
Linköping Studies in Science and Technology

Thesis No. 1509

Selected Aspects of Navigation and
Path Planning in Unmanned Aircraft

Systems

by

Mariusz Wzorek

Submitted to Linköping Institute of Technology at Linköping University in partial
fulfilment of the requirements for degree of Licentiate of Engineering

Department of Computer and Information Science
Linköpings universitet

SE-581 83 Linköping, Sweden

Linköping 2011

Copyright c© Mariusz Wzorek 2011

ISBN 978-91-7393-037-6
ISSN 0280–7971

Printed by LiU Tryck 2011

URL: http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-71147

Selected Aspects of Navigation and Path
Planning in Unmanned Aircraft Systems

by

Mariusz Wzorek

November 2011
ISBN 978-91-7393-037-6

Linköping Studies in Science and Technology
Thesis No. 1509
ISSN 0280–7971

LiU–Tek–Lic–2011:48

ABSTRACT

Unmanned aircraft systems (UASs) are an important future technology with early gener-
ations already being used in many areas of application encompassing both military and
civilian domains. This thesis proposes a number of integration techniques for combining
control-based navigation with more abstract path planning functionality for UASs. These
techniques are empirically tested and validated using an RMAX helicopter platform used
in the UASTechLab at Linköping University. Although the thesis focuses on helicopter
platforms, the techniques are generic in nature and can be used in other robotic systems.

At the control level a navigation task is executed by a set of control modes. A frame-
work based on the abstraction of hierarchical concurrent state machines for the design
and development of hybrid control systems is presented. The framework is used to specify
reactive behaviors and for sequentialisation of control modes. Selected examples of con-
trol systems deployed on UASs are presented. Collision-free paths executed at the control
level are generated by path planning algorithms. We propose a path replanning framework
extending the existing path planners to allow dynamic repair of flight paths when new
obstacles or no-fly zones obstructing the current flight path are detected. Additionally,
a novel approach to selecting the best path repair strategy based on machine learning
technique is presented. A prerequisite for a safe navigation in a real-world environment is
an accurate geometrical model. As a step towards building accurate 3D models onboard
UASs initial work on the integration of a laser range finder with a helicopter platform is
also presented.

Combination of the techniques presented provides another step towards building
comprehensive and robust navigation systems for future UASs.

This work has been supported by the National Aeronautics Research Programs NFFP04-
S4202, NFFP04-S4203, NFFP05, and the Swedish Foundation for Strategic Research
(SSF) Strategic Research Center MOVIII as well as the Excellence Center at Linköping-
Lund in Information Technology (ELLIIT) project grants.

Department of Computer and Information Science
Linköpings universitet

SE-581 83 Linköping, Sweden

Acknowledgements

I would like to thank my supervisors: Patrick Doherty, Jonas Kvarnström
and Andrzej Sza las for giving me the opportunity to work on a variety of
challenging and exciting projects and for creating an excellent and stimu-
lating work environment.

Special thanks to my research fellow and a great friend Piotr Rudol with
whom I have worked on many projects, coauthored papers and shared the
experience of graduate studies.

I am also very grateful to all former and current members of AIICS
with whom I have worked and coauthored many publications: Torsten Merz,
Gianpaolo Conte, Simone Duranti, Fredrik Heintz, Karol Korwel, Rafa l Za-
lewski, Lukasz Majewski, David Landén, Patrik Haslum, Per Nyblom, Björn
Wingman and Tommy Persson.

I also like to extend my thanks to Jonas Kvarnström, Fredrik Heintz,
Piotr Rudol and Gianpaolo Conte for invaluable input and reviewing various
drafts of this thesis.

Last but not least, I would like to express my deepest gratitude to my
wife for her unconditional and untiring support in the process of my studies
and writing of this thesis.

Contents

1 Introduction 1
1.1 Thesis Contributions . 2
1.2 List of Publications . 7
1.3 Thesis Outline . 9

2 The UASTechLab RMAX System 11
2.1 The Hardware Platform . 12
2.2 The Software System . 14

2.2.1 The UASTechLab Software Architecture 15
2.2.2 The Control Kernel 17
2.2.3 Path Following Control Mode 18

3 Hierarchical Concurrent State Machines 27
3.1 Introduction . 27
3.2 HCSM Framework . 30
3.3 Practical HCSM Examples . 36

3.3.1 Use Case 1: Engaging Default Autonomous Hovering
Mode . 41

3.3.2 Use Case 2: Path Execution 45
3.4 Summary . 49

4 Dynamic Path Replanning 51
4.1 Background . 51

4.1.1 Probabilistic Roadmaps 54
4.1.2 Rapidly Exploring Random Trees 57

4.2 Dynamic Replanning of the Path 58
4.2.1 Prediction Service . 61
4.2.2 Strategy Library . 61
4.2.3 Strategy Selector Service 63

4.3 Time Analysis of Replanning Strategies 63
4.4 Experimentation . 65
4.5 Summary . 66

vii

CONTENTS CONTENTS

5 Choosing Replanning Strategies 67
5.1 Support Vector Machines . 69
5.2 Prediction Features . 71
5.3 Experimental Results . 72
5.4 Related Work . 77

6 Map Building Using A Laser Range Finder 79
6.1 Integration of the Laser Range Finder 80
6.2 Scan Transformation . 82
6.3 Scan Alignment . 86
6.4 Using 3D Maps for Navigation 90

6.4.1 Static Environment . 90
6.4.2 Collision Avoidance 93

7 Conclusions 95

viii

List of Figures

1.1 The UASTechLab RMAX helicopter platform. 2
1.2 Control modes implemented on the UASTechLab RMAX he-

licopter platform. 3
1.3 Top view of the Revinge training site. 6

2.1 From left to right: LinkQuad (a quadrotor platform); Ping-
Wing (a fixed wing platform); LinkMAV (a coaxial helicopter). 11

2.2 The Yamaha RMAX helicopter with a laser range finder mounted
on a rotation mechanism. 12

2.3 On-Board Hardware Schematic. 13
2.4 The UASTechLab hybrid deliberative reactive architecture. . 15
2.5 Navigation subsystem and main software components 17
2.6 Example path consisting of three segments. 19
2.7 The path following control mode and its components. 20
2.8 Calculations performed by the trajectory generator. 21
2.9 Boundary conditions for a path segment. 22
2.10 Control point on the reference path. 23
2.11 Example of an ideal velocity profile for a straight line path. . 24
2.12 Comparison of path tracking performance using two different

roll controllers performed at 36 km/h constant velocity. . . . 25

3.1 An example of a simple four-state system for an elevator door
using Moore and Mealy FSMs. 28

3.2 The HCSM visual syntax with an example of three state ma-
chines. 31

3.3 Overview of the HCSM design process and execution. 34
3.4 An example of a simple HCSM modelling a driving behaviour

of a ground robot platform. 36
3.5 Overview of the HCSMs used in the UASTechLab RMAX

UAV platform. 38
3.6 The hierarchical view of the HCSM automata running on the

PFC computer. 39
3.7 The Control Mode automaton. 42

ix

LIST OF FIGURES LIST OF FIGURES

3.8 The Mode Switch automaton. Simplified view focused on a
path following control mode execution. 43

3.9 An execution trace for use case 1 showing the interaction
between the Control Mode and the Mode Switch automata. . 44

3.10 Path execution scheme. 46
3.11 The Traj3D automaton. 47
3.12 An execution trace for use case 2 showing the interaction

between the Control Mode, the Mode Switch and Traj3D au-
tomata. 48

4.1 An example of a car-like robot path planning problem. 52
4.2 Example PRM roadmap generation (offline phase) for a sim-

ple 2D environment. 55
4.3 An example of the PRM online phase for a simple 2D envi-

ronment. 55
4.4 PRM path plan generation. 56
4.5 RRT path plan generation. 57
4.6 Example execution of RRT in a simple 2D environment. . . . 58
4.7 Execution time-line for a path consisting of 2 segments. . . . 59
4.8 The dynamic path replanning automaton. 60
4.9 Examples of replanning strategies. 62
4.10 Use of the dynamic replanning in a real mission. 66

5.1 The basic idea of choosing replanning strategies. 68
5.2 The concept of building predictors using machine learning. . . 69
5.3 Mapping and separating hyperplane. 70
5.4 No-fly zone area calculation. 72
5.5 Plan quality (flight time) as a function of the available deci-

sion time window for environment 1. 75
5.6 Success rate of execution of the chosen strategy in the avail-

able decision time window for environment 1. 76
5.7 Plan quality (flight time) as a function of the available deci-

sion time window for environment 2. 77
5.8 Success rate of execution of the chosen strategy in the avail-

able decision time window for environment 2. 78

6.1 Top view of the SICK LMS-291 scanning field and the axis of
rotation when using the rotation mechanism. 80

6.2 A photograph and schematic of the integration of the rotating
laser range finder sensor with the UASTechLab RMAX UAV. 81

6.3 Coordinate systems used in the scan transformation in the
UASTechLab RMAX platform. 83

6.4 Polar and Cartesian coordinate systems of the laser range
finder. 84

6.5 Displacement between the laser range finder and the rotation
mechanism. 85

x

LIST OF FIGURES LIST OF FIGURES

6.6 A simplified example of the influence of pitch angle uncer-
tainty on the LRF measurement error. 87

6.7 Examples of the ICP application. 89
6.8 Examples of measurement errors in a single point cloud. . . . 90
6.9 Overview of the reconstructed elevation map of the Revinge

flight test area based on the laser range finder data (left) and
a photo of corresponding building structures (right). 91

6.10 Reconstructed elevation map of the Revinge flight test area
based on the laser range finder data. 91

6.11 Overlay of the new elevation map with the existing Revinge
flight test area model. 92

6.12 Example of path planner use in the reconstructed map of the
Revinge area. 93

6.13 The minimal braking distance and time windows for the UASTech-
Lab RMAX UAV as a function of the cruise velocity. 94

xi

LIST OF FIGURES LIST OF FIGURES

xii

List of Tables

4.1 Results of the experiments using Strategy 1 64
4.2 Results of the experiments using Strategy 3 65

5.1 Relative mean error of prediction and standard deviation for
the PRM planner. 73

6.1 SICK LMS-291 parameters. 81
6.2 Rotating laser mount parameters. 82
6.3 Results of applying the ICP algorithm on three example scan

pairs presented in Figure 6.7. 88

xiii

LIST OF TABLES LIST OF TABLES

xiv

Abbreviations

CK Control Kernel

DRC Deliberative Reactive Computer

ESM Extended State Machine

HCSM Hierarchical Concurrent State Machine

ICP Iterative Closest Point

IPC Image Processing Computer

LRF Laser Range Finder

OBB Oriented Bounding Box

PC Path Controller

PFC Primary Flight Computer

PFCM Path Following Control Mode

PRM Probabilistic Roadmap

RRT Rapidly exploring Random Trees

SMO Sequential Minimal Optimization

SVM Support Vector Machines

TG Trajectory Generator

TP Task Procedure

UAS Unmanned Aircraft System

UAV Unmanned Aircraft Vehicle

YACS Yamaha Attitude Control System

xv

LIST OF TABLES LIST OF TABLES

xvi

Chapter 1

Introduction

The development of unmanned aircraft systems (UAS) has gained tremen-
dous momentum over the last two decades. These platforms offer many ad-
vantages over both manned aircraft and other types of autonomous robots.
They provide the ability to gather rich bird’s eye view information in ar-
eas that may not be easily accessible to mobile ground vehicles. Because of
their mobility they also provide fast response times which is crucial in many
applications such as search and rescue. A UAS can operate in hazardous en-
vironments, for example military conflicts or natural catastrophes, without
endangering the lives of human pilots or operators. All of this contributes to
reducing the cost of operation/missions and contributes to an increasingly
high interest from both military and civil markets. Previous market stud-
ies [89] estimated that by 2013 the worldwide UAS market will be worth
$USD10.6 billion. Some of the most recent estimates show that the U.S.
military UAS market alone will generate $USD62 billion revenues during
2010-2015 [56].

Although the early UAS application areas have been predominantly mil-
itary (e.g. reconnaissance, surveillance, and target tracking) the technology
has reached a high maturity level and is economically feasible for many civil
areas. Example civil applications include security surveillance [4, 35], power
line inspection [42, 54] and support for emergency services in natural catas-
trophes [33, 78]. Many new applications will also arise as countries develop
new regulatory policies allowing UAS usage in unsegregated areas. Conse-
quently, unmanned aircraft are currently the subject of intensive research in
numerous fields.

The desired level of autonomy for unmanned aircraft may vary depend-
ing on the type of mission being flown, where certain missions need to be
controlled in some detail by a ground operator while others should prefer-
ably be fully autonomous. But for some aspects of a mission, automation is
almost always desirable. One such aspect is path planning and navigation,
given a map of static and dynamic obstacles fly through or visit a set of

1

2 1. Introduction

Figure 1.1: The UASTechLab RMAX helicopter platform.

waypoints.
This thesis focuses on selected aspects of navigation functionalities and

path planning for UAS platforms. The techniques that are presented have
been implemented and tested on an autonomous helicopter platform devel-
oped in the UASTechLab1 (Figure 1.1).

1.1 Thesis Contributions

The thesis extends existing navigation capabilities of UASTechLab RMAX
UAV and builds on previous work done in motion planning [74], control [17],
system modeling and software architectures [24, 65].

The four main contributions of this thesis are:

• A modeling framework for hybrid control systems used to specify re-
active behaviors and for sequentialisation of control modes.

• A path replanning framework extending the previously used path plan-
ners to allow dynamic regeneration or repair of flight paths in case of
newly detected obstacles.

• A new approach to selecting the best path repair strategy to use in
any given situation, using machine learning to adapt to different maps
and different computational hardware.

• Integration of a laser range finder with the existing UASTechLab
RMAX UAV to provide environment models for navigation tasks.

1http://www.ida.liu.se/divisions/aiics/aiicssite/uastech/

1.1 Thesis Contributions 3

!"#$%&'((')*+,%-*.*'+/0".12%
3"+2*+,%

4'516*+,% 7"81/9:%

;1"<=51%>"6%
&'((')*+,%

>"?16"%!"+/7*(#%
-*.@"(%A165'*+,%

>'+#6'(%

>"?16"%!"+/7*(#%
3''8%B#%C!A%

>''62*+"#1%>'+#6'(%

>"?16"%!"+/7*(#%
BD.'(@#1%>'+#6'(%

>"?16"%!"+/7*(#%
;1("=51%>'+#6'(%

>"?16"%
!"6"?1#16.%>'+#6'(%

&(*,$#%>'+#6'(%E'21.% >"?16"%>'+#6'(%E'21.%

Figure 1.2: Control modes implemented on the UASTechLab RMAX heli-
copter platform.

Before we can describe these contributions in more detail, we provide a
short overview of the different types of algorithms used on a typical robotic
platform.

Generally in any autonomous robotics systems one can distinguish func-
tionalities of different complexity and thus different timing requirements.
Typically, at the lowest level a set of control functions are executed. Those
functions require fast update rates in order to react in a timely manner to
perceived changes in the environment. At a higher-level a set of algorithms
related to solving more complex tasks are implemented. Those components
typically include planners (e.g. task or motion planners).

Control System Modeling

The first contribution of this thesis is at the lowest level, where a set of
control modes provide an interface to the hardware components. The role of
each such control mode is to generate control signals to meet a well-defined
control objective. A good example is a hovering function where the objective
is to keep the helicopter in the desired position, heading and altitude given
current sensor readings. More sophisticated modes may contain multiple
stages, as in the take-off mode where the control strategy is more complex
and several control objectives are desirable during different phases of the
execution. Those can be viewed as basic low-level control behaviors.

Flight control modes implemented on the UASTechLab RMAX UAV
system (Figure 1.2) include hovering, take-off, path following, vision-based
landing, and reactive car following. Additionally, a set of control modes for
payloads has been developed. Those include, for example, control over a
camera pan-tilt unit and camera parameters.

When executing a mission a set of low-level control modes are invoked.
They can be called in a sequence or in some cases in parallel in order to

4 1. Introduction

achieve a certain mission objective. An example mission is building surveil-
lance, where the goal is to gather video streams or images of each of the
facades of a building. Control modes executed in such a mission include
take-off, hovering, path following, camera control and landing.

The problem of executing a sequence of control modes is non-trivial.
Switching between different control modes requires a number of conditions
to be satisfied. The switching conditions vary depending on the particular
mode transition. For example, in the case of switching between the hovering
and path following modes, a check needs to be done if the current helicopter
heading is aligned with the path to be flown. If the heading difference is too
large, an additional yaw maneuver is necessary before the transition to the
path following mode. Otherwise, the execution of the path could result in a
maneuver that potentially leads to a crash.

The most common way of modeling complex reactive systems and hy-
brid control systems is to use the concept of state machines [39, 48]. One
of the contributions of this thesis is the development of a modeling frame-
work for hybrid control systems based on the idea of state machines, called
hierarchical concurrent state machines (HCSM).

The HCSM framework enables us to efficiently model all low-level com-
ponents and solves the problem of mode switching. Its components contain
functions implementing continuous control laws and mode switching is re-
alized using the proposed framework. The HCSMs can be represented as
state transition diagrams similar to those of statecharts [39]. In our sys-
tem, tables describing transitions derived from such diagrams are passed
to the system in the form of text files and are interpreted by an HCSM
Interpreter at run-time in each of the on-board computers. Thanks to its
compact and efficient implementation, the interpreter runs in the real-time
part of the system as a periodic task with high execution rate. It allows all
functional units of the control system to be coordinated, from the lowest
level hardware components (e.g. device drivers) through control laws (e.g.
hovering, and dynamic path following) and communication to the high-level
deliberative components.

Path planning

At a higher level, our UAS platform uses a set of path planners to find
collision-free paths from a given start position to a goal position. The second
and third contributions of the thesis are related to path planning.

The problem of finding optimal paths for a helicopter platform is in-
tractable in general. This is because the planning is performed in a high-
dimensional state space which not only includes a physical 3D position but
also additional dimensions (e.g. velocity and heading).

A number of sample-based methods for generating motion plans have
been proposed in the literature, including probabilistic roadmaps (PRM [44])
and rapidly exploring random trees (RRT [49]). Sample-based approaches

1.1 Thesis Contributions 5

often make the path planning problem solvable in practice by sacrificing
completeness and optimality. A successful deployment of both PRM and
RRT algorithms in the static environments for the UAS domain has been
presented in Pettersson [74].

Unfortunately in real applications, maps are not perfect, and new ob-
stacles may be detected during flight. If such obstacles appear along the
planned flight path, the proper course of action depends on the amount of
time available for collision avoidance.

If very little time is available, we must rely on reactive sense-and-avoid
procedures, even though this may turn the aircraft in a direction that is far
from optimal considering the known obstacles and the current destination.

However, given typical detection ranges and airspeeds, there may be up
to a few seconds to decide exactly what to do. One of the contributions of
this thesis is the development of a technique that takes advantage of the
available time in order to improve the overall path quality and avoid the
need of using non-optimal reactive sense-and-avoid procedures.

In many situations there can be sufficient time to invoke a motion planner
once again to repair the plan before reaching the point where the aircraft
has to divert from its original trajectory. The new trajectory will then take
both new and old obstacles into account, potentially saving considerable
amounts of flight time. This is especially true for fixed-wing aircraft, where
the minimum turn radius is often large and where slowing down and hovering
is not an option.

In replanning, we can choose which parts of the original path are replaced
and which parts are retained. For example, we can replan from the next
waypoint all the way to the goal or only the part of the plan that is actually
intersected by the newly detected obstacle. This choice will have a significant
effect on not only the quality of the repaired plan, but also the time required
for replanning [100].

Many motion planning methods are also parameterized in various ways.
For example, PRM planners generate a roadmap graph in a pre-processing
phase and search this graph whenever a plan is required. Increasing the
number of nodes in the graph will increase plan quality, but again, this will
also affect the time required for plan generation.

A replanning strategy represents a specific choice of which parts of a
path are replanned and which parameters are given to the motion planning
algorithm. Our objective is to always choose the strategy that will yield
the highest quality possible within the available time. But while there may
be a general trend for one strategy to be better or faster than another, the
exact time requirements for most strategies will vary considerably depending
on factors such as the local environment around the original path and the
remaining distance to the destination. Thus, we essentially have two options:
Always choose a simple strategy for which we can find a low upper bound on
the time requirements, or generate better and more informed predictions by
learning how the local environment affects timing and quality. The solution

6 1. Introduction

Figure 1.3: Top view of the Revinge training site.

presented in this thesis uses machine learning techniques to generate a set
of models useful for performing such predictions. The empirical testing that
has been performed shows promising results: In each test environment, flight
times could be improved up to 25% compared to the use of a fixed replanning
strategy, resulting in times close to the best achievable with the available
planning algorithms.

Environment Mapping

The fourth contribution of this thesis relates to the very important as-
pect of navigation, of acquiring a 3D model of the environment. In order to
navigate safely in a real-world environment a geometrical model is required.
As previously described, the path planning algorithms rely on an accurate
description of the environment in order to produce collision-free paths. Ad-
ditionally, environments often change over time (e.g. new building structures
are added) and existing models have to be updated in order to ensure safe
navigation.

Previously, the UASTechLab RMAX UAV system has been using 3D
models delivered by a third-party company. The main environment used

1.2 List of Publications 7

for experimentation with our systems is a training area for rescue workers
in Revinge in southern Sweden. Figure 1.3 presents a view of the environ-
ment from above. The area is approximately 1 square kilometer in size and
contains a road network, several buildings, and a number of other struc-
tures such as masts, lampposts and fences. This makes it a very well suited
environment for many interesting and advanced scenarios, such as traffic
monitoring or search and rescue missions.

Acquiring 3D maps has gained considerable attention over the last two
decades as the required hardware technology matures. There exist a variety
of sensors that can provide 3D geometrical information and algorithms that
make use of them. Examples of such sensors and techniques include stereo
vision systems [47], structure from motion using a single camera [22], and
laser range finders [88]. Laser range finders have gained a tremendous pop-
ularity in many robotic applications because of their relatively small size,
high accuracy, and low price.

We present initial results of integration of a laser range finder with the
UASTechLab RMAX UAV platform. The sensor is mounted on a rotational
mechanism that has been developed within the group. This solution allows
for obtaining 3D point clouds even when the helicopter is stationary.

Two applications of the laser range finder for map building are considered
in this thesis. In the first, a 3D map of the environment is built offline, after
an exploratory flight over all building structures is performed and all the
data is collected. The second application relates to the use of a laser range
finder sensor for collision avoidance in the context of the proposed dynamic
replanning framework. An analysis of potential uses of such a sensor in this
setting is provided.

1.2 List of Publications

The work presented in this thesis is mainly based on the following publica-
tions.

[102] Mariusz Wzorek, Jonas Kvarnström and Patrick Doherty. Choosing
Path Replanning Strategies for Unmanned Aircraft Systems. In Pro-
ceedings of the International Conference on Automated Planning and
Scheduling (ICAPS 2010).

[63] Mariusz Wzorek and Patrick Doherty. Reconfigurable Path Planning
for an Autonomous Unmanned Aerial Vehicle. In Proceedings of the
International Conference on Automated Planning and Scheduling, Ex-
tended Abstract, (ICAPS 2006).

[99] Mariusz Wzorek and Patrick Doherty. Reconfigurable Path Planning
for an Autonomous Unmanned Aerial Vehicle. In Proceedings of the
IEEE International Conference on Hybrid Information Technology
(ICHIT 2006).

8 1. Introduction

[100] Mariusz Wzorek, Gianpaolo Conte, Piotr Rudol, Torsten Merz, Si-
mone Duranti and Patrick Doherty. From Motion Planning to Control
- A Navigation Framework for an Autonomous Unmanned Aerial Ve-
hicle. In Proceedings of the 21th Bristol International UAV Systems
Conference 2006.

[62] Mariusz Wzorek and Patrick Doherty. The WITAS UAV Ground Sys-
tem Interface Demonstration with a Focus on Motion and Task Plan-
ning. System Demonstration during the International Conference on
Automated Planning and Scheduling (ICAPS 2006), Extended Abstract.

[67] Torsten Merz, Piotr Rudol, Mariusz Wzorek. Control System Frame-
work for Autonomous Robots Based on Extended State Machines. In
Proceedings of the International Conference on Autonomic and Au-
tonomous Systems (ICAS 2006).

[61] Mariusz Wzorek and Patrick Doherty. Preliminary Report: Reconfig-
urable Path Planning for an Autonomous Unmanned Aerial Vehicle. In
Proceedings of the 24th Workshop of the UK Planning and Scheduling
Special Interest Group (PlanSIG 2005).

[80] Piotr Rudol, Mariusz Wzorek, Rafa l Zalewski, and Patrick Doherty.
Report on sense and avoid techniques and the prototype sensor suite.
National Aeronautics Research Program NFFP04-031, Autonomous
flight control and decision making capabilities for Mini-UAVs, 2008.

Other publications that are not directly related to this thesis:

[101] Mariusz Wzorek, David Landén and Patrick Doherty. GSM Technol-
ogy as a Communication Media for an Autonomous Unmanned Aerial
Vehicle. In Proceedings of the 21th Bristol International UAV Systems
Conference 2006.

[81] Piotr Rudol, Mariusz Wzorek, and Patrick Doherty. Vision-based pose
estimation for autonomous indoor navigation of micro-scale unmanned
aircraft systems. In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA 2010).

[79] Piotr Rudol, Mariusz Wzorek, Gianpaolo Conte and Patrick Doherty.
Micro Unmanned Aerial Vehicle Visual Servoing for Cooperative In-
door Exploration. In Proceedings of the 2008 (AEROCONF 2008).

[25] Simone Duranti, Gianpaolo Conte, David Lundström, Piotr Rudol,
Mariusz Wzorek, Patrick Doherty. Linkmav, a Prototype Rotary Wing
Micro Aerial Vehicle. In Proceedings of the 17th IFAC Symposium on
Automatic Control in Aerospace (IFAC 2007).

[19] Gianpaolo Conte, Maria Hempel, Piotr Rudol, David Lundström, Si-
mone Duranti, Mariusz Wzorek, and Patrick Doherty. High Accuracy

1.3 Thesis Outline 9

Ground Target Geo-location Using Autonomous Micro Aerial Vehicle
Platforms. In AIAA Guidance, Navigation, and Control Conference,
2008, volume 26, Honolulu, Hawaii, 2008.

[46] A. Kleiner, C. Dornhege, R. Kümerle, M. Ruhnke, B. Steder, B.
Nebel, P. Doherty, M. Wzorek, P. Rudol, G. Conte, S. Durante, and
D. Lundström. Robocuprescue - Robot League Team Rescuerobots
Freiburg (Germany). In RoboCup 2006 (CDROM Proceedings), Team
Description Paper, Rescue Robot League, 2006.

1.3 Thesis Outline

Chapter 2 presents background information on the autonomous helicopter
used as a testbed platform for the techniques presented in the thesis. The
chapter starts with a description of the RMAX helicopter platform itself as
well as the avionics system that has been developed in the UASTechLab.
The second part of the chapter provides details on the software system.
Specifically, the UASTechLab software architecture is discussed. The last
section describes the path following control mode (PFCM) which is used for
the execution of segmented paths.

Chapter 3 provides a description of the hierarchical concurrent state
machine (HCSM) framework used for modelling the hybrid control system.
The description includes HCMS syntax and semantics, and provides a set of
practical examples of HCSM use for the UASTechLab RMAX platform.

The dynamic path replanning framework which uses a set of replanning
strategies together with available path planners to provide a collision avoid-
ance mechanism is presented in chapter 4.

A new method for selecting path replanning strategies using machine
learning techniques is the topic of chapter 5. This selection mechanism is
used in the dynamic replanning framework when a new obstacle occluding
the currently executed flight path is added.

Chapter 6 presents initial results in the development of a set of environ-
ment mapping techniques targeted for navigation applications. The chap-
ter discusses the integration of a laser range finder with the UASTechLab
RMAX system. Data sets gathered during a number of flight test campaigns
are included. The last section presents results of using these generated maps
with path planning algorithms.

Conclusions and future work is presented in chapter 7.

10 1. Introduction

Chapter 2

The UASTechLab RMAX
System

A wide range of research with unmanned aircraft systems is conducted in the
UASTech Laboratory1. Over the years a number of platforms have been
successfully developed and deployed. The platforms vary in size, weight and
flight capabilities. Figure 2.1 presents a number of micro air vehicles with
sizes of 50-70 cm in the largest dimension and weight from 0.5 kg to 1.4 kg.

Figure 2.1: From left to right: LinkQuad (a quadrotor platform); PingWing
(a fixed wing platform); LinkMAV (a coaxial helicopter).

One of the main platforms used in our lab is a Yamaha RMAX helicopter
(Figure 2.2). The techniques described in this thesis have been developed
for the RMAX helicopter. This chapter starts with a description of the
hardware platform which includes the Yamaha RMAX helicopter and an
avionics system developed in our lab [23]. The second section begins with
background information on several aspects of the system itself as well as
the navigation functionalities. It starts with a high-level overview of the
architecture, followed by a short description of a control kernel (CK). The
CK includes a set of basic control modes used in the system. The chapter
ends with a detailed description of a path following control mode used for
the execution of segmented paths.

1http://www.ida.liu.se/divisions/aiics/aiicssite/uastech/

11

12 2. The UASTechLab RMAX System

2.1 The Hardware Platform

The RMAX helicopter has been developed by the Yamaha Motor Company2

mainly for agricultural applications (e.g. crop spraying). The helicopter has
a total length of 3.6 m (including the main rotor) and is powered by a 21 hp
engine with a maximum takeoff weight of 95 kg. The RMAX has a built-in
attitude sensor (YAS) and an attitude control system (YACS).

Figure 2.2: The Yamaha RMAX helicopter with a laser range finder mounted
on a rotation mechanism.

The RMAX helicopter platform itself is radio-operated but with an ad-
ditional upgrade it is possible to use a computer system to implement au-
tonomous flight capabilities. Due to vibrations as well as limitations in power
and cooling, unmanned aircraft require very robust computational hardware
with low power requirements. Our hardware platform which interfaces to the
helicopter systems (Figure 2.3) contains three embedded PC104 computers
connected by RS232 serial lines for hard real-time networking as well as
Ethernet for distributed applications, remote login and file transfer. The
onboard Ethernet switch is also connected to an 802.11b wireless Ethernet
bridge for communication with the ground station.

The deliberative/reactive system (DRC) runs on a 1.4 GHz Pentium
Mobile computer. The functionalities executed on the DRC system include
high-level deliberative algorithms and a reactive execution mechanism which
interacts with a low-level control system.

The primary flight control system (PFC) executes functionalities related
to flight capabilities. The PFC runs on a 700 MHz Pentium III computer, and
is connected to a number of sensors. A real-time kinematics (RTK) GPS re-
ceiver provides high accuracy position information. The altitude is provided

2Homepage: http://www.yamaha-motor.co.jp/global/

2.1 The Hardware Platform 13

!"#$
• !"#$!%&'!()*+,-./!

• !"!%0!12/!

• !"!%0!3456!789:)!

%&#$
• !;<<!/&'!()*+,-!===!

• !>?@!/0!12/!

• !?">!/0!3456!789:)!

'%#$
• !;<<!/&'!()*+,-!===!

• !>?@!/0!12/!

• !?">!/0!3456!789:)!

AB6)8*)B!

CD9BE6!

FFG!FHIH8!

F4-)84!

J6)8-4I!

F4-)84!

(4*!

J9IB!

K*9B!

L4-464!1/2M!NL2CO!L2FCP!

048H-)B89E!(8)55,8)!2I+-)B)8!

%(C!1)E)9:)8!

Q45)8!14*R)!S9*7)8!

/H7,I)!

AB6)8*)B!T97)H!C)8:)8!

U<>#""V!W98)I)55!0897R)!

%C/!/H7)-5!

()8E)X+H*!C)*5H8!C,9B)!

FH--,*9E4+H*!/H7,I)!

(SF!C)*5H8!C,9B)!

CB)8)H.T959H*!

/H7,I)!

(HD)8!/4*4R)-)*B!K*9B!

AB6)8*)B!

1C>Y>!

2*4IHR!

S98)D98)!

/9*9GT!

1)EH87)85!

Figure 2.3: On-Board Hardware Schematic.

by an absolute barometric pressure sensor. The PFC is also connected to a
software-controlled power management unit which provides information on
voltage levels and current consumption. Additionally, it allows for remote
device power control i.e. switching on/off. The unit controls all three PC104
computers, sensors, and the wireless Ethernet bridge.

The image processing system (IPC) runs on another 700 MHz Pentium
III computer, which is equipped with a 4-channel framegrabber. Current
vision sensors include a color CCD3, a thermal camera4, and a stereo vision
system (STH-DCSG) from Videre Design5. The CCD and thermal cameras
are mounted on a pan/tilt unit. All of the images can be processed onboard
the UAS, saved on the computer’s flash drive and transmitted to the ground
station by an Ethernet video server. Due to the limited bandwidth of the
802.11b Wi-Fi Ethernet channel, the video is transmitted in lower than
nominal PAL resolution. Additionally, two MiniDV recorders are used to
store the full resolution video for offline analysis and to support computer
vision algorithm development.

A popular SICK LMS-2916 laser range finder has also been integrated on

3FCB-EX780BP from Sony. Homepage: http://www.sony.com
4ThermalEye from L-3 Communications. Homepage: http://www.l-3com.com
5Homepage: http://www.videredesign.com
6SICK AG. Homepage: http://www.sick.com

14 2. The UASTechLab RMAX System

the UAS platform. The original sensor has been modified in order to reduce
its weight and is mounted on an in-house developed rotation mechanism.
Details about the integration and sensor use are provided in chapter 6.

The platform has also been equipped with two GSM modems: an EDGE
modem7, and a GPRS modem8). The GSM technology is a mature, com-
mercially available communication infrastructure which is likely to be con-
tinuously developed, refined and supported in the future. It permits the op-
eration of UASs at large distances, out-of-sight from the ground operator. It
provides a good redundant system alternative in the case where other com-
munication frequencies are jammed. A multi-modal graphical user interface
has been designed, constructed and implemented on a Sony Ericsson P900
mobile telephone. The results of the experiments are presented in Wzorek
et al. [101].

At the time of writing this thesis a new hardware platform is being
developed. The new version includes a custom in-house designed avionics
box where all the hardware components are enclosed. All of the computer
hardware is upgraded to provide more computational power while keeping
adequate power consumption. Computers will use the newest solid state disk
(SSD) technology for storage. This will increase the capacity of storage as
well as performance over compact flash cards that are used at the moment.
On the sensor side, a new and more accurate GPS receiver will be integrated.
Furthermore, the absolute barometric pressure sensor will be improved. It
is currently connected to the PFC analog-to-digital extension board which
introduces additional unnecessary sensor noise due to electromagnetic field
disturbances. The analog to digital conversion will be performed by a micro-
controller mounted on the same custom made printed circuit board (PCB)
as the sensor. The sensor reading will then be sent via the RS232 serial
line. The power management unit has also been redesigned to extend its
current/voltage measuring accuracy and to make it easier to extend in the
future.

2.2 The Software System

One of the necessary foundations for any autonomous system is an appropri-
ate software system architecture. This is important from many perspectives.
First of all, it provides a clear division between components with different
characteristics. It also defines how all the functionalities present in the sys-
tem interact with each other. Additionally, it helps to deal with the com-
plexity of the system.

By far the most popular and successful type of architecture used in
robotic systems today is a hybrid architecture. It combines the best fea-
tures of reactive techniques (e.g. real-time, tight hardware integration) and

7Aplicom 12 from Aplicom Oy. Homepage: http://www.aplicom.com
8Trizium from Telit Communications PLC. Homepage: http://www.telit.com

2.2 The Software System 15

deliberative techniques (e.g. solving complex tasks) into one architecture.
Many variations of hybrid systems have been proposed in the literature and
successfully deployed [90, 91]. Probably the most recognizable category is a
three-layer architecture [32].

2.2.1 The UASTechLab Software Architecture

A hybrid deliberative/reactive software architecture (D/R) based concep-
tually on the idea of a three-layer architecture has been developed for the
UASTechLab RMAX system [23]. It is a layered, hierarchical system with
deliberative, reactive and control components, although the system can eas-
ily support both vertical and horizontal data and control flow. Figure 2.4
presents the functional layer structure of the architecture and emphasizes
its reactive-concentric nature.

The three abstraction layers differ in several aspects, including timing
requirements, the amount of knowledge of the environment (models) that
they require, and the type of functionality which they encapsulate.

!!"#"!$%&"!'$(()*+"
,-."#",)/0*$1&23$'"
""""""""""-(4/*5$6/(".7+%)5"
8!"#"8$+9"!*/3):;*)"
<."#"<)'2=)*$6>)".)*>23)"

?/(%*/'"
@)*()'"

8!"
8!"

8!"<."

!!"

<."

,-."

!"#$%&"'

()*+,)-'

."-/0",#%&"'
<."

82
5
)"
*)
A;

2*)
5
)(

%+
"

@(
/B

')
:0
)"

<."

Figure 2.4: The UASTechLab hybrid deliberative reactive architecture.

The deliberative layer includes high-level components that generate so-
lutions to complex tasks, typically using planners (e.g. task or motion plan-
ners). The world models used by such algorithms usually have rich semantics
and because of the complexity of the tasks they are solving, the time require-
ments are high. The decision cycle in this layer is in the magnitude of seconds
or even minutes.

Components in the reactive layer coordinate the execution of high-level
plans and implement a set of robot behaviors (e.g. surveillance of a re-
gion). The integration with both control modes and deliberative services
puts higher timing requirements than on the deliberative layer. Addition-
ally, a set of efficient mechanisms for modeling behaviors is required. The
world models used in this layer are usually simpler than the ones used by

16 2. The UASTechLab RMAX System

the high-level deliberative components.
The lowest control level encapsulates a set of functions implementing

control laws (e.g. hovering), tightly coupling perceived sensor data to robot
actuators.

The remainder of this section focuses on describing the timing aspects of
the UASTechLab architecture and provides an overview of the components
used in this thesis.

With respect to timing characteristics, the architecture can be divided
into two layers: (a) the hard real-time part, which mostly deals with hard-
ware and control laws (also referred to as the Control Kernel) and (b) the
non-real-time part, which includes deliberative services of the system (also
referred to as the high-level system)9.

All three computers in our UAS platform (i.e. PFC, IPC and DRC, see
Figure 2.3) have both hard and soft real-time components but the processor
time is assigned to them in different proportions. On one extreme, the PFC
runs mostly hard real-time tasks with only minimum user space (non-real-
time) applications (e.g. SSH daemon for remote login). On the other ex-
treme, the DRC uses the real-time part only for device drivers and real-time
communication. The majority of its time is spent on running the deliberative
services. Among others, the most important ones from the perspective of this
thesis are the Path Planner, the Geographical Information System (GIS),
the Task Procedure Execution Module and the Helicopter Server which en-
capsulates the Control Kernel (CK) of the UAS system. The CK which is
distributed over all three computers deals with basic low-level behaviors by
execution of continuous control modes. Figure 2.5 presents the navigation
subsystem and the main software components.

The high-level part of the system (the reactive and deliberative layers)
has reduced timing requirements and is responsible for coordinating the
execution of reactive Task Procedures (TPs [23, 73]). This part of the system
uses the Common Object Request Broker Architecture (CORBA [96]) as its
distribution backbone. A TP is a high-level procedural execution component
which provides a computational mechanism for achieving different robotic
behaviors by using both deliberative and control components in a highly
distributed and concurrent manner. The control and sensing components of
the system are accessible for TPs through the Helicopter Server which in
turn uses an interface provided by the Control Kernel. A TP can initiate one
of the autonomous control flight modes available in the UAS (i.e. take-off,
vision-based landing, hovering, path following described in section 2.2.3 or
reactive flight modes for interception and tracking). Additionally, TPs can
control the payload of the UAS platform which currently consists of CCD
and thermal cameras mounted on a pan-tilt unit. TPs receive data delivered
by the PFC and IPC computers, i.e. helicopter state and camera system state

9 Note that distinction between the Control Kernel and the High-level system is done
based mainly on the timing characteristics and it does not exclude, for example, placing
some deliberative services (e.g. prediction) in the Control Kernel.

2.2 The Software System 17

Task
Procedures*

HCSM
Interpreter

Other
Modes

Communi-
cation

Handling

PFC

DRC

Real-time
communication channel

Path Planner
Service*

Helicopter Server*

CORBA
HCSM Interpreter (C-API, CK)

GIS
Service*

Other
Services*

Hardware
Handling

Path
Following

Mode
Hovering

Mode

Distributed
System *- CORBA-based

Machine
Learning
Service*

CK

Figure 2.5: Navigation subsystem and main software components

(including image processing results), respectively. The Helicopter Server on
one side uses CORBA to be accessible by TPs or other components of the
system. On the other side, it communicates through shared memory with
the hierarchical concurrent state machines (HCSMs) running in the real-time
part of the DRC software.

The presented software architecture is used to achieve missions which
require continuous control laws such as path following (section 2.2.3) as
well as deliberative services such as path planners (chapter 4). Details of
the interaction between the TPs, path planners and the Control Kernel are
presented in section 3.3.2.

The next section describes some of the practical implementation details
of the Control Kernel.

2.2.2 The Control Kernel

The Control Kernel (CK) is a distributed real-time runtime environment
and is used for accessing the hardware, implementing continuous control
laws, and control mode switching. Moreover, the CK coordinates the real-
time communication between all three on-board computers as well as be-
tween CKs of other robotic systems. In our case, we perform multi-platform
missions with two identical RMAX helicopter platforms developed in the
UASTechLab.

18 2. The UASTechLab RMAX System

The CK is implemented using C code. This part of the system uses
the Real-Time Application Interface (RTAI [60]) which provides industrial-
grade real-time operating system functionality. RTAI is a hard real-time
extension to a standard Linux kernel (Debian in our case) and has been
developed at the Department of Aerospace Engineering of Politecnico di
Milano10 (DIAPM).

Real-time performance can be achieved by using either specially created
user-space programs or kernel modules. In our case, one kernel module is
created and inserted into the Linux kernel space. One of the RTAI features
allows for creation of a kernel module that takes full control over the pro-
cessor. Because of that, it is necessary to suspend it in order to let the user
space applications run. The standard Linux distribution is a task with lower
priority. It is run preemptively and can be interrupted at any time. For
that reason a locking mechanism is used when both user- and kernel-space
processes communicate through shared memory. It is also important to men-
tion that the CK is self-contained and only the part running on the PFC
computer is necessary for maintaining flight capabilities. Such separation
enhances the safety of the operation of the UAS platform which is especially
important in urban environments.

The Control Kernel has a hybrid flavor. Its components contain functions
implementing continuous control laws and mode switching is realized using
the HCSMs presented in chapter 3.

2.2.3 Path Following Control Mode

One of the control modes executed and coordinated by the Control Kernel is
the Path Following Control Mode (PFCM [18, 20], Figure 2.7 and the bottom
part of Figure 2.5) which executes paths consisting of a set of segments.
Figure 2.6 presents an example path consisting of three segments.

Before describing the details about the PFCM mode two important con-
cepts are described, namely the inner and outer control. The role of the
inner control is to stabilize the helicopter attitude and the vertical dynam-
ics by using a feedback loop. As previously described, the RMAX helicopter
has a built-in stabilization system (YACS) which is used by the PFCM. If
the helicopter is flown manually using a RC radio transmitter, the positions
of the sticks are used as the input to the inner control loop. The stabilization
of the helicopter makes it easier for the human pilot to operate.

The outer control is a feedback loop which based on the reference pa-
rameters provides control signals to the inner control loop. The reference
parameters are the desired helicopter position, velocity and heading.

In the classical approach to the path following problem, a trajectory
(path in space and time) is generated directly, taking into account the dy-
namic constraints of the system. In our approach, however, we split the
problem into two parts. First, a geometrical description of a 3D path is

10DIAPM Homepage: http://www.aero.polimi.it/

2.2 The Software System 19

!"#$"%&'('

)*+,-.%&'('
/'!&*0&'

)*+,-.%&'1'

)*+,-.%&'2'

)*+,-.%&'3'
/'#-*4'

!"#$"%&'1' !"#$"%&'2'

Figure 2.6: Example path consisting of three segments.

generated (e.g. by a path planner, Figure 2.7, part A). Then, the dynamic
constraints are enforced by the path following control mode (Figure 2.7,
part B) which uses the kinematic model of the platform and additional con-
straints (e.g. maximum acceleration). For example, if the path has a tight
curve the controller will adapt the helicopter velocity in order to satisfy the
platform dynamic constraints.

Using such a separation has two advantages: efficiency and robustness
of the tracking performance. Not all of the dynamic constraints have to be
imposed on the path planning level. This decreases the time required to
generate a collision-free path because the state-space in which the search
is performed has a lower dimension. It is relatively easy to enforce the dy-
namic constraints on the controller level, where a feedback loop is used. The
controller will not only impose the constraints of the platform but will also
take care of the external disturbances such as the wind.

In order to navigate safely in urban environments with dense obstacles,
the PFCM mode has been designed to minimize the tracking error during
path execution, that is, to follow the generated path as closely as possi-
ble. This is especially important because paths generated by the planner
are collision-free (relative to the static obstacles present in the model), and
staying closer to the geometric path assures safer navigation in the environ-
ment.

A path, for example generated by the path planner, is composed of one
or more segments (each described by a 3D cubic curve) which are passed
sequentially to the control mode. The mode is implemented as a function
which takes as input the geometry of the current segment and the desired
cruise (Vc) and final (Vf) velocities. Its output consists of four control sig-
nals (pitch, roll, yaw and the vertical channel – throttle). Additionally, the
function returns a set of status flags which are used to coordinate the path
segment switching mechanism and safety braking procedure.

A safety braking procedure is activated in case the next segment is not
provided by the high-level system (e.g. due to communication failure) before
a specific point in time. This time point is calculated using the minimum
distance necessary to stop the helicopter at the end of the current segment

20 2. The UASTechLab RMAX System

!"#$%&'(")*+%,%"#'("*

-.'%"*/(,'"(0*1((2*

3,,%"*/(,'"(0*1((2*
456/78*

9%0:&(2'%"*;0#<("=*

;#'>*?(00(@:,A*
/(,'"(0*B(C%*

4;?/B8*

;#'>*;0#,,%"D*!"

#$"

#%"

&"

Figure 2.7: The path following control mode and its components.

without overshooting, thereby ensuring that even if a segment never arrives,
the helicopter never leaves the designated path.

The path tracking error is also available and can be used to take appro-
priate actions in case it becomes too large to guarantee safe operation. Such
a situation can arise if the wind is too strong for the platform to be able to
stay on the desired path.

The path following control mode is conceptually divided into two parts:
(a) the Trajectory Generator (Figure 2.7, part B1) which calculates the
reference trajectory used by (b) the Outer Control Loop (Figure 2.7, part
B2) to calculate the control signals (i.e. pitch, roll, yaw and the vertical
channel – throttle). We consider each part in the next two subsections.

Trajectory Generator

As previously described, the input to the path following controller is a
set of parameters describing the geometry of a segment as well as the cruise
and final velocities. The role of the trajectory generator is to calculate the
reference position, velocity and heading which is fed to the outer control.
Those parameters are calculated in the following way. First, based on the
geometrical segment description an analytical expression of the 3D path is
calculated. Second, the feedback algorithm calculates the control point on
the path. A similar approach is used by Egerstedt et al. [27]. The control

2.2 The Software System 21

!"#$%&'
()*+)%,-.'
/)0+)"%'
1)/.,-#2*"'

!"#$%&&'345.$542*"'*6'4"'
4"4572.45')8#,)//-*"'*6'4'
/)0+)"%'

!"#$%'&'9-"1-"0'4'
.*"%,*5'#*-"%'

!"#$%(&':##57-"0'
;-")+42.'+*1)5'

<$%.*+)&'
=*57"*+-45'
#4,4+)%),/>'
5*.45'#4%?'
%4"0)"%>'5*.45'
#4%?',41-$/'

<$%.*+)&'
9-"1-"0'4'@45$)'
*6'#4,4+)%),'/'
6*,'.$,,)"%'
#4%?'/)0+)"%'

<$%.*+)&'
A)6),)".)'
#*/-2*">'=?-B/C>'
D?)%4B/C>'=/-B/C>'
E%4,0)%B/C'

)*+,#-".*/%0#1#*+".*%

Figure 2.8: Calculations performed by the trajectory generator.

point is the point laying on the path where the helicopter ideally should be.
Then, based on the kinematic model of the helicopter, the reference input to
the outer loop is calculated. Figure 2.8 presents the three steps of calculation
performed by the trajectory generator.

Step 1: Calculation of an analytical expression of a segment.

The geometric path segment (Figure 2.9) is represented by a parameter-
ized 3D cubic polynomial. The choice of this type of path representation is
motivated by several good characteristics of cubic curves, for example, flex-
ibility, possibility of obtaining C2-continuity at end-points and analytical
solvability (which is used for collision checking by the path planning algo-
rithms presented in chapter 4) [74].The following equation in vector form is
used:

~p(s) = As3 + Bs2 + Cs+ D

where A,B,C and D are 3D vectors defined by the boundary con-
ditions, the path segment parameter s, and ~p = [x, y, z]. The boundary
conditions are defined as 12 parameters: the starting point coordinates ~p(0),

the end point coordinates ~p(1) and two vectors ~̇p(0) and ~̇p(1). The vectors

represent the direction of the segment tangent at the starting ~̇p(0) and the

end point ~̇p(1). The value of the parameter s ranges from 0 to 1, where s = 0
corresponds to the ~p(0) starting position and s = 1 corresponds to the ~p(1)
end point of the same segment.

The following matrix notation is used for a description of a path segment
~p(s):

22 2. The UASTechLab RMAX System

!"

#"

$"

“thesis” — 2011/6/1 — 16:52 — page 18 — #28

18 2. Helicopter System

!"#$%&'
()*+)%,-.'
/)0+)"%'
1)/.,-#2*"'

!"#$%&&'345.$542*"'*6'4"'
4"4572.45')8#,)//-*"'*6'4'
/)0+)"%'

!"#$%'&'9-"1-"0'4'
.*"%,*5'#*-"%'

!"#$%(&':##57-"0'
;-")+42.'+*1)5'

<$%.*+)&'
=*57"*+-45'
#4,4+)%),/>'
5*.45'#4%?'
%4"0)"%>'5*.45'
#4%?',41-$/'

<$%.*+)&'
9-"1-"0'4'@45$)'
*6'#4,4+)%),'/'
6*,'.$,,)"%'
#4%?'/)0+)"%'

<$%.*+)&'
A)6),)".)'
#*/-2*">'=?-B/C>'
D?)%4B/C>'=/-B/C>'
E%4,0)%B/C'

)*+,#-".*/%0#1#*+".*%

Figure 2.8: Calculations performed by the trajectory generator.

ilar approach is used by Egerstedt et al. [15]. The control point is the point
laying on the path where the helicopter ideally should be. Then, based on
the kinematic model of the helicopter, the reference input to the outer loop
is calculated. Figure 2.8 presents the three steps of calculation performed
by the trajectory generator.

Step 1: Calculation of an analytical expression of a segment.

The geometric path segment (Figure 2.9) is represented by a parame-
terized 3D cubic polynomial. The motivation for using this type of curve is
given by Pettersson [48]. The following equation in vector form is used:

�p(s) = As3 + Bs2 + Cs + D

where A, B, C and D are 3D vectors defined by the boundary con-
ditions, the path segment parameter s, and p = [x, y, z]. The boundary
conditions are defined as 12 parameters: the starting point coordinates p(0),

the end point coordinates p(1) and two vectors �̇p(0) and �̇p(1). The vectors

represent the direction of the segment tangent at the starting �̇p(0) and the

end point �̇p(1). The value of the parameter s ranges from 0 to 1, where s = 0
corresponds to the p(0) starting position and s = 1 corresponds to the p(1)
end point of the same segment.

The following matrix notation is used for a description of a path segment
�p(s):

�p(s) =
�

s3 s2 s 1
�

2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0

�p(0)
�p(1)

�̇p(0)

�̇p(1)

 (2.1)

“thesis” — 2011/6/1 — 16:52 — page 18 — #28

18 2. Helicopter System

!"#$%&'
()*+)%,-.'
/)0+)"%'
1)/.,-#2*"'

!"#$%&&'345.$542*"'*6'4"'
4"4572.45')8#,)//-*"'*6'4'
/)0+)"%'

!"#$%'&'9-"1-"0'4'
.*"%,*5'#*-"%'

!"#$%(&':##57-"0'
;-")+42.'+*1)5'

<$%.*+)&'
=*57"*+-45'
#4,4+)%),/>'
5*.45'#4%?'
%4"0)"%>'5*.45'
#4%?',41-$/'

<$%.*+)&'
9-"1-"0'4'@45$)'
*6'#4,4+)%),'/'
6*,'.$,,)"%'
#4%?'/)0+)"%'

<$%.*+)&'
A)6),)".)'
#*/-2*">'=?-B/C>'
D?)%4B/C>'=/-B/C>'
E%4,0)%B/C'

)*+,#-".*/%0#1#*+".*%

Figure 2.8: Calculations performed by the trajectory generator.

ilar approach is used by Egerstedt et al. [15]. The control point is the point
laying on the path where the helicopter ideally should be. Then, based on
the kinematic model of the helicopter, the reference input to the outer loop
is calculated. Figure 2.8 presents the three steps of calculation performed
by the trajectory generator.

Step 1: Calculation of an analytical expression of a segment.

The geometric path segment (Figure 2.9) is represented by a parame-
terized 3D cubic polynomial. The motivation for using this type of curve is
given by Pettersson [48]. The following equation in vector form is used:

�p(s) = As3 + Bs2 + Cs + D

where A, B, C and D are 3D vectors defined by the boundary con-
ditions, the path segment parameter s, and p = [x, y, z]. The boundary
conditions are defined as 12 parameters: the starting point coordinates p(0),

the end point coordinates p(1) and two vectors �̇p(0) and �̇p(1). The vectors

represent the direction of the segment tangent at the starting �̇p(0) and the

end point �̇p(1). The value of the parameter s ranges from 0 to 1, where s = 0
corresponds to the p(0) starting position and s = 1 corresponds to the p(1)
end point of the same segment.

The following matrix notation is used for a description of a path segment
�p(s):

�p(s) =
�

s3 s2 s 1
�

2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0

�p(0)
�p(1)

�̇p(0)

�̇p(1)

 (2.1)

“thesis” — 2011/6/1 — 16:52 — page 18 — #28

18 2. Helicopter System

!"#$%&'
()*+)%,-.'
/)0+)"%'
1)/.,-#2*"'

!"#$%&&'345.$542*"'*6'4"'
4"4572.45')8#,)//-*"'*6'4'
/)0+)"%'

!"#$%'&'9-"1-"0'4'
.*"%,*5'#*-"%'

!"#$%(&':##57-"0'
;-")+42.'+*1)5'

<$%.*+)&'
=*57"*+-45'
#4,4+)%),/>'
5*.45'#4%?'
%4"0)"%>'5*.45'
#4%?',41-$/'

<$%.*+)&'
9-"1-"0'4'@45$)'
*6'#4,4+)%),'/'
6*,'.$,,)"%'
#4%?'/)0+)"%'

<$%.*+)&'
A)6),)".)'
#*/-2*">'=?-B/C>'
D?)%4B/C>'=/-B/C>'
E%4,0)%B/C'

)*+,#-".*/%0#1#*+".*%

Figure 2.8: Calculations performed by the trajectory generator.

ilar approach is used by Egerstedt et al. [15]. The control point is the point
laying on the path where the helicopter ideally should be. Then, based on
the kinematic model of the helicopter, the reference input to the outer loop
is calculated. Figure 2.8 presents the three steps of calculation performed
by the trajectory generator.

Step 1: Calculation of an analytical expression of a segment.

The geometric path segment (Figure 2.9) is represented by a parame-
terized 3D cubic polynomial. The motivation for using this type of curve is
given by Pettersson [48]. The following equation in vector form is used:

�p(s) = As3 + Bs2 + Cs + D

where A, B, C and D are 3D vectors defined by the boundary con-
ditions, the path segment parameter s, and p = [x, y, z]. The boundary
conditions are defined as 12 parameters: the starting point coordinates p(0),

the end point coordinates p(1) and two vectors �̇p(0) and �̇p(1). The vectors

represent the direction of the segment tangent at the starting �̇p(0) and the

end point �̇p(1). The value of the parameter s ranges from 0 to 1, where s = 0
corresponds to the p(0) starting position and s = 1 corresponds to the p(1)
end point of the same segment.

The following matrix notation is used for a description of a path segment
�p(s):

�p(s) =
�

s3 s2 s 1
�

2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0

�p(0)
�p(1)

�̇p(0)

�̇p(1)

 (2.1)

“thesis” — 2011/6/1 — 16:52 — page 18 — #28

18 2. Helicopter System

!"#$%&'
()*+)%,-.'
/)0+)"%'
1)/.,-#2*"'

!"#$%&&'345.$542*"'*6'4"'
4"4572.45')8#,)//-*"'*6'4'
/)0+)"%'

!"#$%'&'9-"1-"0'4'
.*"%,*5'#*-"%'

!"#$%(&':##57-"0'
;-")+42.'+*1)5'

<$%.*+)&'
=*57"*+-45'
#4,4+)%),/>'
5*.45'#4%?'
%4"0)"%>'5*.45'
#4%?',41-$/'

<$%.*+)&'
9-"1-"0'4'@45$)'
*6'#4,4+)%),'/'
6*,'.$,,)"%'
#4%?'/)0+)"%'

<$%.*+)&'
A)6),)".)'
#*/-2*">'=?-B/C>'
D?)%4B/C>'=/-B/C>'
E%4,0)%B/C'

)*+,#-".*/%0#1#*+".*%

Figure 2.8: Calculations performed by the trajectory generator.

ilar approach is used by Egerstedt et al. [15]. The control point is the point
laying on the path where the helicopter ideally should be. Then, based on
the kinematic model of the helicopter, the reference input to the outer loop
is calculated. Figure 2.8 presents the three steps of calculation performed
by the trajectory generator.

Step 1: Calculation of an analytical expression of a segment.

The geometric path segment (Figure 2.9) is represented by a parame-
terized 3D cubic polynomial. The motivation for using this type of curve is
given by Pettersson [48]. The following equation in vector form is used:

�p(s) = As3 + Bs2 + Cs + D

where A, B, C and D are 3D vectors defined by the boundary con-
ditions, the path segment parameter s, and p = [x, y, z]. The boundary
conditions are defined as 12 parameters: the starting point coordinates p(0),

the end point coordinates p(1) and two vectors �̇p(0) and �̇p(1). The vectors

represent the direction of the segment tangent at the starting �̇p(0) and the

end point �̇p(1). The value of the parameter s ranges from 0 to 1, where s = 0
corresponds to the p(0) starting position and s = 1 corresponds to the p(1)
end point of the same segment.

The following matrix notation is used for a description of a path segment
�p(s):

�p(s) =
�

s3 s2 s 1
�

2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0

�p(0)
�p(1)

�̇p(0)

�̇p(1)

 (2.1)

Figure 2.9: Boundary conditions for a path segment.

~p(s) =
[
s3 s2 s 1

]

2 −2 1 1
−3 3 −2−1
0 0 1 0
1 0 0 0

~p(0)
~p(1)

~̇p(0)

~̇p(1)

Additionally, for control purposes, the local path tangent ~t(s) and the
path curvature radius ~r need to be calculated.

The local path tangent ~t(s) is defined as:

~t(s) =
[

3s2 2s 1 0
]

2 −2 1 1
−3 3 −2−1
0 0 1 0
1 0 0 0

~p(0)
~p(1)

~̇p(0)

~̇p(1)

The curvature radius is defined as ~r = 1/~k, where ~k is the path curvature
defined as:

~q(s) =
[

6s 2 0 0
]

2 −2 1 1
−3 3 −2−1
0 0 1 0
1 0 0 0

~p(0)
~p(1)

~̇p(0)

~̇p(1)

~k(s)=
~t(s)× ~q(s)×~t(s)

|~t(s)|4

2.2 The Software System 23

!"#$%"&'(")#$'

Figure 2.10: Control point on the reference path.

Once the parameter s is found the position coordinates (x, y, z), the
local path tangent, and the path curvature radius can be calculated.

Step 2: Finding a control point.

In the previous step a set of parameters describing the current path
segment has been calculated, thus defining the reference path. Note that
the reference path is not time dependent and is parametrized by the value
of the parameter s. In this case the control is realized by slowing down or
accelerating the control point (the position on the reference path where the
helicopter ideally should be, Figure 2.10).

The control point is defined as the closest point on the reference path
to the current helicopter position. Although, a simple geometrical method
of orthogonal projection of the helicopter position on the path could be
used, it could result in multiple solutions. Instead a feedback method is
used [20]. It finds the control point incrementally by performing a search for
orthogonality condition only locally based on the previous value of s.

Step 3: Applying a kinematic model.

When the value of the parameter s is found a set of parameters needed
by the outer control loop can be calculated. First, the reference position, the
local path tangent and curvature radius are calculated. Second, a kinematic
model of the helicopter is used to calculate roll (φ(s)), pitch (θ(s)) and yaw
(ψ(s)) target angle values, thus applying dynamic constraints of the system.
For safety, additional limits are used for each of the control channels (e.g.
roll angle limit). Finally, the target helicopter velocity, that is the desired
helicopter velocity along the segment (Vtar(s)), is derived.

The value of Vtar(s) is based on the helicopter kinematic constraints

24 2. The UASTechLab RMAX System

!"#$%&'"

()$*"#&'"

!""#$#%!&'() "%*+,#) -%!.+(/)
!&+,-+./"

!0"

!1"

Figure 2.11: Example of an ideal velocity profile for a straight line path.

safety limits and the two velocity input parameters, i.e. the cruise velocity
Vc (desired velocity for the segment) and the final velocity Vf (velocity that
the helicopter must have at the end of the segment).

The calculation of Vtar(s) along the path segment is divided into three
phases: acceleration, cruise and braking.

The acceleration phase is active only during the execution of the first
segment of the path. During this phase the velocity increases with a constant
rate until the cruise velocity Vc is reached. Note that in this case Vtar depends
on time rather than on the path parameter (s) since it is not important at
which position of the path the acceleration phase is terminated.

The braking phase is activated when the remaining path length dend(s)
is equal to the distance required to brake the helicopter from Vc to Vf for a
given deceleration abrake.

dend(s) =
|V 2

c − V 2
f |

2abrake

The target velocity in the braking phase is a function of dend(s):

Vtar(s) =
√
|2dend(s)abrake + V 2

f |

This guarantees achieving the desired velocity at the end of the path
segment. In case Vf > Vc, the helicopter accelerates in order to reach Vf at
the end of the path segments. Figure 2.11 presents an example of an ideal
velocity profile for a straight line path.

In order to make a coordinated turn a consistency check must be done
with respect to the generated Vtar(s). For such a maneuver, the helicopter

2.2 The Software System 25

−20 0 20 40 60 80

−180

−160

−140

−120

−100

−80

−60

−40

−20

0

20

East [m]

N
or

th
 [m

]

Closed loop YACS on the roll channel

Flight tested
Target

−20 0 20 40 60 80

−180

−160

−140

−120

−100

−80

−60

−40

−20

0

20

East [m]

N
or

th
 [m

]

Open loop YACS

Flight tested
Target

Start
End

Start End

Figure 2.12: Comparison of path tracking performance using two different
roll controllers performed at 36 km/h constant velocity.

must compensate the centripetal acceleration with a certain amount of roll
angle. For safety reasons, the maximum roll angle (φmax) and yaw rate
(ωmax) are limited. Therefore, the maximum velocity during a turn maneu-
ver is also restricted. The two velocity limits are calculated as follows:

Vmax1(s) =
√
Rxy(s)gφmax

Vmax2(s) = ω2
maxRxy(s)

where Rxy(s) is the projection of the curvature radius vector (rn) on the
XY horizontal plane.

The minimum of Vmax1(s), Vmax2(s) and Vtar(s) is taken as target ve-
locity by the outer control loop described in the next subsection. Thus, the
calculated velocity is compatible with the curvature radius of the path.

Outer Control Loop

The outer control loop is implemented as four PID loops. Two versions
of the outer loop, with and without a lead compensator in the roll control
loop, have been developed and tested in real flights. A detailed description
of the outer control loop variants developed are provided by Conte [20].

26 2. The UASTechLab RMAX System

Summary

The path following control mode (including two versions of the outer
controller) has been flight-tested on the RMAX helicopter at a constant ve-
locity of 36km/h on a path with changing curvature. Such a path is typically
used to navigate in areas with obstacles. The results are shown in Figure 2.12
where the same path was tested with both versions of the outer control loop.
Note that at the beginning of the path when the dynamic response of the
controller is more important because of the changing curvature, the outer
controller with a lead compensator in the roll loop (extended controller) per-
forms much better than the other one. The error for the extended controller
in this part is below 1 meter, while for the other it is around 6 meters. The
results obtained during flight-tests show that the loop on the roll channel
reduces the path tracking error, which makes the controller more suitable
for obstacle-cluttered environments.

In summary, this section presented the path following control mode used
for the execution of 3D paths consisting of a set of segments.

Chapter 3

Hierarchical Concurrent
State Machines

In this chapter we provide a description of the Hierarchical Concurrent State
Machine (HCSM) framework used for modelling hybrid control systems.
The description includes the HCMS syntax and semantics, and provides a
set of practical examples of HCSM use in the UASTechLab RMAX UAV
platform. The chapter finishes with a summary referencing the Extended
State Machines (ESM) framework which is a further development of the
HCSM framework.

3.1 Introduction

In simple system designs, a procedural or object-oriented programming lan-
guage can be used to solve the problem of control flow. This is done by using
control flow statements included in a specific language (e.g. loops and con-
ditional statements in the C programming language) or by directly calling
functions in an appropriate sequence. However, as the complexity of the sys-
tem grows it quickly becomes difficult to manage the necessary interactions
between the different functions or objects. Thus, a more flexible mechanism
for developing software systems for a robotic platform is required.

Using the abstraction of state machines, specifically Finite State Ma-
chines (FSM), for building systems is a well known and established approach.
They help to control the complexity of the design and to provide a simple
understandable means for solving complex modelling problems.

FSMs are a mathematical abstraction used to create a behavior model
of a system. They are composed of a finite number of states, transitions
between those states, and actions. Additionally, transitions can be guarded
by conditions. For example a condition can be an evaluation of a sensor
value. The input to a state machine can be realised by using a string of

27

28 3. Hierarchical Concurrent State Machines

!"#"$#"%&'
!""#$%&"'(!$

)$
!"#$#%&

$

($)*+&'
$'(*$+"*"#$
',((!$-$.$

/$
'()*#%&

$

($)*+&'
'(*$+"*"#$
',((!$-$.$

0$
'()*+$,&

$

($)*+&'
'(*$+"*"#$
',((!1.$

2$
!"#$+$,&

$

($)*+&'
'(*$+"*"#$
',((!3.$

,"$"-."%&$%&"'($*4($
!""#$%"++56!$

,"$"-."%&$",(6$*4($
!""#$%"++56!$

!"#"$#"%&'
!""#$",(6(!$

!"#"$#"%&'
!""#$%&"'(!$
($)*+&'
'(*$+"*"#$
',((!$-$.$

)$
!"#$#%&

$

$

/$
'()*#%&

$

$

0$
'()*+$,&

$

$

2$
!"#$+$,&

$

$

,"$"-."%&$%&"'($*4($
!""#$%"++56!$
'

($)*+&$$
'(*$+"*"#$',((!1.$

,"$"-."%&$",(6$*4($
!""#$%"++56!$
$

($)*+&'
'(*$+"*"#$',((!3.$

!"#"$#"%&'
!""#$",(6(!$
($)*+&'
'(*$+"*"#$
',((!$-$.$

7""#(897+"!(&$ 7(5&:897+"!(&$

Figure 3.1: An example of a simple four-state system for an elevator door
using Moore and Mealy FSMs.

symbols, events or commands depending on the implementation of the FSM
system.

There is a wide variety of visual formalisms that have been proposed in
the literature which have contributed to the popularity of state machines.
The ability to visually model complex systems eases the development pro-
cess.

An example of a simple four-state system for an elevator door using state
diagrams [9] is presented in Figure 3.1. Two FSM paradigms are used in the
example, Moore [64] and Mealy [70] machines.

In the Moore FSM, actions (outputs) depend only on the current state
of the machine, as opposed to the Mealy FSM where actions are associated
with both the input and the current state and are executed in transitions. In
the example system, the door can be in one of the four states opened, closed,
opening or closing. Depending on the current state and the received input
the machine reacts with an appropriate action to either close or open the
door passing through the intermediate states of opening or closing. Actions
control the speed of the motor responsible for door motion.

Standard FSMs (e.g. Moore and Mealy machines) have been successfully
used in the past for modeling systems for various purposes. However several
extensions are necessary to make them useful for modelling complex real-
time systems.

One of the major problems of FSMs is their limited expressivity mainly
caused by their flat or single-level structure. There is no easy way of par-
titioning the problem into sub-problems that can be dealt with separately.
Instead, each state has to be modelled explicitly leading in the worst case to
a combinatorial explosion of the number of states. Additionally, it makes the
system hard to extend. Because of these reasons, even moderately complex

3.1 Introduction 29

systems tend to become large and unmanageable.
In practice it would be much easier to define a system gradually with

different levels of granularity or with the help of various levels of abstrac-
tions. An obvious additional advantage would be the reusability of already
modelled parts of the system in different contexts.

All of this can be achieved by HCSMs which extend FSMs with a support
for hierarchy and concurrency. Before describing the HCSM framework we
will briefly mention some of the related work which influenced our design.

The related work can be found in many fields: robotics, control the-
ory, embedded system design, and software engineering. We looked at ex-
isting methods and included them in the framework if they turned out to
be useful in practice for building robotic systems. There are many specifi-
cation languages, programming languages, software frameworks, and design
tools which are used in control or embedded system design, for example
Ptolemy II [28], Esterel [5], Stateflow1, Simulink2, UML 2 [8], among others,
but none of these is optimized for building control systems for autonomous
robots.

Some of the important features required for the design and development
of hybrid control systems for autonomous robots include [65, 67]: easy mod-
elling of control flow, support for communication, real-time execution, tight
integration between modelling formalism and execution mechanism, ability
to reconfigure a system at run time, a well defined specification language,
support for all the stages of development.

The specification language and the computation model we propose is
mainly influenced by Harel’s Statecharts formalism [38]. State machine based
approaches have already been used successfully in many robotic systems.
Brooks [10] for instance uses state machines to build reactive systems and
Kleinehagenbrock et. al. [45] include them in a deliberative/reactive sys-
tem. Albus et. al. [1] propose an architecture for intelligent hybrid control
systems which has some similarities with our framework. It also includes
state machines, defines a hierarchy of functional modules and includes a
communication system, but it lacks some of the features mentioned above.
Our framework supports the component-based design methodology. In [11]
a component-based framework is proposed which aims for similar goals but
it also does not provide some of the features mentioned above (e.g. real-time
aspects). Cremer et al. [21] propose a HCSM framework for virtual environ-
ment applications. Although some similarities in the modeling formalism
exist it is not associated with the framework presented in this thesis.

As previously described, the HCSM approach is based on the concept of
a deterministic finite state machine (FSM) with several extensions. The fol-
lowing list is a compressed description of the extensions which are discussed
later in this section:

• Supports hierarchy and concurrency. It is a combination of Mealy [64]

1MathWorks, Inc. Homepage: http://www.mathworks.com/products/stateflow/
2MathWorks, Inc. Homepage: http://www.mathworks.com/products/simulink/

30 3. Hierarchical Concurrent State Machines

and Moore [70] machines with vertical and horizontal (AND/OR) de-
composition, where Mealy machines have actions (outputs) associated
with transitions and Moore machines have actions associated with
states. Hierarchy is realized by vertical state machine decomposition
and concurrency by horizontal.

• Realized as a real-time interpreter of a textual state machine descrip-
tion.

• Semantics similar to Statecharts/MATLAB Stateflow but:

– no history, i.e. when entering a state machine at a particular level
the machine always starts in the init state.

– no hierarchy crossing transitions; Transitions between different
levels are realized by exiting to a super state. Transitions between
different regions are realized using events.

– no actions associated with states except those of a nested state
machine.

• Time step event support (realized by a so called pulse event).

• Macro step/micro step execution, where external events are considered
in the macro step and internal events in the micro step.

3.2 HCSM Framework

This section provides a detailed description of the HCSM framework. First,
a set of basic concepts is described using the visual syntax of the HCSM
state diagrams (Figure 3.2). Second, a description of the HCSM execution
mechanism in a robotic platform is provided.

State machine, hierarchy and concurrency

A state machine (also referred to as an automaton) consists of states
and transitions. A state represents any activity of a system at any level of
abstraction. We define two main types of states: simple states and super-
states. A superstate represents a nested state machine, thus a hierarchy of
state machines can be created. Two special types of simple states are de-
fined: init and exit. The init state of an automaton is the starting state and
entering the exit state terminates its execution. An example of a simple and
a superstate is presented in Figure 3.2, i.e. State 2 and State 1 of the root
automaton, respectively.

We define a state machine container as a collection of one or more con-
current (child) state machines. Each of these machines is contained in a
region. Regions are ordered by a consecutive number (RegionNumber) and

3.2 HCSM Framework 31

!"#"$%&%

'(()%*+",-#",.%

+",-#",.%%

!"#"$%&%

*+",-#",.%/%

!"#"$%0%

123"%

14$."&%

123"%

123"%

5+67$%

&% 0%

!"#"$%&%

+",-#",.%%

5+67$%89,.:3;,.<=%

5+67$%89,.:3;,.&=>%
!1)%*?;,.@6#A&%

&%

!"#"$%&%

*+",-#",.%/%

!"#"$%&%

5+67$%89,.:3;,.<=%

5+67$%89,.:3;,.0=>%
!1)%*?;,.@6#A0%

14$."B%

&% 0%

14$."<%>%
!1)%*?;,.@6#AC%

!"#"$%&#'$%

!"#"$%&#'$%
()"*'#"*+%

&#'$%

!3-D6$%
7"#"$%

!+D$E7"#"$%

)E#.73;,.%

F.3"%7"#"$%

123"%7"#"$%

,*+"#-+$.%
&#'$%

/$0-*+%1%

!"#"$%
G#?H3.$%
9,."#3.$E%

!"#$%&'()*+%#,-.*/0%

14$."0%

#,-.*/%12%*%.3*-('41-%'-%5678%-1.*41-0%
)E#.73;,.%I%14$."FJ%8%K8L%M+#E:%K=L%=%8K>L%*?;,.N37"=%
?;,.N37"%I%?;,.%OKPL%*?;,.Q%
*?;,.%I%!1)%@6#AFJ%R%ST!1)%@6#AFJ%R%M1)%G$-,EU!6,"FJ%R%5S)%G$-,EU!6,"FJ%R%

%%!1TJ%14$."FJ%G$-,EU!6,"FJ%J$7;.#;,.FJ%%
M+#E:%I%8K2L=%@6#AFJ%R%M+#E:%(D%M+#E:%R%KVK%M+#E:%KWL%
(D%I%K∧L%R%L∨L%
VX%#66%34%7U-Y,67%#E$%*T!F%9%3:Z",[$.7%XW%
VX%#66%&#'$%7U-Y,67%#E$%7$\+$.?$7%,]%*!9FF%?H#E#?"$E7%XW%

Figure 3.2: The HCSM visual syntax with an example of three state ma-
chines.

32 3. Hierarchical Concurrent State Machines

are separated by a dashed line in the visual syntax, e.g. Automaton B con-
taining two regions in Figure 3.2.

The hierarchy provides a powerful mechanism for encapsulating specific
behaviours and the framework permits reuse of state machine containers,
i.e. it provides all the necessary means to execute multiple instances of a
state machine, thus providing reusability. Additionally, such an encapsula-
tion provides a practical way of aborting a particular behaviour.

Concurrency prevents combinatorial explosion of states, which would
occur in FSMs, and allows for easy handling of asynchronous state machines.

One example which takes advantage of concurrency and hierarchy in the
UASTechLab RMAX UAV is the modelling of complex behaviors such as
vision-based landing [66]. The landing mode consists of several lower level
behaviors that are controlled by the main superstate of the landing mode.
It includes for instance control laws steering the helicopter and coordinates
the camera system and image processing functionalities. When the landing
behavior is activated, several state machines modelling the necessary activ-
ities are executed. Those include searching for a pre-defined pattern with
the camera system, feeding a Kalman filter with image processing results
which fuses them with the helicopter’s inertial measurements. Once the pat-
tern is found another state machine controls the camera in order to keep
the pattern in the center of the image. This tracking behavior increases the
robustness of the image processing results when the helicopter is close to
the ground or in the presence of strong wind gusts. The state machine sends
appropriate feedback when the landing procedure is finished or it has been
aborted.

State Transitions, Events and Guards

A transition between two states is triggered by an event. Events in the
HCSM framework can be generated internally by the state machine itself
or externally. The HCSM supports both asynchronous (or sporadic) and
periodic events. The sporadic events can contain data.

The HCSM implements two types of special events, namely the pulse
and exit events. The pulse event is a periodic event generated before each
iteration of the HCSM algorithm, like a clock pulse (discussed later). This
event can be used for example to trigger a transition without a specific
asynchronous event. The exit event is created when a state machine is in
its exit state and it is only sent to the parent superstate informing it that a
child automaton has finished its execution.

State transitions are guarded by conditions in the form of Boolean ex-
pressions. If an event for a particular state transition has been generated
and the condition guarding the transition is TRUE, then the state transi-
tion takes place. It is optional to have conditions in transitions.

3.2 HCSM Framework 33

Activities vs Actions

As in Harel [38] we distinguish between actions and activities. Actions
have no duration (zero-time assumption) and are executed in transitions (as
in a Mealy machine), while activities take time and are associated with states
(as in a Moore machine). Each transition can include a set of actions exe-
cuted during the transition. Supported actions include setting binary flags
(SET flag name), sending events (SEND event-name data target-computer),
retrieving (GET source) and storing (PUT destination) data. Handling of
data is realised using a predefined memory bank with labeled slots. If a
received event carries data it is automatically stored in the cache memory
slot. A GET action copies data from a source slot to the cache slot. A PUT
action copies data from the cache slot to the destination slot. It is optional
to have actions in transitions.

Activities are defined in terms of regularly executed functions. They are
coordinated by a set of binary flags which are changed by actions. Functions
are executed outside the state machine algorithm and their execution is
discussed in the next section.

HCSM Design and Execution

The visual language of the HCSM provides a very powerful development
tool for modelling system behavior. The design of a system in the HCSM
framework starts with a visual description of the state machines using the
presented visual state diagrams (Figure 3.3). Tables describing transitions
derived from such diagrams are passed to the system in the form of text files
and are interpreted by a HCSM Interpreter at run-time on the robotic plat-
form. Thanks to its compact and efficient implementation, the interpreter
can run in the real-time part of the system as a periodic task with high
execution rate.

The definition of HCSMs can be done with the aid of graphical tools or
for simpler designs it is possible to write the text files directly.

Conditions used in the state machine design are implemented as C-code.
They are usually generated from sensor data or control functions. The HCSM
supports AND/OR/NOT operators in condition statements directly in the
visual description and HCSM text files.

Although conditions and activities (in the form of function calls) have
to be pre-compiled in the state machine executable program, in practice it
does not pose a major problem. From our experience with our UAV systems
and other robotic platforms developed in the UASTechLab there is a fixed
number of necessary conditions and function calls that have to be written
in the system in the beginning of the development. The modelling of the
system behavior itself can then take full advantage of the flexibility of the
interpreted state machine language, i.e. necessary changes are only made in
the text file and can be applied without recompilation of the whole system.

34 3. Hierarchical Concurrent State Machines

!"#$%&'(&%)*'%
+',-./0123%

4/,56*%!"#$%
,0'-/)-6123%

!"#$%73&'.0.'&'.%

82921-%:*6;2.<%

!"#$%&'(&)')"*"+,-."&/' 01"234,&'

"2<<53/-6123%
='>'3&%63+%+6&6%
,0'-/)-6123?%

"23&.2*%@53-123,%

"2<<53/-6123%

#&6&'%$6-A/3'%
B'95CC'.%

Figure 3.3: Overview of the HCSM design process and execution.

In our framework three forms of communication exist: (1) between states
of the HCSM language processed by the same interpreter, (2) between com-
puter systems of the same robot, and (3) between different robots or robots
and operators. The first form is realized by an internal event queue, and the
remaining two forms by transmitting external events in packets with prede-
fined sizes. Received external events are put in an external event queue.

The framework provides the necessary means for sending packages with
a predefined number of bytes to remote machines, receiving packages, and
checking their integrity. It permits building real-time communication appli-
cations if the underlying network is suitable. Based on the description of the
user defined events the necessary C-code implementation is automatically
generated during the design process (Figure 3.3). Those functions are then
used in the system in order to receive and send events. We successfully built
real-time communication links based on serial line standards (RS232C and
similar) and Ethernet.

Before describing the algorithm for execution of HCSMs a short example
describing the outer execution loop is provided. The skeleton of a procedure
for execution of a HCSM-based system on a single computer is presented in
Algorithm 3.2.1.

As described previously, functions used for communication are generated
automatically and are called in the Communicate function. Events received
by the system are parsed, checked for integrity and put in the external event
queue. The HCSM is executed (ExecuteStateMachine). Binary flags which
are set by the state machine transitions (using actions) coordinate the execu-
tion of the control functions (runControlFunctions). The user has to define
C-code for conditions and implement the runControlFunctions procedure.

3.2 HCSM Framework 35

Algorithm 3.2.1 Skeleton of a procedure for execution of a HCSM-based
system on a single computer.

– Main Execution Loop

1: while system is running do
2: . . .
3: Communicate();{Send and receive data packets containing debug

information and external events. Events are put in the external event
queue.}

4: ExecuteStateMachine();{Execute algorithm 3.2.2}
5: runControlFunctions();{Run the appropriate control functions

based on the binary flags set by actions in the HCSM.}
6: . . .
7: end while

Figure 3.4 presents an example of a simple HCSM modelling a driving
behaviour of a ground robot platform. An example of the necessary C-code
implementation is presented on the right side of the figure. The platform
is equipped with a proximity sensor mounted in the front which provides
distance measurements to obstacles. When the Simple Drive Automaton is
started, the robot is in the init state (solid dot) until it receives a Drive For-
ward Event. The event includes the desired forward speed value for the robot.
Two actions are executed when the state machine switches from the init to
the Drive Forward state, PUT drive-speed and SET start-motor-action-flag,
respectively. The first action, copies data from the cache memory slot to the
drive-speed slot. The second one, sets a binary flag that is used by the run-
ControlFunctions() procedure. After the first iteration of the algorithm the
robot starts to execute the driving behaviour. In the following iterations
the state machine remains in the Drive Forward state while the obstacle-
detected-condition is evaluated to FALSE. The C-code example presented
checks if the measured distance to the obstacle is less than 1 meter. When
the distance is below 1 meter the automaton switches to the Stop state
and executes two actions switching off the driving activity and stopping the
robot’s motors.

The procedure used to execute a HCSM is presented in Algorithm 3.2.2.
Transitions in HCSMs are divided into macro steps and micro steps. A macro
step (Algorithm 3.2.2, ExecuteStateMachine function lines 4 to 10) begins
by processing the first event from an external event queue. The events are
processed in the order they were received (First-In-First-Out fashion). This
event can trigger one or more transitions. These transitions may generate
both internal and external events, which in turn trigger more transitions.
The macro step is finished when no more transitions are made, i.e. the exter-
nal event queue is empty. Micro step (Algorithm 3.2.2, ExecuteStateMachine
function lines 6 to 9) are the steps within a macro step.

In the case the external event queue is empty only the micro steps are

36 3. Hierarchical Concurrent State Machines

!"#$%&'(%)*!"#$%&'()*+,*&*(&*,+(#-,./#-0!
1!23456!%&'7&+8#+'(/#-+9':!
456!%&#;+8#+'(/#-+9':!

<7.=*!
>#7?'7,!

4&#;!

4.8;)*!<7.=*!
@A'&#-!

+,-(%&./,01,2&'(%)*&1!B26!,7.=*+%;**,!
456!%&'7&+8#+'(/#-+9':!

!"#$%#&'()*+,-)*./C3/)2-4/)5-2D!!
E!

!!!!.F!C(#-,./#-+.,!GG!#$%&'()*+,*&*(&*,+(#-,./#-D!

!!!!!!!!.F!C,.%&'-(*+&#+#$%&'()*!H!ID!

!7*&A7-!6J25K!

!!!!!!!!*)%*!

!!!!!!!! !7*&A7-!>@L45K!
!!!!M!
!!!!M!
!!!!M!

N!

!

0%*()*&0)$1%*2-)*./CD!
E!

!!!!.F!C%&'7&+8#+'(/#-+9':!GG!456D!

!!!!!!!!*O*(A&*P#Q#88'-,C,7.=*+%;**,DK!

!!!!!

!!!!.F!C%&#;+8#+'(/#-+9':!GG!456D!

!!!!!!!*O*(A&*P#Q#88'-,CRDK!
!!!!M!
!!!!M!
!!!!M!
N!

'6-*&'(%)*!

Figure 3.4: An example of a simple HCSM modelling a driving behaviour of
a ground robot platform.

executed, processing all of the internal events (at the beginning one pulse
event is in the internal event queue).

The system assumes the ”synchrony hypothesis” i.e. during a macro
step, inputs do not change and external events are not received. In practice,
external events are not processed as soon as they arrive but they are buffered
until the state machine interpreter is called. In the case of our UASTechLab
RMAX system, in the real-time environment it is called periodically every
20ms, and in user space the state machine interpreter is called from the main
loop. The duration of one macro step is set to 200us which corresponds to
worst case execution time. This time depends on the complexity of the state
machine, i.e. the number of regions and the maximum number of micro
steps (generated events). The periodic update time and the duration is user
configurable and was empirically chosen for our system.

3.3 Practical HCSM Examples

In this section we provide some practical examples of the use of HCSMs in
the UASTechLab RMAX platform. As previously described (section 2.1),
our platform uses three computer systems. Each computer is responsible for
a specific functionality. The PFC computer is running basic flight control
modes, the IPC is responsible for image processing and control over the
sensor platform and its payload (i.e. cameras, pan/tilt unit) and the DRC
is responsible for running high-level deliberative services.

The HCSM framework is used as a low-level real-time mechanism for

3.3 Practical HCSM Examples 37

Algorithm 3.2.2 The HCSM Algorithm.

– ExecuteStateMachine

1: lock memory
2: create empty internal event queue
3: append pulse event to internal event queue
4: repeat
5: remove first event from external event queue and append to internal

event queue
6: while internal event queue not empty do
7: remove first event e from internal event queue
8: call MakeTransitions(1, e)
9: end while

10: until external event queue empty
11: unlock memory

– MakeTransitions(MachineLevel, Event)

1: for all concurrent state machines M at MachineLevel do
2: if Event is received by transition of current state in M and Guards

are TRUE then
3: call ExecuteActions(actions associated with the transition)
4: make transition
5: else if current state is superstate then
6: call MakeTransitions(MachineLevel+1, Event)
7: end if
8: end for

– ExecuteActions(ActionList)

1: for each action Action in ordered ActionList do
2: if Action is send event action then
3: if destinationID is external computer then
4: append Event to external communication queue
5: else
6: append Event to internal event queue
7: end if
8: else
9: execute action

10: end if
11: end for

38 3. Hierarchical Concurrent State Machines

!"#$%&'(#$)*+#%

,-./%&'(#0#(#$% ,-./%&'(#$0$#(#$%

,-./%&'(#0#(#$%

&1*2#%3$4+#""5'2%

6#758#$*9:#%
3$4+#""#"%

;.<=<%

;.
<=
<% ;.<=<%

;#*7>91#%

!"#$>"0*+#%

3?-%

6;-%

&3-%

Figure 3.5: Overview of the HCSMs used in the UASTechLab RMAX UAV
platform.

modelling of a system behaviour. On the PFC computer it is used for mod-
elling and execution of the control system. On the IPC computer it is used
for controlling a set of sensors and on the DRC computer it provides an
interface to flight control modes accessible to the high-level deliberative and
reactive algorithms. That is why HCSM interpreters are running on all three
computers (Figure 3.5). Because the HCSMs running on different computers
communicate with each other, all of the individual events used in the system
are defined globally and have unique IDs.

Examples described in this section are focused on the state machines
running on the PFC computer. An overview of all state machines running
on the PFC system is provided, followed by a detailed description of two use
cases: handling the switch between manual and autonomous flight mode and
the execution of the path following control mode (PFCM, section 2.2.3).

Overview of the PFC HCSMs

Figure 3.6 presents a hierarchical view of all of the 15 automata that
are running on the PFC computer. The whole UASTechLab RMAX system
uses 207 events in total. Note that the two use cases presented in this section
are examples from the deployed system and various extensions and different
way of modelling to achieve the same functionality of the system is possible.

The software-controlled power system (section 2.1) is managed by the
PFC computer which has to be switched on manually by the user. The rest
of the devices can be switched on and off by software using the provided
interface coordinated by the Power Switch automaton. At the system start-
up, the Root automaton makes sure that at least the DRC computer is

3.3 Practical HCSM Examples 39

!""#$

!%&$

'(&)$
*!+$$

,-./$
0&#./12).$

3%#"$
'45#)6$'(&)$ +"&#/"7$

8"9.$
:"4./$
'45#)6$

;5-%27$
<2=5>2?"&$

,0$@5A./$8"9.$
'45#)6$

@/2BC*$ @/2BC*$
D7(#"$E2&95&>$ @/2)F$

Figure 3.6: The hierarchical view of the HCSM automata running on the
PFC computer.

switched on (in case it has not been manually switched on by the user). The
Root automaton also contains a superstate for the Run automaton.

The Run automaton contains only one superstate for all of the following
automata: Power Switch, Sync, Sync DRC, Auto Switch, Control Mode,
Visual Navigation, and User Interface.

The Sync and Sync DRC automata are responsible for achieving a com-
mon state between the different computers through synchronization. The
common state includes, for example the time and altitude offset. The Sync
DRC automaton handles the synchronization between the IPC and DRC
computers. The Sync automaton sends the common state from the PFC to
both IPC and DRC computers.

The User Interface automaton handles commands received from a ground
control user interface (UI) or a miniaturized keyboard. A number of UIs have
been developed for the UASTechLab RMAX system. One of the interfaces
used during every flight test is a low-level telemetry monitoring interface that
is handled by the PFC computer. A ground operator monitors the telemetry
data and in case of any abnormal status the mission can be aborted either
by executing an emergency brake and default hovering or by the backup
pilot who can take over the control of the helicopter and perform a manual
landing.

The UI Timer automaton implements timeouts for accepting commands
by the User Interface state machine when using a miniaturized keyboard.
The keyboard has been constructed to provide a basic set of utility com-
mands (e.g. starting of logging of the onboard data). Although, the same

40 3. Hierarchical Concurrent State Machines

functionality is available through a standard UI, it is often convenient (e.g.
during a flight test) to be able to use it without the need for running an
interface on the ground station computer. The keyboard is mounted in the
helicopter avionics box. Selection of a specific utility command is performed
by using a digital knob (selecting a number from 1 to 15) and a push but-
ton for acknowledging the selected command. Feedback from the system is
provided on a small display mounted outside of the helicopter’s avionics box.

The Visual Navigation automaton handles a non-GPS vision-based nav-
igation module [20] which is running on the IPC computer.

Handling of the helicopter initialization and operational modes is done
by the Auto Switch automaton. This includes the following aspects:

• Initializing the RMAX helicopter system before it is ready to accept
commands. This includes monitoring the engine-on status and the RC
radio transmitter status.

• Monitoring sensor data and initializing the state estimation based on
a Kalman filter.

• Handling the simulation mode. A hardware-in-the-loop simulator has
been developed for the UASTechLab RMAX UAV. It uses a dynamic
helicopter model [17, 26] and all of the software components used dur-
ing a real flight are run onboard the UAV. This enables testing of the
developed functionalities before a real flight test is performed.

• Handling the RC radio transmitter switch responsible for selecting
between the operational modes: manual/autonomous flight mode.

The Auto Switch automaton starts up the execution of the Mode Switch
state machine after a successful initialization of the system and if the au-
tonomous flight mode switch is selected.

The Mode Switch and Control Mode automata handle the switching be-
tween the flight control modes. This includes initializing, running and han-
dling of error conditions of particular control functions.

Selected control modes also have their own mode-specific state machines:

• Traj3D: the path following control mode.

• Landing: vision-based landing control mode [66].

• Traj3D Flyto: a simplified path following mode which only uses straight
line paths.

• Track: reactive car tracking.

Other control modes such as take-off and hovering are modelled explicitly by
the Mode Switch and Control Mode automata without any additional state
machines.

3.3 Practical HCSM Examples 41

Each control function, including the path following control mode, that
runs on the UASTechLab RMAX UAV is executed periodically with a 50Hz
update rate. The outer loop is implemented similarly to Algorithm 3.2.1
with one exception. After the execution of the function responsible for com-
munication and the HSCM algorithm, the function for handling SET action
flags is called. The function maps the action flags into a set of local variables
(also referred to as internal flags) used in the execution of the actual control
function. Additionally, it automatically unsets a particular action flag in C-
code in order to avoid the inclusion of explicit UNSET actions in the state
machine specification, as opposed to the example presented in Figure 3.4.
Using this approach, complex state diagrams become simpler to understand.

The next two sections describe the following two use cases: Engaging De-
fault Autonomous Hovering Mode and Path Execution. For clarity, diagrams
presenting the Control Mode (Figure 3.7), the Mode Switch (Figure 3.8), and
the Traj3D (Figure 3.11) automata use the following notation:

• For fast identification, each automaton has a letter label, included in
the state machine name. Additionally, all state transitions are num-
bered.

• Names of states end with “-ST”.

• Names of events end with “-EV”.

• Names of conditions end with “-CO”.

• Names of SET action flags end with “-AC”.

• Names of labeled memory slots end with “-DO”.

3.3.1 Use Case 1: Engaging Default Autonomous Hov-
ering Mode

The use case described in this section relates to the following situation. A
backup pilot performs a manual take-off procedure. When the maneuver is
finished, the UAV is switched to autonomous mode by using the auto switch
button on the RC radio transmitter. A default hovering function is engaged
for the current helicopter position.

Two state machines are mainly handling this use case, namely the Con-
trol Mode (Figure 3.7) and the Mode Switch (Figure 3.8).

Before describing the interaction between the two automata in detail,
an overview of some of the design decisions that were made during the
development of the system is provided.

As previously described, a specific control function in the UASTechLab
RMAX system is called periodically with an update rate of 50Hz. In each
iteration, the system checks an internal flag and based on its value an ap-
propriate function is executed. The particular flag is set by a state machine
(using a SET action), e.g. for hovering Set Hover-Mode-AC (B.2.).

42 3. Hierarchical Concurrent State Machines

!"#$%&'(%)#*%+,#
!"#$%&#$'(

)#*+,-#$.,-/(

-."#/0)1,234#5$'()26'%77,+2$89#
0-1'2()#*+,-#$..12,34(56)(

:"#$'()26';('234#
5&%'#$'()2<&='2$89#
0-1#()#*+,-#&*#,!)(

)#*+,78,-/(

)#*+,9"',-/(

->"#$'()26'%7234#

)#*+,3**$*,-/(

?"#/0)1,234#5$'()2<&='2$89#
0-1'2()#*+,7:,34(56)(

--"#$'()26'%7234#
0-1#()#*+,-#$.,!)(

>"#/@$2A%B,(234#5&%'#$'()2<&='2$89#
0-1#(;$<1*,=$21,!)(

)#*+,>'?#,-/(

C"#/@$2D(;ECF234#5&%'#$'()2<&='2$89#
0-1#(/*&@AB,=$21,!)(

G"#/@$2D;H,28I234#5&%'#$'()2<&='2$89#
0-1#(/&:1,78,=$21,!)(

J"#/@$2K;&+234#5&%'#$'()2<&='2$89#
0-1#(C&'2?'D,=$21,!)(

L"#/@$2D(;MH234#5&%'#$'()2<&='2$89#
0-1#(/*&E:?'D,=$21,!)(

-C"#$'()26';('234#

N"#$'()26'%7234#
0-1#()#*+,-#$.,!)(

#-"$'()26'%7234#
0-1'2()#*+,-#$..12,34(56)(

-G"#/0)1,234#

Figure 3.7: The Control Mode automaton.

Each control function implemented in the UASTechLab RMAX system
follows a predefined template. Functions have three internal states and sup-
port two internal flags: an input and a status flag. The input flag is used
to switch between the internal function states, i.e. initializing, running and
stopping the execution of the function. The status flag is used for error han-
dling, for example, when the initialization of the function fails. Both flags
are used by the Control Mode automaton which models the internal states of
the function, i.e. Ctrl-Init-ST, Ctrl-Run-ST and Ctrl-Stop-ST states. Addi-
tional states present in the automaton (i.e. Ctrl-Off-ST and Ctrl-Error-ST)
are used to make sure the previous function has been properly stopped and
no other functions are initialized.

The Control Mode automaton sets the appropriate input flag and keeps
track of the control function status. Because each control function follows

3.3 Practical HCSM Examples 43

!"#$%&'#()*+,-#
!"#$%&#$'(

)'*#+,#$-+,.(."#/012'345#
/,0'1(2#34+,#$-+56(782(

93&:*';+,.(

<$=03*';+,.(

,#&>*4*?*';+2@0A:+,.(

,#&>*4*?*';+,.(

.3&BCD+,.(

.E!FCD(
8GH.I(

G!JD)JK(.E!2L(

6"#7+813(+%99'&345(M'$#(I'+K3$"'1+2IN(
/,0'1(84*;@#+%$10+56(DE2(
,0#(5%+93&:0+2#34+I'+!2(

:"#/012'345#M5%+93&:0+8*'*O@01+2IN(
/,0#(5%+93&:0+2#34+IP+!2(
K0#(2"330'#+<04*+7$O+DI(
7"#(<$=03*';+DI(
,0'1(782+<$=03+56(782(
,0'1(2#34+,#&3#+56(782(

;"#7+813<=345#

>"#/012'345(M<$=03+,#&>40+2IN(
/,0'1(<$=03+,#&>40+56(DE2(
/,0#(782+!"#$+)140+!2(

?"#@8AB:C345#
/,0#(782+!"#$+9"OQ+!2(
7"#(.3&BCD+DI(
,0'1(2#34+,#$-+56(782(

.E!FCD(
!"#$%&#$'(

D"#4E*+345#
/,0'1(782+<$=03+56(782(
,0'1(2#34+,#&3#+56(782(

.!L5(I88(

Figure 3.8: The Mode Switch automaton. Simplified view focused on a path
following control mode execution.

the predefined template, the Control Mode state machine handles all modes
transparently, i.e. there is no mode-specific state. When a particular control
function should be executed, a state machine (e.g. the Mode Switch) sends
a mode specific start event (e.g. PFC-Hover-EV) to the Mode Control au-
tomaton. This triggers one of the transitions B.2., B.3., B.4., B.5., or B.6.
during which appropriate internal flags are set by executing SET actions
(e.g. Set Hover-Mode-AC). In the next iteration of the outer loop (similarly
to Algorithm 3.2.1) the control function starts its execution following, of
course, the initialization and error handling states. If the initialization is
successful, the Control Mode automaton switches its state to Ctrl-Run-ST
and until the mode is stopped it is executed periodically in each iteration of
the outer loop.

The Control Mode automaton (Figure 3.8) is mainly interacting with
the Mode Switch state machine which implements the flight mode switch-
ing. This includes sequentialisation and coordination of control function ex-
ecution. For example, the automaton ensures that after the path following

44 3. Hierarchical Concurrent State Machines

!"#$%&'#()*+,-#
!"#$%&#$'(

)'*#+,#$-+,.(
+(/0#(1%0230'45(62&70(8"'49$'(
8$2(0:04"9$'(
.#/'0*3-+.$%&'.45#+%#678#

9"#8%0+:%2#$%&'#
!"#$%&#$'(

;#2<+,#$-+1=(>!?@?A(

+(4B047C(D$E02('$#(*'*9&<*F0G(50#H(
+(/#&2#(D$E02(*'*9&<*F&9$'(

;#2<+IJ+,.(

;#2<+K"'+,.(

4B047C(D$E02(*'*9&<*F0GH(

;#2<+)'*#+,.(

;#2<+,#$--0G+1=(>6?@?A(

62&7*'3+,.(

D$E02*'3+,.(

,#&L*<*F*'3+
;B047+,.(

,#&L*<*F*'3+,.(

+(4B047C(*/(L2&7*'3(M'*/B0GH(
+(/#$-(1%0230'45(62&70(
8"'49$'(
+(/&E0(4"220'#(B0<*4$-#02(
-$/*9$'(8$2(D$E02(8"'49$'(

;#2<+I7+1=(>6?N?A(

OP;+D$E02+1=(>!?Q?A(
/0#(D$E02(8$2(0:04"9$'(

;#2<+,#&2#+1=(>!?Q?A(

+(4B047C(*/(D$E02(/#&L<0(>R*#B*'(
/0#(L$"'G&2*0/AH(
+(/0#(S&3C(20&G5(8$2(4$%%&'G/(
.#/'0&#;%<':.(+=>2'.45#+%#678#

9%
0(

Figure 3.9: An execution trace for use case 1 showing the interaction between
the Control Mode and the Mode Switch automata.

execution a default hovering mode is switched on.
The Mode Switch state machine, additionally, generates events that are

sent to the high-level system (DRC), e.g. in the A.2. transition. It also reacts
to events sent from the DRC, e.g. the A.6. transition.

Figure 3.9 presents the interaction between the Control Mode and the
Mode Switch automata for use case 1. The time-line shows state transitions
and events exchanged between the two state machines. For easy reference to
the two state machine diagrams, the transition that generates a particular
event is given in brackets.

The execution starts with an exchange of two events, Ctrl-Stop-EV (A.1.)
and Ctrl-Stopped-EV (B.1.), to make sure no other control function is ac-
tive. The Mode Switch automaton executes a braking procedure (Braking-
ST). This procedure, also called emergency braking, is designed to stop the
helicopter before a default hovering mode is engaged. The procedure uses
the path following control mode with a predefined straight line path and a
zero target velocity value as an input.

When the braking procedure is finished the current helicopter position

3.3 Practical HCSM Examples 45

is saved to be used for the hovering function (i.e. Hovering-DO memory
slot). Two events are also sent to the Control Mode automaton. The first
event (PFC-Hover-EV (A.3.)) makes the Control Mode state machine set
the hovering function for execution (i.e. Set Hover-Mode-AC). The second
one (Ctrl-Start-EV (A.3.)) is starting the initialization procedure of the
function. After a sucessfull initialization the Ctrl-Ok-EV (B.8.) is generated
and the Mode Switch automaton changes its state to Stabilizing-ST. The
automaton stays in this state until a Hover-Stable-CO condition is satisfied.
The condition checks if the position, altitude, heading and velocity are within
hovering tolerance bounds. The tolerances used in the UASTech system are
set to: 5m for position, 2m for altitude, 5 degrees for heading, and 1 m/s for
vertical and horizontal velocities.

When the Hover-Stable-CO condition is satisfied, a Hover-Stable-EV
event is sent to the DRC computer and an internal system flag is set to in-
dicate that the system is in the autonomous mode and ready to accept new
commands (Set PFC-Auto-Idle-AC). The Mode Switch automaton changes
its state to Hovering-ST.

3.3.2 Use Case 2: Path Execution

The use case described in this section assumes the UAV is already in the
autonomous flight mode and the default hovering function is active (for ex-
ample after executing the use case presented in the previous section). The
description is focused on the execution of the path at the lowest control level
running on the PFC computer. Before describing the details, an overview of
the execution process from the perspective of a mission and all services in-
volved is provided. The standard path execution scheme in the UASTechLab
RMAX UAV for static operational environments is depicted in Figure 3.10.

A UAV mission is specified via a task procedure (TP) in the reactive layer
of our architecture, perhaps after calling a task-based planner. A TP is a
high-level procedural execution component which provides a computational
mechanism for achieving different robotic behaviors (section 2.2).

For the case of flying to a waypoint, an instance of a navigation TP
is created. It first calls the path planner service (step 1, Figure 3.10) with
the following parameters: initial position, goal position, desired velocity and
additional constraints.

If successful, the path planner (step 2) generates a segmented cubic poly-
nomial curve. Each segment is defined by start and end points, start and
end directions, target velocity and end velocity.

The TP sends the first segment (step 3, Traj3D-EV) of the trajectory
via the control system interface and waits for the Request-Segment-EV event
that is generated by the controller.

At the control level, the path is executed using a Path Following Control
Mode (PFCM, section 2.2.3). When a Request-Segment-EV event arrives
(step 4) the TP sends the next segment. This procedure is repeated (step

46 3. Hierarchical Concurrent State Machines

Task
Procedures*

HCSM
Interpreter

Other
Modes

Communi-
cation

Handling

PFC

DRC

Real-time
communication channel

Path Planner
Service*

Helicopter Server*

CORBA
HCSM Interpreter (C-API, CK)

GIS
Service*

Other
Services*

Hardware
Handling

Path
Following

Mode
Hovering

Mode

Distributed
System *- CORBA-based

Machine
Learning
Service*

CK

1 2 End points,
constraints Plan

4 3

Figure 3.10: Path execution scheme.

3-4) until the last segment is sent. However, because the high-level system
is not implemented in hard real-time it may happen that the next segment
does not arrive at the control kernel on time. In this case, the controller has
a timeout limit after which it goes into safety braking mode in order to stop
and hover at the end of the current segment.

The presented path execution scheme shows the interaction between var-
ious components of the system providing an overview of the execution pro-
cess. In the remainder of the section a detailed description of the execution
from the perspective of the control system running on the PFC computer is
provided.

As described, the path supplied by the navigation task procedure (gener-
ated by the path planner) is executed using the path following control mode.
The execution on the PFC computer is coordinated by three automata,
namely the Control Mode (Figure 3.7), the Mode Switch (Figure 3.8), and
the Traj3D (Figure 3.11).

As in the case of hovering mode described in the previous section, the
PFCM function implementation follows a predefined design template. The
function itself is executed by setting an appropriate internal flag using a SET
action (i.e. Set Traj3D-Mode-AC, B.3.) by the Control Mode automaton.

The Mode Switch state machine makes sure the default hovering function
is properly terminated before the PFCM function can be activated. Addi-
tionally, when the path execution is finished it engages the default hovering

3.3 Practical HCSM Examples 47

!"#$%&'()#
!"#$%&#$'(

)*&+,-./0'123./)(

*"#!+%,-.+/0012-34#
4/3'5(678.)*&+,-.9:(678(
/3'5(8#*2./#&*#.9:(678(

5"#!+%,-67-34#
;/0'123./31%3'#.8<=(
4/3'5()*&+,-.>'0#.9:(-?8(

)*&+,-.@"2A./)(
8"#!+%,-67-34#
;'$#(/0'123./31%3'#.8<=(
4/3'5()*&+,-.>'0#.9:(-?8(
/3'5(?3B"3C#./31%3'#.9:(-?8(

)*&+,-.D*&E0'1./)(

9"#!+%,-3%%/%-34#
;'$#(/0'123./31%3'#.8<=(
4/3'5()*&+,-.9**$*.9:(-?8(
/3#(9%.D*&E3.8#*2.<'.!8(

("#:;,<1-34#=$%&'->%%?@12-!6A#
4/3'5()*&+.!**0F35.9:(-?8(
/3'5(8#*2./#$G.9:(678(
/3#(H3#.I&C#.J6.!8(

)*&+,-./#$G./)(

B"#!+%,-.+/0012-34#

C"#:;,<1-34=3D-E%&71-F?G?<H12-!6A#
4/3#(9%.D*&E3.8#*2.<K.!8(
H3#(8"**3'#.L320.6$C(
6"#(L$F3*0'1.-<(

I"#$%&'()-34#
46"#()*&+,-.-<(
/3'5(/31%3'#.?3M30F35.9:(-?8(

/31%3'#.!F&02./)(

#*J"#:;,<1-34#=$%&'->%%?@12-!6A#
4/3'5(8#*2./#$G.9:(678(
/3#()*&+.!**0F35.)$1123.!8(

K"#$%&'()-34#
4(6"#()*&+,-.-<(
/3'5(/31%3'#.?MF.9:(-?8(

)*&+,-.D*&E0'1./#$G./)(

**"#:;,<1-34#=$%&'-!,/<1-!6A#
4/3'5(/31%3'#.9**$*.9:(-?8(
/3'5(8#*2./#$G.9:(678(*5"#!+%,-.+/0012-34#

4/3#(9%.D*&E3.8#*2.<'.!8(

)*&+,-N8O3ME./)(

Figure 3.11: The Traj3D automaton.

function, similarly to the example shown in the previous section.
The role of the Traj3D automaton is to coordinate an exchange of events

with other services (i.e. TP) and to assure that the appropriate segment data
is available to the PFCM control function when needed. For example, if the
necessary events containing a description of the next segment do not arrive
on time, an emergency braking procedure is executed.

An example time-line for a path execution showing the interaction be-
tween the three automata is presented in Figure 3.12. The example focuses
on a single segment execution.

The Mode Switch automaton is in the Hovering-ST state. After receiving
a Traj3D-EV event from the DRC computer, the data describing a segment
for execution is saved in the memory slot used by the PFCM function (i.e.
Traj3D-DO). Additionally, the Ctrl-Stop-EV event (A.6.) is sent to the Con-
trol Mode automaton in order to stop the execution of the default hovering
function. At this time point, the Mode Switch automaton transitions to the
TRAJ3D-ST (Figure 3.11) state and remains in it until the PFCM execution
is finished. Then it takes care of the switching to the default hovering mode.

48 3. Hierarchical Concurrent State Machines

!"#$%&'#()*+,-#
!"#$%&#$'(

."#/%0+1%2#$%&'#
!"#$%&#$'(

)#$*(+$,-.(/"'01$'(

2#.3456478(

2#.349"'478(

0:-0;<(+$,-.(='>):-?@(

2#.347#$*4AB(
C!DEDF(

+$,-.>'G478(

7#&H>3>I>'G4
2:-0;478(

2#.347#$**-?4AB(
CJDKLDF(

MN248.&OPQ4AB(
C2DKDF(

2#.347#&.#4AB(
C2DKDF(

/"#314567#
!"#$%&#$'(

8.&OPQ478(

8#1','*9'�:;#
4()&,-(8.&OPQ4AB(?&#&(
/$.(MN2R(/"'01$'(

8.&OPQ42:-0;478(

)#&.#(MN2R(>'>1&3>I&1$'(

2#.3456478(

2#.349"'478(

0:-0;<(MN2R(>'>1&3>I-?@(

2#.34S'>#478(

)-#(MN2R(/$.(-T-0"1$'(

2#.345;4AB(
CJDUDF(

8.&OPQ47>'G3-478(

8.&OPQ47#$*478(

4(0:-0;<(!..>,-?(&#(#:-(
?-)1'&1$'@(
4()&,-(V&)#(W&X*$>'#(/$.(
+$,-.(/"'01$'(
8#<'0&#!11*9'&8:;#+%#7=/#

2#.347#$*478(

2#.347#$*4AB(
C2DPDF(

)#$*(MN2R(/"'01$'(

0:-0;<(MN2R(='>):-?@(

2#.347#$**-?4AB(
CJDKLDF(

+$,-.>'G478(

AT>#4AB("#"#"#

"#"#"#

4(0:-0;<()>'G3-()-G%-'#@(
8#<'0�>0*+8:;#+%#
7=/#

/"#314567#
!"#$%&#$'(

1%
-(

Figure 3.12: An execution trace for use case 2 showing the interaction be-
tween the Control Mode, the Mode Switch and Traj3D automata.

The TRAJ3D-ST state is a superstate for the Traj3D automaton effectively
starting its execution in its init state.

The Traj3D automaton waits for the confirmation from the Control
Mode state machine that the hovering function has been terminated (Ctrl-
Stopped-EV (B.10.)) and sends two events back to initialize and start the
execution of the PFCM control function (i.e. PFC-Traj3D-EV (C.1.) and
Ctrl-Start-EV (C.1.)). It transitions to the Traj3D-Check-ST state waiting
for the confirmation that the PFCM function has been initialized (Ctrl-Ok-
EV (B.8.)). When the event arrives the condition if a single segment has
been received for the execution is checked. A single segment is defined by
the path parameters, i.e. the end velocity for the segment is set to zero. If
the condition is satisfied the event informing the DRC computer that the

3.4 Summary 49

segment has been accepted for execution is sent.
At this time point the PFCM starts the execution of the segment and the

Traj3D automaton is in the Traj3D-Single-ST state and remains in it until
the Traj-Arrived-CO condition is not satisfied. In the UASTechLab RMAX
UAV the segment has been successfully executed when the distance to the
final waypoint is smaller than 3 meters. When the condition is satisfied
the last waypoint of the path is saved for the hovering function and the
Traj-Arrived-EV event is sent to the DRC computer informing it that the
path execution is finished. Additionally the Traj3D automaton stops the
execution of the PFCM function by sending the Ctrl-Stop-EV event (C.3.)
to the Control Mode state machine. When the termination of the execution
is confirmed by receiving the Ctrl-Stopped-EV event (B.10.) the Traj3D
automaton transitions to its exit state and the Mode Switch state machine
takes care of engaging the default hover mode, similarly to the example
shown in the previous section.

3.4 Summary

In summary, this chapter presented a development framework for hybrid
control systems used in autonomous robots. The HCSM framework uses hi-
erarchical concurrent state machines as a modelling abstraction and allows
the specification of the control flow of a software system in an easy visual
formalism. Additionally, the visual state diagrams used during the design
are transformed into an intermediate text format and executed directly on
the robotic platform using a HCSM interpreter. Thanks to its compact and
efficient implementation, the interpreter runs in the real-time part of the sys-
tem. During the design process the user has to provide a minimal amount
of C-code implementation for the control functions and conditions based on
sensor data. The necessary functions for communication are generated auto-
matically by the framework based on the user specification. The behaviour
of the system can then be easily changed at a run time by editing the state
diagrams and uploading the new text file to the HCSM interpreter. Exam-
ples of HCSMs used on the UASTechLab RMAX UAV were presented. The
system has proven to be robust, reliable and easy to extend and we have
used it in a number of autonomous missions through a period of several
years.

The HCSM framework has been further developed and renamed to Ex-
tended State Machines (ESMs) [67]. The new framework adds several useful
modelling features. The main changes include: explicit modelling of task
states, data flow, control and system flags, an event filtering mechanism and
no explicit external events. It also includes a visual tool for designing and
debugging state machines, which makes the development of new and existing
systems easier.

The ESM uses three types of states: simple states, superstates (as in
the HCSMs), and task states. Control and other functions are modelled

50 3. Hierarchical Concurrent State Machines

explicitly in the task states. A schedule for function execution is provided
by a scheduler included in the framework. The data used as input/output to
the task state functions (data flow) is also explicitly modelled in the ESM
formalism by Data paths. Asynchronous external events are modelled by a
combination of pulse event and guard conditions, thus only one internal
event queue is used in the ESM. Additionally the ESM introduces an event
filtering mechanism which limits the scope of internal events. The full details
are available in [67].

Chapter 4

Dynamic Path Replanning

This chapter presents a dynamic path replanning mechanism developed for
the UASTechLab RMAX system. The first section provides background in-
formation on path planning algorithms. The basic concepts needed for under-
standing the path planning problem and algorithms are provided, followed
by a description of the two sample-based planners used in the system.

The remainder of the chapter provides a detailed description of the re-
planning method together with experimental data.

4.1 Background

Path planning and motion planning algorithms deal with the problem of
generating collision free paths or motions for a robot in order to navigate in
an environment. Before defining a path planning problem, a description of
some basic concepts is provided.

Three types of representations can be found in the literature for describ-
ing and solving path planning problems, namely workspace, configuration
space and state space.

Workspace representation

The physical space in which the robot navigates is called the workspace
W. It is most often modelled as R3 but can be restricted to R2 - for ex-
ample for robots navigating in a single plane (e.g. car-like robots in a 2D
flat environment). This type of representation is particularly well-suited for
collision checking since the robot and the obstacles are represented in the
same space. However in many practical applications the workspace is not
sufficient to describe the planning problem and a more expressive repre-
sentation is necessary. In the case of our example car-like robot it is not
sufficient to only consider the car position (px, py) but also its orientation ψ
(Figure 4.1).

51

52 4. Dynamic Path Replanning

!"

#"

py0

px0

!0

!g

pyg

pxg

Figure 4.1: An example of a car-like robot path planning problem.

Configuration space representation

A more generic representation commonly used in path planning is a
configuration space (C or C-space) which is defined as a vector space or
manifold of robot configurations q. A set of parameters that uniquely defines
the location of all points of the robot in the workspace W is defined as a
robot configuration. In the case of our car-like robot example q = (px, py, ψ).
Not all robot configurations are attainable due to obstacle constraints. The
free space or Cfree is a subset of the C-space of a robot that is free from
collisions with obstacles.

State space representation

In order to deal with robotic systems in motion, the configuration of
the robot is insufficient to describe the problem. Additionally, the dynamic
state of a robot (i.e. velocity) has to be accounted for. The state space
representation extends the configuration space by adding first order deriva-
tives q̇ of the robot configuration q. It means that for a robot configuration
q = (q0, . . . , qn), the state, x, is defined as:

x = 〈q, q̇〉
q̇ = (q̇0, . . . , q̇n)T

As an implication, for an n-dimensional C-space, the state space X is
a 2n-dimensional vector space. In the case of our car-like robot example a
single configuration in the state-space is defined as x = (px, py, ψ, ṗx, ṗy, ψ̇).

4.1 Background 53

Constraints

As previously described, one basic class of constraints used for path plan-
ning is a set of collision constraints. However additionally two classes have
to be considered in practice, namely the kinematic and dynamic constraints.
Both of these types of constraints belong to a class of non-holonomic con-
straints (also called motion constraints) and are common for many types of
robots.

A robot is non-holonomic if the controllable degrees of freedom are less
than the total degrees of freedom. Our car-like robot is an example of a
non-holonomic robot. It can only drive forwards or backwards and it cannot
drive sideways. Further, its turning radius will depend on its velocity.

The kinematic constraints are constraints where only first-order deriva-
tives of the configuration parameters are allowed. Acceleration (i.e. second-
order derivatives) are allowed in the dynamic constraints.

A helicopter platform also belongs to a non-holonomic class of robots. Al-
though, it can move freely in any direction its freedom of movement depends
on its speed. When a helicopter is hovering or flying with a small speed it
could be considered to be holonomic, but in this case its usage would be very
limited. The algorithms presented later in this section handle the kinematic
and dynamic constraints of the UASTechLab RMAX platform.

Path Planning

The path planning problem is defined as finding a path in Cfree that
connects the start (q0) and the goal (qg) configuration. A simple example
of a path planning problem for a car-like robot without taking into account
motion constraints is presented in Figure 4.1 where q0 = (px0, py0, ψ0) and
qg = (pxg, pyg, ψg).

There are two main classes of motion planning algorithms: combinatorial
and sample-based [51]. The problem of finding optimal paths between two
robot configurations in a high-dimensional configuration space is intractable
in general. Canny and Reif [14] prove that even a simple problem of find-
ing the optimal path for a point-like robot in three-dimensional space with
polyhedral obstacles is NP-hard. Another example is presented by Reif and
Wang [75] where additionally non-holonomic constraints on the curvature
radius are added (e.g. car-like robot). In this case the problem of finding an
optimal path is proven to be NP-hard even for two-dimensional problems.

Combinatorial motion planning uses an exact representation of the orig-
inal problem (often referred as exact algorithms). The algorithms in this
class are complete and optimal, but most often computationally impractical
for solving real-world problems (i.e. more than 2 dimensions). Sample-based
methods use an approximation of the Cfree continuous space (in configu-
ration space or state-space) in order to deal with the complexity of high-
dimensional problems. The discrete representation of the original continuous

54 4. Dynamic Path Replanning

space (typically represented in the form of a graph) sacrifices strict complete-
ness for a weaker definition such as resolution completeness or probabilistic
completeness [51].

An algorithm that for all problem instances correctly reports whether
there is a solution in a finite amount of time is said to be complete. In
sample-based planning resolution completeness is related to the denseness
of the approximation of the Cfree continuous space. As the number of it-
erations of the sample-based algorithm goes to infinity the samples come
arbitrarily close to any configuration. An algorithm that samples the Cfree

space deterministically is said to be resolution complete. Such an algorithm
will find a solution in finite time, if one exists. Otherwise, if there is no
solution to the problem it may run forever. Probabilistic completeness is
related to random sampling which is used in many sample-based planners.
An algorithm is said to be probabilistically complete if the probability that
it finds an existing solution converges to one when the number of samples
goes to infinity.

4.1.1 Probabilistic Roadmaps

The original probabilistic roadmap (PRM) algorithm [44] works in two
phases, one offline and the other online. In the offline phase a discrete
roadmap representing a free configuration space is generated using a 3D
world model. First, it randomly generates a number of configurations and
checks for collisions with the world model. A local path planner is then
used to connect collision-free configurations taking into account kinematic
and dynamic constraints of the helicopter. Paths between two configurations
are also checked for collisions. This results in a roadmap approximating the
configuration free space. Figure 4.2 presents an example of the PRM offline
phase for a simple 2D environment.

In the online or querying phase, initial and goal configurations are pro-
vided and an attempt is made to connect each configuration to the previously
generated roadmap using the local path planner. A graph search algorithm
such as A∗ is then used to find a path from the initial to the goal configura-
tion in the augmented roadmap. An example of the PRM online phase for
a simple 2D environment is presented in Figure 4.3.

Figure 4.4 provides a schema of the PRM path planner used in the
UASTechLab RMAX system. The planner uses an OBBTree-algorithm [34]
for collision checking and an A∗ algorithm for graph searching. Here one can
optimize for shortest path, minimal fuel usage, etc. The following extensions
have been made with respect to the standard version of the PRM algorithm
in order to adapt the approach to our UAV platform.

• Multi-level roadmap planning
The standard probabilistic roadmap algorithm is formulated for fully
controllable systems only (i.e. holonomic). This assumption is true
for a helicopter flying at low speed with the capability to stop and

4.1 Background 55

!"#$%&!"#$%$&'($")*++,-,*%./&$$"
&'%0*1")*%234&'5*%-"

!"#$%'!"6-$"+*)'+"7'(8"7+'%%$&"(*"
)*%%$)("7*--,9+$")*%234&'5*%-"

()"*+,#%+-%".#%+/0123#%$.45#!"
0,-)&$($"3&'78"'77&*:,1'5%3"
)*++,-,*%./&$$"-7')$"

Figure 4.2: Example PRM roadmap generation (offline phase) for a simple
2D environment.

!"#$%&!"#$%"&'()&"*)+,"*&)--%."+'"
('--%(+"/-/0)&")-1"2')&"
('-324.)0'-$"+'"+,%".')15)*"

!"#$%'!"6%.7'.5"$%).(,"/-"+,%"
%8+%-1%1".')15)*"9%:2:"4$/-2";<"
$%).(,")&2'./+,5="

!"#$%(!"6%.7'.5"$5''+,/-2")-1"
(4.>%".%*&)(%5%-+"9'*0'-)&="

?')&"
('-324.)0'-"

@-/0)&"
('-324.)0'-"

@-/0)&"
('-324.)0'-"

@-/0)&"
('-324.)0'-"

?')&"
('-324.)0'-"

?')&"
('-324.)0'-"

Figure 4.3: An example of the PRM online phase for a simple 2D environ-
ment.

56 4. Dynamic Path Replanning

Figure 4.4: PRM path plan generation.

hover at each waypoint. However, when the speed is increased the
helicopter is no longer able to negotiate turns of a smaller radius, which
imposes demands on the planner similar to non-holonomic constraints
for car-like robots. In this case, linear paths are first used to connect
configurations in the graph and at a later stage these are replaced
with cubic curves when possible. These are required for smooth high
speed flight. If it is not possible to replace a linear path segment with
a cubic curve then the helicopter has to slow down and switch to
hovering mode at the connecting waypoint before continuing. In our
experience, this rarely happens.

• Runtime constraint handling
Our motion planner has been extended to deal with different types
of constraints at runtime not available during roadmap construction.
Such constraints can be introduced at the time of a query for a path
plan. Some examples of runtime constraints currently implemented
include limiting maximum and minimum altitude, adding forbidden
regions (no-fly zones) and placing limits on the ascent-/descent-rate.
Such constraints are dealt with during the A∗ search phase.

The mean planning time in the current implementation running on the
current helicopter hardware and for a typical flight environment is below
1000ms and the use of runtime constraints does not noticeably influence the
mean. A more detailed description of the modified PRM planner is provided
by Pettersson [74].

4.1 Background 57

Figure 4.5: RRT path plan generation.

4.1.2 Rapidly Exploring Random Trees

The rapidly exploring random trees (RRT) [49, 50] is a variant of the sample-
based algorithm that does not use a precompiled roadmap as opposed to the
PRM planner. Instead, it uses a specialized search strategy to construct a
roadmap online rather than offline to find solutions quickly during runtime.
This is a strong advantage of the RRT algorithm since it does not require
knowing a 3D model of the environment before hand. It makes it applicable
for dynamic and unknown environments.

The algorithm generates two trees rooted in the start and end config-
urations respectively, by exploring the configuration space randomly from
both directions. While the trees are being generated, attempts are made at
specific intervals to connect them to create one roadmap. After the roadmap
is created, the remaining steps in the algorithm are the same as with PRMs
(Figure 4.5). In comparison with the PRM planner, the mean planning time
with RRT is also below 1000ms, but in this case, the success rate is much
lower and the generated plans are not optimal which may sometimes cause
anomalous detours [74].

Figure 4.6 presents an example of RRT execution in a simple 2D envi-
ronment. Note that the resulting plan is not optimal or as optimal as in
the case of the PRM planner. It can happen that even after applying a post
processing path optimization step (e.g. removal of redundant configurations)
the result can contain detours. In the case of our simple 2D example (Fig-
ure 4.6), the tree expansion from the goal node can grow either left or right
of the top-right obstacle since the exploration is random. Additionally, each
time the planner is executed with the same init and goal configurations,
generated plans will most certainly be different, as opposed to the PRM
with a fixed precompiled roadmap.

58 4. Dynamic Path Replanning

!"#$%&!"#$%"&'()&"*)+,"*&)--%."+'"
/01&2"+3'"+.%%$".''+%2"1-"+,%"
1-14)&")-2"5')&"('-650.)4'-$"

!"#$%'!"78%."+3'"+.%%$").%"
$0((%$$90&&:"('--%(+%2;"*%.9'.<"
$%).(,"1-"+,%".%$0&4-5".')2<)*"
=%>5>"0$1-5"7?"$%).(,")&5'.1+,<@"

!"#$%(!"A%.9'.<"$<''+,1-5")-2"
(0.B%".%*&)(%<%-+"='*4'-)&@"

C')&"('-650.)4'-"

D-14)&"
('-650.)4'-"

C')&"('-650.)4'-"

D-14)&"
('-650.)4'-"

C')&"('-650.)4'-"

D-14)&"
('-650.)4'-"

Figure 4.6: Example execution of RRT in a simple 2D environment.

4.2 Dynamic Replanning of the Path

The obstacle avoidance problem in the unmanned aircraft domain is most
commonly handled using a reactive control component. Such solutions un-
fortunately suffer from problems with local minima. For example, model
predictive control (MPC, [84]) solves the control problem for a certain time
horizon, but it does not preserve global plan optimality.

Motion planners, on the other hand, have a global view of the problem
and can generate plans that take all known (old and new) obstacles into
account. Our objective is therefore to use motion planners to the maximum
extent possible. Each time a new obstacle or no-fly zone obstructing the cur-
rent flight path is detected, a Strategy Selector determines which replanning
strategy can be expected to yield the best plan within the available time.

The amount of time available depends on several factors. The most obvi-
ous ones are the range at which the new obstacle is detected and the UAV’s
current velocity. Given these factors, the time remaining before the UAV
reaches the obstacle can be calculated. However, we cannot spend all of this
time calculating a new path, or we will finish just in time for a collision. We
must reserve enough time to change to a new trajectory. This is subsumed
by the time required to perform an emergency brake in case replanning takes
longer than estimated. As soon as we detect a target at a given distance, we
therefore subtract the required braking distance for our current velocity as
well as a safety margin of 6 meters, the minimum safe distance between the
helicopter and an obstacle. Dividing this with the UAV’s current velocity
gives us the time window in which replanning can be performed.

As described in section 3.3.2, paths generated by the path planners are
executed using a reactive Task Procedure (TP). The TP sends sequentially
a set of path segments to the Path Following Control Mode (PFCM) for

4.2 Dynamic Replanning of the Path 59

!"#$!"#$

%&
'(
)*
$+#

*"
#)

,$-
$

%&
'(
)*
$+#

*"
#)

,$.
$

-$

.$
/$

,+,01,-$
,2$

,-$

!
, -
!"

#3
4,
$

!
, -
,3
,0
&$

51
06
()
*$

,3-$

,011(7#-$
,+,01,.$

,.$

!
, -
!"

#3
4,
$

,011(7#.$

,3.$

51
06
()
*$

!
, .
,3
,0
&$

-$.$ /$8#*"#),$-$ 9#:4#+,$)#;,$+#*"#),$ 8#*"#),$.$

<=$ =%>?$

@7#),+A$

Figure 4.7: Execution time-line for a path consisting of 2 segments.

60 4. Dynamic Path Replanning

Init

Align
Send

segment

Exit

Plan

not aligned

aligned

arrived at goal

no-fly zone updated
or obstacle detected

re
qu

es
t

se
gm

en
t

re
ce

iv
ed

Estimate
timeout

timeout
calculated

Check
collision

Replan

Wait

tim
eo

ut
co

nd
itio

n

up
da

te
d

pa
th

no collision

Strategy
Selection

Times
Estimation

Strategy
Library

collis
ion dete

cte
d

strategy query

strategy

path

pl
an

 p
at

h

w
ith

 s
tra

te
gy

pa
th

estimated timings

estimate timings

for segments

Static environment

plan path

Figure 4.8: The dynamic path replanning automaton.

execution. Figure 4.7 depicts a timeline plot of the execution of a trajectory
(2 segments). At time t0, a TP sends the first segment of the path to the
PFCM controller and waits for a Request segment event which arrives im-
mediately (t1) after the helicopter starts to fly (tstart1). Typical delays for
receiving a Request segment event (t1− t0) are well below 200ms. Time to1 is
the timeout for the first segment which means that the TP has a ∆t1timeout

(to1 − t1) time window to send the next segment to the PFCM before it
initiates the safety braking procedure. If the segment is sent after to1, the
helicopter will start braking. In the current implementation, segments that
are sent after the timeout are ignored. This will be changed in a future im-
plementation. In practice the ∆t1timeout time window is almost always large
enough to use one of the standard path planners for the path repair. The
updated segments are then sent to the PFCM controller transparently.

Note that a new obstacle may be detected at any time point, thus not
always the full ∆t1timeout time window can be used for the path repair.
Choosing a particular scheme for the path repair is discussed later in this
chapter and in chapter 5.

There are several services that are used during path replanning stage.
They are called when changes in the environment are detected and an update
event is generated in the system. The augmented state machine associated

4.2 Dynamic Replanning of the Path 61

with the TP used for the dynamic replanning of the path is depicted in
Figure 4.8. The TP takes the start and the end points and the target velocity
as input. The TP then calls a path planning service (Plan state) which
returns an initial path.

If the helicopter is not aligned with the direction of the flight, a command
to align is sent to the controller (Align state).

The TP then sends the first segment of the generated path to the PFCM
controller (Send segment state) and calls the Prediction service to estimate
a timeout for the current segment (Estimate timeout state). Based on the
segment timeout and system latency, a condition is calculated for sending
the next segment. If there is no change in the environment the TP waits
(Wait state) until the timeout condition is true and then sends the next
segment to the PFCM controller.

In case new information about newly added or deleted forbidden regions
(no-fly zone updated) arrives, the TP checks if the current path is in colli-
sion with the updated world model (Check Collision state). If a collision is
detected in one or more segments the TP calls a Strategy Selector service
(Strategy Selection state) to determine which replanning strategy is the most
appropriate to use at the time. The Strategy Selector service uses the Pre-
diction service for path timings estimation (Times Estimation state) to get
estimated timeouts, total travel times etc. It also uses the Strategy Library
service (Strategy Library state) to get the available replanning strategies that
may be used to replan when calling the path planner (Replan state).

The TP terminates when the UAV arrives at the goal position. More de-
tails on the Strategy Selector service, the Strategy library and the Prediction
service will follow in the next subsections.

4.2.1 Prediction Service

All time estimations that have to do with paths or part of the paths are
handled by the Prediction service. It derives the velocity profile of the vehicle
along the path using the path following control mode and the helicopter
model (section 2.2.3). The profile is based on the path parameters, the cruise
and final velocity and takes into account the control mode and platform
dynamic parameters. By applying an integration of the velocity profile over
the time, specific timings can be derived, i.e. timeouts, total times, and
combinations of those. For instance, in the case of flying a two-segment
trajectory (see the execution timeline in Figure 4.7) it can estimate timeouts
(∆t1timeout, ∆t2timeout), total travel times (∆t1total, ∆t2total) as well as a
combined timeout for the first and the second segment (to2-t1).

4.2.2 Strategy Library

When part of the path is no longer valid, the path planner service can be
called in order to repair an existing plan or to create a new one. There are

62 4. Dynamic Path Replanning

many strategies that can be used for this step which can give different results
depending on the situation.

!"#$"%&'()(

!"#$"%&'(*(

!"#$"%&'(+(

,%-./01"%#(102.304(
5$'10.4"(

6.4$-(1$"7(
849$-.:(1$"7(

;%<(0=2"$/-%(

!"#$"%&'(>(

Figure 4.9: Examples of replanning strategies.

The Strategy Library stores different replanning strategies including in-
formation about the replanning algorithm to be used, the estimated execu-
tion time and the priority. Example strategies are shown in Figure 4.9.

• Strategy 1
Replanning is done from the next waypoint (start point of the next
segment) to the end point. This implies longer planning times and
eventual replacement of collision-free segments that could be reused.
The distance to the obstacle in this case is usually large so the gen-
erated path should be smoother and can possibly result in a shorter
flight time.

• Strategy 2
Segments up to the colliding one are left intact and replanning is done
from the last collision-free waypoint to the end point. In this case,
planning times are cut down and some parts of the old plan will be

4.3 Time Analysis of Replanning Strategies 63

reused. But since the distance to the obstacle is shorter than in the
previous case, it might be necessary for the vehicle to slow down at
the joint point of two plans, this can result in a longer flight time.

• Strategy 3
Replanning is done only for colliding segments. The helicopter will
stay as close to the initial path as possible.

• Strategy 4
There can be many other strategies that take into account additional
information that can make the result of the replanning better from a
global perspective. An example can be a strategy that allows new pass
waypoints that should be included in the repaired plan.

Note that each of these strategies progressively re-uses more of the plan that
was originally generated, thus cutting down on planning times but maybe
producing less optimal plans. The decision as to which strategy to use is
made by the Strategy Selector service described in the next subsection.

4.2.3 Strategy Selector Service

The Strategy selector service is responsible for choosing the strategy or
strategies to execute in the event of path occlusion. It keeps track of the
time that it uses, so that a valid path is always available when the timeout
condition becomes true. The Strategy Selector holds information as to which
segments of the path were invalidated and it can use the Prediction service
to get estimated timings for the path or parts of the path. Based on that and
the available strategies (from the Strategy Library) it can make a decision
which strategy or strategies to use for replanning at the current time. If many
strategies are applied and more new plans are generated, it also evaluates
them according to a given optimization criterion that is declared by the user
or another service. For instance, if the time window for making a decision
about the next segment is short then the fastest strategy is used in order to
produce a valid plan on time.

The Strategy Selector is also responsible for updating information about
strategies in the Strategy Library, in particular estimated execution times.
The same strategies in different environments might require less or more time
for execution. This information is fed back to the library, so the next time
the Strategy Selector has more accurate information about the execution
time and can make a better decision which strategy to apply.

4.3 Time Analysis of Replanning Strategies

In order to check the feasibility of using the proposed replanning technique
a set of necessary experiments were conducted. The main objective was to

64 4. Dynamic Path Replanning

check if any of the proposed strategies can be executed in time during typical
mission execution.

We have used both the path planners available in the UASTechLab
RMAX system (i.e. PRM and RRT, section 4.1). We included the first three
strategies from the Figure 4.9 in the Strategy Library. During the flight for-
bidden regions were randomly added by the ground operator. In order to
compare the performance of different strategies only one strategy was used
per experiment.

Typical values of parameters related to the execution and the planning
phases are presented in Tables 4.1 and 4.2, for Strategy 1 and Strategy 3,
respectively. Strategy 2 is omitted from the comparison because typical re-
sults of applying this strategy fall in between Strategy 1 and Strategy 3 (plan
repair vs full replan).

Table 4.1: Results of the experiments using Strategy 1

path number added min. max. minimum
Planner length of forbidden segment replanning ∆t

(m) segments regions length(m) time (ms) (ms)
422.52 6 4 34.87 519 3518
420.55 6 4 40.95 486 2898
432.17 6 4 62.50 568 3673

PRM 427.94 6 5 53.15 524 3285
536.98 7 5 50.22 631 3158
472.40 7 6 45.25 603 2918
539.18 8 6 53.24 728 3153
500.12 7 4 26.68 315 2862
422.58 5 4 74.07 438 4079
392.89 5 5 61.11 441 3625

RRT 565.06 8 5 26.76 521 3648
503.42 6 5 65.07 954 3773
464.96 6 5 28.61 595 3866
491.42 8 6 20.40 326 1803

Observe that in the case of Strategy 1 (Table 4.1), ∆t (time window for
replanning, last column) is generally greater than four times the amount of
time required to generate full plans using either the PRM or RRT planners.

The difference is even greater (up to 20 times) in the case of Strategy 3
(Table 4.2). This is as expected, the more the existing plan is reused the less
time is needed to repair it. Although, replanning times for applying Strategy
3 are much smaller, the paths have much more segments (up to 15). Such
paths usually imply a smaller average velocity which typically results in a
longer flight time.

Values of the ∆t presented in the results are calculated under the as-
sumption that the obstacle is detected as early on as possible. In practice,

4.4 Experimentation 65

Table 4.2: Results of the experiments using Strategy 3

path number added min. max. minimum
Planner length of forbidden segment replannig ∆t

(m) segments regions length (m) time (ms) (ms)
524.47 12 4 28.23 196 2938
514.51 10 4 41.42 185 2892
607.72 11 4 33.98 163 2928

PRM 594.59 14 5 13.02 160 1080
586.74 12 5 20.53 163 1005
546.15 12 5 16.60 153 2607
575.15 13 6 29.38 202 2907
495.07 10 4 24.06 104 2088
527.95 11 4 12.24 240 1249
558.45 10 4 23.79 160 2096

RRT 562.07 12 5 22.14 132 1529
586.70 15 5 15.83 156 2686
604.90 13 5 21.97 251 2556
576.27 15 6 16.12 206 2696

however, the detection can occur during any moment in the time window,
thus the choice of which strategy to apply becomes not as trivial as choosing,
for example Strategy 1 (because it most often yields best results and from
the presented experiments it would be applicable in all of the cases). The
problem of choosing a specific strategy is discussed later in chapter 5.

4.4 Experimentation

This section presents an example of a short flight where the dynamic re-
planning mechanism was tested. Figure 4.10 shows the logged flight-test
data superimposed on the map of the area. Gray polygonal area marks the
no-fly zone added during the flight by the ground operator. Black dotted
line shows the invalidated part of the path (between the WP2 and WP3
waypoints).

The flight started with an autonomous take off, and the helicopter began
executing the planned path towards the designated waypoints. After arriv-
ing at the first one (WP1), the direction of flight changed to south and the
execution of the planned path (from WP1 through WP2 to WP3) began.
A ground operator added a no-fly zone intersecting the flight path. An ap-
proximate position of the helicopter at the time of adding the no-fly zone
is marked by the white arrow. The information was sent to the helicopter
and the on-board system activated the replanning mechanism. A new path
was planned, and the flight continued avoiding the no-fly zone. After the
helicopter arrived at the last waypoint (WP3), it was commanded to return

66 4. Dynamic Path Replanning

!!"#$%&
'()*+'&

,-.&
/01%"+2&0)*&
30)*()4&5+6(#+)&

7+"89&:+)%&
0**%*&

,-;&

,-<&

,-=&

Figure 4.10: Use of the dynamic replanning in a real mission.

to home base and land (WP0). The replanning of the path was performed
using the PRM planner and the Strategy 3. Its execution took 187 ms.

4.5 Summary

This chapter discussed the problem of the dynamic path replanning. Two
sample-based path planning methods available on the UASTechLab RMAX
helicopter have been described. As shown in the analysis of the path ex-
ecution, when a new obstacle is detected there can be up to few seconds
available for the system to repair the current flight path.

The proposed dynamic replanning framework uses a combination of a
path planning algorithm together with a set of replanning strategies to en-
sure the executed path is always collision-free. The timing analysis of the
proposed strategies proves the feasibility of using such a solution. An impor-
tant component of the framework is the Strategy Selector service responsible
for choosing the planner/strategy tuple that will yield the best possible so-
lution in the available time before the potential collision. The solution to
this selection problem is discussed in the next chapter.

Chapter 5

Choosing Replanning
Strategies

In the previous chapter a mechanism for dynamic replanning was introduced.
As described, the basic idea is to use the path planning algorithms to the
maximum possible extent when new obstacles or no-fly zones obstructing
the current flight path are detected.

We proposed a set of example strategies that can be used during the
replanning phase (section 4.2.2, page 61). For most strategies, calculating
the expected time requirements for replanning is considerably less straight-
forward than calculating the available time to collision. The timing depends
on numerous features of the current plan, the obstructed segment and the
relevant areas of the map. Without taking such information into account,
we would have to fall back on always using a simple approach such as Strat-
egy 3. As this strategy only makes local repairs, it is generally faster and its
time requirements vary less. But in many cases we do have enough time to
use better strategies – if we have the ability to predict that this is the case
for the current environment and path.

Many path planning methods are also parameterized in various ways.
For example, PRM planners (section 4.1) generate a roadmap graph in a
pre-processing phase and search this graph whenever a plan is required.
Increasing the number of nodes in the graph will increase the plan quality,
but again, this will also affect the time required for plan generation.

The selection of a particular replanning strategy and a parameterized
path planning algorithm is performed by a Strategy Selector (section 4.2.3).
This service should determine which choice can be expected to yield the
best plan within the available time. The problem is presented in Figure 5.1.
Given the domain information (e.g. map), current context (e.g. initial path)
and available time to collision, what is the expected replanning time and
flight time for each of the possible strategy/planner choices? Although the
flight time was used as the plan quality metric other criteria can be used,

67

68 5. Choosing Replanning Strategies

Planner/Strategy
Selection

!"#$%&'%&(")#$*"&'
+,))-&.'/"&.-0.'

1%#-'."'/"22%3%"&4'
-565'2$3-)'3-&3")'

7-82$&&%&6'*#-9'
:2%6;.'*#-'<'82$&'=,$2%.>9'

Probabilistic Roadmaps
(PRM) 2000
Strategy 1

PRM 2000
Strategy 2

PRM 7000
Strategy 1

Planner X
Strategy Y

?' ?'

Figure 5.1: The basic idea of choosing replanning strategies.

for example fuel consumption.
The problem presented is a classical prediction problem. Many applica-

tions of prediction can be found in different fields, for example in signal pro-
cessing, control theory, robotics, and artificial intelligence. The foundation
of any prediction is a model which encapsulates the knowledge, or assump-
tions, concerning the predicted system. Without the model the prediction
mechanism would not be able to conclude anything about the future. Thus
any prediction would be a guess.

The model building/acquisition techniques can be divided into three cat-
egories: modelling from first (or physical) principles, estimation (or learning)
from data, and encoding of “expert knowledge”. Those techniques are often
combined, for example in system identification applications [55]:

• White-box identification: a dynamical system is described by differ-
ential equations and the estimation of their parameters is based on
experimental data. For example, an aircraft flight model.

• Gray-box or semi-physical identification: a generic model structure is
known and the estimation of parameters is derived from data. For
example, a water tank system [31].

• Black-box identification: no knowledge of either the model structure
or physical principles is known. The model is solely derived from data.
For example, stock market predictions.

In the case of our problem we do not have any knowledge of the structure
of the model that could be applicable. Neither do we know how the context
and domain information influences planning time and planning quality. We
do have a general feeling that when the domain becomes more complex the
required time will increase, but what is the physical relation which could

5.1 Support Vector Machines 69

!"#$%&'(")*)

!"#$%&'(")+)

Input Features
 (Domain information,

current context) ,-.#&'#$)
/0%12')3%4#)

!0566#"78'"5'#19)

,-.#&'#$)
:#.0566%61)3%4#)

Figure 5.2: The concept of building predictors using machine learning.

describe that dependency? Therefore, our prediction model has to be derived
using the black-box approach.

Another important issue is the computational complexity of building
and using the model. In our case the predictive model should be as fast
as possible in order to leave as much of the available time to the selected
planner/strategy repair process. It should be at least an order of magnitude
faster than running an actual strategy/planner tuple. Otherwise, it may
become impossible to execute any of the available repair strategies since the
time spent on making the prediction was too long.

We therefore use machine learning techniques to generate a suitable set
of predictors for each particular flight environment and aircraft type, where
each motion planner is viewed as a black-box function 5.2. We assume a
stationary distribution, where the relevant properties of the map do not
change over time. If significant changes are detected, for example because
large numbers of new obstacles have been detected, the prediction model
can be recomputed for use in future missions.

In the following subsections, we will describe the algorithms we have
used, the features that were selected and the results of empirical experimen-
tation.

5.1 Support Vector Machines

Several machine learning techniques were tested and compared, including
support vector machines (SVM) [93, 94], least median squared linear regres-
sion, gaussian processes for regression, isotonic regression, and normalized
Gaussian radial basis function networks.

With their high generalization performance and an ability to model non-
linear relationships, support vector machines have been shown to outperform
other alternatives in many applications. They are applicable to many real-
world problems such as document classification and pattern recognition [94],
face detection and recognition [53] and vehicle detection [87]. As it turns out,
SVMs also yield the smallest prediction errors for our domain.

The idea underlying (non-linear) support vector machines is that n-

70 5. Choosing Replanning Strategies

input space! feature space!

!"

separating

hyperplane!

#!!(x)+b=0"

Figure 5.3: Mapping and separating hyperplane.

dimensional input training data can be mapped by a non-linear function
Φ into a high-dimensional feature space, where the resulting vectors are lin-
early separable (Figure 5.3). One then constructs a separating hyperplane
with maximum margin in the feature space.

Consider a classification problem where xi ∈ Rn for i = 1, ..., l is a
training set of size l and yi = ±1 are class labels. Given a suitable Φ, the
SVM method finds an optimal approximation f(x) = ω ·Φ(x) + b such that
f(x) > 0 for positive examples and f(x) < 0 for negative examples, where
ω ∈ Rn is a vector perpendicular to the separating hyperplane and b ∈ R is
an offset scalar. This is referred to as Support Vector Classification (SVC).

The SVM approach can also be used for solving regression problems
(Support Vector Regression, SVR), where each xi in the training set is as-
sociated with a target value yi ∈ R. The SVR tries to find a function f(x)
that can be used for accurate approximation of future values. The generic
SVR function can be written as

f(x) = ω · Φ(x) + b

and can be solved by maximizing W (α∗, α) =

−1

2

l∑

i,j=1

(αi − α∗i)(αj − α∗j)Φ(xi) · Φ(xj)

−ε
l∑

i=1

(αi + α∗i) +

l∑

i=1

yi(αi − α∗i)

where αi and α∗i are Lagrange multipliers, subject to

l∑

i=1

(αi − α∗i) = 0 and αi, α
∗
i ∈ [0, C]

5.2 Prediction Features 71

which provides the solution

f(x) =

l∑

i=1

(αi − α∗i)(Φ(x) · Φ(xi)) + b

As expressed above, dot products are calculated in a high-dimensional or
possibly infinite-dimensional space. This can often be avoided by replacing
Φ(xi) · Φ(xj) with a suitable kernel function K(xi, xj) satisfying the con-
ditions of Mercer’s theorem. Examples of commonly used kernel functions
include:

• linear: K(xi, xj) = xi · xj

• polynomial: K(xi, xj) = (xi · xj + 1)
d

• RBF: K(xi, xj) = exp
(
−γ ‖ xi − xj ‖2

)
, γ > 0

• PUK: K(xi, xj) = 11+(2
√
‖xi−xj‖2

√
21/ω−1

σ

)2
ω

We have used the Pearson VII Universal Kernel (PUK) [92]. The PUK
provides equal or stronger mapping power compared to several standard ker-
nels, and can be used as a generic alternative to the common linear, polyno-
mial and Radial Basis Function (RBF) kernels. We use iterative Sequential
Minimal Optimization (SMO) [83, 85] to solve the regression problem, which
has minimal computational requirements [98].

5.2 Prediction Features

Many parameters influencing planning time and plan quality were consid-
ered as potential inputs to the machine learning algorithm. After empirical
testing, a set of features were selected which produced good results. The
following input features were used for building the prediction models (all
normalized to the range of [-1,1]):

• Information about the initial plan: number of segments, path length,
estimated flight time, time required for initial plan generation, and the
target velocity. Information about static obstacles, such as buildings,
trees and static no-fly zones, is implicit in these measures.

• Information about dynamically added obstacles including no-fly zones:
total area and number of all new obstacles in region 0 , region 1,
region 2, region 3, and the entire map (see Figure 5.4).

• Information about the obstructed segment: number of segments from
the current point to the obstructed segment, and Euclidean distance
between the start and the end of the obstructed segment.

72 5. Choosing Replanning Strategies

region 0
region 1
region 2
region 3

No-fly zone area:

d1

d2

d3

Figure 5.4: No-fly zone area calculation.

Correlation-based feature selection [37] was used to assess the relevance of
these features relative to the six replanning strategies (defined in the next
subsection) and the two quantities to be predicted (time requirements and
plan quality). The results differed considerably across the twelve cases and
may also be dependent on the map being used. As support vector machines
are quite robust against the inclusion of irrelevant features, we decided to
use the full set of features for all prediction models.

We currently use 2D area information for dynamically added obstacles,
but may augment this with 3D obstacle volumes in the future. The param-
eters d1, d2 and d3 in Figure 5.4 were chosen empirically and for our test
models were equal to 20, 40 and 60 meters, respectively. The choice of pa-
rameters can be automated by building a set of models using the training
set for different values of di and comparing the resulting prediction accuracy
on the test set.

5.3 Experimental Results

The method has been evaluated on two environments of different complexity.
The first environment is a 3D model of a real flight test venue, an urban area
of approximately 1 km2. It consists of 205 buildings and other structures (e.g.
trees) constructed by around 20000 polygons. The model has a simplified
flat ground elevation representation. The second environment extends the
first by adding ground elevation data, increasing the number of polygons
in the 3D model to 120000. Maps were generated using manned aircraft
with a laser sensor, with an accuracy of 10 cm. Experiments take place in
hardware-in-the-loop simulation with all the necessary services running as
in a real flight.

5.3 Experimental Results 73

Environ-
ment

S
tr

at
eg

y

Nodes
Model Evaluation Results

Replanning time Flight time
prediction [%] prediction [%]

1

1a 2000 −0.06± 4.17 −0.85± 4.35
2a 2000 −1.49± 7.85 0.06± 2.82
3a 2000 −1.25± 21.38 0.38± 2.17
1b 7000 −0.23± 1.72 0.49± 4.46
2b 7000 −0.86± 7.51 −0.17± 2.70
3b 7000 −0.14± 8.69 0.35± 1.80

2

1a 2000 −0.38± 6.13 0.84± 4.40
2a 2000 −1.05± 13.60 0.35± 3.00
3a 2000 −0.73± 23.94 0.31± 3.31
1b 7000 −0.20± 4.48 0.56± 3.95
2b 7000 −2.55± 11.23 0.09± 2.42
3b 7000 0.30± 10.08 0.23± 2.16

Table 5.1: Relative mean error of prediction and standard deviation for the
PRM planner.

We began the learning process using the PRM path planner with a 5-
dimensional configuration space (3-dimensional position plus 2-dimensional
direction of flight). A set of 1500 training samples was used for each of the
two environments.

Each sample was generated in the simulation environment as follows.
First, a random number of no-fly zones in the range from 1 to 15 were added
to the environment. Then, an initial path was generated by the planner,
with start and goal positions chosen randomly within the environment. A
single no-fly zone was used to randomly obstruct one of the initial path
segments, corresponding to an obstacle newly detected by, for example, a
laser range finder sensor. Finally, six plan repair strategies were applied and
the resulting timing and path quality values were logged. Strategies 1a, 2a
and 3a were configured as shown in Figure 4.9 using a sparse 2000-node
roadmap. Strategies 1b, 2b and 3b are similar, but use a denser 7000-node
roadmap.

All the experiments presented in this section were performed with a fixed
target velocity of 10 m/s and distances between start and goal configurations
greater than 700 m. This setup allows us to present the results in a clear way
and compare optimal and worst case scenarios over all 500 test cases that
were generated for the evaluation. The performance of the machine-learned
models is similar in the cases where these assumptions do not hold.

SVR parameter tuning was performed using exhaustive grid search over
the kernel parameters σ and ω. Other parameters (i.e. the C and ε constants
for support vector regression) were chosen manually.

74 5. Choosing Replanning Strategies

Prediction quality. 500 samples were used for the evaluation. For each
sample, we calculated the relative error of prediction for both plan quality
and replanning time, defined as (yi− ŷi)/yi, where ŷi is the prediction and yi
is the measured value. Table 5.1 presents the mean of the relative errors (the
Relative Mean Error of Prediction, RMEP) and their standard deviation for
each environment and strategy.

As seen in the table, the quality of a repaired path (expressed as the
required flight time for the path) can be predicted with high accuracy for
each of the six strategies and in each of the environments. More importantly
the standard deviation of the error is also quite small, ranging from 1.80%
to 4.46%, demonstrating that the prediction rarely deviates greatly from the
true value. The deviation is greater for strategies 1a/b, where a larger part
of the path is replanned.

We can also see that it is somewhat more difficult to predict the time
required for replanning. However, using a greater number of nodes decreases
variability considerably. Part of the remaining variation is due to unavoid-
able factors such as processor load and Java garbage collection.

For each environment, we have analyzed what these prediction properties
mean in terms of enabling us to satisfy our main objective: choosing the
highest quality replanning strategy that is possible given the available time.

To make this choice for a particular path and environment, we first pre-
dict the expected replanning time and the expected resulting plan quality
for each of the six strategies. We then use the highest-quality strategy among
those whose predicted replanning time is sufficiently low. This leads to the
question of what “sufficiently low” means. The simplest criterion would be
that the predicted replanning time does not exceed our current time win-
dow. However, the predicted time is an expected value, not an upper bound.
Using this criterion, there may be a significant risk that the time window is
exceeded. An alternative would be to add one or two standard deviations to
the predicted time, and choose among those strategies where this estimate
does not exceed the time window. The results of using these three decision
criteria are presented in several graphs.

Plan quality. Figure 5.5 is generated from testing in environment 1, and
presents the mean flight time (over 500 samples) as a function of the available
decision time window.

With a time window of only 50 ms, strategy 3a is chosen for all samples
and all three time-dependent decision criteria (direct, 1-sigma and 2-sigma).
This leads to a mean flight time of around 118 seconds. When the time
window increases, higher quality strategies are predicted to succeed for some
of the samples, and the mean flight time steadily decreases. As expected,
flight times decrease more quickly for the direct criterion, where no safety
margins in terms of plan generation time are added.

As stated before, the best option available without predictive abilities
is to use a strategy that is very fast regardless of the environment or the
properties of the original path. Strategies 1a/b and 2a/b regenerate a large

5.3 Experimental Results 75

0 200 400 600 800 1000 1200 1400 1600 1800 2000

95

100

105

110

115

120

Decision Time Window [ms]

Fl
ig

ht
 ti

m
e

[s
]

mean flight time, direct
mean flight time, 1−sigma
mean flight time, 2−sigma
mean flight time, default strategy 3a
mean flight time, default strategy 3b
mean best flight time

Figure 5.5: Plan quality (flight time) as a function of the available decision
time window for environment 1.

part of the path, and therefore require more time than strategies 3a/b.
They also vary more depending on the environment. Thus, strategies 3a/b
are more suitable as baselines with which our results are compared. As these
baselines do not take time windows into account, we see them as straight
lines at approximately 118 and 116 seconds of flight time, respectively.

For comparison, we also show the mean flight time that would result
from always using the best possible strategy: Slightly less than 95 seconds
for the average sample. Realizing this in practice would require a very long
time window, with sufficient time to run all strategies and choose the best
result. As seen in the figure, the three decision criteria based on machine
learning tend to reach a quality level quite close to this optimum given a
sufficiently large time window.

Success rates. Figure 5.6 shows the success rates for each decision criterion.
Here we see the flip side of the improved flight times for the direct criterion:
With time windows up to around 700 ms, this criterion fails to deliver plans
on time in up to 5% of the cases. Whether this is acceptable depends on the
application at hand and the penalty associated with having to slow down
or stop. The 1- and 2-sigma criteria are considerably better in this respect,
and can hardly be discerned from each other in the graph. Always using

76 5. Choosing Replanning Strategies

0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

100

Decision Time Window [ms]

Su
cc

es
s

ra
te

 [%
]

mean success rate, direct
mean success rate, 1−sigma
mean success rate, 2−sigma
mean success rate, default strategy 3a
mean success rate, default strategy 3b

Figure 5.6: Success rate of execution of the chosen strategy in the available
decision time window for environment 1.

strategy 3a yields the highest success rate (but the lowest quality). Strategy
3b often requires several hundred ms and thus yields a very low success rate
for shorter time windows.

Second environment. Figures 5.7 and 5.8 show the corresponding results
for environment 2. Due to the slightly larger prediction errors in this envi-
ronment, the mean success rate for the direct criterion is somewhat worse.
However, the 1-sigma and 2-sigma criteria still yield considerably better
plans than either of the fixed strategies (3a/b) for time windows of around
400 ms and up.

Predictions for RRT. A similar predictive model has been built for the
RRT planner. As could be expected, prediction is generally not as accurate
for this planner, with a higher relative mean error of prediction. This is
mostly due to the more random nature of the RRT algorithm: Instead of us-
ing a single sampled roadmap for all queries, the RRT randomly explores the
environment from the start and goal position for each single planning query.
Time requirements and plan quality still depend on the selected features,
such as the area of the newly detected obstacle or obstacles, but also have
a significant random component, making the construction of a prediction
model with high accuracy considerably harder.

5.4 Related Work 77

0 200 400 600 800 1000 1200 1400 1600 1800 2000

85

90

95

100

105

110

Decision Time Window [ms]

Fl
ig

ht
 ti

m
e

[s
]

mean flight time, direct
mean flight time, 1−sigma
mean flight time, 2−sigma
mean flight time, default strategy 3a
mean flight time, default strategy 3b
mean best flight time

Figure 5.7: Plan quality (flight time) as a function of the available decision
time window for environment 2.

5.4 Related Work

In the framework proposed by Morales et al. [71], a set of planners can
cooperate to generate a roadmap covering a given environment. Machine
learning is used to divide the environment into regions that are homogeneous
with respect to certain features, such as whether obstacles are dense or
sparse, after which a suitable planner is chosen for each region. Region-
specific roadmaps are then created and eventually merged. This approach
shows promising results, but is explicitly limited to roadmap-based planning
and does not handle the choice of replanning strategy.

A similar approach is presented by Rodriguez et al. [77], where the strate-
gies used by the RESAMPL motion planner are guided by the entropy of
each region.

Burns and Brock [13] propose a model-based motion planning technique,
where an approximate model of the configuration space is built using locally
weighted regression in order to increase planner performance and make pre-
dictions about unexplored regions. Although the technique can be used for
problems involving motion planning in dynamic environments it does not ex-
plicitly consider time constraints. Machine learning is used to provide faster
solutions, but there is no attempt at providing the best possible solution for

78 5. Choosing Replanning Strategies

0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

100

Decision Time Window [ms]

Su
cc

es
s

ra
te

 [%
]

mean success rate, direct
mean success rate, 1−sigma
mean success rate, 2−sigma
mean success rate, default strategy 3a
mean success rate, default strategy 3b

Figure 5.8: Success rate of execution of the chosen strategy in the available
decision time window for environment 2.

a given time window, which is required for our problem.
Hrabar [41] presents a UAV system using a stereo-vision sensor for ob-

stacle avoidance. A∗ search is used within the PRM planner to calculate
the initial path. When an obstacle is detected, D∗ search is used [86]. In
this approach there is no consideration for how much time replanning may
require. It is assumed that the aircraft can stop and hover, potentially ex-
cluding the use of this technique for platforms such as fixed-wing aircraft.
The experiments presented use a flight velocity of 0.5 m/s.

A number of motion replanning algorithms have been proposed in the
literature, including DRRT [30] and ADRRT [29]. These algorithms incre-
mentally generate improved solutions, thereby spending part of their time on
generating solutions that will not be used. In contrast, our framework uses
machine learning to determine suitable bounds for replanning in advance,
spending almost all available time generating the final solution.

Chapter 6

Map Building Using A
Laser Range Finder

An accurate model of the environment is a prerequisite for sucessfull nav-
igation. As described in chapter 4, the path planning algorithms use a ge-
ometrical description of the environment to generate collision-free paths.
The safety of a UAS operation therefor depends on having an accurate 3D
model. Maps may become inaccurate or outdated over time because of the
environment changes (e.g. new building structures, vegetation growth etc.).
Thus, adequate sensors and techniques for updating or acquiring new 3D
models of the environment are necessary.

Among the many sensors available for providing 3D information about
an operational environment, laser range finders provide high accuracy data
at a reasonable weight and power consumption. One of the reasons for the
innovation in this particular sensor technology is its wide use in many in-
dustries. Example applications include automation tasks [52], volume or
stockpile measuring [15], forest inventory [3], and surveillance [95]. Laser
range finders have also received a great deal of interest from the robotics
community. Their main usage is in navigation and mapping tasks for ground
robotic systems. Examples include: localization [12], 2D Simultaneous Lo-
calisation and Mapping (SLAM [68]), 3D SLAM (includes 3D position [16]),
and 6D SLAM (includes 3D position and attitude [72]).

In this chapter we present techniques for acquiring 3D models of the
environment using a UAS platform equipped with a laser range finder sensor.
First, a description of the sensor integrated with the UASTechLab RMAX
platform is presented. Second, a method consisting of several steps required
for obtaining a world model is described. The steps include the necessary
transformations of acquired sensor data and methods for improving a map
quality when several measurements are merged together. Next, the initial
results of some acquired 3D models during a flight test session are presented.
Finally, a short feasibility analysis of using such a sensor in the context of the

79

80 6. Map Building Using A Laser Range Finder

0°

40° 140°

Figure 6.1: Top view of the SICK LMS-291 scanning field and the axis of
rotation when using the rotation mechanism.

proposed dynamic replanning framework (chapter 4) concludes the chapter.
This chapter is work in progress and should be considered tentative. But

it is useful as a framework for future research.

6.1 Integration of the Laser Range Finder

The device integrated with the UASTechLab RMAX system is the popular
LMS-291 from SICK1. The laser has been mounted on an in-house developed
rotation mechanism which allows for obtaining half-sphere 3D point clouds
even when the vehicle is stationary. Similar approach to the integration of
the laser range finder with a RMAX UAV platform is used by Whalley et al.
[97].

Technical specification of the laser range finder system

LMS-291 is a non-contact optical distance measurement system and it
does not require any reflectors or markers on the targets nor scene illumi-
nation to provide real-time measurements. It performs very good both in
indoor and outdoor environments. The system is equipped with a rotating
mirror which allows for obtaining distance information in one plane in front
of the sensor with a selectable field of view of 100 or 180 degrees (Figure 6.1).
The detailed specification of the system is presented in Table 6.1.

The laser unit used with the UASTechLab RMAX system has been mod-
ified to reduce its weight from 4.5 to 1.8 kg to make it more applicable for
use on-board a UAV. The general system schematics and a photograph of
the unit is presented in Figure 6.2. The LMS-291 is attached to a rotating
mount which allows for continuous rotation of the sensor around the middle
laser beam (solid line in Figure 6.1). This enables obtaining data not only
in one plane but in a half-sphere in front of the sensor.

1SICK AG. Homepage: http://www.sick.com

6.1 Integration of the Laser Range Finder 81

Range 0-80m with 1cm distance resolution
0-8m with 1mm distance resolution

Angular resolutions 0.25, 0.5, 1 degree
Response times 53ms, 26ms ,13 ms
Data interface RS232, RS422
Data rates 9.6, 19.2, 38.4, 500 kbaud
Power approx. 20W
Weight approx. 4.5 kg (factory)

approx. 1.8 kg (after modification)

Table 6.1: SICK LMS-291 parameters.

!"#$%&
• !"##!$%&!'()*+,!---!
• !.!/0!12$!
• !3!/0!4567!89:;(!
• !<##=>5+8!6(9:5?!!
!!!(@A()6:B)!>B598!

C2DE(F7G5>!1$2H!
DI6A(,!

'B6:*B)!JHKLKMN!
2OA+8(!J9B??K!
P:AF7KI5QN!

1BA5*B)!
$(F75):6,!

D-RS!G$DT3U.!
1DV33!
15)W(!85A5!

1D3X3!
$BAB9!
FB,,5)86K!
PB6:*B)!

1D3X3!

Figure 6.2: A photograph and schematic of the integration of the rotating
laser range finder sensor with the UASTechLab RMAX UAV.

82 6. Map Building Using A Laser Range Finder

Speed Regulated up to 120 rotations per minute
Angular resolution 0.028 degrees
Range 360 degrees continuous
Data interface RS232, RS422
Power Regulated, max approx. 10W
Weight 2 kg

Table 6.2: Rotating laser mount parameters.

The laser rotation mechanism

The in-house developed rotating mount for the laser range finder consists
of an aluminum frame which holds the motor, rotating shaft, and a slip ring
connecting the power and the serial interface to the laser. The properties of
the rotating laser mount are summarized in Table 6.2.

The mount is attached to the body of the UAV through a set of dumpers.
They were chosen based on payload vibration measurements during a flight
test with a laser substitute of the same weight. The vibrations were mea-
sured using an acceleration sensor. Several sets of dumpers were tested and
the ones providing the best isolation from influence of the UAV vibrations
were chosen. The amount of vibrations transferred to the laser is within the
specification of the LMS-291.

The motor of the mount is controlled through a serial interface from a
dedicated PC104 computer serving the laser (Figure 6.2). Speed, acceleration
and holding power can be adjusted to the needs of a mission. The range data
received from the LMS-291, UAV state and the mount motor position are
logged by the dedicated computer in a synchronized manner.

6.2 Scan Transformation

We define a point cloud (also referred to as scan) as a set of range mea-
surements done in one 180 degree revolution of the rotation mechanism. A
range measurement (line-scan) is a single reading from the laser range finder
(Figure 6.1).

In order to compute a 3D environment model, the measurements from
the laser range finder (LRF) have to be transformed into the world coor-
dinate system. In short, the laser measurements are relative ranges in the
sensor coordinate system (Figure 6.4). The helicopter position and orienta-
tion as well as the potential misalignment between the LRF and the rotation
mechanism has to be taken into account when transforming the local mea-
surements into the world coordinate system. This allows for merging of a
set of line-scans taken at different attitudes and positions of the helicopter
in order to transform them into the world coordinate system. All coordinate
systems involved in the transformation are depicted in Figure 6.3. The four

6.2 Scan Transformation 83

!"#

$"#

$%#

&"#

&%#

!%#

!'#

$'#

!(#

&(#

$(#

')*+,-./)0#
1-/23-4#
5),624+75#

"27)0#

(-0*8#

"27)0#
5)2790)5)4/7#

Figure 6.3: Coordinate systems used in the scan transformation in the
UASTechLab RMAX platform.

steps of the transformation are presented next. A superscript is used to an-
notate a particular coordinate system in each of the equations (for example
XL denotes vector X in the LRF coordinate system).

Step 1: Polar to Cartesian coordinate system LRF transformation.

The laser range finder line-scan defined in polar coordinates is:

pLi =
[
rLi , α

L
i , β

L
i

]T
(6.1)

where r = r0, . . . , rn is the vector of range data measured by the LRF
(Figure 6.4), α is the horizontal angle, and β is the angle of rotation around
the XL axis.
The line-scan pLi in Cartesian coordinates of the laser range finder is:

pLi =
[
xLi , y

L
i , z

L
i

]T
(6.2)

The transformation of the polar to the Cartesian coordinate system is cal-
culated by applying the following Cartesian transformation TP2C :

xL

yL

zL

 = TP2C(r, α, β) =

r sin(β) cos(α)
r sin(β) sin(α)

r cos(β)

 (6.3)

84 6. Map Building Using A Laser Range Finder

!"#$%&'($

)*$)+$

,-$

.-$
/-$

-01')$20+3'$4&+5')$

!$

"#

Figure 6.4: Polar and Cartesian coordinate systems of the laser range finder.

Step 2: Transformation of the LRF data to rotation mechanism coordinate
system.

Figure 6.5 presents the principle (simplified in two dimensions) of the
transformation between the LRF and the rotation mechanism coordinate
systems.

In the following steps, a standard generic combined translation and rota-
tion transformation matrix [40] which transforms between a and b coordinate
systems is used:

Ta2b =

r11 r12 r13 x
r21 r22 r23 y
r31 r32 r33 z
0 0 0 1

 (6.4)

The upper left 3x3 matrix represents the rotation transformation, and
the [x y z]T portion of the matrix represents the translation between the
two coordinate systems.

The line-scan can be transformed into the rotation mechanism coordinate
system (pMi =

[
xMi , y

M
i , zMi

]T
) as follows:

xM

yM

zM

1

 = TL2M

xL

yL

zL

1

 (6.5)

The rotation and translation parameters of the TL2M matrix have been
found using the following calibration procedure. First, a set of raw measure-
ments (line-scans) for a predefined scene was collected. The scene included

6.2 Scan Transformation 85

laser&

rota)on&
mechanism&

ZL&

XL&

XM&

ZM&
TLM&

Figure 6.5: Displacement between the laser range finder and the rotation
mechanism.

a flat surface with several round reflective markers placed at known posi-
tions. The laser beams hitting the markers would be dissipated making the
measurements in those regions easy to filter out from the rest of the scan.
Second, the transformation parameters were found by manual adjustment
of the values and previewing of the resulting scene. Additional verification
of the calibrated scene was performed by measuring of the diameter of the
markers and the distances between them.

Step 3: Transformation to the helicopter coordinate system.

Similarly as in the previous step, a line-scan in the helicopter coordinate

system (pHi =
[
xHi , y

H
i , z

H
i

]T
) is derived as follows:

xH

yH

zH

1

 = TM2H

xM

yM

zM

1

 (6.6)

The parameters of the TM2H matrix have been found by measuring the
rotation and translation from the center of the rotation mechanism to the
center of the inertial measurement unit of the UASTechLab RMAX UAV.

Step 4: Transformation to the world coordinate system.

As described in chapter 2, the UASTechLab RMAX system is equipped
with a GPS receiver and an inertial measurement unit. Data from both

86 6. Map Building Using A Laser Range Finder

sensors are fused using a Kalman filter. Pitch, roll and yaw angles, and
position estimates are the parameters of the last transformation matrix
(TH2W) used to transform the line-scan to the world coordinate system

(pWi =
[
xWi , yWi , zWi

]T
):

xW

yW

zW

1

 = TH2W

xH

yH

zH

1

 (6.7)

To summarize, the measurement taken by the LRF is transformed to the
world coordinate system by applying the described four steps. A set of point
clouds (consisting of line-scans) acquired during the flight constitutes a 3D
model. In the following section, techniques for improving the raw 3D map
are discussed.

6.3 Scan Alignment

Scan alignment, also referred to as scan registration deals with the prob-
lem of finding a transformation between two point clouds. As discussed in
the previous section, during the mapping process as the robot traverses the
environment a set of collected scans is transformed to the common world co-
ordinate system. Ideally, the mapping process would be finished at this step
and a collection of point clouds would form a 3D map of the environment.
In practice, however, these measurements are subject to several sources of
error. These include, for example, sensor inaccuracy, measurement noise, en-
vironmental conditions (such as visibility and temperature), vibrations, the
reflectance properties of the target object, and an uncertainty of the position
and attitude when the measurements are taken. The degree of influence of a
particular error source on the accuracy of the measurement varies. Neverthe-
less, one of the main contributors is the uncertainty of the robot position and
attitude estimations. Comprehensive study of error budget for laser range
finder mapping applications is presented by Alshawa et al. [2], Reshetyuk
[76].

Figure 6.6 presents a simplified example of the influence of pitch angle
uncertainty on the measurement error depending on the distance to an ob-
stacle. The larger the distance to the obstacle, the larger the error of the
measurement (e0 vs e1). At close distances, for example 20 meters, a 1 de-
gree difference in the pitch estimation will introduce an error of around 0.6
meters in the range measurement. For the distance of 60 meters, the error
increases to around 2 meters.

The state estimation in the UASTechLab RMAX platform is done by
fusing a GPS position with an attitude estimate delivered by the inertial
measurement unit (IMU) of the Yamaha RMAX helicopter (section 2.1).

6.3 Scan Alignment 87

!!"
!#"

$% #"&
"! #'

#(
"

$ #"&
"! #"

)#"*"$%#+$#"
$% !"
&"!

!'
#(

"
$!"
&"
! !

"

)!"*"$%!+$!"

,"

Figure 6.6: A simplified example of the influence of pitch angle uncertainty
on the LRF measurement error.

Both of these measurements have a certain accuracy. In the case of the GPS
receiver, its nominal accuracy is within 1 meter. The angles estimated by
the Yamaha IMU have around 2 deg accuracy. The resulting accuracy of the
fused data is of course smaller nevertheless it can introduce a significant error
in the acquired 3D map as discussed in the presented example (Figure 6.6).
In order to decrease this type of error a registration technique can be used
where a pair-wise scan alignment is performed.

Various methods have been proposed in the literature for scan regis-
tration. Many of them are suitable for 2D/3D scan alignment often used
on robotic platforms. Examples are Iterative Closest Point (ICP [6]), Iter-
ative Dual Correspondences (IDC [57]), probabilistic Iterative Correspon-
dence (pIC [69]), Normal Distributions Transform (NDT [7]), 3D-NDT [59],
nonrigid ICP [36, 43] or Least-Squares Matching [58]. Implementations of
a number of scan matching methods are also available in the Point Cloud
Library (PCL [82]).

As an initial step we have used a variant of the ICP algorithm available in
the Mobile Robot Programming Toolkit (MRPT)2. It is an implementation
of the three-dimensional version of the algorithm presented by Besl and
McKay [6].

The ICP algorithm is one of the most commonly used methods for reg-
istering a pair of point clouds and in fact many other algorithms (also some

2Developed at Machine Perception and Intelligent Robotics Research Group, Univer-
sity of Málaga. Homepage: http://www.mrpt.org/

88 6. Map Building Using A Laser Range Finder

Table 6.3: Results of applying the ICP algorithm on three example scan
pairs presented in Figure 6.7.

Source Target Translation Rotation

scan ID scan ID [meters] [degrees]

(#points) (# points) x y z roll pitch yaw

0(24281) 1(24259) 0.49 -0.06 0.39 1.12 -0.71 -0.84

5(17435) 6(18788) -0.42 -0.077 0.063 -0.90 0.94 -0.20

11(22563) 12(23301) 0.12 0.05 -0.11 0.22 0.09 0.20

listed above) are based on similar intuitions. The ICP iteratively revises the
transformation parameters by minimising the sum of squared distances be-
tween corresponding points in the two scans. The correspondence between
points is assigned by using the nearest neighbor criterion. The algorithm
terminates when the sum of square distances is below a certain threshold.
The ICP, as any gradient descent method, is applicable when a relatively
good starting transformation is known. Otherwise, the convergence to the
global optimum cannot be guaranteed and the algorithm may end up in a
local minimum.

In the case of data collected using the UASTechLab RMAX UAV, the
point clouds are sufficiently close so such a problem does not occur. The state
estimation provided by the Kalman filter is accurate enough to provide a
good starting point for the registration algorithm.

The ICP was applied on a number of point cloud pairs with various
results. It was possible to improve a number of scans with good visual result.
Figure 6.7 presents three example scan pairs before (left side) and after the
application of the ICP algorithm (right side). White arrows in examples 1
and 2 highlight the misalignment of the point clouds in the vertical planes
representing building walls. The white arrow in example 3 emphasizes the
offset between the horizontal lines representing a building rooftop. Results
of the ICP registration for the three examples are presented in Table 6.3. A
source scan denotes the initial scan to which a target scan is matched.

The maximum translation error between two scans in the presented ex-
amples is 49 cm. In 3D maps based on a collection of scans the accumulative
error may be even larger. Such errors, if not corrected, can narrow down the
operational environment of the UAV. For example, a narrow passage be-
tween two buildings can be excluded from the map although, in reality,
there is enough space for the UAV to fly through.

Although, the ICP algorithm was successfully applied to a number of
point cloud pairs, in some cases it failed due to a large noise in the range
measurements. Figure 6.8 shows an example of measurement errors in a
single point cloud. White arrows point to the misalignment of range mea-
surements within a scan shown from top and side views. Such errors are
most probably related to reflectance properties of the scanned object sur-

6.3 Scan Alignment 89

!"#$%&'()!

!"#$%&'(*!

!"#$%&'(+!

Figure 6.7: Examples of the ICP application.

90 6. Map Building Using A Laser Range Finder

!"#$%&'(!)&*'$%&'(!

Figure 6.8: Examples of measurement errors in a single point cloud.

face due to several factors as material properties, polarization, and surface
colour, moisture, roughness and temperature.

Using the ICP algorithm on the point clouds with large measurement
errors prevents the algorithm from finding an appropriate alignment (i.e.
converging to the global minimum). In such cases results are often worse
than before the application of the alignment procedure. Further investiga-
tion of other suitable scan registration methods (previously listed) has to be
conducted. Two promising techniques that are more robust towards mea-
surement errors are the 3D-NDT [59] and nonrigid ICP algorithm [36, 43].

6.4 Using 3D Maps for Navigation

The following section presents initial results of the map building procedure
using a laser range finder sensor. In the first section, models built during a
flight test are presented and used with the existing path planning algorithms.
The second section provides a short analysis of the use of the laser range
finder for collision avoidance in the context of proposed dynamic replan-
ning framework. Models presented are based on raw measurements without
applying scan registration techniques.

6.4.1 Static Environment

Several flights were performed during which both the laser range finder data
and UAV state estimates were collected. Figure 6.9 presents a reconstructed
elevation map of the Revinge flight test area (the left side) focusing on two
building structures. A photo of corresponding buildings is presented on the

6.4 Using 3D Maps for Navigation 91

Figure 6.9: Overview of the reconstructed elevation map of the Revinge
flight test area based on the laser range finder data (left) and a photo of
corresponding building structures (right).

Figure 6.10: Reconstructed elevation map of the Revinge flight test area
based on the laser range finder data.

92 6. Map Building Using A Laser Range Finder

!"#

$"#

$"#

%"#

Figure 6.11: Overlay of the new elevation map with the existing Revinge
flight test area model.

right side of the figure. The elevation map is built by sampling the LRF
data with 1 meter resolution and constructing a set of triangles in order to
represent the elevation.

A complete reconstructed elevation map of the area is presented in Fig-
ure 6.10. In order to assess the fidelity of the newly generated model an
overlay with the existing model was generated and the result is presented in
Figure 6.11. The new map includes changes in the environment, i.e. a metal
container on the left in the figure (A.) and new vegetation (B.) not present
in the existing model.

The new models can be used by the UAV platform for path planning
in order to generate collision-free paths. Since generated models are based
on noisy measurements a safety margin during the planning is used. In
the UASTechLab RMAX UAV, the safety margin of 6 meters is used. An
example of path generated by the path planner using the new model is
presented in Figure 6.12.

The accuracy of models built with the raw LRF point clouds (with-
out applying the scan matching algorithms) is sufficient for navigation pur-
poses if the necessary safety margins are used. The inaccuracies introduced
by the measurement errors and the uncertainty of the UAV state estimate
might result in narrowing down the operational environment of the UAV.
For example, in Figure 6.11 a narrow passage (C.) can be excluded from the
collision-free space, although the corridor between the two buildings is wide
enough to fly through. Thus, further investigation of methods for improving
the model quality has to be conducted, as outlined in the previous section.

6.4 Using 3D Maps for Navigation 93

Figure 6.12: Example of path planner use in the reconstructed map of the
Revinge area.

6.4.2 Collision Avoidance

This section provides an analysis of using the integrated laser range finder
in the context of the dynamic replanning framework presented in chapter 4.

As described previously, the proposed framework uses a planner/strategy
tuple in order to repair the path when a new obstacle obstructing the cur-
rent flight path is detected. In the presented experiments no-fly zones have
been used as obstacles. The integrated laser range finder can potentially be
used for obstacle detection if its detection range and time will allow for the
execution of the proposed technique.

In order to assess the feasibility of using a LRF sensor for this application
a timing analysis based on the sensor range and the UASTechLab RMAX
UAV dynamic model is presented (Figure 6.13).

The laser has a maximum detection range of 80 meters. Based on experi-
mental evaluation, the optimal detection range is 40 meters. In other words,
objects at a range between 40 and 80 meters may not always be detected,
but if they are, the range measurement is quite precise (± 1 meter). Thus,
the distance to an obstacle will be known as soon as it is detected.

The time required to fly any given part of a path can be calculated using
a dynamic model of the helicopter and the path following control mode
(section 2.2.3) with the intended velocity for each segment of the path.
Additionally, the required distance for an emergency break at each possible
velocity can be calculated. It is shown as a black solid line in Figure 6.13.

94 6. Map Building Using A Laser Range Finder

Figure 6.13: The minimal braking distance and time windows for the
UASTechLab RMAX UAV as a function of the cruise velocity.

The figure also depicts the resulting time windows available for decision
making for the UASTechLab RMAX UAV system as a function of the current
velocity. As we are mainly interested in flying at speeds between 10 and 15
m/s, these time windows are quite narrow. For example, assuming a flight at
only 10 m/s and detecting an obstacle at a range of 80 meters, the braking
distance is 31.5 meters. This gives 80 − 31.5 − 6 = 42.5 meters available
for replanning. This corresponds to 4.25 seconds. If the obstacle is detected
at 40 meters, we have only 0.25 seconds available. Nevertheless a sufficient
amount of time for applying the collision avoidance techniques exists for
wide range of UAV velocities.

The analysis presented shows the feasibility of using the previously de-
scribed dynamic replanning framework (chapter 5) with the LRF sensor and
further integration can be pursued.

Chapter 7

Conclusions

This thesis presents a number of solutions to the navigation and path plan-
ning problems. The task of navigation in an airborne system is a complex
problem and various techniques are required at different levels of abstraction
as shown in each of the chapters in the thesis. The goal of navigation in the
UAV domain is to safely fly between different positions in the environment.
The process involves executing an appropriate control mode, planning as to
which route to take in order to avoid collisions with static obstacles and
reacting to any changes in the environment (i.e. new or moving obstacles)
while the vehicle is in motion. Additionally, a UAV system has to be able to
perceive the changes in the environment in order to react to them. In this
chapter a short summary of the techniques presented is provided together
with a discussion topics of possible extensions and directions for future work.

Starting at the control level a modeling framework for hybrid control
systems was presented in chapter 3. It is based on an abstraction of hier-
archical and concurrent state machines (HCSM). The framework is used to
specify reactive behaviors in the system and to sequentialize the execution of
control modes. The HCSM uses a visual formalism of state diagrams which
eases the design process. The diagrams are translated into an equivalent
textual format and passed to an HCSM interpreter for execution, running
on a robotic system. The interpreter is executed in the real-time part of the
system which allows dynamic reconfiguration of the system behaviour.

The HCSM framework has been successfully deployed on the UASTech-
Lab RMAX UAV and examples of its uses were presented in chapter 3. In
addition, we mention a new extended version (the Extended State Machine,
ESM) of the framework. The main difference is the extension of the HCSM
to include modelling of the data flow and an explicit task state representa-
tion in the formalism. A natural step for future work with respect to design
and modelling of control systems is an evaluation of the new ESM framework
in the UASTechLab RMAX UAV control system.

In chapter 4 a problem of generating collision-free paths was discussed.

95

96 7. Conclusions

When a UAV mission involving flying between two positions is executed a
path planing algorithm is used to generate a collision-free path. Algorithms,
PRM and RRT, used in the UASTechLab RMAX UAV were presented. Pre-
viously, our UAV platforms could only operate in static environments. In this
thesis a dynamic replanning framework implementing a collision avoidance
mechanism was presented.

The framework estimates the amount of time available before a collision
and chooses one of the proposed replanning strategies in order to improve
the overall path quality and avoid the need of using non-optimal reactive
sense-and-avoid procedures. The replanning strategy represents a specific
choice of which parts of a path are replanned and which parameters are
given to the motion planning algorithm. Timing analysis of the proposed
replanning technique together with an experimental flight was presented in
chapter 4.

The problem of selecting a particular strategy/planner tuple used during
the replanning phase is discussed in chapter 5. The objective is to always
choose the strategy/planner tuple that yields the highest quality possible
within the available time. As discussed, the planning time and the resulting
plan quality (i.e. after the repair) depends on many factors. For example on
features of the current plan, the obstructed segment position and size and
the relevant areas of the map. A novel method based on machine learning for
the selection problem has been presented. For each strategy/planner tuple
a set of two prediction models is created. One for estimating the required
time for applying the path repair and the other for predicting expected
plan quality. The flight time was used as the quality measure. The selection
mechanism has been tested in two operational environments with different
complexity. The empirical tests presented show promising results: In each
test environment, flight times could be improved up to 25% compared to
the use of a fixed replanning strategy, resulting in times close to the best
achievable with the available planning algorithms.

In future versions of the dynamic replanning framework we plan to in-
clude a reactive sense and avoid technique (e.g. model predictive control)
in case the time available for replanning is too short and the use of path
planners is not possible. Additionally, we plan to continue to explore the
possibility of using machine learning techniques in the context of path plan-
ning.

An accurate model of the environment is a prerequisite for successful
navigation. As described, the path planning algorithms use a geometrical
description of the environment to generate collision-free paths. The safety
of a UAS operation therefore depends on having an accurate 3D model.
Maps may become inaccurate or outdated over time due to changes in the
environment (e.g. new building structures, vegetation growth etc.). Thus,
adequate sensors and techniques for updating or acquiring new 3D models
of the environment are necessary. In chapter 6 initial results of integrating
a laser range finder with the UASTechLab RMAX UAV were presented. We

97

showed how a 3D model of the environment is constructed and presented two
applications of acquired models. In the first, a 3D map of the environment
is built offline, after an exploratory flight over all building structures is
performed and the data collected. The second application relates to the use
of a laser range finder sensor for collision avoidance in the context of the
proposed dynamic replanning framework. An analysis of potential uses of
such a sensor in this context was discussed. Related work in the field of scan
alignment and building consistent global 3D maps was presented outlining
future research within this topic.

We believe that the combination of the techniques presented in this thesis
provides another step towards building comprehensive and robust navigation
and path planning frameworks for future UASs.

98 7. Conclusions

Bibliography

[1] James S Albus and Fred G Proctor. A Reference Model Architecture
for Intelligent Hybrid Control Systems. Proceedings of the Interna-
tional Federation of Automatic Control (IFAC), pages 1–7, June 2000.

[2] M. Alshawa, E. Smigiel, and P. Grussenmeyer. Integration of a Terres-
trial Lidar on a Mobile Mapping Platform: first experiences. Proceed-
ings of the 5th International Symposium on Mobile Mapping Technol-
ogy, 2007.

[3] Gregory P Asner, Michael Palace, Michael Keller, Rodrigo Pereira,
Jose N M Silva, and Johan C Zweede. Estimating Canopy Structure
in an Amazon Forest from Laser Range Finder and IKONOS Satellite
Observations. Biotropica, 34(4):483–492, dec 2002.

[4] G. Belloni, M. Feroli, A. Ficola, S. Pagnottelli, and P. Valigi. An
autonomous aerial vehicle for unmanned security and surveillance op-
erations: design and test. pages 1 –4, sep. 2007. doi: 10.1109/SSRR.
2007.4381277.

[5] G erard Berry. The esterel synchronous programming language; de-
sign, semantics, implementation. Science of computer programming,
1992.

[6] P J Besl and H D McKay. A method for registration of 3-D shapes.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 14
(2):239–256, 1992.

[7] P. Biber and W. Straßer. The normal distributions transform: A new
approach to laser scan matching. Proceedings of the IEEE Inter- na-
tional Conference on Intelligent Robots and Systems (IROS), 2003.

[8] Grady Booch, James Rumbaugh, and Ivar Jacobson. The unified mod-
eling language user guide. Addison-Wesley Professional, 2005.

[9] Taylor L Booth. Sequential Machines and Automata Theory. John
Wiley & Sons Inc, jan 1967.

99

100 BIBLIOGRAPHY

[10] R. Brooks. A robot that walks; emergent behaviors from a carefully
evolved network. In Proc. of the 1989 IEEE Int’l Conf. on Robotics
and Automation (Vol. 2), pages 692–696, May (14-19) 1989.

[11] A. Brooks et. al. Towards component-based robotics. In Proc. of the
Int’l Conf. on Intelligent Robots and Systems, August (2-6) 2005.

[12] W. Burgard, D. Fox, and S. Thrun. Active mobile robot localization.
In Proceedings of the Fourteenth International Joint Conference on
Artificial Intelligence (IJCAI), San Mateo, CA, 1997. Morgan Kauf-
mann.

[13] B. Burns and O. Brock. Sampling-based motion planning using pre-
dictive models. In Proc. IEEE International Conference on Robotics
and Automation, 2005.

[14] John Canny and John Reif. New Lower Bound Techniques for Robot
Motion Planning Problems. In 28th Annual Symposium on Founda-
tions of Computer Science, pages 49–60. IEEE, jun 1987.

[15] Daofang Chang, Houjun Lu, and Weijian Mi. Bulk Terminal Stock-
pile Automatic Modeling Based on 3D Scanning Technology. In 2010
International Conference on Future Information Technology and Man-
agement Engineering (FITME), pages 67–70. IEEE, 2010.

[16] D.M Cole and P.M Newman. Using laser range data for 3D SLAM
in outdoor environments. In Robotics and Automation, 2006. ICRA
2006. Proceedings 2006 IEEE International Conference on, pages
1556–1563, 2006.

[17] G. Conte. Navigation Functionalities for an Autonomous UAV He-
licopter. 1307, Dept. of Computer and Information Science, March
2007.

[18] G. Conte, S. Duranti, and T. Merz. Dynamic 3D path following for
an autonomous helicopter. In Proc. IFAC Symp. on Intelligent Au-
tonomous Vehicles, 2004.

[19] G. Conte, M. Hempel, P. Rudol, D. Lundström, S. Duranti,
M. Wzorek, and P. Doherty. High accuracy ground target geo-location
using autonomous micro aerial vehicle platforms. In AIAA Guid-
ance, Navigation, and Control Conference, 2008, volume 26, Honolulu,
Hawaii, 2008.

[20] Gianpaolo Conte. Vision-Based Unmanned Aerial Vehicle Navigation
Using Geo-Referenced Information. PhD thesis, Linköping University,
Linköping, 2009.

BIBLIOGRAPHY 101

[21] J. Cremer, J. Kearney, and Y. Papelis. HCSM: a framework for behav-
ior and scenario control in virtual environments. ACM Transactions
on Modeling and Computer Simulation, 1995.

[22] Frank Dellaert, Steven M. Seitz, Charles E. Thorpe, and Sebastian
Thrun. Structure from motion without correspondence. In IEEE In-
ternational Conference on Computer Vision and Pattern Recognition
(CVPR), pages 557–564, 2000.

[23] P. Doherty, P. Haslum, F. Heintz, T. Merz, P. Nyblom, T. Persson,
and B. Wingman. A distributed architecture for autonomous un-
manned aerial vehicle experimentation. In Proc. DARS, Toulouse,
France, 2004.

[24] P. Doherty, P. Haslum, F. Heintz, T. Merz, T. Persson, and B. Wing-
man. A distributed architecture for autonomous unmanned aerial ve-
hicle experimentation. In Proc. Int. Symp. on Distributed Autonomous
Robotic Systems, pages 221–230, 2004.

[25] S. Duranti, G. Conte, D. Lundström, P. Rudol, M. Wzorek, and P. Do-
herty. Linkmav, a prototype rotary wing micro aerial vehicle. In
Proceedings of the 17th IFAC Symposium on Automatic Control in
Aerospace, 2007.

[26] Simone Duranti and Gianpaolo Conte. In-flight identification of
the augmented flight dynamics of the RMAX unmanned helicopter.
Proceedings of the 17th IFAC Symposium on Automatic Control in
Aerospace. Toulouse, France., 2007.

[27] M. Egerstedt, X. Hu, and A. Stotsky. Control of mobile platforms
using a virtual vehicle approach. IEEE Transactions on Automatic
Control, 46(11):1777–1782, November 2001.

[28] J Eker, J.W Janneck, E.A Lee, Jie Liu, Xiaojun Liu, J Ludvig,
S Neuendorffer, S Sachs, and Yuhong Xiong. Taming heterogeneity
- the Ptolemy approach. In Proceedings of the IEEE, pages 127–144,
2003.

[29] David Ferguson and Anthony (Tony) Stentz. Anytime, dynamic plan-
ning in high-dimensional search spaces. In Proc. ICRA, 2007.

[30] David Ferguson, Nidhi Kalra, and Anthony (Tony) Stentz. Replanning
with RRTs. In Proc. ICRA, 2006.

[31] U. Forssell and P. Lindskog. Combining Semi-Physical and Neural Net-
work Modeling: An Example of Its Usefulness. Proceedings of the 11th
IFAC Symposium on System Identification (SYSID97), pages 795–798,
1997.

102 BIBLIOGRAPHY

[32] E. Gat. On three-layer architectures. Artificial intelligence and mobile
robots, 1997.

[33] Michael A. Goodrich, Bryan S. Morse, Damon Gerhardt, Joseph L.
Cooper, Morgan Quigley, Julie A. Adams, and Curtis Humphrey. Sup-
porting wilderness search and rescue using a camera-equipped mini
uav: Research articles. J. Field Robot., 25(1-2):89–110, 2008. ISSN
1556-4959. doi: http://dx.doi.org/10.1002/rob.v25:1/2.

[34] S. Gottschalk, M. C. Lin, and D. Manocha. OBBTree: A hierarchi-
cal structure for rapid interference detection. Computer Graphics, 30
(Annual Conference Series):171–180, 1996.

[35] C. Haddal and J. Gertler. Homeland security: Unmanned aerial ve-
hicles and border surveillance. In Congressional Research Report, Li-
brary of Congress, 2010.

[36] D. Hahnel, S. Thrun, and W Burgard. An extension of the ICP algo-
rithm for modeling nonrigid objects with mobile robots. Proceedings
of the 16th International Joint Conference on Artificial Intelligence
(IJCAI), 2003.

[37] Mark Hall. Correlation-based feature selection for discrete and nu-
meric class machine learning. In Proc. ICML, 2000. ISBN 1-55860-
707-2.

[38] D. Harel. Statecharts: A visual formalism for complex systems. Science
of Computer Programming, 8(3):231–274, June 1987.

[39] David Harel. Statecharts: A visual formalism for complex systems.
Science of Computer Programming, pages 231–274, 8 1987.

[40] Donald Hearn and M Pauline Baker. Computer graphics, C version.
Prentice Hall, second edition edition, 1997.

[41] Stefan Hrabar. Vision-Based 3D Navigation for an Autonomous He-
licopter. PhD thesis, University of South California, 2006.

[42] D. Jones. Power line inspection - a uav concept. page 8 pp., nov. 2005.

[43] Ralf Kaestner, Sebastian Thrun, Michael Montemerlo, and Matt
Whalley. A Non-rigid Approach to Scan Alignment and Change Detec-
tion Using Range Sensor Data. In Peter Corke and Salah Sukkariah,
editors, Field and Service Robotics, pages 179–194. Springer Berlin /
Heidelberg, Stanford University Robotics Laboratory Computer Sci-
ence Department Stanford CA, 2006. 10.1007/978-3-540-33453-8 16.

[44] L. E. Kavraki, P. S̆vestka, J.C. Latombe, and M. H. Overmars. Proba-
bilistic roadmaps for path planning in high dimensional configuration
spaces. IEEE Transactions on Robotics and Automation, 12(4):566–
580, 1996.

BIBLIOGRAPHY 103

[45] M. Kleinehagenbrock et. al. Supporting advanced interaction capabil-
ities on a mobile robot with a flexible control system. In Proc. of the
Int’l Conf. on Intelligent Robots and Systems, September 28 – October
2 2004.

[46] A. Kleiner, C. Dornhege, R. Kümerle, M. Ruhnke, B. Steder, B. Nebel,
P. Doherty, M. Wzorek, P. Rudol, G. Conte, S. Durante, , and D. Lund-
str”om. Robocuprescue - robot league team rescuerobots freiburg (ger-
many). In RoboCup 2006 (CDROM Proceedings), Team Description
Paper, Rescue Robot League, 2006.

[47] Kurt Konolige, Motilal Agrawal, Robert C. Bolles, Cregg Cowan, Mar-
tin Fischler, and Brian Gerkey. Outdoor mapping and navigation us-
ing stereo vision. In Proceedings of the International Symposium on
Experimental Robotics, 2006.

[48] T Koo, F Hoffmann, F Mann, and H Shim. Hybrid control of an
autonomous helicopter. IFAC Workshop on Motion Control, 1998.

[49] J. J. Kuffner and S. M. LaValle. RRT-connect: An efficient approach
to single-query path planning. In Proc. ICRA, 2000.

[50] S.M. LaValle. Rapidly-exploring random trees: A new tool for path
planning. Technical report, Computer Science Department, Iowa State
University, 1998.

[51] Steven M LaValle. Planning algorithms, 2004.

[52] D Lecking, O Wulf, V Viereck, J Tödter, and Bernardo Wagner. The
RTS-STILL Robotic Fork-Lift. EURON Technology Transfer Award.

[53] Yongmin Li. Support vector machine based multi-view face detection
and recognition. Image and Vision Computing, 22(5):413–427, 2004.
doi: 10.1016/.

[54] Zhengrong Li, Yuee Liu, Rodney Walker, Ross Hayward, and Jinglan
Zhang. Towards automatic power line detection for a uav surveillance
system using pulse coupled neural filter and an improved hough trans-
form. Mach. Vision Appl., 21(5):677–686, 2010. ISSN 0932-8092. doi:
http://dx.doi.org/10.1007/s00138-009-0206-y.

[55] Lennart Ljung. System Identification: Theory for the User (2nd Edi-
tion). Prentice Hall, 2 edition, jan 1999.

[56] Market Research Media Ltd. URL http:

//www.marketresearchmedia.com/2010/04/

09/unmanned-aerial-vehicles-uav-market/.
http://www.marketresearchmedia.com/2010/04/09/unmanned-
aerial-vehicles-uav-market/ (accessed August, 2010).

104 BIBLIOGRAPHY

[57] F. Lu and E. Milios. Robot pose estimation in unknown environments
by matching 2d range scans. Journal of Intelligent and Robotic Sys-
tems, 1997.

[58] H.-G. Maas. Least-Squares Matching with airborne laserscanning data
in a TIN structure. International Archives of Photogrammetry and
Remote Sensing, 33:548–555, 2000.

[59] Martin Magnusson. The Three-Dimensional Normal-Distributions
Transform — an Efficient Representation for Registration, Surface
Analysis, and Loop Detection. PhD thesis, Örebro University, 2009.

[60] P Mantegazza et. al. RTAI: Real time application interface. Linux
Journal, 72, April 2000.

[61] Wzorek Mariusz and Doherty Patrick. Preliminary report : Recon-
figurable path planning for an autonomous unmanned aerial vehicle.
In 24th Annual Workshop of the UK Planning and Scheduling Special
Interest Group, PlanSIG,2005, 2005.

[62] Wzorek Mariusz and Doherty Patrick. The witas uav ground system
interface demonstration with a focus on motion and task planning.
In Software Demonstrations at the International Conference on Auto-
mated Planning Scheduling (ICAPS-SD), pages 36–37, 2006.

[63] Wzorek Mariusz and Doherty Patrick. Reconfigurable path planning
for an autonomous unmanned aerial vehicle. In ICAPS 2006 - The In-
ternational Conference on Automated Planning Scheduling,2006, 2006.

[64] George H. Mealy. A method for synthesizing sequential circuits. Bell
System Technical Journal, 34(5):1045–1079, 1955.

[65] T. Merz. Building a system for autonomous aerial robotics research.
In Proc. IFAC Symp. on Intelligent Autonomous Vehicles, 2004.

[66] T. Merz, S. Duranti, and G. Conte. Autonomous landing of an un-
manned aerial helicopter based on vision and inertial sensing. In Proc.
9th International Symposium on Experimental Robotics, 2004.

[67] T. Merz, P. Rudol, and M. Wzorek. Control system framework for
autonomous robots based on extended state machines. Autonomic
and Autonomous Systems, International Conference on, 0:14, 2006.
doi: http://doi.ieeecomputersociety.org/10.1109/ICAS.2006.19.

[68] M. Montemerlo and S. Thrun. Simultaneous localization and map-
ping with unknown data association using FastSLAM. Submitted for
publication, 2002.

BIBLIOGRAPHY 105

[69] L. Montesano, J. Minguez, and L. Montano. Probabilistic scan match-
ing for motion estimation in unstructured environments. In Intelligent
Robots and Systems, 2005. (IROS 2005). 2005 IEEE/RSJ Interna-
tional Conference on, pages 3499–3504, 2005.

[70] Edward F. Moore. Gedanken-experiments on sequential machines.
In Claude Shannon and John McCarthy, editors, Automata Studies,
pages 129–153. Princeton University Press, Princeton, NJ, 1956.

[71] Marco Morales, Lydia Tapia, Roger Pearce, Samuel Rodriguez, and
Nancy M. Amato. A machine learning approach for feature-sensitive
motion planning. In Proc. Int. Workshop on the Algorithmic Founda-
tions of Robotics, July 2004.

[72] Andreas Nüchter, Hartmunt Surmann, Kai Lingermann, Joachim
Hertzberg, and Sebastian Thrun. 6D SLAM with an Application in
autonomous mine mapping. In Robotics and Automation, 2004. Pro-
ceedings. ICRA ’04. 2004 IEEE International Conference on, pages
1998–2003, 2004.

[73] Per Nyblom. A language translator for robotic task procedure speci-
fications. Master’s thesis, Linköping University, 2003.

[74] P-O Pettersson. Using Randomized Algorithms for Helicopter Path
Planning. Licentiate thesis, Linköping University, 2006.

[75] John H. Reif and H. Wang. The Complexity of the Two Dimensional
Curvature-Constrained Shortest-Path Problem. In Third International
Workshop on Algorithmic Foundations of Robotics (WAFR98), Pub.
by A. K. Peters Ltd, pages 1–34, jun 1998.

[76] Y. Reshetyuk. Investigation and calibration of pulsed time-of-flight
terrestrial laser scanners. Licentiate thesis, KTH Royal Institute of
Technology, 2006.

[77] Samuel Rodriguez, Shawna Thomas, Roger Pearce, and Nancy M.
Amato. RESAMPL: A region-sensitive adaptive motion planner. In
Proc. Int. Workshop on the Algorithmic Foundations of Robotics, 2006.
ISBN 978-3-540-68404-6.

[78] P. Rudol and P. Doherty. Human body detection and geolocalization
for uav search and rescue missions using color and thermal imagery.
In Proceedings of the IEEE Aerospace Conference, 2008.

[79] P. Rudol, M. Wzorek, G. Conte, and P. Doherty. Micro unmanned
aerial vehicle visual servoing for cooperative indoor exploration. In
Proceedings of the IEEE Aerospace Conference, pages 1–10, March
2008.

106 BIBLIOGRAPHY

[80] P. Rudol, M. Wzorek, R. Zalewski, and P. Doherty. Report on sense
and avoid techniques and the prototype sensor suite. Technical report,
National Aeronautics Research Program NFFP04-031, Autonomous
flight control and decision making capabilities for Mini-UAVs, 2008.

[81] P. Rudol, M. Wzorek, and P. Doherty. Vision-based pose estimation
for autonomous indoor navigation of micro-scale unmanned aircraft
systems. In IEEE International Conference on Robotics and Automa-
tion, ICRA 2010, pages 1913–1920, May 2010.

[82] Radu Bogdan Rusu and Steve Cousins. 3D is here: Point Cloud Li-
brary (PCL). In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), Shanghai, China, May 9-13 2011.

[83] S. K. Shevade. Improvements to the SMO algorithm for SVM regres-
sion. IEEE Transactions on Neural Networks, 11(5):1188–1193, 2000.
doi: 10.1109/72.870050.

[84] DH Shim, Hoam Chung, and SS Sastry. Conflict-free navigation in un-
known urban environments. Robotics & Automation Magazine, IEEE;,
13(3):27–33, 2006. doi: 10.1109/MRA.2006.1678136.

[85] Alex Smola. A tutorial on support vector regression. Statistics and
Computing, 14(3):199, 2004. ISSN 0960-3174. doi: 10.1023/.

[86] A. Stentz. Optimal and efficient path planning for unknown and dy-
namic environments. International Journal of Robotics and Automa-
tion, 10(3):89–100, 1995.

[87] Zehang Sun. On-road vehicle detection using evolutionary Gabor fil-
ter optimization. IEEE Transactions on Intelligent Transportation
Systems, 6(2):125–137, 2005. doi: 10.1109/.

[88] Hartmut Surmann, Kai Lingemann, Andreas Nu chter, and Joachim
Hertzberg. A 3D laser range finder for autonomous mobile robots. In
Proceedings of the 32nd ISR (International Symposium on Robotics),
2001.

[89] T.Cox, C. Nagy, M. Skoog, and I. Somers. Civil uav capability assess-
ment. In Technical report, NASA, 2004.

[90] S Thrun, M Bennewitz, W Burgard, and Cremers. Minerva: a second-
generation museum tour-guide robot. Robotics and Automation, 1999.
Proceedings. 1999 IEEE International Conference on, 3:1999 – 2005
vol.3, 1999. doi: 10.1109/ROBOT.1999.770401.

[91] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron,
J. Diebel, P. Fong, J. Gale, M. Halpenny, G. Hoffmann, K. Lau,
C. Oakley, M. Palatucci, V. Pratt, P. Stang, S. Strohband, C. Dupont,

BIBLIOGRAPHY 107

L.-E. Jendrossek, C. Koelen, C. Markey, C. Rummel, J. van Niek-
erk, E. Jensen, P. Alessandrini, G. Bradski, B. Davies, S. Ettinger,
A. Kaehler, A. Nefian, and P. Mahoney. Winning the darpa grand
challenge. Journal of Field Robotics, 2006. accepted for publication.

[92] B. Üstün, W.J. Melssen, and L.M.C. Buydens. Facilitating the ap-
plication of support vector regression by using a universal Pearson
VII function based kernel. Chemometrics and Intelligent Laboratory
Systems, 81:29–40, 2006.

[93] Vladimir Vapnik. Statistical Learning Theory. Wiley-Interscience,
1998. ISBN 0471030031.

[94] Vladimir Vapnik. The Nature of Statistical Learning Theory. Springer,
1999. ISBN 0387987800.

[95] G Vosselman, BGH Gorte, and G Sithole. Change detection for up-
dating medium scale maps using laser altimetry. Proceedings of In-
ternational Society for Photogrametry and Remote Sensing Congress,
2004.

[96] A Watson. OMG (Object Management Group) architecture and
CORBA (common object request broker architecture) specification.
Distributed Object Management, IEE Colloquium on, 1994.

[97] M Whalley, G Schulein, and C Theodore. Design and Flight Test
Results for a Hemispherical LADAR Developed to Support Unmanned
Rotorcraft Urban Operations Research. American Helicopter Society
64th Annual Forum, 2008.

[98] Ian Witten and Eibe Frank. Data Mining: Practical Machine Learning
Tools and Techniques. Morgan Kaufmann, second edition, 2005. ISBN
0120884070.

[99] M. Wzorek and P. Doherty. Reconfigurable path planning for an au-
tonomous unmanned aerial vehicle. In Proceedings of the IEEE Inter-
national Conference on Hybrid Information Technology, ICHIT, 2006.

[100] M. Wzorek, G. Conte, P. Rudol, T. Merz, S. Duranti, and P. Doherty.
From motion planning to control - a navigation framework for an au-
tonomous unmanned aerial vehicle. Proc. 21st Bristol UAV Systems
Conference, 2006.

[101] M. Wzorek, David Landén, and P. Doherty. Gsm technology as a
communication media for an autonomous unmanned aerial vehicle.
Proc. 21st Bristol UAV Systems Conference, 2006.

[102] Mariusz Wzorek, Jonas Kvarnström, and Patrick Doherty. Choosing
path replanning strategies for unmanned aircraft systems. In Pro-
ceedings of the International Conference on Automated Planning and
Scheduling (ICAPS), 2010.

108 BIBLIOGRAPHY

Avdelning, Institution
Division, Department

Datum
Date

Spr̊ak

Language

� Svenska/Swedish

� Engelska/English

�

Rapporttyp
Report category

� Licentiatavhandling

� Examensarbete

� C-uppsats

� D-uppsats

� Övrig rapport

�

URL för elektronisk version

ISBN

ISRN

Serietitel och serienummer
Title of series, numbering

ISSN

Linköping Studies in Science and Technology

Thesis No. 1509

Titel
Title

Författare
Author

Sammanfattning
Abstract

Nyckelord
Keywords

Unmanned aircraft systems (UASs) are an important future technology with
early generations already being used in many areas of application encompass-
ing both military and civilian domains. This thesis proposes a number of inte-
gration techniques for combining control-based navigation with more abstract
path planning functionality for UASs. These techniques are empirically tested
and validated using an RMAX helicopter platform used in the UASTechLab
at Linköping University. Although the thesis focuses on helicopter platforms,
the techniques are generic in nature and can be used in other robotic systems.

At the control level a navigation task is executed by a set of control modes.
A framework based on the abstraction of hierarchical concurrent state ma-
chines for the design and development of hybrid control systems is presented.
The framework is used to specify reactive behaviors and for sequentialisation
of control modes. Selected examples of control systems deployed on UASs are
presented. Collision-free paths executed at the control level are generated by
path planning algorithms. We propose a path replanning framework extending
the existing path planners to allow dynamic repair of flight paths when new
obstacles or no-fly zones obstructing the current flight path are detected. Ad-
ditionally, a novel approach to selecting the best path repair strategy based on
machine learning technique is presented. A prerequisite for a safe navigation in
a real-world environment is an accurate geometrical model. As a step towards
building accurate 3D models onboard UASs initial work on the integration of
a laser range finder with a helicopter platform is also presented.

Combination of the techniques presented provides another step towards
building comprehensive and robust navigation systems for future UASs.

AIICS,
Department of Computer
and Information Science
581 83 Linköping

2011-11-10

978-91-7393-037-6

LiU-Tek-Lic–2011:48

0280–7971

http://urn.kb.se/resolve?urn=urn:
nbn:se:liu:diva-71147

Selected Aspects of Navigation and Path Planning in Unmanned Air-
craft Systems

Mariusz Wzorek

×
×

Path planning, motion planning, autonomous Unmanned Aircraft Sys-
tems (UAS), Hierarchical Concurrent State Machines (HCSM), UAV.

Department of Computer and Information Science

Linköpings universitet

Licentiate Theses

Linköpings Studies in Science and Technology

Faculty of Arts and Sciences

No 17 Vojin Plavsic: Interleaved Processing of Non-Numerical Data Stored on a Cyclic Memory. (Available at: FOA,

Box 1165, S-581 11 Linköping, Sweden. FOA Report B30062E)

No 28 Arne Jönsson, Mikael Patel: An Interactive Flowcharting Technique for Communicating and Realizing Al-

gorithms, 1984.

No 29 Johnny Eckerland: Retargeting of an Incremental Code Generator, 1984.

No 48 Henrik Nordin: On the Use of Typical Cases for Knowledge-Based Consultation and Teaching, 1985.

No 52 Zebo Peng: Steps Towards the Formalization of Designing VLSI Systems, 1985.

No 60 Johan Fagerström: Simulation and Evaluation of Architecture based on Asynchronous Processes, 1985.

No 71 Jalal Maleki: ICONStraint, A Dependency Directed Constraint Maintenance System, 1987.

No 72 Tony Larsson: On the Specification and Verification of VLSI Systems, 1986.

No 73 Ola Strömfors: A Structure Editor for Documents and Programs, 1986.

No 74 Christos Levcopoulos: New Results about the Approximation Behavior of the Greedy Triangulation, 1986.

No 104 Shamsul I. Chowdhury: Statistical Expert Systems - a Special Application Area for Knowledge-Based Computer

Methodology, 1987.

No 108 Rober Bilos: Incremental Scanning and Token-Based Editing, 1987.

No 111 Hans Block: SPORT-SORT Sorting Algorithms and Sport Tournaments, 1987.

No 113 Ralph Rönnquist: Network and Lattice Based Approaches to the Representation of Knowledge, 1987.

No 118 Mariam Kamkar, Nahid Shahmehri: Affect-Chaining in Program Flow Analysis Applied to Queries of Pro-

grams, 1987.

No 126 Dan Strömberg: Transfer and Distribution of Application Programs, 1987.

No 127 Kristian Sandahl: Case Studies in Knowledge Acquisition, Migration and User Acceptance of Expert Systems,

1987.

No 139 Christer Bäckström: Reasoning about Interdependent Actions, 1988.

No 140 Mats Wirén: On Control Strategies and Incrementality in Unification-Based Chart Parsing, 1988.

No 146 Johan Hultman: A Software System for Defining and Controlling Actions in a Mechanical System, 1988.

No 150 Tim Hansen: Diagnosing Faults using Knowledge about Malfunctioning Behavior, 1988.

No 165 Jonas Löwgren: Supporting Design and Management of Expert System User Interfaces, 1989.

No 166 Ola Petersson: On Adaptive Sorting in Sequential and Parallel Models, 1989.

No 174 Yngve Larsson: Dynamic Configuration in a Distributed Environment, 1989.

No 177 Peter Åberg: Design of a Multiple View Presentation and Interaction Manager, 1989.

No 181 Henrik Eriksson: A Study in Domain-Oriented Tool Support for Knowledge Acquisition, 1989.

No 184 Ivan Rankin: The Deep Generation of Text in Expert Critiquing Systems, 1989.

No 187 Simin Nadjm-Tehrani: Contributions to the Declarative Approach to Debugging Prolog Programs, 1989.

No 189 Magnus Merkel: Temporal Information in Natural Language, 1989.

No 196 Ulf Nilsson: A Systematic Approach to Abstract Interpretation of Logic Programs, 1989.

No 197 Staffan Bonnier: Horn Clause Logic with External Procedures: Towards a Theoretical Framework, 1989.

No 203 Christer Hansson: A Prototype System for Logical Reasoning about Time and Action, 1990.

No 212 Björn Fjellborg: An Approach to Extraction of Pipeline Structures for VLSI High-Level Synthesis, 1990.

No 230 Patrick Doherty: A Three-Valued Approach to Non-Monotonic Reasoning, 1990.

No 237 Tomas Sokolnicki: Coaching Partial Plans: An Approach to Knowledge-Based Tutoring, 1990.

No 250 Lars Strömberg: Postmortem Debugging of Distributed Systems, 1990.

No 253 Torbjörn Näslund: SLDFA-Resolution - Computing Answers for Negative Queries, 1990.

No 260 Peter D. Holmes: Using Connectivity Graphs to Support Map-Related Reasoning, 1991.

No 283 Olof Johansson: Improving Implementation of Graphical User Interfaces for Object-Oriented Knowledge- Bases,

1991.

No 298 Rolf G Larsson: Aktivitetsbaserad kalkylering i ett nytt ekonomisystem, 1991.

No 318 Lena Srömbäck: Studies in Extended Unification-Based Formalism for Linguistic Description: An Algorithm for

Feature Structures with Disjunction and a Proposal for Flexible Systems, 1992.

No 319 Mikael Pettersson: DML-A Language and System for the Generation of Efficient Compilers from Denotational

Specification, 1992.

No 326 Andreas Kågedal: Logic Programming with External Procedures: an Implementation, 1992.

No 328 Patrick Lambrix: Aspects of Version Management of Composite Objects, 1992.

No 333 Xinli Gu: Testability Analysis and Improvement in High-Level Synthesis Systems, 1992.

No 335 Torbjörn Näslund: On the Role of Evaluations in Iterative Development of Managerial Support Systems, 1992.

No 348 Ulf Cederling: Industrial Software Development - a Case Study, 1992.

No 352 Magnus Morin: Predictable Cyclic Computations in Autonomous Systems: A Computational Model and Im-

plementation, 1992.

No 371 Mehran Noghabai: Evaluation of Strategic Investments in Information Technology, 1993.

No 378 Mats Larsson: A Transformational Approach to Formal Digital System Design, 1993.

No 380 Johan Ringström: Compiler Generation for Parallel Languages from Denotational Specifications, 1993.

No 381 Michael Jansson: Propagation of Change in an Intelligent Information System, 1993.

No 383 Jonni Harrius: An Architecture and a Knowledge Representation Model for Expert Critiquing Systems, 1993.

No 386 Per Österling: Symbolic Modelling of the Dynamic Environments of Autonomous Agents, 1993.

No 398 Johan Boye: Dependency-based Groudness Analysis of Functional Logic Programs, 1993.

No 402 Lars Degerstedt: Tabulated Resolution for Well Founded Semantics, 1993.

No 406 Anna Moberg: Satellitkontor - en studie av kommunikationsmönster vid arbete på distans, 1993.

No 414 Peter Carlsson: Separation av företagsledning och finansiering - fallstudier av företagsledarutköp ur ett agent-

teoretiskt perspektiv, 1994.

No 417 Camilla Sjöström: Revision och lagreglering - ett historiskt perspektiv, 1994.

No 436 Cecilia Sjöberg: Voices in Design: Argumentation in Participatory Development, 1994.

No 437 Lars Viklund: Contributions to a High-level Programming Environment for a Scientific Computing, 1994.

No 440 Peter Loborg: Error Recovery Support in Manufacturing Control Systems, 1994.

FHS 3/94 Owen Eriksson: Informationssystem med verksamhetskvalitet - utvärdering baserat på ett verksamhetsinriktat och

samskapande perspektiv, 1994.

FHS 4/94 Karin Pettersson: Informationssystemstrukturering, ansvarsfördelning och användarinflytande - En komparativ

studie med utgångspunkt i två informationssystemstrategier, 1994.

No 441 Lars Poignant: Informationsteknologi och företagsetablering - Effekter på produktivitet och region, 1994.

No 446 Gustav Fahl: Object Views of Relational Data in Multidatabase Systems, 1994.

No 450 Henrik Nilsson: A Declarative Approach to Debugging for Lazy Functional Languages, 1994.

No 451 Jonas Lind: Creditor - Firm Relations: an Interdisciplinary Analysis, 1994.

No 452 Martin Sköld: Active Rules based on Object Relational Queries - Efficient Change Monitoring Techniques, 1994.

No 455 Pär Carlshamre: A Collaborative Approach to Usability Engineering: Technical Communicators and System

Developers in Usability-Oriented Systems Development, 1994.

FHS 5/94 Stefan Cronholm: Varför CASE-verktyg i systemutveckling? - En motiv- och konsekvensstudie avseende

arbetssätt och arbetsformer, 1994.

No 462 Mikael Lindvall: A Study of Traceability in Object-Oriented Systems Development, 1994.

No 463 Fredrik Nilsson: Strategi och ekonomisk styrning - En studie av Sandviks förvärv av Bahco Verktyg, 1994.

No 464 Hans Olsén: Collage Induction: Proving Properties of Logic Programs by Program Synthesis, 1994.

No 469 Lars Karlsson: Specification and Synthesis of Plans Using the Features and Fluents Framework, 1995.

No 473 Ulf Söderman: On Conceptual Modelling of Mode Switching Systems, 1995.

No 475 Choong-ho Yi: Reasoning about Concurrent Actions in the Trajectory Semantics, 1995.

No 476 Bo Lagerström: Successiv resultatavräkning av pågående arbeten. - Fallstudier i tre byggföretag, 1995.

No 478 Peter Jonsson: Complexity of State-Variable Planning under Structural Restrictions, 1995.

FHS 7/95 Anders Avdic: Arbetsintegrerad systemutveckling med kalkylprogram, 1995.

No 482 Eva L Ragnemalm: Towards Student Modelling through Collaborative Dialogue with a Learning Companion,

1995.

No 488 Eva Toller: Contributions to Parallel Multiparadigm Languages: Combining Object-Oriented and Rule-Based

Programming, 1995.

No 489 Erik Stoy: A Petri Net Based Unified Representation for Hardware/Software Co-Design, 1995.

No 497 Johan Herber: Environment Support for Building Structured Mathematical Models, 1995.

No 498 Stefan Svenberg: Structure-Driven Derivation of Inter-Lingual Functor-Argument Trees for Multi-Lingual

Generation, 1995.

No 503 Hee-Cheol Kim: Prediction and Postdiction under Uncertainty, 1995.

FHS 8/95 Dan Fristedt: Metoder i användning - mot förbättring av systemutveckling genom situationell metodkunskap och

metodanalys, 1995.

FHS 9/95 Malin Bergvall: Systemförvaltning i praktiken - en kvalitativ studie avseende centrala begrepp, aktiviteter och

ansvarsroller, 1995.

No 513 Joachim Karlsson: Towards a Strategy for Software Requirements Selection, 1995.

No 517 Jakob Axelsson: Schedulability-Driven Partitioning of Heterogeneous Real-Time Systems, 1995.

No 518 Göran Forslund: Toward Cooperative Advice-Giving Systems: The Expert Systems Experience, 1995.

No 522 Jörgen Andersson: Bilder av småföretagares ekonomistyrning, 1995.

No 538 Staffan Flodin: Efficient Management of Object-Oriented Queries with Late Binding, 1996.

No 545 Vadim Engelson: An Approach to Automatic Construction of Graphical User Interfaces for Applications in

Scientific Computing, 1996.

No 546 Magnus Werner : Multidatabase Integration using Polymorphic Queries and Views, 1996.

FiF-a 1/96 Mikael Lind: Affärsprocessinriktad förändringsanalys - utveckling och tillämpning av synsätt och metod, 1996.

No 549 Jonas Hallberg: High-Level Synthesis under Local Timing Constraints, 1996.

No 550 Kristina Larsen: Förutsättningar och begränsningar för arbete på distans - erfarenheter från fyra svenska företag.

1996.

No 557 Mikael Johansson: Quality Functions for Requirements Engineering Methods, 1996.

No 558 Patrik Nordling: The Simulation of Rolling Bearing Dynamics on Parallel Computers, 1996.

No 561 Anders Ekman: Exploration of Polygonal Environments, 1996.

No 563 Niclas Andersson: Compilation of Mathematical Models to Parallel Code, 1996.

No 567 Johan Jenvald: Simulation and Data Collection in Battle Training, 1996.

No 575 Niclas Ohlsson: Software Quality Engineering by Early Identification of Fault-Prone Modules, 1996.

No 576 Mikael Ericsson: Commenting Systems as Design Support—A Wizard-of-Oz Study, 1996.

No 587 Jörgen Lindström: Chefers användning av kommunikationsteknik, 1996.

No 589 Esa Falkenroth: Data Management in Control Applications - A Proposal Based on Active Database Systems,

1996.

No 591 Niclas Wahllöf: A Default Extension to Description Logics and its Applications, 1996.

No 595 Annika Larsson: Ekonomisk Styrning och Organisatorisk Passion - ett interaktivt perspektiv, 1997.

No 597 Ling Lin: A Value-based Indexing Technique for Time Sequences, 1997.

No 598 Rego Granlund: C
3
Fire - A Microworld Supporting Emergency Management Training, 1997.

No 599 Peter Ingels: A Robust Text Processing Technique Applied to Lexical Error Recovery, 1997.

No 607 Per-Arne Persson: Toward a Grounded Theory for Support of Command and Control in Military Coalitions, 1997.

No 609 Jonas S Karlsson: A Scalable Data Structure for a Parallel Data Server, 1997.

FiF-a 4 Carita Åbom: Videomötesteknik i olika affärssituationer - möjligheter och hinder, 1997.

FiF-a 6 Tommy Wedlund: Att skapa en företagsanpassad systemutvecklingsmodell - genom rekonstruktion, värdering och

vidareutveckling i T50-bolag inom ABB, 1997.

No 615 Silvia Coradeschi: A Decision-Mechanism for Reactive and Coordinated Agents, 1997.

No 623 Jan Ollinen: Det flexibla kontorets utveckling på Digital - Ett stöd för multiflex? 1997.

No 626 David Byers: Towards Estimating Software Testability Using Static Analysis, 1997.

No 627 Fredrik Eklund: Declarative Error Diagnosis of GAPLog Programs, 1997.

No 629 Gunilla Ivefors: Krigsspel och Informationsteknik inför en oförutsägbar framtid, 1997.

No 631 Jens-Olof Lindh: Analysing Traffic Safety from a Case-Based Reasoning Perspective, 1997

No 639 Jukka Mäki-Turja:. Smalltalk - a suitable Real-Time Language, 1997.

No 640 Juha Takkinen: CAFE: Towards a Conceptual Model for Information Management in Electronic Mail, 1997.

No 643 Man Lin: Formal Analysis of Reactive Rule-based Programs, 1997.

No 653 Mats Gustafsson: Bringing Role-Based Access Control to Distributed Systems, 1997.

FiF-a 13 Boris Karlsson: Metodanalys för förståelse och utveckling av systemutvecklingsverksamhet. Analys och värdering

av systemutvecklingsmodeller och dess användning, 1997.

No 674 Marcus Bjäreland: Two Aspects of Automating Logics of Action and Change - Regression and Tractability,

1998.

No 676 Jan Håkegård: Hierarchical Test Architecture and Board-Level Test Controller Synthesis, 1998.

No 668 Per-Ove Zetterlund: Normering av svensk redovisning - En studie av tillkomsten av Redovisningsrådets re-

kommendation om koncernredovisning (RR01:91), 1998.

No 675 Jimmy Tjäder: Projektledaren & planen - en studie av projektledning i tre installations- och systemutveck-

lingsprojekt, 1998.

FiF-a 14 Ulf Melin: Informationssystem vid ökad affärs- och processorientering - egenskaper, strategier och utveckling,

1998.

No 695 Tim Heyer: COMPASS: Introduction of Formal Methods in Code Development and Inspection, 1998.

No 700 Patrik Hägglund: Programming Languages for Computer Algebra, 1998.

FiF-a 16 Marie-Therese Christiansson: Inter-organisatorisk verksamhetsutveckling - metoder som stöd vid utveckling av

partnerskap och informationssystem, 1998.

No 712 Christina Wennestam: Information om immateriella resurser. Investeringar i forskning och utveckling samt i

personal inom skogsindustrin, 1998.

No 719 Joakim Gustafsson: Extending Temporal Action Logic for Ramification and Concurrency, 1998.

No 723 Henrik André-Jönsson: Indexing time-series data using text indexing methods, 1999.

No 725 Erik Larsson: High-Level Testability Analysis and Enhancement Techniques, 1998.

No 730 Carl-Johan Westin: Informationsförsörjning: en fråga om ansvar - aktiviteter och uppdrag i fem stora svenska

organisationers operativa informationsförsörjning, 1998.

No 731 Åse Jansson: Miljöhänsyn - en del i företags styrning, 1998.

No 733 Thomas Padron-McCarthy: Performance-Polymorphic Declarative Queries, 1998.

No 734 Anders Bäckström: Värdeskapande kreditgivning - Kreditriskhantering ur ett agentteoretiskt perspektiv, 1998.

FiF-a 21 Ulf Seigerroth: Integration av förändringsmetoder - en modell för välgrundad metodintegration, 1999.

FiF-a 22 Fredrik Öberg: Object-Oriented Frameworks - A New Strategy for Case Tool Development, 1998.

No 737 Jonas Mellin: Predictable Event Monitoring, 1998.

No 738 Joakim Eriksson: Specifying and Managing Rules in an Active Real-Time Database System, 1998.

FiF-a 25 Bengt E W Andersson: Samverkande informationssystem mellan aktörer i offentliga åtaganden - En teori om

aktörsarenor i samverkan om utbyte av information, 1998.

No 742 Pawel Pietrzak: Static Incorrectness Diagnosis of CLP (FD), 1999.

No 748 Tobias Ritzau: Real-Time Reference Counting in RT-Java, 1999.

No 751 Anders Ferntoft: Elektronisk affärskommunikation - kontaktkostnader och kontaktprocesser mellan kunder och

leverantörer på producentmarknader, 1999.

No 752 Jo Skåmedal: Arbete på distans och arbetsformens påverkan på resor och resmönster, 1999.

No 753 Johan Alvehus: Mötets metaforer. En studie av berättelser om möten, 1999.

No 754 Magnus Lindahl: Bankens villkor i låneavtal vid kreditgivning till högt belånade företagsförvärv: En studie ur ett

agentteoretiskt perspektiv, 2000.

No 766 Martin V. Howard: Designing dynamic visualizations of temporal data, 1999.

No 769 Jesper Andersson: Towards Reactive Software Architectures, 1999.

No 775 Anders Henriksson: Unique kernel diagnosis, 1999.

FiF-a 30 Pär J. Ågerfalk: Pragmatization of Information Systems - A Theoretical and Methodological Outline, 1999.

No 787 Charlotte Björkegren: Learning for the next project - Bearers and barriers in knowledge transfer within an

organisation, 1999.

No 788 Håkan Nilsson: Informationsteknik som drivkraft i granskningsprocessen - En studie av fyra revisionsbyråer,

2000.

No 790 Erik Berglund: Use-Oriented Documentation in Software Development, 1999.

No 791 Klas Gäre: Verksamhetsförändringar i samband med IS-införande, 1999.

No 800 Anders Subotic: Software Quality Inspection, 1999.

No 807 Svein Bergum: Managerial communication in telework, 2000.

No 809 Flavius Gruian: Energy-Aware Design of Digital Systems, 2000.

FiF-a 32 Karin Hedström: Kunskapsanvändning och kunskapsutveckling hos verksamhetskonsulter - Erfarenheter från ett

FOU-samarbete, 2000.

No 808 Linda Askenäs: Affärssystemet - En studie om teknikens aktiva och passiva roll i en organisation, 2000.

No 820 Jean Paul Meynard: Control of industrial robots through high-level task programming, 2000.

No 823 Lars Hult: Publika Gränsytor - ett designexempel, 2000.

No 832 Paul Pop: Scheduling and Communication Synthesis for Distributed Real-Time Systems, 2000.

FiF-a 34 Göran Hultgren: Nätverksinriktad Förändringsanalys - perspektiv och metoder som stöd för förståelse och

utveckling av affärsrelationer och informationssystem, 2000.

No 842 Magnus Kald: The role of management control systems in strategic business units, 2000.

No 844 Mikael Cäker: Vad kostar kunden? Modeller för intern redovisning, 2000.

FiF-a 37 Ewa Braf: Organisationers kunskapsverksamheter - en kritisk studie av ”knowledge management”, 2000.

FiF-a 40 Henrik Lindberg: Webbaserade affärsprocesser - Möjligheter och begränsningar, 2000.

FiF-a 41 Benneth Christiansson: Att komponentbasera informationssystem - Vad säger teori och praktik?, 2000.

No. 854 Ola Pettersson: Deliberation in a Mobile Robot, 2000.

No 863 Dan Lawesson: Towards Behavioral Model Fault Isolation for Object Oriented Control Systems, 2000.

No 881 Johan Moe: Execution Tracing of Large Distributed Systems, 2001.

No 882 Yuxiao Zhao: XML-based Frameworks for Internet Commerce and an Implementation of B2B e-procurement,

2001.

No 890 Annika Flycht-Eriksson: Domain Knowledge Management in Information-providing Dialogue systems, 2001.

FiF-a 47 Per-Arne Segerkvist: Webbaserade imaginära organisationers samverkansformer: Informationssystemarkitektur

och aktörssamverkan som förutsättningar för affärsprocesser, 2001.

No 894 Stefan Svarén: Styrning av investeringar i divisionaliserade företag - Ett koncernperspektiv, 2001.

No 906 Lin Han: Secure and Scalable E-Service Software Delivery, 2001.

No 917 Emma Hansson: Optionsprogram för anställda - en studie av svenska börsföretag, 2001.

No 916 Susanne Odar: IT som stöd för strategiska beslut, en studie av datorimplementerade modeller av verksamhet som

stöd för beslut om anskaffning av JAS 1982, 2002.

FiF-a-49 Stefan Holgersson: IT-system och filtrering av verksamhetskunskap - kvalitetsproblem vid analyser och be-

slutsfattande som bygger på uppgifter hämtade från polisens IT-system, 2001.

FiF-a-51 Per Oscarsson: Informationssäkerhet i verksamheter - begrepp och modeller som stöd för förståelse av infor-

mationssäkerhet och dess hantering, 2001.

No 919 Luis Alejandro Cortes: A Petri Net Based Modeling and Verification Technique for Real-Time Embedded

Systems, 2001.

No 915 Niklas Sandell: Redovisning i skuggan av en bankkris - Värdering av fastigheter. 2001.

No 931 Fredrik Elg: Ett dynamiskt perspektiv på individuella skillnader av heuristisk kompetens, intelligens, mentala

modeller, mål och konfidens i kontroll av mikrovärlden Moro, 2002.

No 933 Peter Aronsson: Automatic Parallelization of Simulation Code from Equation Based Simulation Languages, 2002.

No 938 Bourhane Kadmiry: Fuzzy Control of Unmanned Helicopter, 2002.

No 942 Patrik Haslum: Prediction as a Knowledge Representation Problem: A Case Study in Model Design, 2002.

No 956 Robert Sevenius: On the instruments of governance - A law & economics study of capital instruments in limited

liability companies, 2002.

FiF-a 58 Johan Petersson: Lokala elektroniska marknadsplatser - informationssystem för platsbundna affärer, 2002.

No 964 Peter Bunus: Debugging and Structural Analysis of Declarative Equation-Based Languages, 2002.

No 973 Gert Jervan: High-Level Test Generation and Built-In Self-Test Techniques for Digital Systems, 2002.

No 958 Fredrika Berglund: Management Control and Strategy - a Case Study of Pharmaceutical Drug Development,

2002.

FiF-a 61 Fredrik Karlsson: Meta-Method for Method Configuration - A Rational Unified Process Case, 2002.

No 985 Sorin Manolache: Schedulability Analysis of Real-Time Systems with Stochastic Task Execution Times, 2002.

No 982 Diana Szentiványi: Performance and Availability Trade-offs in Fault-Tolerant Middleware, 2002.

No 989 Iakov Nakhimovski: Modeling and Simulation of Contacting Flexible Bodies in Multibody Systems, 2002.

No 990 Levon Saldamli: PDEModelica - Towards a High-Level Language for Modeling with Partial Differential

Equations, 2002.

No 991 Almut Herzog: Secure Execution Environment for Java Electronic Services, 2002.

No 999 Jon Edvardsson: Contributions to Program- and Specification-based Test Data Generation, 2002.

No 1000 Anders Arpteg: Adaptive Semi-structured Information Extraction, 2002.

No 1001 Andrzej Bednarski: A Dynamic Programming Approach to Optimal Retargetable Code Generation for Irregular

Architectures, 2002.

No 988 Mattias Arvola: Good to use! : Use quality of multi-user applications in the home, 2003.

FiF-a 62 Lennart Ljung: Utveckling av en projektivitetsmodell - om organisationers förmåga att tillämpa

projektarbetsformen, 2003.

No 1003 Pernilla Qvarfordt: User experience of spoken feedback in multimodal interaction, 2003.

No 1005 Alexander Siemers: Visualization of Dynamic Multibody Simulation With Special Reference to Contacts, 2003.

No 1008 Jens Gustavsson: Towards Unanticipated Runtime Software Evolution, 2003.

No 1010 Calin Curescu: Adaptive QoS-aware Resource Allocation for Wireless Networks, 2003.

No 1015 Anna Andersson: Management Information Systems in Process-oriented Healthcare Organisations, 2003.

No 1018 Björn Johansson: Feedforward Control in Dynamic Situations, 2003.

No 1022 Traian Pop: Scheduling and Optimisation of Heterogeneous Time/Event-Triggered Distributed Embedded

Systems, 2003.

FiF-a 65 Britt-Marie Johansson: Kundkommunikation på distans - en studie om kommunikationsmediets betydelse i

affärstransaktioner, 2003.

No 1024 Aleksandra Tešanovic: Towards Aspectual Component-Based Real-Time System Development, 2003.

No 1034 Arja Vainio-Larsson: Designing for Use in a Future Context - Five Case Studies in Retrospect, 2003.

No 1033 Peter Nilsson: Svenska bankers redovisningsval vid reservering för befarade kreditförluster - En studie vid

införandet av nya redovisningsregler, 2003.

FiF-a 69 Fredrik Ericsson: Information Technology for Learning and Acquiring of Work Knowledge, 2003.

No 1049 Marcus Comstedt: Towards Fine-Grained Binary Composition through Link Time Weaving, 2003.

No 1052 Åsa Hedenskog: Increasing the Automation of Radio Network Control, 2003.

No 1054 Claudiu Duma: Security and Efficiency Tradeoffs in Multicast Group Key Management, 2003.

FiF-a 71 Emma Eliason: Effektanalys av IT-systems handlingsutrymme, 2003.

No 1055 Carl Cederberg: Experiments in Indirect Fault Injection with Open Source and Industrial Software, 2003.

No 1058 Daniel Karlsson: Towards Formal Verification in a Component-based Reuse Methodology, 2003.

FiF-a 73 Anders Hjalmarsson: Att etablera och vidmakthålla förbättringsverksamhet - behovet av koordination och

interaktion vid förändring av systemutvecklingsverksamheter, 2004.

No 1079 Pontus Johansson: Design and Development of Recommender Dialogue Systems, 2004.

No 1084 Charlotte Stoltz: Calling for Call Centres - A Study of Call Centre Locations in a Swedish Rural Region, 2004.

FiF-a 74 Björn Johansson: Deciding on Using Application Service Provision in SMEs, 2004.

No 1094 Genevieve Gorrell: Language Modelling and Error Handling in Spoken Dialogue Systems, 2004.

No 1095 Ulf Johansson: Rule Extraction - the Key to Accurate and Comprehensible Data Mining Models, 2004.

No 1099 Sonia Sangari: Computational Models of Some Communicative Head Movements, 2004.

No 1110 Hans Nässla: Intra-Family Information Flow and Prospects for Communication Systems, 2004.

No 1116 Henrik Sällberg: On the value of customer loyalty programs - A study of point programs and switching costs,

2004.

FiF-a 77 Ulf Larsson: Designarbete i dialog - karaktärisering av interaktionen mellan användare och utvecklare i en

systemutvecklingsprocess, 2004.

No 1126 Andreas Borg: Contribution to Management and Validation of Non-Functional Requirements, 2004.

No 1127 Per-Ola Kristensson: Large Vocabulary Shorthand Writing on Stylus Keyboard, 2004.

No 1132 Pär-Anders Albinsson: Interacting with Command and Control Systems: Tools for Operators and Designers,

2004.

No 1130 Ioan Chisalita: Safety-Oriented Communication in Mobile Networks for Vehicles, 2004.

No 1138 Thomas Gustafsson: Maintaining Data Consistency in Embedded Databases for Vehicular Systems, 2004.

No 1149 Vaida Jakoniené: A Study in Integrating Multiple Biological Data Sources, 2005.

No 1156 Abdil Rashid Mohamed: High-Level Techniques for Built-In Self-Test Resources Optimization, 2005.

No 1162 Adrian Pop: Contributions to Meta-Modeling Tools and Methods, 2005.

No 1165 Fidel Vascós Palacios: On the information exchange between physicians and social insurance officers in the sick

leave process: an Activity Theoretical perspective, 2005.

FiF-a 84 Jenny Lagsten: Verksamhetsutvecklande utvärdering i informationssystemprojekt, 2005.

No 1166 Emma Larsdotter Nilsson: Modeling, Simulation, and Visualization of Metabolic Pathways Using Modelica,

2005.

No 1167 Christina Keller: Virtual Learning Environments in higher education. A study of students’ acceptance of edu-

cational technology, 2005.

No 1168 Cécile Åberg: Integration of organizational workflows and the Semantic Web, 2005.

FiF-a 85 Anders Forsman: Standardisering som grund för informationssamverkan och IT-tjänster - En fallstudie baserad på

trafikinformationstjänsten RDS-TMC, 2005.

No 1171 Yu-Hsing Huang: A systemic traffic accident model, 2005.

FiF-a 86 Jan Olausson: Att modellera uppdrag - grunder för förståelse av processinriktade informationssystem i

transaktionsintensiva verksamheter, 2005.

No 1172 Petter Ahlström: Affärsstrategier för seniorbostadsmarknaden, 2005.

No 1183 Mathias Cöster: Beyond IT and Productivity - How Digitization Transformed the Graphic Industry, 2005.

No 1184 Åsa Horzella: Beyond IT and Productivity - Effects of Digitized Information Flows in Grocery Distribution, 2005.

No 1185 Maria Kollberg: Beyond IT and Productivity - Effects of Digitized Information Flows in the Logging Industry,

2005.

No 1190 David Dinka: Role and Identity - Experience of technology in professional settings, 2005.

No 1191 Andreas Hansson: Increasing the Storage Capacity of Recursive Auto-associative Memory by Segmenting Data,

2005.

No 1192 Nicklas Bergfeldt: Towards Detached Communication for Robot Cooperation, 2005.

No 1194 Dennis Maciuszek: Towards Dependable Virtual Companions for Later Life, 2005.

No 1204 Beatrice Alenljung: Decision-making in the Requirements Engineering Process: A Human-centered Approach,

2005.

No 1206 Anders Larsson: System-on-Chip Test Scheduling and Test Infrastructure Design, 2005.

No 1207 John Wilander: Policy and Implementation Assurance for Software Security, 2005.

No 1209 Andreas Käll: Översättningar av en managementmodell - En studie av införandet av Balanced Scorecard i ett

landsting, 2005.

No 1225 He Tan: Aligning and Merging Biomedical Ontologies, 2006.

No 1228 Artur Wilk: Descriptive Types for XML Query Language Xcerpt, 2006.

No 1229 Per Olof Pettersson: Sampling-based Path Planning for an Autonomous Helicopter, 2006.

No 1231 Kalle Burbeck: Adaptive Real-time Anomaly Detection for Safeguarding Critical Networks, 2006.

No 1233 Daniela Mihailescu: Implementation Methodology in Action: A Study of an Enterprise Systems Implementation

Methodology, 2006.

No 1244 Jörgen Skågeby: Public and Non-public gifting on the Internet, 2006.

No 1248 Karolina Eliasson: The Use of Case-Based Reasoning in a Human-Robot Dialog System, 2006.

No 1263 Misook Park-Westman: Managing Competence Development Programs in a Cross-Cultural Organisation - What

are the Barriers and Enablers, 2006.
FiF-a 90 Amra Halilovic: Ett praktikperspektiv på hantering av mjukvarukomponenter, 2006.

No 1272 Raquel Flodström: A Framework for the Strategic Management of Information Technology, 2006.

No 1277 Viacheslav Izosimov: Scheduling and Optimization of Fault-Tolerant Embedded Systems, 2006.

No 1283 Håkan Hasewinkel: A Blueprint for Using Commercial Games off the Shelf in Defence Training, Education and

Research Simulations, 2006.

FiF-a 91 Hanna Broberg: Verksamhetsanpassade IT-stöd - Designteori och metod, 2006.

No 1286 Robert Kaminski: Towards an XML Document Restructuring Framework, 2006.

No 1293 Jiri Trnka: Prerequisites for data sharing in emergency management, 2007.

No 1302 Björn Hägglund: A Framework for Designing Constraint Stores, 2007.

No 1303 Daniel Andreasson: Slack-Time Aware Dynamic Routing Schemes for On-Chip Networks, 2007.

No 1305 Magnus Ingmarsson: Modelling User Tasks and Intentions for Service Discovery in Ubiquitous Computing,

2007.

No 1306 Gustaf Svedjemo: Ontology as Conceptual Schema when Modelling Historical Maps for Database Storage, 2007.

No 1307 Gianpaolo Conte: Navigation Functionalities for an Autonomous UAV Helicopter, 2007.

No 1309 Ola Leifler: User-Centric Critiquing in Command and Control: The DKExpert and ComPlan Approaches, 2007.

No 1312 Henrik Svensson: Embodied simulation as off-line representation, 2007.

No 1313 Zhiyuan He: System-on-Chip Test Scheduling with Defect-Probability and Temperature Considerations, 2007.

No 1317 Jonas Elmqvist: Components, Safety Interfaces and Compositional Analysis, 2007.

No 1320 Håkan Sundblad: Question Classification in Question Answering Systems, 2007.

No 1323 Magnus Lundqvist: Information Demand and Use: Improving Information Flow within Small-scale Business

Contexts, 2007.

No 1329 Martin Magnusson: Deductive Planning and Composite Actions in Temporal Action Logic, 2007.

No 1331 Mikael Asplund: Restoring Consistency after Network Partitions, 2007.

No 1332 Martin Fransson: Towards Individualized Drug Dosage - General Methods and Case Studies, 2007.

No 1333 Karin Camara: A Visual Query Language Served by a Multi-sensor Environment, 2007.

No 1337 David Broman: Safety, Security, and Semantic Aspects of Equation-Based Object-Oriented Languages and

Environments, 2007.

No 1339 Mikhail Chalabine: Invasive Interactive Parallelization, 2007.

No 1351 Susanna Nilsson: A Holistic Approach to Usability Evaluations of Mixed Reality Systems, 2008.

No 1353 Shanai Ardi: A Model and Implementation of a Security Plug-in for the Software Life Cycle, 2008.

No 1356 Erik Kuiper: Mobility and Routing in a Delay-tolerant Network of Unmanned Aerial Vehicles, 2008.

No 1359 Jana Rambusch: Situated Play, 2008.

No 1361 Martin Karresand: Completing the Picture - Fragments and Back Again, 2008.

No 1363 Per Nyblom: Dynamic Abstraction for Interleaved Task Planning and Execution, 2008.

No 1371 Fredrik Lantz:Terrain Object Recognition and Context Fusion for Decision Support, 2008.

No 1373 Martin Östlund: Assistance Plus: 3D-mediated Advice-giving on Pharmaceutical Products, 2008.

No 1381 Håkan Lundvall: Automatic Parallelization using Pipelining for Equation-Based Simulation Languages, 2008.

No 1386 Mirko Thorstensson: Using Observers for Model Based Data Collection in Distributed Tactical Operations, 2008.

No 1387 Bahlol Rahimi: Implementation of Health Information Systems, 2008.

No 1392 Maria Holmqvist: Word Alignment by Re-using Parallel Phrases, 2008.

No 1393 Mattias Eriksson: Integrated Software Pipelining, 2009.

No 1401 Annika Öhgren: Towards an Ontology Development Methodology for Small and Medium-sized Enterprises,

2009.

No 1410 Rickard Holsmark: Deadlock Free Routing in Mesh Networks on Chip with Regions, 2009.

No 1421 Sara Stymne: Compound Processing for Phrase-Based Statistical Machine Translation, 2009.

No 1427 Tommy Ellqvist: Supporting Scientific Collaboration through Workflows and Provenance, 2009.

No 1450 Fabian Segelström: Visualisations in Service Design, 2010.

No 1459 Min Bao: System Level Techniques for Temperature-Aware Energy Optimization, 2010.

No 1466 Mohammad Saifullah: Exploring Biologically Inspired Interactive Networks for Object Recognition, 2011

No 1468 Qiang Liu: Dealing with Missing Mappings and Structure in a Network of Ontologies, 2011.

No 1469 Ruxandra Pop: Mapping Concurrent Applications to Multiprocessor Systems with Multithreaded Processors and

 Network on Chip-Based Interconnections, 2011.

No 1476 Per-Magnus Olsson: Positioning Algorithms for Surveillance Using Unmanned Aerial Vehicles, 2011.

No 1481 Anna Vapen: Contributions to Web Authentication for Untrusted Computers, 2011.

No 1485 Loove Broms: Sustainable Interactions: Studies in the Design of Energy Awareness Artefacts, 2011.

FiF-a 101 Johan Blomkvist: Conceptualising Prototypes in Service Design, 2011.

No 1490 Håkan Warnquist: Computer-Assisted Troubleshooting for Efficient Off-board Diagnosis, 2011.

No 1503 Jakob Rosén: Predictable Real-Time Applications on Multiprocessor Systems-on-Chip, 2011.

No 1504 Usman Dastgeer: Skeleton Programming for Heterogeneous GPU-based Systems, 2011.

No 1506 David Landén: Complex Task Allocation for Delegation: From Theory to Practice, 2011.

No 1509 Mariusz Wzorek: Selected Aspects of Navigation and Path Planning in Unmanned Aircraft Systems, 2011.

No 1510 Piotr Rudol: Increasing Autonomy of Unmanned Aircraft Systems Through the Use of Imaging Sensors, 2011.

	Introduction
	Thesis Contributions
	List of Publications
	Thesis Outline

	The UASTechLab RMAX System
	The Hardware Platform
	The Software System
	The UASTechLab Software Architecture
	The Control Kernel
	Path Following Control Mode

	Hierarchical Concurrent State Machines
	Introduction
	HCSM Framework
	Practical HCSM Examples
	Use Case 1: Engaging Default Autonomous Hovering Mode
	Use Case 2: Path Execution

	Summary

	Dynamic Path Replanning
	Background
	Probabilistic Roadmaps
	Rapidly Exploring Random Trees

	Dynamic Replanning of the Path
	Prediction Service
	Strategy Library
	Strategy Selector Service

	Time Analysis of Replanning Strategies
	Experimentation
	Summary

	Choosing Replanning Strategies
	Support Vector Machines
	Prediction Features
	Experimental Results
	Related Work

	Map Building Using A Laser Range Finder
	Integration of the Laser Range Finder
	Scan Transformation
	Scan Alignment
	Using 3D Maps for Navigation
	Static Environment
	Collision Avoidance

	Conclusions

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 6.496 x 9.449 inches / 165.0 x 240.0 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20110823084905
 680.3150
 S5
 Blank
 467.7165

 Tall
 1
 0
 No
 675
 322
 None
 Right
 14.1732
 0.0000

 Both
 AllDoc

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposing2
 Quite Imposing 2.1
 Quite Imposing 2
 1

 0
 125
 124
 125

 1

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 1
 same as current

 1
 1
 1
 602
 336

 CurrentAVDoc

 SameAsCur
 AfterCur

 QITE_QuiteImposing2
 Quite Imposing 2.1
 Quite Imposing 2
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.268 x 11.693 inches / 210.0 x 297.0 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20111012142356
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 No
 675
 322
 None
 Right
 14.1732
 0.0000

 Both
 AllDoc

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposing2
 Quite Imposing 2.1
 Quite Imposing 2
 1

 125
 126
 125
 126

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 6.496 x 9.449 inches / 165.0 x 240.0 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20110823084905
 680.3150
 S5
 Blank
 467.7165

 Tall
 1
 0
 No
 675
 322

 None
 Left
 31.1811
 0.0000

 Both
 2
 AllDoc
 6

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 0
 133
 132
 133

 1

 HistoryList_V1
 qi2base

