, 2007.

No 1329 Martin Magnusson: Deductive Planning and Composite Actions in Temporal Action Logic, 2007.

No 1331 Mikael Asplund: Restoring Consistency after Network Partitions, 2007.

No 1332 Martin Fransson: Towards Individualized Drug Dosage - General Methods and Case Studies, 2007.

No 1333 Karin Camara: A Visual Query Language Served by a Multi-sensor Environment, 2007.

No 1337 David Broman: Safety, Security, and Semantic Aspects of Equation-Based Object-Oriented Languages and

Environments, 2007.

No 1339 Mikhail Chalabine: Invasive Interactive Parallelization, 2007.

No 1351 Susanna Nilsson: A Holistic Approach to Usability Evaluations of Mixed Reality Systems, 2008.

No 1353 Shanai Ardi: A Model and Implementation of a Security Plug-in for the Software Life Cycle, 2008.

No 1356 Erik Kuiper: Mobility and Routing in a Delay-tolerant Network of Unmanned Aerial Vehicles, 2008.

No 1359 Jana Rambusch: Situated Play, 2008.

No 1361 Martin Karresand: Completing the Picture - Fragments and Back Again, 2008.

No 1363 Per Nyblom: Dynamic Abstraction for Interleaved Task Planning and Execution, 2008.

No 1371 Fredrik Lantz: Terrain Object Recognition and Context Fusion for Decision Support, 2008.

No 1373 Martin Östlund: Assistance Plus: 3D-mediated Advice-giving on Pharmaceutical Products, 2008.

No 1381 Håkan Lundvall: Automatic Parallelization using Pipelining for Equation-Based Simulation Languages, 2008.

No 1386 Mirko Thorstensson: Using Observers for Model Based Data Collection in Distributed Tactical Operations, 2008.

No 1387 Bahlol Rahimi: Implementation of Health Information Systems, 2008.

No 1392 Maria Holmqvist: Word Alignment by Re-using Parallel Phrases, 2008.

No 1393 Mattias Eriksson: Integrated Software Pipelining, 2009.

No 1401 Annika Öhgren: Towards an Ontology Development Methodology for Small and Medium-sized Enterprises,

2009.

No 1410 Rickard Holsmark: Deadlock Free Routing in Mesh Networks on Chip with Regions, 2009.

No 1421 Sara Stymne: Compound Processing for Phrase-Based Statistical Machine Translation, 2009.

No 1427 Tommy Ellqvist: Supporting Scientific Collaboration through Workflows and Provenance, 2009.

No 1450 Fabian Segelström: Visualisations in Service Design, 2010.

No 1459 Min Bao: System Level Techniques for Temperature-Aware Energy Optimization, 2010.

No 1466 Mohammad Saifullah: Exploring Biologically Inspired Interactive Networks for Object Recognition, 2011

“Lic” — 2015/8/10 — 15:07 — page 123 — #129

No 1468 Qiang Liu: Dealing with Missing Mappings and Structure in a Network of Ontologies, 2011.

No 1469 Ruxandra Pop: Mapping Concurrent Applications to Multiprocessor Systems with Multithreaded Processors and

 Network on Chip-Based Interconnections, 2011.

No 1476 Per-Magnus Olsson: Positioning Algorithms for Surveillance Using Unmanned Aerial Vehicles, 2011.

No 1481 Anna Vapen: Contributions to Web Authentication for Untrusted Computers, 2011.

No 1485 Loove Broms: Sustainable Interactions: Studies in the Design of Energy Awareness Artefacts, 2011.

FiF-a 101 Johan Blomkvist: Conceptualising Prototypes in Service Design, 2011.

No 1490 Håkan Warnquist: Computer-Assisted Troubleshooting for Efficient Off-board Diagnosis, 2011.

No 1503 Jakob Rosén: Predictable Real-Time Applications on Multiprocessor Systems-on-Chip, 2011.

No 1504 Usman Dastgeer: Skeleton Programming for Heterogeneous GPU-based Systems, 2011.

No 1506 David Landén: Complex Task Allocation for Delegation: From Theory to Practice, 2011.

No 1507 Kristian Stavåker: Contributions to Parallel Simulation of Equation-Based Models on

Graphics Processing Units, 2011.

No 1509 Mariusz Wzorek: Selected Aspects of Navigation and Path Planning in Unmanned Aircraft Systems, 2011.

No 1510 Piotr Rudol: Increasing Autonomy of Unmanned Aircraft Systems Through the Use of Imaging Sensors, 2011.

No 1513 Anders Carstensen: The Evolution of the Connector View Concept: Enterprise Models for Interoperability

 Solutions in the Extended Enterprise, 2011.

No 1523 Jody Foo: Computational Terminology: Exploring Bilingual and Monolingual Term Extraction, 2012.

No 1550 Anders Fröberg: Models and Tools for Distributed User Interface Development, 2012.

No 1558 Dimitar Nikolov: Optimizing Fault Tolerance for Real-Time Systems, 2012.

No 1582 Dennis Andersson: Mission Experience: How to Model and Capture it to Enable Vicarious Learning, 2013.

No 1586 Massimiliano Raciti: Anomaly Detection and its Adaptation: Studies on Cyber-physical Systems, 2013.

No 1588 Banafsheh Khademhosseinieh: Towards an Approach for Efficiency Evaluation of

Enterprise Modeling Methods, 2013.

No 1589 Amy Rankin: Resilience in High Risk Work: Analysing Adaptive Performance, 2013.

No 1592 Martin Sjölund: Tools for Understanding, Debugging, and Simulation Performance Improvement of Equation-

Based Models, 2013.

No 1606 Karl Hammar: Towards an Ontology Design Pattern Quality Model, 2013.

No 1624 Maria Vasilevskaya: Designing Security-enhanced Embedded Systems: Bridging Two Islands of Expertise, 2013.

No 1627 Ekhiotz Vergara: Exploiting Energy Awareness in Mobile Communication, 2013.

No 1644 Valentina Ivanova: Integration of Ontology Alignment and Ontology Debugging for Taxonomy Networks, 2014.

No 1647 Dag Sonntag: A Study of Chain Graph Interpretations, 2014.

No 1657 Kiril Kiryazov: Grounding Emotion Appraisal in Autonomous Humanoids, 2014.

No 1683 Zlatan Dragisic: Completing the Is-a Structure in Description Logics Ontologies, 2014.

No 1688 Erik Hansson: Code Generation and Global Optimization Techniques for a Reconfigurable PRAM-NUMA

Multicore Architecture, 2014.

No 1715 Nicolas Melot: Energy-Efficient Computing over Streams with Massively Parallel Architectures, 2015.

No 1716 Mahder Gebremedhin: Automatic and Explicit Parallelization Approaches for Mathematical Simulation Models,

2015.

No 1722 Mikael Nilsson: Efficient Temporal Reasoning with Uncertainty, 2015.

	Abstract
	Acknowledgements
	Contents
	List of Figures
	Chapter 1 Introduction
	Chapter 2 Temporal Formalisms
	Chapter 3 Algorithms for Verifying Dynamic Controllability
	Chapter 4 FastIDC Analysis and Correction
	Chapter 5 A Tighter Complexity Result for the MMV Algorithm
	Chapter 6 The E�cientIDC Algorithm
	Chapter 7 Related and FutureWork
	Chapter 8 Conclusion
	Bibliography

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 6.890 x 9.843 inches / 175.0 x 250.0 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20070320125831
 708.6614
 S5-utfall
 Blank
 496.0630

 Tall
 0
 0
 No
 635
 395
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 129
 128
 129

 1

 HistoryItem_V1
 DefineBleed

 Range: all pages
 Request: bleed all round 14.17 points
 Bleed area is outside visible: no

 0.0000
 0
 0.0000
 14.1732
 0
 0
 581
 343
 0.0000
 Fixed

 Both
 AllDoc

 PDDoc

 0.0000

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 129
 128
 129

 1

 HistoryItem_V1
 StepAndRepeat

 Trim unused space from sheets: no
 Allow pages to be scaled: no
 Margins: left 0.00, top 0.00, right 0.00, bottom 0.00 points
 Horizontal spacing (points): 0
 Vertical spacing (points): 0
 Crop style 1, width 0.30, length 5.67, distance 14.17 (points)
 Add frames around each page: no
 Sheet size: 8.268 x 11.693 inches / 210.0 x 297.0 mm
 Sheet orientation: tall
 Layout: rows 0 down, columns 0 across
 Align: centre

 0.0000
 14.1732
 5.6693
 1
 Corners
 0.2999
 ToFit
 0
 0
 0.7000
 0
 0
 0
 0.0000
 0

 D:20071003103129
 841.8898
 a4
 Blank
 595.2756

 Tall
 589
 352
 0.0000
 C
 0

 PDDoc

 0.0000
 0
 2
 1
 0
 0

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 59.49, 758.76 Width 473.51 Height 18.74 points
 Mask co-ordinates: Horizontal, vertical offset 55.42, 76.61 Width 8.96 Height 684.59 points
 Mask co-ordinates: Horizontal, vertical offset 529.75, 78.24 Width 7.34 Height 687.04 points
 Mask co-ordinates: Horizontal, vertical offset 59.49, 75.80 Width 475.96 Height 5.71 points
 Origin: bottom left

 1
 0
 BL

 Both
 65
 AllDoc
 70

 CurrentAVDoc

 59.4945 758.7605 473.5107 18.7449 55.4195 76.6117 8.9649 684.5938 529.7452 78.2417 7.335 687.0388 59.4945 75.7967 475.9557 5.705

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 77
 129
 128
 129

 1

 HistoryList_V1
 qi2base

