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ABSTRACT

The range of missions performed by Unmanned Aircraft Systems (UAS) has been steadily
growing in the past decades thanks to continued development in several disciplines. The
goal of increasing the autonomy of UAS’s is widening the range of tasks which can be
carried out without, or with minimal, external help. This thesis presents methods for
increasing specific aspects of autonomy of UAS’s operating both in outdoor and indoor
environments where cameras are used as the primary sensors.

First, a method for fusing color and thermal images for object detection, geolocation
and tracking for UAS’s operating primarily outdoors is presented. Specifically, a method
for building saliency maps where human body locations are marked as points of interest
is described. Such maps can be used in emergency situations to increase the situational
awareness of first responders or a robotic system itself. Additionally, the same method is
applied to the problem of vehicle tracking. A generated stream of geographical locations
of tracked vehicles increases situational awareness by allowing for qualitative reasoning
about, for example, vehicles overtaking, entering or leaving crossings.

Second, two approaches to the UAS indoor localization problem in the absence of
GPS-based positioning are presented. Both use cameras as the main sensors and enable
autonomous indoor flight and navigation. The first approach takes advantage of coopera-
tion with a ground robot to provide a UAS with its localization information. The second
approach uses marker-based visual pose estimation where all computations are done on-
board a small-scale aircraft which additionally increases its autonomy by not relying on
external computational power.
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S4202, NFFP05, the Swedish Foundation for Strategic Research (SSF) Strategic Research
Center MOVIII and the ELLIIT network for Information and Communication Technol-
ogy project grants.
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Linköpings universitet

SE-581 83 Linköping, Sweden
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Chapter 1

Introduction

In recent years, the potential of using Unmanned Aerial Vehicles (UAVs)
in many application areas has become apparent. The goal of this thesis is
to investigate the use of passive imaging sensors for increasing the auton-
omy of such vehicles. For UAVs operating outdoors, the use of cameras and
appropriate algorithms allows for widening the range of useful tasks which
can be carried out without, or with minimal, human involvement. For UAVs
operating indoors, in the absence of positioning systems such as GPS, cam-
eras offer means of facilitating autonomous flight by providing localization
information.

An unmanned aerial vehicle is an airborne vehicle without a human crew
on-board. Historically, the term and the primary use of UAVs have been
in the military area. Continuous development and technology transfer has
lowered the cost of accessing the technology outside the military domain.
This has allowed for expanding the use of unmanned aerial vehicles to many
civilian applications.

In recent years, the term UAV has been replaced with the term UA which
stands for Unmanned Aircraft. To emphasize that a UA is a part of a com-
plete system including ground operator stations, launching mechanisms and
so forth, the term Unmanned Aircraft System (UAS) has been introduced1

and its use is becoming commonplace. In this thesis the terms UA and UAV
will be used interchangeably.

The degree of autonomy in a UAS can vary greatly, ranging from tele-
operation to fully autonomous operation. At one end of the autonomy spec-
trum, teleoperation is a mode of operation where a UAV is commanded by a
human operator using a remote controller from the ground. This kind of UA
is also referred to as a remotely operated vehicle. Radio controlled hobby
airplanes or helicopters belong to this category as control commands are
transmitted wirelessly to the UA. In this mode of operation the degree of

1US Army UAS RoadMap 2010-2035, http://www.rucker.army.mil/usaace/uas/

US Army UAS RoadMap 2010 2035.pdf
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2 1. Introduction

autonomy is minimal because continuous input from an operator is required.
Modes of operation from the other end of the autonomy spectrum are

of interest in this thesis. Fully autonomous UAVs are characterized by the
ability to maintain flight and to carry out complete missions from take-off
to landing without any human pilot intervention. Autonomous UAs should
be able to execute sequences of actions prepared by an operator and also to
achieve so called high-level goals. For example, requesting a UAS to search
for injured people in a specified area and monitor traffic conditions (e.g. de-
tecting reckless driver behavior) can be considered high-level goals.

In order to carry out such sophisticated tasks a UAS has to be able to
autonomously execute and coordinate a wide range of tasks. Making UAS’s
autonomous requires addressing many problems from different disciplines,
such as mechanical design, sensor technologies, aeronautics, control, com-
puter science and artificial intelligence, to name a few. Each of these fields
has a community of its own but a combination of all of them can be put
under the umbrella of robotics.

The term robot first appeared in the 1920 play R.U.R. by the Czech writer
Karel Čapek2. The term comes from the word robota which means labour
in many Slavic languages. Contemporarily, the term refers to mechanics,
electronics and software of physical entities performing a wide range of tasks.
The main aim of robots is to carry out tasks, which are considered Dirty, Dull
and Dangerous (D3) for humans. Autonomy means that robots are able to
perform a wider range of tasks by interacting and operating safely in different
kinds of environments without relying on external help. Even though such
help can often be realized using, for example, wireless transmission, it is
generally safer for a robot to be self-sufficient. Wireless communication can,
for example, easily be interfered with, which may compromise the safety of
the operation.

The field of robotics is large and can be categorized in many ways. Mo-
bility is one of the ways to categorize robots. Stationary industrial robots
(see figure 1.1A) operate in fixed static environments and most often per-
form repetitive tasks (e.g. car assembly). Mobile robots, on the other hand,
operate in more dynamic domains and require the ability to sense and react
to a changing environment. Issues which need to be addressed in mobile
robotics involve, for example, localization and mapping. The autonomous
car Stanley, developed by the Stanford Racing Team in cooperation with
the Volkswagen Electronics Research Laboratory, is an example of a mobile
robot (see figure 1.1B) [80]. It was able to autonomously navigate for hun-
dreds of kilometers during the DARPA Grand Challenge in 2005. This was
achieved by using sensors to localize the vehicle and avoid obstacles on the
way.

Another way to categorize robots is by size. In case of airborne platforms,
there exist large UAVs, such as the General Atomics MQ-9 Reaper - Predator

2Karel Čapek: http://capek.misto.cz/english/presentat.html
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Figure 1.1: A. ABB industrial robots used for car assembly. B. Stanley au-
tonomous car. C. Yamaha RMAX unmanned helicopter. D. LinkMAV small-
scale unmanned aerial vehicle.

B (4536 kilograms of weight and 20 meters of wing span)3. This thesis, how-
ever, focuses on medium and small size UAs. The Autonomous Unmanned
Aircraft Systems Technologies Lab (UASTechLab, formerly WITAS) RMAX
helicopter [18], presented in figure 1.1C, is an example of a medium size UAV
(95 kilograms of weight and length of 3.6 meters). Smaller platforms, also
referred to as Micro Air Vehicles (MAVs), which weigh less than 500 grams
and whose largest dimension is smaller than 50 centimeters, are mainly used
for indoor applications (see figure 1.1D). The smaller the airframe, the nar-
rower the range of suitable sensors and computational hardware that can be
used. The main restriction is the smaller payload capability which is further
restricted by limited on-board power.

Airborne robots face an additional set of issues compared to ground
vehicles. The faster dynamics of flying platforms impose strict requirements
on timely execution of control tasks as well as on well-timed decision making

3General Atomics Predator B: http://www.ga-asi.com/products/aircraft/

predator_b.php
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which are both dependent on timely sensing. This is especially important for
UAs operating indoors where distances to obstacles are small. Moreover, the
use of airborne vehicles implies stricter safety requirements which involves
high dependability and robustness of UAS’s. For example, UAVs normally
have larger operating areas compared to ground robots which are therefore
easier to contain in a specified safety zone.

Flying robots operating in natural environments face various and often
unique challenges. It is important to note that indoor and outdoor environ-
ments present different challenges for flying robots. While some techniques
for dealing with these problems can be transferred from one to the other,
some issues have to be solved independently. The biggest challenge for in-
door UAS’s is the lack of a ubiquitous positioning system such as the Global
Positioning System (GPS). Even though its availability is never guaranteed,
it was in fact the enabling technology for outdoor UAVs. Several other com-
monly used sensors are also not useful indoors. A pressure sensor used for
altitude measurement is unreliable due to the influence of, for example, air
conditioning systems. Similarly, magnetometers used for measuring the rela-
tion between an airframe and the Earth’s magnetic field are easily disturbed
by metal elements in building structures. These factors make autonomous
indoor operation of UAVs an open research issue because the dependence
on these sensors has to be relaxed or replacements have to be found.

1.1 Problem statement

The problem which this thesis addresses is the usage of passive imaging sen-
sors, i.e. cameras, to facilitate the autonomy of UAS’s operating in both out-
door and indoor environments. In case of the former the input from cameras
is used to increase the number of tasks a UAS can perform autonomously.
For the latter, a camera sensor is used to provide basic functionality which
is the ability to maintain flight without human input.

There are several reasons for focusing on imaging sensors. UAs are almost
always equipped with cameras for other purposes (e.g. surveillance) so no
additional hardware is generally needed. Moreover, cameras are in general
lightweight, low-cost and have low power requirements. A UAS can perform
a wider range of tasks by incorporating mainly software solutions.

1.2 Contributions

The thesis investigates the use of imaging sensors for increasing the level of
autonomy of unmanned aircraft systems. In case of UAS’s operating out-
doors the level of autonomy is increased through the use of color and thermal
imaging by improving the system’s situational awareness. Fusion of these
two kinds of image-based input for human body detection and geolocation
is part of an autonomous search and rescue mission. It is a mission in which
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a user selects a region to be scanned for potential survivors. The result of
the scanning is a map of victim locations. The generated map can be used
by first responders or a robotic system to, for example, deliver food or med-
ical supplies [20, 72]. The car tracking functionality which is also based on
the fusion of color and thermal images provides streams of low level events
(i.e. geographical coordinates) of vehicles on the ground. It is then trans-
formed into a stream of events that allows for qualitative reasoning about
the environment. It allows, for example, for reasoning about vehicles over-
taking, entering and leaving crossings. Such a functionality allows for greatly
increasing the situational awareness of a robotic system [41, 42].

Additionally, two approaches to the UAV indoor localization problem
are presented. Both use cameras as the main sensors in the absence of GPS-
based positioning. The first approach takes advantage of cooperation with a
ground robot to provide a UAV with its localization information. The aerial
vehicle acts as a remote sensor so that the complete system has a greater
sensor range and better reach than any of its components [73]. The second
approach uses marker-based visual pose estimation where all computations
are done onboard the UAV which increases its autonomy by not relying on
external computational power [75]. Both approaches have been evaluated
and tested in real flight tests with all components fully functional, without
tethers or other aids.

1.3 List of publications

This thesis is mainly based on the following peer-reviewed publications:

[72] P. Rudol and P. Doherty. Human Body Detection and Geolocaliza-
tion for UAV Search and Rescue Missions Using Color and Thermal
Imagery. Proceedings of the IEEE Aerospace Conference, 2008.

[20] P. Doherty and P. Rudol. A UAV Search and Rescue Scenario with
Human Body Detection and Geolocalization. Proceedings of the 20th
Australian Joint Conference on Artificial Intelligence, 2007.

[42] F. Heintz, P. Rudol, P. Doherty. From Images to Traffic Behavior -
A UAV Tracking and Monitoring Application. Proceedings of the 10th
International Conference on Information Fusion, 2007.

[41] F. Heintz, P. Rudol, P. Doherty. Bridging the Sense-Reasoning Gap
Using DyKnow: A Knowledge Processing Middleware Framework. Pro-
ceedings of the 30th German Conference on Artificial Intelligence,
2007.

[73] P. Rudol, M. Wzorek, P. Doherty. Micro Unmanned Aerial Vehicle
Visual Servoing for Cooperative Indoor Exploration. Proceedings of
the IEEE Aerospace Conference, 2008.
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[75] P. Rudol, M. Wzorek, P. Doherty. Vision-based Pose Estimation for
Autonomous Indoor Navigation of Micro-scale Unmanned Aircraft
Systems. Proceedings of the IEEE International Conference on Robotics
and Automation, 2010.

The first, third, fifth and sixth publications ([72], [42], [73] and [75],
respectively) from the above list are included in the appendix to this thesis.
Additionally, the following related publications fall outside the direct scope
of this thesis:

[64] T. Merz, P. Rudol, M. Wzorek. Control System Framework for Au-
tonomous Robots Based on Extended State Machines. Proceedings of
the International Conference on Autonomic and Autonomous Systems,
2006.

[90] M. Wzorek, G. Conte, P. Rudol, T. Merz, S. Duranti, and P. Doherty.
From Motion Planning to Control - a Navigation Framework for an
Autonomous Unmanned Aerial Vehicle. Proceedings of the 21th Bristol
International UAV Systems Conference, 2006.

[23] S. Duranti, G. Conte, D. Lundström, P. Rudol, M. Wzorek, and P.
Doherty. LinkMAV, a prototype rotary wing micro aerial vehicle. 2007.
Proceedings of the 17th IFAC Symposium on Automatic Control in
Aerospace, 2007.

[13] G. Conte, M. Hempel, P. Rudol, D. Lundström, S. Duranti, M. Wzorek,
and P. Doherty. High accuracy ground target geo-location using au-
tonomous micro aerial vehicle platforms. Proceedings of the AIAA
Guidance, Navigation, and Control Conference, 2008.

[74] P. Rudol, M. Wzorek, R. Zalewski, and P. Doherty. Report on sense
and avoid techniques and the prototype sensor suite. National Aero-
nautics Research Program NFFP04-031, Autonomous flight control
and decision making capabilities for Mini-UAVs, 2008.

1.4 Outline

The first part of the thesis deals with the problem of increasing the autonomy
of a UAV through improving its situational awareness. Problems of object
detection, mapping and tracking are addressed. Specifically, human body
detection and the geolocation problem as well as the issue of vehicle track-
ing are addressed in chapter 2. These techniques add functional elements
to outdoor operating UAS’s such as the UASTechLab RMAX autonomous
helicopter.

The problem of localization (determining position and attitude i.e. pose
estimation) in indoor environments in the absence of a GPS-based position-
ing is addressed in chapter 3. Two approaches which increase the autonomy
of UAS’s by allowing for autonomous indoor flight are presented.
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The first one (section 3.4) allows for indoor navigation of a UA in coop-
eration with a ground robot. The computationally intensive task of image
processing is delegated to a computer on the ground robot which determines
the UAV’s pose based on a specially designed cube structure attached to the
flying vehicle.

In the second approach (section 3.5), a marker-based visual pose esti-
mation method is used and all computations are carried out on board the
UAV. In both cases, a camera is used to provide both the position of a UAV
in flight (replacing the GPS and an altimeter) and attitude angles (most
importantly heading) replacing a compass.

The thesis concludes and gives directions for future work in chapter 4.



Chapter 2

Fusing thermal and color
images for object
detection, tracking and
geolocation

2.1 Introduction and motivation

The use of autonomous unmanned aircraft systems is slowly but steadily
becoming commonplace outside of military application areas. Many of the
missions in which UAS’s can be employed include tasks such as ground ob-
ject detection, identification, tracking and calculating its geographical loca-
tion i.e. geolocation. This chapter presents an algorithm for fusing color and
thermal images which is suitable for, for example, detecting and geolocating
human bodies as well as for vehicle tracking. Both of these functionalities
can be used as parts of a UAS mission, effectively increasing the number of
tasks which can be carried out without or with minimal human input.

Human body detection and geolocation is an area which is particularly
important and beneficial for society in catastrophe or emergency assistance
situations. Rapidly acquiring an awareness of a situation after a man-made
or natural disaster can play an important role in relief efforts. It can support
rescuers by focusing their work where the help is most needed.

The use of autonomous unmanned aircraft to facilitate the help can be
very valuable in such situations since certain types of work can be considered
dirty, dull, or dangerous if performed by humans. Specifically, autonomy
reduces the involvement of the operator from controlling every movement
to supervising the operation. The operator’s load is greatly reduced because
most of the dull and repetitive work is performed by a robot.

Additionally, performing this task on-board a UAV is beneficial for two

8



2.2 An emergency situation scenario 9

reasons. First, it avoids the need for transmitting the video signal. Only
the result of the analysis has to be transmitted to an operator. Transmit-
ting these results requires less bandwidth which is preferred in catastrophe
situations where the necessary infrastructure for transmitting bandwidth-
demanding video signal might be unavailable. Second, the situational aware-
ness is achieved directly during the flight which would not be the case if the
gathered data was gathered for later analysis. Partial information can be
transmitted before the complete result is available.

This chapter presents a method for fusing thermal and color video streams
for creating saliency maps of human bodies as well as vehicle tracking and
geolocation. The saliency maps can be directly used by emergency services.
The method can also be an intermediary step in a fully autonomous mis-
sion which includes generating a plan of supply (e.g. medicine, food, water)
delivery followed by the delivery itself. The vehicle tracking functionality,
when used with a road system database, allows for detecting high-level traffic
events. Counting vehicles entering crossing, and detecting reckless overtakes
are examples of such events.

The remainder of the chapter is structured as follows. It starts with
presenting an example mission in section 2.2. This is followed by a descrip-
tion of the UAS platform used for experimental validation of the proposed
technique. The existing hardware platform and software architecture are
presented in section 2.3. An overview of the related work in section 2.4 is
followed by a description of an algorithm for building saliency maps in sec-
tion 2.5. Finally, results of using the algorithm are presented in section 2.6
followed by a description of how these results can be used in a complete au-
tonomous mission in section 2.7. Finally, section 2.8 describes an application
of the same algorithm in a slightly modified form used for vehicle tracking
and geolocation.

2.2 An emergency situation scenario

In order to understand the potential of using UAS’s in emergency situations
it is beneficial to briefly describe an example scenario and outline how a
robotic system can be useful in such a setting.

After a natural disaster such as an earthquake or a tsunami wave a large
area has to be searched for potential survivors. This is a prerequisite for
planning the logistics of delivering different kinds of supplies to the survivors.
Of course, such a task can be carried out by manned aircraft, but by using
a larger number of smaller autonomous UAVs operating in parallel the task
can be finished quicker and without risking human pilots’ lives.

A complete mission of this type has to incorporate the following subtasks:

• Scanning an area and searching for salient entities such as injured
humans, building structures or vehicles.
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geolocation

• Monitoring or surveilling these salient points of interest and continu-
ally collecting and communicating information back to ground opera-
tors and other platforms to keep them situationally aware of current
conditions.

• Delivering supplies or resources to these salient points of interest if
required. For example, identified injured persons should immediately
receive a relief package containing food, medical and water supplies.

Although quite an ambitious set of tasks, several of them have already
been achieved to some extent using the existing experimental helicopter
platforms as described in the following subsections.

To be more specific in terms of the scenario, we can assume there are
two separate parts to the emergency relief scenario in the context sketched
previously:

• Part I:

In the first part of the scenario, it is essential that for specific geo-
graphic areas, the UAVs cooperatively scan large regions in an attempt
to identify injured persons. The result of such a cooperative scan is
a saliency map pinpointing potential victims, their geographical co-
ordinates but optionally also sensory output such as high resolution
photos and thermal images. The resulting saliency map can be used
directly by emergency services or passed on to other UAS’s as a basis
for additional tasks.

• Part II:

In the second part of the scenario, the saliency map generated in Part I
can be used as a basis for generating a logistics plan for several of the
UAS’s with the appropriate capabilities to deliver food, water and
medical supplies to the injured. This would also be done in a cooper-
ative manner among the platforms.

The remainder of this chapter will focus on Part I of the mission. Part
II is briefly described in sections 2.7.1 and 2.7.2 and also in Doherty and
Rudol [20].

2.3 Experimental platform

This section presents the hardware platform used in the experimental val-
idation of the algorithm. The helicopter UAV has been developed during
the WITAS project ([21]) and is now used in the UASTechLab for outdoor
experimentation [18]. The following subsections present the main aspects
of the UAS hardware as well as the software architecture and the existing
system components.
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2.3.1 RMAX UAV platform

The UASTechLab platform is a slightly modified Yamaha RMAX helicopter
(figure 2.1). It has a total length of 3.6 m (including main rotor) and is
powered by a 21 horsepower two-stroke engine with a maximum takeoff
weight of 95 kg. Comparing to a standard RMAX helicopter it has a more
powerful electric generator (200 W) and has a higher landing gear which
allows for placing a camera system underneath the UAV body.

3

Figure 2.1: UASTechLab RMAX autonomous helicopter platform.

The on-board system consists of three PC104 computers. The general
schematic of the system is presented in figure 2.2. The Primary Flight Com-
puter (PFC) hosts a Pentium III 700 MHz processor and interfaces with a
GPS receiver, a barometric pressure sensor and a magnetic compass. The
PFC also interfaces with the Yamaha RMAX platform through the Yamaha
Attitude Control System (YACS) (which contains the Yamaha Attitude Sen-
sor - YAS) and is the only computer required for maintaining autonomous
flight capability when using GPS as a positioning sensor.

The main purpose of the PFC is real-time execution of sensor fusion
algorithms and control modes such as take-off, hovering and 3D path fol-
lowing [12].

The Image Processing Computer (IPC) hosts a 700 MHz Pentium III
processor and is responsible for grabbing images from two video cameras
and running image processing algorithms (such as the existing vision-based
landing [63] and vision-based localization [11]). The two cameras (Sony CCD
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Figure 2.2: Schematic of the computer system and the main hardware com-
ponents of the UASTechLab RMAX platform.

block camera FCB-780P1 and a ThermalEye-3600AS2 miniature infrared
camera) are mounted on a pan-tilt unit (PTU-46-17.5W3) and are attached
under the UA fuselage to a camera platform (see figure 2.3). The platform
is vibration isolated by a system of springs.

The video footage from both cameras is additionally recorded at full
frame rate by two miniDV recorders to allow post-flight processing. The
ability to record the video in this high fidelity format is very useful for
image processing algorithm development and debugging.

The third on-board system, the Deliberative-Reactive Computer (DRC),
hosts a 1.4 GHz Pentium-M and executes all high-level autonomous func-
tionalities such as mission and path planning.

All three computers are connected with one-to-one serial lines for real-
time communication and with Ethernet links through a switch. The com-
munication with the ground station is achieved using a 801.11b/g wireless
Ethernet bridge from 3Com.

2.3.2 Software architecture

As the types of missions a UAS can perform become more and more sophisti-
cated, a software architecture has to be able to accommodate and coordinate
different types of functional modules. The goal when designing and devel-
oping the architecture of the UASTechLab system was to enable so called

1Homepage: http://pro.sony.com
2Homepage: http://www.l-3com.com
3Homepage: http://www.dperception.com
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A B

Figure 2.3: A. Thermal and color cameras (left and right respectively)
mounted on a pan-tilt unit underneath the UASTechLab RMAX platform.
B. ThermalEye-3600AS thermal camera.

push-button missions, in which the UAS autonomously plans and executes
tasks from take-off to landing without operator intervention. One such mis-
sion is building inspection in which the UAS records video footage of all the
facades of all user selected building structures. The software architecture
has to support many different functional units, such as control modes (take-
off, 3D path following, landing), task and path planners, optimal camera
placement algorithms etc.

The software of the UAS is of a hybrid deliberative/reactive type. It is a
layered, hierarchical system with deliberative, reactive and control compo-
nents, although the system can easily support both vertical and horizontal
data and control flow. Figure 2.4 presents the functional layer structure of
the architecture and emphasizes its reactive-concentric nature. The Control
Kernel is encapsulated in a Common Object Request Broker Architecture
(CORBA) object. Task Procedures (TPs [67]) are high-level procedural exe-
cution components which provide a computational mechanism for achieving
different robotic behaviors by using both Deliberative Services (DS) and
control components in a highly distributed and concurrent manner. De-
liberative services provide high-level functionalities such as task and path
planning and Geographic Information System (GIS) databases.

The Control Kernel is distributed over the three previously mentioned
on-board computers as presented in figure 2.5. Execution and coordina-
tion of various tasks (from device drivers to continuous control laws) is
achieved though the use of event-driven hierarchical concurrent state ma-
chines (HCSM; similar to the extended state machines described in [64]). An
HCSM interpreter running in the real-time Linux environment (RTAI Linux
patch [62]) in each of the machines coordinates the task execution as well
as communication between computers. By using serial lines for communica-



14
2. Fusing thermal and color images for object detection, tracking and

geolocation

8

Control 
Kernel

TP

TP

TP

DS

DS

DS

DS - Deliberative Service
TP - Task Procedure

Functional Layers:
Control
Reactive
Deliberative

Figure 2.4: Functional structure of the architecture.

tion, the Control Kernel achieves real-time properties despite the physical
distribution. It is functionally encapsulated into a CORBA object accessible
to TPs (as the Helicopter Server).

The use of a realtime operating system is essential for achieving robust
operation of the Control Kernel. The RTAI Linux patch implements the
realtime behavior by executing the code as a Linux kernel module. The
execution is nonpreemptive and statically scheduled and it has to be peri-
odically suspended to allow the non-realtime part of the operating system
to perform its tasks (e.g. keyboard and screen handling, flash memory ac-
cess and TCP/IP communication). The three PC104 computers on-board
the UA have different distribution of processor time between the kernel and
user space parts. On one extreme, PFC is mostly realtime as it performs
tasks which require strict timing of task execution. On the other extreme,
the DRC only uses the realtime execution for timely communication with
the other on-board computers. The IPC is somewhere in between as it han-
dles more realtime tasks than the DRC but the execution of tasks is not as
time critical as in the case of the PFC.

2.3.3 Existing autonomous functionalities

In order to test the method for fusing thermal and color images, used in the
saliency map building and car tracking algorithms, it has been integrated
into the UASTechLab UAV helicopter system as a new mission functionality.
The following existing autonomous functionalities are part of a complete
mission:
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Figure 2.5: Distributed Control Kernel architecture.

• Take-off: this control mode brings the helicopter platform from the
ground to a specified altitude.

• Hovering: this is the default control mode of the platform.

• Multiple platform area coverage path planning algorithm: it computes
paths for n heterogenous platforms and guarantees complete camera
coverage of the specified area. It takes into account sensor properties
and platform capabilities when computing the paths.

• 3D path following: this control mode allows for tracking 3D paths
defined as splines [12].

• Vision-based autonomous landing (without the use of GPS) using a
specially designed landing pattern [63].

2.4 Related work

The task of observing and analyzing human appearance and movement has
been of interest to the computer vision community for many years. The
existing techniques can be categorized in many ways. One of them is the need
for pre-processing, such as background subtraction, which can be achieved
by frame differencing [57, 94]. Other factors include the types of features
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which are needed for describing human appearance e.g. shape, color and
contours.

A considerable amount of work is based on the idea of detecting humans
by parts. For example, a human body can be modeled as an assembly of parts
which are detected separately and represented by co-occurrences of local
features [66]. A cascade-of-rejectors with variable size blocks of histograms
of oriented gradients as features can also be used. AdaBoost is used as a
feature selection technique to choose appropriate blocks from a large set of
possible blocks [27]. The use of integral image representation and a rejection
cascade allows for 5 to 30 Hz human detection performance (for images of
size 320x280 pixels) [95]. Another approach takes advantage of a classifier
which is a cascade of boosted classifiers working with Haar-like features. The
classifier is learned using boosting [82]. The details of this technique are are
presented in section 2.5.5.

A recent work and the state-of-the-art in the area of visual people de-
tection from a UAV is presented in Andriluka et al. [3]. The paper presents
results of evaluating five algorithms based on monolithic and on part-based
representations for detecting humans using color images. The authors pro-
pose combining several types of models for dealing with occlusions as well as
complex poses of bodies. Additionally, the authors suggest taking advantage
of the knowledge of the UAV state. Both the altitude and attitude help to
assess the size of a human body to be detected. The knowledge of attitude
additionally makes it possible to rectify images to make the scale of human
bodies consistent even if the camera observing a scene is tilted (bodies fur-
ther away from the camera appear smaller after projecting onto the image
plane). The evaluation of the algorithms is performed on a dataset collected
on-board a quadrotor UAV in an indoor office environment. Even though
the presented results show that the suggested enhancements improve the
detection performance, applicability of the method in typical outdoor envi-
ronments is not obvious. The main aspect to be investigated is the problem
that bodies appear smaller when observed from larger distances (order of
tens instead of 1-3 meters in indoor settings).

Detecting humans in thermal imagery poses additional challenges such
as lower resolution, halos around hot or cold objects and smudging artifacts
in case of camera movement. An approach which first performs a fast screen-
ing procedure using a template to locate potential person locations, which
is then tested using an AdaBoosted ensemble classifier using automatically
tuned filters, has been proposed in Davis and Keck [14]. The technique,
however, has been tested on footage collected by a stationary thermal cam-
era and therefore the applicability of the technique to a moving camera is
unknown.

Techniques using both color and thermal images have been suggested.
One example uses color and infrared cameras and a hierarchical scheme
to find a correspondence between the preliminary human silhouettes ex-
tracted from both cameras using image registration in static scenes. Han
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and Bhanu [35] also discuss strategies for probabilistically combining cues
from registered color and thermal images. A technique for detecting and
tracking moving targets in overlapping electro-optical and infrared sensors
(EO/IR) by a probabilistic framework for integrating multiple cues from
multiple sensors also has been proposed [50]. The method has been tested
on footage collected by a UAV but its computational requirements are not
discussed and its usability on-board a UAV is unknown.

The use of UAS’s has been evaluated in Wilderness Search and Rescue
(WiSAR) applications. This application area has been studied in terms of
identification of a set of requirements, designing appropriate search algo-
rithms and field tests in realistic settings [30–32]. The results show how to
best use fixed wing small-scale UAVs with downward-pointing camera in
WiSAR applications. In all the presented work UAVs act as remote sensors
providing a live video signal to a ground operator station. No processing
of the video is performed on-board. Thus the work of analyzing the data
can either be performed on the ground (wireless video transmission can be
interfered) or be done by a human.

Another example of using UAVs in search and rescue scenarios is the work
presented in Waharte and Trigoni [83]. The paper explores the interplay of
some fundamental parameters (e.g. quality of sensor data, energy limitations
of a platform, environment hazards and level of information exchange) of
search algorithms. Performance of different search algorithms which optimize
the time to find a victim is described. Although the paper mentions the use
of quadrotor UAV platforms the presented results are based on simulations.

Results of fusion of two different sensor modalities, i.e. thermal and color
video, presented in Rasmussen et al. [70] show that the cognitive load of a
user can be reduced compared to presenting the two modalities separately.
The technique has been evaluated on real video sequences collected using
small-scale fixed wing UAS’s in a WiSAR scenario.

The problem of object tracking from a UAV and in particular with re-
gard to ground vehicles is an active field of research. Different aspects of
the problem are addressed. For example, Helble and Cameron [43] have
developed a helicopter-based UAS capable of visual tracking of intelligent
targets (which try to hide from an observer) by combining methods for
geolocation and automatic target re-acquisition. Other approaches to the
vehicle tracking problem can be found in [17, 47, 51, 58, 79, 91]. The related
problem of planning a UAV’s movements for vehicle tracking are also often
addressed [79].

2.5 A saliency map building algorithm

The process of building maps where positions of identified human bodies are
the salient points can be divided into several steps. The complete process as
well as the results of experimental validations are described in the following
subsections.
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2.5.1 Overview

An overview of the saliency map building algorithm’s pseudocode is pre-
sented in Algorithm 1. The algorithm is started and terminated at specific
time points during the course of the mission execution. Specifically, the exe-
cution starts when the host UAV arrives at the starting position of the area
to scan and is terminated when the scanning flight is finished.

Algorithm 1 Saliency map building

1: Initialize data structures
2: while scanning not finished do
3: Simultaneously grab two images: imgcolor, imgthermal
4: Analyze imgthermal to find potential human body regions
5: for each region in imgthermal do
6: Find corresponding region rcolor in imgcolor
7: Compute geographical location loc of rcolor
8: Execute human body classifier on rcolor
9: if classification positive then

10: if loc is new then
11: add location loc to map, initialize certainty factor pbody(loc)
12: else
13: update certainty factor pbody(loc)
14: end if
15: end if
16: end for
17: end while

After initializing the necessary data structures (line 1) the algorithm
enters the main loop (line 2), which is terminated when the scanning of the
specified area is finished. The main loop begins with simultaneously grabbing
two video frames. The thermal image is analyzed first (line 4) to find a set
of regions of intensities which correspond to human body temperatures (see
the first subsection of 2.5.5). Then (line 6), for each of these subregions a
correspondence in the color frame, as well its geographical location loc, are
calculated (see the second subsection of 2.5.5). The calculated corresponding
region in the color frame is analyzed with a human body classifier to verify
the hypothesis that the location loc contains a human body (see the third
subsection of 2.5.5). If the classification is positive and the location loc has
not been previously identified, then loc is added to the map and its certainty
factor initialized (line 11). Otherwise, the certainty factor of that location
containing a body is updated (line 13, see subsection 2.5.6).

The output of the algorithm is a set of geographical locations loci and
certainty factors pbody(loci).
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2.5.2 Preliminaries

The saliency map building algorithm for the UAS-assisted emergency ser-
vices mission has been designed taking into account the following mission
requirements and platform properties.

First, the typical distance between an object of interest and a camera is
large and the algorithm has to be able to cope with objects of small size.
Additionally, an object of interest may remain in the camera Field Of View
(FOV) only for a short period of time. Even in the case of platforms capable
of low velocity flight (such as helicopters) high flight velocity is preferred in
case of search and rescue applications because it allows for finding potential
victims faster. Therefore, the rate of image processing is one of the most
important parameters.

α

h

w

FOV

Figure 2.6: Field of view calculation for a downward pointing camera. The
image plane is schematically depicted with a dashed line.

The optimal altitude for a scanning mission can be computed given the
camera parameters and the requirements of the particular image processing
algorithm. Specifically, the minimal required size of an object in an image,
measured in pixels. First, the field of view FOV (see figure 2.6 for illustra-
tion) is a function of the altitude h and the view angle α:

FOV = 2 h tan(
α

2
). (2.1)

Assuming a camera pointing down at a flat ground, the length of the
projection of an object Sw on the image plane Simg can be calculated as:

Simg =
Sw w

FOV
, (2.2)

where w is the size of the image frame measured in pixels. Both w and α
can be different for vertical and horizontal dimensions of a video frame. Fig-
ure 2.7 presents the object projection size for two different frame dimensions
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w and two example object sizes resembling a human body (Sw of 1.5 m and
1.8 m).
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Figure 2.7: The size of an object in an image (Simg) depending on the camera
height (altitude) when FOV is 50 degrees for two different cameras and two
different object sizes.

For example, to obtain object projection sizes of at least 20 pixels in the
image for standard PAL resolution4 and a 50 degrees field of view camera
lens, the maximum flight altitude is approximately 50 meters. Higher resolu-
tion cameras would allow flight at higher altitudes. Flying at lower altitudes
makes the task of image processing easier since a human body appears larger
in a video frame. On the other hand, the flight at a lower altitude requires
more time to complete since the camera covers a smaller area per video
frame.

2.5.3 Image formation

Imaging sensors detect light scattered from viewed scenes and represent the
world as two-dimensional projections. In order to relate a real world object
and its projection in an image plane a perspective model is commonly used.
A simple pin-hole camera model (Equation 2.3) expresses the geometrical
relations of a scene and an image where the camera aperture is described as
a point and no lenses are used to focus light.

λ



u
v
1


 = A [R|t]




X
Y
Z
1


 , (2.3)

4PAL resolution: 768×576 for square pixels or 720×576 for non-square pixels
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where (X,Y, Z) are the coordinates of a point in a three-dimensional scene
and (u, v) are the coordinates of its projection in the image plane. The 3×4
matrix [R|t] is the matrix of extrinsic parameters and describes the rotation
and translation of the camera in the scene (or vice-versa). Calculating the
extrinsic camera parameters R and t is often the task of pose estimation
algorithms. The parameter λ is the homogenous scaling factor. The matrix:

A =



fx 0 cx
0 fy cy
0 0 1


 (2.4)

is composed of the intrinsic parameters and is also referred to as the camera
calibration matrix. It contains focal lengths fx and fy and coordinates of
the principal point cx and cy. It can also contain a factor which accounts for
the skew due to non-rectangular pixels. In most modern cameras, however,
this factor can be neglected.

In practice the pin-hole camera model is insufficient because it does not
model the effects of distortions introduced by a lens which focuses light on an
imaging element of a camera. A more comprehensive image formation model
which includes radial and tangential lens distortions and is equivalent to 2.3
can be rewritten in the following way. For z 6= 0:



x
y
z


 = R



X
Y
Z


+ t (2.5)

x′ = x
z ,

y′ = y
z

(2.6)

x′′ = x′(1 + k1r
2 + k2r

4 + k3r
6) + 2p1x

′y′ + p2(r2 + 2x′2)
y′′ = y′(1 + k1r

2 + k2r
4 + k3r

6) + p1(x2 + 2y′2) + 2p2x
′y′,

(2.7)

where r2 = x′2 + y′2, ki and pi are the radial and tangential distortion
coefficients, respectively. Finally, 2.3 becomes:

u = fxx
′′ + cx

v = fyy
′′ + cy

(2.8)

For efficiency reasons the calculations expressed in Equations 2.7 are often
implemented in the form of a lookup table. Such a table maps image coor-
dinates distorted by a lens to the ideal ones. The lookup table is initialized
when the application is started. While using such a table requires allocating
a certain amounts of memory, the speedup can be significant especially on
slower hardware.

Calculating the camera matrix P = A[R|t] as well as determining lens
distortion parameters is achieved through a process of camera calibration.
Given a number of point correspondences xi ↔ Xi between three-dimensional
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points in a scene Xi and two-dimensional points xi in an image the camera
matrix P can be calculated such that xi = PXi for all i. In practice the
camera calibration procedure requires capturing images of a known target
(e.g. chessboard-like pattern) of known dimensions to obtain point corre-
spondences. Rectangular features are most commonly used in calibration
patterns because of the ease of determining pixel coordinates of corner fea-
tures.

The lens distortion parameters can be calculated together with P or
can be estimated by the requirement that straight lines in scenes have to
be straight in images. The latter method is used with scenes which include
straight line features such as buildings etc. In such a case usage of a calibra-
tion pattern is not necessary.

Details of the image formation and camera calibration techniques can be
found in Hartley and Zisserman [36].

2.5.4 Thermal camera calibration

 

Figure 2.8: Schematic view of the procedure used to calibrate the thermal
camera.

While a color camera can be calibrated using the Camera Calibration
Toolbox for Matlab [9] the same piece of software cannot be directly used
for calibrating a thermal camera. The required chessboard-like calibration
pattern is not suitable for use with thermal cameras. The contrast between
black and white rectangles which makes it easy to detect corners by visible
light cameras is not present when viewing the same pattern with a thermal
camera. Additionally, the effects of halos around hot or cold objects typical
for this kind of camera makes it very difficult to picture sharp corners.

In order to find the focal lengths, principal point and lens distortion pa-
rameters, a custom calibration pattern and an add-on to the toolkit have
been used [86]. To obtain images which look like those taken by a standard
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Figure 2.9: The result of image rectification based on the thermal camera
parameters.

color camera a special pattern has been fabricated to allow using the cal-
ibration procedure normally used for color images. The calibration setup
is schematically depicted in figure 2.8. The custom calibration pattern (b)
made out of a thin material (e.g. a sheet of overhead plastic) is placed be-
tween a warmed up (or cooled down) metal plate (a) and the camera to be
calibrated. Black parts of the calibration pattern (which has circular fea-
tures unlike the standard chessboard pattern) are cut out from the plastic
to allow the heat radiation to pass through to produce an image similar to
one obtained during the calibration of a color camera.

A number of images of the calibration pattern collected at different po-
sitions of the camera are the input to the calibration algorithm. Figure 2.9
presents an example image obtained with the described technique and the
result of image rectification based on the parameters obtained during the
camera calibration. The radial distortion visible in the left image (a cush-
ion effect) is clearly eliminated thanks to the correctly estimated camera
parameters.

2.5.5 Image processing, color-thermal image correspon-
dances and geolocation

The following subsections describe the steps involved in the saliency map
building process. Namely, the thermal image processing, calculating pixel
correspondences between color and thermal images, and the human body
classifier are presented.

Thermal image processing

The algorithm takes a pair of images as input and the processing starts
by analyzing the thermal image (see images in the top row of figure 2.10).
The image is first thresholded to find regions of certain intensities which
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correspond to human body temperature. The value of image intensity cor-
responding to a certain temperature is usually given by the camera man-
ufacturer or can be calibrated by the user. The shapes of the thresholded
regions are analyzed and those which do not resemble a human body (i.e.
wrong ratio of minor and major axes of the fitted ellipse and incorrect area)
are rejected.

Once human body candidates are found in the thermal image, corre-
sponding regions in the color image are calculated.

Figure 2.10: Example input to the image processing algorithm. Thermal
images in the top row and the corresponding color frames in the bottom
row.

Image correspondances and geolocation

Finding corresponding regions using image registration or feature matching
techniques is infeasible because of mostly different appearance of features in
color and thermal images. For that reason a closed form solution, which takes
into account information about the camera pose in the world is preferred.
Computing the corresponding region in the color image starts by calculating
the coordinates of the target point T (~vT ) whose projection is the pixel in
the thermal image ~ut i.e.

~ut = Pt~vt ~ut ∈ P2 ~vt ∈ P3 (2.9)

where Pt represents extrinsic and intrinsic parameters of the thermal camera.
The general scheme of the problem is shown in figure 2.11. A vector line
equation ~g(d) with the direction vector ~vcam which goes through the camera
center ~vc is:

~g(d) = ~vC + d · ~vcam d ∈ R (2.10)
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Figure 2.10: Example input to the image processing algorithm. Thermal
images in the top row and the corresponding color frames in the bottom
row.

in color and thermal images. For that reason a closed form solution, which
takes into account information about the camera pose in the world is pre-
ferred.

Computing the corresponding region in the color image starts by calcu-
lating the coordinates of the target point T (�vT ) whose projection is the
pixel in the thermal image ut i.e.

ut = Ptvt ut ∈ P2 vt ∈ P3 (2.9)

where Pt represents extrinsic and intrinsic parameters of the thermal camera.
The general scheme of the problem is shown in figure 2.11. A line equation
with the direction vector vcam which goes through the camera center �vc is:

ṽT − ṽC = t · ṽcam t ∈ R (2.10)

The ground plane is defined by the point G(ṽG) and the normal vector ñ
which is the down component of the NED (North, East, Down) frame:

(ṽT − ṽG) · ñ = 0 (2.11)

Finally, the vector ṽT which describes the point of intersection of a ray of
light going through the camera center and the pixel of the target can be
calculated according to:

ṽT = ṽC +
(ṽG − ṽC) · ñ

ṽcam · ñ
· ṽcam (2.12)

In order to calculate ṽcam the vector along the X axis of the camera frame
must be expressed in the world coordinate frame. This transformation can
be expressed as:

wṽcam = PheliPptuPp

�
1 0 0

�T
(2.13)
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Figure 2.10: Example input to the image processing algorithm. Thermal
images in the top row and the corresponding color frames in the bottom
row.
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In order to calculate ṽcam the vector along the X axis of the camera frame
must be expressed in the world coordinate frame. This transformation can
be expressed as:

wṽcam = PheliPptuPp

�
1 0 0

�T
(2.13)
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Figure 2.10: Example input to the image processing algorithm. Thermal
images in the top row and the corresponding color frames in the bottom
row.

in color and thermal images. For that reason a closed form solution, which
takes into account information about the camera pose in the world is pre-
ferred.

Computing the corresponding region in the color image starts by calcu-
lating the coordinates of the target point T (�vT ) whose projection is the
pixel in the thermal image ut i.e.

ut = Ptvt ut ∈ P2 vt ∈ P3 (2.9)

where Pt represents extrinsic and intrinsic parameters of the thermal camera.
The general scheme of the problem is shown in figure 2.11. A line equation
with the direction vector �vcam which goes through the camera center �vc is:

ṽT = �vC + t · �vcam t ∈ R (2.10)

The ground plane is defined by the point G(ṽG) and the normal vector ñ
which is the down component of the NED (North, East, Down) frame:

(ṽT − ṽG) · ñ = 0 (2.11)

Finally, the vector ṽT which describes the point of intersection of a ray of
light going through the camera center and the pixel of the target can be
calculated according to:

ṽT = ṽC +
(ṽG − ṽC) · ñ

ṽcam · ñ
· ṽcam (2.12)

In order to calculate ṽcam the vector along the X axis of the camera frame
must be expressed in the world coordinate frame. This transformation can
be expressed as:

wṽcam = PheliPptuPp

�
1 0 0

�T
(2.13)
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Figure 2.10: Example input to the image processing algorithm. Thermal
images in the top row and the corresponding color frames in the bottom
row.

in color and thermal images. For that reason a closed form solution, which
takes into account information about the camera pose in the world is pre-
ferred.

Computing the corresponding region in the color image starts by calcu-
lating the coordinates of the target point T (�vT ) whose projection is the
pixel in the thermal image �ut i.e.

�ut = Pt�vt �ut ∈ P2 �vt ∈ P3 (2.9)

where Pt represents extrinsic and intrinsic parameters of the thermal camera.
The general scheme of the problem is shown in figure 2.11. A vector line
equation �g(d) with the direction vector �vcam which goes through the camera
center �vc is:

�g(d) = �vC + d · �vcam d ∈ R (2.10)

The ground plane is defined by the point G(ṽG) and the normal vector ñ
which is the down component of the NED (North, East, Down) frame:

(ṽT − ṽG) · ñ = 0 (2.11)

Finally, the vector ṽT which describes the point of intersection of a ray of
light going through the camera center and the pixel of the target can be
calculated according to:

ṽT = ṽC +
(ṽG − ṽC) · ñ

ṽcam · ñ
· ṽcam (2.12)

In order to calculate ṽcam the vector along the X axis of the camera frame
must be expressed in the world coordinate frame. This transformation can
be expressed as:

wṽcam = PheliPptuPp

�
1 0 0

�T
(2.13)
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Figure 2.10: Example input to the image processing algorithm. Thermal
images in the top row and the corresponding color frames in the bottom
row.

in color and thermal images. For that reason a closed form solution, which
takes into account information about the camera pose in the world is pre-
ferred.

Computing the corresponding region in the color image starts by calcu-
lating the coordinates of the target point T (�vT ) whose projection is the
pixel in the thermal image �ut i.e.

�ut = Pt�vt �ut ∈ P2 �vt ∈ P3 (2.9)

where Pt represents extrinsic and intrinsic parameters of the thermal camera.
The general scheme of the problem is shown in figure 2.11. A vector line
equation �g(d) with the direction vector �vcam which goes through the camera
center �vc is:

�g(d) = �vC + d · �vcam d ∈ R (2.10)

The ground plane is defined by the point G(�vG) and the normal vector �n
which is the down component of the NED (North, East, Down) frame:

(�p − �vG) · �n = 0 (2.11)

Finally, the vector �vT which describes the point of intersection of a ray of
light going through the camera center and the target (eq. 2.10) with the
ground plane (eq. 2.11) can be calculated according to:

�vT = �vC +
(�vG − �vC) · �n
�vcam · �n · �vcam (2.12)

In order to calculate �vcam the vector along the X axis of the camera frame
must be expressed in the world coordinate frame. This transformation can
be expressed as:

�vcam = PheliPptuPp

�
1 0 0

�T
(2.13)
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Figure 2.10: Example input to the image processing algorithm. Thermal
images in the top row and the corresponding color frames in the bottom
row.

in color and thermal images. For that reason a closed form solution, which
takes into account information about the camera pose in the world is pre-
ferred.

Computing the corresponding region in the color image starts by calcu-
lating the coordinates of the target point T (�vT ) whose projection is the
pixel in the thermal image �ut i.e.

ut = Ptvt ut ∈ P2 vt ∈ P3 (2.9)

where Pt represents extrinsic and intrinsic parameters of the thermal camera.
The general scheme of the problem is shown in figure 2.11. A line equation
with the direction vector �vcam which goes through the camera center �vc is:

ṽT = �vC + t · �vcam t ∈ R (2.10)

The ground plane is defined by the point G(ṽG) and the normal vector ñ
which is the down component of the NED (North, East, Down) frame:

(ṽT − ṽG) · ñ = 0 (2.11)

Finally, the vector ṽT which describes the point of intersection of a ray of
light going through the camera center and the pixel of the target can be
calculated according to:

ṽT = ṽC +
(ṽG − ṽC) · ñ

ṽcam · ñ
· ṽcam (2.12)

In order to calculate ṽcam the vector along the X axis of the camera frame
must be expressed in the world coordinate frame. This transformation can
be expressed as:

wṽcam = PheliPptuPp

�
1 0 0

�T
(2.13)
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Figure 2.10: Example input to the image processing algorithm. Thermal
images in the top row and the corresponding color frames in the bottom
row.

in color and thermal images. For that reason a closed form solution, which
takes into account information about the camera pose in the world is pre-
ferred.

Computing the corresponding region in the color image starts by calcu-
lating the coordinates of the target point T (�vT ) whose projection is the
pixel in the thermal image ut i.e.

ut = Ptvt ut ∈ P2 vt ∈ P3 (2.9)

where Pt represents extrinsic and intrinsic parameters of the thermal camera.
The general scheme of the problem is shown in figure 2.11. A line equation
with the direction vector vcam which goes through the camera center �vc is:

ṽT − �vC = t · �vcam t ∈ R (2.10)

The ground plane is defined by the point G(ṽG) and the normal vector ñ
which is the down component of the NED (North, East, Down) frame:

(ṽT − ṽG) · ñ = 0 (2.11)

Finally, the vector ṽT which describes the point of intersection of a ray of
light going through the camera center and the pixel of the target can be
calculated according to:

ṽT = ṽC +
(ṽG − ṽC) · ñ

ṽcam · ñ
· ṽcam (2.12)

In order to calculate ṽcam the vector along the X axis of the camera frame
must be expressed in the world coordinate frame. This transformation can
be expressed as:

wṽcam = PheliPptuPp

�
1 0 0

�T
(2.13)

Figure 2.11: Calculating a target’s coordinates.

The ground plane is defined by the point G(~vG) and the normal vector ~n
which is the down component of the North, East, Down (NED) frame:

(~p− ~vG) · ~n = 0 (2.11)

Finally, the vector ~vT which describes the point of intersection of a ray of
light going through the camera center and the target (eq. 2.10) with the
ground plane (eq. 2.11) can be calculated according to:

~vT = ~vC +
(~vG − ~vC) · ~n
~vcam · ~n

· ~vcam (2.12)

In order to calculate ~vcam the vector along the X axis of the camera frame
must be expressed in the world coordinate frame. This transformation can
be expressed as:

~vcam = PheliPptuPp
(

1 0 0
)T

(2.13)

where Pp describes the transformation depending on the undistorted pixel
position ~ut. The matrix Pptu is built to represent the transformation intro-
duced by the pan-tilt unit. Pheli represents the attitude of the UAV and is
built up from the roll, pitch and yaw angles of the platform.
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The method presented can be extended to relax the flat world assumption
given the elevation model. The point T can be found by performing ray-
tracing along the line described by equation 2.10 to find the intersection
with the ground elevation map.

The projection in the color image of the world position given by T can
be calculated using the following formula:

~uc = Pc~vT ~uc ∈ P2 ~vT ∈ P3 (2.14)

where Pc constitutes the matrix encoding intrinsic and extrinsic parame-
ters of the color camera including the transformation describing the relating
between the color and thermal cameras. This transformation can be calcu-
lated given a set of known image correspondences uti ↔ u′ci and minimizing
the error between u′ci and uci calculated using equation 2.14 for all i. This
transformation is constant and is calculated once along with the camera
calibration procedure.

The accuracy of the correspondence calculation is influenced by several
factors. As can be seen from equation 2.13, all inaccuracies of parameters
involved in calculating the position and attitude of cameras in the world
contribute to the overall precision of the solution. The evaluation of the ac-
curacy involves investigating the UAV state estimation errors, pan-tilt unit
position accuracy, camera calibration errors etc. In the case of the UASTech-
Lab RMAX autonomous helicopter platform, during the experimental val-
idation, the corresponding image coordinates were within a subregion of
twenty percent of the video frame size (cf. the marked subregions in color
images in figure 2.10).

The human body classifier

After calculating the coordinates of the pixel in the color image, a region with
the Pc as center (cf. black rectangles in the bottom row images of figure 2.10)
is analyzed by an object classifier. The classifier used was first suggested
in Viola and Jones [82]. It uses a cascade of classifiers for object detection.
The method also includes a novel image representation, the integral image,
for quick detection of features. The method was also extended, for example
in Lienhart and Maydt [59] by extending the original feature set which is
presented in figure 2.12A.

The classifier requires training with positive and negative examples. Dur-
ing the learning process the structure of a classifier is built using boosting.
The use of a cascade of classifiers allows for dramatic speed up of computa-
tions by skipping negative instances and only computing features with high
probability for positive classification. The speed up comes from the fact that
the classifier, as it slides a window at all scales, works in stages and is ap-
plied to a region of interest until at some stage the candidate is rejected or
all the stages are passed (see figure 2.12B). This way, the classifier quickly
rejects subregions which most probably do not include features needed for
positive classification (i.e. background processing is quickly terminated).
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Figure 2.12: A. Leinhart’s extended set of features, B. Schematic descrip-
tion of a cascade classifier. Classifiers in the initial stages remove a large
number of negative examples. Successive classifiers process a smaller num-
ber of sub-windows. The initial set of sub-windows can include all possible
sub-windows or can be the result of a previous classification in a thermal
image additionally improving processing rate.

The classifier works with features which can be quickly extracted us-
ing intermediate representations - integral images. The integral image at
position ii(x, y) is derived from the original i(x, y) as follows:

ii(x, y) =
∑

x′≤x, y′≤y
i(x′, y′), (2.15)

The integral image can be calculated with one pass over the original
image using this pair of equations:

s(x, y) = s(x, y − 1) + i(x, y), (2.16)

ii(x, y) = s(x− 1, y) + s(x, y), (2.17)

where the s(x, y) is the cumulative row sum, s(x,−1) = 0 and ii(−1, y) = 0.
The reason for working with features instead of pixel intensities is that

features encode knowledge about the domain, which is difficult to learn from
raw input data. The features encode the existence of oriented contrasts be-
tween regions of an image. The Haar-like features used here can be calculated
at any position and any scale in constant time using only eight look-ups in
the integral image.

The implementation of the classifier used in this work is a part of the
Open Source Computer Vision Library5 and the trained classifier for upper,
lower and full human body is a result of Kruppa et al. [55]. The classifier is
best suited for pedestrian detection in frontal and backside views which is

5Homepage: http://opencv.willowgarage.com/wiki/
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exactly the type of views a UA has when flying above the bodies lying on
the ground.

The classifier parameters have been adjusted to minimize false negative
cases. In case of rescue operations it is better to find more false positives then
missing potential victims. The number of neighboring rectangles needed for
successful identification has been set to 1 which makes the classifier accept
very weak classifications. The factor by which the search window is scaled
between the subsequent scans has been set to 1.2 meaning that the search
window is increased by 20%.

2.5.6 Map building

Since the body classifier is configured to be ”relaxed” it delivers sporadic
false positive classifications. To deal with most of them the following method
is used to prune the results. Every salient point in the map has two param-
eters which are used to calculate the certainty of a location being a human
body: Tframe which describes the amount of time a certain location was in
the camera view and Tbody which describes the amount of time a certain
location was classified as a human body. The certainty factor is calculated
as follows:

pbody(loci) =
Tbody
Tframe

(2.18)

A location is considered a body if pbody(loci) is larger than a certain thresh-
old (e.g. 0.5 during the flight tests) and Tframe is larger than a desired
minimal observation time. Locations are considered equal if geographical
distance between them is smaller than a certain threshold (depending on
the geolocation accuracy) and the final value of a geolocated position is an
average of the observations.

2.6 Experimental validation

The presented technique for geolocation and saliency map building has been
integrated into the UASTechLab helicopter system and tested in flight tests.
The following subsections present an example mission setup and the results
obtained.

2.6.1 Mission setup

An example complete push button mission setup was as follows:

• The flights were performed at the Swedish Rescue Services Agency
Test Area (figure 2.13A). This is a city-like closed area with road struc-
tures, buildings etc. so that the video streams include different types
of textures e.g. grass, asphalt, gravel, water and building rooftops.
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• Two RMAX helicopters were used starting from H1 and H2 in fig-
ure 2.13B.

• A user of the system selected a rectangular area on a map where the
saliency map was to be built (figure 2.13B).

• The on-board systems calculated the mission plan which took into
account properties of the on-board sensors (e.g. field of view) of both
UAVs. The plan consisted of two separate flight plans for the two
helicopters.

• The mission started with simultaneous takeoffs and flying to starting
positions S1 and S2 in figure 2.13B.

• After arriving at the starting positions the execution of the scanning
paths autonomously began.

• Upon finishing the scanning paths at positions E1 and E2, the UA’s
flew to the takeoff positions and performed autonomous landings.

A B

H1 H2

S2

E2

S1

E1

Figure 2.13: A. Map of the Swedish Rescue Services Agency Test Area in
Revinge, B. A closeup view of the area where the saliency map was built.
Approximate flight paths are marked with solid lines.

The following subsection describes results of the presented algorithm exe-
cuted on the data collected by the platform starting in position H2.

2.6.2 Experimental results

The algorithm found and geolocated all eleven human bodies placed in the
area. The images of identified objects are presented in figure 2.14. Color and
the corresponding thermal images are displayed vertically as pairs. Images
7, 9 and 14 present three falsely identified objects. Erroneous classifications
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Figure 2.14: Images of classified bodies. Corresponding thermal images are
placed under color images.
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Figure 2.15: The resulting map with salient points marked as circles. The
lighter the shade of the color the higher the detection certainty.

were caused by configuring the human body classifier to accept weak classi-
fications. A more restrictive setup could instead result in missing potential
victims. The images could additionally be judged by a human operator to
filter out the false-positive classifications. Both human bodies and dummies
were detected despite the lower temperature of the latter.

Figure 2.15 presents the generated saliency map. The UAV trail is marked
with a solid line. It presents the scanning pattern segments flown by the he-
licopter. It clearly covers one part of the designated search area as presented
in figure 2.13B. The UAV ending position is marked with a cross icon. Ad-
ditionally, fields of view of color and thermal cameras are depicted with
light-grey and black rectangles, respectively. They differ slightly as the two
cameras have different properties as identified during calibration procedures.

The circles depict the identified body positions. The lighter the shade
of the color, the more certain the classification. As can be seen the most
certain body positions are objects number 2 and 11 (in figure 2.14). It is
due to the fact that these body images are clearly distinguishable from
the homogeneous background. Nevertheless, even body images with more
cluttered backgrounds were identified.

The accuracy of the body geolocation calculation was estimated by mea-
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Figure 2.16: Geolocation error for multiple objects.

suring GPS (without differential correction) positions of bodies after an
experimental flight. Figure 2.16 presents the error measurement for seven
geolocated objects.

The measurement has a bias of approximately two meters in both east
and north directions. It is the sum of errors in GPS measurement, accuracy
of the camera platform mounting, PTU measurement and camera calibra-
tion inaccuracies. The spread of measurement samples of approximately 2.5
meters in both east and north directions is a sum of errors of the UAV’s at-
titude measurement, the system of springs in the camera platform and time
differences between UAV state estimate, PTU angle measurement and image
processing result acquisition. A detailed analysis is required to accurately
measure error contributing factors and improve the precision.

Nevertheless, the current accuracy of the system is sufficient for assessing
a victim’s position within a 3 meter radius. The large geolocation error of
object 7 is most likely caused by an erroneous GPS measurement. Object
7 was located on a metal foot-bridge and the GPS antenna during static
measurement was additionally partially occluded by metal railings.The noise
of the measurement however is consistent with the rest of the objects.

The presented algorithm requires only a single pair of images for human
body classification. In practice, however, the more pairs available the more
certain the result of a classification can become (cf. equation 2.18). Addi-
tionally, thanks to using the results of the thermal image analysis to focus
the classification in the color image subregions, a high rate of processing is
achieved (e.g. above 20Hz for the presented results).
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2.7 Complete mission

The following subsections briefly present how the generated saliency map can
be integrated into a complete autonomous mission. For the full description
see Doherty and Rudol [20].

2.7.1 Package delivery

After successful completion of Part I of the scenario, a saliency map with
geolocated positions of the injured people has been generated. In the next
phase of the mission, the goal is to deliver medical, food and water supplies
to the injured. In order to achieve this part of the mission, one would require
a task planner to plan for logistics, a motion planner to plan the paths for
one or more UAVs to supply and delivery points and an execution monitor
to monitor the execution of highly complex plan operators. Each of these
functionalities would also have to be tightly integrated in the system. These
components are described in subsection 2.7.2.

This part of the mission is developed primarily in simulation with hardware-
in-the-loop. The on-board computer system which includes a simulator of
the UAV dynamics executes all functionalities necessary for completing the
mission on the actual flight tests hardware. Additionally, a physical proto-
type of a mechanism for carrying and releasing packages has been developed
and tested. Figure 2.17 presents two images of the prototype system.

Figure 2.17: Two frames of video presenting the prototype mechanism for
carrying and releasing packages using an electromagnet. An arrow points to
a package being carried. The top left picture presents the on-board camera
view.

For these logistics missions, the use of one or more UAVs with diverse
roles and capabilities is assumed. Additionally, n injured body locations,



34
2. Fusing thermal and color images for object detection, tracking and

geolocation

several supply depots and several supply carrier depots are assumed to be
given (see figure 2.18). A UAV Search and Rescue Scenario 11

Fig. 8. A Supply Depot (left) and a Carrier Depot (right)
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Fig. 9. System Architecture Overview

conditions to be monitored during execution of the plan by an execution moni-
tor in order to relax the assumption that no failures can occur. Such conditions
are expressed as temporal logical formulas and evaluated on-line using formula
progression techniques. This execution monitor notifies the plan executor when
actions do not achieve their desired results and one can then move into a plan
repair phase.

The plan executor translates operators in the high-level plan returned by
TALplanner into lower level command sequences which are given to the command
executor. The command executor is responsible for controlling the UAV, either
by directly calling the functionality exposed by its lowest level Flight Command

Figure 2.18: A supply depot (left) and a carrier depot (right).

2.7.2 Planning, execution and monitoring

Figure 2.19 shows part of the UAV architecture, with an emphasis on those
components that are the most relevant for planning, execution and execution
monitoring.

At the top of the center column is the plan executor which given a mis-
sion request, calls DyKnow [39, 40], a knowledge processing middleware, to
acquire essential information about the current contextual state of the world
or the UAV’s own internal states. Together with a domain specification and
a goal specification related to the logistics scenario, this information is fed to
TALplanner [19], a logic-based task planner which outputs a plan that will
achieve the designated goals, under the assumption that all actions succeed
and no failures occur. Such a plan can also be automatically annotated with
global and/or operator-specific conditions to be monitored during execution
of the plan by an execution monitor in order to relax the assumption that no
failures can occur. Such conditions are expressed as temporal logical formulas
and evaluated on-line using formula progression techniques. This execution
monitor notifies the plan executor when actions do not achieve their desired
results and one can then move into a plan repair phase. The plan execu-
tor translates operators in the high-level plan returned by TALplanner into
lower level command sequences which are given to the command executor.
The command executor is responsible for controlling the UAV, either by di-
rectly calling the functionality exposed by its lowest level Flight Command
Language (FCL) interface or by using task procedures (TPs) through the TP
Executor subsystem. The TP Executor is part of the Modular Task Architec-
ture (MTA) [22], which is a reactive system designed in the procedure-based
paradigm and developed for loosely coupled heterogeneous systems. A task
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Fig. 8. A Supply Depot (left) and a Carrier Depot (right)
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Fig. 9. System Architecture Overview

conditions to be monitored during execution of the plan by an execution moni-
tor in order to relax the assumption that no failures can occur. Such conditions
are expressed as temporal logical formulas and evaluated on-line using formula
progression techniques. This execution monitor notifies the plan executor when
actions do not achieve their desired results and one can then move into a plan
repair phase.

The plan executor translates operators in the high-level plan returned by
TALplanner into lower level command sequences which are given to the command
executor. The command executor is responsible for controlling the UAV, either
by directly calling the functionality exposed by its lowest level Flight Command

Figure 2.19: System Architecture Overview

is a behavior intended to achieve a goal in a limited set of circumstances. A
task procedure is the computational mechanism that achieves this behavior.
The TPs have the ability to use deliberative services, such as the task plan-
ner described above or motion planners [89, 90], in a reactive or contingent
manner and to use traditional control services in a reactive or contingent
manner and thereby integrate deliberation and reaction.

During plan execution, the command executor adds formulas to be mon-
itored to the execution monitor. DyKnow continuously sends information
about the development of the world in terms of state sequences to the moni-
tor, which uses a progression algorithm to partially evaluate monitor formu-
las. If a violation is detected, this is immediately signaled as an event to the
command executor, which can suspend the execution of the current plan,
invoke an emergency brake command, optionally execute an initial recovery
action and finally signal new status to the plan executor. The plan executor
is then responsible for completing the recovery procedure.

The fully integrated system is implemented on the UAVs and can be used
on-board for different configurations of the logistics mission described in
Part II of the larger mission. The simulated environments used are in urban
areas and quite complex. Plans are generated in the millisecond to seconds
range using TALplanner and empirical testing shows that this approach
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is promising in terms of integrating high-level deliberative capability with
lower-level reactive and control functionality.

2.8 A vehicle tracking and geolocation appli-
cation

Autonomous vehicle tracking and geolocation can play a major role in ap-
plications such as traffic behavior analysis which can contribute to increas-
ing road safety. Instead of a human operator trying to maintain situational
awareness about a traffic condition in an area, a UAS equipped with ap-
propriate sensors and algorithms can be used. One approach is for a UAS
to relay video streams and other data to an operator for human inspection.
Another, more scalable approach, is for a UAS to monitor the traffic situa-
tions which arise and only report back the high level events observed, such
as cars turning in intersections or performing overtakes.

The process of going from images to detection of high-level events can
be divided into two parts. First, an image processing algorithm detects and
tracks an object in raw video, geolocates the tracked object and produces
a stream of world positions. Second, an algorithm which performs tempo-
ral and spacial analysis of the data and detects certain types of behaviors
(e.g. entering crossings and overtakes) and maintains situational awareness.

This section describes how the method developed in the previous section
(specifically the first and second subsections of 2.5.5) can be used to imple-
ment the first part of the task. The second part of the task is described in
section 2.8.2.

2.8.1 Image processing

The task of image processing is to calculate world coordinates of vehicles
tracked in video sequences. First, an object tracker is used to find pixel co-
ordinates of the vehicle of interest based on color and thermal input images.
Second, the geographical location of the object is calculated and expressed as
world coordinates. The object tracker developed for the purpose of this work
can be initialized automatically or manually. The automatic mode chooses
the warmest object on a road segment (description of the road system is
fetched from a GIS database) within the thermal camera view and within
a certain distance from the UAV (cf. the process of calculating the distance
to a tracked object described in section 2.5.5). The area around the initial
point is checked for homogeneity in thermal and color images. The object
is used to initialize the tracker if its area is consistent with the size of a
car signature. This method of initialization works with satisfactory results
for distances up to around 50m from the tracked object. If the tracker is
initialized incorrectly the user can choose an object of interest manually by
clicking on a frame of the color or thermal video. The corresponding pixel
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position (for color and thermal images) is calculated based on the parame-
ters of the cameras, the UAV’s position and attitude and the model of the
ground elevation.

After initialization, the tracking of an object is performed independently
in the color and thermal video streams. Tracking in the thermal image is
achieved by finding the extreme value (warmest or coldest spots) within
a small (5 percent of the image size) window around the previous result.
Object tracking in color video sequences is also performed within such a
small window and is done by finding the center of mass of a color blob in the
HSI (Hue, Saturation, Intensity) color space. The thresholding parameters
are continuously updated to compensate for illumination changes. Tracking
in both images is performed at full frame rate (i.e. 25Hz) which allows for
compensating for moderate illumination changes and moderate speeds of
relative motion between the UAV and the tracked object. If either of the
trackers does not find a similar blob in two consecutive frames, the tracking
is considered to be lost. The problem of automatic reinitialization as well as
more sophisticated interplay between both trackers, is not addressed in this
work.

Finding pixel correspondences between the two cameras is difficult to
achieved by feature matching commonly used in stereo-vision algorithms
since objects generally appear different in color and infrared images. Be-
cause of this, the distance to an object whose projection lies in a given pixel
must be determined. Given the camera parameters, helicopter pose and the
ground elevation model the distance to an object can be calculated (see the
second subsection of 2.5.5). It is the distance from the camera center to the
intersection between the ground model and the ray going through the pixel
belonging to the object of interest. For the environment in which the flight
tests were performed the error introduced by the flat world assumption (i.e.
ground elevation model simplified to a plane) is negligible. Finally, calcu-
lating pixel correspondences between the two cameras can be achieved by
performing pixel geolocation using the intrinsic and extrinsic parameters of
one of the cameras followed by applying a inverse procedure (i.e. projection
of geographical location) using the other camera’s parameters.

Using the described object tracker, several data series of world coordi-
nates of tracked vehicles were generated. Two kinds of video sequences were
used as data sources. In the first kind (figure 2.20A) the UAV is stationary
at altitudes of 50 or 60 meters and observes two vehicles as they drive on
a nearby road. In the other kind (figure 2.20B) both the car and the UAV
are moving. The ground vehicle drives several hundreds meters on the road
system passing through two crossings and the UAV follows the car at alti-
tudes from 25 to 50 meters. For sequences containing two cars, the tracker
was executed twice to track both vehicles independently.

A precise measure of the error of the computed world location of the
tracked object is not known because the true location of the cars was not
recorded during the flight tests. The accuracy of the computation is influ-
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A B

Figure 2.20: A. Two frames from video sequence with the UAV hovering
close to a road segment observing two cars performing overtaking maneuver.
B. Three frames from video sequence with the UAV following a driving
car passing road crossings. Top row contains color images and bottom row
contains corresponding thermal images.

enced by several factors, such as error in the UAV position and the springs
in the camera platform suspension, but the tracker in general delivers world
coordinates with enough accuracy to determine which side of the road a car
is driving on. Thus the maximum error can be estimated to be below 4-5
meters for distances to the object of around 80 meters (which is consistent
with the accuracy measurement presented in section 2.6.2).

Figures 2.21 and 2.22 present two results of the vehicle tracking. The
circle represents the UAV position in the relation to the segmented road
system. The tracking trails (red) clearly fall within the boundaries of the
road structure.

Figure 2.21: Intersection overview.
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Figure 2.22: Overtake overview.

2.8.2 High level traffic situation awareness

To achieve complex missions an autonomous UAV operating in dynamic
environments must create and maintain situational awareness. This can be
achieved by continually gathering information from many sources, selecting
the relevant information for the current task, and deriving models about
the environment and the UAV itself. Often models close to the sensor data,
suitable for traditional control, are not sufficient for deliberation. The need
for more abstract models creates a sense-reasoning gap. This section briefly
presents how DyKnow, a knowledge processing middleware ([39, 40]), can
bridge the gap in a concrete UAV traffic monitoring application. Streams
of UAV positions generated as described in previous section are used to
construct and maintain qualitative object structures modeling the parts of
the environment necessary to recognize the traffic behavior of the tracked
vehicles in real-time.

In a traffic monitoring scenario a human operator tries to maintain sit-
uational awareness about a traffic situation in an urban area using UAVs
looking for accidents, reckless driving, or other relevant activities. One ap-
proach to this scenario would be for one or more UAVs to relay videos and
other data to the operator for human inspection. Another, more scalable ap-
proach, would be for the UAVs to monitor the traffic situations which arise
and only report back the high level events observed, such as cars turning in
intersections and doing overtakes, to reduce the amount of information and
help the operator focus her attention. This section describes such a traf-
fic monitoring application where cars are tracked by a UAV platform and
streams of observations are fused with a model of the road system in order
to draw conclusions about the behavior of the cars in the environment. The
input consists of images taken by the color and thermal cameras on the UAV
which are fused and geolocated to a single world position. This stream of
positions is then correlated with a geographical information system in order
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to know where in a road system the object is located. Based on this informa-
tion high level behaviors such as turning in intersections and overtaking are
recognized in real-time as they develop using a chronicle recognition system.

Color camera

Thermal camera

Heli state estimation

Chronicle
recognition

Temporal logic

Reasoning Engines

GIS

Databases

Image processing DyKnow
Sensors

Fig. 1. Overview of the components of the traffic monitoring application.

An overview of the components of the traffic monitoring application is shown in
Fig. 1. The three sensors used, the two cameras and the heli state estimation (which
is fused from INS and GPS data), are shown to the left. These provide the primitive
information about the environment and the UAV. The next component is the image
processing system which tracks objects seen by the cameras. When an object is being
tracked the images from the two cameras are fused to provide an estimation of the
position in the world of the tracked object. Each time a new frame is analysed a new
position estimate is produced. From this stream of position estimations, the system
recognizes high level events such as turning in intersections, overtaking, and so on.

To describe these events a formal representation called chronicles is used [1]. A
chronicle defines a class of events by a simple temporal network (STN) [2] where the
nodes are primitive events and the edges are temporal constraints between the occur-
rences of the primitive events. If a stream of primitive events contains a set of event
occurrences which satisfies all the constraints then an instance of the chronicle is rec-
ognized. The chronicles used in this application contain primitive events which capture
the structure of the road network, qualitative information about cars such as which road
segment they are on, and qualitative spatial relations between cars such as beside and
behind. If all occurrences of the primitive events are in the stream used by the chron-
icle recognition engine then the recognition is complete, meaning that all chronicle
instances in the stream will be recognized. Creating this stream of events, accurately
representing the environment of the UAV, based on sensor data is a concrete instance of
bridging the sense reasoning gap. This is done by a knowledge processing middleware
called DyKnow (see Section 5) [3, 4].

DyKnow takes the stream of position observations provided by the image process-
ing system (see Section 4) and derives an event stream representation of cars and qual-
itative spatial relations between cars (see Section 7.1). DyKnow also derives an event
stream representation of the road network from the information stored in the GIS. One
issue that must be handled is how to anchor the car symbols used in the chronicles to
objects being tracked. Since the image processing system may lose track of cars or start
tracking other objects than cars DyKnow has to dynamically estimate and continually
monitor the type and identity of objects being tracked. To do this, the normative behav-
ior of different objects and the conditions for assuming that two objects have the same
identity are described using temporal logic (see Section 6). When a tracked object is
found which satisfies the normative behavior for e.g. a car a new car representation is
created and the tracked object is linked to the new car representation. From this moment

Figure 2.23: Overview of the components of the traffic monitoring applica-
tion.

An overview of the components of the traffic monitoring application is
shown in figure 2.23. The three sensors used, the two cameras and the heli
state estimation (which is fused from INS and GPS data), are shown to the
left. These provide the primitive information about the environment and
the UAV. The next component is the image processing system which tracks
objects seen by the cameras. When an object is being tracked the images
from the two cameras are fused to provide an estimation of the position in
the world of the tracked object. Each time a new frame is analyzed a new
position estimate is produced. From this stream of position estimations,
the system recognizes high level events such as turning in intersections,
overtaking, and so on.

To describe these events a formal representation called chronicles is
used [28]. A chronicle defines a class of events by a simple temporal net-
work (STN) [16] where the nodes are primitive events and the edges are
temporal constraints between the occurrences of the primitive events. If a
stream of primitive events contains a set of event occurrences which satis-
fies all the constraints then an instance of the chronicle is recognized. The
chronicles used in this application contain primitive events which capture
the structure of the road network, qualitative information about cars such
as which road segment they are on, and qualitative spatial relations be-
tween cars such as beside and behind. If all occurrences of the primitive
events are in the stream used by the chronicle recognition engine then the
recognition is complete, meaning that all chronicle instances in the stream
will be recognized. Creating this stream of events, accurately representing
the environment of the UAV, based on sensor data is a concrete instance of
bridging the sense reasoning gap. This is achieved using DyKnow.

DyKnow takes the stream of position observations provided by the image
processing system and derives an event stream representation of cars and
qualitative spatial relations between cars. DyKnow also derives an event
stream representation of the road network from the information stored in the
GIS. One issue that must be handled is how to anchor the car symbols used
in the chronicles to objects being tracked. Since the image processing system
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may lose track of cars or start tracking other objects than cars DyKnow has
to dynamically estimate and continually monitor the type and identity of
objects being tracked. To do this, the normative behavior of different objects
and the conditions for assuming that two objects have the same identity
are described using temporal logic. When a tracked object is found which
satisfies the normative behavior for e.g. a car a new car representation is
created and the tracked object is linked to the new car representation. From
this moment the car representation will be updated each time the tracked
object is updated. Since links only represent hypotheses, they are always
subject to becoming invalid given additional observations, and therefore
the UAV continually has to verify the validity of the links. This is done
by monitoring that the normative behavior of the assumed object type is
not violated. For example, an object assumed to be a car must not violate
the normative constraints on cars, e.g. leaving the road. If it does violate
the corresponding link is removed, in other words the object is no longer
assumed to be a car. To evaluate temporal logical formulas DyKnow has to
derive temporal models representing the value of the variables used in the
formulas. Since these models are derived from the sensor data it is another
concrete example of how DyKnow can be used to bridge the sense reasoning
gap.

Further details are provided in Heintz et al. [41, 42].

2.9 Conclusion

This chapter presented a method for fusing thermal and color video streams
for the purpose of increasing the level of autonomy through improving situ-
ational awareness for unmanned aircraft systems. Two methods have been
described which rely on color and thermal video streams as the main source
of information. The first method deals with the problem of building saliency
maps where human body locations are marked as points of interest. Such
maps can be used in emergency situations to help first responders to quickly
focus the help effort in places where it is most needed. The task of acquir-
ing the first overview of the situation can be delegated to autonomously
operating UAS’s.

The second presented functionality deals with the problem of tracking
and geolocation of vehicles. The obtained streams of vehicle positions can
be used by a reasoning system to analyze traffic behaviors such as reckless
overtakes, speeding and entering crossings. Thanks to an automatic analysis
of the traffic situation, the load of an operator can be greatly reduced and
the situational awareness improved.



Chapter 3

Towards autonomous
indoor navigation of
small-scale UAVs

3.1 Introduction and motivation

Enabling autonomous indoor flight and navigation allows a wide range of
tasks to be carried out by UAS’s with minimal or without operator involve-
ment. A concrete example where the use of indoor flying UAVs would be
beneficial is the recent earthquake and the resulting tsunami in Japan. Be-
cause of the great devastation caused by the tsunami wave and the radiation
caused by a reactor malfunction, the immediate surroundings of the reactor
became very dangerous for humans. In such a situation the use of UAS’s
from a safe distance would help to protect the well-being of the rescuers by
allowing them to explore and inspect the inside of the reactor building be-
fore eventually sending in humans. This is a typical example of a dangerous
task where the use of robots helps saving or protecting human lives.

The progress in the field of autonomous unmanned aircraft has allowed
for the use of UAS’s in many applications in military, academic and com-
mercial domains. Thanks to advances in several fields, the range of missions
that unmanned aerial vehicles can perform today is substantial. The evo-
lution of sensor technologies, state estimation techniques, mission and path
planning methods, software frameworks, to name a few, made this progress
possible. The number UAS’s operating outdoors and the kinds of tasks being
performed show a high level of maturity.

Autonomous indoor flight and navigation, on the other hand, are still in
their infancy. Even though steady progress is being made, the range of tasks
performed autonomously by indoor UAS’s is small compared to their out-
door counterparts. There are several reasons for this. Compared to outdoor

42
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operating UAS’s, the solutions to the indoor flight and navigation problems
have to deal with the following issues:

• Lack of a ubiquitous positioning system. Even though the GPS is not
always reliable it was in fact the enabling technology for outdoor au-
tonomous navigation. Indoors, however, the GPS cannot be used at
all.

• Limited payload of small airframes suitable for indoor use limits the
types and the number of appropriate sensors. Certain types of sensors
are not available at all in small scale (e.g. radar) and a platform can
often only carry a single sensor of a certain kind.

• Lower sensor accuracy and/or range due to miniaturization. For ex-
ample, inertial navigation systems based on Micro Electro Mechanical
Systems (MEMS) sensors drift much faster than systems based on
larger Ring Laser Gyroscopes (RLG) used in full size aircraft such as
the Airbus A320; miniature cameras often have very simple lightweight
plastic lenses instead of professional glass lenses which influences the
image quality. Additionally, sensors such as Laser Range Finders (LRFs)
have shorter measurement ranges. Even though distances to obstacles
in indoor environment are normally smaller compared to outdoor en-
vironments, this factor cannot be neglected.

• Limited computational power and lack of dedicated hardware com-
ponents such as Floating Point Units (FPUs) impose restrictions on
algorithms. Many of the existing algorithms are inadequate for small
platforms because the computational requirements prevent them from
delivering timely results.

• Restricted power due to limited payload available for the power source.
The battery power which is used both for propulsion and avionics sys-
tems has to be used efficiently to maximize the flight time. Achieving
autonomous flight only for a very short time span is not desirable
because it limits the types of missions a UAS can perform.

• Properties of the indoor environment introduce several challenges. First,
an indoor environment imposes strict requirements on timely and ac-
curate state estimation in relation to obstacles. While in outdoor envi-
ronments there exists, in the general case, a possibility to ”escape” to
a safer location (e.g. by increasing the altitude to fly above obstacles)
this option is normally not available indoors.

Additionally, the field of view of sensors has a more ”local” character.
Outdoors it is often possible to get a bird’s eye view of the environ-
ment. Such a view from the top often allows for identifying landmarks
to aid the localization task especially in case of the so-called kidnapped
localization problem (i.e. when there is no initial knowledge about the
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robot location). In such a case a more global view allows for quicker
location determination. One solution to this problem for indoor UAVs
is the use of wide field of view camera lenses, but this makes the effec-
tive resolution of the cameras smaller which negatively influences the
accuracy of the sensor data. Another solution could be using a camera
on a tilting unit but such a device adds mechanical complexity, weight
and consumes electrical power.

All of these issues need to be taken into consideration and addressed to
allow indoor UAVs to perform the same wide range of missions as outdoor
UA’s perform today.

The key problem which needs to be addressed is localization. This means
estimating at least three translational and three rotational Degrees of Free-
dom (DOF) of a vehicle in its environment. This process is also referred
to as state or pose estimation. In the case of UAS missions performed in
unknown environments, the localization has to be performed along with
mapping. This is achieved by means of Simultaneous Localization and Map-
ping (SLAM) techniques. However, due to the above listed issues, mainly
the lower sensor accuracy and lower computational power, both efficient and
robust solutions are required. In case of larger airframes, with larger payload
capabilities, the available computational power can compensate for sensor
inaccuracies or redundant sensor configurations can be used.

The timing requirements of the indoor state estimation solutions depend
on the inherent aerodynamical stability of the type of UAV airframes used.
Airships or dirigibles, having slow dynamics, allow for longer periods of time
when the state is not estimated. This kind of airframe is the most inherently
stable and has the least tendency to drift around and possibly collide with
obstacles in the environment. Rotor-based platforms in different configura-
tions (e.g. tail-, coaxial-, quad-) require more timely state estimations in
order to navigate safely. For this kind of airframe it is especially important
to design efficient algorithms which allow control inputs to be computed
every few milliseconds.

Like the timing aspect, the accuracy of the state estimation is also very
important since distances to obstacles in indoor environments are normally
small. The accuracy of the sensors that can be used on a small scale airframe
is relatively low and therefore requires optimal usage of available information
through sensor fusion techniques, which in turn have to be computationally
efficient to be executed on the on-board hardware.

Even though it seems like many solutions could be transferred from the
well developed field of indoor navigation of ground robots, indoor localiza-
tion of UAVs suffers from the major drawback of lacking a direct measure of
travelled distance (i.e. odometry). Even though odometers based on wheel
encoders are not perfect, obtaining odometry information of equal fidelity
on an airborne vehicle is a much more complex task. Instead of reading in-
formation delivered by simple wheel encoders, solutions utilizing integration
of the Inertial Measurement Units (IMU) or optic flow are required for UAs.
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This makes the adaptation and use of many techniques developed for ground
robots challenging.

This chapter presents two approaches that enable indoor flight and nav-
igation of small-scale UAS’s. The first one is based on cooperating with a
ground robot to facilitate the indoor localization of a UAV. The role of the
ground robot in this setting is to provide the UAV with location information.
This kind of cooperation allows for taking advantage of the well developed
techniques for ground robot localization together with the ability of a flying
robot to position its sensors in a way normally not available to a ground
robotic system. For example, as can be observed in figure 3.1, the UAV can
provide a view of what is behind an obstacle. Such a view would not be
accessible to the ground robot on its own.

Figure 3.1: The indoor navigation though cooperation. The collaborative
system has a greater sensor range and better reach than any of its compo-
nents.

The second approach is computationally contained on-board a UAV and
takes advantage of fusing a vision-based state estimate with inertial data
to provide localization information. The method utilizes a marker-based
camera pose estimation, often used in augmented reality applications to
replace the information normally provided by a GPS and a compass sensor.
Thanks to the possibility of using many markers, the indoor flight can be
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performed in a larger area and the solution can be considered a low-cost
indoor localization system which can rapidly enable indoor flight.

Outline

The remainder of this chapter is structured as follows. First, the different
platforms and hardware used during validation of the proposed indoor nav-
igation techniques are presented in section 3.2, followed by a description of
the related work in section 3.3. The method for cooperative indoor explo-
ration performed by a UAV and a ground robot is presented in section 3.4.
Finally, a description of the method for marker-based visual state estimation
is presented in section 3.5.

3.2 Experimental platforms

Several hardware platforms and components were used in the process of
developing and validating the two indoor UAV navigation solutions. This
section describes the micro air vehicles, wheeled ground robots and com-
puter systems used for the validation. First, the platforms involved in the
validation of the collaborative navigation (i.e. the LinkMAV and two ground
robots) are presented. Second, the hardware elements involved in the marker-
based visual navigation approach are described including a high accuracy
reference system used for validating the accuracy of the method.

3.2.1 Cooperative navigation

Figure 3.8 presents the schematic view of the system used for experimental
validation of the system. The main components of the system are presented
in the remainder of this section.

LinkMAV

The LinkMAV, presented in figure 3.3B, is an in-house developed, double-
rotor coaxial helicopter platform. This kind of configuration does not require
a tail rotor commonly used in standard helicopter designs. The two rotor
disks counter each others’ torques and the heading control is achieved by
differentiating the rotational velocity of the rotors. The LinkMAV weighs
around 500 grams without payload, its largest dimension is approximately
500 millimeters and it can stay in the air for around 20 minutes [23].

In 2005 and 2007 the platform took part in the US-European Micro Air
Vehicle Competition (MAV051 and MAV072) winning the best rotorcraft
award and scoring the third place in the indoor competition, respectively.

1MAV05: http://aeromav.free.fr/MAV05/aeromav/aero-mav-garmisch-de.htm
2MAV07: http://www.recherche.enac.fr/MAV07
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Figure 3.2: The cooperative exploration experimental system components
and interconnections between them.

The LinkMAV is equipped with two lightweight cameras: a thermal cam-
era and a color CCD. The thermal camera is a Thermal-Eye 3600AS from L-3
Communications3 which delivers a PAL resolution analogue video stream.
The CCD camera is a miniature high resolution Panasonic KX141 from
Black Widow A/V4. Both video signals are sent to the ground station using
2.4GHz transmitters and receivers from Black Widow A/V for the ground
operator view or on-ground image processing purposes.

Micropilot flight control board

During the experiments, the LinkMAV used a MicroPilot 2028g flight control
board5 for attitude stabilization. All control inputs (i.e. roll, pitch, yaw and
thrust) to the MicroPilot board are in the form of Pulse Width Modulation
(PWM) signals provided by the onboard R/C receiver.

3Homepage: http://www.l-3com.com
4Homepage: http://www.blackwidowav.com
5Homepage: http://www.micropilot.com
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9

BA

Figure 3.3: A. The Pioneer 3 AT ground robot, B. The LinkMAV.

Ground robots

Two ground vehicles were used for experimentation: a Pioneer 3 AT outdoor
robot from MobileRobots Inc.6, presented in figure 3.3A and a Zerg plat-
form developed at the Freiburg University [54]. A 1.6GHz Pentium Mobile
laptop was used to control both robots including the pan-tilt unit (Direct-
edPerception 46-17.5W7) and to host image processing algorithms. A Sony
DCR-HC90E8 video camera was connected to the laptop through a Firewire
interface.

Ground station system

The Ground Station (GS) subsystem receives both thermal and color CCD
analog video signals which can be used by the GS computer for image pro-
cessing purposes or ground operator view. The Graphical User Interface
(GUI) provides means for controlling the ground robot and the LinkMAV
through a wireless Ethernet connection.

3.2.2 Marker-based visual indoor navigation

Two quadrotor UAV platforms were used for the validation of the marker-
based positioning system. The Hummingbird-based system as well as the
LinkQuad platform are presented in the following subsections.

Hummingbird UAV platform.

The Hummingbird quadrotor UAV (see Figure 3.4A) from Ascending Tech-
nologies GmbH [34] has been used as one of the test platforms. The Hum-
mingbird can carry up to 200 grams of payload and has 20 minutes of

6Homepage: http://www.activrobots.com
7Homepage: http://www.dperception.com
8Homepage: http://pro.sony.com
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BA

Figure 3.4: The Hummingbird quadrotor UAV with the LinkBoard I flight
control board, B. The LinkQuad quadrotor UAV platform.

endurance. Its diameter is approximately 50 cm and the total weight is
around 500 grams. The platform’s own electronics (X-Base and ResearchPi-
lot boards) implements the inner control loop (attitude stabilization) run-
ning at 1 kHz. The UAV can be flown by a human pilot via an RC transmitter
but it also accepts control signals (i.e. roll, pitch and yaw angles and thrust
commands) via an RS232 connection.

The LinkBoard (revision I) from UAS Technologies Sweden AB9 has
been used as the flight control computer. Thanks to the board’s modular
design it is capable of performing a wide range of tasks. In this application,
the 520 MHz XScale processor running Windows CE 6.0 operating system
hosts the vision-based pose estimation algorithm. A Logitech Quickcam Pro
5000 provides a video stream via a USB connection. The result of the pose
estimation is delivered via an RS232 link to a second processor (60 MHz
ARM7) which implements the sensor fusion algorithm. A second processor of
the same type implements four proportional-integral-derivative (PID) loops
commanding all the control channels of the UAS.

The flight control board interfaces with the ground control station soft-
ware using a 2.4 GHz wireless modem from AeroComm10. The ground sta-
tion software is used to monitor the on-board software execution by display-
ing the telemetry data. The modem can also be used to send commands to
the UAS. For example, the hovering position, altitude, or heading can be
changed during an autonomous flight.

All the additional components, i.e. the LinkBoard flight control board,
the camera, the modem and a 330 mAh battery, have a total weight of
approximately 50 grams.

9Homepage: http://www.uastech.com
10Homepage: http://www.aerocomm.com
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LinkQuad UAV platform.

The LinkQuad quadrotor UAV (see Figure 3.4B) from UAS Technologies
Sweden AB11 has been used for the validation of the marker-based position-
ing system.

The LinkQuad’s airframe is characterized by a modular design which
allows for easy reconfiguration to adopt to a variety of applications. Thanks
to a compact design (below 70 centimeters tip-to-tip) the platform is suit-
able for both indoor and outdoor use. It is equipped with custom designed
optimized carbon fiber propellers which contribute to an endurance of ap-
proximately 30 minutes. Depending on the required flight time, one or two
2.6 Ah batteries can be placed inside an easily swappable battery module.
The maximum take-off weight of the LinkQuad is 1.4 kilograms with up to
300 grams of payload.

The platform is equipped with the LinkBoard III flight control system.
The LinkBoard has a modular design and this allows for adjusting the re-
quired computational power depending on mission requirements. In the ba-
sic configuration the LinkBoard is equipped with two Cortex-M3 microcon-
trollers (72 MHz) but can be extended with two Gumstix Overo modules (up
to 720 MHz). The integrated sensors include a 3-axis accelerometer (±2/±6
g range), 3 rate gyroscopes, an absolute pressure sensor, a differential pres-
sure sensor and a 4-channel 12-bit 1 MSPS analog to digital converter. The
LinkQuad communicates with the ground station using a 2.4 GHz (115200
bits per second data rate) wireless modem from AeroComm. Additionally,
the communication can be achieved using wireless Ethernet (802.11b/g) in-
tegrated with the Gumstix boards.

The LinkBoard supports external sensors which can be interfaced with
using RS232 or USB connections. In the configuration used here a 0.3 megapixel
FireFly MV monochrome USB camera from Point Grey12 was used. It is ca-
pable of delivering images of up to 640× 480 at a rate of up to 60 Hz. The
camera is mounted on a pan-tilt module attached to the LinkQuad.

The main components of the system used during the validation of the
marker-based positioning system are presented in figure 3.5. The high accu-
racy reference data (position, velocity and orientation) obtained using the
positioning system described in the following section is sent to the ground
station software (LinkGS) and is immediately forwarded to the on-board
system using the wireless modem. The marker-based positioning algorithm
receives inertial data from the Sensor Microcontroller Unit (Sensor MCU)
and uses images delivered by the camera to compute the same set of pa-
rameters of the UAV in the environment. The results of the algorithm are
then sent to the Control MCU where this data, as well as the reference in-
formation are logged at the rate of 500 Hz on a Secure Digital (SD) memory
card.

11Homepage: http://www.uastech.com
12Point Grey: http://www.ptgrey.com
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Figure 3.5: The main system components used for validation of the marker-
based positioning system.

3.2.3 Indoor positioning reference system

The UASTechLab uses a commercial indoor motion capture system from Vi-
con13 both as the source of indoor positioning information for autonomous
flight and as a high accuracy reference system for validating other indoor
positioning solutions. The system consists of ten T10 cameras. Each cam-
era has the resolution of 1 megapixel and captures 10-bit greyscale images
(maximum 1120 × 896 pixels) up to 2000 times per second. In the full res-
olution, however, the rate is limited to 250 frames per second. The system
is installed in a 9.5 × 6 × 2.45 meters room and the camera placement as
well as the coordinate system axes used are depicted in figure 3.6. The T10
cameras illuminate the scene with infrared light which is reflected by a set
of markers attached to a tracked physical object. The configuration of the
reflective markers defines an object and its position and orientation is com-
puted in real-time. The cameras are connected to the Vicon MX Giganet
switch which is also responsible for time synchronization of the system. The
switch connects to a PC running the software for data collection and anal-
ysis. From there the motion tracking data can be logged and also retrieved
in real-time to be used for, for example, autonomous flight of a UAV.

The accuracy of UASTechLab indoor positioning system for objects in
motion is difficult to estimate as it would require an additional reference sys-
tem to compare it to. To assess the static accuracy a set of measurements
was performed. Figure 3.7 shows plots of the measured positions in X and Y

13Vicon: http://www.vicon.com
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X

Y

Z

Figure 3.6: The UASTechLab indoor positioning system camera setup.

directions (Z has very similar characteristics as the X direction) and rotation
around the X axis (Y and Z rotations have very similar characteristics) of a
stationary object placed in the center of the coordinate system. The object
had a set of reflective markers placed in a rectangular pattern with a side
dimension of 25 cm. Table 3.1 presents maximum values and standard devi-
ations of position and orientation of the same object for all dimensions. The
maximum error of position is 0.228 mm and the maximum orientation angle
error is 0.0267 degrees in this particular experiment. Even though the X and
Z positions exhibit a larger error and apparent oscillations (see figure 3.7
Position X) the static error is minuscule. This makes the system a very high
accuracy reference system for evaluating other positioning solutions.

3.3 Related work

Research with small-scale unmanned aircraft systems is being pursued in
several different fields. Development of various kinds of airframes is an
example of an active research area [6, 23, 34, 71]. Theoretical and prac-

Table 3.1: Position and rotation maximum error and standard deviations for
a static measurement.

Maximum (abs) Standard deviation

X 0.2280 0.1253
Position [mm] Y 0.0849 0.0235

Z 0.2036 0.1148
X 0.0215 0.0087

Rotation [degree] Y 0.0249 0.0059
Z 0.0267 0.0070
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Figure 3.7: Position in X and Y directions and rotation around the X axis
of a static object placed in the center of the coordinate system measured
using the UASTechLab reference positioning system.

tical solutions to various control problems are also studied by many re-
searchers [7, 25, 44, 69, 85]. Many of the solutions address particular types
of control problems, for example aggressive maneuvering and aerobatics with
small UAVs [29, 49, 61, 65, 68]. Work on particular problems where UAVs
are used for experimentation is also often reported. For example, Hoffmann
et al. [45] describes an information-theoretic distributed control architec-
ture based on particle filters to facilitate search by a mobile sensor network.
In this work, four quadrotor UAVs are used to search for a rescue beacon.
Other types of work with small-scale UAS’s involve path planning [37], target
tracking [38], mapping [52] and obstacle avoidance [8]. From the perspective
of this chapter, however, the most relevant work can be found in the field of
indoor localization.

Several approaches to the indoor navigation problem take advantage of
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the Vicon MX camera system14, usually used for motion capturing applica-
tions. It incorporates a set of cameras which also illuminate the environment
with highly efficient and powerful infrared LED light. The system deliv-
ers a 6 Degrees of Freedom (6-DOF) solution using lightweight reflective
balls attached to a vehicle’s structure. A six camera configuration of the
Vicon system allows, for example, for simultaneous tracking of four quadro-
tor MAVs and multiple ground vehicles in a 5 × 5 × 2 meter flight volume
in Schweighofer and Pinz [77]. A disadvantage of this technique is the static
nature of the environment setup where motion capturing or pose estimation
takes place. Once cameras are set up they remain stationary. Exploration
of an unknown environment cannot be performed using this method, thus
restricting possible applications. Other examples of using motion capturing
systems for enabling indoor flight are presented in How et al. [48] and Saad
et al. [76].

Other approaches to indoor MAV navigation include using artificial mark-
ers commonly used in augmented reality applications [4], or fusing vision
information (obtained from light diodes attached to a MAV) and inertial
data for a real-time attitude estimation of a quadrotor platform [24]. Alter-
native solutions take advantage of an artificial beacon on a blimp MAV [15]
or use custom low power FPGA (Field-Programmable Gate Arrays) boards
for vision aided attitude stabilization for a quadrotor MAV [26].

A number of solutions take advantage of different types of artificial fea-
tures to enable pose estimation for MAVs. One of them employs two cameras,
one mounted on a pan-tilt unit on the ground and one on-board a quadrotor
MAV [2]. The two cameras track colored blobs attached both to the UAS
and to the ground camera. Besides the need for off-board processing, the
disadvantage of this solution is a rather limited flight envelope accessible
to a MAV. This method allows for indoor flight, but preferably above the
ground camera. This considerably limits the operational range of the MAV.
A different method makes use of information obtained from a target which
takes advantage of a moiré pattern [81]. The pose of a camera is calculated
relative to a novel pattern which requires backlighting. The flight test results
presented show the applicability of the method for controlling a quadrotor
platform by calculating the position and the yaw angle of the UAS. The
disadvantage of this system is a limited operational range because it is not
easy to obtain multiple unique instances for this kind of marker. Another
approach based on using artificial markers and fusion with the inertial data
can be found in Zhang et al. [92].

Several attempts have been made to solve the indoor navigation problem
by means of SLAM. For example, a monocular vision SLAM technique for
UAS’s has been proposed in [10]. It exploits the architectural features of
manmade indoor environments, namely corners detectable in corridors. The
contribution of this work is ”a new absolute range and bearing measurement
algorithm using monocular camera”. Unfortunately the authors do not pro-

14Webpage: http://www.vicon.com/products/viconmx.html
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vide enough detail to judge the applicability of the method for on-board
execution nor any results that use the technique in closed-loop experiments.
Recently, a vision-based approach, where the vehicle is localized using a
downward looking monocular camera has been proposed by Blösch et al.
[5]. A visual SLAM algorithm tracks the pose of the camera, while, simul-
taneously, building an incremental map of the surrounding region allowing
for autonomous indoor flight.

A single camera solution is a basis for a navigation system in Soumelidis
et al. [78].The system is capable of 3D localization but it requires an a
priori map of the environment. The proposed algorithm is computationally
intensive and is executed off-board on a wirelessly transmitted video stream.
Similarly, Wendel et al. [84] propose a novel algorithm for monocular visual
localization for MAVs based on the concept of virtual views in 3D space. The
system takes advantage of a precomputed map and under the assumption
that significant parts of the scene do not alter their geometry they serve as
natural landmarks.

A number of solutions suggest incorporating biologically inspired meth-
ods in order to deal with limited computational capabilities of small-scale
UAS’s. Utilization of optic flow techniques has received the widest atten-
tion. It can be shown that optic flow can constrain the error in velocity and
attitude [53]. The technique, however, does not completely eliminate the
positional drift and additional information (such as geo-referenced images)
is required for an accurate position estimation as described in [11]. Other
biologically inspired approaches can be found in Zhang et al. [93] and Zingg
et al. [96]

Recently, systems based on ranging sensors have gained a considerable
amount of attention. A system based on a laser range finder which uses a
particle filter to globally localize a quadrotor platform in a pre-computed
map has been suggested [33]. The need for off-board computation, however,
makes the system vulnerable to communication interruptions. Another ap-
proach taking advantage of a laser range finder as well as stereo-vision can
be found in Achtelik et al. [1]. Unfortunately, commercially available small-
scale laser range finders are much heavier than miniature video cameras.
From a platform’s endurance perspective imaging sensors are much more
attractive for UAV navigation.

Recently, work based on gaming console’s hardware has been reported.
Wenzel et al. [87] proposed taking advantage of this kind of low-cost and
light-weight commodity consumer hardware. The Nintendo Wii remote in-
frared (IR) camera is used for obtaining a relative pose between a UAV and
a ground robot. The system is capable of taking-off, following and landing
on a pad attached to a UGV [87, 88]. Similarly, Lange et al. [56] suggest
using a RGB-D sensor (Microsoft Kinect gaming control sensor) for UAV
indoor navigation. Thanks to the low-cost of such sensors it is foreseeable
that more approaches based on this kind of hardware will be proposed in
the future.
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3.4 UAV navigation through cooperation with
a ground vehicle

This section describes a solution to the UAV indoor navigation problem
based on cooperation between a ground robot and a UAV. The remainder
of this section is structured as follows. It starts with a general description
of the system in section 3.4.1. Section 3.4.2 presents the image processing
and the pose estimation technique used as well as the details of the custom
LED pattern design. The accuracy evaluation results are presented in sec-
tion 3.4.3. It is followed by a description of the control system of the UAV
in section 3.4.4. The experimental setup and the results of the flight tests
are presented in section 3.4.5.

3.4.1 System overview

The system consists of two main elements as presented in figure 3.8 . Namely,
a UAV and a ground robot. The backup pilot’s system is only required to
enhance the safety of operation and is used to relay control commands from
the ground system to the UAV.
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Figure 3.8: Main functional components of the system.

A video camera which is connected to a computer performing the image
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processing is placed on the ground vehicle. This avoids the need for wireless
transmission of the video stream and allows for obtaining interference free
images as well as avoiding the problem of image quality degradation due to
the camera vibration onboard a UAV. Such a solution greatly improves the
robustness of the vision system.

Additionally, the video camera is placed on a pan-tilt unit which allows
for navigation of the UAV even if the ground vehicle is stationary. This also
makes the system able to maintain control over the MAV in case of flight
disturbances, which often occur in indoor environments when passing by a
fan or an open door. A camera placed on a pan-tilt unit tracks the flying
vehicle and the pose estimation algorithm constantly delivers the pose of
the UAV allowing a controlled flight.

The fact that the UAV can fly away from the ground robot (within
a certain range) makes the flying vehicle behave as an ”external sensor”
which provides sensor data normally not accessible from the point of view
of a ground robot alone.

3.4.2 Pose estimation method

In order to calculate the 6-DOF pose of the flying vehicle, a vision system has
been designed. It includes a custom designed LED cube shaped structure,
a video camera mounted on a pan-tilt unit and a computer vision tech-
nique which detects colored diodes in the received video stream. A detailed
description of all the components is provided in the following subsections.

Pattern design

The pose estimation method relies on a specially designed cube-shaped
structure mounted on a UAV (Fig. 3.9A, B). Only one of its faces is re-
quired to be visible to the camera for the pose estimation algorithm to
deliver a solution. The UAV can perform a full 360 degree yawing motion in
order to point its onboard sensors in a desired direction. The fact that side
faces of the cube are used for determining the pose of the MAV frees the
UAV from the requirement of staying atop the video camera. This makes
the flight envelope considerably larger as the UAV can fly away from the
ground robot within a certain range. The top and bottom faces of the cube
are not considered because they are obscured by the rotor and the landing
gear respectively. Including the bottom face would not constitute a prob-
lem, except for the requirement of additional diodes. In that case the flight
volume would be extended to allow flight directly above the UGV.

There are two high-intensity LEDs (SuperFlux from LumiLeds) in each
corner of the cube mounted at 90 degree angles to increase the usable viewing
angle to 90 degrees. Colored diodes are used to uniquely code each of the 4
faces. Only red, green and blue colors are used to minimize the possibility
of color misclassification in the case of large distances between a diode and
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Figure 3.9: A. A schematic view of the LED cube with the actual color
diode placement B. The LinkMAV with the LED cube C. Video frame from
a camera with a very fast shutter speed.

a camera. Other colors (i.e. magenta and orange) were tested but produced
misclassifications, especially at larger distances or steep viewing angles.

The size of the cube was determined based mainly on the properties of
the platform used for experimentation, specifically its size and the take-off
weight. The cube used in the experiments measured 187x198 mm and was
made out of carbon fiber rods. The structure was attached to the UAV frame
by a system of springs to cancel the influence of high frequency vibrations
generated by the spinning rotors. Its total weight (carbon fiber rods, balsa
wood, diodes, resistors and a connector) is approximately 60 grams. It uses
a small battery which is matched to the flight endurance of the UAV.

Image processing

In order to filter out as many false positive classifications as possible, the
camera operates with a very fast shutter speed (Fig. 3.9C). This makes the
process of finding cube corners easier and more robust since most of the
background becomes black. To cope with false diode classifications, which
often occur in cases when direct sunlight illuminates the background, an
additional check has to be performed. It includes examining all possible
combinations of the detected diodes in order to find those which belong to a
valid configuration. This requires finding configurations of four LEDs with
properly ordered colors yielding minimal size and holding appropriate angle
relationships between the corners of a pattern.

In case two faces are visible to the camera (around multiples of 45 degrees
yaw angle) and six diodes are identified, only one face is chosen based on
the distance between corners. The face with maximal distance is preferred in
order to minimize the influence of the camera resolution on the final result.
The more pixels describing the distance between classified diodes, the more
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accurate the result.
Image coordinates of four identified diodes of one face are processed by

the Robust Pose Estimation from a Planar Target [77] algorithm to extract
the pose of a face. Knowing which face is visible and the angles of the pan-
tilt unit on which the camera is mounted, the complete pose of the UAV
relative to the ground robot is calculated.

3.4.3 Accuracy evaluation

The accuracy of the pose estimation method has been evaluated in a series of
static experiments. Both attitude and position precision were assessed. The
LED cube pattern was mounted on a pan-tilt unit (DirectedPercpetion 46-
17.5W) on a test bench. Distances were measured using a measuring tape.
The angles were recorded from the pan-tilt unit which was commanded to
perform movements in both axes. To measure the yaw error of the vision
system, a scan in range of ±159 degrees (i.e. the standard maximum range
of the particular unit) was performed in the pan axis.

Experiments were performed at distances from 2 to 6 meters to determine
the maximum range at which the result would allow controlled flight of the
UAV. The minimum range of 2 meters stems from the size of the cube
pattern and the camera’s optical properties. Closer distances would require
a smaller pattern in order for it to stay within a usable field of view of the
camera. In case of flight disturbances caused, for example, by a fan, an open
door, or a close proximity to an obstacle, a certain margin has to be reserved
for the MAV to stay within the camera view.

Figure 3.10 presents yaw angle measurements (in range of ±159 degrees)
and errors at 2, 4 and 6 meter distances. The vision system experiences dif-
ficulty resolving a pose when a face of the cube pattern is close to parallel
with the image plane (i.e. ±13, ±20 and ±25 degrees from parallel for the
three distances; ranges grayed in the plots). These angle ranges limit the
usable extent of allowed yaw angles and were avoided in real flight exper-
iments. For the same reason the flight envelope was limited in distance to
approximately 4 meters.

The pitch angle accuracy is approximately the same (small difference in
width and height of a face) as for yaw because of the symmetry of these two
axes (vertical and horizontal axes of the image plane).

The accuracy of the roll angle (i.e. rotation around the depth axis) was
measured in the same fashion as in the case of the yaw axis. The pan-tilt
unit was commanded to sweep from 39 to -31 degrees in the tilt axis and
the measurements were performed at distances from 2 to 6 meters.

Figure 3.11 presents the roll angle measurements and errors at 2 and 4
meter distances. The error grows slightly with distance. Standard deviations
for measured distances increase but are approximately the same (1.3 degree).
This stems from the fact that this axis can be resolved from vision without
ambiguities. The roll angle is measured with sufficient accuracy for this
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Figure 3.10: Measured values and errors for the yaw axis a three distances.

application.
The distance measurement was performed at distances from 1 to 5 me-

ters. For distances up to 3 meters, the error was smaller than the accuracy
of the ground truth measurement (e.g. the exact placement of the CCD ele-
ment of the camera is unknown). For distances of 4 and 5 meters the absolute
error was approximately 13 and 45 centimeters, respectively. The absolute
error and its standard deviation grows with distance because of the growing
penalty of the camera resolution (the ratio between physical distance be-
tween diodes to number of pixels increases). Figure 3.12 presents distance
error standard deviations for distances from 1 to 5 meters. It includes the
cases where a pattern face is close to parallel with the image plane.

During a real flight, measurements are expected to be worse due to vi-
brations of the platform and the LED pattern cube. For the flight tests
performed, however, it did not pose a noticeable problem. The final vision-
only flight envelope is limited to approximately 4 meters distance and by
poses where a cube pattern face is parallel to the camera plane as described
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Figure 3.11: Measured values of angles and errors for roll axis.

above. Those poses are avoided during the flight.

3.4.4 Control

The control system signal flow is depicted in figure 3.13. The inner control
loop used for the attitude stabilization is closed onboard the LinkMAV by
means of the MicroPilot flight control system. The board utilizes a 3 axis
accelerometer and MEMS gyroscopes to provide attitude angle estimation
for the inner PID stabilization control loop. The autopilot accepts control
inputs corresponding to:

• angle in case of roll and pitch channels,

• angular velocity in case of the yaw channel,

• mixed collective pitch and rotors’ rotation speed in case of the altitude
channel.

The outer loop control (i.e. position stabilization) consists of a set of PID
control loops. The loop closure is depicted by the grayed arrow in figure 3.13.
The image processing pose estimation output (X, Y, Z positions and the yaw
angle) is processed by means of first order low-pass filters.

The control mode was used in two operational modes. One allows the
ground operator to change the target position, heading and altitude of the
UAV relative to the ground robot’s pose. The other mode allows for driving
the robot and keeping the relative pose between the robots constant. A
combination of the two is also possible.
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Figure 3.12: Standard deviation of distance error for several distances.

3.4.5 Experimental validation

Several hours of flight tests were performed with the described system. Two
kinds of experiments are presented here to demonstrate the suitability of
the system for realistic indoor missions. Test flights were performed with all
parts of the system fully operational. No tethers or external power supplies
were used. The system was operated by a single ground operator who was
commanding the ground robot to drive to a certain location and placing the
UAV in a desired relation to the ground robot. Autonomous take-off and
landing was not implemented and a backup pilot performed those parts of
the mission manually. After the UAV entered into the view of the camera
and the system was initialized, the control was handed over to the system.

Exploration

This basic flight mode allows for exploring an environment. The ground
operator commands the UAV to place itself in a certain pose relative to the
ground robot. Then, the operator commands the ground robot to drive to
a desired location. During the driving the UAV does not require any direct
control input.

”Eye-in-the-sky”

The second flight presented here demonstrates an application of the system
as an extended camera which provides video footage from a position not
accessible from a ground robot’s point of view. A cardboard box was placed
on the path of the ground robot simulating an obstacle. A person was lying
behind the box and the task was to provide footage from behind the obstacle.
The box was approximately one meter high and anything behind it was out
of reach for the ground robot’s video camera.
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Figure 3.13: Control flow diagram. The grayed arrow depicts the outer loop
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Experimental results

Figure 3.14A shows six sample frames of the exploration task video. The
ground robot drove approximately 10 meters, stopped and turned 40 degrees
left and continued driving forward. Throughout the whole time, the UAV
kept a constant relative pose to the ground robot. The second task started
with a straight drive of about 7 meters and ended with the ground vehicle
arriving close to an obstacle. The LinkMAV was commanded to climb several
decimeters above the box. After that, the UAV was commanded to fly 1
meter forward to reach behind the obstacle. Despite turbulence generated
by the close distance between the UAV and the obstacle, the flight was
autonomous at all times. After the person behind the obstacle was spotted
by the ground operator, the ground robot was commanded to return to
its starting position. Three sample frames of the video are presented in
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A

B

Figure 3.14: Top 6: Frames of video of the system during exploration task.
Bottom 3: Frames of video of the system reaching behind an obstacle.

figure 3.14B. The bottom-right image presents a frame from the onboard
UAV thermal video with the identified human body.

The pose estimation algorithm runs at a frame-rate of around 20Hz and
allows for controlling the UAV purely by vision.

3.4.6 Conclusion

A fully implemented and tested method for indoor UAS navigation has
been presented. The system is based on cooperating with a ground robot
to facilitate the indoor localization of an aerial vehicle. The role of the
ground robot is to provide the UAV with location information. This kind
of cooperation allows for taking advantage of the well developed techniques
for ground robot localization together with the ability of a flying robot to
position its sensors in a way normally not available to a ground robot.
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Figure 3.15: Schematic view of the marker-based visual pose estimation so-
lution.

3.5 Marker-based visual pose estimation for
indoor navigation

Solutions which require distributing components of the system among sev-
eral wirelessly communicating hardware entities can be effective and allow
for indoor UAV navigation as shown in the previous section. Truly au-
tonomous systems, however, should not rely on external help. This section
presents a solution to the indoor navigation problem which is computation-
ally independent of other entities. All computations are done on-board a
small scale UAV.

The solution is based on a marker-based visual state estimation algo-
rithm. It delivers a 6-DOF state of a camera on a vehicle in relation (solid
lines in figure 3.15) to low-cost markers placed in the environment. The
vision-based state estimate is then fused with inertial data to provide the
full state estimate which is of higher rate and also includes velocities of the
vehicle.

Thanks to incorporating a mapping functionality, the arbitrarily placed
markers form a map (relations between markers depicted with dashed lines)
of the environment and allow for navigation of a UAV within this map. For
example, autonomous flight between two positions (P1 and P2 in figure 3.15)
can be achieved because the state is calculated along the path (dotted line).

The remainder of this section is structured as follows. First, the main
components of the system are introduced in section 3.5.1, followed by the
description of the marker-based visual pose estimation method including
the technique which allows for mapping of the environment in sections 3.5.2
and 3.5.3, respectively. Second, the sensor fusion method is introduced in
section 3.5.4 and is followed by an evaluation of the accuracy of the method
in section 3.5.5. The control method used is described in section 3.5.6. Fi-
nally, the results of the experimental validation are presented in section 3.5.7
followed by the conclusions in section 3.5.8.
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Figure 3.16: The main functional components of the system.

3.5.1 System overview

The main functional components of the system are shown in Figure 3.16.
The vision-based pose estimation module makes use of a set of arbitrarily
placed artificial markers which form a map of the operational environment.
This module delivers the complete 6-DOF pose of a UAV i.e. 3D position and
3 attitude angles. The implementation of the marker-based state estimation
module is based on a library used in augmented reality applications, the
ARToolkitPlus15.

The pose information (excluding roll and pitch angles) is fused using
a Kalman filter with the inertial data (i.e. three accelerations and three
angular rates) to produce the full state of the system. It consists of the pose
and 3 velocities (north, east and up). It is used as input to the control module
which implements the flight control modes (e.g. hovering and navigation to
a given point).

The details of the system components are presented in the remainder of
this section.

3.5.2 Pose estimation method

The process of calculating a pose is divided into two major steps, marker
detection and pose estimation. Marker detection is accomplished in the fol-
lowing manner. First, rectangular regions in an image are found as hypothe-
ses of legitimate markers (see Marker boundary in Figure 3.17B). Second,
the interior of each hypothesis is analyzed in order to decode the identifying
number (see Figure 3.17B ID boundary). The goal of the marker detection
phase is to discern the ID and identify a sequence of the marker corners’ co-
ordinates in the image. The pose estimation algorithm calculates the relation
(rotational and translational) between the camera and the marker coordi-
nate systems. The calculation is based on the coordinates of the detected
marker corners (i.e. projection of the marker model on the image plane, cf.
figure 3.17A).

Both steps of the vision-based pose estimation process perform differ-
ently depending on the relation of the marker and the camera in terms of
translations and rotations. For example, for certain distances and camera

15Homepage: studierstube.icg.tugraz.at/handheld_ar/artoolkitplus.php
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Figure 3.17: A. Vision-based pose estimation coordinate systems B. Exam-
ple marker C. Camera positions (black dots) for the accuracy estimation
experiments.

attitudes estimating the pose is not possible at all or the result has a con-
siderable error. The following subsections describe the process and results
of evaluating the algorithm from the perspective of UAS navigation.

Marker detection

A marker ID can be coded in three different ways in the ARToolkitPlus
library. The first one uses a template matching technique. This type is the
most computationally and memory expensive since the interior of a detected
rectangle is compared with an image loaded at startup. For multiple markers
all images have to be stored in memory for comparison. The second type,
called Simple ID, supports 512 predefined markers and relies on decoding the
ID from an array of bits (e.g. 6×6) located inside the rectangular boundary
of a marker. The third type, called BCH ID (depicted in Figure 3.17B),
encodes marker IDs using a forward correcting code and supports up to
4096 combinations.

Both Simple and BCH ID coding methods were evaluated to assess the
optimal camera placement relative to a marker which assures reliable de-
tection. A set of images was produced by projecting a marker (with linear
interpolation) of 100×100 mm size onto the image plane of a camera with
image size of 320×240 pixels, focal lengths fx = fy = 386 and the principal
cx = cy = (160, 120).

The camera was placed as schematically depicted by black dots in Fig-
ure 3.17C i.e. in 50 mm increments in XM and ZM directions up to 2 m.
Three representative rotations around the ZM axis were used: 0, 22.5 and
45 degrees (respectively, red, green and blue marked regions). The rotation
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Figure 3.18: BCH Marker detection confidence larger than 0.5 for three
rotations around the ZM axis.

around the XCAM axis was chosen so that the camera was always pointing
to the center of the marker which was located at the origin of the coordinate
system. Marker detection was performed on the set of generated images.

The confidence of detecting a marker and decoding its ID for the three
rotations around the ZM axis is shown in Figure 3.18. The confidence for
detecting BCH IDs is decreased from 1 by 0.25 for every detected and cor-
rected error bit. Results with a confidence factor lower than 0.5 are not
included in the plot. The result of detecting Simple IDs was on average
13 percent worse i.e. detection was successful for fewer camera poses. The
use of BCH markers adds almost no computational penalty and is preferred
for UAV navigation because it allows for the coverage of large operational
environments thanks to a larger number of available IDs.

In order to maximize the marker detection rate, the distance of the cam-
era to a marker should not be larger than 75 cm for the given marker size
and camera. Additionally, the image plane should not be tilted more than
approximately 60 degrees from the marker. The area with high detection
rate is depicted by the dashed line in Figure 3.18.

The evaluation did not include the effects of lens distortion. However,
with accurate camera calibration this is a minimal error contributor. Addi-
tionally, the experimental setup did not include effects of blurring when the
camera moves relative to a marker. Depending on the imaging sensor used
the effect of blooming or streaking can also influence the detection perfor-
mance. However, both effects can be minimized by appropriately adjusting
the camera parameters as, for example, described in section 3.5.7.

Pose Estimation

After detecting a marker and extracting its four corners pi=1...4 =
[
pix , piy

]T

and given four coplanar model points Pi=1...4 =
[
Pix , Piy , 0

]T
a pose esti-

mation algorithm calculates the rotation expressed in Euler angles R =
f (φ, θ, ψ) and translation t = [tx, ty, tz]

T
of a camera such that:

pi ∝ RPi + t (3.1)
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Since pi is expressed in camera coordinates, it is in practice perturbed by
noise and measured in an image as p̂i.

In general, calculating a pose i.e. finding R and t can be achieved by
minimizing one of the commonly used error functions. For example, an image
space error function in case of bundle-adjustment algorithms or an object
space error function (Eos) used in the Robust Pose Estimation Algorithm
for Planar Targets (RPP) [77] can be used. In the latter case, a special
parameterization allows one to deal with pose ambiguities with up to a
50 percent better success rate over the standard definition. The algorithm
uses an initial pose estimate and finds a second minimum of the Eos error
function. If it exists, the correct pose should yield the lower value of the error
function. Due to this property, the algorithm exhibits a considerably lower
”jerkiness” in the calculated pose. While in augmented reality applications
this property gives a better visual result, for UAS navigation it gives more
stability and robustness.

Initially, the accuracy and the noise of the RPP algorithm were assessed
in a series of Monte Carlo simulations. Poses of the camera were the same as
for the marker detection experiments and are shown in Figure 3.17C. The
model points Pi were projected onto the image plane for the given R and
t and the camera model described earlier. The values of p̂i were calculated
by perturbing pi with a uniform noise of 2 pixels in 750 iterations. The
error in attitude angle estimation was measured as a difference between the
nominal values of (α, β, γ) and the average results of the algorithm in the
presence of noise. Similarly, the error of position and altitude was measured
as the difference between the nominal value of t and the average result in
the presence of noise. Figure 3.19 shows the standard deviation of the error
in three axes (columns tx, ty and tz) of the camera translation in the marker
coordinate system with 2 pixel noise. The three rows correspond to the three
rotations around the ZM axis as described earlier. The range of altitude and
distance to a marker were chosen to emphasize the range of marker detection
described in the previous subsection.

The RPP algorithm exhibits a mean and standard deviation errors in a
range of several centimeters for distances up to 50 cm for the given set of
parameters (i.e. 10 x 10 cm pattern size, 320 x 240 pixels image size). The
attitude angles are estimated with an average error below 3 degrees with
a standard deviation below 6 degrees. In order to assess a usable range of
the algorithm, the results can be “scaled”. For example, doubling the size of
the pattern cuts the error in half or doubles the range. The same applies to
doubling the resolution of the camera. For an image of size 640 x 480 pixels
and a pattern of size 50 x 50 cm, the error measured in centimeters can be
reached for up to 5 meters.

The usable range can additionally be extended by fusing the vision result
with inertial data. In such cases, increased noise from the vision result can
be handled by, for example, a Kalman filter.

The minimum distance to a marker depends on the field of view of the
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Figure 3.19: Standard deviation in mm of translation error for 0, 22.5 and 45
degrees of camera rotation around ZM axis of the marker coordinate system
with noise of 2 pixels.

camera at hand. Without loss of generality, for a given field of view of α
degrees and a rectangular marker width of w mm the minimum distance
can be calculated as:

dmin =
w

2 · tan(α2 )
(3.2)

In practice the distance should be larger to avoid cases when a marker
occupies the full frame.

Timing analysis

In order to assess the feasibility of using the proposed vision-based pose
estimation on-board a small-scale UAS, a timing analysis of the algorithm
was performed. It was made by measuring execution times of the marker
detection and the pose calculation implemented in the ARToolkitPlus library
on the LinkBoard flight control board. The marker detection phase of the
vision-based pose estimation takes approximately 10 percent of the total
time of processing of a single frame. Large numbers of markers visible at
once in a frame do not add much computational time. Additionally, the
detection time is independent of the camera pose.

The pose calculation phase takes the majority of a frame processing



3.5 Marker-based visual pose estimation for indoor navigation 71

0 200 400 600

100

200

300

400

500

600

700

 

 

0

0.2

0.4

0.6

0.8

1

Distance to pattern [mm]

A
lt
it
u
d
e 

[m
m

]

Figure 3.20: Normalized average number of iterations for vision-based pose
estimation algorithm depending on the relative camera and marker pose.

time. The amount of time depends on the pose of the camera relative to
the marker. Figure 3.20 presents normalized average number of iterations
performed by the RPP algorithm. It is approximately the same for all ex-
periments described in section 3.5.2. The number of iterations grows when
the image plane and the marker plane become parallel. From a computa-
tional efficiency perspective, to achieve the highest frame processing rate,
such a relation between the camera and the marker should be avoided dur-
ing navigation. When the angle between the marker and the image plane
is more than approximately 30 degrees the pose calculation takes between
100-200 ms for a single marker (note that the PXA270 microprocessor does
not have a floating-point unit). Calculating poses of multiple markers in one
frame should be avoided in order to maintain a high processing rate. In fact,
it is only required during mapping of the environment. If a map is available
and several markers are detected only one of them should be selected to
calculate the absolute pose. Selecting the largest (measured in pixels) de-
tected marker has proved in practice to be a very good strategy. This allows
for calculating the pose only for this marker, maintaining a high processing
rate.

3.5.3 Mapping

Navigation relative to one marker allows only for hovering above it. In order
to enlarge the operational range a set of markers is necessary. Thanks to a
large number of available IDs (each identified by a BCH code) it is possible
to build a map and effectively enlarge the area of navigation. Such a map
is a set of marker poses relative to one marker chosen as the origin of the
coordinate system. During navigation, when a marker is detected and a
relative camera pose is obtained it can be recalculated into an absolute
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pose in the environment. A map can be built online during environment
exploration. A straightforward way to build a map is to iteratively calculate
relative poses of newly detected markers in relation to the one chosen as the
origin. This requires two markers to be visible in the camera frame at once.
The result of the pose estimation of two markers is given by the rotation
matrices c

mRi and translations c
mti, i = 0, 1. The results describe marker

pose relative to the camera coordinate system. The camera pose relative to
a marker can be calculated as m

c R = c
mR

T and m
c t = m

c R c
mt. The relative

pose can be calculated as follows:

RR = m
c R0

c
mR1 (3.3)

tR = m
c R0 (mc t1 −mc t0) (3.4)

These two values are saved. During navigation, when the i-th marker is
observed, the absolute pose (relative to the marker designated as the origin
M) can be calculated as follows:

c
MR = RR

c
mRi (3.5)

c
M t = RR

m
c ti + tR (3.6)

This method has a very small computational footprint but has a drawback.
The error of the pose estimation accumulates in relative poses and grows
with the distance from the marker chosen as the origin. In other words,
the farther away from the origin, the larger the error of the absolute pose.
The error can be minimized by measuring the relative displacement of two
markers several times and using an average. This will make the error smaller
but will not eliminate it.

One solution to this problem is to employ a method for explicit loop
closure which in this case would be a relatively easy task due to the fact
that loop detection is solved thanks to using unique IDs.

Another way to solve the problem could be to calculate a globally con-
sistent map given all measurements as in [60]. This algorithm operates on
a graph where markers are represented as vertices and relative poses of two
markers as edges. It is more computationally expensive than the simple so-
lution and is more suitable for offline calculation.

3.5.4 Sensor fusion

In order to provide a robust navigation solution, the position and heading
information delivered by the vision-based pose estimation is fused with the
inertial data (from 3-axis accelerometers and 3 rate gyroscopes) by means
of a 9 state Extended Kalman Filter (EKF). The use of pitch and roll angles
from vision could improve the accuracy of the state estimation but would
increase the computational load and was empirically proven not to be neces-
sary to achieve good performance. The state of the system is represented by
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Figure 3.21: The state estimation schematics.

position, horizontal and vertical velocities and attitude angles. The schemat-
ics of the sensor fusion technique is presented in Figure 3.21. The EKF uses
a linear model for the measurement and process equations. The filter is im-
plemented in the error dynamics formulation and the state represents the
errors of the inertial navigation system (INS). The INS mechanization pro-
cess is responsible for the time integration of the inertial sensor data (i.e.
dead reckoning). It provides the full navigation solution but it suffers from
a position drift which grows in time. In order to bound this error the output
of the EKF (i.e. errors of the position, velocities and attitude) which is aided
by the position update is fed to the INS mechanization process. Details of
such a formulation of the sensor fusion technique can be found in [11].

Thanks to the sensor fusion technique, the UAS is able to navigate for a
limited amount of time even without the position information delivered by
the vision system. The inertial sensors provide the complete state estimate
with a drift, which is corrected as soon as a vision-based position update is
available.

3.5.5 Accuracy evaluation

The absolute accuracy of the marker-based pose estimation has been eval-
uated. The results of the algorithm running on-board the LinkQuad UAV
have been compared with high accuracy reference system (see section 3.2).
Figure 3.22 presents an overview of the experiment. UAV has been moved
in a circular path with varying altitude in a map composed of three 176 mm
rectangular markers. Frame size of 320×240 pixels was used and the camera
was pointed at 45 degrees tilt angle.

Figure 3.23 presents the raw vision and Kalman filter results as well as
the reference data separately for X, Y and Z axes. Figure 3.24 shows the
error between the reference and the filter data. Three marked regions on
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Figure 3.22: Result of the Kalman filter and the reference system of the UAV
during the validation experiment.

these plots (at approx. 152, 186 and 227 seconds; see also figure 3.29) show
the times when the vision results were not obtained and the filter result is
based only on prediction. The maximum position error for the three axes is
smaller than ± 40 mm. Position X exhibits a drift of 80 mm when the vision
result is not available for 2.6 seconds. Position in the Y and Z direction are
not visibly affected by the loss of position update from the vision system.
The Root Mean Square Error (RMSE) for X, Y and Z axes is 11.89, 8.10
and 10.69 mm, respectively.

Figures 3.25 and 3.26 present results of comparing the Kalman filter
and vision-derived velocities, respectively, with the reference. As can be
seen both estimations are close to the reference but pure vision exhibits a
larger noise. Since the use of velocity information is crucial for controlling a
UAV in flight, the Kalman filter result has a clear advantage over velocities
calculated based on the vision data.

The accuracy of attitude angles estimation is presented in figures 3.27
and 3.28. The error for X and Y axes is below ± 1.5 degrees. The maximum
error for the Z axis is 2.5 degrees. The RMSE for the three rotations is 0.65,
0.45 and 0.67 degrees, respectively.

The timing of the vision update is presented in figure 3.29. On average
the vision-based pose estimation delivers a result every 170 ms. For the same
experiment, the average Kalman filter computation time was 43 ms.
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Figure 3.23: Raw vision, Kalman filter and the reference position in three
axes. Vertical lines mark regions of vision results not available for longer
than 0.9 seconds.



76 3. Towards autonomous indoor navigation of small-scale UAVs

140 150 160 170 180 190 200 210 220 230 240

−40

−20

0

20

40

60

80

Position X error (Filter − Reference)
[m

m
]

[s]

140 150 160 170 180 190 200 210 220 230 240
−40

−30

−20

−10

0

10

20

30

40
Position Y error (Filter − Reference)

[m
m

]

[s]

140 150 160 170 180 190 200 210 220 230 240
−20

−10

0

10

20

30

40
Position Z error (Filter − Reference)

[m
m

]

[s]

Figure 3.24: Kalman filter and the reference position difference in three axes.
Vertical lines mark regions of vision results not available for longer than 0.9
seconds.
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Figure 3.25: Kalman filter and the reference velocities in three axes. Vertical
lines mark regions of vision results not available for longer than 0.9 seconds.
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Figure 3.26: Raw vision and the reference velocities in three axes. Vertical
lines mark regions of vision results not available for longer than 0.9 seconds.



3.5 Marker-based visual pose estimation for indoor navigation 79

140 150 160 170 180 190 200 210 220 230 240

−2

−1

0

1

2

3

4

5

6

Roll

[d
eg

re
e]

[s]

 

 

Reference Filter

140 150 160 170 180 190 200 210 220 230 240
−6

−5

−4

−3

−2

−1

0

1
Pitch

[d
eg

re
e]

[s]

140 150 160 170 180 190 200 210 220 230 240
−200

−150

−100

−50

0

50

100

150

200
Yaw

[d
eg

re
e]

[s]

Figure 3.27: Kalman filter and the reference attitude angles. Vertical lines
mark regions of vision results not available for longer than 0.9 seconds.
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Figure 3.28: Kalman filter and the reference attitude angles difference in
three axes. Vertical lines mark regions of vision results not available for
longer than 0.9 seconds.



3.5 Marker-based visual pose estimation for indoor navigation 81

140 150 160 170 180 190 200 210 220 230 240
0

0.5

1

1.5

2

2.5

3
Vision update time

[s]

[s
]

0.17

Figure 3.29: Raw vision update timing.

The accuracy of the mapping method described in section 3.5.3 has been
evaluated as well. Figure 3.30 presents the X and Y plot of the Kalman filter
result and the reference. A set of 12 markers (176 mm) has been placed in
a L shaped way as presented in figure 3.31. The UAV has been moved
from the start position (above a marker placed in the origin of the reference
system) along the L path of markers. Even though the used mapping method
accumulates error the further away from the origin, the drift within the built
map of 6× 3 meters was not visible.

3.5.6 Control

All computations in the system are executed on-board the UAS. The inner
control loop (i.e. attitude stabilization) is performed by the Hummingbird
quadrotor platform electronics. It accepts input through a serial connection
in the form of angles in case of roll and pitch, angular velocity in case of
yaw and the thrust value of the altitude channel.

These signals are produced by the outer control loop (i.e. position sta-
bilization) computed on the LinkBoard autopilot. Four PID control loops
are responsible for calculating the control signals. During initialization of
the outer loop four initial control values are taken from the UAS avionics.
They correspond to the values of the sticks of the RC transmitter when the
UAS is operated manually. The initialization step is performed when the
autonomous flight is engaged and results in a smooth transition between
the flight modes.
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Figure 3.30: Kalman filter and the reference position in X and Y directions
for a larger map.

Figure 3.31: The marker setup used for evaluating the accuracy of the map
building method. Vicon cameras of the reference system visible at the top
of the image.
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3.5.7 Experimental validation

The system has been evaluated in real flight tests using the Hummingbird-
based UAV platform described in section 3.2 with all the described com-
ponents operational. No tethers or other aids were used to validate the
performance of the system in fully autonomous flight.

Experimental setup

The flights were performed in an office environment. A set of 20 randomly
placed artificial markers of size 17×17 cm printed on white paper (see Fig-
ure 3.32) were used to compute a map of the environment. The map was con-
structed on-line during an exploration flight using the procedure described
in section 3.5.3 and then saved for successive flights.

In order to minimize the influence of the ”rolling shutter” of CMOS sen-
sors the camera parameters were adjusted to use the shortest possible expo-
sure time. To compensate for the darker images the contrast and brightness
parameters were appropriately adjusted. Due to this, the typical skew and
wobble effects were to a large extent removed from the images.

The camera was pointed 45 degrees down to achieve minimal pose es-
timation error and a high processing rate (cf. section 3.5.2). The relation
between the camera and the UAS coordinate systems was measured with
centimeter accuracy. This proved to be sufficient but for the best preci-
sion the relation could be fully calibrated using, for example, the method
described in Hol et al. [46].

The camera was calibrated to find intrinsic and lens distortion parame-
ters using the Camera Calibration Toolbox for Matlab [9].

Several hours of autonomous flights were performed during development
and evaluation of the system. The marker size used allowed for stable hov-
ering up to approximately 1.5 m altitude at different positions and headings
in a 4×4 meters region. The results achieved confirm the simulation results
presented in section 3.5.2. Since only 20 out of 4096 markers were used, the
operational range can be substantially extended in the future.

Experimental results

In order to achieve stable hovering, it was also necessary to include the esti-
mated velocities especially for the horizontal control and to a lesser degree
for altitude. The yaw channel did not require velocity in the outer control
loop to achieve good performance. Due to battery power depletion over time,
it was necessary to include the integral term of the PID controller, especially
for the altitude channel. Autonomous flights for up to 20 minutes (i.e. the
UAV’s endurance) were achieved.
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Figure 3.32: Autonomous hovering of the presented system.

3.5.8 Conclusion

An implemented and empirically validated system for autonomous indoor
navigation has been presented. The system employs a monocular vision-
based pose estimation which uses uniquely coded low-cost rectangular mark-
ers. The use of multiple markers (which can be placed at arbitrary poses)
and building of a map allow for the operation of a UAS in large areas. The
range and accuracy of the pose estimation algorithm has been evaluated
and a sensor fusion technique based on a Kalman filter has been presented.
Compared to other solutions the system is computationally self-contained.
No data or video transmission to other entities is required to achieve au-
tonomous flight. All computations are performed on-board the UAS. This
removes the need for continuous wireless communication and increases the
robustness and autonomy of the system.

The system has been tested during several hours of flight integrated
with a commercially available quadrotor UAS platform. The successful ex-
periments with the existing system show that it is a very promising step
towards true autonomous indoor navigation.



Chapter 4

Concluding remarks

The number of missions performed by autonomous UAS’s has been steadily
growing the past decades. Progress is being made in both military, academic
and commercial domains.

Outdoor operating autonomous UAS’s have reached a high level of matu-
rity and the types of missions have become relatively sophisticated. Not only
do they take off and execute 3D paths with high precision but also plan their
trajectories and actions, to finally land without any human involvement.

This thesis presented two functionalities for outdoor operating UAS’s
which rely on color and thermal video streams as the main source of infor-
mation. The first functionality deals with the problem of building saliency
maps where human body locations are marked as points of interest. Such
maps can be used in emergency situations to help first responders to quickly
focus the help effort in places where it is most needed. The task of acquir-
ing the first overview of the situation can be delegated to autonomously
operating UAS’s.

The second functionality deals with tracking and geolocation of vehicles.
The obtained streams of vehicle positions can be used by a reasoning system
to analyze traffic behaviors such as reckless overtakes, speeding and enter-
ing crossings. Thanks to an automatic analysis of the traffic situation, the
load on an operator can be greatly reduced and the situational awareness
improved.

The use of UAS’s in indoor environments suffers from a major drawback,
namely the lack of an ubiquitous positioning system such as the GPS. For
this reason, the range of missions executed autonomously in indoor settings
is quite limited. Before the use of autonomous indoor aerial vehicles becomes
commonplace, the problem of indoor pose estimation and localization has
to be solved.

This thesis presented two approaches to addressing these problems. In
both solutions cameras are used as the main sensor. Their low cost, light
weight and low power consumption fit well with typical issues facing small
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scale UAVs operating in indoor environments: smaller payloads, limited
power sources and lower computational power. Both presented solutions
have been fully implemented and tested in series of flight tests demonstrat-
ing their effectiveness.

The first approach relies on the cooperation between a UAV and a ground
robot system. The UGV uses its camera and a computer vision algorithm
to compute the pose of the aerial vehicle and is responsible for controlling
its flight. The UAV, in turn, acts as a remote sensor and allows the overall
system to obtain sensory input not accessible for either of the components
on their own. Additionally, the use of a UAV in the presented way allows
for building upon the development in the field of ground robotics by ex-
tending the sensing capabilities of UGVs. The use of the presented system
in emergency situations, such as the recent nuclear power plant accident in
Japan, would be very helpful in obtaining information (e.g. video feeds) not
accessible to ground robots.

In the second approach all computations are performed solely on the
UAV and therefore there is no need for cooperation with other entities. The
system makes use of a marker-based visual state estimation and sensor fusion
technique to provide a UAV with location information. The presented system
constitutes, in fact, a low-cost indoor UAV testbed by solving the localization
problem. Building upon the presented system, it is possible to pursue other
aspects of UAS use, such as control mode development (e.g. path execution)
or applying artificial intelligence techniques (e.g. task and path planning).

4.1 Future work

Future work will involve further investigations of the indoor localization
problem. The main objective will be to allow for fully autonomous indoor
flight in unmodified environments. The key aspect to building a successful
solution will be the use and fusion of different sensors’ data (e.g. from laser
range finders or optic flow sensors). A combination of several techniques
each addressing a particular part of the problem should allow for a robust
solution to the indoor localization and navigation of UAVs.
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