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ABSTRACT

Surveillance is an important application for unmanned aerial vehicles (UAVs). The sensed

information often has high priority and it must be made available to human operators as

quickly as possible. Due to obstacles and limited communication range, it is not always

possible to transmit the information directly to the base station. In this case, other UAVs

can form a relay chain between the surveillance UAV and the base station. Determining

suitable positions for such UAVs is a complex optimization problem in and of itself, and

is made even more difficult by communication and surveillance constraints.

To solve different variations of finding positions for UAVs for surveillance of one target,

two new algorithms have been developed. One of the algorithms is developed especially

for finding a set of relay chains offering different trade-offs between the number of UAVs

and the quality of the chain. The other algorithm is tailored towards finding the highest

quality chain possible, given a limited number of available UAVs.

Finding the optimal positions for surveillance of several targets is more difficult. A

study has been performed, in order to determine how the problems of interest can be

solved. It turns out that very few of the existing algorithms can be used due to the char-

acteristics of our specific problem. For this reason, an algorithm for quickly calculating

positions for surveillance of multiple targets has been developed. This enables calculation

of an initial chain that is immediately made available to the user, and the chain is then

incrementally optimized according to the user’s desire.
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Chapter 1

Introduction

Historically, Unmanned Aerial Vehicles (UAVs) have been used for tasks

that are considered “dangerous, dirty and dull”. Tasks can be dangerous

if they require flying an aircraft over enemy positions. Dirty tasks may

require entering areas contaminated by poison or flying into a radioactive

cloud with the intention of collecting samples of radioactive dust. A dull

activity is something that a human would quickly grow tired of doing.

An example of an activity that is often considered dull is surveillance,

which is an essential aspect in a wide variety of applications, for example

search and rescue operations, traffic monitoring, forest fire monitoring, law

enforcement and military applications. Although mainly labeled as a dull

activity, surveillance can also be dangerous, especially if the surveillance

target is hostile, or if there is limited information about the area around the

target. Improving the performance and decreasing the risk of human injuries

and casualties are two of the many reasons for using UAVs for surveillance.

The use of unmanned vehicles for surveillance is not new. Such vehicles

have been used throughout large parts of the twentieth century and the types

of vehicles used vary greatly: from large semi-stationary airships, through

UAVs a few meters in size, to micro UAVs weighing less than a kilogram.

With advances in technology, the use of UAVs for surveillance as well as for

other tasks is likely to increase.

In many cases, the information that is gathered by surveilling the target

must be made available to a ground operator at a base station as quickly as

possible. As the information may include high volume sensor data such as

live video, high uninterrupted bandwidth is desirable. The communication

equipment and the properties of the communication channel may restrict

where the surveillance UAV can be placed. Naturally, it must be positioned

in such a way that it can surveil the target, but it must also be able to
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Chapter 1. Introduction

transmit the sensed information to the base station. To maintain good

transmission quality for the high-bandwidth communications required when

transmitting live video, common requirements are line-of-sight and limited

distance between the surveillance UAV and the base station, corresponding

to the maximum communication range [41].

The line-of-sight requirement can be problematic in mountainous or ur-

ban areas. While the problem can be mitigated by increasing the UAV’s

altitude, this option is not always possible for small UAVs, which in some

cases are not able to ascend sufficiently. Although larger UAVs might be able

to do this, the airspace may be restricted by aviation authorities, which in

some cases makes it impossible for the UAV to achieve the required altitude.

If the UAV is able to ascend to the required altitude and that the airspace

is available, the distance between the UAV and the target as well as between

the UAV and the base station increases. This can adversely affect the quality

of sensed information and the maximum communication distance may also

be exceeded. Even if the transmission range is sufficient, communicating

to and from such an altitude might require significant transmission power,

which can be problematic for smaller UAVs. The communication range is

also typically limited, and can be quite short, especially when smaller and

lower cost UAVs are used. This is because such UAVs might not be able to

carry the most powerful and sophisticated communication equipment due

to size and weight constraints.

If UAVs are unable to ascend to sufficient altitude, another alternative is

to use satellite communication. However, not all organizations have access

to such satellites and smaller UAVs might not be able to carry the required

equipment.

The above methods for achieving communication between the surveil-

lance UAV and the base station are suitable in some situations, but there

are limitations to both methods. An alternative approach is to use one

or more communication relays that extend the effective range and forward

transmissions around obstacles.

If it is known beforehand where the surveillance target will appear, then

the necessary relays can be placed in advance. If the target location is un-

known, then a large number of relays can be prepositioned to cover all pos-

sible target positions. However, this would probably require many statically

placed relays, most of which would not be used, and it limits surveillance to

environments where relays are expected to remain for some time.

A more flexible solution is to use UAVs to relay information. This has

previously been investigated by several researchers, see e.g. Cerasoli [20]

and Pinkney et al. [81]. However, there has been very little research on

where the relay UAVs should be placed.
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x3

x2
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x0

Figure 1.1: Example of relay chain with four UAVs. The base station located
at location x0 is connected to the target located at t1 by the surveillance
UAV at x4 and the relay UAVs at x1–x3.

This thesis focuses on algorithms for finding suitable positions for such

UAVs and gives examples of some of the factors that can be used to dis-

tinguish between good and bad positions with regards to UAV placement.

For practical reasons, the surveillance UAV is distinguished from the re-

lay UAVs. The surveillance UAV must be equipped with sensors suitable

for surveilling the target while the relay UAVs may carry less sophisticated

sensors as their task is to relay information. If the relay UAVs are placed

correctly, they offer a way to handle both the limited communication range

and the line-of-sight requirement. As the distance between the base sta-

tion and the targets can be quite long, many relay UAVs may be required.

For this reason, we aim to describe and develop algorithms that scale well

enough to quickly solve problems involving a large number of UAVs in large

areas of operation.

In cases where a single target is surveilled, the UAVs form a relay chain

(Figure 1.1) between the target and the base station. When there are several

targets, calculating separate chains to each would not make the best use of

resources. Instead, relays could receive information from several UAVs. This

creates a relay tree. Such a tree has the root in the base station, the UAVs

are the interior nodes and the targets are the leaves. An example is shown

in Figure 1.2.

Here we are interested in surveillance of one or more static targets with

3
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t 1

x4

x3 x2

x1

x0

t 2

x5

x6

Figure 1.2: A relay tree with two targets.

known locations and as we are looking for positions where the UAVs can

be placed, the relay problems are positioning problems, not motion planning

problems. Algorithms for finding trajectories are not part of this thesis.

The focus in this thesis is on UAVs, especially helicopters that can remain

at the same time for a prolonged time. However, the algorithms and concepts

presented here work equally well for unmanned ground vehicles (UGVs) as

well as for determining placement of other objects used for communication,

for example temporary base stations for cellular phone communication in

disaster situations.

1.1 Thesis Contributions

The main contributions of this thesis include:

� Formalizations of several single and multiple target relay positioning

problems, focusing on different objectives and allowing for a large de-

gree of flexibility in modeling surveillance and communication.

� Two different algorithms for solving the different single target relay

positioning problems. Both algorithms are based on graph search in a

discretized version of the original problem. Each algorithm calculates
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1.2. Publications

a set of different relay chains, where each relay chain has a differ-

ent quality and requires a different number of UAVs. Naturally, a

solution requiring a larger number of UAVs is only useful if it has

a higher quality. The first algorithm is a label-correcting algorithm

that is capable of solving several different relay positioning problems.

The second algorithm is focused on the problem of finding the highest

quality solution given a limited number of available UAVs.

� A discussion on how the multiple target problems can be modeled

to be solved efficiently as well as a theoretical study and discussion

of what algorithms are suitable for solving the multiple target prob-

lems. We generalize an existing heuristic to fit the requirements of

the multiple target relay positioning problems and present two other

algorithms that can be used for different problems involving relay trees

for multiple targets. The first of the algorithms for the single target

relay problem is used to solve several different multiple target relay

positioning problems involving a base station and two targets. The

same algorithm is then generalized and used as a heuristic in order to

improve existing relay trees with respect to factors such as the number

of UAVs required to realize the tree or the quality of the tree.

1.2 Publications

Parts of this thesis have previously been presented in the following publica-

tions and reports:

[15] Oleg Burdakov, Patrick Doherty, Kaj Holmberg, Jonas Kvarnström,

and Per-Magnus Olsson. Positioning unmanned aerial vehicles as

communication relays for surveillance tasks. In Proceedings of the

2009 Conference on Robotics: Science and Systems (RSS), pages

257–264, 2009.

[16] Oleg Burdakov, Patrick Doherty, Kaj Holmberg, Jonas Kvarnström,

and Per-Magnus Olsson. Relay positioning for unmanned aerial

vehicle surveillance. International Journal of Robotics Research,

29(8):1069–1087, 2010.

[17] Oleg Burdakov, Patrick Doherty, Kaj Holmberg, and Per-Magnus

Olsson. Optimal placement of UV-based communications relay

nodes. Journal of Global Optimization, 48(4):511–531, 2010.

[18] Oleg Burdakov, Kaj Holmberg, and Per-Magnus Olsson. A dual

ascent method for the hop-constrained shortest path with applica-

tion to positioning of unmanned air vehicles. Technical Report
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LiTH-MAT-R-2008-07, Linköping University, Department of Math-

ematics, 2008.

[34] Patrick Doherty, Jonas Kvarnström, Fredrik Heintz, David Landén,

and Per-Magnus Olsson. Research with collaborative unmanned

aircraft systems. In Proceedings of the Dagstuhl Workshop on Cog-

nitive Robotics, 2010.

[77] Per-Magnus Olsson, Jonas Kvarnström, Patrick Doherty, Oleg

Burdakov, and Kaj Holmberg. Generating UAV communication

networks for monitoring and surveillance. In Proceedings of the In-

ternational Conference on Control, Automation, Robotics and Vi-

sion (ICARCV), 2010.

The following publication has been submitted in 2010:

[19] Oleg Burdakov, Kaj Holmberg, and Per-Magnus Olsson. A dual

ascent method for the hop-constrained shortest path with appli-

cation to positioning of unmanned air vehicles. Naval Research

Logistics, submitted in 2010.

1.3 Thesis Outline

Related work is discussed in Chapter 2. In Chapter 3, problem definitions

for the single target relay problems are presented, as well as reachability

functions for determining whether communication and surveillance can take

place and cost functions for modeling the cost of such communication or

surveillance. Different discretization options are discussed in Chapter 4.

Several algorithms for solving relay positioning problems involving a single

target are shown in Chapter 5. Chapter 6 defines the multiple target relay

problems and presents algorithms suitable for solving the problems. An

overview of our implementation and integration into a simulator system as

well as experimental results are described in Chapter 7. The conclusions are

presented in Chapter 8.
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Chapter 2

Related Work

This chapter presents related work in the areas of relay placement and other

related areas. Most previous work has been for UGVs, and the amount of

work involving UAVs is somewhat limited.

As the problems of interest here are positioning problems, research in

motion planning is not part of the related work. The general use of UAVs

for surveillance is not included due to limited overlap with the research

presented here.

The chapter is structured as follows. Section 2.1 provides an overview of

the use of UAVs as relays. Next, Section 2.2 describes different ways to solve

relay positioning problems for a single target. Different methods to provide

relay trees to multiple targets are the topic of Section 2.3. Section 2.4

describes some different ways in which a UAV has been used to provide

coverage of an area. Section 2.5 describes how ground robots have been used

for exploration, while at the same time maintaining a connected network.

Finally, Section 2.6 describes the relation between ad-hoc networks, wireless

networks and the relay positioning problems. That section also provides an

overview of how UAVs can be used in conjunction with ad-hoc networks.

2.1 UAVs As Relays

The concept of using a UAV as a communications relay in military appli-

cations is discussed in Pinkney et al. [81]. The work exclusively considers

one UAV acting as a relay between users on the ground and the focus is on

different classes of platforms and the different uses of those. Much empha-

sis is placed on the communications equipment, but no algorithm for UAV

placement is presented.

A possible application of UAVs is highway surveillance, and the data link

7



Chapter 2. Related Work

used for transfer of information from a surveilling UAV to a base station

has been investigated by Chen et al. [24]. Although it is mentioned that

the UAV moves to keep large areas under surveillance, no algorithms for

determining the placement of the UAV or the placement of the base station

is performed: the focus is on the data link, including the hardware and

its capabilities. An interesting point is that a commercial CDMA network

is used for transmitting information from the UAV to the base station.

Different bit rates and frame rates are tested to find the highest quality

video stream that can be transmitted.

The research performed by Zhan [102] mainly focuses on the performance

of communication between relays. However, there is a short discussion about

placement of a UAV to enable transmission of information to several users.

To communicate with a user, the UAV must be positioned in a circle centered

in the user’s position. The only described positioning algorithm is to place

the UAV in the intersection of several circles. If no such intersection exists,

then communication is not possible.

2.2 Single Target

In limited cases, a single relay UAV is sufficient to maintain a flow of infor-

mation to the base station. One such case was investigated by Schouwenaars

[86]. A surveillance UAV must fly to a specific position and a single relay

UAV is used to maintain a connection with a base station. This problem was

formulated as a Mixed-Integer Linear Programming (MILP) problem. The

objective was to optimize a cost function while at the same time satisfying

certain conditions. Several different conditions were used and presented.

One condition was that UAVs were not allowed to fly within a certain dis-

tance from obstacles. Another condition was that the distance between

the surveillance UAV and the relay UAV was required to be less than a

maximum communication range. Similarly, the maximum allowed distance

between the relay UAV and a base station was limited. The costs could

for example be flight time, fuel consumption or visibility. Both centralized

and distributed receding horizon approaches are considered. As the compu-

tational complexity increases exponentially with the number of agents, the

distributed approach is used. For solving the MILP-problems, the commer-

cial MILP-solver CPLEX was used. The same distributed approach was also

used in a scenario with two relay UAVs [87]. It is mentioned that the time

required in each iteration is increased when several relay UAVs are used,

but the execution time was still within the allotted time interval.

Control behavior for teams of unmanned ground vehicles involving line-

of-sight is investigated in Sweeney et al. [91]. In an indoor setting, a lead

8



2.2. Single Target

UGV advances from the base station towards the goal position and incre-

mentally determines where to place relay robots along the way in order to

maintain communication with the base station. To enable communication

between the robots, line-of-sight (LOS) between them is required and they

must be within a certain distance from each other. LOS is estimated in a

discretized environment with square grid cells of equal size. Two distances

are used: LOS distance and occlusion threshold distance. If the distance

between two robots is less than the LOS distance, then both robots can

move freely, assuming that there is line-of-sight between them. The occlu-

sion threshold distance marks the maximum allowed separation between a

pair of robots and cannot be exceeded. If the distance between two robots is

more than the LOS distance, the controller of one of the robots is switched

off, and that robot remains passive until the other robot comes within LOS

distance. By varying the occlusion threshold distance, and how proactive

the robots are when trying to maintain line-of-sight, different behaviors are

achieved.

A very similar problem is investigated by Nguyen et al. [73]. Several

algorithms for positioning UGVs to form a relay chain between the base

station and a target are evaluated in terms of energy usage. Initially, all

robots are gathered at the base station and then the lead robot advances

towards the target. The best-performing algorithm, with respect to energy

usage, keeps the other robots at a base station until the lead robot expe-

riences a signal strength below a threshold. When this happens, the lead

robot stops and requests a relay UGV to be placed at the lead UGV’s posi-

tion. The relay moves from the base station to the lead UGV’s position and

stays there. This allows the lead UGV to move incrementally towards the

target until another position with poor radio signal is encountered. Then

a new relay UGV moves from its current position at the base station to

the already placed UGV. When it arrives, the already placed relay UGV

moves to the position of the lead robot, which is then free to continue. This

process is repeated until the target position is reached by the lead UGV.

The main disadvantages with the algorithms mentioned above are that they

have no theoretical guarantees that the target position is reached, as no a

priori calculation or evaluation of paths is performed.

Cheng et al. [25] investigated the use of several UAVs for relaying infor-

mation between a producer and a consumer. They consider the information

to be delay-tolerant, which opens up the possibility of transmitting the in-

formation from the producer to one UAV, which then flies to the consumer

and transmits the information. Two UAVs are used simultaneously. One

is delivering information from the producer and one is flying “empty” to

the producer to get the next load of information. The authors refer to this

9
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procedure as “load-carry-and-deliver”. As we consider the information from

the surveillance UAV urgent, this approach cannot be used for the appli-

cations discussed in this thesis. However, if the number of relay UAVs is

insufficient to form a relay chain, this is one method to get some, albeit

delayed, information from the surveillance UAV.

2.3 Multiple Targets

Finding suitable positions for UGVs to allow them to find relay chains be-

tween a set of sensors (targets) and a base station using potential fields is

investigated by Simonetto et al. [89]. The UGVs follow the gradient of the

total potential field until a suitable position is found. Several potential field

approaches are evaluated, both “standard” and “dynamic”. In the “stan-

dard” potential field approach, all robots are influenced by all other robots

as well as the sensors. In a “dynamic” approach, the robots change the

potential fields to influence other robots to position themselves in config-

urations that form chains between the sensors and the base station. Each

UGV is affected by all other UGVs and sensors within a certain range. Sev-

eral different environments are used to evaluate the approaches with respect

to connectivity and efficiency. In all environments, the “dynamic” approach

performs the best as the “standard” approach causes the robots to spread

evenly in the environment. This is disadvantageous as it does not necessarily

places robots at locations that are good for forming relay chains.

If a large set of targets must be visited and the number of available UGVs

is smaller than the number of targets, then the UGVs must move between

targets while at the same time maintaining communication with the base

station. One possibility is to create a tree rooted in the base station and

spanning all targets and visit one target at a time [72]. Several different tree

types are possible, such as depth-limited trees or minimal spanning trees,

or trees based on a traveling salesman tour. The trees are evaluated with

respect to different criteria, for example average travel distance for each

robot. Communication between robots is modeled using a virtual spring-

damper model. If the robots are so far away from each other that the signal

quality decreases below a threshold, the robots are attracted towards each

other. This supposedly avoids the risk of disconnection, although few details

are provided.

Another option that also builds on the concept of a tree spanning all

targets is to divide the robots into groups, and let each group visit all tar-

gets in a subtree. Depending on the number of robots in a group and the

number required to visit all targets, it might be possible to visit several

targets simultaneously [71]. As the problem is shown to be NP-hard, dif-
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ferent heuristics are evaluated with regards to the same criteria as for the

sequential traversal method. The heuristics differ in when to split a robot

group and the order in which targets are visited when sequential visits are

necessary. In our problems, we assume that we have access to enough UAVs

to surveil all targets concurrently, therefore the need for route planning be-

tween surveillance positions is removed.

2.4 Area Coverage

A general investigation of whether using a single relay UAV could improve

communication in a simulated urban environment has been performed by

Cerasoli [20]. Here the UAV works as a relay between users on the ground

and line-of-sight is required between the users and the UAV for communica-

tion to take place. The focus of the work is to determine the percentage of

the urban area that can be covered with acceptable signal strength, using a

single UAV. Eight different positions on a circle, as well as in the middle of

the circle are evaluated. The altitude is also varied, between 500, 1000 and

2000 meters. When the UAV is placed at a higher altitude, it has line-of-

sight to a larger percentage of the area, and even though the signal strength

decreases, better coverage of the area is achieved.

Han et al. [47] performed similar experiments, by investigating the effect

of using a UAV to improve the global message connectivity and worst-case

connectivity in a network. A series of experiments were performed to inves-

tigate the impact that the UAV had on the two types of connectivity. The

size of the area was fixed and the number of users was varied between 2–30.

As the number of users grew, connectivity improved as more users could

communicate without the use of the UAV. Thus, the greatest improvement

was achieved when the number of users was small. However, in all cases the

UAV could significantly improve both connectivity measures.

The research in the above papers has little in common with the problems

that we are interested in. We know the locations of the surveillance UAV and

the base station and are consequently not interested in providing coverage of

a large area. Neither are we interested in providing communication between

arbitrary users.

2.5 Exploration

Exploration is one of many application areas for robots. When several robots

cooperatively explore an area, it can be very beneficial if they are able to

exchange information during the exploration process [83]. The problem
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is discretized, both temporally and spatially, using a grid. A grid cell is

considered explored when it has been visited by a robot. An algorithm

based on maintaining an exploration frontier is used to weigh the benefits of

exploring unknown territory versus maintaining communication with other

robots. A set of possible moves is determined for each robot, and all moves

are evaluated with a utility function. The function evaluates each move

with respect to different factors, for example, whether it explores a cell on

the exploration frontier and whether it maintains communication with other

robots. An optimization is performed in each time step, to determine what

actions yield the highest total utility for the team. This problem is different

from our problems: we are interested in finding a set of locations where

robots will be placed, rather than finding a sequence of positions that allow

robots to explore an environment.

Anderson et al. [5] presents an algorithm for maintaining line-of-sight

between groups of ground robots exploring an area. The algorithm is based

on several heuristics. First, existing groups of robots are identified, and then

groups are connected to each other using a set of relays with the estimated

lowest cost to connect the groups. Robots acting as relays are placed one

at a time, until a certain confidence threshold is reached. The confidence

threshold indicates that any solution found is of sufficiently high quality.

Simulated testing indicates that the algorithm performs well, but the algo-

rithm has no theoretical completeness guarantee.

Arkin and Diaz [6] use a behavior-based architecture to allow teams of

ground robots with line-of-sight communication to explore buildings and

to find stationary objects using only limited knowledge about the area in

which the objects are placed. The objective is somewhat different from the

objective in this thesis, as the task is to find effective exploration strategies

that minimize the time required until all objects are found.

2.6 Ad-hoc Networks and Wireless Sensor

Networks

Problems that are seemingly very similar to the relay positioning problems

are encountered in ad-hoc networks. In such networks, messages are to be

delivered in a network where there is no control of the network topology.

Routing algorithms for such networks must be able to handle addition and

removal of nodes at runtime [55, 62, 67].

The use of a swarm consisting of several UAVs to improve the range and

reliability of an ad-hoc network is investigated by Palat et al. [79]. Good

results are achieved, mainly through a large increase in the range using the
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same transmission power, compared to using a direct ground link.

Brown et al. [14] investigated different scenarios where a UAV was used

as a relay node. In the first scenario, there were two groups of radio nodes

on the ground. Each group could communicate internally, but could not

communicate reliably with the other group. In this scenario, the UAV allows

the groups to form a functioning ad-hoc network and both throughput and

connectivity were significantly improved.

The second scenario tested whether a UAV could improve throughput

between moving radio nodes, including other UAVs. The result was that the

UAV greatly improved the connectivity for nodes having initially poor con-

nectivity while the connectivity was somewhat adversely affected for nodes

with good initial connectivity. The authors speculate that this depends on

a more variable link quality when using UAVs. To determine the subjective

quality, they tested web browsing and a real-time voice application via an

ad-hoc network. For web browsing, the performance was acceptable when

using ad-hoc networks with up to six hops. The voice application worked

well with up to three hops.

Significant differences exist between the relay problems and ad-hoc net-

works. In the relay problems, we are not interested in communication be-

tween arbitrary nodes, but in transferring large amounts of information be-

tween the surveillance UAV(s) and the base station. For this reason, we are

not interested in maintaining connectivity between arbitrary nodes. Instead,

we are interested in where the nodes (UAVs) should be positioned so that

information can be transmitted to the base station. Furthermore, we have

control over the placement of the UAVs and assume that the UAVs will be

available for the complete mission.

Wireless Sensor Networks (WSNs) consist of a large number of small sen-

sors that are placed to cover an area [2]. For a survey of routing algorithms

in WSNs, the reader is referred to Al-Karaki and Kamal [3]. Although there

are some similarities with the problems investigated in this thesis, there are

also considerable differences: WSNs must be able to handle frequent sensor

failures, and relays are often also sensors and should be placed accordingly.

In WSNs, there is also limited control over where the sensors are placed.
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Chapter 3

The Relay Positioning

Problems

In this chapter, we provide definitions of several different variations of relay

positioning problems, and we discuss factors and functions that can be used

to determine whether communication and surveillance are possible. We also

discuss how the cost of such activities can be modeled. A discussion about

continuous solution methods is also included in this chapter.

3.1 Problem Setup

We assume that relays are placed in three dimensions. Let F ⊆ R3 be the

region that is free from obstacles, defining the space through which free line-

of-sight can be achieved. Let U ⊆ F be the region where each individual

UAV may safely be placed. This region must only include points sufficiently

far away from obstacles for the required safety clearances to be satisfied.

No-fly-zones where UAVs are not permitted may also be excluded from U.

Let x0, t1 ∈ R3\U be the position of a base station and a surveillance target,

respectively.

Assume as given two Boolean reachability functions: a communica-

tion reachability function fcomm(x, x′) and a surveillance reachability func-

tion fsurv(x, x
′). The communication reachability function specifies whether

communication between two entities at points x, x′ ∈ U should be considered

feasible. It can for example be defined by a limited communication radius

and a requirement of free line-of-sight (where all points between x and x′

must be in F), by explicit models of 3D wave propagation, or by any other

definition appropriate for the problem at hand. The surveillance reacha-
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bility function fsurv(x, x
′) specifies whether a surveillance UAV at x ∈ U

would be able to surveil a target at x′ ∈ R3 \U. This function must take

into account suitable minimum and maximum ranges for surveillance as well

as sensor-specific limitations such as cameras that cannot surveil targets in

arbitrary directions. For example, a camera mounted on the belly of the

UAV cannot surveil targets above the UAV.

Under the assumption that the corresponding reachability function holds,

a communication cost function ccomm(x, x′) determines the cost of commu-

nication from x to x′ and a surveillance cost function csurv(x, x
′) determines

the cost of surveilling a target at x′ from the position x. The general notion

of cost and cost minimization can be used to model a wide variety of quality

measures or combinations of such measures. For example, communication

costs may be related to transmission power requirements, the risk of inter-

rupted communication or intermittent dropouts, and the risk of detection

by adversaries.

Several relay problems for a single target will now be defined. Multiple

targets are treated in Section 6.1.

3.2 Definitions of the Single Target Relay

Problems

A relay chain π between the base station position x0 and the single target

position t1 is defined as a sequence of positions [x0, x1, . . . , xk, t1], where

{x1, . . . , xk} ⊆ U, such that fcomm(xi, xi+1) for all i ∈ [0 . . . k − 1], and

fsurv(xk, t1). The length of a chain is defined as the number of agents

required to realize the chain, including the base station and all UAVs:

length([x0, x1, . . . , xk]) = k + 1.

We are often interested in generating relay chains of high quality relative

to a problem-specific quality measure. We model such measures in terms of

the cost of relaying information between positions xi and xi+1 and the cost

of surveilling the target at point t1 from a surveillance UAV at point xk.

The cost of a relay chain [x0, x1, . . . , xk], denoted by cost([x0, . . . , xk]),

is defined as
k−1∑
i=0

ccomm(xi, xi+1) + csurv(xk, t1)

Given a problem instance as defined above, including the position of the base

station and the target, we can now identify a number of interesting single

target relay positioning (STR) problems. Some of these problems assume

an upper limit on the number of UAVs available, denoted by M . Setting

M =∞ requires finding all solutions, regardless of length.
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STR-MinLengthMinCost: Find a relay chain of minimum length among

the chains of minimum cost. A solution to this problem is a chain s such that

for all other chains c, cost(s) ≤ cost(c) and cost(s) = cost(c) → length(s) ≤
length(c). This corresponds to using the highest quality chain that can be

realized with access to an unlimited number of UAVs, with a preference for

using fewer UAVs if this is possible without compromising quality.

STR-MinCostMinLength: Find a relay chain of minimum cost among

the chains of minimum length. A solution to this problem is a chain s such

that for all other chains c, length(s) ≤ length(c) and length(s) = length(c)→
cost(s) ≤ cost(c). This is useful if minimizing the number of UAVs is strictly

more important than maximizing quality.

STR-MinCostLimited: Find a relay chain of minimal cost among the

chains that use at most M UAVs. A solution to this problem is a chain s

such that for all other chains c, length(s) ≤M + 1, and for all other chains

length(c) ≤M + 1→ cost(s) ≤ cost(c). This corresponds to a desire to find

the highest quality relay chain that can be realized within the given limit

on the number of UAVs.

STR-ParetoLimited: Find a set of Pareto-optimal relay chains that is

complete up to a given upper limit on the number of available UAVs. A

chain s is Pareto-optimal for up to M UAVs if length(s) ≤M + 1 and for all

chains c of length at most M + 1, length(c) < length(s)→ cost(c) > cost(s)

and cost(c) < cost(s)→ length(c) > length(s).

The STR-ParetoLimited problem is a bi-objective problem, where

each chain represents a different trade-off between the number of UAVs in

the chain and the cost of the chain. Each such chain is Pareto-optimal, as

it cannot be improved in one aspect without a decrease in another aspect

[69]. For example, the cost of the chain cannot be improved without also

increasing the number of UAVs in the chain.

Algorithms for solving the single target relay problems are discussed in

Chapter 5.

3.3 Cost Functions

The purpose of a cost function is to evaluate pairs of positions with respect

to how suited they are to place UAVs for communication or surveillance. A

pair of better suited positions has a lower cost.

For two positions x, x′ ∈ R3, the communication cost function ccomm(x, x′)

models the cost of communicating from x to x′ and the surveillance cost

function csurv(x, x
′) models the cost of surveilling a target located at x′
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Figure 3.1: Three relay chains with different lengths and costs.

from position x. The functions are defined under the condition that fcomm

and fsurv (see Section 3.4), respectively, hold for the positions x and x′. In

this section, we first discuss several different measures for communication

cost and then we discuss surveillance cost measures.

One straightforward measure of a relay chain’s quality is the number of

UAVs in the chain. However, in many cases it may be advantageous to use

a larger number of UAVs if this can improve some other quality measure.

An example is shown in Figure 3.1, where positions close to obstacles have

higher cost as they offer a lower margin of safety and robustness to external

factors. The UAVs in the top relay chain are positioned closer to obstacles

and there is a small margin of safety around the UAVs’ locations. On the

other hand, the bottom relay chain uses a larger number of UAVs, but has

a greater margin of safety between the UAVs and obstacles. The middle

chain offers an intermediate between the two extremes.

Many different factors can be used as cost measures for positions. A cost

measure using a combination of factors can be created using for example a

weighted sum.

Some of the cost factors suggested in subsequent sections satisfy the

triangle inequality, defined as cx,x′′ ≤ cx,x′ + cx′,x′′ for all positions x, x′, x′′,
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Figure 3.2: In some cases, e.g. if the cost increases quadratically with
distance, then the triangle inequality no longer applies. This makes a direct
transmission from x to x′′ more expensive than two shorter transmissions.

where cx,x′ denotes the cost of communication from x to x′. For such a

function, communicating directly from x to x′′ cannot be more expensive

than first communicating to x′ and then to x′′. However, even simple cost

functions can void the triangle inequality and as we will see, many cost

functions of interest here do exactly this. Figure 3.2 shows three positions

and the distances between them. Assume that the cost of transmission

between positions increases quadratically with distance. An example of such

a cost is the transmission power required to achieve a certain signal-to-noise

ratio, as will be discussed in Section 3.3.1. With the cost set to the square

of the distance, cx,x′ = cx′,x′′ = 512 = 2601 and cx,x′′ = 1002 = 10000.

Thus cx,x′′ = 10000 and cx,x′ + cx′,x′′ = 5202 which shows that relaying

information through x′ gives a cheaper path than transmitting directly to x′′.

The fact that the triangle inequality is not necessarily satisfied has profound

implications for the relay positioning problems as it opens up the possibility

of improving the quality of a chain by taking a longer path.

3.3.1 Transmission Quality

A surveillance UAV sending a continuous video feed to a base station may

not be able to re-transmit lost or faulty data packets. Instead, a continuous

stream of video data may be transmitted through the relay chain, where

forward error correction [63] is used to recover from errors. However, it

is likely that it is impossible to recover from some errors, which decreases

the quality of the video stream received at the base station. Such a loss of

quality is naturally modeled as a communication cost.

Obviously, the risk of such errors increases as the signal strength de-

creases. To model this, one can use a cost function inversely related to

the signal-to-noise ratio (SNR). The SNR is one way of measuring signal

strength. When calculating the SNR between two positions, the first step is

often to determine the distance between the positions and whether there is

line-of-sight between the positions. These two factors have a large impact
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on the communication quality. The SNR is proportional to the transmitter

power P and the antenna gain W and inversely related to the distance be-

tween transmitter and receiver d = ‖x′ − x‖. How much the signal-to-noise

ratio decreases with distance is approximated by the path loss exponent α

[79].

The path loss exponent is a very generic factor that is commonly used

to approximate different factors. For example, stronger fading due to lack

of line-of-sight yields a higher value of α. When used to estimate fading

outdoors, the value of α is most often in the 2–5 range, where α = 2 cor-

responds to propagation in free air, that is, with line-of-sight. As the exact

value of α depends on for example altitude, the amount of particles in the

air, atmospheric conditions and the buildings in the environment, α = 4

is commonly used if the exact value is unknown. The reader is referred to

Palat et al. [79] for a discussion on different values of α.

As a high SNR shall yield a low cost, one possible communication cost

function based on the SNR is:

SNR: ccomm(x, x′) =
‖x− x′‖α

PW

In situations where UAVs with different communication equipment are

used, the values of P or W can be set to the lowest values of transmitter

power and antenna gain, respectively, to provide a pessimistic estimate of

the SNR. More information about calculating transmission signal strength

in urban environments, albeit with a focus on cellular phones, is available

in Wagen and Rizk [99]. If the environment is known in advance and time

allows, a more accurate model of transmission quality can be derived where

factors such as reflection and absorption can be taken into account in the

cost function ccomm [90, 95].

Another possibility is to set the communication cost to a constant if the

distance is below some predetermined value, signifying that the probability

of unrecoverable errors caused by a poor signal-to-noise ratio is very low at

such distances. At longer distances, the communication cost can for example

be related to the inverse of the SNR.

3.3.2 Position Visibility

Suppose that a relay UAV is able to relay information from more than

one UAV at a time. UAVs can then participate in multiple concurrent

surveillance missions. Even if only one mission is initiated at a time, we

might still prefer to place relays in locations where they are also likely to be

useful in the event that additional missions are initiated in the near future.

Such missions may then be able to use fewer additional UAVs by connecting
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x

Figure 3.3: One possible cost measure is to use the obstructed volume in a
sphere as cost. In this two-dimensional example, the cost would be the sum
of the obstacles, drawn in black, and the non-visible volume, drawn in grey,
inside the circle.

to an existing relay UAV rather than to the base station, which may be

considerably further away.

A UAV can theoretically communicate with other UAVs in a sphere

whose radius is equal to the maximum communication distance (see Sec-

tion 3.4). Given line-of-sight requirements, parts of this volume may be

obstructed by obstacles, as shown in Figure 3.3.

Let Vob(x) denote the obstructed volume from position x within the

communication range rcomm and let Vcomm = 4πrcomm
3

3 . Then the commu-

nication cost based on obstructed volume can be calculated as:

Obstructed volume: ccomm(x, x′) =
Vob(x)

Vcomm

The position visibility cost measure is especially suitable for the multiple

target relay problems, which are discussed in Chapter 6.

3.3.3 Minimum Free Angle Between Positions

The minimum free angle between positions gives a measure of the ability to

perform transmissions between two positions even if wind or other factors
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Figure 3.4: Minimum free angle between positions is a possible measure of
cost.

affect the UAVs’ ability to stay at the designated positions. The minimum

angle places the greatest constraints on the UAVs’ ability to transmit infor-

mation and surveil the target the most. For this reason, it is a relevant cost

measure when judging the suitability of positions for UAV placement.

In Figure 3.4, a UAV located at x must not move outside the cone

originating in x′ with angle a′ and vice versa. The cost of communication

between such positions should be inversely related to the size of the angle,

i.e. a small angle should have a large cost. However, this might not be

enough, as sufficiently small angles will cause great problems when trying

to communicate as the UAVs become very sensitive to external factors such

as wind. For example, two UAVs with a minimum free angle of 5° between

them may be more than twice as sensitive to disturbances compared to if

the minimum free angle was 10°. Therefore, to severely penalize very small

angles, a measure such as the inverse of the logarithm of the minimum angle

or some other non-linear function can be used as cost. In some cases, we

may set the cost to zero or some small constant if the minimum angle is

above some threshold value. For example, it might be extremely unlikely

that the UAVs cannot stay inside a cone with a 30° angle, so any pair of

positions with a minimum angle larger than 30° could have cost zero.

Thus, one possible communication cost function based on the minimum
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angle between obstacles is:

Minimum angle: ccomm(x, x′) =

{
1

min{a,a′} if min{a, a′} < 30◦

0 if min{a, a′} ≥ 30◦

Which of these functions depending on the minimum angle is most suit-

able depends on the situation, where factors such as the environment, re-

quired safety margin and UAV susceptibility to external factors are taken

into consideration.

3.3.4 Minimum Distance to Obstacles

Ideally, a UAV in U should be so far away from obstacles that there is no

risk of collision regardless of external factors such as wind. In practice, this

would very difficult to achieve, given that different vehicles are more or less

sensitive to such factors and that some UAVs’ control systems may not be

capable of precise maneuvering. The set U would need to be calculated

for each type of UAV, and even then, it would be very difficult to prove

that no collision can occur. It could also lead to an unnecessary limitation

of the search space. Due to the forbidden positions, many missions would

require a large number of UAVs, and other missions would be impossible to

perform. A reasonable compromise between safety margins and excessive

limitation of available positions is to require that all positions in U have

a minimum distance to obstacles, and generally prefer positions that are

placed further away from obstacles. Such a requirement could be modeled

as a cost, where for example the communication cost ccomm(x, x′) would

depend on the distance from x′ to the nearest obstacle.

With o as the closest obstacle from x′, one possible cost function is:

Minimum obstacle distance: ccomm(x, x′) = ‖o− x′‖

3.3.5 Surveillance Cost Functions

For the surveillance cost function, it can be relevant to use parameters from

the sensors to estimate the quality of the sensed information and use such

estimates in the surveillance cost function. If the sensor is a (video) cam-

era, a position from which high-quality pictures can be taken would have a

low surveillance cost. Such a position would have no intervening obstacles

between it and the target and be located at an appropriate distance from

the target.

It can also be beneficial to take factors other than the physical terrain

into consideration when specifying the surveillance cost function. For ex-
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ample, environmental and weather conditions, as well as the position of the

sun, can be used. Low costs can be given to positions where the surveillance

UAV’s position will allow it to take pictures with a minimum of reflections

and glare. If the visibility is poor due to for example fog, the surveillance

cost could increase faster with increasing distance than if visibility is good.

A similar cost function as for SNR (see Section 3.3.1) can be created by using

the distance raised to some power α to signify that image quality decreases

with distance, as well as with weather phenomena such as fog.

Distance to target: csurv(x, x
′) = ‖x′ − x‖α α ≥ 1

The surveillance cost must be weighed against the communications cost

for the rest of the chain. Unless the cost of surveillance is set high enough

to influence the algorithms for finding solutions, a high-cost (low qual-

ity) surveillance position might be used as the surveillance cost only has

a marginal effect on the cost of the complete chain.

3.4 Reachability Functions

The purpose of a reachability function is to determine whether communi-

cation or surveillance is possible between two positions. The reachability

functions are Boolean functions that take as input two positions, x and x′.

The communication reachability function fcomm(x, x′) holds only if commu-

nication between the two positions x, x′ is possible. Similarly, the surveil-

lance reachability function fsurv(x, x
′) holds only if a UAV located at x can

surveil a target located at x′. The factors used in the reachability functions

are dependent on the application, and the algorithms to be presented in

later chapters for solving the single and multiple target problems are inde-

pendent of the function. As long as the functions have the above signatures,

no further assumptions about the exact formulation of the functions are

made.

We assume that the communication between several UAVs does not in-

terfere with each other. This can for example be achieved through using

techniques such as time-division multiplexing, frequency-division multiplex-

ing and code-division multiplexing [95]. Time-division multiplexing means

that transmitters take turns transmitting. Different frequencies for trans-

missions are used in frequency-division multiplexing and code-division mul-

tiplexing means that different encodings are used.

For the kind of transmissions of interest in this thesis, two common re-

quirements are line-of-sight between sender and receiver and limited maxi-

mum transmission range. In particular, such requirements are very common
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when transmitting high-volume sensor data, such as a live video feed, that

requires high uninterrupted bandwidth. Formally, the line-of-sight require-

ment holds if [x, x′] = {x ∈ R3, x′ ∈ R3 : βx + (1 − β)x′, β ∈ [0, 1]} ⊆ F.

That is, line-of-sight between two positions exists if a straight line between

the two positions lies completely in the allowed set F. Note that we can

allow F 6= U as communication can go through areas where we might not

be allowed to place UAVs. The limited communication range is formal-

ized as ||x′ − x|| ≤ rcomm. It is sometimes desirable to separate the UAV

communication range from the UAV surveillance range rsurv. In that case,

fcomm(x, x′) only holds if ||x′ − x|| ≤ rcomm, in addition to any other re-

quirements. Similarly, fsurv(x, x
′) only holds if ||x′ − x|| ≤ rsurv in addition

to any other requirements that are used.

Although line-of-sight is often required for high bandwidth communica-

tion, there are communication systems that do not require this. The Multi-

ple Input Multiple Output (MIMO) communication system is an example of

this [75, 44]. In fact, having line-of-sight could decrease the performance as

objects in the environment are used to “bounce” the radio signals off. MIMO

communication systems use several antennas for transmitting and receiving

information, and the best performance is achieved if several independent

signal paths are used. Such communication systems can also be modeled

using the communication reachability function, although the line-of-sight

requirement would most likely not be used.

Whereas fcomm depends on the properties of the communication system,

the surveillance reachability function fsurv depends on the sensors used for

surveillance. For cameras, common restrictions would be line-of-sight and a

maximum range requirement, where the information sensed at the maximum

range is of sufficient quality to be used, for example, a certain number of

pixels per meter of target size for a camera. If several sensors are used

to surveil the target, special considerations must be given to whether fsurv
holds when one sensor senses the target, or when a certain number of sensors

sense it.

The above are just examples of the many different ways to determine

whether communication and surveillance is possible or not. No assumptions

about the reachability functions are made anywhere else in the solution

process and arbitrarily complex functions can be used to determine whether

communication and surveillance can be performed, if desired.

3.5 Problem Properties

As the target and the base station can be placed arbitrarily and UAVs can

be placed anywhere in the set U ⊆ R3, the relay problems can be seen as
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t 1

x0

Figure 3.5: In an environment without obstacles or any limitations in the
reachability functions, it is possible to transform any valid relay chain to
any other valid relay chain, as indicated by the arrows.

continuous optimization problems. Here we discuss why current methods

for continuous optimization are not practical for finding globally optimal

solutions for the relay positioning problems.

Assume a given instance of a relay problem in an environment without

any obstacles, with the position of a base station x0 and the target t1, as

well as a number of UAVs. The reachability functions are based on free

line-of-sight. From this, it is possible to calculate a set of feasible relay

chains. The number of relay chains in this set is generally uncountable as

UAVs may be positioned anywhere in a continuous space. It is possible to

transform any feasible relay chain to any other feasible chain by moving the

UAVs continuously, as exemplified by Figure 3.5.

However, we are more interested in environments with obstacles and

possibly also restrictions in the reachability functions, e.g. limited commu-

nication range. Then discontinuities will occur as it is no longer possible to

communicate between arbitrary positions and surveil the target from any

position. In such cases, the feasible set consists of several disjoint subsets.

Within each such subset, the UAVs in a relay chain may still be moved to

form another relay chain. However, it is not possible to transform a chain in

one feasible subset to another chain in another feasible subset without going

through infeasible points. An example of this can be seen in Figure 3.6,

where going from the relay chain on the top to a relay chain on the bottom

requires going through the infeasible region in between.

The number of different feasible subsets may grow exponentially with

the number of obstacles, which can lead to a large number of subsets in

obstacle-rich environments. The large number of subsets leads to many

local maxima, as each subset has at least one such point.
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t 1

x0

Figure 3.6: The continuous relay problems are computationally intractable
as the feasible set is disjoint. A change from the top chain to the bottom
chain, or vice versa, requires going through infeasible points.

3.6 Continuous Solution Methods

It is possible to use methods for continuous optimization to calculate relay

chains. However, such methods are impractical to use due to the long exe-

cution time. In addition, it is an open research question how to formulate a

requirement such as line-of-sight in terms of equalities and inequalities. Such

a formulation is required in order to apply optimization methods for contin-

uous (non) linear1 problems. In general, it is an open research question how

to solve problems such as the relay problems using methods for continuous

(non) linear optimization, especially if we consider that the algorithms are

to be used in a setting where a ground operator expects a quick response.

For each feasible set in which an initial chain has been found, continuous

local optimization methods such as line search [74] can be used to find local

extrema within that feasible set. Such methods calculate a step length and

a direction in which a function value, such as the value of our cost function,

improves. A new position is determined by moving a distance equal to

the step length from the current position in the calculated direction. At

the new position, it is checked whether the reachability function holds. If

so, the new position becomes a new starting point for further search and

the procedure can be repeated until the UAV is placed at a position that

optimizes the function value of the cost function, subject to the constraints

1An optimization problem is linear if both the objective function and all constraints
are linear, otherwise it is nonlinear.
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in the reachability function. The process is then repeated for each UAV.

This can create a locally optimal chain, but if we want to find a globally

optimal chain, such a method must be executed for each feasible subset.

Due to the large number of subsets, this would take prohibitively long time.

Furthermore, for problems requiring finding a set of relay chains, such as

STR-ParetoLimited, this requires repeating the process for all values of

the number of available UAVs to up M .

Heuristics such as tabu search or simulated annealing lack the guarantee

of finding the globally optimal chain. However, they can be used to find an

initial relay chain in a feasible set and then continually improve it until a

local extremum is found [45].

Another option for solving the relay problems is to use algorithms from

the area of computational geometry, where continuous versions of Dijkstra’s

shortest path algorithm have been developed [70]. Such methods can be used

for solving for example the STR-MinLengthMinCost problem. A disad-

vantage of these methods is that they approximate the environment using a

set of surfaces and that the time complexity of the algorithm is dependent

on the number of surfaces. Due to high time complexity, the execution time

can be very long. In addition, problems such as STR-MinCostLimited in-

volve finding several chains of different lengths and costs. The time required

to solve such a problem suggests that other representations and methods are

more appropriate.

3.7 Summary

In this chapter, several relay problems for a single target have been defined.

Also, the use of reachability and cost functions have been explained, and

several examples of cost functions have been given. The reachability func-

tions determine whether communication and surveillance between a pair a

positions is feasible. Therefore, they are often based on factors such as free

line-of-sight and a limited maximum distance between the positions.

The purpose of a cost function is to evaluate the relative suitability of

pairs of positions with respect to placing UAVs there for communication or

surveillance and cost functions are often based on factors such as the dis-

tance to obstacles or the distance between the positions. Several of the cost

functions void the triangle inequality, which makes it possible to decrease

the cost of a relay chain by using a greater number of UAVs.

Obstacles in the environment as well as conditions such as limited com-

munication and surveillance ranges and line-of-sight-requirements in the

reachability functions divides the feasible set into several disjoint feasible

subsets. Each such feasible subset has at least one local optimum. Deter-
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mining the global optima using methods for continuous optimization can be

very time consuming as such methods need to be executed once for each

such subset.
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Chapter 4

Environment

Representation and

Discretization

One way to decrease the execution time for finding solutions to the relay

positioning problems is to use graph search algorithms to solve discrete

approximations of the continuous problems. Such algorithms require a graph

with nodes corresponding to positions where UAVs can be placed, and edges

corresponding to potential communication or surveillance between positions.

In this we chapter show how a discretization can be performed in order to

construct a graph, and discuss different discretization strategies.

4.1 Discretization and Graph Creation

A discretization is performed with the intention of creating a graph con-

sisting of a set of nodes, denoted by N, and a set of edges, denoted by E.

|N | denotes the cardinality for the set of nodes, and the notation is used

analogously for other sets. A directed graph can be created as follows.

1. Determine a finite set of positions U′ ⊆ U among the free coordi-

nates. These are the positions that will be considered valid place-

ments for relay and surveillance UAVs in the discrete relay problems.

Different ways to determine the set of positions U′ are discussed in

Sections 4.2–4.5.

2. Associate each position x ∈ U′ with a unique node.

31



Chapter 4. Environment Representation and Discretization

3. Associate the base station position x0 with a new node n0.

4. Associate the target position t1 with a new node τ1.

5. For each x ∈ U′ corresponding to n ∈ N and satisfying the commu-

nication reachability function fcomm(x0, x), create an edge e = (n0, n)

of cost ccomm(x0, x) representing the possibility of communication be-

tween the base station and position x.

6. For each x, x′ ∈ U′ corresponding to n, n′ ∈ N and satisfying the com-

munication reachability function fcomm(x, x′), create an edge e = (n, n′)

of cost ccomm(x, x′), representing the possibility of communication be-

tween positions x and x′.

7. For each x ∈ U′ corresponding to n ∈ N and satisfying the surveillance

reachability function fsurv(x, t1), create an edge e = (n, τ1) of cost

csurv(x, t1) representing the fact that a surveillance UAV positioned at

x would be able to surveil a target at t1.

Then, the graph G(N,E) represents a discretization of the continuous

space. Note that the graph construction algorithm makes no assumptions

about the reachability functions fcomm and fsurv other than their signatures.

In the discretized space, the length of a chain corresponds to the number

of edges in the chain. This is also referred to as the hop count, where each

edge corresponds to one hop. The cost of a chain is then defined as the sum

of the edge costs along the chain. Thus, a shorter chain has fewer edges,

while a cheaper chain has lower cost.

The discretization itself only allows the application of discrete optimiza-

tion methods. The problem of finding a set of feasible UAV positions is still

not solved. Instead, a reduction to a feasible problem is required. This can

be done by considering the following: given a node n, the set of valid nodes

for placing the next UAV in a chain can be identified as exactly the set of

nodes for which fcomm(n, n′) holds. Let Nn ⊆ N consist of all such nodes n′,

and analogously, Nn′ consists of all nodes all nodes for which fcomm(n′, n′′)

holds. Then, a complete chain from n0 to τ1 can be determined by starting

from n0 and choosing a node in Nn0 as the next node in the chain, and

continuing recursively until a node n′′ is found for which fsurv(n
′′, τ1) holds.

Recall that a UAV placed at such a position can surveil the target located

at node τ1.

From this, we know in theory how to choose the set of UAV positions

so that a relay chain is formed. Naturally, we are interested in finding

a high-quality (i.e. low cost) chain. Finding solutions to such problems

is commonly done using graph search algorithms, which will be discussed

further in Chapter 5.
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In the remainder of this chapter, we discuss different options for choosing

the finite set of discrete positions U′ where UAVs may be placed. One of

these methods places nodes with the same node density throughout the

environment, while others distribute nodes unevenly, typically placing more

nodes closer to obstacles. Which discretization method is most suitable

depends on several factors, such as the number of nodes and their positions,

the reachability functions, and the number of obstacles as well as how the

obstacles are distributed in the environment.

Different graphs will affect the length and cost of the solutions. In some

cases, a problem instance may require a large number of UAVs as the chain

must go around areas with no or few nodes. There are several desirable

characteristics in discretization methods that minimize the risk for this. To

maximize flexibility in choosing the location of the next UAV in the chain,

the nodes should have a high degree. The connected nodes should be placed

at different angles and distances, providing good coverage of the area using

few nodes. If this is not fulfilled, it might not be possible to communicate

or surveil through gaps between obstacles, which can lead to long detours.

To provide many different positions for the surveillance UAV and provide

sensor information of high quality, it is also desirable to have a large set of

nodes directly connected to the target node.

4.2 Fixed-Size Grids

A simple solution to choosing the set of potential relay and surveillance

positions is to use a three dimensional grid with grid cells of equal size. The

grid is placed over the terrain and a node is placed in each unobstructed grid

cell. The node can be positioned anywhere in the cell, but for illustration

purposes they are placed in the middle of each cell. Whether a grid cell

is unobstructed can be determined in many different ways. For example, if

there are no obstacles within a certain distance from the node position, then

the cell could be considered unobstructed.

The resolution is a very important factor when using grids. If it is too

low, then UAVs can only be placed at a few places, possibly causing un-

necessarily long relay chains. Figure 4.1 shows a graph with nodes created

from a medium-resolution grid, which is in contrast to the low-resolution

grid displayed in Figure 4.2. In the coarser discretization, 6 UAVs are re-

quired, compared to 4 UAVs in the finer discretization as the maximum

communication and surveillance range of each UAV can be better utilized.

Some types of terrains might require grids of high resolution to ensure

that all positions can be reached, which leads to high memory consumption.
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Figure 4.1: Nodes created using a medium-resolution grid. The size of the
nodes have been exaggerated for illustrative purposes, and the edges are left
out to reduce clutter.

4.3 Octrees

Assume that fixed-size grids are used in an environment that mainly consists

of a large open area but also has some closely spaced obstacles. To assure

that UAVs can be placed between the obstacles, the grid cell size must be

quite small. The large number of nodes leads to large memory requirements,

and the high resolution is not necessary in the large open area. To decrease

the number of nodes and thus the memory requirements, an alternative is to

use a data structure with cells of varying size. Examples of such structures

are quadtrees (for two-dimensional environments) and octrees (for three-

dimensional environments) [43, 49]. Many other data structures are possible,

and an overview of such data structures for different uses is available in

Samet [85]. Although data structures such as octrees are often used to

subdivide areas spatially, for example to speed up geometry intersection

checks, they can also be used to place nodes. A two-dimensional example is

shown in Figure 4.3.

The octree is a hierarchical data structure, with recursive decomposition

from the top level with the largest volumes, to the bottom level, which

contains the smallest volumes. Volumes that are not further divided are

called leaves. Each non-leaf volume in an octree contains eight smaller
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Figure 4.2: The low-resolution grid provides few possibilities for UAV place-
ment, which leads to a longer relay chain.

volumes of equal size, organized in a 2× 2× 2 fashion. Together the smaller

volumes cover the exact same volume as the larger volume. Each of the

smaller volumes, in turn, either is a leaf or contains eight even smaller

volumes, and so on, until the desired number of levels, or the minimum cell

size, is reached. Nodes can be placed for example in the middle of each

volume or at the corners of the volumes.

Octrees are designed to cover cubic areas, and if the volume to be covered

is not cube shaped, there are two possibilities. Either an octree covering a

larger volume must be used, or the area must be divided into several cubic

volumes.

Using a data structure with grid cells of varying size has the advantage

of a decreased number of nodes and edges and therefore lower memory con-

sumption. A disadvantage is the comparatively low concentration of nodes

at positions far from obstacles, yielding fewer possible UAV locations.

4.4 Expanded Geometry Graphs

In an expanded geometry graph, obstacles in the environment are expanded a

certain distance “outward”, hence the name [64]. The exact distance varies,

but is often related to the size of the UAVs and the required safety distance.
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Figure 4.3: Several quadtrees covering an area. The heavy lines mark the
edges of the quadtrees.

Nodes are then placed at the corners of the expanded objects. Figure 4.4

shows an expanded geometry graph. If obstacles are large, the distance

between the nodes at its corners may exceed the maximum communication

or surveillance range. In such cases, additional nodes might have to be

placed along the sides of the obstacles to provide connections. The same

problem can occur also occur in other cases, for example when obstacles are

further from each other than the communication range or when the distance

between the target position t1 and the closest obstacle is longer than the

surveillance range.

As nodes are placed close to the corners of obstacles, this approach is

suitable for urban terrains, where the node placement also ensures that

relay chains can use any gaps between buildings. However, this approach

to discretization is somewhat brittle: if the terrain is so dense that the

expanded obstacles collide, then no nodes can be placed. In addition, the

approach is not suitable in terrain involving large open areas as no nodes

are placed at such locations. The lack of nodes forces the relay chain to take

long detours around such areas. Figure 4.4 shows an example of this.
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Figure 4.4: An expanded geometry graph with nodes placed at corners of
objects.

4.5 Voronoi Diagrams

Another possibility is to use a graph created by a Voronoi diagram [7, 76].

The Voronoi diagram is a discretization that takes as input a set of obstacles.

Then, the environment is divided into convex cells such that each cell con-

tains exactly one obstacle and every point in a cell is closer to the obstacle in

it than to any other obstacle. Figure 4.5 displays a Voronoi diagram, where

the boundaries between the cells are drawn as lines. The boundaries are the

positions that offer maximum distance between the obstacles. Nodes can

then be placed where three or more cell boundaries meet [13]. This causes

the number of nodes to be a function of the number of obstacles. Where

there are few obstacles, there will be few nodes. If there were no obstacles,

only a single cell would be created. This would generate very few nodes,

in many cases making it impossible to find solutions to the relay problems.

Therefore, this approach is best suited for environments with a large number

of obstacles. To remedy the problem of too few nodes, one option is to also

place nodes on the cell boundaries [11].

Voronoi diagrams have been used in many areas, for example UAV path

planning [21, 9, 13, 68] and UGV path planning in environments with many

buildings [11].
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Figure 4.5: An Voronoi diagram with points as obstacles for illustrative
purposes. A cell is created for each obstacle. The lines mark the boundaries
between the cells. Nodes are placed where three cells meet.

4.6 Discretization Methods Used in Motion

Planning

The research area of motion planning is concerned with finding paths from a

start position to a goal position. Given a potentially high-dimensional space,

discretizations are commonly used to make the problems tractable. Further-

more, algorithms commonly use discretizations created specifically for mo-

tion planning, rather than the general methods discussed so far. Examples

of such methods are Rapidly Exploring Random Trees (RRTs) [59, 60, 80]

and Probabilistic Road Maps (PRMs) [57, 60]. RRT algorithms construct

a new tree every time motion planning is performed, while PRMs produce

a graph in advance and add start and goal nodes each time a new motion

planning request is performed.

Different methods for selecting the positions in RRTs and PRMs have

been tried. Both simple methods such as sampling randomly within a dis-

tance and more advanced methods such as Gaussian sampling [12], bridge

sampling [53], and sampling on the borders of obstacles [4] have been used.

In basic RRTs, each node is only connected to the predecessor in the tree

and one or more successors. The main use of RRTs is to provide graphs for

motion planning, and in many cases, a relatively small number of nodes of

comparatively low degree is sufficient to provide coverage of an area.
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In PRMs, a graph rather than a tree is created by connecting each node

to all other nodes between which the correct reachability function holds,

instead of just a subset of these nodes. Just like with RRTs, a relatively

small number of nodes is often sufficient to cover an area.

A problem with using RRTs and PRMs to provide discretizations for the

relay positioning problems is that they place nodes without any considera-

tion to the number of hops that are required to reach the goal, as this is not

a big concern in motion planning. Instead, the main concern is providing

reasonably short paths with regards to distance, without any concern about

how many nodes are used in the paths. This is very different from the relay

positioning problems, where the number of hops in a path is very important,

as the number of UAVs required to realize the path is proportional to the

number of nodes in the path.

4.7 Summary

The continuous relay problems are computationally intractable as they typ-

ically have a disjoint feasible set and a large number of extreme points. In

order to make the problems solvable in acceptable time, a discretization can

be performed and the discrete problem is solved instead. A desirable char-

acteristic of the graph is a large number of nodes at different distances and

angles from each other. It is also advantageous that the nodes have high

degree as this offers more options for communication and surveillance.

In this chapter, several different discretization methods have been dis-

cussed. The simple grid places nodes uniformly in the environment, while

other methods such as octrees place more nodes closer to obstacles. Methods

from motion planning, such as rapidly exploring random trees and proba-

bilistic road maps can also be used, where the latter is more suitable due to

higher node degree. In dense urban environments, the expanded geometry

graph can be useful.

While all desirable characteristics may be fulfilled in some cases by a

single discretization method, it is likely that a combination of methods will

yield better results. As an example, an expanded geometry graph or a

Voronoi diagram can be combined with a grid to provide a graph with a

higher density of nodes at positions close to obstacles while at the same

time maintaining a minimum node density further away from obstacles.
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Chapter 5

Relay Positioning

Algorithms for

Single Target Problems

Once a discrete graph has been created, for example using any of the meth-

ods discussed in Chapter 4, graph search algorithms are used for solving the

single target relay problems. This chapter discusses different algorithms for

calculating relay chains, and experimental results for testing the algorithms

with a fixed-size, three-dimensional grid are available in Chapter 7.

Both the STR-MinLengthMinCost and STR-MinCostMinLength

(see Section 3.1) problems can be solved by a common shortest path algo-

rithm such as Dijkstra’s [32]. Alternatively, the A* algorithm can be used if a

suitable heuristic is available [48]. Both problems require that optimization

is first performed with respect to one factor and when the optimum of that

factor is found, optimization is performed with respect to another factor.

Though this may sound like a two-step process, it is commonly done us-

ing lexicographic ordering. For example, the STR-MinLengthMinCost

problem can be solved for each node in N by using compound costs of

the form 〈cost(π), len(π)〉 with 〈cost(π1), len(π1)〉 < 〈cost(π2), len(π2)〉 if

cost(π1) < cost(π2) or (cost(π1) = cost(π2) and len(π1) < len(π2)). Thus,

chains are optimized first in order of cost and then in order of number of

hops (UAVs) required. The STR-MinCostMinLength problem is solved

analogously.

Since finding a relay chain from n0 to τ1 in a graph is equivalent to

finding a path from n0 to τ1 in the same graph, we will use the terms in-

terchangeably. As efficient algorithms for the STR-MinLengthMinCost
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Figure 5.1: An example graph labeled with edge costs. The corresponding
MLMC-tree is presented by heavy lines.

problem exists, the remainder of this chapter will explore algorithms for the

STR-MinCostLimited and STR-ParetoLimited problems, beginning

with the latter.

5.1 Existing Algorithms for the STR-Pareto-

Limited Problem

STR-ParetoLimited is closely related to the all hops optimal path problem

(AHOP) graph search problem, which has previously been applied in net-

work routing problems [46]. For each k = 1, 2, . . . , L, find a cheapest path

from n0 to τ1 among those paths whose lengths do not exceed k. We call

such paths AHOP solutions for the length k. From the definition of Pareto-

optimality given in Section 3.2, it follows that any Pareto-optimal solution

of length k is also an AHOP solution for length k. However, the reverse

is not true: a Pareto-optimal solution of length k must also have minimal

length among all paths of minimal cost. This is illustrated by the exam-

ple in Figure 5.1. For τ1 = n4, there is only one path of length 2, namely

π1 = n0 → n3 → n4 with cost(π1) = 5. This path is an AHOP solution for

k = 2, since there is no cheaper path of length at most 2. Since there is also

no equally cheap path of length strictly less than 2, it is also Pareto-optimal.

There is one path of length 3, π2 = n0 → n1 → n2 → n4 with cost(π2) = 4.

Again, this is both an AHOP solution for k = 3 and a Pareto-optimal solu-

tion. However, consider the path π3 = n0 → n1 → n2 → n3 → n4, also of

cost 4. Both π2 and π3 are AHOP solutions for k = 4, since they are of equal

and minimal cost and are sufficiently short, but only π2 is Pareto-optimal,

since it is shorter.

Though the AHOP-problem and the STR-ParetoLimited problem are

not identical, there is a close correspondence. Suppose that we have gen-

erated a complete set S of Pareto-optimal paths and require an AHOP
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solution of length of at most k. If such solutions exist, the path in S having

the greatest length k′ ≤ k will be one of them. Conversely, suppose that we

have generated a complete set of AHOP solutions. Then, a complete set of

Pareto-optimal solutions can be found by grouping the AHOP paths by cost

and selecting a path of minimum length in each group. Thus, the discretized

STR-ParetoLimited problem can be solved by using an AHOP algorithm

and selecting the Pareto-optimal solutions from the AHOP solutions.

As a solution to the STR-ParetoLimited problem commonly contains

several chains, common shortest path algorithms such as Dijkstra’s algo-

rithm or A* cannot solve the problem by themselves in a single execution.

An early method for calculating the set of solutions to the AHOP problem

is the Bellman-Ford algorithm [29]. Given a start node, the algorithm finds

paths requiring at most k edges during iteration k. If a cheaper path is

found later, the more expensive path is discarded. This was later modified

by Lawler [61], whose algorithm in iteration k stores the cheapest path for

each node, using at most k edges, without overwriting any paths found in

earlier iterations. Lawler’s algorithm was further improved by Balakrish-

nan and Altinkemer [8], who introduced an upper bound on the number of

edges so that only paths with length k ≤ L are calculated. This modification

allows the algorithm to solve the AHOP problem more efficiently. The pseu-

docode of Balakrishnan and Altinkemer’s algorithm is shown in Figure 5.2

and from now on, we will refer to it as Algorithm 1.

The following terminology is used for all algorithms. For all nodes n in

N , gk(n) is the cost to reach node n from n0 in at most k steps and pk(n) is

the path predecessor of node n when doing so. The function g(n) is the cost

of the cheapest path to n found so far, regardless of the number of steps.

The predecessors of a node n are denoted by n−, the successors are denoted

by n+ and the cost of going from n to n′ is cn,n′ .

Algorithm 1 has a time complexity of O(L|E|). It is natural to require

that L ≤ |N | − 1, since no cheapest path can be longer than |N | − 1.

Therefore, the time complexity of the algorithm can also be expressed as

O(|N ||E|) ⊆ O(|N |3). A complete solution to the STR-ParetoLimited

problem is calculated for each node by Algorithm 1. Even if the cheapest

path to the goal node has been found, and the length of the path is � L,

the algorithm performs L outer iterations. This can lead to a large number

of unnecessary calculations, especially if the number of nodes is large.

To remedy the long execution time, we have developed a new algorithm

for the STR-ParetoLimited problem, presented in Section 5.2.
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1 for each n ∈ N do g0(n)← +∞, p0(n)← nil
2 g0(n0)← 0
3 for k = 1, . . . , L do
4 for each n ∈ N do
5 gk(n)← gk−1(n), pk(n)← pk−1(n)
6 for each n ∈ N do
7 for each n′ ∈ n+ do
8 c← gk−1(n) + cn,n′
9 if c < gk(n′) then
10 gk(n′)← g(n), pk(n′)← n

Figure 5.2: Algorithm 1 – for solving the AHOP problem, by Balakrishnan
and Altinkemer [8].

5.2 A New Label-Correcting Algorithm

Our first new algorithm (Algorithm 2) is based on the AHOP version of the

Bellman-Ford algorithm (Figure 5.2) [61], and just like that algorithm, it is

a label-correcting algorithm. It improves the performance of Algorithm 1

as it is able to avoid a large percentage of the unnecessary calculations.

Part of the improvement stems from a preprocessing step, involving the

calculation of a tree consisting of paths to all nodes. Each such path has

the least number of hops among those that have the lowest cost. Such paths

correspond directly to solutions to the STR-MinLengthMinCost problem

and will be called Minimum Length Minimum Cost paths (MLMC-paths).

A tree of MLMC-paths from n0 to all nodes in N is called an MLMC-tree

and can be generated by Dijkstra’s algorithm using compound path costs

as previously described. The paths making up the MLMC-tree provide an

upper bound on the length of the Pareto-optimal paths to each node in the

graph. Calculations proceed in a manner similar to Algorithm 1, but the

length of the MLMC-path to each node bounds the number of iterations for

each node.

5.2.1 Preliminaries

To present the basic ideas of our algorithm and justify its correctness, we

need the following definitions, which are illustrated by Table 5.1 for the

graph in Figure 5.1.

A node n is called a k-hop Pareto node if there exists a Pareto-optimal

path of length k from n0 to n. We call such a path k-hop Pareto-optimal. For

any k, the set of all k-hop Pareto nodes is denoted by Nk. As an example,
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k n0 n1 n2 n3 n4 Nk N∗k

0 0∗ - - - - {n0} {n0}
1 - 1∗ - 4 - {n1, n3} {n1}
2 - - 2∗ - 5 {n2, n4} {n2}
3 - - - 3∗ 4∗ {n3, n4} {n3, n4}

Table 5.1: Costs of k-hop Pareto paths, and the sets Nk and N∗k , for the
graph in Figure 5.1. The costs corresponding to MLMC-paths are marked
by asterisks.

n4 is both a 2-hop and a 3-hop Pareto node, showing that a node may be

a member of multiple Nk sets. Although n4 can be reached in 4 hops with

the minimal cost 4, it is not a 4-hop Pareto node as the resulting path is

not Pareto-optimal. The costs for the Pareto-optimal paths are presented

in Table 5.1. N0 = {n0} as the start node is the only node reachable in

zero steps. The N∗k sets store the set of nodes that occur at exactly k hops

from n0 in the MLMC-tree. Let k∗max denote the height of the MLMC-tree,

yielding 0 ≤ k ≤ k∗max for the N∗k sets. No Pareto-optimal path can be

longer than k∗max as longer paths must be at least as expensive. The N∗k
sets partition N , and as N∗k ⊆ Nk, any path of depth k in the MLMC-tree

is k-hop Pareto-optimal. Intuitively, N∗0 = N0 = {n0}.
Though the MLMC-tree may not be unique, the partitioning does not

depend on the choice of tree, since the shortest path (in terms of number of

hops) is chosen if several paths to the same node have the same cost.

Our algorithm exploits the following properties of Pareto-optimal paths:

any Pareto-optimal path of length k must consist of a sequence of nodes

occurring in N0, N1, . . . , Nk. That is, any non-empty Pareto-optimal path

to a node n′ must consist of an extension of a shorter Pareto-optimal path

to a predecessor n.

Theorem 1. Let n′ ∈ Nk. Suppose that

π′ = n0 → . . .→ n→ n′

is a k-hop Pareto path. Then n ∈ Nk−1, and the path π composed by the

first k − 1 hops of this path is a (k − 1)-hop Pareto path from n0 to n.

Proof. By the definition of k-hop Pareto-optimality of π′, there is no path

π′′ from n0 to n such that:

length(π′′) < length(π) and cost(π′′) ≤ cost(π)
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k (path length) gk (cost) pk (predecessor)

1 4 n0
3 3 n2

Table 5.2: Reachability records for node n3 after execution of Algorithm 2
on the graph in Figure 5.1.

or such that:

length(π′′) = length(π) and cost(π′′) < cost(π).

Theorem 1 implies that lines 7–10 of Algorithm 1 only have to be exe-

cuted for nodes n ∈ Nk−1. The outgoing edges from other nodes cannot yield

Pareto-optimal paths, nor can they result in updated node costs. The set

Nk−1 can be generated during iteration k−1 and used in the next iteration.

Our new algorithm uses the following identification of k-hop Pareto

nodes: we can find a cheaper path to a node n using k hops than we could

using k − 1 hops only if n ∈ Nk. That is, only if there is a Pareto-optimal

path to n using k hops.

n ∈ Nk ⇐⇒ gk−1(n) > gk(n). (5.1)

Since an MLMC-tree is available, execution of lines 7–10 in Algorithm 1

can be skipped for the nodes n′ ∈ N∗k , as they are known to be k-hop Pareto

nodes, and the costs gk(n′) of the corresponding k-hop Pareto-optimal paths

are already available in the MLMC-tree. Both of these facts are used to limit

the number of calculations in our new algorithm.

The difference between the two algorithms is illustrated in Table 5.1,

which shows all the values of gk(n) produced by our new algorithm. In

contrast, Algorithm 1 produces the values of gk(n) for every node n and

for each k = 1, . . . , 4. Furthermore, it makes the same calculations for

producing identical values, for instance, g1(n3) = g2(n3) = 4 and g3(n3) =

g4(n3) = 3. For the same node, our algorithm calculates g1(n3) only, and

g3(n3) is provided by the MLMC-tree.

5.2.2 Algorithm Details

The algorithm incrementally generates and updates a set of reachability

records for each node. This set can be represented as one table for each node,
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as seen in Table 5.2, which displays the reachability records for the node n3
in the graph in Figure 5.1. Each reachability record 〈k, gk, pk〉 associated

with a node indicates that the node can be reached from the start node n0
in k hops at a cost of gk using the predecessor pk. A complete path from

n0 to n can always be reconstructed by considering the reachability record

of the predecessor pk for k − 1 hops and continuing recursively until n0 is

reached. As the reachability records are traversed from n to n0, the path

needs to be reversed after retrieval. In our application, the number of hops

corresponds to the number of agents required to realize the chain.

The first row of the table corresponds to using the minimal number

of hops and the following rows correspond to using an increasingly larger

number of hops, giving a path with progressively lower cost, until the least-

cost path with the largest number of hops, which is found on the last row.

For any number of hops smaller than the smallest k in the table, no chain can

be found. For example, Table 5.2 shows that no chain of length k = 0 could

be found, regardless of cost. Other “missing” values of k indicate that even

if chains of length k exist, they are not Pareto-optimal. For example, the

fact that Table 5.2 contains no record for k = 2 means that a chain of length

2 would be at least as expensive as a chain of length 1, the nearest smaller

value of k. Thus, using a chain of length 2 would be pointless. However,

using a chain of length 3 could be a useful alternative, as this would reduce

the cost to 3 (in other words, increase the quality of the chain).

After termination, each reachability record is guaranteed to correspond

to a Pareto-optimal path. Conversely, if there is a Pareto-optimal path

of length l between n0 and n, then n is guaranteed to have a reachability

record for k = l. Thus, the fact that a target node τ1 is associated with

a reachability record 〈k, gk, pk〉 corresponds exactly to the existence of a

Pareto-optimal relay chain between n0 and τ1 of length k and cost gk, al-

lowing τ1 to be reached from the base station node using k− 1 intermediate

UAVs, of which one is the surveillance UAV.

Preprocessing. Our algorithm uses a preprocessing step (line 0) consist-

ing of calculating the MLMC-tree, using for example Dijkstra’s algorithm.

In the tree, the chain to each node is the longest, and thus cheapest, to each

node in the graph. We then retrieve the height k∗max of this tree. This limits

the number of relays required for any optimal relay chain for this graph, and

also the depth to which the graph needs to be searched. For all k, we also

extract the set N∗k of all nodes of depth k in the tree.

For all nodes, we create an initial reachability record corresponding to

the cheapest Pareto-optimal relay chain for each node. This allows us to

abort execution individually for each node, as no cheaper path can be found
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0 Calculate MLMC-tree and extract k∗max and all N∗k
1 for each n ∈ N \ {n0} do g(n)← +∞
2 for each n ∈ n0− do // Incoming edges. . .

3 E ← E \ {(n, n0)} // . . . are removed

4 N0 ← {n0}
5 for k = 1, . . . ,min{M + 1, k∗max − 1} do
6 for each n′ ∈ N∗k do
7 for each n ∈ n′− do // Incoming edges. . .

8 E ← E \ {(n, n′)} // . . . are removed

9 Nk ← N∗k
10 for each n ∈ Nk−1 do
11 for each n′ ∈ n+ do
12 c← gk−1(n) + cn,n′ // To n′ through n in k hops

13 if c < g(n′) then
14 g(n′)← c // Lowest cost so far

15 gk(n′)← c // Lowest cost in k hops

16 pk(n′)← n // Predecessor for k hops

17 Nk ← Nk ∪ {n′}

Figure 5.3: Algorithm 2 – MLMC-tree-based label-correcting algorithm.

for lengths longer than the length of the MLMC-path. In Table 5.2, the

initial record corresponds to the row where k = 3, and signifies that no path

longer than three steps can decrease the path cost.

Initialization. Initially, g(n) =∞ is set for all nodes. Then the algorithm

constructs and uses a sequence of sets Nk, each of which is characterized,

according to Theorem 1, by the fact that any k-hop Pareto-optimal path

must consist of a (k − 1)-hop Pareto-optimal path to a node n ∈ Nk−1
followed by a single outgoing edge from n.

Lines 2–4 provide initial values for the initial node n0. Since N∗0 = {n0},
a reachability record with g0(n0) = 0 must have been created during the

preprocessing step, which indicates that it can be reached with cost 0 in 0

hops. Since the value g(n) where n ∈ N∗k is not used in iteration k or any

subsequent iteration, no value of g(n0) is assigned. Clearly no chain ending

in n0 can improve the value g0(n0) = 0, so all incoming edges to n0 can be

removed (lines 2–3). Finally, line 4 prepares for the first iteration by setting

N0 = {n0}, indicating that any 1-hop Pareto-optimal path must consist of

a path to n0 in 0 hops (the empty path) followed by a single outgoing edge.

This line handles all paths of length 0.
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Main Part. The longest and thus cheapest Pareto-optimal path to each

node was found during the preprocessing, and the main part of the algorithm

begins by calculating the shortest (and thus most expensive) Pareto-optimal

path. Then paths are found in order of increasing path length and decreasing

cost.

Each iteration of lines 5–17, considers paths of length k ≥ 1, up to a

maximum of min{M + 1, k∗max− 1}. The upper bound reflects the fact that:

(i) we allow at most M hops (UAVs), yielding a total path length of up to

M + 1 when edges to the base station and target are included, (ii) no paths

of length greater than k∗max can be Pareto-optimal, due to the meaning of

k∗max, and (iii) any Pareto-optimal path of length exactly k∗max was already

generated during the preprocessing.

Recall that any node n′ ∈ N∗k occurs at depth k in the MLMC-tree.

Reachability records for strictly shorter paths to n′ were already created in

earlier iterations, and a record for a path of length k was created during the

preprocessing. Records for paths of length strictly greater than k cannot

be created, as this would correspond to finding a path, which is longer but

strictly cheaper than the one of length k, which was by definition a cheapest

path. Thus, no new paths ending in any such n′ can be Pareto-optimal,

and we can remove all incoming edges to n′ without affecting correctness

or optimality (lines 6–8). However, we need to consider longer paths going

through these nodes (line 9, explained further below).

In lines 10–17, we consider all potentially Pareto-optimal relay chains of

length k. Any such chain must consist of a path to a node n ∈ Nk followed

by a single outgoing edge from n. We consider each such path in turn,

determining its destination n′ and calculating its cost c (lines 10–12). If the

path has lower cost than the cheapest path found previously (with a cost of

g(n′)) we create a new reachability record with gk(n′) set to the new path

cost and pk(n′) set to the new predecessor n (lines 13–16). Note that though

reachability records are sparse, we know that any node in the set Nk−1 does

have a reachability record for k − 1 due to the construction of such sets.

What remains is to prepare for the next iteration by constructing Nk
according to its definition and characterization (relation 5.1). That is, we

should construct Nk in such a way that any (k+1)-hop Pareto-optimal relay

chain necessarily consists of a path of length k to a node n ∈ Nk followed

by a single outgoing edge from n. It is clear that no Pareto-optimal chain

would use k hops to reach a node n if it could be reached in k − 1 hops

without incurring additional costs. This is stated in relation (5.1) which

also covers the cases when n cannot be reached at all with paths of length

k−1. Thus, it is only necessary to consider nodes whose costs were decreased

by allowing paths of length k. This is achieved in line 9, for nodes in N∗k
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where we found a cheapest path of length k during the preprocessing, and

in line 17, for nodes where we found a path of length k and of lower cost in

this iteration.

For each node, Algorithm 2 produces a complete set of Pareto-optimal

paths. In the preprocessing stage, when the MLMC-tree is created, it gener-

ates the longest and cheapest Pareto-optimal path, which is a path of min-

imum length among the paths of minimum cost. It then finds the shortest

and most expensive Pareto-optimal path, and continues in order of increas-

ing length and decreasing cost.

5.2.3 Correctness Proof

To prove that the variables and sets calculated by Algorithm 2 are correct,

we use the notation presented in Section 5.2.1.

Theorem 2. After iteration k of Algorithm 2, the calculated Nk sets defines

the set of all k-hop Pareto nodes. For each n′ ∈ Nk, the variable gk(n′)

defines the cost of a k-hop Pareto-optimal path from n0 to n′ and pk(n′)

defines the predecessor of n′ in this path. For each n′ ∈ N , g(n′) defines the

cost of a cheapest path using at most k hops from n0 to n′ such that n′ ∈ N∗k′
with k′ > k.

Proof. In order to distinguish Nk, g(n′), gk(n′) and pk(n′) from the sets and

variables generated by Algorithm 2, we will use the notation NA
k , g

A(n′),

gAk (n′), pAk (n′) for those that are created by Algorithm 2. The claims in the

theorem can be formulated as follows:

1. NA
k = Nk,

2. gAk (n′) = gk(n′),∀n′ ∈ Nk,

3. pAk (n′) = pk(n′),∀n′ ∈ Nk,

4. gA(n′) = gk(n′),∀n′ ∈ N such that n′ ∈ N∗k′ , with k′ > k.

We will prove by induction that the claims in the theorem hold for

k = 0, . . . ,min{M + 1, k∗max − 1}. All line numbers refer to the pseudocode

in Figure 5.3.

The claims 1–4 hold for k = 0 as the start node n0 is the only node that

is reachable in zero steps and the cost of such a path is g0(n0) = 0 with

p0(n0) = nil. As only n0 is reachable in k = 0 steps, N0 = N∗0 = {n0}
applies. For all other nodes n′ ∈ N, g(n′) = ∞. In Algorithm 2, the cost

gA0 (n0) = 0 and the predecessor pAk (n0) are assigned during execution of the
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MLMC-tree. All N∗k sets are extracted after the execution of the MLMC-

tree (line 0). As n0 is the only node reachable in zero step, NA
0 = N∗0 = {n0}

must apply. The cost g(n′) =∞,∀n′ ∈ N \ {n0} is set in line 2.

Assume that the claims hold for some k = i < min{M + 1, k∗max − 1}.
We will show that the claims 1–4 apply for k = i+1. We begin by proving

that NA
i+1 correctly defines the set of all (i + 1)-hop Pareto nodes. Line 9

implies that if n′ ∈ N∗i+1, then n′ ∈ NA
i+1. To prove that NA

i+1 correctly

defines the set of all (i+ 1)-hop Pareto-nodes, we must prove that i) for all

n′ ∈ NA
i+1 \N∗i+1, n′ is an (i+ 1)-hop Pareto-node, and ii) if n′ /∈ NA

i+1, then

n′ is not an (i+ 1)-hop Pareto-node. We begin by proving the former.

For node n′ ∈ NA
i+1 \N∗i+1, the existence of an (i+ 1)-hop path from n0

to n′ with a cost of less than the cost of a cheapest path to n′ with at most

i hops, is equivalent to n′ being an (i + 1)-hop Pareto node, by (5.1). By

the induction hypothesis, at the end of iteration k = i, the value of gA(n′)

is the cost of the cheapest path using at most i hops. The case when n′ is

added to NA
i+1 on line 17 corresponds to the case of finding an (i + 1)-hop

path with a cost less than gA(n′). Thus n′ is an (i + 1)-hop Pareto node

according to (5.1).

To prove ii), consider n′ /∈ NA
i+1. By i), n′ /∈ N∗i+1. Assume by contrary

that n′ ∈ Ni+1 \ N∗i+1. By Theorem 1 and (5.1) there should exist some

n ∈ Ni such that gi(n
′) > gi+1(n)+cn,n′ . By claims 1 and 4, n ∈ NA

i . Then

c < g(n′) in line 13 must hold at least once. This implies that n′ ∈ NA
i+1,

which contradicts our assumption that n′ ∈ Ni+1 \N∗i+1. Thus ii) holds.

For any n′ ∈ NA
i+1, the for-loop in lines 10–17 assures that the equality

gAi+1(n′) = min
n∈n′−∩Ni

{gAi (n) + cn,n′}.

holds. The right hand side is equal to gi+1(n′) by its definition. Thus claim

2 holds for k = i+ 1. As any change in gAi+1(n′) is associated with a change

in pAi+1(n′), claim 3 also holds.

To prove claim 4, we consider the two cases iii) n′ ∈ Ni+1 \ N∗i+1 and

iv) n′ /∈ Ni+1. Note that claim 4 does not refer to n′ ∈ Ni+1. For case iii),

lines 14–15 implies that gA(n′) changes at iteration i + 1 only if gAi+1(n′)

changes, and if gAi+1(n′) changes at iteration i + 1, then gA(n′) = gAi+1(n′).

Then as claims 1 and 2 were earlier shown to hold for k = i+1, claim 4 holds

for n ∈ Ni+1 \N∗i+1. For case iv), gA(n′) has the same value at the end of

iterations i and i+ 1. Also, gi(n
′) = gi+1(n′). Assuming that n′ ∈ N∗k with

k′ > i + 1, then by claim 4 for i = k, the value of gA(n′) is equal to gi(n
′)

at the end of iteration i. The same holds for gA(n′) at the end of iteration

i + 1. Thus claim 4 applies for both case iii) and iv). This completes the

proof for k = i+ 1.
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As the claims hold k = 0, by induction they hold for

k = 0, . . . ,min{M + 1, k∗max − 1} as this is the exact number of performed

iterations.

See [17, 15, 16] for additional details and proofs.

5.2.4 Time Complexity

The label-correcting algorithm presented here performs a calculation of the

MLMC-tree, which can be performed in O(|E| + |N | log |N |) time using

Dijkstra’s algorithm (line 0). Clearing the costs on line 1 takes O(|N |) time,

and lines 2–4 requires at most |E| time and the time complexity for the

preprocessing is O(|E|+ |N | log |N |). At most k∗max − 1 outer iterations are

performed, where each iteration will goes through |E| ≤ |N |2 edges and the

time complexity of the main part of the algorithm is O((k∗max − 1)|E|) ⊆
O((k∗max − 1)|N |2). Thus the time complexity for the complete algorithm

is O(k∗max|N |2) ⊆ O(|N |3). The time complexity is the same as for the

original Bellman-Ford, but typically, k∗max � |N | applies for our problems.

Also, |E| � |N |2 often applies as each node is only connected to a small

subset of nodes.

5.2.5 Improved Preprocessing

As can be seen on line 6 in Figure 5.3, the number of main iterations is

limited by min(M+1, k∗max−1). From that, it is obvious that no unnecessary

iterations are performed in the main part of Algorithm 2.

However, if the graph consists of a very large number of nodes and the

graph topology is such that k∗max �M + 1, then some unnecessary calcula-

tions will be performed during the preprocessing step, for nodes that will not

be reached in the main part of the algorithm. Iterations for such nodes can

be removed by introducing a depth-limit in the calculation of the cheapest

path tree. When the depth of a node reaches M+1, the node cannot be part

of a relay chain unless the node is the target node. This fact is exploited

on line 5 in Algorithm 2, and no calculations starting in the node will be

performed. As the value of k∗max is retrieved after the calculation of the

MLMC-tree, a depth limit of M + 1 is the strongest depth limit of the tree

calculation that can be used without affecting the algorithm’s properties.

5.2.6 Example

We will now show how the algorithm works in a small example, displayed in

Figure 5.4a, with n0 = A, τ1 = E and M = ∞. Communication edges are

solid and surveillance edges are dashed.
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Figure 5.4: Example showing the execution of the label-correcting algorithm.
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Length Cost Chain

2 65 A→ C → E
3 35 A→ B → D → E
4 32 A→ B → D → F → E

Table 5.3: The chains to node E for the graph in Figure 5.4.

During the preprocessing, the MLMC-tree marked by the heavy edges in

Figure 5.4b is calculated. The reachability records 〈hops, cost, predecessor〉
are displayed next to each node.

For node E, the chain is A → B → D → F → E. From the MLMC-

tree, the N∗k sets are determined: N∗0 = {A}, N∗1 = {B}, N∗2 = {D}, N∗3 =

{C,F}, N∗4 = {E}. As k∗max = 4 the number of iterations is limited to 3.

Initially, the node cost g is set for all nodes, g(A) = 0, and g(n) =∞ for all

other nodes, and any incoming edges to the start node are removed. The

graph after these modifications is displayed in Figure 5.4c. N0 = N∗0 = {A}
is set before the first iteration.

At the start of the first iteration, all incoming edges to the nodes in

N∗1 = {B} are removed. All outgoing edges of the nodes in N0 = {A}
are treated. A new chain of length 1 and cost 22 is found to node C. As

g(C) =∞, the new chain is stored and g(C) is updated (Figure 5.4d). The

set of nodes for treatment in the next iteration, N1, is constructed during

this iteration and consists of the nodes B and C. N1 = {B,C}.
In the second iteration, all incoming edges to the nodes N∗2 = {D} are

removed. Next, the outgoing edges of nodes in N1 = {B,C} are treated, and

a chain of length 2 and cost 65 to node E is found and stored: A→ C → E.

As the edge from node B to D was removed, no new chain involving node

B can be found. N2 = {D,E}. Figure 5.4e displays the graph at this stage.

Iteration 3 is the final iteration as k∗max = 4. Incoming edges to N∗3 =

{C,F} are removed. All nodes in N2 = {D,E} are treated and a new chain

of length 3 and cost 35 to node E is found: A → B → D → E. Node E

has no outgoing edges, thus no new chain from it can be found. N4 = {E}.
The final graph is displayed in Figure 5.4f. All chains to node E and their

costs are displayed in Table 5.3.

5.3 A New Dual Ascent Algorithm

The STR-MinCostLimited problem corresponds directly to the short-

est path problem with hop-constraints [31], where “shortest” in this case
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means “lowest cost”. This problem does not require finding all chains, only

a sufficiently short chain. To solve the problem, label-correcting algorithms

such as Algorithm 1 are often used, and a single sufficiently short chain

is extracted from the solution. However, doing so requires calculating a

potentially large set of relay chains, and discarding all but one. As Algo-

rithm 2 performs fewer calculations and should have a shorter execution

time, we limit our discussion to that algorithm. During preprocessing, the

longest chain is calculated, and then the shortest and most expensive chain

is calculated in the first iteration. In later iterations, progressively longer

and less expensive chains are calculated. Thus, if the longest chain has

only marginally too many hops, calculations must continue until all shorter

chains have been calculated. There is no advantage to the fact that the first

chain was “almost” feasible.

We therefore present another algorithm (Algorithm 3) that begins with

calculating the cheapest chain and then calculates more expensive chains,

which are shorter. This type of algorithm is based on the dual ascent ap-

proach to optimization. From a mathematical perspective, it tries to max-

imize the piece-wise affine Lagrangian dual function by traversing a dual

segment at a time.

As mentioned previously, common shortest path algorithms such as Dijk-

stra’s cannot be used to calculate a complete set of relay chains directly.

However, such algorithms can be used to calculate a single relay chain,

provided that one exists. Any shorter chain is more expensive, and for a

cheapest path algorithm to find such a chain, the edge costs must be in-

creased. If all edge costs are increased by an equal amount, the cost of a

longer path is increased proportionally more than a shorter path. If all edge

costs are increased by ε, a chain of length k has its cost increased by kε.

The cost of another relay chain, of length m > k, is increased by mε. Thus,

the cost of the longer chain is increased by (m− k)ε more than the cost of

the shorter chain. This is the basic idea behind the dual ascent algorithm,

which repeatedly calculates a MLMC-tree and an edge cost increase ε. As

all edge costs are increased by ε, progressively shorter paths are found as the

costs of longer chains are increased more than the costs of shorter chains.

5.3.1 Algorithm Details

The pseudocode for the dual ascent algorithm is presented in Figure 5.5.

The parameter l is the number of acceptable hops and is initialized to

M + 1, with the one added for the last hop between the surveillance UAV

and the target. The parameter α, representing the extra cost that is added

to each edge, is initialized to α0, which is commonly set to 0 to ensure that
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1 α← α0, l←M + 1
2 loop
3 Calculate MLMC-tree from n0 using costs c′n,n′ = cn,n′ + α.

From the tree, obtain π and yn, qn for all n ∈ N
4 if length(π) ≤ l then return π // Feasible solution

5 H← {(n, n′) ∈ E : qn′ ≥ qn + 2}
6 if H = ∅ then return failure // No chain can be shortened

7 for {n, n′} ∈ H do

8 εn,n′ ←
c′
n,n′+yn−yn′
qn′−qn−1

9 ε← min εn,n′
10 α← α+ ε

Figure 5.5: Algorithm 3 – dual ascent algorithm.

all paths are found (line 1). Other values of α0 are possible, but at the risk

of decreasing the path length too much, thus finding a more expensive chain

than required. The chain between n0 and τ1 is calculated through repeated

calculations of the MLMC-tree, using modified edge costs c′n,n′ = cn,n′ + α

(line 3). From the MLMC-tree, the chain π from n0 to τ1 is retrieved,

together with the depth qn and the optimal chain cost yn, for all nodes.

The depth qn is the number of hops required to reach node n from n0 in the

MLMC-tree, and the optimal path cost yn is the minimum cost required to

reach node n from n0 given this value of α (line 3).

If the chain between n0 and τ1 is short enough, i.e. the number of

hops is less than l, then a valid solution has been found and the algorithm

terminates (line 4).

The next step in the algorithm (line 5) is to find the edges that could

potentially be included in the MLMC-tree in order to decrease the length of

a chain. The condition for an edge that could be added to the MLMC-tree

is that the number of hops required to reach the edge end node qn′ is at least

two more than the number of hops required to reach the edge start node

qn. If the difference in the number of hops was one, the edge could already

be included in the tree and would not make any path in the tree shorter,

thus the difference in depth must be at least 2. The set H consists of all

edges with a depth difference of ≥ 2 between the nodes. If H = ∅ then we

already have a tree of minimum depth and no edge can be included in order

to decrease the length of any path in the tree, and the algorithm terminates

(line 6).

An iteration through H is performed (lines 7–8), with the intention to

calculate the edge cost increase that should be applied to all edge costs in

56



5.3. A New Dual Ascent Algorithm

order to decrease the length of at least one path in the tree. Since we know

that the edges in H are not already included in the tree, going through n to

reach n′ is more expensive than the current path to n, i.e. yn + c′n′,n > yn′

holds for all edges in H. Making the path to n′ through n equally expensive

requires increasing the cost by yn + c′n,n′ − yn′ , more than the cost of the

shorter path. The cost increase must be distributed over qn′ − (qn + 1) =

qn′ − qn − 1 edges, yielding an increase per edge of
c′
n,n′+yn−yn′
qn′−qn−1

.

To ensure that no chain on the problem instance’s convex hull (see Sec-

tion 5.3.2) is missed when the edge cost increase is applied to all edge costs,

the minimum εn,n′ is used and it is added to the value of α, on lines 9–10.

This will increase the cost of the shorter path by exactly the amount re-

quired to make the shorter path equally expensive as the longer path, and a

shorter path will be preferred in such situation due to use of the compound

cost (see page 41). This concludes one iteration of the algorithm, and the

process of calculating the MLCM-tree is then repeated, using the new value

of α (line 3).

The edge(s) yielding the minimal ε is normally the set of edges that will

be included in the MLMC-tree and the set of edges ending in same nodes

as the included edges will leave the tree. When several edges in H have the

same end node, only one of the edges is included in the tree.

Although the dual ascent algorithm is intended to create solutions to

the STR-MinCostLimited problem, it can be modified to solve the STR-

ParetoLimited problem. For this problem, line 4 does not return the chain

π, but rather it is yielded as a partial solution and execution continues until

H = ∅.

5.3.2 Theoretical Properties

The dual ascent algorithm follows the problem instance’s convex hull and

finds all Pareto-optimal solutions on the hull. Figure 5.6 shows the Pareto-

optimal relay chains marked by circles, and the convex hull of a particular

problem. Any Pareto-optimal chain not on the convex hull of the problem

instance, such as the relay chain marked by a square, will not be found.

Thus, the algorithm is not optimal for the STR-MinCostLimited prob-

lem, as it occasionally will find a slightly shorter chain than the longest

feasible. However, Pareto-optimal chains that are not on the convex hull

can be found using a branch-and-bound post-processing step [18]. As the

cheapest and the shortest chains are on the convex hull, they will always be

found.

57



Chapter 5. Relay Positioning Algorithms for Single Target Problems

1 2 3 4 5 6
15

20

25

30

35

40

45

C
ha

in
 c

os
t

Chain length

Figure 5.6: The convex hull of a problem instance is marked by a solid line
and the Pareto-optimal relay chains on the hull are marked with circles.
The square marks a Pareto-optimal chain that will not be found by the dual
ascent algorithm.

Monotonicity With Respect to α. We will now prove that increasing

the value of α yields shorter but more expensive chains.

Theorem 3. Let n ∈ N be an arbitrary node distinct from, but reachable

from, the start node n0. Consider the paths π1 and π2 generated from n0 to

n in the MLMC-tree for two distinct values of α, denoted by α1 and α2. If

0 ≤ α1 < α2, then cost(π1) ≤ cost(π2) and length(π1) ≥ length(π2). That

is, increasing α cannot increase the length or decrease the true cost of an

optimal path from n0.

Proof. Here we make use of two distinct path cost measures: the true cost

of a path π is defined in terms of the communication and surveillance costs

only, and is denoted by cost(π). As the edge costs are incremented by α,

we define the modified cost of π given a value of α to be costmod(π, α).

Obviously, costmod(π, α) = cost(π) + α · length(π).

It is clear that costmod(π1, α1) ≤ costmod(π2, α1), since π1 is a cheapest

path for α = α1. Analogously, costmod(π2, α2) ≤ costmod(π1, α2) must

apply.

Suppose that cost(π2) < cost(π1), so that using a larger α resulted in a

58



5.3. A New Dual Ascent Algorithm

decrease in true path cost. If the paths were of equal length, changing α

would always change the modified costs of π2 and π1 by the same amount,

and π2 would have been strictly preferred over π1 for all values of α. As

π1 was returned for α = α1, this cannot be the case. Suppose instead that

length(π2) > length(π1). Then the modified cost of π2 would increase by a

greater amount than the modified cost of π1 when α is increased. Thus, if

π1 was returned for a smaller value of α, π2 cannot be preferred for a larger

value of α. The case where length(π2) < length(π1) remains. But if π2 is

shorter and has a lower true cost, then its modified cost must be less for any

positive value of α, and we cannot have costmod(π1, α1) ≤ costmod(π2, α1).

Thus, it must be the case that cost(π2) ≥ cost(π1).

Suppose that length(π2) > length(π1), so that using a larger α resulted in

an increase in path length. We know that costmod(π1, α1) ≤ costmod(π2, α1).

When α is increased from α1 to α2, the modified cost of π2 must increase

by a strictly greater amount than the modified cost of π1, since π2 is longer

and modified costs increase in proportion to length. Thus, costmod(π1, α2) <

costmod(π2, α2), which contradicts costmod(π2, α2) ≤ costmod(π1, α2). Thus

length(π2) ≤ length(π1).

Convergence and Time Complexity. Let TD denote the tree depth of

the MLMC-tree, calculated as TD =
∑
n∈N qn. TD is bounded from below

by |N |−1 as the tree with the least depth is star shaped with one node in the

middle having depth 0 and the other |N | − 1 nodes having depth 1, yielding

TD = |N | − 1. The tree with the maximum depth has two nodes with

degree one, and all other nodes have degree two, i.e. a single path. In that

case, the first node has qn = 0, the second node qn = 1 and so on, yielding

TD = |N |(|N |−1)
2 . As this is the maximum possible depth we have |N | − 1 ≤

TD ≤ |N |(|N |−1)
2 . From this it is apparent that the number of possible

iterations is bounded by |N |2. In each iteration, each of the |E| ≤ |N |2 edges

is checked for inclusion in the MLMC-tree, and the MLMC-tree is calculated.

Such a tree can be computed in O(|E| + |N | log |N |) time. Therefore, the

maximum time complexity is O(|N |2(|E|+ |E|+ |N | log |N |)) ⊆ O(|N |4). In

most cases, this is a severe overestimation as graphs requiring |N |2 iterations

are not common on the relay problems.

From Figure 5.5, it is evident that only edges with qn′ ≥ qn+2 can enter

the MLMC-tree. When such an edge is included in the MLMC-tree, it will

decrease the depth of node n′ and all nodes in the subtree rooted in n′. As

the depth will not be increased for any node, TD will decrease. As TD is

decreased by at least one in every iteration, the algorithm converges.

For additional proofs, the reader is referred to [18, 19].
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5.3.3 Example

We will now show how the dual ascent algorithm works for finding a chain

from n0 = A to τ1 = E with a length of at most three hops. The start value

α0 = 0 and the initial graph is displayed in Figure 5.7a.

In iteration 1, the MLMC-tree-is calculated and the cheapest chain, π1 =

A → B → D → F → E, cost(π1) = 32 and length(π1) = 4, is found

(Figure 5.7b). The set H = {(A,C), (D,E)}. Calculating ε for (A,C) with

the variables cA,C = 22, yA = 0, yC = 20, qA = 0, qC = 3 yielding εA,C =
22+0−20
3−0−1 = 1. Analogously, the edge (D,E) yields εD,E = 23+12−32

4−2−1 = 3.

The cost increase α = εA,C = 1 is applied to all edge costs.

In the second iteration, the new edge costs are used when the MLMC-tree

is calculated. π1 is still the cheapest chain (costmod(π1) = 36) and the new

MLMC-tree is displayed in Figure 5.7c. The edge (A,C) enters the MLMC-

tree and the edge (D,C) leaves it. The length of the chain to C is decreased,

but the chain to E is not affected. In this iteration, H = {(C,E), (D,E)},
which yields εC,E = 44+23−36

4−1−1 = 15.5 and εD,E = 24+14−36
4−2−1 = 2

All edge costs are increased by ε = εD,E = 2 before calculating the new

MLMC-tree in iteration 3 (Figure 5.7d). A new chain π2 = A→ B → D →
E is found. As costmod(π1) = costmod(π2) = 44 and length(π2) = 3, π2 will

be preferred as it requires fewer hops. The chain π2 is sufficiently short and

the algorithm terminates.

5.3.4 Performance Improvements

The basic dual ascent algorithm as displayed in Figure 5.5 allows for several

performance optimizations, which have been used in our empirical testing.

Optimized Generation of MLMC-trees. For all iterations except the

first, the generation of an MLMC-tree can be optimized by making use of the

fact that an MLMC-tree has already been calculated, albeit with different

modified edge costs.

First, the cost of each edge in the previously created tree is increased by

the recently calculated ε, and the cost of each node n is increased by qnα

(that is, the node cost is increased in proportion to its depth). This ensures

that the cost yn of any node n correctly reflects the new modified cost of

the path from n0 to n.

After the increase in edge costs, the tree is no longer an MLMC-tree.

For some nodes, it is possible to find cheaper paths in the graph than those

that are currently included in the tree. Any such paths must include at least

one of the edges that yielded the current value of ε. We can therefore begin

“repairing” the tree starting at the source nodes of those edges, rather than
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(b) The MLMC-tree calculated in itera-
tion 1 is marked by heavy edges.
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(c) In iteration 2, a new MLMC-tree is
calculated after α = 1 has been added
to all edge costs.
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(d) A sufficiently short chain is found in
iteration 3.

Figure 5.7: The dual ascent algorithm is applied to finding a chain from A
to E of at most three hops.
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from the root node n0, by initializing Dijkstra’s algorithm with a priority

queue containing exactly those source nodes. As the tree is traversed in

the standard manner, only those nodes to which we find a cheaper path

than in the previous calculation of the tree are added to the priority queue.

Thus, parts of the tree where the chain is already optimal will not be visited,

speeding up the calculation of the tree. This way of starting from an existing

tree is sometimes referred to as Ford’s algorithm [56].

Search Space Limitation. As seen in the example in Section 5.3.3, the

dual ascent algorithm decreases TD in each iteration, but the chain between

n0 and τ1 might not be affected. Depending on the difference in edge costs

and which edge determines εn,n′ , there can be many iterations that do not

affect the chain between n0 and τ1. However, to increase the chance that

the relevant chain is affected, the search space can be limited. To guarantee

that no relevant chains are missed, the desired effect is to remove the parts

of the graph that are irrelevant for the current target.

An example of such irrelevant nodes are the nodes that require too many

steps from n0. Such nodes can be removed, and to determine the number

of steps required to reach the node from n0, a shortest path tree starting

in n0 can be used. This tree is calculated by using for example Dijkstra’s

algorithm and setting all edge costs to 1. The output of such a calculation

is the minimum number of hops required to reach each node, denoted by

qSPn ∀n ∈ N . After the shortest path tree has been calculated, all nodes

not fulfilling qSPn ≤ M + 1 are removed from N , as they require too many

hops to be reached. Naturally, if it is not possible to reach a node using

the maximum number of steps allowed, it cannot be part of a valid path

between n0 and τ1 and it can be safely removed.

The same pruning of the search space can be performed by calculating

another shortest path tree, this time rooted in τ1. Let qSPtn denote the

number of hops required to reach node n from node τ1. After calculation of

the shortest path tree rooted in τ1, the value of qSPtn is set for all reachable

nodes. As both qSPn and qSPtn are available, the condition of qSPn + qSPtn ≤
l can be applied. Nodes not satisfying this condition can be removed in

order to increase the performance of the algorithm, without affecting the

optimality or completeness properties. Obviously, if qSPn hops are required

to reach node n from n0, a valid path between n and τ1 may require no more

than l − qSPn hops.

Limiting the search space in this way can potentially improve perfor-

mance more for small values of M , as larger parts of the search space are

discarded. Thus, it is not certain that a lower value of M yields slower

execution, instead the search space limitation may yield large improvements
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when solving the STR-MinCostLimited problem.

This way of improving performance has also been suggested as a pre-

processing step for the NP-hard problem of finding shortest paths fulfilling

both a limit on the number of hops and a limit on the path cost [39].

5.4 Summary

Of the single target relay problems defined earlier, efficient algorithms ex-

ist for the STR-MinLengthMinCost and STR-MinCostMinLength

problems. In this chapter, new algorithms for solving the STR-MinCost-

Limited and the STR-ParetoLimited problems have been presented.

The STR-ParetoLimited problem is solved using a new label-correcting

algorithm. The algorithm uses a preprocessing step consisting of calculating

an MLMC-tree from the start node to all nodes in the graph. Each path in

such a tree consists of the path having the fewest steps from the set of cheap-

est paths. The tree provides an upper bound on the path length to each

node, and this is used to terminate calculations for each node in the main

part of the algorithm. This avoids many unnecessary calculations, which

improves the execution time significantly, as demonstrated in Chapter 7.

The STR-MinCostLimited problem can also be solved by the label-

correcting algorithm, but as it only requires finding a sufficiently short path,

other methods may be more efficient. This problem can be solved using a

dual ascent algorithm, which repeatedly calculates an MLMC-tree. After

each calculation of the tree, it is checked whether the path from the base

station node n0 to the target node τ1 is sufficiently short. If so, the path

is a feasible solution and the algorithm terminates. If not, the algorithm

calculates and applies a cost increase to all edge costs. The cost increase

is calculated in such a way that at least one path in the tree is shortened,

and the process of repeatedly calculating the MLMC-tree and the edge cost

increase is continued until a sufficiently short path is found or until no path

in the tree can be shortened.
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Chapter 6

Relay Positioning for

Multiple Targets

We have previously presented algorithms for calculating relay chains for

surveillance of a single target. In this chapter, we will discuss how simul-

taneous surveillance of several targets can be modeled. We also discuss

algorithms for positioning relays in such cases.

Assume that there are several targets that must be surveilled. In such

a case, one option is to use the algorithms already described to calculate

several chains, creating one independent relay chain to each target. If the

UAVs are only capable of relaying a single stream of information, then this

is the best that we can do. However, if the UAVs can handle several streams

of information, then we can take advantage of this and calculate a relay tree

where some UAVs relay information from several surveillance UAVs. This

synergy may allow us to decrease the number of UAVs required to surveil the

targets. We will now go on and define problems for surveillance of multiple

targets and then discuss algorithms for solving them.

6.1 Definition of the Multiple Target Relay

Problems

For problems involving several targets, the same assumptions as for single

targets are made (see Section 3.1), but instead of a single target, assume as

given a set T = {t1, . . . , tl} ⊆ R3 \U of l surveillance target positions.

A relay tree between x0 and the target positions {t1, . . . , tl} is a set of

relay chains that together form a tree structure. As an example, consider

Figure 1.2 on page 4, where there are two chains: [x0, x1, x2, x3, x5, x6, t1]
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and [x0, x1, x2, x3, x4, t2]. Note that these chains may share positions, cor-

responding to a UAV being used in multiple chains. For each target ti ∈ T ,

there is a relay chain beginning in x0 and ending in ti. Let L be the number

of UAVs required to realize the tree and let the non-target positions in the

tree be denoted by [(x0, . . . , xL]). In Figure 1.2, there are six such UAV

positions: x1−x6. Also, let x− denote the unique predecessor of position x.

For example, in Figure 1.2 the predecessor of x5 is x3: x−5 = x3. Then,

the cost of a relay tree is

L∑
i=1

ccomm(x−i , xi) +
l∑
i=1

csurv(t
−
i , ti)

Let the length of a relay tree be the number of agents required to realize the

chain, that is L+ 1 for L UAVs and the base station.

With the necessary definitions in place, we define the following multiple

target relay problems. Some of the targets assume a limit on the number of

available UAVs, and just like in the single target case, we use the letter M to

denote this limit. Setting M = ∞ requires finding all solutions, regardless

of length.

MTR-MinLengthMinCost: Find a relay tree of minimum length among

the trees of minimum cost. A solution to this problem is a tree s such that

for all other trees t, cost(s) ≤ cost(t) and cost(s) = cost(t) → length(s) ≤
length(t). This corresponds to using the highest quality tree that can be

realized with access to an unlimited number of UAVs, with a preference for

using fewer UAVs if this is possible without compromising quality.

MTR-MinCostMinLength: Find a relay tree of minimum cost among

the trees of minimum length. A solution to this problem is a tree s such

that for all other trees t, length(s) ≤ length(t) and length(s) = length(t) →
cost(s) ≤ cost(t). This is useful if minimizing the number of UAVs is strictly

more important than maximizing quality.

MTR-MinCostLimited: Find a relay tree of minimal cost among the

chains that use at most M UAVs. A solution to this problem is a tree s

such that length(s) ≤ M + 1 for all other trees t, and length(t) ≤ M + 1→
cost(s) ≤ cost(t). This corresponds to a desire to find the highest quality

relay tree that can be realized within the given limit on the number of UAVs.

MTR-ParetoLimited: Find a set of Pareto-optimal relay trees that is

complete up to a given upper limit on the number of available UAVs. A

tree s is Pareto-optimal for up to M UAVs if length(s) ≤M + 1 and for all

trees t of length at most M + 1, length(t) < length(s) → cost(t) > cost(s)

and cost(t) < cost(s)→ length(t) > length(s).
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As we will see, these problems are difficult to solve quickly. There-

fore, we will focus on finding algorithms suitable for calculating approxi-

mate solutions to the MTR-MinLengthMinCost and MTR-MinCost-

MinLength problems in the rest of this thesis. Solving these problems

requires minimization of the total cost or the length of the tree. This makes

the multiple target positioning problems similar to Steiner tree problems.

6.2 Relation to Steiner Tree Problems

The Steiner tree problem is a well-known optimization problem that ex-

ists in both continuous and discrete variants. Steiner tree problems are in

general NP-hard and occur in practical applications such as VLSI routing,

telecommunication and transportation, and have attracted considerable re-

search efforts. A comprehensive list of applications and algorithms is beyond

the scope of this thesis, and we refer to the surveys by Winter [100], Du et

al. [38, 37] and Hwang et al. [54].

Common for both the continuous and discrete variants is the term ter-

minals, denoted by Z. This is the set of positions that the tree must span,

in our case consisting of the base station and all targets. In the continuous

problems, this is a set of points, and in the discrete problems it is a set of

nodes. In the general Steiner tree problem, the terminals are not required

to be leaves in the tree.

6.2.1 Continuous Steiner Trees

The continuous Steiner tree problem consists of connecting a given set of

terminals Z by lines of minimum total length so that any two terminals are

connected either directly or via other terminals and lines. In the context of

the relay problems, Z = T ∪ {x0}. Any non-terminal point in the Steiner

tree, where two or more lines meet, is called a Steiner point. Figure 6.1a

displays a two-dimensional Steiner tree problem with Z = {x0, t1, t2, t3}. A

solution with two Steiner points, p1 and p2, is displayed in Figure 6.1b. In

the continuous Steiner tree problem, there is no need to specify the positions

where Steiner points can be located, as all positions can be used.

To be able to solve the general multiple target relay problems, the follow-

ing requirements all must be handled: i) three-dimensional environments,

ii) realistically sized environments, iii) environments with obstacles, iv) cost

functions that do not obey the triangle-inequality, since we may sometimes

achieve higher quality relay trees through using a larger number of UAVs

and longer transmission paths, and v) limited maximum length of lines,

corresponding to a limited communication range.
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t 1

t 3
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(a) A continuous Steiner tree problem
with four terminals.
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t 1

t 3

t 2

p1
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(b) A solution to the problem in Fig-
ure 6.1a, with two Steiner points: p1
and p2.

Figure 6.1: A two-dimensional continuous Steiner tree problem.

There are algorithms can handle some of the requirements individually,

but not all requirements simultaneously. An example of such an algorithm

is the algorithm by Fampa and Anstreicher [42], that can handle three-

dimensional environments. Such algorithms can be of interest under very

particular circumstances, such as when the reachability functions do not

use a range limitation, the cost functions obey the triangle inequality and

there are no obstacles in the environment. Similarly, there are algorithms

that calculate a Steiner tree in a plane and are able to handle obstacles

[101]. Such algorithms are only of interest if the placement of UAVs can be

restricted to a plane.

In particular, the requirement that algorithms must be able to handle ar-

bitrary cost functions prohibits the use of current algorithms for continuous

Steiner trees. Therefore, we discretize the search space and solve discretized

approximations of the multiple target relay problems.

6.2.2 Discrete Steiner Trees

Given a graph G(N,E), the discrete Steiner tree problem consist of finding

a minimum cost tree TG that spans the terminals Z ⊆ N , in such a way

that all terminals are connected by edges in E. In the continuous Steiner

tree problem, Steiner points can be placed anywhere. In the discrete Steiner

tree problems, the set of possible positions are the nodes where we can place

UAVs in the discretization discussed in Chapter 4. We will later describe
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how graphs for use in the discrete Steiner tree problems can be created,

as well as different variants of the discrete Steiner tree problem, in both

undirected and directed graphs. However, we first introduce some common

notation.

Notation. Given a Steiner tree TG, its nodes and edges are denoted by

N(TG) and E(TG), respectively. We follow the notation in e.g. [98, 94, 26]

and use the term Steiner nodes to denote the non-terminal nodes S(TG) =

N(TG) \ Z. Each Steiner node corresponds to the use of a UAV. As the

number of UAVs is denoted by L (see Section 6.1), L = |S(TG)| applies and

a tree is feasible if L ≤ M . As for relay chains, |E(TG)| = |N(TG)| − 1.

Thus, as the number of targets is fixed for each problem, and as there must

be a single base station, minimizing the number of nodes or edges/hops in

a relay tree is equivalent to minimizing the number of UAVs required to

realize the tree.

In some nodes in N(TG), a path “splits” into two or more, which rep-

resents the fact that they receive and relay information from several UAVs.

As an example, consider x3 in Figure 1.2 on page 4. Such nodes are called

join nodes and have two or more outgoing connections. We denote the set

of join nodes in TG by J(TG). Conceptually, the join nodes correspond to

the Steiner points in the continuous problem.

Related Problems. The Steiner tree problem in an undirected graph is

similar to the minimum spanning tree problem as both problems require that

nodes in a graph are connected, and that the resulting tree has minimum

cost. A difference is that Z = N for the minimum spanning tree, as all nodes

must be connected in the minimum spanning tree problem. The Steiner tree

problem requires that the set of terminals Z are connected and that the cost

of the tree is minimized. This makes the general Steiner tree problem more

difficult than the minimum spanning tree problem.

While many Steiner tree problems are known to be NP-hard, there are

some exceptions. The aforementioned minimum spanning tree is known to

be optimally solvable in polynomial time [29]. For |Z| = 1, the problem is

trivial as only a single node is involved. When |Z| = 2, the problem is the

shortest path problem, known to be optimally solvable in polynomial time.

Thus, both the cheapest path problem and the minimum spanning tree are

special cases of the more general Steiner tree problem. The case when |Z| =
3 is also possible to solve optimally in polynomial time, which is discussed

further in Section 6.5.
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Discretization. Creating directed graphs for the multiple target prob-

lems can be done using the same method as for a single target, with a few

modifications. Replace steps 4 and 7 in the method described in Section 4.1

with the corresponding steps below.

4′. For each target position ti ∈ {t1, . . . , tl} a new target node τi is

created. Let T = {τ1, . . . , τl} be the set of all target nodes and let

Z = T ∪ {n0} be the set of terminals.

7′. For each τi ∈ T corresponding to ti and for each x ∈ U′ corresponding

to n ∈ N and satisfying fsurv(x, ti), create a directed edge e = (n, τi)

of cost csurv(x, ti) representing the fact that a surveillance UAV at x

would be able to surveil the target at ti.

Undirected graphs can be created in a similar manner as directed graphs.

The main difference is in the reachability and cost functions. If such a

function is asymmetric, then this is almost certainly due to the fact that

the activity that the function is modeling is asymmetric in nature. For

example, if a camera is mounted on a UAV’s belly and can only see below

the UAV, then the surveillance reachability function holds only if the UAV

is located above the target. However, it is known in which direction any

given surveillance edge will be used, as exactly one of its endpoints is a

surveillance target. An undirected surveillance edge can therefore be given

a cost corresponding to this specific direction of surveillance.

Most communication functions are symmetric, and many of those that

are not can be adjusted to become symmetric. For example, consider the

communication cost function based on obstructed volume (Section 3.3.2).

The cost is based on the position x only. Let the nodes n and n′ correspond

to positions x and x′ respectively. The cost of the undirected edge between

the two nodes can be set to cx,x′ = Vob(x)+Vob(x
′)

2Vcomm
. An asymmetric cost

function can often be used like this to determine edge costs in an undirected

graph.

The Steiner Minimum Tree Problem in Undirected Graphs. The

Steiner Minimum Tree (SMT) in an undirected graph is defined as:

Given an undirected graph G = (N,E), an edge cost function c : E → R+

and a non-empty subset Z ⊆ N of terminals. Find a tree TG such that

there is a path between every pair of terminals and the total cost(TG) =∑
e∈E(TG) c(e) is minimized.

As previously mentioned, some restricted variations of the Steiner tree

problems such as the cheapest path problem and the minimum spanning

tree problem are optimally solvable in polynomial time. As the general
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SMT is NP-hard, the time required for calculating optimal solutions is often

prohibitively long. For this reason, heuristic algorithms are in many cases

used in practice [100].

The majority of heuristics for the SMT can be broadly divided into three

categories: path heuristics, tree heuristics and vertex heuristics. The path

heuristics are based on cheapest path algorithms. The tree heuristics are

based on constructing a tree spanning all terminals, which is then improved

to decrease the cost. Vertex heuristics attempt to first find good Steiner

points, and then calculate a tree spanning the terminals and the Steiner

points. For an overview of heuristics for the SMT problem, the reader is

referred to Hwang et al. [54].

Heuristics are often chosen on basis of the approximation ratio ρ. The

approximation ratio guarantees that the cost of the solution calculated by

the heuristic is no more than ρ times the cost of the optimal solution. The

currently best known approximation ratio for the general Steiner tree prob-

lem in an undirected graph is ρ = 1 + ln(3)
2 ≈ 1.55 [82].

However, in the SMT problem, any terminal can be a join node. In the

multiple target relay problems, there is a big difference between the target

nodes and the base station node, which may be connected to an arbitrary

number of nodes. No target node can be a join node as all targets must be

leaves in the relay tree. That is, each target node must be connected to the

rest of the tree via a single edge. This is because the targets are arbitrary

objects and cannot be used to relay information. The single edge between

an inner node and the target node corresponds to a surveillance UAV (the

inner node) surveilling a target. Figure 6.2a shows an example which is a

valid solution to the SMT but is not a valid relay tree. The target node τ1 is

connected directly to the target node τ2, which in turn is connected to the

node n2, which is surveilling the target node τ3. Transferring information

from the surveillance UAV at n2 would require the cooperation of the targets

τ1 and τ2. The Steiner tree in Figure 6.2b is a valid relay tree as each target

node is connected to the rest of the tree by a single edge.

As the SMT problem does not distinguish between terminals and allows

any terminal to be connected to multiple nodes, it cannot be used to model

the multiple target relay problems. However, the multiple target relay prob-

lems can be modeled as several other Steiner tree problems.

Terminal Steiner Trees. The terminal Steiner tree problem uses an

undirected graph, but requires all terminals to be leaves in the solution.

This fits our problem well although it is unnecessarily restrictive as it does

not allow several UAVs to communicate directly to the base station. This

restriction can be circumvented by adding an extra node, which is connected

71



Chapter 6. Relay Positioning for Multiple Targets
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(a) In a general Steiner tree, terminals
may be connected via several edges.
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(b) As each target node is connected to
the rest of the tree with a single edge,
this Steiner tree is a valid relay tree.

Figure 6.2: Solutions to Steiner tree problems are not necessarily solutions
to the multiple target relay problems.

to the base station via an edge with cost zero. Then the extra node is used as

a terminal instead of the base station. This allows us to model the multiple

target relay problems as a terminal Steiner tree problem.

A generalization of the terminal Steiner tree problem is the partial termi-

nal Steiner tree problem (PTSTP), which takes two sets of nodes as input:

one set in which all nodes must be leaves and one set of nodes that do not

have to be leaves. This fits our problem better as the targets must be leaves

while the base station node does not have to be a leaf. Just like the terminal

Steiner tree problem, the PTSTP uses an undirected graph. Currently there

are only two published algorithms for the PTSTP [51, 52].

The currently best known approximation ratio for the terminal Steiner

tree problem is 2ρ − ρ
3ρ−2 = 2.52 (assuming an approximation ratio of ρ =

1.55 for the SMT problem). The reason for this approximation ratio is that

the algorithm first constructs a Steiner tree and then modifies it to become

a terminal Steiner tree, which may increase the cost of the original tree by

a certain factor. If edge costs are either 1 or 2, the approximation ratio is

lowered to 1.42 [66]. For the partial terminal Steiner tree, the lowest known

approximation ratio is 2ρ− ρ
3ρ−2 − ε = 2.52− ε (assuming ρ = 1.55), where

0 ≤ ε ≤ ρ− ρ
3ρ−2 [52].

The algorithms for (partial) Steiner trees require that the triangle in-

equality applies and that the graph is complete. A graph is complete if
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edges between all pairs of nodes exist. Below we discuss the implications of

these requirements in detail.

In the basic Steiner tree problem, it is possible to make the triangle

inequality apply by changing the cost of any edge that is more expensive

than the cheapest path between the nodes. The cost of such an edge is set to

the cost of the cheapest path. This causes the triangle inequality to apply,

and a solution can be calculated as in the normal case. Then it is checked

whether any edge with a changed cost is included in the solution. If so, the

edge is replaced by the cheapest path that had the actual cost. However,

this method cannot be used in the terminal Steiner tree problems, as shown

by Figure 6.3. Here we want to calculate a partial terminal Steiner tree

where {τ1, τ2} must be leaves and n0 does not have to be a leaf. Assume

that the algorithm with an approximation ratio of 2.52− ε is used.

Figure 6.3a shows the original graph and Figure 6.3b shows the graph

after the cost of the edge (n0, B) is set to the cost of the cheapest path

between n0 and B, i.e. 4. Then the algorithm is executed, which is only

guaranteed to find a tree with a cost within a factor 2.52− ε of the optimal

cost. The optimal tree has cost 9 and the tree found by the algorithm may

thus cost up to 9 ∗ (2.52− ε) = 22.68− 9ε ≤ 22.68. Assume that the optimal

tree is found by the algorithm. However, when edge (n0, B) is replaced by

the cheapest path between the nodes, the tree is no longer a valid partial

terminal Steiner tree as the path goes through a terminal. Instead, the real

edge (n0, B) must be used. However, this edge has a cost of 10000, giving a

total tree cost of 10005 (Figure 6.3c).

Furthermore, the algorithm can never find the optimal partial terminal

Steiner tree, depicted in Figure 6.3d, as it has cost 27 and is outside the

guaranteed approximation ratio. This shows that this method for making

the triangle inequality apply cannot be used for (partial) terminal Steiner

trees and consequently not for calculating solutions to the multiple target

relay problems.

Another option is to only consider instances of the terminal Steiner tree

problems where, for each terminal, there is a non-terminal with exactly

the same set of neighbors [36]. In such cases, it is possible to transform a

terminal Steiner tree problem in which the triangle inequality does not hold

into a problem where it does hold. However, this restriction cannot be used

in general in the multiple target relay problems. Suppose that when each

target node τi is created, an extra step is performed, with the intention of

placing a node si so that it gets the same set of neighbors as τi. There must

then be some distance between τi and si, as it must be possible to locate

a UAV at si without colliding with the target or any other object in the

environment. Also, all nodes that could surveil the target τi must be able
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Figure 6.3: Setting the cost of any edge that is more expensive than the
cheapest path between the nodes to the cost of the cheapest path, causes
the triangle inequality to apply. However, this method cannot be used in
the terminal Steiner tree problems.
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n9

1n10 n11

Figure 6.4: In some cases it is impossible to place another node so that it
gets the same set of neighbors as a target node. This is especially evident
in urban environments.

to communicate with si. As the communication and surveillance reachability

functions may be completely different, this may prevent si from getting the

desired set of neighbors, especially if we consider the terrain around τi.

The terrain is most likely to cause problems in urban environments, as

exemplified by Figure 6.4. Regardless of where s1 is placed, it will not get

the same set of neighbors as τi, when common requirements such as free

line-of-sight and limited range are used in the reachability functions.

Even if we assume that a cost function obeying the triangle inequality is

used, the requirement of a complete graph is difficult to fulfill. The graphs

that are used in the relay problems are the results of discretizations of real

environments. As such, it is very unlikely that the graphs are complete as

there almost certainly are obstacles preventing this. Even if there are no

obstacles, the reachability functions generally do not allow the creation of a

complete graph due to limited maximum range and similar limitations.

Instead, an incomplete graph must be made complete. One method is

to let any missing edge be replaced by the cheapest path between the nodes

[36]. This is similar to the above example of making the triangle inequality

apply, but the difference is that in that example, there were edges with too

high cost, while here there are edges missing.

The idea is to first replace the missing edges to make the graph complete,

and then execute an algorithm that requires a complete graph. After this

is done, any added edges that are used in the solution are replaced by the

cheapest path. However, we will show that this method cannot be used in

the relay problems as this may cause a path that originally did not pass

through a target node to do exactly that.
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Figure 6.5: In the relay problems, the graph cannot be made complete by
adding extra edges consisting of the cheapest paths as this may cause the
tree to become invalid.
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A part of a graph is displayed in Figure 6.5a: the terminal τ1 is the

only path between the nodes A and B, which in turn are connected to other

nodes that are not displayed. As part of making the graph complete, a new,

“pseudo edge” between A and B is inserted (Figure 6.5b). The new edge

consists of the cheapest path between A and B, in this case A→ τ1 → B and

the edge cost is the cost of that path. After the graph completion process is

performed, a (partial) terminal Steiner tree is calculated. In the tree, both

the new edge (A,B) and the edge (A, τ1) are included (Figure 6.5c). When

the “pseudo edge” is replaced by the real edges, τ1 is no longer a leaf and

the resulting tree is not a valid (partial) terminal Steiner tree (Figure 6.5d).

Therefore, for the problems of interest here, this method to make the graph

complete cannot be used.

The algorithms for the terminal Steiner tree problem and the partial

terminal Steiner tree problem require that the triangle inequality holds and

that the graph is complete. Unless both these requirements hold, no constant

approximation ratio for the terminal Steiner tree problem can be given unless

NP = DTIME(|Z|O(log log |Z|)) [36]. For the PTSTP, two open research

questions are whether there exists an approximation algorithm if the triangle

inequality does not hold, and if there exists a constant approximation ratio

[52].

Neither a complete graph nor a cost function that obeys the triangle

inequality can be guaranteed in our problems. Therefore, the algorithms

lose their greatest advantages, namely that a solution is guaranteed and

that the cost of the solution is guaranteed to be within a certain factor from

the cost of the optimum solution. However, it is possible to use algorithms

for the directed Steiner tree to solve our relay problems.

Directed Steiner Trees. A directed Steiner tree is a possible solution

to the problems discussed above, because the algorithms do not require

complete graphs or that the cost function obeys the triangle inequality. As

a directed Steiner tree uses a directed graph, we can make sure that all

targets are leaves by choosing to make all target nodes without edges. The

directed Steiner tree problem requires a root node and a set of terminals as

input. Naturally, in our case the root node corresponds to the base station

node n0 and the set of terminals is the target nodes T .

The directed Steiner tree problem provides a flexible way to rewrite the

relay problems discussed here, as well as other Steiner tree problems. How-

ever, the increased flexibility comes with a price, as the heuristics for directed

Steiner trees have high time complexities, high error bounds and long exe-

cution times [22, 84, 104]. The algorithm by Charikar et al. [22] in some

cases requires more than a minute to solve problems with |N | = 100 and
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|E| = 400. To improve this long execution time, Hsieh et al. [50] presented

an algorithm that had shorter execution time and yielded trees with similar

costs, when tested. However, the algorithm requires O(|T ||N |2 + h|T ||N |)
memory space, where h ≥ 1 is the height of the tree. We are interested

in solving relay problems in discretizations of real environments, where the

number of nodes may be in the tens of thousands and the number of edges in

the tens of millions. As the memory requirements for such problems would

be prohibitive, such algorithms cannot be used for solving the multiple tar-

get relay problems.

Summary. Finding a relay tree is a kind of Steiner tree problem as the

total cost of the tree must be minimized. However, the Steiner minimal tree

problem does not distinguish between the target nodes and the other nodes

in the tree. This allows a target node to be connected to the rest of the tree

with several edges, which in the context of the relay problems correspond to

using a target to relay information. As this is generally not possible, other

ways to model the multiple target relay problems have been investigated.

As existing algorithms for the terminal Steiner trees problems require

a complete graph and that the triangle inequality applies, they cannot be

used to calculate relay trees. The common ways to make the graph complete

cannot be used in the relay problems as they can create invalid relay trees,

in which a target node is connected to the rest of the tree with several edges.

Algorithms for solving the directed Steiner tree problem do not have the

same requirements regarding a complete graph and the triangle inequality

as they use a directed graph. However, the algorithms for solving such

problems have either long execution times or high memory requirements.

Considering this, we investigated whether heuristics for the SMT could

be modified to calculate relay trees. It turns out that we could adapt the

cheapest path heuristic for this purpose.

6.3 Adapting the Cheapest Path Heuristic

The cheapest path heuristic for calculating Steiner trees has been used in

both undirected and directed graphs [92, 96]. The heuristic starts with a

single node and repeatedly executes a cheapest path algorithm to find paths

to the unconnected terminals. During execution of the heuristic, a Steiner

tree is incrementally built, where each iteration adds a path from the nodes

in the current tree to an unconnected terminal.

The algorithm in its original form is not suitable for calculating relay

trees, as it allows target nodes to be connected to several other nodes. How-

ever, the algorithm can be modified to fulfill this requirement. The algo-
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rithm needs to be changed so that it is guaranteed that each target node is

connected to the rest of the tree using a single edge.

To calculate the cheapest paths efficiently, we use a cheapest path algo-

rithm that can handle sets of start nodes and goal nodes, such as Dijkstra’s

algorithm. In the context of relay problems, the start nodes are the nodes

in the tree N(TG) and the set of goal nodes is the set of target nodes to

which no path yet has been found, T \N(TG).

Figure 6.6 shows the pseudocode of our modified cheapest path heuristic

for calculating relay trees. The relay tree is initialized with the base station

node n0 and an empty set of edges (line 1). The predecessor of n0 is set to

nil. |T | iterations are performed, as this is the number of targets, and each

iteration connects a single target node (line 3). Line 4 clears the priority

queue Q. The cost g(n) is initialized for all nodes not in the relay tree

(lines 5–6). The set of start nodes is initialized in lines 7–9. For each node,

the cost is set to zero and the node is inserted into the priority queue.

Each iteration continues until a path to an unconnected terminal is found

(line 16) or the priority queue is empty (line 11). The latter means that the

complete graph has been searched and no unconnected terminal has been

found. Thus, not all targets can be connected to the tree, and the algorithm

returns with failure (line 11). If Q is not empty, the least cost node n is

extracted (line 12).

It is checked whether this node is one of the unconnected target nodes

(line 13). If so, this means that a cheapest path p to an unconnected target

node has been found. The path is retrieved by the function Retrieve-Path(n),

and is added to the relay tree, thereby connecting a previously unconnected

target node to the relay tree (lines 14–15). This ends one iteration, and the

algorithm continues with the next unconnected target node (line 15).

If the node was not an unconnected target node, it is checked whether n

is a target node (line 17). This check is necessary because n may be a target

node that is already included in TG. If n is not a target node, then each

neighbor node n′ is considered with the intention of finding a cheaper path

to n′ (lines 18–22). If a cheaper path is found, the cost and the predecessor

of node n′ are updated and n′ is inserted into Q. If n′ already was in Q,

its position is updated due to the decreased cost. The function Extract-

tree extracts the complete relay tree so that it can be returned to the user

(line 23).

The cheapest path heuristic as described here expands a single tree until

all targets have been connected. There are other slightly different heuristics

based on repeated execution of a cheapest path algorithm that share the

same name and error bound [54].
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1 TG ← 〈n0, ∅〉
2 p(n0) = nil
3 for k= 1, . . . , |T | do // Connect one more target

4 Q← ∅ // Clear priority queue

5 for each n ∈ N \N(TG) do
6 g(n)←∞
7 for each n ∈ N(TG) do // Initialize start nodes

8 g(n) = 0
9 Insert(Q,n)
10 loop
11 if Q = ∅ then return failure // Not all target nodes are reachable

12 n← Extract-Min(Q)
13 if n ∈ T \N(TG) then // Found unconnected target node

14 p← Extract-Path(n)
15 TG ← TG ∪ p // Add path to tree

16 exit loop // Continue with next target

17 if n /∈ T then
18 for each n′ ∈ n+ do // Treat neighbor nodes

19 if g(n′) > g(n) + cn,n′ then
20 g(n′)← g(n) + cn,n′
21 p(n′)← g(n)
22 Insert(Q,n′)
23 Extract-tree(T ) // Extract the tree

Figure 6.6: Algorithm 4 – Modified cheapest path heuristic for calculating
a relay tree.

6.3.1 Theoretical Properties

Algorithm 4 is based on the cheapest path heuristic which is sound and com-

plete for the general Steiner tree problem in both undirected and directed

graphs [92]. The pseudocode in Figure 6.6 is an efficient implementation of

the cheapest path heuristic with the change that no outgoing connections

are created from target nodes (line 17). This corresponds exactly to the

requirement in the multiple target relay problems that each target must be

a leaf in the tree.

Soundness. The heuristic is sound as each target is connected with a

single edge to the rest of the tree. The single connection is assured in line 17

which only considers the outgoing edges of non-target nodes. Furthermore,

with the exception of the root node n0, each node in the tree only has one

predecessor, and thus a tree structure is created. When a cheaper path to
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a node has been found (line 19), the predecessor node is updated (line 21).

Thus, after execution of the algorithm in Figure 6.6, a tree has been created

which connects all terminals and each target node is connected to the rest

of the tree with a single edge.

Completeness. Consider a problem with target nodes τ, τ ′ ∈ T . If there

is a path from n0 to τ that does not require going through τ ′, then it does

not matter that the outgoing edges of τ ′ are not considered, a valid path will

be found anyway. If this applies for all τ ∈ T , then a valid relay tree will be

found, as a path to each such target is found. If the path to τ requires going

through τ ′, then the problem cannot be solved as τ ′ must be an interior node

in the tree. No such tree is a valid relay tree. In that case, the algorithm is

not required to return a solution.

Time Complexity. The algorithm has a time complexity of O(|T |(|E|+
|N | log |N |)) as |T | executions of a cheapest path algorithm are performed,

each one with a time complexity of O(|E|+ |N | log |N |).

Approximation Ratio. The approximation ratio is |T | in both directed

and undirected graphs [96]. Despite this approximation ratio, the cheap-

est path heuristic has been known to be competitive with more advanced

methods in directed graphs [50, 96].

6.3.2 Extensions

The basic algorithm as shown in Figure 6.6 can easily be extended to find re-

lay trees for a variety of restrictions on how UAVs may be used. These exten-

sions require the addition of a Boolean function Acceptable-Connection(n, n′)

that holds if certain conditions are fulfilled, discussed further below. The

function is added to the if-statement in line 19, which will then be:

if g(n′) > g(n) + cn,n′ and Acceptable-Connection(n, n′) then.

Next we will give some examples of the specific restrictions and how

these are implemented using the function Acceptable-Connection.

Relay UAVs Have Limited Capacity. If the relay UAVs can only relay

a limited amount of information, then an important question is whether all

information streams require the same amount of bandwidth or if it differs.

If all information streams require equal amounts of bandwidth, then each

relay UAV must be able to handle a certain number of connections. Adding

a new information stream requires that all UAVs between the first relay

UAV and the base station can handle the additional stream of information.
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If information streams instead require different amounts of bandwidth, then

the same UAVs must be able to handle the additional bandwidth.

To implement this requirement, the function Acceptable-Connection could

check whether n′ ∈ T \N(TG), i.e. if n′ is an unconnected target. If this is

true, then a surveillance UAV may be placed at n if all nodes in the path q

between n and n0 can handle an additional stream of information. This is

controlled by retrieving the path q and checking each node in q for available

relay capacity. If all nodes have available capacity, then the information can

be relayed back to the base station and the target n′ can be surveilled from

a surveillance UAV at n. Otherwise, a relay chain to n′ with the surveillance

UAV at some other position must be found.

Surveillance UAVs May Not Relay. If surveillance UAVs have limited

energy, then restricting the amount of information that they transmit is one

way to extend the time that a target can be surveilled. Naturally, each

surveillance UAV must transmit information from its own surveillance, but

should not relay any other information.

This restriction is different from the restriction that relay UAVs have

limited capacity. Here the surveillance UAVs cannot relay any information

at all, while relay UAVs still have unlimited capacity.

If a surveillance UAV cannot be used to relay information, then each

surveillance UAV must have one connection to a predecessor (relay UAV or

base station) and one or more connections to surveillance targets. As n is in

TG, it has a predecessor and it is sufficient to check if the currently treated

node n′ ∈ n+ is a target node. If so, then the edge (n, n′) is a surveillance

edge and may be added to the tree. If not, the edge corresponds to a com-

munication edge and is not allowed. This requirement can be implemented

in the function Acceptable-Connection which holds if n′ ∈ T .

Limited Target Distance. A surveillance UAV can only surveil multi-

ple targets within a limited distance from each other. Therefore, when a

surveillance UAV is already surveilling one or more targets and it is checked

whether it can surveil an additional target, the distance between the targets

currently under surveillance is calculated and compared to the maximum al-

lowed distance. If the distance is below the limit, then the additional target

may also be surveilled.

These requirements are checked by the function Acceptable-Connection.

The neighbor node n′ is an unconnected target if n′ ∈ T \N(TG). Retrieve

the possibly empty set Esurv,n consisting of all edges (n, τi) ∈ E(TG), ∀τi ∈ T .

Then, all τi in Esurv,n are target nodes and arbitrary restrictions regarding

which targets that can be surveilled can be applied.
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6.4 Calculating Pareto-optimal Relay Trees

For Two Targets

Trees calculated with the modified cheapest path heuristic often have good

quality, but there might still be room for improvement. One possible option

is to incrementally improve the tree by optimizing subtrees. For example,

we can choose subtrees with a root node and two leaves and perform local

optimization on such trees. In this section we present a method that calcu-

lates Pareto-optimal relay trees for the case of a base station and two targets

(leaves). In a later section, this algorithm will be generalized and used to

optimize subtrees in larger relay trees.

In optimal Steiner trees, there can be at most |Z| − 2 join nodes, and

therefore a relay tree with |Z| = 3 has at most one join node. Obviously,

it must have one join node, as the paths to τ1 and τ2 both originate in n0.

The fact that an optimal Steiner tree with three terminals has exactly one

join node allows us to solve the MTR-ParetoLimited problem optimally.

We can first calculate all Pareto-optimal relay chains to each node, and then

connect them so that all Pareto-optimal Steiner trees are created. A Steiner

tree with a single join node has either a v-structure or a y-structure. If

n0 is the only common node in the paths to τ1 and τ2, then the tree has

a v-structure (Figure 6.7a). Otherwise, the paths have at least one more

common node, and the tree has a y-structure (Figure 6.7b).

For two targets, both the MTR-MinCostMinLength and the MTR-

MinLengthMinCost problems can be solved optimally with a time com-

plexity of O(|E| log |E|) ⊆ O(|N |2 log |N |2) through the algorithm by Chen

[23]. However, for the local optimizations that will be described in Sec-

tion 6.5, we are more interested in solving the MTR-ParetoLimited prob-

n0

21

(a) A tree with a v-structure.

n0

21

n1

(b) A tree with a y-structure.

Figure 6.7: Structures of trees with one join node.

83



Chapter 6. Relay Positioning for Multiple Targets

1 Execute Algorithm 2 starting in n0.
2 Execute Algorithm 2 starting in τ1.
3 Execute Algorithm 2 starting in τ2.
4 for each n ∈ N \ T do
5 Construct relay tree(s) with join node n

from the reachability records in n.
6 Return the set of Pareto-optimal relay trees.

Figure 6.8: Algorithm 5 – Solving the two targets relay problems through
multiple executions of Algorithm 2.

lem as this allows us to choose other trees than the cheapest or shortest. We

solve the MTR-ParetoLimited problem through executing Algorithm 2

three times, and then calculating all possible valid Steiner trees. Between

each pair of nodes, there are at most |N | different Pareto-optimal paths. As

there are three terminals in the tree, this yields at most |N |3 Pareto-optimal

trees in each node. Determining this for all |N | nodes yields a time com-

plexity of O(|N |4). Executing Algorithm 2 three times is in O(|N |3) and

selecting the best relay tree is in O(|N |). Thus the total time complexity is

O(|N |4). However, in practice there are far fewer than |N | Pareto-optimal

paths to each node, and the time complexity is a severe overestimate.

As the Steiner tree must connect all three nodes, only nodes that are

reachable from both n0, τ1 and τ2 are of interest as join nodes. If no such

node exists, then no tree can connect the base station and the target nodes

and the problem cannot be solved.

We refer to this method of calculating relay trees for a base station node

and two target nodes as Algorithm 5. Figure 6.8 displays the pseudocode

of the algorithm. For each execution of Algorithm 2, a set of reachability

records is created in each reachable node. Thus, after three executions of

Algorithm 2 (lines 1–3), three sets of reachability records exist in the nodes

that are reachable from both n0, τ1 and τ2. Then, an iteration through all

reachable nodes, except τ1 and τ2, is performed. In each node, the set of

relay trees is calculated by repeatedly selecting and combining a reachability

record from each set (lines 4–5), described in more detail in Section 6.4.1.

Special care must be taken if Algorithm 5 is used in a directed graph.

The executions of Algorithm 2 in lines 2–3 will use the nodes’ incoming

edges instead of outgoing. This is because in the final tree, the edges will

be used to provide paths to the target nodes, not from them.
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k gk pk

1 50 n0
2 32 n1
4 21 n2

k gk pk

1 13 τ1

k gk pk

1 19 τ2
2 15 n23

Table 6.1: Reachability records for executions starting in nodes n0, τ1 and
τ2, respectively, for some node n.

6.4.1 Determining the Set of Pareto-optimal Relay Trees

We will now show how the reachability records are combined to create relay

trees.

Assume that after Algorithm 2 has been executed three times, once start-

ing in the base station node and once in each target node, the set of reach-

ability records displayed in Table 6.1 exists for some node n ∈ N \ T . For

example, there are three paths from n0 to n.

By repeatedly selecting and combining Pareto-optimal paths from the

different sets, information about 3× 1× 2 = 6 trees is created. All six relay

trees have node n as join node, and we calculate the total costs and lengths

by adding the costs and lengths of the individual chains.

By looking at the resulting information about the trees (Table 6.2), it is

evident that some trees are inferior. For example, there is no reason to use

the tree with total path length 5 and total cost 60 as it is more expensive than

the tree with the same length and cost 53. The inferior trees can be removed

by evaluating the trees in a manner similar as for the Pareto-optimal relay

chains, see Section 3.2.

The above process finds all Pareto-optimal trees with join node n. The

process is then repeated for all nodes N \T , as no target node can be a join

node. The complete set of Pareto-optimal trees, possibly with different join

nodes, can be found as follows. Start with an empty set of Pareto-optimal

trees. Then for each non-target node n, consider the trees that could be

generated with n as a join node according to the reachability records in

that node. For each such tree, check whether there is already a better (in

the Pareto-optimal sense) tree in the current set of trees. If not, the tree

is added to the set and any trees dominated by the new tree are removed.

The set of Pareto-optimal trees together form the solution to the MTR-

ParetoLimited problem. Table 6.3 shows such a set.
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Path length
to n0 to τ1 to τ2 total Cost Pareto-optimal

1 1 1 3 82 Yes
1 1 2 4 78 No
2 1 1 4 64 Yes
2 1 2 5 60 No
4 1 1 5 53 Yes
4 1 2 7 49 Yes

Table 6.2: Information about the different relay trees joining in node n.

Total Total Join
path length cost node

3 82 n
4 64 n
5 51 n′′

7 49 n
8 47 n′′

Table 6.3: The set of Pareto-optimal relay trees.

6.4.2 Duplicate Edges in the Relay Tree

In rare cases, it may happen that two or more paths in a relay tree coincide

in more nodes than just the join node, i.e. there are also common edges.

Figure 6.9a shows an example where three paths have been calculated to

the join node n1. As our calculations simply sum the costs and lengths of

all paths involved, the cost of the edge (n1, n2) will be counted twice. This

tree will then be considered at least as expensive, and use one hop more,

than the tree in Figure 6.9b. The latter tree has n2 as join node.

It might seem like all trees need to be checked for duplicate edges and

subtract the extra cost and hop of any such edges. However, regardless

of whether the graph is directed or undirected, nothing needs to be done.

When iterating through all non-target nodes to find the join node for the

tree, a tree that includes the edge (n1, n2) and its cost only once will be

found. In this example, the tree has join node n2.

Assume that the tree in Figure 6.9a has been found. In a directed graph,

the edge (n1, n2) is guaranteed to exist as it has been used in the paths for τ1
and τ2. The cost of the edge and the hop required to use the edge has been

included in the tree twice. Naturally, using the edge once cannot be more

expensive than using it twice. In addition, using the edge once also gives
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n2

2

n1

n2

1

n1

n1

n0

(a) The paths that are combined to
form a relay tree are displayed sepa-
rately for clarity. The join node is n1.

n2

2

n2

1

n1

n0

n2

(b) The tree with n2 as join node will
be preferred as it will be cheaper.

Figure 6.9: Duplicate edges can occur when reachability records are com-
bined to form a tree, but there always exists a cheaper relay tree without
the duplicates.

a tree with one less hop. Therefore, a cheaper tree with one less hop must

exist (Figure 6.9b). Such a tree will be found when iterating through all non-

target nodes to find the join node of the tree. The same reasoning applies

in an undirected graph, where cn1,n2 = cn2,n1 obviously holds. Therefore, it

must be the case that cn1,n2
≤ 2cn2,n1

, with equality for cost zero. In other

words, it will never be more expensive to use the edge once than to use it

twice. Similarly, a cheaper and shorter tree must exist and will be found

when determining the join node of the tree.

6.5 Improving Relay Trees

Algorithm 5 creates Pareto-optimal relay trees with one join node. This

can also be used to optimize larger trees with one join node and is used in

a heuristic improvement algorithm that can be applied to optimizing relay

trees once an initial relay tree has been calculated [77].

The algorithm works by performing a series of local optimizations of the

existing tree. In each such optimization, a subtree with one join node is

chosen for optimization. Then a set of candidate subtrees is calculated to

replace it. Each such candidate subtree also has one join node. From the

set of candidates, the best subtree according to some optimization criterion

(described further below), is chosen to replace the existing subtree. Then,

the new subtree is compared to the existing subtree and a replacement
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is performed only if the new subtree is better than the existing subtree

with respect to the optimization criterion. As the number of hops and the

cost of the complete tree is the sum of the costs/hops of all subtrees, any

improvement of a subtree improves the complete tree. When a replacement

has been performed, the new and improved tree can be displayed to the

user.

The process of continually optimizing a relay tree can be performed until

no better tree is found, or until the available time runs out, if there is a time

limit.

Optimization Criterion. Subtrees are optimized with respect to a cer-

tain optimization criterion. Examples of such criteria are minimizing the

number of hops in the tree or finding the least cost tree, regardless of the

number of hops, or the cheapest tree with a limit on the number of hops in

the tree.

The algorithm permits the use of different optimization criteria, and the

criteria can also be changed during the course of optimizing the relay tree.

For example, assume that we want the least cost feasible tree. If the original

tree is infeasible, then the optimization criterion of minimizing the number

of hops in the tree is used until a feasible tree is found. At that time, the

optimization criterion is changed to finding the least cost tree with a limit

on the number of UAVs, to assure that the tree remains feasible. If the

initial tree was feasible, the optimization criterion would be to find a least

cost tree with the restriction that the tree must remain feasible.

The above optimization criteria correspond to some extent to the three

first multiple target relay problems, and are typically used when trying to

calculate approximate solutions to these problems. This algorithm is similar

to an anytime algorithm [103], in the sense that it continually improves a

solution as time goes on.

Notation. Let a subtree of TG be denoted by Ts, with r(Ts) denoting the

root node and L(Ts) denoting the set of leaves of the subtree. A subtree that

is a candidate for replacing Ts is denoted by T
′

s. Naturally, each candidate

subtree T
′

s has the same root node and the same set of leaves as the subtree

it is intended to replace: r(Ts) = r(T
′

s) and L(Ts) = L(T
′

s). The set of join

nodes in each subtree Ts consists of exactly one join node and we use the

variable J(Ts) interchangeably for the set of join nodes in Ts and the join

node itself.
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6.5.1 Reduced Trees

Only a few nodes are necessary to characterize the structure of TG. The

set of such nodes is referred to as key nodes. These nodes are the terminals

together with the join nodes.

To allow for quickly determining the subtrees for optimization, a reduced

tree is created. The reduced tree is created by finding all paths in the tree

that start in one key node and end in another key node. Each such path is

then replaced by a single edge. Thus, the reduced tree consists of only key

nodes and maintains the same topology as the relay tree.

Figure 6.10a displays a part of a relay tree, and the corresponding re-

duced tree is displayed in Figure 6.10b. It is clear that the reduced tree

retains the same topology as the original tree. An optimization of the sub-

tree with J(Ts) = n8, r(Ts) = n2 and L(Ts) = {n21, τ1, n22}, marked by

the heavy lines, is performed. A better subtree is found and the previous

subtree is replaced. The tree after replacement is displayed in Figure 6.10c,

and the corresponding reduced tree is displayed in Figure 6.10d. The new

subtree is marked by heavy dashed lines in both figures.

6.5.2 Choosing Subtrees for Optimization

In each iteration, the algorithm chooses a join node J(Ts) whose subtree

Ts will be optimized. The reduced tree is used to determine the root node

r(Ts) and set of leaves L(Ts) of Ts. The leaves are all the immediate suc-

cessors of J(Ts) in the reduced tree. The reason why all leaves are chosen is

discussed further below. In most cases, r(Ts) is the immediate predecessor

of J(Ts). Such a subtree has a y-structure (Figure 6.7b), and subtrees with

such structure are chosen whenever possible.

If J(Ts) = n0, there are two possibilities (Figure 6.11). If no immediate

successor of n0 in the reduced tree is a target, then no optimization with

n0 as join node needs to be performed. For an example of this, consider

the tree in Figure 6.11a. In that tree, there are three join nodes, n0, n2 and

n3. However, only two subtree optimizations need to be performed. These

are the trees with n2 and n3 as join nodes, respectively. Together these

optimizations are sufficient to optimize all parts of the tree. If any of n0’s

immediate successors in the reduced tree is a target, then an optimization of

a subtree with n0 as join node needs to be performed. Consider Figure 6.11b

for an example of this. In addition to the two optimizations with n2 and

n3 as join nodes, a third optimization with J(Ts) = r(Ts) = n0 needs to be

performed. The leaves in that subtree would be {n2, n3, τ5} and the subtree

has a v-structure (Figure 6.7a). The third optimization is required so that

all subtrees have been subject to optimization.
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n2

n21
1 n22

n8

n0

n10

n13

n11 n4

(a) A part of a relay tree.

n2

n21
1 n22

n8

n0

n10

n4

(b) The reduced tree corresponding to the
tree in Figure 6.10a.

n2

n21
1 n22

n9

n0

n10

n4

n7

(c) The new subtree, marked by heavy
dashed lines, replaces the old subtree.

n2

n21
1 n22

n9

n0

n10

n4

(d) The reduced tree corresponding to the
tree in Figure 6.10c.

Figure 6.10: Part of a relay tree and the corresponding reduced tree, before
and after optimization. The subtree marked by heavy lines is replaced by
the tree marked by heavy dashed lines.
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n0

1

n2

2 3

n3
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(a) In this tree, only two optimizations are
needed.

n0

1

n2

2 3

n3

4

5

(b) This tree requires three subtree opti-
mizations to allow that all parts of the tree
have been subject to optimization.

Figure 6.11: Two different cases can occur when n0 is a join node.

The fact that each join node is chosen in some iteration, together with the

structure of the chosen subtrees permits the replacement of all non-terminal

nodes.

The reason for including all immediate successors of the join node is

exemplified in Figure 6.12. The reduced tree has one join node, n2 (Fig-

ure 6.12a). If a subset of a join node’s leaves were chosen for optimiza-

tion, then several optimizations with the same join node would need to

be performed, to allow that all paths in the tree are optimized. Con-

sider Figure 6.12b, where the subtree with r(Ts) = n0, J(Ts) = n2 and

L(Ts) = {τ1, τ2} is to be optimized. This subtree is marked by the heavy

n0

n2

1 2 3 4

(a) Original reduced tree.

n0

n2

1 2 3 4

(b) If choosing a subtree with L(Ts) =
{τ1, τ2}, the join node n2 must remain as
it is connected to the nodes τ3 and τ4.

Figure 6.12: Including the complete set of a join node’s leaves in a subtree
optimization potentially allows a better result when the subtree is optimized.
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lines. When performing this optimization, the join node n2 cannot be re-

placed as it is connected to the leaves τ3 and τ4. In that case, only the paths

to and from n2 can be optimized. If instead the complete set of leaves is

chosen when optimizing the subtree, then the join node can also be replaced.

This potentially permits better trees and is the reason why we include all

immediate successors of the join node in subtree optimizations.

It is possible that the complete tree would be chosen for optimization

in one iteration. However, for that to happen, the tree would need to have

a very specific structure, i.e. all targets would be connected directly to n0
without any intermediate join nodes.

We will now give an example of how join nodes are chosen and how

this affects the tree over several iterations. Consider the reduced tree in

Figure 6.13a. For example, let the subtree with r(Ts) = n1, J(Ts) = n2
and L(Ts) = {τ1, τ2} be chosen in the first iteration. During optimization

of that subtree, only the root and leaf nodes are fixed: the join node and

all other nodes in the subtree can be replaced. Assume that during this

optimization, a subtree with the join node n10 replaces the old subtree (Fig-

ure 6.13b). In the second iteration, an optimization of the subtree with

r(Ts) = n1, J(Ts) = n3 and L(Ts) = {τ3, τ4} is performed. This finds a new

subtree with join node n21 (Figure 6.13c). The final optimization of the tree

involves the subtree with r(Ts) = n0, J(Ts) = n1 and L(Ts) = {n10, n21}.
This subtree’s leaves are the resulting middle nodes from the previous opti-

mizations. Thus, all paths in the tree have been subject to optimization at

least once (Figure 6.13d).

A successful optimization of one subtree can allow for further optimiza-

tion of other subtrees. The condition is that at least one node in the op-

timized subtree is a non-leaf node in another subtree. The reason for this

is that the root node and leaves are fixed in each optimization, and cannot

be replaced. As an example, consider Figure 6.13d where a new subtree has

replaced the old subtree. Here the join node has changed from n1 to n8. As

subtrees are chosen to be partially overlapping, this opens up the possibility

of further optimizing subtrees involving the node n8. Here there are two such

subtrees, one subtree with r(Ts) = n8, J(TG) = n10 and L(Ts) = {τ1, τ2}
and another subtree with r(Ts) = n8, J(TG) = n21 and L(Ts) = {τ1, τ2}. If

any of these trees are optimized and the join node is replaced, it opens up

the possibility of optimizing the tree with r(TG) = n0 again. This shows an

example of the fact that the number of subtree optimizations for a tree is

not fixed, but depends on how the optimization of different subtrees affects

other subtrees.

The order in which subtrees are optimized can be chosen in many dif-

ferent ways, for example starting with the subtrees furthest from the root
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(a) Initial reduced tree.
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(b) Optimization of the subtree with
r(Ts) = n1 and L(Ts) = {τ1, τ2} leads to
a new subtree with join node n10.
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(c) A new tree, with join node n21 is found
for the tree with r(Ts) = n1 and L(Ts) =
{τ3, τ4}.
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1
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(d) The final optimization has the two new
join nodes as leaves.

Figure 6.13: By choosing subtrees with y-structures for optimization when-
ever possible, all paths in the tree are subject to optimization.
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node and progressing towards the root node.

6.5.3 Different Tree Structures

All subtrees that are chosen for optimization have one join node, and such

trees can have either a y-structure or a v-structure. The y-structure is the

most common and occurs in a majority of cases. In such a subtree, the root

node is either n0 or a join node. The leaves are either join nodes or targets,

or a combination thereof. A basic example of such a tree is displayed in

Figure 6.7b on page 83. The subtree marked by heavy lines in Figure 6.10d

displays another example of such a tree. The root node is n2, the join node

is n8 and the leaves are {n21, τ1, n22}. The root node, the join node and

two of the leaves are join nodes in TG. This example shows a generalized

y-structure with more than two leaves.

A subtree chosen for optimization can also have a v-structure (Fig-

ure 6.7a on page 83). This occurs only when the join node of the subtree

coincides with n0. The leaves of the subtree can be join nodes or targets or

a combination.

It is possible that the subtree Ts has one structure and the candidate

subtree T
′

s that replaces Ts has a different structure. This poses no problem

as the root node and the set of leaves is the same for the two trees. Therefore,

the new subtree can be inserted into TG. The candidate T
′

s can have either

a y-structure, a v-structure, an l-structure or an x-structure.

The l-structure (Figure 6.14a) occurs when a leaf in Ts becomes the join

node in T
′

s. Obviously, this structure can only occur when the new join

node is a non-target node, as the join node must be able to connect the

other leaves.

On rare occurrences, when treating a subtree with three or more leaves,

it can happen that the paths from the root node to the leaves split and join

several times (Figure 6.14b). This is no longer a valid tree as at least one

node has multiple predecessors, due to several paths joining in the node.

Each node with multiple predecessors is a conflict that must be resolved, so

that each node only has one predecessor. The possible exception to this is

if the subtree’s root node is n0, which of course has no predecessor.

Solving a conflict involves evaluating each path with respect to the chosen

optimization criterion, and removing all but the best path. However, it is

not necessary to evaluate the complete paths: it is sufficient to evaluate the

paths from the last common node to the conflicting node. The best path is

kept and all other paths are removed. As the best path is kept, the quality of

the subtree does not deteriorate. After the worse paths have been removed

for all conflicts, the result is a valid subtree.
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(a) A tree with an l-structure.
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(b) An invalid tree with an
x-structure.

Figure 6.14: The candidate subtree T
′

s can have any of the above structures
as well as any of the structures in Figure 6.7.

The number of join nodes can change during the course of optimization.

If Ts has a y-structure and T
′

s has either a v-structure or an l-structure, then

a join node has been removed and the number of join nodes decreases by

one. If Ts has a v-structure and T
′

s has either a y-structure or an l-structure,

then a join node has been added and the number of join nodes increases by

one. A change in the number of join nodes does not affect the number of

subtree optimizations that is performed in the basic algorithm. However, if

the algorithm is changed to continue to perform optimizations of subtrees

that have been optimized previously, the changing number of join nodes will

have an effect on the number of subtree optimizations that are performed.

See Section 6.5.5 for a discussion about this change.

6.5.4 Collisions Between Trees

When optimizations are performed, it is possible that the new subtree “col-

lides” with other parts of the tree. That is, one or more nodes in the new

subtree are also part of the tree that is not currently being optimized. Fig-

ure 6.15 shows an example of a tree collision and the different situations

that can occur. The subtree marked by heavy lines in Figure 6.15a is to

be replaced by the subtree marked by heavy dashed lines in Figure 6.15b.

However, the new subtree has node n2 in common with the part of the tree

that is not currently being optimized.

Just like the conflicts within the subtree, the collision causes the relay

tree to violate the definition of a tree and must be corrected. There are
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(d) If the old path to n2 is better,
parts of the new subtree are removed.

Figure 6.15: Collision between the new subtree and the rest of the relay
tree.
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several different ways to solve this: a simple way is to mark nodes in N(TG)\
N(Ts) as not being allowed in N(T

′

s). However, this might lead to lower

quality trees as some nodes are removed from use.

Another alternative that potentially gives better trees, but requires an

additional step, is to allow all nodes, and check whether the new subtree

T
′

s contains one or more nodes that are part of the tree that is not being

optimized. For each such node, we must determine which path to the node

to use.

Consider Figure 6.15b, with the colliding node n2. Here we must deter-

mine whether it is better to use the old or the new path to n2. To do this,

a traversal is performed from n2 towards n0, but stopping at the first node

in the tree that must remain even if the path to n2 is removed. Such an un-

changing node can be either a join node or n0 if no join node is encountered.

The traversal is performed in both the original tree and in T
′

s. In T
′

s, the

path is n11 → n2 and in the original tree, it is n1 → n2. It does not matter

if the first unchanging nodes are different. It is never necessary to remove

more than the path to such a node, as the join nodes have several successors

and must thus remain in the tree even if one successor is removed, and the

base station node n0 is never removed. If the path in T
′

s is better according

to the optimization criterion, then the path in the old tree is removed, and

the path in T
′

s remains (Figure 6.15c) and vice versa (Figure 6.15d).

If there are several collisions, they can be handled sequentially, and the

updated tree is used when determining the paths to the join nodes, thus the

currently best tree is used at all times.

6.5.5 Algorithm Details

To optimize subtrees, Algorithm 5 is generalized. The pseudocode for the

new algorithm, Algorithm 6, is displayed in Figure 6.16. The preference

relation T
′

s ≺ Ts holds if T
′

s is better than Ts with respect to the optimization

criterion.

As described in Section 6.5.2, choosing a subtree for optimization is a

matter of selecting a join node and extracting the corresponding subtree.

We keep track of the set of join nodes whose subtree has not been opti-

mized. This set of untreated join nodes of TG is denoted by Ju(TG). Initially

Ju(TG) = J(TG).

Systematically optimizing the complete tree requires optimizing all sub-

trees. This corresponds to |Ju(TG)| subtree optimizations (line 1). Each

subtree optimization begins with choosing a join node J(Ts) (line 2). Once

a join node has been chosen, it is removed from Ju(TG) as it may not be

chosen again (line 3).
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1 for k = 1, . . . , |Ju(TG)| do
2 J(Ts)← Choose-join-node(Ju(TG))
3 Ju(TG)← Ju(TG) \ J(Ts)
4 Ts ← Extract-subtree(J(Ts))
5 Execute Algorithm 2 starting in r(Ts)
6 for each n ∈ L(Ts) do
7 Execute Algorithm 2 starting in n
8 for each n ∈ N \ T do
9 Calculate-cost-for-subtrees(n)

10 T
′

s← Choose-best-subtree

11 if T
′

s ≺ Ts then
12 TG ← TG \ Ts // Remove old subtree

13 TG ← TG ∪ T
′

s // Insert new subtree

14 Yield TG // Yield improved tree

Figure 6.16: Algorithm 6 – Algorithm for optimizing existing relay trees.

The subtree Ts in which J(Ts) is the join node is extracted from the

reduced tree (lines 4). Then Algorithm 2 is executed once starting in the

subtree’s root node and once in each of the subtree’s leaf nodes (lines 5–7).

Each execution creates a set of reachability records in each reachable node.

Similar to Algorithm 5, only nodes reachable from both the root node and

the subtree’s leaves are of interest when the join node is determined. Target

nodes are excluded from the calculation of subtrees, as the target nodes

must be connected to the tree with a single edge, and join nodes must have

several connections to the tree (lines 8–9). The next step is to choose the

best candidate subtree, according to the optimization criterion (line 10). If

the chosen candidate subtree is better than the existing subtree, the existing

subtree is removed and replaced by the candidate subtree (lines 11–13). This

also updates the reduced tree. As the relay tree has improved, it is yielded

to the ground operator (line 14).

The algorithm described by the pseudocode in Figure 6.16 optimizes all

subtrees of TG once, but does not return to previously optimized subtrees

to optimize them again. The possible benefit of doing so is discussed in

Section 6.5.2. Allowing the re-optimization of subtrees requires two changes

in the algorithm. The first change is to replace the for-loop in line 1 with a

while-loop that is performed as long as Ju(TG) 6= ∅. The second change is

performed if the if -statement in line 11 holds. In that case, all non-target

key nodes of T
′

s are added to Ju(TG) if they are not already in Ju(TG). The

reason for this is that e.g. a non-target leaf in T
′

s will be a join node in some

other subtree that can potentially be improved. These changes will cause
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the optimization to continue as long as there are join nodes of subtrees that

have the possibility of improvement.

If any of the extensions in Section 6.3.2 were used when calculating

the initial tree, then the restrictions specified by the extension must be met

when optimizing the tree. Such restrictions can be handled by modifying the

function Choose-best-subtree to choose a subtree that satisfies all restrictions.

Algorithm 6 improves the relay tree, and the amount of improvement de-

pends on the initial tree. In some cases, the modified cheapest path heuristic

can give trees where all subtrees treated by Algorithm 6 are already optimal

and when this happens, no improvement can be made. Experimental results

are available in Section 7.5.

6.5.6 Time Complexity

We will now go through the pseudocode of Algorithm 6 to determine its time

complexity. The number of iterations in the for-loop is |Ju(TG)| = |J(TG)|,
as this is the number of subtrees that requires optimization to optimize the

complete tree. Choosing the join node J(Ts) requires O(|Ju(TG)|) ⊆ O(|N |)
time (line 2). Removing J(Ts) from Ju(TG) is O(1) (line 3). Extracting the

subtree Ts is in O(|N |) (line 4). Lines 5–7 are discussed below. Calculating

the cost of the subtrees requires combining all reachability records in each

node. Let the maximum number of terminals in a subtree be denoted by

b, where b ≤ Z. There are at most |N | Pareto-optimal paths between each

pair of nodes, and thus there can be at most |N |b reachability records that

need to be combined. Thus the time complexity of calculating all subtrees

for N nodes is in O(|N |b+1) (line 8–9). Choosing the best subtree is O(|N |).
Removing Ts and inserting T

′

s are both O(|N |) (lines 12–13).

The way we choose subtrees will cause Algorithm 2 to be executed twice

for each join node, once when it is join node and once as a leaf in another

subtree. The only exception to this is if n0 is a join node, in which case

one less execution of Algorithm 2 is necessary as n0 is never a leaf in any

subtree. In addition, Algorithm 2 must be executed once for each terminal.

In total, this requires at most |Z|+2|J(TG)| executions of Algorithm 2. This

is the total number of executions of Algorithm 2 that will be performed in

lines 5–7 for |J(TG)| iterations. As |J(TG)| ≤ |Z| − 2, this yields at most

3|Z| − 4 executions of Algorithm 2. Thus the time complexity for executing

Algorithm 2 is O((3|Z| − 4)|N |3) ⊆ O(|Z||N |3).

This yields a total time complexity of O(|Z||N |3 + |N |b+1). While this

time complexity may be perceived as high, the maximum number of termi-

nals in a subtree is commonly very low and the number of Pareto-optimal

paths to each node is often far less than N .

99



Chapter 6. Relay Positioning for Multiple Targets

6.6 Summary

The multiple target relay problems are variants of the NP-hard Steiner tree

problem. There are both continuous and discrete versions of the Steiner tree

problems. Algorithms for solving the multiple target relay problems must be

able to handle large three-dimensional environments with obstacles. As it is

not certain that the triangle-inequality applies, no existing algorithms for the

continuous Steiner problem can be used to solve our problems. Therefore, we

discretize the environment and formulate our problem as a discrete Steiner

tree problem.

Most discrete Steiner tree problems allow a target node to be connected

to several other nodes. In the context of the relay problems, this means that

a target is used to relay information. This is unrealistic and means that most

Steiner tree problems are not sufficiently expressive for our needs. Upon

further investigation, we found that the Steiner tree problem in a directed

graph and the (partial) terminal Steiner tree problem in an undirected graph

are sufficiently powerful to model the relay problems.

The algorithms for calculating a Steiner tree in a directed graph have

long execution time as well as high memory consumption, making them

difficult to use in our setting. The few published algorithms for the partial

terminal Steiner tree problem make strong assumptions about the graph,

such as that the graph is complete and that the triangle inequality holds for

the cost function. Neither of these requirements is guaranteed to be fulfilled

in the multiple target relay positioning problems. Therefore, the algorithms

must be extensively modified to guarantee solutions to any of the multiple

target relay problems, if this is at all possible. Furthermore, due to the lack

of complete graphs and cost functions obeying the triangle inequality, it is

unlikely that any bound on the error can be given.

Instead, modifications of existing heuristic algorithms are investigated,

and it is possible to modify the cheapest path heuristic to fit our needs.

Using the modified cheapest path heuristic, we are able to calculate ap-

proximate solutions to the MTR-MinCostMinLength and the MTR-

MinLengthMinCost problems.

For problems involving a base station and two targets, the label-correcting

algorithm from Section 5.2 is extended and used to solve all multiple target

relay problems defined here. Furthermore, this algorithm is further general-

ized and used to improve existing relay trees, calculated by e.g. the cheapest

path heuristic. The algorithm incrementally performs local optimizations of

subtrees. This process can continue as long as the relay tree can be improved

or for a predetermined time. The use of different optimization criteria allows

that the relay tree is optimized with respect to different objectives, such as

100



6.6. Summary

finding the tree requiring the fewest UAVs or the cheapest tree that can be

realized given a limit on the number of available UAVs.

There are algorithms for finding hop-constrained Steiner trees [97, 30] as

well as the bi-criteria Steiner tree problems [65, 88]. Such algorithms could

possibly be used to calculate approximate solutions to hop-constrained and

bi-criteria relay trees. How much modification such algorithms require to

be useful in practical relay problems is a matter for future research.
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Chapter 7

Implementation and

Experimental Results

The algorithms for solving the relay problems have been implemented in an

existing infrastructure. The software architecture and the user interfaces

are briefly described in this chapter together with the experimental results.

7.1 Software Architecture

For several years, the Artificial Intelligence and Integrated Computer Sys-

tems division [1] at the Department of Computer and Information Sciences

at Linköping University has developed an experimental infrastructure for

collaborative unmanned aerial systems [33, 34]. This infrastructure has sev-

eral inter-linked components, such as a number of UAV systems, including

two Yamaha RMAX UAVs (Figure 7.1a), several micro UAVs (Figures 7.1b–

7.1d) and several software systems for experimentation. One of these sys-

tems is used for research in the area of delegation-based cooperation among

UAVs.

The algorithms in this thesis, including the necessary infrastructure, has

been designed and implemented as an extension to this system. This allows

us to empirically test the algorithms and allows other parts of the system

to use the algorithms.

The software uses a modular and distributed architecture where new

services can be added through servers. Servers can be complex pieces of

software such as path planners or less complex, such as an interface for

manually controlling the camera onboard a UAV. For communication be-

tween the components of the system, the Common Object Request Broker
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(a) Yamaha RMAX. (b) LinkMAV [40].

(c) PingWing [27]. (d) Link Quad [93].

Figure 7.1: Some of the UAVs that are part of the experimental infrastruc-
ture for UAV research. All except the Yamaha RMAX are designed and
built in-house.

Architecture (CORBA) [28] middleware is used. CORBA permits the sys-

tem to be distributed over several computers. This allows both computers

on the ground and on board UAVs to be used simultaneously.

The algorithms have been implemented as a relay server that encap-

sulates all algorithms and interfaces necessary to specify and solve relay

problems. Figure 7.2 shows a diagram of the software architecture of the

relay server.

Calls from outside the relay server go through the CORBA interface.

Using this interface, problem parameters such as the positions of the base

station targets and the number of UAVs are set, and the values are stored

internally. From the interface, the appropriate function for calculating re-

lay chains and trees can be called, and the result is returned through the

CORBA interface. Missions can be specified from the Graphical User Inter-

face (GUI), which then calls the surveillance mission server that delegates

tasks to specific UAVs. The delegation is very briefly described in the use

case below. The CORBA interface can also be called from other servers in
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Steiner tree for 
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Figure 7.2: The major components in the relay server (dashed rectangle)
and the main connections to other parts of the UAV infrastructure.

the system.

The GUI allows users to set problem-specific parameters such as the

communication range, the number of allowed UAVs and more. It also has a

two-dimensional visualizer that displays the environment from a top-down

perspective. Figure 7.3 shows the interface after solving a single target relay

problem. In the visualizer, the base station is marked by a yellow square near

the bottom left corner, and the target is marked by a red circle. Each relay

chain is visualized in a distinct color, and the position of each UAV is marked

by a circle. This is the common GUI when relay problems are specified and

solved, but there is also an optional three-dimensional visualizer available

(Figure 7.4 on page 108).

Other information about e.g. the environment that is required to per-

form calculations of relay chains or trees is retrieved from other servers in

the system, most often the GIS server, which stores information about the

environment. With the required information available, the graph is created

internally in the relay server.

As described earlier, the algorithms and the interface presented here are

part of a infrastructure, which is typically operated by one or more human

ground operators. The system allows the ground operator to instantiate a

variety of missions, such as traffic monitoring, photogrammetry and surveil-
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Figure 7.3: Screen shot from the graphical user interface after solving a
single target relay problem. The map in the left part of in the interface
displays four different relay chains between the base station in the lower left
hand corner and the target in the middle.

lance. Here we describe a use case where the users set up a surveillance

mission.

When a surveillance mission is in the planning stage, the ground operator

sets problem parameters such as the position of the base station and one

or more targets, reachability and cost functions as well as discretization.

Depending on whether there is a single target or if there are several targets,

different options for choosing algorithms are presented.

The ground operator also decides the objective of the calculations. For

both single and multiple target surveillance, he can choose whether to min-

imize the number of UAVs required for surveillance to find the minimum

cost relay chain/tree or find a chain/tree of minimal cost. For single target

problems, the option to find several different relay chains, i.e. all Pareto-

optimal chains, is also available. For multiple target problems, he can also

choose whether to continue to optimize the relay tree after the initial tree

has been calculated.

In the current prototype system, a broadcast is issued with the intention

of finding a set of UAVs that are available for performing a relay mission.

The UAVs in the area respond to the request for participation. Naturally,

if some UAVs already have a mission or are unable to participate in a relay
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mission for other reasons, such as lacking appropriate sensors or communi-

cation equipment, they respond that they are unable to participate. UAVs

able to participate preliminarily accept the request for participation.

At this point all necessary problem parameters have been set and the

appropriate algorithm is used to calculate the solution. Once the solution

has been calculated, it is displayed to the ground operator. If the solution

cannot be realized using the available number of UAVs, more UAVs must

be found or some parameter must be changed to find a solution requiring

fewer UAVs.

Otherwise, a task specification tree [35] is created corresponding to the

selected relay chain or tree. The surveillance mission service then calls the

delegation system [58], which attempts to delegate this tree to an appropri-

ate set of UAVs supporting the required roles. If all constraints associated

with the mission can be satisfied, including timing constraints, the UAVs

accept their tasks. When a sufficient number of UAVs can take part in

the mission, the ground operator accepts the final delegation of roles and

restrictions.

Once the delegation process is finished and each UAV has been assigned

a role in the mission, each UAV uses its own path planner to find a flyable

trajectory to its designated position. Due to the decentralized nature of the

path planning step, it can be done in parallel. Now everything is set up for

executing the mission and the surveillance can begin as soon as all UAVs

have arrived at their positions.

7.2 Problem Setup for Empirical Testing

For testing, we used directed graphs constructed from grids and several

different environments. All environments have the same size, 1000 × 1000

× 80 meters. The grid cell size was varied between 10 and 40 meters. The

resolution in the horizontal direction has a greater impact on the probability

of finding good paths, and this is reflected in the choice of grid cell sizes. All

testing was performed on a standard PC with a 2.4 GHz Core 2 Duo CPU

and 2 GB RAM.

For all testing, the testing used reachability functions based on free line-

of-sight and a range of 100 meters for both communication and surveil-

lance. Two different cost functions were used: one based on distance and

the other on obstructed volume. The distance cost function has a constant

cost of 300 up to 60 meters, corresponding to the assumption that com-

munication within this distance will have comparatively constant, but not

perfect, quality. After 60 meters, the cost increases with the square of the

distance. This tests the case where a wide variety of Pareto-optimal relay
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Figure 7.4: Randomized urban environment.

chains is generated for any target. The second cost function is based on ob-

structed volume (see Section 3.3.2). This generally results in considerably

fewer Pareto-optimal chains, testing the performance of the algorithms for

this end of the spectrum as well.

Randomized Urban. The first environment used in testing is an urban

environment with semi-random placement of 100 tall buildings, as shown

in Figure 7.4. To reduce clutter, the figure displays a sparse discretization

and only the “lowest” level of grid cells. In this figure, a specific relay chain

is visualized. The base station is in the upper left corner and is connected

by dark lines representing communication links to dark spheres denoting

intended positions for relay and surveillance UAVs. The target is in the

lower right corner and is visible from the last UAV in the chain. Subtasks

have been delegated to several UAVs, marked by a dark stars on lighter

spheres. In the figure, the simulated UAVs have used their path planners

to generate individual flight paths (indicated by lighter lines) and are in the

process of flying to their intended positions.

Urban With Boulevards. The second simulated environment random-

izes the buildings roughly in four blocks, and leaves space for two broad

boulevards that cross in the middle. The buildings in this environment are
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Figure 7.5: The Revinge emergency services training ground.

more diverse in size and may intersect each other, creating an urban envi-

ronment where buildings share common walls.

Randomized Dense Urban. The third environment also places build-

ings semi-randomly. However, it generates 625 smaller buildings, creating

an environment where each node has fewer neighbors.

Stockholm. The Stockholm environment is an area of central Stockholm

extracted from OpenStreetMap [78]. In this environment, the buildings form

city blocks of irregular shapes and different sizes. The many houses make

this a very dense area, and therefore, considerably fewer nodes are created,

compared to the other environments. As the map does not contain any

building heights, all buildings are considered infinitely high when testing.

Figure 7.3 shows a part of the Stockholm environment.

Revinge. The Revinge environment is a 3D model of an emergency ser-

vices training facility in the south of Sweden (Figure 7.5). It predominantly

consists of open areas with some buildings scattered throughout the envi-

ronment.

Properties of the Test Environments. Some information about the

graphs is displayed in Table 7.1. The average number of nodes and edges are
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shown for each world and discretization. Similarly, the minimum, average

and maximum node degrees are also displayed. As expected, the average

and maximum node degree increases with decreasing grid cell size, as there

are more nodes for which the reachability functions hold. The numbers are

for testing of the single target relay problems. The numbers for the multiple

target problems are slightly higher as there are several target nodes and

edges connecting these nodes to the rest of the graph.

Recall that that k∗max is the maximum number of hops required in an

MLMC-tree, i.e. no minimum cost path will require more than k∗max hops.

The value of k∗max is commonly larger for the cost function based on distance

than the cost function based on obstructed volume. For the cost function

based on distance, the cost increases faster than linearly. Therefore is it

possible to decrease the cost of a path by exchanging a long edge for several

shorter edges. This allows a larger set of Pareto-optimal paths and increases

the value of k∗max.

The values of k∗max in the dense urban and the Stockholm environments

are considerably higher than for the other environments. This is especially

evident for the coarser discretizations. Due to the low node connectivity,

relay chains are in some cases forced to take long detours to reach their

targets. The values of k∗max in Table 7.1 are the average of k∗max for the dif-

ferent environments and discretizations and are from the testing calculations

of Pareto-optimal relay chains.

All algorithms for single target relay problems tested here calculate paths

to all reachable nodes from the base station. Therefore, Table 7.1 includes

the number of reachable nodes and edges only. There can be small graphs

that are not reachable from the main graph due to obstacles.

7.3 Pareto-Optimal Relay Chains

To solve STR-ParetoLimited problems, the new MLMC-tree-based label-

correcting algorithm (Algorithm 2) was used, and for comparison, we used

the truncated version of Bellman-Ford (Algorithm 1). Testing was per-

formed in the environments described above, and in each environment, we

used the seven discretizations described in Table 7.1. For each discretiza-

tion, we randomly generated 100 combinations of start and goal positions,

and to ensure that all Pareto-optimal chains were found, M =∞ was used.

Figures 7.6 and 7.7 display the average execution times for generating all

Pareto-optimal chains, using cost function based on obstructed volume and

distance, respectively. Times for Algorithm 1 are displayed in black and

times for Algorithm 2 are in green. The standard deviation in execution

time is indicated using error bars.
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Cell size Node degree Avg. k∗max

World (meters) |N | |E| Min/avg/max Vol. Dist.

Randomized
urban

40×40×40 1,022 21,815 5/21/35 14.1 23.6
33×33×40 1,791 53,767 6/30 /47 14.9 24.1
25×25×25 3,796 257,711 11/67/113 13.9 20.1
20×20×20 7,846 1,102,063 21/140/221 13.5 19.0
15×15×20 13,852 3,741,793 30/270/434 12.4 17.7
12×12×20 22,008 9,286,019 40/421/680 12.5 18.1
10×10×20 31,807 18,753,049 61/589/948 12.3 17.8

Urban
with
boulevards

40×40×40 989 27,455 1/27/42 12.7 22.1
33×33×40 1,781 62,547 1/35/50 12.6 23.2
25×25×25 3,775 339,148 2/89/135 12.0 18.4
20×20×20 7,941 1,456,997 7/183/278 13.3 17.6
15×15×20 13,813 4,850,503 11/351/531 12.8 16.9
12×12×20 21,885 11,970,877 11/546/831 14.4 18.1
10×10×20 31,965 24,452,326 15/764/1,154 12.7 17.4

Randomized
dense urban

40×40×40 660 3,176 1/4/15 27.0 41.2
33×33×40 1,493 23,888 1/16/42 19.3 24.7
25×25×25 2,975 62,134 2/20/57 16.8 22.7
20×20×20 4,107 167,347 3/40/99 15.1 20.2
15×15×20 10,852 876,771 7/80/220 13.3 18.1
12×12×20 17,325 2,206,373 11/127/373 13.2 18.7
10×10×20 25,235 4,545,123 15/180/510 13.0 18.0

Stockholm

40×40×40 467 7,046 1/15/37 21.2 34.0
33×33×40 976 16,538 3/16/47 22.7 25.4
25×25×25 2,263 104,242 1/46/130 19.5 25.8
20×20×20 4,860 455,256 1/92/261 17.4 22.7
15×15×20 8,707 1,496,489 1/171/498 16.7 20.7
12×12×20 13,647 3,691,925 1/270/775 15.3 20.2
10×10×20 20,003 7,581,444 1/379/1,085 15.1 20.0

Revinge

40×40×40 1,170 38,903 1/33/42 13.9 23.0
33×33×40 2,049 86,351 1/42/51 13.9 24.0
25×25×25 4,480 479,167 2/106/137 13.7 20.0
20×20×20 9,341 2,047,203 7/219/280 13.4 18.5
15×15×20 16,273 6,784,873 11/416/532 12.3 17.3
12×12×20 25,663 16,762,197 1/653/832 12.4 18.0
10×10×20 37,307 33,976,220 1/910/1,157 12.3 17.5

Table 7.1: Information about worlds and discretizations in empirical testing
of algorithms for single target relay problems.
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Figure 7.6: Test results for testing of algorithms for the STR-Pareto-
Limited problem, with cost function based on obstructed volume.

From Figures 7.6 – 7.7 it is evident that Algorithm 2 is able to decrease

the execution time more when the cost function based on obstructed volume

is used. This cost function commonly generates few different Pareto-optimal

chains. After this set of chains is found, no calculations are necessary and

thus this cost function offers great potential for improving the execution

time. The speedups are in the order of 45–75 times except in the Stockholm

environment where the speedups are 75–100 times.

The cost function based on distance (Figure 7.7) allows for a greater set

of Pareto-optimal chains, often 4–10 chains. Many more calculations need

to be performed and the calculations performed by Algorithm 2 cannot be

terminated as early. Even in these more difficult circumstances, Algorithm 2

achieves a speedup in the order of 10–22 in the Stockholm environment. For

112



7.3. Pareto-Optimal Relay Chains

 0.001

 0.01

 0.1

 1

 10

 100

 5  10  15  20  25  30  35  40  45

E
xe

cu
tio

n 
tim

e 
(s

)

Grid cell size (m)

Algorithm 1 in randomized urban area
Algorithm 2 in randomized urban area

Algorithm 1 in urban area with boulevards
Algorithm 2 in urban area with boulevards

Algorithm 1 in dense urban area
Algorithm 2 in dense urban area

Algorithm 1 in Revinge
Algorithm 2 in Revinge

Algorithm 1 in Stockholm
Algorithm 2 in Stockholm

Figure 7.7: Test results for testing of algorithms for the STR-Pareto-
Limited problem, with cost function based on distance.

the other environments the speedup is 7–10 for the two coarsest discretiza-

tions (33 and 40 m grid cell size) and 12–16 for the other.

When run in dense urban environments, the execution times of the algo-

rithms vary more depending on the discretization, for both cost functions.

For Algorithm 2 in the Stockholm environment, the execution time for test

cases in the discretization with 33 m grid cells is lower than the execution

time for the discretization with 40 m grid cells. This is due to fewer solu-

tions being created for the finer discretization. On average, the number of

solutions is two for the discretization with 33 m grid cells and six for the

discretization with 40 m grid cells. The smaller number of solutions can also

be seen for Algorithm 1, where the increase in execution time from 40 m

to 33 m grid cells is quite small. For both algorithms, the dense Stockholm
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environment also causes a greater standard deviation of the execution times,

as compared to the other environments.

The conclusion of testing of algorithms for the STR-ParetoLimited

problem is that our new algorithm (Algorithm 2) offers far better perfor-

mance in the tested environments. For the cost function based on distance,

the speedup is less than for the cost function based on obstructed volume,

as the number of Pareto-optimal chains typically is larger. However, Algo-

rithm 2 consistently outperforms Algorithm 1, in many cases by an order of

magnitude.

7.4 Optimal Chains Using At Most M UAVs

To test the performance of the dual ascent algorithm (Algorithm 3) for

solving the STR-MinCostLimited problems, the same environments as

for STR-ParetoLimited were used. Both Algorithm 1 and Algorithm 2

are able to solve this problem, but as Algorithm 2 is the fastest algorithm

available, it is used for comparison. We ran separate tests for different values

of M , simulating a user requesting relay chains fo different lengths.

For the STR-MinCostLimited problem, the more interesting test cases

occur when the cost function based on distance is used, as it often produces

several Pareto-optimal chains. For this reason, this cost function was used

in testing. For each discretization, we used randomly generated 100 combi-

nations of start and goal positions.

The test results are available in Table 7.2, in which the first columns

display information about the discretizations. The last four columns display,

for each algorithm, the percentage of test cases where one of the tested

algorithms is faster than the other, and the average speedup when this

happens. Only test cases with a speedup larger than 1% are displayed here.

For test cases with a smaller speedup, the algorithms are considered equally

fast. The numbers in the table represent the test cases with a speedup

greater than 1%.

Figure 7.8 exemplifies the difference in the order in which the paths are

calculated. Times for the MLMC-based label-correcting algorithm (Algo-

rithm 2) are in green and times for the dual ascent algorithm (Algorithm 3)

are in blue. Algorithm 2 first calculates the longest (length 10) and cheap-

est chain during preprocessing, and all remaining chains are calculated in

order of increasing length. Thus, the maximum execution time is for the

chain of length 9. Algorithm 3 also finds the longest path first, and then

goes on to find incrementally shorter paths. In general, longer paths can be

generated quite quickly as they require fewer iterations. The chain of length

5 was found in shorter time than the chain of length 6 as separate tests
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Cell size Algorithm 2 faster Algorithm 3 faster

World (meters) % paths Speedup % paths Speedup

Randomized
urban

40×40×40 0 0 100 2.96
33×33×40 2 1.09 98 2.34
25×25×25 26 1.48 74 2.03
20×20×20 48 3.28 52 1.83
15×15×20 84 11.6 16 1.63
12×12×20 87 25.5 13 2.18
10×10×20 90 33.9 10 2.01

Urban
with
boulevards

40×40×40 0 1.01 100 3.16
33×33×40 1 1.04 99 2.46
25×25×25 22 1.32 78 2.03
20×20×20 49 2.87 51 1.85
15×15×20 82 8.42 18 1.69
12×12×20 74 23.7 26 1.51

Randomized
dense urban

40×40×40 3 1.02 97 3.43
33×33×40 1 1.09 99 2.70
25×25×25 7 1.28 93 1.95
20×20×20 34 1.68 66 1.83
15×15×20 70 6.39 30 1.61
12×12×20 80 16.4 20 1.98
10×10×20 85 18.3 15 1.91

Stockholm

40×40×40 2 1.06 98 3.18
33×33×40 5 1.08 95 2.56
25×25×25 7 1.54 93 2.60
20×20×20 32 1.74 68 2.08
15×15×20 57 4.81 43 2.03
12×12×20 72 13.5 28 1.87
10×10×20 79 18.7 21 1.94

Revinge

40×40×40 1 1.01 99 2.17
33×33×40 7 1.13 93 1.57
25×25×25 54 1.43 46 1.35
20×20×20 92 2.78 8 1.28
15×15×20 97 11.1 3 1.22
12×12×20 98 24.1 2 1.19
10×10×20 99 28.0 1 1.40

Table 7.2: Speedup and test case information for testing of the STR-
MinCostLimited problem.
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Figure 7.8: Timing results for Algorithm 2 and Algorithm 3 for a specific
test case, showing the times for when chains of specific lengths are found.
Data from urban environment with 12× 12× 20 grid cells.

were run for different values of M , and the search space was more effectively

constrained when calculating the shorter chain.

We now give three examples of how the execution time is affected by

the discretization in the Stockholm environment. Figure 7.9 displays the

average execution times for a discretization with 40×40×40 m grid cells. As

the lengths of the longest and cheapest chains vary, relative path lengths

have been used. As an example, assume that the longest chain has a length

of 20 hops. Then, the time reported for a relative path length –5 corresponds

to a path length of 20–5=15 hops. Naturally, not all test cases have the same

number of Pareto-optimal chains and this affects the shape of the curves for

execution times. For example, the execution times for relative length –10

are averaged over considerably fewer (and on average more difficult) test

cases than the results of relative length 0. For this reason, the curves at

that end of the spectrum have a more uneven appearance.

Figure 7.10 displays execution times for the discretization with 20×20×20

m grid cells. Algorithm 3 is faster for paths slightly shorter than the cheapest

path, and then the gap between the times for Algorithm 2 and Algorithm 3

increases as shorter paths are desired. For some path lengths, e.g. -14 to

-5, Algorithm 2 is the faster as Algorithm 3 must perform a large number

of iterations. Although each iteration is quite fast due to the constrained

search space, Algorithm 2 is still faster.

Figure 7.11 displays execution times for the discretization with 10×10×20
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Figure 7.9: Timing results for testing of algorithms for the STR-Pareto-
Limited problem in the Stockholm environment with 40×40×40 m grid
cells.

m grid cells. Due to the large difference in execution time, this figure uses

a log-scale. It is easy to see that Algorithm 2 provides a more consistent

performance than Algorithm 3 in this environment. Here the pruning of the

search space that Algorithm 3 performs is not sufficient to yield good per-

formance. In many of the iterations, edges that do not affect the path from

n0 to τ1 get included in the tree, and therefore a large number of iterations

must be executed to find a shorter path. The greater number of iteration of

course leads to a longer execution time.

In graphs with few nodes and edges, the dual ascent algorithm outper-

forms Algorithm 2, in many cases being 2–3 times faster. As the number

of nodes and edges increase, Algorithm 2 offers better performance than

Algorithm 3. Although Algorithm 3 constrains the search space, this is not

always enough as the number of calculations of MLMC-trees is quite large

in some cases. For example, consider the Stockholm environment, in which

the dual ascent algorithm offers the better performance in a majority of the

cases, for the four coarsest discretizations. As the number of nodes and

edges increase, Algorithm 2 offers much better performance, and the same

trend is evident for the other testing environments.

117



Chapter 7. Implementation and Experimental Results

 0

 200

 400

 600

 800

 1000

 1200

 1400

-16 -14 -12 -10 -8 -6 -4 -2  0

E
xe

cu
tio

n 
tim

e 
(m

s)

Path length compared to cheapest path (steps) 

Algorithm 2
Algorithm 3

Figure 7.10: Timing results for the STR-ParetoLimited problem in the
Stockholm environment with 20×20×20 m grid cells.

From the test results is the evident that the dual ascent algorithm is

more suitable in dense environments, where the number of nodes and edges

is low, and Algorithm 2 is better suited for environments where there are

many nodes and edges.

7.5 Relay Trees

To test the algorithms for multiple target relay positioning problems, we

used the same environments and discretization as earlier, but this time we

used nine targets distributed in three clusters with three targets in each

cluster. Each randomized cluster had to be at least 300 meters from the base

station and within each cluster, the targets were at most 100 m from each

other. The cost function based on distance, as described in the beginning

of this chapter, was used.

The initial relay trees were generated using Algorithm 4. We ran sepa-

rate tests for the MTR-MinLengthMinCost and the MTR-MinCost-

MinLength problems. For the former, we used compound costs (see page 41)

of the form 〈c, l〉, i.e. first the cost was minimized and in case of equal cost

of several paths, the shortest path was chosen. The latter problem used the
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Figure 7.11: Timing results for testing of algorithms for the STR-Pareto-
Limited problem in the Stockholm environment with 10×10×20 m grid
cells.

reversed prioritization. Execution times for MTR-MinLengthMinCost

in the different environments are displayed in Figure 7.12 and execution

times for MTR-MinCostMinLength are displayed in Figure 7.13. From

the figures, we can see that execution times for the both problems are quite

similar, and that there is large difference in calculation time for the differ-

ent environments. There is sometimes an order of magnitude difference for

the different environments but the same discretization. The reason is that

the size of the graphs, especially the number of edges, differ considerably in

the different environments. A smaller graph gives fewer possibilities when

calculating relay trees, which leads to a shorter execution time.

After the initial tree was calculated, we used Algorithm 6 to improve

the trees further. The algorithm was set to first optimize subtrees further

away from the root node, and then subtrees progressively closer to the root

node were chosen. Optimization was performed until no improved subtree

could be calculated. The execution times for Algorithm 6 for the MTR-

MinLengthMinCost problem are available in Figure 7.14 and times for

the MTR-MinCostLimited problem are available in Figure 7.15.

The average improvements of the primary and secondary factors (UAVs
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and cost for the MTR-MinCostMinLength problem and cost and UAVs

for the MTR-MinLengthMinCost problem), are displayed in the right-

most part of Table 7.3. The numbers are the improvement in percent over

the initial tree.

The improvement in the number of UAVs is often in the 5–8% range,

and the cost can often be decreased by more than 5%. When focusing on

improving the cost, the improvement is often in the 4–6% range and the

improvement in the secondary factor (number of UAVs) is slightly lower.

From this, it is evident that focusing primarily on improving the number

of UAVs in the tree yields a greater improvement as compared to focusing

primarily on decreasing the cost. Also, the improvement is greater in larger
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Figure 7.12: Execution times for Algorithm 4 for calculating the initial relay
tree for the MTR-MinLengthMinCost problem.
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Figure 7.13: Execution times for calculating the initial relay tree using Al-
gorithm 4, for the MTR-MinCostMinLength problem.

graphs, which is to be expected as there are more opportunities to improve

an existing subtree due to having more nodes to choose from.

When interpreting these numbers, it is important to remember that the

cheapest path heuristic has proven to be competitive with more advanced

heuristics in directed graphs [50, 96]. In the testing performed by Hsieh

et al. [50], all results were within 5.5% from the optimal cost. While the

graphs were much smaller than the ones used here, it is an indication that

the cheapest path heuristic often finds high-quality solutions.

Figure 7.16a shows the distribution of cost improvement for the Revinge

environment with 20×20×20 m grid cells. The y-axis displays the number

of test cases that achieved a given improvement. Although the average

improvement was a little more than 5%, one tree was improved by more
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Avg. improvement, %
Cell size MCML MLMC

World (meters) UAVs Cost Cost UAVs

Randomized
urban

40×40×40 6.3 8.1 3.2 2.9
33×33×40 7.0 1.3 4.8 4.9
25×25×25 7.0 9.2 4.4 3.7
20×20×20 7.0 8.8 5.2 4.8
15×15×20 7.7 5.0 5.9 5.9
12×12×20 8.7 6.3 5.8 5.9
10×10×20 9.0 5.8 6.2 6.0

Urban
with
boulevards

40×40×40 6.9 6.5 3.7 3.0
33×33×40 6.1 4.3 4.8 4.8
25×25×25 6.2 10.1 4.7 4.0
20×20×20 7.4 8.4 4.9 4.5
15×15×20 7.9 4.4 5.8 5.6
12×12×20 8.3 4.1 6.3 6.3
10×10×20 7.9 8.5 5.9 5.1

Randomized
dense urban

40×40×40 3.0 2.7 2.1 0.6
33×33×40 5.1 3.1 3.5 3.7
25×25×25 6.6 4.5 3.9 3.6
20×20×20 6.9 4.4 4.6 5.6
15×15×20 9.7 2.9 5.4 6.4
12×12×20 8.7 4.7 5.2 5.8
10×10×20 10.1 6.9 6.3 7.8

Stockholm

40×40×40 4.2 5.3 2.0 0.5
33×33×40 3.9 5.6 3.3 2.6
25×25×25 3.7 6.0 3.4 3.4
20×20×20 5.1 5.5 3.7 3.1
15×15×20 6.2 6.4 4.7 4.6
12×12×20 6.6 3.9 4.5 4.3
10×10×20 6.5 3.0 4.4 4.8

Revinge

40×40×40 7.8 8.2 4.0 3.8
33×33×40 7.0 3.8 5.0 4.6
25×25×25 6.7 6.9 4.7 3.1
20×20×20 6.3 9.1 5.3 4.6
15×15×20 7.3 6.5 5.0 4.9
12×12×20 8.2 4.1 5.4 4.7
10×10×20 8.2 4.9 6.1 5.2

Table 7.3: Improvement in primarily the number of non-terminal nodes
(UAVs) and secondarily the tree cost for the MTR-MinCostMinLength
and the reverse prioritization for the MTR-MinLengthMinCost problem,
as calculated by Algorithm 6.
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Figure 7.14: Execution times for Algorithm 6 for optimizing the relay tree,
for the MTR-MinLengthMinCost problem.

than 13%. Figure 7.16b displays the improvement in the number of UAVs

in the tree for the same test case. The average improvement in the number

of UAVs is less than the improvement of the tree cost, but the maximum

improvement is larger.

To conclude we give an example for a certain test case from the random-

ized urban environment with grid cells measuring 33×33×40 meters. Here

Algorithm 6 is used to find the cheapest feasible tree. The original tree was

calculated using Algorithm 4. Figure 7.17 shows how the number of UAVs

and the tree cost change during optimization. The solid black curve is the

number of UAVs in the tree and the dashed green curve is the tree’s cost.

The ground operator has set the number of UAVs available M = 23. As

the first tree uses 26 UAVs, it is infeasible and the optimization criterion
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Figure 7.15: Execution times for optimizing the relay tree using Algorithm 6,
for the MTR-MinCostMinLength problem.

is to minimize the number of UAVs in the tree. The second successful op-

timization finds a tree using 21 UAVs. The optimization criterion is then

automatically changed to finding the least cost feasible tree, i.e. a tree using

at most 23 UAVs. Each new tree decreases the cost, until no lower cost tree

is found, after the ninth subtree optimization. In total, the number of UAVs

is decreased from 26 to 23 and the cost is only marginally increased. The

complete optimization took less than 10 seconds and each improved tree is

available to the user as soon as it is calculated.
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Figure 7.16: Data for the Revinge environment with 20×20×20 m grid cells.
The y-axis displays the number of test cases with a given improvement.
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Discussion

In this thesis, we have provided definitions for relay positioning problems for

both single and multiple targets. We have also suggested a solution process

that enables us to model such problems with a large degree of flexibility. This

process includes discretizing the environment and applying graph search

algorithms to find relay chains and relay trees representing the locations

where the UAVs should be placed. Graph search algorithms allow a great

deal of flexibility, e.g. when choosing what factors to use for evaluating

suitability of UAV placement.

We have presented two new algorithms for calculating relay chains for

surveillance of a single target. One algorithm is tailored towards calculat-

ing a chain using at most a given number of UAVs. The other algorithm

calculates a set of Pareto-optimal relay chains, and lets the ground operator

choose between the different alternatives.

The problem of simultaneous surveillance of several targets is consider-

ably more difficult since it adds further restrictions to the already NP-hard

Steiner tree problem. Very few existing algorithms are applicable to our

problem, as we require that all surveillance targets are leaves in the tree.

Several of the algorithms that can model this requirement cannot be used

due to memory requirements or assumptions about the graph. To quickly

generate relay trees for such situations, we modify the cheapest path heuris-

tic. Due to its flexible nature, we can use it to solve problems involving

a large variety of restrictions and extensions. Once a relay tree has been

calculated, we apply another algorithm to continually improve the tree. The

algorithm performs local optimizations of the tree and each such improve-

ment yields an improvement of the complete tree. Once such an improved

tree has been found, it can be immediately displayed to the ground operator.

The process of improvement can be performed until the algorithm can no
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longer improve the tree or until a certain time has passed.

The algorithms have been implemented and integrated into the UAS

infrastructure developed at our lab. We have described the implementa-

tion as well as the testing that has been performed. The algorithms have

been tested in both simulated environments as well as discretizations of real

environments.

Although we are able to solve some problems optimally or close to op-

timally, there are still potential for improvement and expansion in many

areas. Some of the areas are discussed in the next section.

8.1 Future Research

A discretization created from a three-dimensional grid was used for testing of

the algorithms presented here and several other discretization options were

also discussed. It would be interesting to make a structured evaluation of

different discretization approaches for different environments to determine

which, or more likely which combinations of, discretizations that are most

suitable for different environments. For example, in an urban environment,

it appears likely that a grid combined with an expanded geometry graph

will provide a good compromise between memory requirement and quality

of relay chains and trees.

In the STR-MinCostLimited problem, an optimization is performed

in order to find the least-cost chain given a limit on the number of hops in

the chain. This is an example of a bi-objective problem where one objective

function can be specified freely while other is fixed. The dual ascent algo-

rithm can be generalized to handle problems where both objectives can be

specified freely, something that can be very useful in the context of relays.

As an example: when micro-UAVs are used as relays it can be necessary to

explore the trade-offs between transmission quality and tolerance to wind

drift for different positioning alternatives. The kind of problem suggested

here is in its general form the NP-hard constrained shortest path prob-

lem [10, 39], which is often solved using Lagrangian relaxation, based on

the same dual function as the dual ascent method presented here, but with

other dual search techniques.

In this thesis, we assumed that the targets were stationary and that their

positions were known. Obvious extensions are lifting one or more of these

assumptions, and to provide relay chains to a moving target or relay trees

to several moving targets. This increases the complexity of the problem

considerably. As an example, it might be impossible to maintain constant

communication between the surveillance UAV and the base station as the

UAVs have to temporarily move behind buildings and outside the commu-
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nication range. For such situations, an approach where it is guaranteed

that information can flow from the surveillance UAV to the base station at

certain time intervals, e.g. every fifth second, might be sufficient.
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gorithms for terminal Steiner trees. Theoretical Compuer Science,

389:133–142, 2007.

[67] Martin Mauve, Jörg Widmer, and Hannes Hartenstein. A survey on

position-based routing in mobile ad hoc networks. IEEE Network,

15(6):30–39, November/December 2001.

[68] Timothy W. McLain and Randal W. Beard. Cooperative rendezvous

of multiple unmanned air vehicles. In AIAA Guidance, Navigation

and Control Conference, 2000.

[69] Kaisa Miettinen. Nonlinear Multiobjective Optimization. Kluwer Aca-

demic Publishers, 1999.

[70] Joseph S. B. Mitchell. Geometric shortest paths and network optimiza-

tion. In J.R. Sack and J. Urrutia, editors, Handbook of Computational

Geometry, chapter 15. North Holland, 1999.

[71] Alejandro R. Mosteo and Luis Montano. Concurrent tree traversals for

improved mission performance under limited communication range.

In Proceedings of the 2007 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), 2009.

[72] Alejandro R. Mosteo, Luis Montano, and Michail G. Lagoudakis.

Guaranteed-performance multi-robot routing under limited commu-

nication range. In Hajime Asama, Haruhisa Kurokawa, Jun Ota, and

Kosuke Sekiyama, editors, Distributed Autonomous Robotic Systems

8, pages 491–502. Springer Berlin Heidelberg, 2009.

[73] Hoa G. Nguyen, Narek Pezeshkian, Michelle Raymond, A. Gupta,

and Joseph M. Spector. Autonomous communication relays for tac-

tical robots. In Proceedings of the 11th International Conference on

Advanced Robotics (ICAR), 2003.

[74] Jorge Nocedal and Stephen J. Wright. Numerical Optimization, Sec-

ond Edition. Springer, 2006.

[75] Claude Oestges and Bruno Clerckx. MIMO Wireless Communications:

From Real-World Propagation to Space-Time Code Design. Academic

Press, 2007.

136



BIBLIOGRAPHY

[76] Atsuyuki Okabe, Barry Boots, Kokichi Sugihara, and Sung Nok Chiu.

Spatial Tessellations: Concepts and Applications of Voronoi Diagrams.

Wiley, 2000.

[77] Per-Magnus Olsson, Jonas Kvarnström, Patrick Doherty, Oleg Bur-

dakov, and Kaj Holmberg. Generating UAV communication networks

for monitoring and surveillance. In Proceedings of the International

Conference on Control, Automation, Robotics and Vision (ICARCV),

2010.

[78] OpenStreetMap. http://www.openstreetmap.org. Accessed January

15, 2010.

[79] Ramesh Palat, Annamalai Annamalai, and Jeffrey Reed. Cooperative

relaying for ad-hoc ground networks using swarm UAVs. In Proceed-

ings of MILCOM 2006, 2006.

[80] Per Olof Pettersson. Sampling-based path planning for an autonomous

helicopter.

[81] Frank J. Pinkney, Dan Hampel, and Stef DiPierro. Unmanned aerial

vehicle (UAV) communications relay. In Proceedings of MILCOM

1996. IEEE, 1996.

[82] Gabriel Robins and Alexander Zelikovsky. Improved Steiner tree ap-

proximation in graphs. In Proceedings of the eleventh annual ACM-

SIAM symposium on Discrete algorithms (SODA), pages 770–779,

2000.

[83] Martijn N. Rooker and Andreas Birk. Multi robot exploration under

the constraints of wireless networking. Control Engineering Practice,

15(4):435–445, 2007.

[84] Steven Roos. Scheduling for ReMove and other partially connected

architectures. Technical Report 1–68340–44(2001)–05, Laboratory of

Information Technology and Systems, Delft University of Technology,

2001.

[85] Hanan Samet. Foundations of Multidimensional and Metric Data

Structures. Morgan-Kaufmann, 2006.

[86] Tom Schouwenaars. Safe Trajectory Planning of Autonomous Vehicles.

PhD thesis, Massachusetts Institute of Technology, February 2006.

[87] Tom Schouwenaars, Andrew Stubbs, James Paduano, and Eric Feron.

Multivehicle path planning for nonline-of-sight communication. Jour-

nal of Field Robotics, 23(3/4):269–290, 2006.

137



BIBLIOGRAPHY
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