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ABSTRACT

The problem of determining who should do what given a set of tasks and a set of agents
is called the task allocation problem. The problem occurs in many multi-agent system
applications where a workload of tasks should be shared by a number of agents. In our
case, the task allocation problem occurs as an integral part of a larger problem of deter-
mining if a task can be delegated from one agent to another.

Delegation is the act of handing over the responsibility for something to someone. Previ-
ously, a theory for delegation including a delegation speech act has been specified. The
speech act specifies the preconditions that must be fulfilled before the delegation can
be carried out, and the postconditions that will be true afterward. To actually use the
speech act in a multi-agent system, there must be a practical way of determining if the
preconditions are true. This can be done by a process that includes solving a complex
task allocation problem by the agents involved in the delegation.

In this thesis a constraint-based task specification formalism, a complex task allocation
algorithm for allocating tasks to unmanned aerial vehicles and a generic collaborative
system shell for robotic systems are developed. The three components are used as the
basis for a collaborative unmanned aircraft system that uses delegation for distributing
and coordinating the agents’ execution of complex tasks.
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Chapter 1

Introduction

In the past decade, the Unmanned Aircraft Systems Technologies Lab (UAS-
Tech [24]) at the Department of Computer and Information Science, Lin-
köping University, has been involved in the development of autonomous
unmanned aerial vehicles (UAVs) and associated hardware and software
technologies [26, 27, 28]. The size of our research platforms range from the
UASTech RMAX helicopter system (100 kg) [15, 29, 83, 97, 100], a modified
version of the RMAX platform developed by Yamaha Motor Company, to
smaller micro-size rotor based systems such as the LinkQuad [25] (1 kg)
and LinkMAV [43, 84] (500 g) in addition to a fixed wing platform, the
PingWing [16] (500 g). These UAV platforms are shown in Figure 1.1. The
latter three have been designed and developed by the Unmanned Aircraft
Systems Technologies Lab. All four platforms are fully autonomous and
have been deployed in various flight tests.

Previous work has focused on the development of robust autonomous
systems for UAVs which seamlessly integrate control, reactive, and delib-
erative capabilities that meet the requirements of hard and soft real-time
constraints [29, 76]. Additionally focus has been on the development and
integration of many high-level autonomous capabilities studied in the area of
cognitive robotics such as task planners [32, 33], motion planners [97, 98, 99],
execution monitors [35], and reasoning systems [34, 38, 74], in addition to
novel middleware frameworks which support such integration [60, 62, 63].
Although research with individual high-level cognitive functionalities is quite
advanced, robust integration of such capabilities in robotic systems which
meet real-world constraints is less developed but at the same time essential
to the introduction of such robotic systems into society in the future. Con-
sequently, the research has focused, not only on such high-level cognitive
functionalities, but also on system integration issues.

More recently, the research efforts have transitioned toward the study
of systems of UAVs. The accepted terminology for such systems is Un-
manned Aircraft Systems (UAS’s). A UAS consists of one or more UAVs
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Chapter 1. Introduction

Figure 1.1: The UASTech RMAX (upper left), PingWing (upper right),
LinkQuad (lower left) and LinkMAV (lower right).

(possibly heterogeneous) in addition to one or more ground operator sys-
tems. Of specific interest are collaborative UAS applications where UAVs
are required to collaborate not only with each other but also with diverse
human resources [37, 39, 40, 61, 69]. With the term collaborative UAS we
mean a UAS consisting of one or more UAVs and one or more operators
that collaborate to achieve tasks. Principled interaction between UAVs and
human resources is an essential component in the future uses of UAVs in
complex emergency services or blue-light scenarios. Some specific target
UAV scenarios, for example are search and rescue missions for people lost in
wilderness regions and assistance in guiding them to a safe destination; as-
sistance in search at sea scenarios; assistance in more devastating scenarios
such as earthquakes, flooding or forest fires; and environmental monitoring.

As UAVs become more autonomous, mixed-initiative interaction between
human operators and such systems will be central in mission planning and
tasking. More elaborate collaboration methods, such as mixed-initiative
interaction are needed since more autonomy means less direct control.

In the future, to gain practical use and acceptance of UAVs, a verifiable,
principled and well-defined interaction foundation between one or more hu-
man operators and one or more autonomous systems is required. In devel-
oping a principled framework for complex interactions between UAVs and
humans in complex scenarios, many interdependent conceptual and prag-
matic issues arise and need clarification not only theoretically, but also prag-
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Chapter 1. Introduction

matically in the form of demonstrators. Additionally, an iterative research
methodology is essential which combines foundational theory, systems build-
ing and empirical testing in real-world applications from the start.

The complexity of developing deployed architectures for realistic collab-
orative activities among robots that operate in the real world under time
and space constraints is very high. This complexity is tackled by working
both abstractly at a formal logical level and concretely at a systems build-
ing level. More importantly, the two approaches are related to each other
by grounding the formal abstractions in actual software implementations.
This guarantees the fidelity of the actual system to the formal specification.
Bridging this conceptual gap robustly is an important area of research and
given the complexity of the systems being built today demands new insights
and techniques.

The conceptual basis for the collaboration framework includes a triad of
fundamental, interdependent conceptual issues: delegation, mixed-initiative
interaction and adjustable autonomy (Figure 1.2). The concept of delegation
is particularly important and in some sense provides a bridge between mixed-
initiative interaction and adjustable autonomy.

Figure 1.2: The core concepts of the collaborative framework.

Delegation – In any mixed-initiative interaction, humans may request
help from robotic systems and robotic systems may request help from hu-
mans. One can abstract and concisely model such requests as a form of del-
egation, Delegate(A,B, task, constraints), where A is the delegating agent,
B is the contractor, task is the task being delegated and consists of a goal
and possibly a plan to achieve the goal, and constraints represents a con-
text in which the request is made and the task should be carried out. In
our framework, delegation is formalized as a speech act and the delegation
process invoked can be recursive.

Adjustable Autonomy – In solving tasks in a mixed-initiative setting,
the robotic system involved will have a potentially wide spectrum of auton-
omy, yet should only use as much autonomy as is required for a task and
should not violate the degree of autonomy mandated by a human operator
unless agreement is made. One can begin to develop a principled means of
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Chapter 1. Introduction

adjusting autonomy through the use of the task and constraint parameters
in Delegate(A,B, task, constraints). A task delegated with only a goal and
no plan, with few constraints, allows the robot to use much of its autonomy
in solving the task, whereas a task specified as a sequence of actions and
many constraints allows only limited autonomy. It may even be the case
that the delegator does not allow the contractor to recursively delegate or
not to delegate sub-tasks.

Mixed-Initiative Interaction – By mixed-initiative, we mean that in-
teraction and negotiation between a robotic system, such as a UAV and a
human, will take advantage of each of their skills, capacities and knowledge
in developing a mission plan, executing the plan and adapting to contingen-
cies during the execution of the plan. Mixed-initiative interaction involves
a very broad set of issues, both theoretical and pragmatic. One central part
of such an interaction is the ability of a ground operator (GOP) to be able
to delegate tasks to a UAV, Delegate(GOP ,UAV , task, constraints) and in
a symmetric manner, the ability of a UAV to be able to delegate tasks to a
GOP, Delegate(UAV ,GOP , task, constraints). Issues pertaining to safety,
security, trust, etc., have to be dealt with in the interaction process and can
be formalized as particular types of constraints associated with a delegated
task.

1.1 Constraints and Multiagent Systems

In this section we will describe a number of constraint problem formulations.
Those constraint problem formulations are important because we will state
the task allocation problem as a distributed constraint satisfaction problem.

A constraint problem contains a number of variables connected by differ-
ent types of relations called constraints. The constraints restrict the domains
of possible values for the variables. A solution to a constraint satisfaction
problem (CSP) is an assignment of a value to each variable so that all con-
straints are satisfied.

Example: A graph coloring problem, with three nodes and three colors.
In the graph coloring problem two related variables may not have the same
color. The variables and their domains are x, y, z,= {1, 2, 3}, the constraints
are x 6= y, y 6= z, x 6= z. A possible solution is x = 1, y = 2, z = 3.

A relatively new sub-area in the constraint research field is the area of
distributed constraint satisfaction problem solving, which is basically a dis-
tributed version of constraint satisfaction problem solving. This method
introduces the concept of agents to the constraint problem. In a distributed
constraint satisfaction problem (DisCSP), each agent owns some of the vari-
ables. An agent can only change the values of its own variables. The con-
straints are either local, if only involving a single agent’s variables, or global,
if involving more than one agent’s variables. Returning to the previous ex-
ample, in a distributed version of the graph coloring problem, each variable
is owned by an agent, meaning there are three agents. Each agent has two
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Chapter 1. Introduction

global constraints. There are no local constraints in this example. To find
a solution the agents must agree on values for their variables so that all
constraints are satisfied.

A related problem formulation is distributed constraint optimization,
where a solution is not only about satisfying the constraints but also to
minimize or maximize the value of some expression involving one or more
constraint variables. For example, each constraint has the value 0 if satisfied,
1 otherwise. The sum of all such constraint values is minimized, meaning a
solution should have as few unsatisfied constraints as possible.

Formulating a problem as a distributed constraint satisfaction problem
(DisCOP) is natural when solving problems related to multi-agent sys-
tems because the problem formulation assumes a multi-agent system of (au-
tonomous) agents.

1.2 Problem Statement and Motivation

The basis for this thesis is the theoretical framework for delegation developed
by Doherty and Meyer in [36, 40] and briefly introduced above.

The core of the framework is a speech act for delegation, which is a
type of action for delegating a task from one agent to another. The formal
semantics of the pre- and postconditions of the speech act are specified in
the KARO logic [95]. The framework also describes a number of services
needed to carry out delegations and how those services interact during this
process.

The goal of the thesis is to answer the research questions involved in
realizing the framework in a collaborative UAS. The delegation theory and
the proposed framework only provide an abstract definition of a task and
do not describe exactly how the pre- and post-conditions of delegation can
be fulfilled. These concepts must be made concrete and explicit before a
collaborative UAS can be realized. Each part can be stated as a research
question:

• R1 - How can a task τ in the delegation theory be specified to make
the realization of the delegation speech act possible?

• R2 - How can the preconditions of the delegation speech act be assured,
so that a task τ specified according to R1 can be delegated?

• R3 - How can R1 and R2 be realized in a collaborative UAS?

The three research questions R1–R3 are together the problem statement
and the topic of this thesis. The answer to R1 is needed for expressing
what should be delegated. The answer to R2 is needed to carry out dele-
gations. The answer to R3 is needed for creating a concrete instance of the
collaborative UAS.
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Chapter 1. Introduction

The main motivation behind the theoretical framework and the work
in this thesis is to create a collaborative UAS where collaboration between
agents is formed through delegations. By using the delegation concept from
the delegation theory together with adjustable autonomy and mixed initia-
tive interaction, the operator will be relieved of micro-managing the UAVs
while still retaining the ability to update the restrictions on how the UAS
may achieve the tasks. Simplifying the work of the operator becomes increas-
ingly important as the number of UAVs in the UAS increases. Increasing the
UAVs’ autonomy can ease this problem, but more autonomy is not always
the answer. For safety-critical missions it is important that the operator
can add restrictions on how the UAS may achieve a delegated task and thus
decrease the platforms’ autonomy, to avoid dangerous situations.

In a collaborative UAS realizing the concepts of the theoretical frame-
work for delegation it would be possible for an operator to collaborate with
the UAVs in a way that fits the current mission. The operator can put
restrictions on the execution of a mission, determine the autonomy of the
platforms in a mission, the degree of operator involvement during execution
of a mission, etc. Such a system would be very useful, for example in assist-
ing emergency services in dangerous and time-critical disaster situations.

1.3 Contributions

The main contributions of this thesis are the answers to the research ques-
tions R1–R3, in the form of a task specification formalism (task specification
trees), a complex task allocation algorithm for allocating the tasks in a task
specification tree to UAV platforms (AllocateTST ), and a generic collabo-
rative system shell for robotic systems (an extension of the FIPA Abstract
Architecture).

A task specification tree is a declarative, constraint-based representation
of a complex multi-agent task. A task can only be delegated to a plat-
form if the delegated platform is able to carry out the task. A prerequisite
for delegation is therefore the ability to determine who can be delegated a
task, which is a form of task allocation. The task allocation problem occurs
because the delegator can not by itself determine if the contractor can be
allocated to the task. The AllocateTST algorithm, which is a part of the del-
egation process, finds suitable platforms for the tasks in a task specification
tree. Task allocation is formulated as a distributed constraint satisfaction
problem, that is extended for each individual allocation of a task in a task
specification tree.

The collaborative robotic shell includes an agent layer with functionality
for delegation and a representation of the platforms’ capabilities and re-
sources. The implementation builds on a multi-agent system infrastructure
compliant with the FIPA Abstract Architecture specification [48]. The orig-
inal specification has no representation of capabilities and resources, which
are needed for the allocation of task specification trees. Efficient resource
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usage is an important issue for the types of robotic platforms we use, where
each platform carries its own resources. That is why we require a capabil-
ity and resource model to more accurately model how resources are used in
delegated tasks. This model makes it possible to describe the time needed
to carry out tasks and how resources are used in the process.

1.4 Publications

The work in this thesis is the result of joint work with Patrick Doherty,
Fredrik Heintz and John-Jules Meyer. Parts of this thesis have been pub-
lished in the following publications:

[36] Doherty, P., Kvarnström, J., Heintz, F., Landén, D., Olsson, P-M:
Research with Collaborative Unmanned Aircraft Systems. In Pro-
ceedings of the Dagstuhl Workshop on Cognitive Robotics, (2010).

[37] Doherty, P., Landén, D., Heintz, F.: A Distributed Task Specification
Language for Mixed-Initiative Delegation. In Proceedings of The 13th
International Conference on Principles and Practice of Multi-Agent
Systems (PRIMA), (2010).

[69] Landén, D., Heintz, F., Doherty, P.: Complex Task Allocation in
Mixed-Initiative Delegation: A UAV Case Study (Early Innovation).
In Proceedings of The 13th International Conference on Principles and
Practice of Multi-Agent Systems (PRIMA), (2010).

[30] Doherty, P., Heintz, F., Landén, D.: A Delegation-Based Collabora-
tive Robotic Framework. In Proceedings of Collaborative Agents –
REsearch and development (CARE), (2011).

[31] Doherty, P., Heintz, F., Landén, D.: A Delegation-Based Architecture
for Collaborative Robotics. In D. Weyns and M.-P. Gleizes (Eds.):
Agent Oriented Software Engineering (AOSE) 2010, LNCS 6788, pp.
205-247, (2011).

1.5 Thesis Outline

The next chapter, Chapter 2, provides a background to the work in this
thesis, and is previously published in [30, 31, 40]. The next three chapters
deal with each of the three research questions stated in Section 1.2. A task
specification format is described in Chapter 3. The work in this chapter was
previously published in [30, 31, 37]. The inherent task allocation problem
of delegation is defined and a solution is presented in Chapter 4. An earlier
version of the work in this chapter was published in [69]. An implementation
of the collaborative UAS is described in Chapter 5. Part of the work in this
chapter was previously published in [31]. The use of the collaborative UAS is
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exemplified with a number of emergency service scenarios in Chapter 6. Part
of the work in this chapter was previously published in [31, 69]. The task
allocation algorithm is evaluated in Chapter 7. The conclusions including
future work are presented in Chapter 8.
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Chapter 2

Background

The work presented in this chapter was previously introduced by Patrick
Doherty and John-Jules Meyer in [36, 40]. The chapter will serve as a
background and starting point for the work done in this thesis.

2.1 Delegation as a Speech Act

Delegation is central to the conceptual and architectural framework we pro-
pose. Consequently, it is important to formulate a formal specification of
the delegation concept that can be grounded in an implementation of the
collaborative UAS. As a starting point, in [10, 46], Falcone & Castelfranchi
provide an illuminating, but informal discussion about delegation as a con-
cept from a social perspective. Their approach to delegation builds on a
Belief-Desire-Intention (BDI) model of agents, that is, agents having beliefs,
goals, intentions, and plans [12]. However, their specification lacks a formal
semantics for the operators used. Based on intuitions from their work, we
have previously provided a formal characterization of their concept of strong
delegation using a communicative speech act with pre- and post-conditions
which update the belief states associated with the delegator and contrac-
tor, respectively [40]. In order to formally characterize the operators used
in the definition of the speech act, we use KARO [95] to provide a formal
semantics. The KARO formalism is an amalgam of dynamic logic and epis-
temic/doxastic logic, augmented with several additional modal operators in
order to deal with the motivational aspects of agents.

The target for delegation is a task. A dictionary definition of a task
is ”a usually assigned piece of work often to be finished within a certain
time”.1 Assigning a piece of work to someone by someone is in fact what
delegation is about. In computer science, a piece of work in this context is
generally represented as a composite action. There is also often a purpose to

1Merriam-Webster free on-line dictionary. m-w.com
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Chapter 2. Background

assigning a piece of work to be done. This purpose is generally represented
as a goal, where the intended meaning is that a task is a means of achieving
a goal. Both a formal specification of a task at a high-level of abstraction in
addition to a more data-structural specification flexible enough to be used
pragmatically in an implementation are required.

For the formal specification, the definition provided by Falcone & Castel-
franchi will be used. For the data-structure specification used in the imple-
mentation, Task Specification Trees will be defined in Chapter 3. Falcone &
Castelfranchi define a task as a pair τ = (α, φ) consisting of a goal φ, and a
plan α for that goal, or rather, a plan and the goal associated with that plan.
Conceptually, a plan is a composite action. We extend the definition of a
task to a tuple τ = (α, φ, cons), where cons represents additional constraints
associated with the plan α, such as timing and resource constraints.

From the perspective of adjustable autonomy, the task definition is quite
flexible. If α is a single elementary action with the goal φ implicit and
correlated with the post-condition of the action, the contractor has little
flexibility as to how the task will be achieved. On the other hand, if the
goal φ is specified and the plan α is not provided, then the contractor has
a great deal of flexibility in achieving the goal. There are many variations
between these two extremes and these variations capture the different lev-
els of autonomy and trust exchanged between two agents. These extremes
loosely follow Falcone & Castelfranchi’s notions of closed and open delega-
tion described below.

Using KARO to formalize aspects of Falcone & Castelfranchi’s work,
we consider a notion of strong delegation represented by a speech act Del-
egate(A, B, τ) of A delegating a task τ = (α, φ, cons) to B, where α is a
possible plan, φ is a goal, and cons is a set of constraints associated with
the plan φ. Strong delegation means that the delegation is explicit, an agent
explicitly delegates a task to another agent. It is specified as follows:

S-Delegate(A, B, τ), where τ = (α, φ, cons)

Preconditions:

(1) GoalA(φ)

(2) BelACanB(τ) (Note that this implies BelABelB(CanB(τ)))

(3) BelA(Dependent(A,B, τ))

(4) BelBCanB(τ)

Postconditions:

(1) GoalB(φ) and BelBGoalB(φ)

(2) CommittedB(α) (also written CommittedB(τ))

(3) BelBGoalA(φ)

10
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(4) CanB(τ) (and hence BelBCanB(τ), and by (1) also IntendB(τ))

(5) IntendA(doB(α))

(6) MutualBelAB(”the statements above” ∧ SociallyCommitted(B,A, τ))2

Informally speaking this expresses the following: the pre-conditions of
the delegate act of A delegating task τ to B are that (1) φ is a goal of
delegator A (2) A believes that B can (is able to) perform the task τ (which
implies that A believes that B itself believes that it can do the task) (3) A
believes that with respect to the task τ it is dependent on B. The speech act
S-Delegate is a communication command and can be viewed as a request for
a synchronization (a ”handshake”) between sender and receiver. Of course,
this can only be successful if the receiver also believes it can do the task,
which is expressed by (4).

The post-conditions of the strong delegation act mean: (1) B has φ as
its goal and is aware of this (2) it is committed to the task τ (3) B believes
that A has the goal φ (4) B can do the task τ (and hence believes it can
do it, and furthermore it holds that B intends to do the task, which was a
separate condition in Falcone & Castelfranchi’s formalization), (5) A intends
that B performs α (so we have formalized the notion of a goal to have an
achievement in Falcone & Castelfranchi’s informal theory to an intention
to perform a task) and (6) there is a mutual belief between A and B that
all pre-conditions and other post-conditions mentioned hold, as well as that
there is a contract between A and B, i.e. B is socially committed to A to
achieve τ for A. In this situation we will call agent A the delegator and B
the contractor.

Typically a social commitment (contract) between two agents induces
obligations to the partners involved, depending on how the task is speci-
fied in the delegation action. This dimension has to be added in order to
consider how the contract affects the autonomy of the agents, in particular
the contractor’s autonomy. Falcone & Castelfranchi discuss the following
variants:

• Closed delegation: the task is completely specified and both the goal
and the plan should be adhered to.

• Open delegation: the task is not completely specified, either only the
goal has to be adhered to while the plan may be chosen by the contrac-
tor, or the specified plan contains abstract actions that need further
elaboration (a sub-plan) to be dealt with by the contractor.

In open delegation the contractor may have some freedom in how to
perform the delegated task, and thus it provides a large degree of flexibility
in multi-agent planning and allows for truly distributed planning.

2A discussion pertaining to the semantics of all non-KARO modal operators may be
found in [40].
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The specification of the delegation act above is based on closed delega-
tion. In case of open delegation, α in the postconditions can be replaced by
an α′, and τ by τ ′ = (α′, φ, cons′). Note that the fourth clause, CanB(τ ′),
now implies that α′ is indeed believed to be an alternative for achieving φ,
since it implies that BelB [α′]φ (B believes that φ is true after α′ is exe-
cuted). Of course, in the delegation process, A must agree that α′, together
with constraints cons′, is indeed viable. This would depend on what degree
of autonomy is allowed.

This particular specification of delegation follows Falcone & Castelfranchi
closely. One can easily foresee other constraints one might add or relax
in respect to the basic specification resulting in other variants of delega-
tion [13, 20, 42]. It is important to keep in mind that this formal charac-
terization of delegation is not completely hierarchical. There is interaction
between both the delegators and contractors as to how goals can best be
achieved given the constraints of the agents involved. This is implicit in
the formal characterization of open delegation above, although the process
is not made explicit. This aspect of the process will become much clearer
when the implementation is described.

There are many directions one can take in attempting to close the gap
between this abstract formal specification and grounding it in implementa-
tion. One such direction taken in [40] is to correlate the delegate speech
act with plan generation rules in 2APL [19], which is an agent program-
ming language with a formal semantics. In this thesis, a different direction
is taken which attempts to ground the important aspects of the speech act
specification in the actual processes used in our robotic systems. Intuitions
will become much clearer when the architectural details are provided, but
let us describe the approach informally based on what we have formally
specified.

If a UAV system A has a goal φ which it is required to achieve, it first
introspects and determines whether it is capable of achieving φ given its
inherent capabilities and current resources in the context it is in, or will be
in, when the goal has to be achieved. It will do this by accessing its capability
specification (assumed) and determine whether it believes it can achieve φ,
either through use of a planning and constraint solving system (assumed) or
a repertoire of stored actions. If not, then the fundamental pre-conditions
in the S-Delegate speech act are the second, BelACanB(τ) and the fourth,
BelBCanB(τ). Agent A must find another agent it believes can achieve the
goal φ implicit in τ . Additionally, B must also believe it can achieve the
goal φ implicit in τ . Clearly, if A cannot achieve φ itself and finds an agent
B that it believes can achieve φ and B believes it can achieve φ, then it
is dependent on B to do that (pre-condition 3: BelA(Dependent(A,B, α)).
Consequently, all pre-conditions are satisfied and the delegation can take
place.

From a pragmatic perspective, determining (in an efficient manner) whe-
ther an agent B can achieve a task τ (in an efficient) manner, is the fun-
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damental problem that has to be not only implemented efficiently, but also
grounded in some formal sense. The formal aspect is important because del-
egation is a recursive process which may involve many agents, automated
planning and reasoning about resources, all in the context of temporal and
spatial constraints. One has to have some means of validating this complex
set of processes relative to a highly abstract formal specification which is
convincing enough to trust that the collaborative system is in fact doing
what it is formally intended to do.

The pragmatic aspects of the software architecture through which we
ground the formal specification include the following:

• An agent layer based on the FIPA Abstract Architecture will be added
on top of existing platform specific legacy systems such as ours. This
agent layer allows for the realization of the delegation process using
speech acts and protocols from the FIPA Agent Communication Lan-
guage.

• The formal specification of tasks will be instantiated pragmatically as
task specification trees (TSTs), which provide a versatile data struc-
ture for mapping goals to plans and plans to complex tasks. Addition-
ally, the formal semantics of tasks is defined in terms of a predicate
Can which can be directly grounded above to the semantics of the
S-Delegate speech act and below to a constraint solving system.

• Finding a set of agents who together can achieve a complex task with
time, space and resource constraints through recursive delegation can
be defined as a very complex distributed task allocation problem. Ex-
plicit representation of time, space and resource constraints will be
used in the delegation process and modeled as a DisCSP. This allows
us to apply existing DisCSP solvers to check the consistency of partial
task assignments in the delegation process and to formally ground the
process. Consequently, the Can predicate used in the pre-condition to
the S-Delegate speech act is both formally and pragmatically grounded
into the implementation.

2.2 Delegation-Based Software
Architecture Overview

Before going into details regarding the implementation of the delegation
process and its grounding in the proposed software architecture, we provide
an overview of the architecture itself.

The UASTech UAV platform [41] is a slightly modified Yamaha RMAX
helicopter (see Figure 2.1). It has a total length of 3.6 m (including main
rotor) and is powered by a 21 hp two-stroke engine with a maximum takeoff
weight of 95 kg. The helicopter has a built-in attitude sensor (YAS) and an
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attitude control system (YACS). The helicopter platform has been used for
spraying pesticides over crop fields and also in many research projects.

The hardware platform (the box on the left side of the RMAX in Fig-
ure 2.1) which has been developed and integrated with the UASTech RMAX
contains three PC104 embedded computers. The primary flight control
(PFC) has a wireless Ethernet bridge, a RTK GPS receiver, and several
additional sensors including a barometric altitude sensor. The PFC is con-
nected to the YAS (attitude sensors) and YACS (attitude controller), an im-
age processing computer (IPC) and a computer for deliberative capabilities
(DRC). The image processing system runs on the second PC104 embedded
computer and includes a thermal camera and a color CCD camera mounted
on a pan/tilt unit, a video transmitter and a recorder (miniDV). The deliber-
ative/reactive (D/R) systems runs on the third PC104 embedded computer
and executes all high-level autonomous functionality. Network communica-
tion between computers is physically realized with serial line RS232C and
Ethernet.

Figure 2.1: The UASTech RMAX Platform.

Our RMAX helicopters use a CORBA-based distributed architecture [29].
For our experimentation with collaborative UAVs, we view this as a legacy
system which provides sophisticated functionality ranging from control mode-
s to reactive processes, in addition to deliberative capabilities such as au-
tomated planners, GIS systems, constraint solvers, etc. Legacy robotic ar-
chitectures generally lack instantiations of an agent metaphor although im-
plicitly one often views such systems as agents. Rather than re-design the
legacy system from scratch, the approach we take is to agentify the existing
legacy system in a straightforward manner by adding an agent layer which
interfaces to the legacy system. The agent layer for a robotic system consists
of one or more agents which offer specific functionalities or services. These
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agents can communicate with each other internally and leverage existing
legacy system functionality. Agents from different robotic systems can also
communicate with each other if required.

Our collaborative architectural specification is based on the use of the
FIPA (Foundation for Intelligent Physical Agents) Abstract Architecture [48].
The FIPA Abstract Architecture provides the basic components for the de-
velopment of a multi-agent system. Our collaborative UAS implementa-
tion is based on the FIPA compliant Java Agent Development Framework
(JADE) [7, 92] which implements the Abstract Architecture. ”JADE (Java
Agent Development Framework) is a software environment to build agent
systems for the management of networked information resources in compli-
ance with the FIPA specifications for interoperable multi-agent systems.” [6].

The FIPA Abstract Architecture provides the following fundamental
modules:

• An Agent Directory module keeps track of the agents in the system.

• A Directory Facilitator keeps track of the services provided by those
agents.

• A Message Transport System module allows agents to communicate
using the FIPA Agent Communication Language (FIPA ACL) [50].

The relevant concepts in the FIPA Abstract Architecture are agents, ser-
vices and protocols. All communication between agents is based on exchang-
ing messages which represent speech acts encoded in an agent communica-
tion language (FIPA ACL). Services provide functional support for agents.
There are a number of standard global services including agent-directory
services, message-transport services and a service-directory service. A pro-
tocol is a related set of messages between agents that are logically related
by some interaction pattern.

JADE provides base classes for agents, message transportation, and a
behavior model for describing the content of agent control loops. Using the
behavior model, different agent behaviors can be constructed, such as cyclic,
one-shot (executed once), sequential, and parallel behavior. More complex
behaviors can be constructed using the basic behaviors as building blocks.

From our perspective, each JADE agent has associated with it a set
of services. Services are accessed through the Directory Facilitator and
are generally implemented as behaviors. In our case, the communication
language used by agents will be FIPA ACL, which is speech act based. New
protocols will be defined in Chapter 5 to support the delegation and other
processes.

The purpose of the Agent Layer is to provide a common interface for
collaboration. This interface should allow the delegation and task execution
processes to be implemented without regard to the actual realization of
elementary tasks, capabilities and resources which are specific to the legacy
platforms.
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Figure 2.2: Overview of an agentified platform or ground control station.

The agent layer currently contains four agents:

1. Interface Agent - This agent is the clearinghouse for communication.
All requests for delegation and other types of communication pass
through this agent. Externally, it provides the interface to a specific
robotic system or ground control station.

2. Delegation Agent - The Delegation Agent coordinates delegation
requests to and from other UAV systems and ground control stations,
with the Execution, Resource and Interface Agents. It does this es-
sentially by verifying that the pre-conditions to a Delegate() request
are satisfied.

3. Execution Agent - After a task is contracted to a particular UAV or
ground station operator, it must eventually execute that task relative
to the constraints associated with it. The Execution Agent coordinates
this execution process.

4. Resource Agent - The Resource Agent determines whether the UAV
or ground station of which it is part has the resources and ability to
actually do a task as a potential contractor. Such a determination may
include the invocation of schedulers, planners and constraint solvers
in order to determine this.

Figure 2.2 provides an overview of an agentified robotic or ground operator
system.

The FIPA Abstract Architecture is extended (in Chapter 5) to support
delegation and collaboration by defining an additional set of services and
a set of related protocols. The interface agent, resource agent, execution
agent and delegation agent will have an interface service, resource service,
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Figure 2.3: An overview of a collaborative human robot system.

execution service and delegation service associated with it, respectively, on
each individual robotic or ground station platform. The gateway agent is
implemented as a non-JADE agent that understands FIPA protocols and
works as a gateway to a platform’s legacy system. Additionally, three pro-
tocols, the Capability-Lookup, Delegation and Auction protocols, will be
defined and used to drive the delegation process.

Human operators interacting with robotic systems are treated similarly
by extending the control station or user interface functionality in the same
way. In this case, the control station is the legacy system and an agent layer
is added to this. The result is a collaborative human robot system consisting
of a number of human operators and robotic platforms each having both a
legacy system and an agent layer as shown in Figure 2.3.

The reason for using the FIPA Abstract Architecture and JADE is prag-
matic. The focus of our research is not to develop new agent middleware,
but to develop a formally grounded generic collaborative system shell for
robotic systems. Our formal characterization of the Delegate() operator is
as a speech act. Speech acts are used as an agent communication language
and JADE provides a straightforward means for integrating the FIPA ACL
language which supports speech acts with our existing systems.

Further details as to how the delegation and related processes is imple-
mented based on additional services and protocols is described in Chapter 5.
Before doing this, the processes themselves are specified in Section 4.2. The
formal characterization of tasks in the form of task specification trees is the
topic of the next chapter.
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Task Specification Trees

“R1 - How can a task τ in the delegation theory be specified to make the
realization of the delegation speech act possible?”

A task was previously defined abstractly as a tuple (α, φ, cons) (on page
10) consisting of a composite action α, a goal φ and a set of constraints
cons, associated with α. In this chapter, we introduce a formal task spec-
ification language which allows us to represent tasks as Task Specification
Trees (TSTs).

We need a declarative representation of tasks that can cover both ab-
stract goals and more concrete plan structures in the same formalism. A
representation with procedural features would make the implementation
straightforward. Both the declarative and the procedural representation
and semantics of tasks are central to the delegation process. The relation
between the two representations is also essential if one has the goal of for-
mally grounding the delegation process in the system implementation. The
task specification trees map directly to procedural representations in our
proposed system implementation.

For our purposes, the task representation must be highly flexible, sharable,
dynamically extendible, and distributed in nature. Tasks need to be dele-
gated at varying levels of abstraction and also expanded and modified be-
cause parts of complex tasks can be recursively delegated to different robotic
agents where they are in turn expanded or modified. Consequently, the
structure must also be distributable. Additionally, a task structure is a
form of compromise between an explicit plan in a plan library at one end
of the spectrum and a plan generated through an automated planner [68]
at the other end of the spectrum. The task representation and semantics
must seamlessly accommodate plan representations and their compilation
into the task structure. Finally, the task representation should support the
adjustment of autonomy through the addition of constraints or parameters
by agents and human resources.
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The flexibility allows for the use of both central and distributed plan-
ning, and also to move along the scale between these two extremes. At one
extreme, the operator plans everything, creating a central plan, while at
the other extreme the agents are delegated goals and generate parts of the
distributed plan themselves. Sometimes neither completely centralized nor
completely distributed planning is appropriate. In those cases the operator
would like to retain some control of how the work is done while leaving the
details to the agents. Task specification trees provide a formalism that cap-
tures the scale from one extreme to the other. This allows the operator to
specify the task at the point which fits the current mission and environment.

The task specification formalism should allow for the specification of
various types of task compositions, including sequential and concurrent, in
addition to more general constructs such as loops and conditionals. The
task specification should also provide a clear separation between tasks and
platform specific details for handling the tasks. The specification should
focus on what should be done and hide the details about how it could be
done by different platforms.

3.1 TST Concepts

In the general case, a TST is a declarative representation of a complex multi-
agent task. In the architecture realizing the delegation framework a TST
is also a distributed data structure. Each node in a TST corresponds to
a task that should be performed. There are six types of nodes: sequence,
concurrent, loop, select, goal, and elementary action. The nodes with child
nodes (i.e. all nodes except goal nodes and elementary action nodes) have a
special role in that they model the structure of a sub-task, containing all the
child nodes and all the nodes below them. All nodes are directly executable
except goal nodes which require some form of expansion or planning to
generate a plan for achieving the goal. The plan is translated to a sub-
TST and attached to the original TST. For example, the TST in Figure 3.1
contains a sequence node, a concurrent node and three elementary actions
nodes.

Each node has a node interface containing a set of parameters, called
node parameters, that can be specified for the node (see the text box attached
to each node in Figure 3.1). The node interface always contains a platform
assignment parameter and parameters for the start and end times of the
task, usually denoted P , TS and TE , respectively. These parameters can be
part of the constraints associated with the node called node constraints. For
example, in Figure 3.1, the node parameters for node N3 are P3, TS3 , TE3 .
A TST also has tree constraints, expressing precedence and organizational
relations between the nodes in the TST. Together the constraints form a
constraint network covering the TST. In fact, the node parameters function
as constraint variables in a constraint network, and setting the value of a
node parameter constrains not only the network, but implicitly, the degree
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Figure 3.1: A TST with the nodes N0–N4. Nodes N0–N1 are composite
action nodes. The nodes N2, N3 and N4 are elementary action nodes. Each
node specifies a task and has a node interface containing node parameters
and the platform assignment variable. The parameters in the node interface
corresponds to global variables that can be used in global constraints relating
the nodes in the tree.

of autonomy of an agent.
In a TST where all nodes are allocated, each node has a corresponding

executor object that, besides executing the task, updates information in the
TST node during execution to display the progress. In this way, a TST node
can be seen as a black-board where executor objects and the operator can
read and update information.

A TST describes relations between composite and elementary actions,
and how those relations and actions forms a complex task. A compound task
is a task where all its parts should be allocated to the same platform. Related
to our TSTs, a compound task is a connected part of a TST, where each
node should be assigned to the same platform, which is specified by assigning
a unifying value to the role parameter of each node in the compound task. A
decomposable task consists of compound parts, and the parts can be assigned
to different platforms.

3.2 TST Syntax

A TST can be represented both graphically as a hierarchical tree data struc-
ture and textually as a TST specification. The syntax of a TST specification
has the following BNF:

TST ::= NAME (’(’ VARS ’)’)? ’=’
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(with VARS)? TASK (where CONS)?

TSTS ::= TST | TST ’;’ TSTS

TASK ::= <elementary action> | <goal> |
sequence TSTS | concurrent TSTS |
while <cond> TST | if <cond> then TST else TST

VAR ::= <var name> | <var name> ’.’ <var name>

VARS ::= VAR | VAR ’,’ VARS

CONSTRAINT ::= <constraint>

CONS ::= CONSTRAINT | CONSTRAINT and CONS

ARG ::= VAR | <value>

ARGS ::= ARG | ARG ’,’ ARGS

NAME ::= <node name>

Where <elementary action> is an elementary action name(p0, ..., pN ),
<goal> is a goal name(p0, ..., pN ), p0, ..., pN are parameters, and <cond>
is a FIPA ACL query message requesting the value of a boolean expression.
<constraint> is a general constraint involving the variables in the same
scope as the constraint. <name> is any alpha numerical combination, with
the purpose of naming a task. The first VARS in the TST rule denotes
node parameters, the second VARS denotes additional variables used in
the constraint context for the top-node of the TST and CONS denotes the
constraints associated with this node.

The TST clause in the BNF introduces the main recursive pattern in
the specification language. The right hand side of the equality provides the
general pattern of providing a set of variables and their scope for a task
(using with) and a set of constraints (using where) which may include the
variables previously introduced.

Example

Consider a small scenario where the mission is to first scan AreaA and AreaB,
and then fly to Dest4 (Figure 3.2). A TST describing this mission is shown
in Figure 3.1. Nodes N0 and N1 are composite action nodes, sequential
and concurrent, respectively. Nodes N2, N3 and N4 are elementary action
nodes. Each node specifies a task and has a node interface containing node
parameters and a platform assignment variable. In this case, only temporal
parameters are shown representing the respective intervals a task should be
completed in.

In the TST depicted in Figure 3.1. The nodes N0 to N4 have the task
names τ0 to τ4 associated with them respectively. This TST contains two
composite actions, sequence (τ0) and concurrent (τ1) and three elementary
actions scan (τ2, τ3) and flyto (τ4). The resulting TST specification is:
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Figure 3.2: Example mission of first scanning AreaA and AreaB, and then
flying to Dest4.

τ0(TS0
,TE0

) =
with TS1 , TE1 , TS4 , TE4 sequence
τ1(TS1 ,TE1) =
with TS2

, TE2
, TS3

, TE3
concurrent

τ2(TS2
,TE2

) = scan(TS2
,TE2

,Speed2,AreaA);
τ3(TS3

,TE3
) = scan(TS3

,TE3
,Speed3,AreaB)

where consτ1 ;
τ4(TS4 ,TE4) = flyto(TS4 ,TE4 ,Speed4,Dest4)

where consτ0

consτ0 = {TS0
≤ TS1

∧ TS1
≤ TE1

∧ TE1
≤ TS4

∧ TS4
≤ TE4

∧ TE4
≤ TE0

}
consτ1 = {TS1

≤ TS2
∧ TS2

≤ TE2
∧ TE2

≤ TE1
∧ TS1

≤ TS3
∧ TS3

≤ TE3
∧

TE3 ≤ TE1}

3.3 TST Semantics

A TST specifies a complex task (composite action) under a set of tree-specific
and node-specific constraints which together are intended to represent the
context in which a task should be executed in order to meet the task’s
intrinsic requirements, in addition to contingent requirements demanded by
a particular mission. The leaf nodes of a TST represent elementary actions
used in the definition of the composite action the TST represents and the
non-leaf nodes essentially represent control structures for the ordering and
execution of the elementary actions. The semantic meaning of non-leaf nodes
is essentially application independent, whereas the semantic meaning of the
leaf nodes are highly domain dependent. They represent the specific actions
or processes that an agent will in fact execute. The procedural correlate of
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a TST is a program.

During the delegation process, a TST is either provided or generated to
achieve a specific set of goals, and if the delegation process is successful,
each node is associated with an agent responsible for the execution of that
node.

Informally, the semantics of a TST node will be characterized in terms of
whether an agent believes it can successfully execute the task associated with
the node in a given context represented by constraints, given its capabilities
and resources. This can only be a belief because the task will be executed in
the future, and even under the best of conditions, real-world contingencies
may arise which prevent the agent from successfully completing the task.
The semantics of a TST will be the aggregation of the semantics for each
individual node in the tree.

The formal semantics for TST nodes will be given in terms of the logical
predicate Can() which we have used previously in the formal definition of the
S-Delegate speech act. This is not a coincidence since our goal is to ground
the formal specification of the S-Delegate speech act into the implementation
in a very direct manner.

Recall that in the formal semantics for the speech act S-Delegate de-
scribed in Section 2.1, the logical predicate CanX(τ) is used to state that
an agent X has the capabilities and resources to achieve task τ .

An important pre-condition for the successful application of the speech
act is that the delegator (A) believes in the contractor’s (B) ability to achieve
the task τ , (pre-condition 2, on page 10): BelACanB(τ). Additionally, an
important result of the successful application of the speech act is that the
contractor actually has the capabilities and resources to achieve the task
τ , (pre-condition 4, on page 10): CanB(τ). In order to directly couple
the semantic characterization of the S-Delegate speech act to the semantic
characterization of TSTs, we will assume that a task τ = (α, φ) in the speech
act characterization corresponds to a TST. Additionally, the TST semantics
will be characterized in terms of a Can predicate with additional parameters
to incorporate constraints.

In this case, the Can predicate is extended to include as arguments a
list [p1, . . . , pk] denoting all node parameters in the node interface together
with other parameters provided in the (withVARS ) construct1 and an argu-
ment for an additional set cons provided in the (where CONS ) construct2.
Observe that cons can be formed incrementally and may in fact contain
constraints inherited or passed to it through a recursive delegation process.
The formula Can(B, τ, [ts, te], cons) then asserts that an agent B has the
capabilities and resources for achieving task τ if cons together with the node
constraints for τ are consistent. The temporal variables ts and te associated

1For reasons of clarity, we only list the node parameters for the start and end times
for a task, [ts, te].

2For pedagogical expediency, we can assume that there is a constraint language, which
is reified in the logic and is used in the CONS constructs.
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with the task τ are parts of the node interface which may also contain other
variables that are often related to the constraints in cons.

Determining whether a fully instantiated TST satisfies its specification,
will now be equivalent to the successful solution of a constraint problem in
the formal logical sense. The constraint problem in fact provides the formal
semantics for a TST. Constraints associated with a TST are derived from a
reduction process associated with the Can() predicate for each node in the
TST. The generation and solution of constraints will occur on-line during
the delegation process.

Let us provide some more specific details. In particular, we will show
the very tight coupling between the TSTs and their logical semantics.

The basic structure of a task specification tree is:

TST ::= NAME (′(′VARS ′1)′)?′ =′ (with VARS2)?TASK
(where CONS )?

where VARS1 denotes node parameters, VARS2 denotes additional vari-
ables used in the constraint context for a TST node, and CONS denotes the
constraints associated with a TST node. Additionally, TASK denotes the
specific type of TST node. In specifying a logical semantics for a TST node,
we would like to map these arguments directly over to arguments of the
predicate Can(). Informally, an abstraction of the mapping is

Can(agent1,TASK ,VARS1 ∪ VARS2,CONS ) (3.1)

The idea is that for any fully allocated TST, the meaning of each allo-
cated TST node in the tree is the meaning of the associated Can() pred-
icate instantiated with the TST-specific parameters and constraints. The
meaning of the instantiated Can() predicate can then be associated with an
equivalent constraint satisfaction problem which turns out to be true or false
dependent upon whether that CSP can be satisfied or not. The meaning of
the fully allocated TST is then the aggregation of the meanings of each indi-
vidual TST node associated with the TST, in other words, a conjunction of
CSPs. One would also like to capture the meaning of partial TSTs. The idea
is that as the delegation process unfolds, a TST is incrementally expanded
with additional TST nodes. At each step, a partial TST may contain a
number of fully expanded and allocated nodes in addition to other nodes
which remain to be delegated. In order to capture this process semantically,
one extends the semantics by providing meaning for a deallocated TST node
in terms of both a Can() predicate and a Delegate() predicate:

∃agent2Delegate(agent1, agent2,TASK ,VARS1 ∪ VARS2,CONS ) (3.2)

Either agent1 can achieve a task, or (exclusively) it can find an agent,
agent2, to which the task can be delegated. In fact, it may need to find one
or more agents if the task to be delegated is a composite action.

Given the S−Delegate(agent1, agent2,TASK ) speech act semantics, we
know that if delegation is successful, then as one of the post-conditions of
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the speech act, agent2 can in fact achieve TASK (assuming no additional
contingencies):

Delegate(agent1, agent2,TASK ,VARS1 ∪ VARS2,CONS )→
Can(agent2,TASK ,VARS1 ∪ VARS2,CONS ) (3.3)

Consequently, during the computational process associated with delega-
tion, as the TST expands through delegation where previously unallocated
nodes become allocated, each instance of the Delegate() predicate associ-
ated with an unallocated node is replaced with an instance of the Can()
predicate. This recursive process preserves the meaning of a TST as a con-
junction of instances of the Can() predicate. These are in turn compiled
into an (interdependent) set of CSPs that are checked for satisfaction using
distributed constraint solving algorithms.

Sequence Node

The child nodes of a sequence node should be executed in sequence (from
left to right) during the execution time of the sequence node. A sequence
node is shown in Figure 3.3.

Semantics of a Sequence Node

• Can(B,S(α1, ..., αn), [ts, te, . . .], cons)↔
∃t1, . . . , t2n, . . .

∧n
k=1(Can(B,αk, [t2k−1, t2k, . . .], consk) ∨

∃akDelegate(B, ak, αk, [t2k−1, t2k, . . .], consk))
∧ consistent(cons)

• cons = {ts ≤ t1 ∧ (
∧n
i=1 t2i−1 < t2i) ∧ (

∧n−1
i=1 t2i ≤ t2i+1) ∧

t2n ≤ te} ∪ cons′

Figure 3.3: A sequence node.

Concurrent Node

In a concurrent node each child node should be executed during the time
interval of the concurrent node (see Figure 3.4). Concurrency in this case
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does not necessarily mean that the execution of the child nodes must be
concurrent, they can be in sequence, but concurrency is allowed, so S ⊆ C.3

Concurrent nodes are used to make more efficient use of the platforms, by
allowing for executing tasks in parallel. If two tasks must be executed in
parallel, this can be assured with a user constraint that demands the tasks
to be assigned to different platforms.

Semantics of a Concurrent Node

• Can(B,C(α1, ..., αn), [ts, te, . . .], cons)↔
∃t1, . . . , t2n, . . .

∧n
k=1(Can(B,αk, [t2k−1, t2k, . . .], consk) ∨

∃akDelegate(B, ak, αk, [t2k−1, t2k, . . .], consk))
∧ consistent(cons)

• cons = {
∧n
i=1 ts ≤ t2i−1 < t2i ≤ te} ∪ cons′

Figure 3.4: A concurrent node.

Observe that the constraint sets consk in the semantics for the concurrent
and sequential nodes are simply the constraint sets defined in the (where
CONS ) constructs for the child nodes included with the sequential or con-
current nodes, respectively. Additionally, the definition of the constraint
set cons in the semantics for the concurrent and sequential nodes contain
the structural temporal constraints which define sequence and concurrency,
respectively, together with possibly additional constraints, denoted by cons’
that one may want to include in the constraint set. Note also that we are as-
suming that scoping and overloading issues for variables in embedded TST
structures are dealt with appropriately in the recursive expansion of the
Can() predicates in the definitions.

Selector Node

• Compared to a sequence or concurrent node, only one of the selector
node’s children will be executed, which one is determined by a test
condition in the selector node. The child node should be executed

3Comparing S and C to Allen’s interval algebra [3], C can cover all 13 relations, and
S cover 4 of the relations (b,m,bi,mi).
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during the time interval of the selector node. A selector node is used to
postpone a choice which cannot be known when the TST is specified.
When expanded at runtime, the net result can be any of the node
types.

Loop Node

• A loop node will add a child node for each iteration the loop condition
allows. In this way the loop node works as a sequence node, but with
an increasing number of child nodes which are dynamically added.
Loop nodes are similar to selector nodes, they describe additions to
the TST that cannot be known when the TST is specified. When
expanded at runtime, the net result is a sequence node.

Goal

• A goal node is a leaf node which cannot be directly executed. Instead,
it has to be expanded by using an automated planner or related plan-
ning functionality. After expansion, a TST branch representing the
generated plan is added to the original TST. A goal node is shown in
Figure 3.5.

• Can(B,Goal(φ), [ts, te, . . .], cons)↔
∃α (GenerateP lan(B,α, φ, [ts, te, . . .], cons)
∧ Can(B,α, [ts, te, . . .], cons))
∧ consistent(cons)

Observe that the agent B can generate a partial or complete plan α and
then further delegate execution or completion of the plan recursively via the
Can() statement in the second conjunct.

Figure 3.5: A goal node.

Elementary Action Node

• An elementary action node is a leaf node that specifies a domain-
dependent action. The semantics for Can for an elementary action is
platform dependent. Figure 3.6 shows an example of an elementary
action node.

• Can(B, τ, [ts, te, . . .], cons, . . .)↔
Capabilities(B, τ, [ts, te, . . .], cons) ∧Resources(B, τ, [ts, te, . . .], cons)
∧ consistent(cons)
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Figure 3.6: An elementary action node.

There are two parts to the definition of Can for an elementary action
node. These are defined in terms of a platform specification, which is as-
sumed to exist for each agent potentially involved in a collaborative mission.
The platform specification has two components.

The first, specified by the predicate Capabilities(B, τ, [ts, te, . . .], cons)
is intended to characterize all static capabilities associated with platform B
that are required as capabilities for the successful execution of τ . These will
include a list of tasks and/or services the platform is capable of carrying
out. If platform B has the necessary static capabilities for executing task τ
in the interval [ts, te] with constraints cons, then this predicate will be true.

The second, specified by the predicate Resources(B, τ, [ts, te, . . .], cons)
is intended to characterize dynamic resources such as fuel and battery power,
which are consumable, or cameras and other sensors which are borrowable.
Since resources generally vary through time, the semantic meaning of the
predicate is temporally dependent.

Resources for an agent are represented as a set of parameterized resource
constraint predicates, one per task. The parameters to the predicate are the
task’s parameters, in addition to the start time and the end time for the
task. For example, assume there is a task flyto(dest, speed). The resource
constraint predicate for this task would be flyto(ts, te, dest, speed). The
resource constraint predicate is defined as a conjunction of constraints, in the
logical sense. As an example, consider the task flyto(dest, speed) with the
corresponding resource constraint predicate flyto(ts, te, dest, speed). The
constraint model associated with the task for a particular platform P1 might
be:

te = ts + distance(pos(ts ,P1 ),dest)
speed

SpeedMin ≤ speed ≤ SpeedMax

The corresponding constraint network is in Figure 3.7.
The general pattern for this conjunction is:

te = ts + F,C1, ..., CN , where

– F is a function of the resource constraint parameters and possibly
local resource variables and

– C1, . . . , CN is a possibly empty set of additional constraints re-
lated to the resource model associated with the task.
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Figure 3.7: Illustrating the constraint network associated with the task flyto.
Nodes with rounded edges are parameters of the resource predicate for this
task. Edges and variables together describes constraints, and an edge be-
tween two variables denotes that they are related. The capability resides on
platform P1.

3.4 Related Work

Related work for this chapter are task/mission specification languages and
distributed planning systems. Two important task specification languages
are the Configuration Description Language (CDL) [73], used in MissionLab,
and the Task Description Language (TDL) [87].

CDL has a recursive composition of configurations, similar to our TST
task structure. In CDL, a behavior and a set of parameters creates an agent.
Agents can be composed into larger entities, called assemblages that work as
macro-agents. Assemblages can in turn be part of larger assemblages. CDL
has been used as the basis for MissionLab, a tool for mission specification
using case based reasoning. Task-allocation is done according to the market-
based paradigm with contract-nets. Task allocation can be done together
with mission specification, or at run time [93].

The second related task specification language, TDL, can specify task
decomposition, synchronization, execution monitoring, and exception han-
dling. TDL is an extension to C++, meaning the specification is compiled
and executed on the robots. Tasks are in the form of task trees. A task has
parameters and is either a goal or a command, where a command is similar
to an action node in a TST. Goal nodes can have both goal and command
nodes as children, but command nodes have no goal children. The action
of a command node can, when executed, add child nodes or perform some
physical action in the world. An action can contain conditional, iterative
and recursive code.

Both CDL and TDL are similar to TST, but with the difference that
the specification of a TST is not pre-compiled and therefore allows for more
dynamic handling of tasks in the case of changing circumstances. The spec-
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ification remains through the stages of task-allocation (delegation) and ex-
ecution. Each node in a TST has parameter values which are restricted by
constraints. Each node has also an executor object (for each platform) that
can be instantiated with the parameters determined in the task allocation
stage. Since we have this separation between specification and execution of
tasks connected as a constraint problem of the node parameters and plat-
form assignments, we can go back and forth from the task-allocation and
execution stage. Such transitions are needed when an error is detected, or
when the mission is changed with mixed-initiative input. The loose coupling
between specification and execution is needed for supporting adjustable au-
tonomy and mixed-initiative.

One of the requirements of the task specification format is to allow the
framework for collaborative robotics to work both with central and dis-
tributed planning. In distributed planning, many agents are involved in the
planning. The main difference from centralized planning is that the agents
combine their efforts and plans, instead of one agent doing all the planning.
Examples are RETSINA [89] and STEAM [91]. In distributed planning, the
coordination structure emerges from the agents’ combined work, whereas in
our framework for collaborative robotics, the TST expresses the coordina-
tion structure.

Another important distributed planning system is partial global plan-
ning (PGP) [44, 45]. The PGP framework is a system similar to ours, but
also different. A major difference is that PGP is “worth-oriented”, i.e., the
system is used to optimize task allocation where a certain number of all
tasks are allocated. There is no black or white outcome to the allocation,
compared to our system that either fails or succeeds. The TÆMS data
structure that describes tasks in PGP is similar to our TSTs. Both task
representations can be used to express task trees, but the types of available
structure nodes differ. TSTs have sequence, concurrent, loop and select
nodes, whereas the corresponding structure nodes in TÆMS are AND/OR
nodes. PGP was originally developed for The Distributed Vehicle Monitor-
ing Testbed (DVMT) [72].
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Allocating Tasks in a TST
to Platforms

“How can the preconditions of the delegation speech act be assured, so that
a task τ specified according to R1 can be delegated?”

Given a TST representing a complex task, an important problem is to find
a set of platforms that can execute this complex task according to the TST
specification. The problem is to allocate tasks to platforms and assign values
to parameters so that each task can be carried out by its assigned platform
and all the constraints of the TST are satisfied.

For a platform to be able to carry out a task, it must have the capabilities
and the resources required for the task as described in the previous chapter.
Each node in a TST specifies the capabilities required of platforms to be
allocated to the node. A platform that can be assigned a task in a TST is
called a candidate and a set of candidates is called a candidate group. The
capabilities of a platform are usually fixed while the available resources keep
vary depending on its commitments, including the tasks it has already been
allocated. These commitments are generally represented in the constraint
stores and schedulers of the platforms in question. Resources are represented
by variables and commitments by constraints. These constraints are local to
the platform and different platforms may have different constraints for the
same task. Figure 4.1 shows an abstract representation of the constraints
for the scan action for platform P1.

When a platform is assigned an elementary action node in a TST, the
constraints associated with that action are instantiated and added to the
constraint store of the platform. The platform constraints defined in the
constraint model for the task are connected to the constraint problem defined
by the TST via the node parameters in the node interface for the action node.
Figure 4.2 shows the constraint network after allocating node N2 from the
TST in Figure 3.1 (on page 20) to platform P1.
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Figure 4.1: The parameterized platform constraints for the scan action.
The red/dark variables represent node parameters in the node interface.
The gray variables represent local variables associated with the platform
P1’s constraint model for the scan action. These are connected through
dependencies.

Figure 4.2: The combined constraint problem after allocating node N2 to
platform P1.

A platform can be allocated to more than one node. This may introduce
implicit dependencies between actions since each allocation adds constraints
to the constraint store of the platform. For example, there could be a shared
resource that both actions use. Figure 4.3 shows the constraint network of
platform P1 after it has been allocated nodes N2 and N4 from the example
TST. In this example the position of the platform is implicitly shared since
the first action will change the location of the platform.

A complete allocation is an allocation which allocates every node in a
TST to a platform. A completely allocated TST defines a constraint prob-
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Figure 4.3: The parameter constraints of platform P1 when allocated node
N2 and N4.

lem that represents all the constraints for this particular allocation of the
TST. As the constraints are distributed among the platforms it is in effect
a distributed constraint problem. If a consistent solution for this constraint
problem is found, then a valid allocation has been found and verified. The
interval variables of each such solution can be seen as a potential execution
schedule of the TST. The consistency of an allocation can be checked by
a distributed constraint satisfaction problem algorithm such as the Asyn-
chronous Weak Commitment Search (AWCS) algorithm [101] or the The
Distributed Breakout Algorithm [65].

4.1 Deriving the Constraint Problem of a TST

The constraint problem for a TST is derived by recursively reducing the Can
predicate statements associated with each task node to formally equivalent
expressions, beginning with the top-node τ0 and continuing until the logical
statements reduce to a constraint network. Below, we show the reduction of
the complex task α0 represented by the TST in Figure 3.1 when there are
three platforms, P0, P1 and P2, with the appropriate capabilities, P0 has
been delegated the composite action α0 and P0 has recursively delegated α2

and α4 to P1 and α3 to P2 while keeping α1. αi is the composite action
described by the TST rooted in node τi.

Can(P0, α0, [ts0 , te0 ], cons) = Can(P0, S(α1, α4), [ts0 , te0 ], cons)↔
∃ts1 , te1 , ts4 , te4(Can(P0, α1, [ts1 , te1 ], consP0

) ∨
∃a1Delegate(P0, a1, α1, [ts1 , te1 ], consP0

)) ∧
(Can(P0, α4, [ts4 , te4 ], consP0

) ∨
∃a2Delegate(P0, a2, α4, [ts4 , te4 ], consP0))
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Let us focus on the reduction of first element in the sequence, α1. Since P0

has not delegated α1 we expand the Can predicate one more step:

Can(P0, α1, [ts1 , te1 ], consP0
) =

Can(P0, C(α2, α3), [ts1 , te1 ], consP0
)↔

∃ts2 , te2 , ts3 , te3 ((Can(P0, α2, [ts2 , te2 ], consP0
) ∨

∃a1Delegate(P0, a1, α2, [ts2 , te2 ], consP0)) ∧
(Can(P0, α3, [ts3 , te3 ], consP0) ∨
∃a2Delegate(P0, a2, α3, [ts3 , te3 ], consP0

)))

Since P0 has recursively delegated α2 to P1 and α3 to P2 the Delegate
predicates can be reduced to Can predicates:

Can(P0, α1, [ts1 , te1 ], consP0) =
Can(P0, C(α2, α3), [ts1 , te1 ], consP0

)↔
∃ts2 , te2 , ts3 , te3 (Can(P1, α2, [ts2 , te2 ], consP0

) ∧
Can(P2, α3, [ts3 , te3 ], consP0

))

Since P0 has recursively delegated α4 to P1 we can complete the reduction
and end up with the following:

Can(P0, α0, [ts0 , te0 ], cons) = Can(P0, S(C(α2, α3), α4), [ts0 , te0 ], cons)↔
∃ts1 , te1 , ts4 , te4
∃ts2 , te2 , ts3 , te3

Can(P1, α2, [ts2 , te2 ], consP1) ∧
Can(P2, α3, [ts3 , te3 ], consP2) ∧
Can(P1, α4, [ts4 , te4 ], consP1

)

The remaining tasks are elementary actions and consequently the def-
inition of Can for these are platform-dependent. When a platform is as-
signed an elementary action node the resource constraints for that action
are added to the local constraint store. The local constraints are connected
to the distributed constraint problem through the node parameters of the
assigned node. All remaining Can predicates in the recursion are replaced
with constraint sub-networks associated with specific platforms as shown in
Figure 4.4. To check that the resulting distributed constraint problem is
consistent we use local CSP solvers together with a DisCSP solver.

In summary, the delegation process, if successful, provides a TST that
is both valid and completely allocated. During this process, a network of
distributed constraints is generated which if solved, guarantees the valid-
ity of the multi-agent solution to the original problem. This is under the
assumption that additional contingencies do not arise when the TST is ac-
tually executed in a distributed manner by the different agents involved in
the collaborative solution. This approach is intended to ground the original
formal specification of the S-Delegate speech act with the actual processes
of delegation used in the implementation. Although the process is prag-
matic in the sense that it is a computational process, it in effect strongly
grounds this process formally, due to the reduction of the collaboration to
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Figure 4.4: The completely allocated and reduced TST showing the interac-
tion between the TST constraints and the platform dependent constraints.

a distributed constraint network, which is in effect a formal representation.
This results in a real-world grounding of the semantics of the Delegation
speech act via the Can predicate.

4.2 The Delegation Process

Now that the S-Delegate speech act, the task specification tree represen-
tation, and the formal relation between them have been considered, we
turn our attention to describing the computational process that realizes
the speech act in a robotic platform.

According to the semantics of the S-Delegate(A,B,τ = (α, φ, cons)) speech
act the delegator A must have φ as a goal, believe that there is an agent
B that is able to achieve τ , and believe that it is dependent on B for the
achievement of τ via action α. In the following, we assume that the agent
A already has φ as a goal and that it is dependent on some other agent to
achieve the task. Consequently, the main issue is to find an agent B that is
able to achieve the task τ .

This could be done in at least two ways. Agent A could have a knowledge
base encoding all its knowledge about what other agents can and cannot do
and then reason about which agents could achieve τ . This would be very
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similar to a centralized form of multi-agent planning since the assumption is
that τ is a complex task. This is problematic because it would be difficult to
keep such a knowledge base up-to-date and it would be quite complex given
the heterogeneous nature of the platforms involved. Additionally, the pool
of platforms accessible for any given mission at a given time is not known
since platforms come and go.

As an alternative, the process of finding agents to achieve tasks will be
done in a more distributed manner through communication among agents
and an assumption that elementary actions are platform-dependent. The
details of such actions are not required in finding appropriate agents to
achieve the tasks at hand.

The following process takes as input a complex task represented as a
TST. The TST is intended to describe a complex mission. The process
finds an appropriate agent or set of agents capable of achieving the mission,
possibly through the use of recursive delegation. If the allocation of agents
in the TST is approved by the delegators recursively, then the mission can
be executed. Note that the mission schedule will be distributed among the
group of agents that have been allocated tasks, and the mission may not
necessarily start immediately. This depends on the temporal constraints
used in the TST specification. However, commitments to the mission have
been made in the form of constraints in the constraint stores and schedulers
of the individual platforms. Note also that the original TST given as input
does not have to be completely specified. It may contain goal nodes which
require expansion of the TST with additional nodes.

The process is as follows:

1. Allocate the complex task through an iterative and recursive process
which finds a platform to whom the task can be delegated to. This
process expands goals into tasks, assigns platforms to tasks, and as-
signs values to task parameters. The input is a TST and the output
is a fully expanded, assigned and parameterized TST.

2. Approve the mission or request the next consistent instantiation. Re-
peat 1 until approved or no more instantiations.

3. If no approved instantiated mission is found, then fail.

4. Otherwise, execute the approved mission until finished or until con-
straints associated with the mission are violated during execution.
While executing the mission, constraints are monitored and their pa-
rameterization might be changed to avoid violations on the fly.

5. If constraints are violated and cannot be locally repaired goto 1 and
begin a recursive repair process.

The first step of the process corresponds to finding a set of platforms
that satisfies the pre-conditions of the S-Delegate speech act for all delega-
tions in the TST. The approval corresponds to actually executing the speech
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act. During the execution step, the contractors are committed to the con-
straints agreed upon during the approval of the tasks. They do have limited
autonomy during execution in the form of being able to modify internal
parameters associated with the tasks as long as they do not violate those
constraints externally agreed upon in the delegation process.

The most important part of the Delegation Process is to find a platform
that satisfies the pre-conditions of the S-Delegate speech act. This is equiv-
alent to finding a platform, which is able to achieve the task either itself
of through recursive delegation. This can be viewed as a task allocation
problem where each task in the TST should be allocated to an agent.

Multi-robot task allocation (MRTA) is an important problem in the
multi-agent community [57, 58, 71, 94, 105, 106]. It deals with the complex-
ities involved in taking a description of a set of tasks and deciding which
of the available robots should do what. Often the problem also involves
maximizing some utility function or minimizing a cost function. Important
aspects of the problem are what types of tasks and robots can be described,
what type of optimization is being done, and how computationally expen-
sive the allocation is. The characteristics of the task allocation problem will
be described in the following section.

4.3 Classifying the TST Allocation Problem

The task allocation problem can be traced back to the Optimal Assignment
Problem (OAP) [54]. In OAP, a number of workers m should be assigned
to a number of jobs n, with only one worker per job. The worker - job
combinations have different utilities, depending on how well suited each
worker is for its job. The problem is to find the optimal allocation.

The following assumptions are made in OAP: A worker can only have one
job at a time. A job needs only one worker. The assignment is instantaneous.
There are no more jobs to take care of later or plan for taking care of later.
The jobs are atomic in the sense that they do not relate to each other. Both
the utilities and jobs are independent. Assigning one worker to a job does
not change other workers’ utilities for their jobs. One job does not have to
be assigned before another job is assigned. One can see that the problem has
three dimensions / parameters that affects its difficulty: worker capacity, job
complexity and allocation horizon. Changing one or more of these results
in a harder assignment problem.

The OAP problem and its derived variants have been used in the research
field on multi-agent systems as a basic formulation for how to allocate tasks
to agents. Task allocation is a fundamental problem for achieving coordi-
nation in a multi-agent system. The multi-robot task allocation problem is
in its simplest form equal to the OAP. The problem also has seven harder
variants [57]. In his thesis, Gerkey [57] modifies the following parameters
of the problem. Single-task robots (ST) vs. multi-task robots (MT), i.e.
can a robot execute one or more tasks at the same time (robot capacity).
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The second parameter is single-robot tasks (SR) vs multi-robot tasks (MR),
(task complexity). SR means one task needs at most one robot, for MR a
task may need more than one robot. The final parameter is instantaneous
assignment (IA) vs. time-extended assignment (TE). In IA there is no in-
formation to plan for further allocations, instead an allocation can be done
directly. For TE there is more information such as information about all
tasks that need to be assigned or a model over how tasks are expected to
arrive in time.

If we compare our problem to Gerkey’s MRTA problem classes, it fits
into the MT-SR-TE class. Our problem is MT because each platform can
do more than one task at a time. This is because a platform’s commitments
are only restricted by the platform’s resources. The problem is SR, because
only one platform is needed per task. Here we view the tasks as the nodes
in the TST, if we regard the entire TST as a task, then it is a MR problem.
Our problem is also TE because we have a model (TST + constraints) over
all tasks that should be assigned and how they relate to each other.

4.3.1 Basic Task Allocation Problem Properties

A task allocation problem is classified by its robot capacity, task complexity
and allocation horizon. In this section, we describe more carefully those
aspects of our problem.

Robot Capacity

In OAP, a worker can only do one task at a time. Most task allocation
algorithms make this assumption. In our case we do not want to unneces-
sarily restrict the platform’s capabilities partly because we often only have
a few platforms. A platform can do more than one task at a time, which
is modeled by the use of resources. It is the resources that are the limiting
factor rather than the platforms. Modeling the problem in this way makes
the problem more complex (MT) but allows for more efficient use of the
platforms’ resources.

Task Complexity

Task complexity describes the number of platforms needed to allocate a
single task. We view a TST as a collection of tasks. With this view we have
single-robot tasks (ST) because only one robot is needed for each node in a
TST.

Allocation Horizon

A TST may describe an undefined schedule, in which case it should be made
concrete during task allocation. During the task allocation, constraints de-
rived from the resource predicates are connected to the extended constraint

38



Chapter 4. Allocating Tasks in a TST to Platforms

network on a node per node basis. The complete constraint problem is thus
not known at the beginning of the allocation. Instead, more information
about the task allocation problem becomes available during the allocation,
i.e. we have a time-extended allocation (TE).

4.3.2 Complex Task Allocation Problem Properties

In his thesis, Gerkey points out that the classification does not really apply
to task allocation problems where the tasks have dependencies between each
other such as interrelated utilities or constraints [57]. Our TSTs have at least
task constraints and sometimes also interrelated utilities. A TST is held
together by tree constraints, e.g. it has constrained tasks. In a TST there
can also exist dependencies between allocations and the utility values for
those allocations, caused by resource usage, the updating of the platform’s
position during sequential allocations of the same platform, etc.

Gerkey’s classification is still very useful, since it shows how our problem
relates to other MRTA problems. We extend the classification model with
the parameters: utility dependencies, unrelated utilities (UU) vs interrelated
utilities (IU), and task dependencies, independent tasks (IT) vs constrained
tasks (CT), to cover our problem.

Another aspect of the task allocation problem is who is making the task
allocation. In the OAP, there is no allocator worker responsible for solving
the OAP, instead the problem is given and it should be solved by an external
allocator. The allocation itself is not seen as work to be done by one of the
workers, instead it is an external process. If the allocation is done by one of
the workers, we have a much different situation. Both the tasks and the task
allocations are tasks for the multi-agent system. Making the task allocation
a task for the agents themselves is captured by the delegation concept. A
delegation is a task allocation involving at least one allocator agent and
one allocated agent. We call the parameter that captures this concept the
allocation view and it can take the value external allocation view (EV) or
internal allocation view (IV). Whether IV is harder than EV depends on how
much information on the task allocation problem the allocator can retrieve.
In the EV it is more or less assumed that all information can be given to
the external allocator. This does not have to be the case for IV, and if not,
then task allocation of the IV type is more constrained.

Related to, but not included in the task allocation problem, is the task
allocation environment parameter. A task allocation environment can be
even harder than TE, if the task-allocator does not only have to take into
account future tasks to allocate, but also that the task allocation problem
can change unexpectedly. Changes could include addition or removal of
agents and changes to variable domains. In such an environment we have the
additional problem of task re-allocation. We call this parameter allocation
environment and it can take the value static allocation environment (SA) or
dynamic allocation environment (DA).
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In the following section we describe the utility-dependence, task- depen-
dency, allocation view and allocation environment in more detail.

Task-Dependencies

Either there are relations between the tasks in the task allocation problem
(constrained tasks) or there are not (independent tasks). The former makes
the task allocation problem harder, but is also needed in domains where the
tasks to be allocated are parts of a larger task structure, such as our TSTs.

Utility-Dependencies

A common method to determine the value of an allocation, so that it can
be compared with other allocations is to use utility values. Allocating a
platform to a task derives a value describing how well the allocation fits into
the entire allocation problem. A possible utility function in our case is the
marginal cost of allocating a task to a platform (a high utility is in this case
a low cost of allocation). A task allocation problem where the utility value
of an allocation does not depend on or influence the utility values of other
allocations, has unrelated utilities. The opposite is interrelated utilities.

For example, if platform P0 is allocated to TaskA, then there is an al-
location utility U0,A. If platform P0 is allocated to TaskB , then there is an
allocation utility U0,B . If P0 is allocated to both TaskA and TaskB , there
is a third allocation utility U0,AB , and U0,A + U0,B may not necessarily be
equal to U0,AB . For cases where independence does not hold, utility values
for all such combinations must be returned to provide a correct view of the
situation.

Interrelated utilities arises under certain circumstances when the same
platform is allocated more than once in the solution to the task allocation
problem. For instance, allocating a platform to a task with the meaning
of moving the platform to a certain position will have different utilities
depending on what other tasks the platform previously has taken on (i.e.
where the platform was positioned before). Interrelated utilities can also
occur when a resource is used by several allocated tasks. Our missions
typically involve less platforms than TST nodes and the resources used are
carried on the platforms and therefore severely limited. In our missions,
interrelated utilities will occur frequently and there is no reasonable measure
we could take to assure that interrelated utilities cannot occur. To make
that happen we would have to restrict a platform to only appear once in
a TST (only taking into account the elementary tasks), which is a severe
limitation in our problem domain. The missions we could express would not
be realistic.

Interrelated utilities is the most difficult feature of our task allocation
problem. Task allocation problems with this property cannot be allocated
with a divide and conquer approach. Such task allocation problems are
similar to problems solved with combinatorial auctions [21].
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Task Allocation View

Both tasks and allocation of tasks are done by the platforms themselves in
our task allocation problem. An internal task allocation is expressed as a
delegation. In order to carry out a delegation from platform A to platform
B of task τ , B is required to do a task allocation of τ for A. In our case
the delegator (A) is a platform or the operator, and the contractor (B) is
a platform. This view can be compared to OAP, where task allocation is
an external process and none of the workers is responsible for solving the
allocation problem.

In our case, the internal allocation view together with the limited knowl-
edge about other platforms, makes task allocation a significantly harder
problem.

Task Allocation Environment

The task allocation environment can be either static (SA) or dynamic (DA).
In the dynamic case, the presumptions of the task allocation problem can
change, whereas in the SA case they do not. In the DA case, the task
allocator must be prepared to change or update the allocation when needed.
For example, execution of tasks might require more resources than expected,
or an allocated platform must leave the collaborate UAS for some reason.

4.3.3 Summary

The TST allocation problem has the internal task allocation view (IV) at
the same time as the platforms have limited knowledge about each others
capabilities. The TST allocation problem has strong similarities with the
problems studied in the DisCSP field. A DisCSP is a distributed constraint
satisfaction problem, where a number of variables, connected by constraints
should be given values so that all constraints are consistent. The distributed
part means that each variable is owned by an agent. In the original con-
straint satisfaction problem there are no agents and no ownership relations
exists. The agent concept, and the constraint-based representation of TSTs
makes the task allocation problem suitable for a DisCSP approach. A TST
is in the form of a task tree and describes a schedule (TC). The problem
has time extended allocation (TE), which means that a platform can be
assigned more than once in a TST. Goal nodes also add to the TE aspect
because the extent of the task allocation problem is not known before the
goal nodes are expanded.

4.4 The TST Allocation Problem Definition

In this and the previous chapter we described aspects of our task allocation
problem. We noted that our version of the task allocation problem can be
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stated as a distributed constraint satisfaction problem. In this section we
define the problem formally.

The Task Allocation Problem: Given a TST with nodes N0, ..., Nn
and platform P0, ..., Pm, for every node ni ∈ N0, ..., Nn allocate it to a plat-
form pi ∈ P0, ..., Pm, so that all constraints in the constraint network formed
by the TST and the allocated platform’s resource constraints (Pi, N0), ..., (Pj ,
Nn) are satisfied.

In the general case, the task allocation problem can be viewed as a condi-
tional distributed constraint satisfaction problem. A conditional constraint
satisfaction problem is a constraint problem whose content (constraints and
variables) depends on a number of conditional variables. Different choices
for those variables, creates different constraint problems. A conditional dis-
tributed constraint satisfaction problem is a distributed version of the con-
ditional constraint satisfaction problem. In our case, the DisCSP is formed
depending on the choices of platforms to TST nodes that are made. A node
in a TST can be allocated to all platforms that have the required capability
and sufficient resources. The platforms are heterogeneous, meaning that the
DisCSP will be different depending on which platform that is chosen. The
task allocation problem has two layers, a higher conditional layer that deter-
mines the content of the formed DisCSP, and a lower layer that determine
consistency in the DisCSP. The two layers interact, because only certain
choices of platforms to TST nodes result in DisCSPs that are consistent.

4.5 A TST Allocation Algorithm

This section presents a heuristic search algorithm for allocating a fully ex-
panded TST to a set of platforms. A successful allocation assigns each node
to a platform and assigns values to all parameters such that each task can
be carried out by its assigned platform and all the constraints of the TST
are satisfied. During the allocation, temporal variables will be instantiated,
resulting in a schedule for executing the TST.

The algorithm starts with an empty allocation and extends it one node
at a time in a depth-first order over the TST. To extend the allocation, the
algorithm takes the current allocation, finds a consistent allocation of the
next node, and then recursively allocates the rest of the TST. Since a partial
allocation corresponds to a distributed constraint satisfaction problem, a
DisCSP solver is used to check whether the constraints are consistent. If
all possible allocations of the next node violate the constraints, then the
algorithm uses backtracking with backjumping to find the next allocation.

The algorithm is both sound and complete. It is sound since the con-
sistency of the corresponding constraint problem is verified in each step,
and it is complete since every possible allocation is eventually tested. Since
the algorithm is recursive, the search can be distributed among multiple
platforms.

To improve the search, a heuristic function is used to determine the
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order in which platforms are tested. The heuristic function is constructed
by auctioning out each node to all platforms with the required capabilities.
The bid is the marginal cost for the platform to accept the task relative to
the current partial allocation. The cost could for example be the total time
required to execute all tasks allocated to the platform.

To increase the efficiency of the backtracking, the algorithm uses back-
jumping to find the latest partial allocation which has a consistent allocation
of the current node. This preserves soundness, as only partial allocations
that are guaranteed to violate the constraints are skipped. The algorithm is
complete because with backtracking or backjumping the algorithm will test
all possible unique configurations.

AllocateTST

The AllocateTST algorithm takes a TST rooted in the node N as input and
finds a valid allocation of the TST if possible. To check whether a node N
can be allocated to a specific platform P the TryAllocateTST algorithm is
used. It tries to allocate the top node N to P and then tries to recursively
find an allocation of the sub-TSTs.

AllocateTST(Node N)

1. Find the set of candidates C for N .

2. Run an auction for N among the candidates in C and order C accord-
ing to the bids.

3. For each candidate c in the ordered set C:

(a) If TryAllocateTST(c, N) then return success.

4. Return failure.

TryAllocateTST(Platform P, Node N)

1. AllocateTST P to N (add the constraints to the platform’s DisCSP
Node).

2. If the allocation is inconsistent (check by running the DisCSP algo-
rithm) then undo the allocation and return false.

3. For each sub-TST n of N do

(a) If AllocateTST(n) fails then undo the allocation and do a back-
jump (see Section 4.5.1).

4. An allocation has been found, return true.
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Node Auctions

Broadcasting for candidates for a node N only returns platforms with the re-
quired capabilities for the node. There is no information about the usefulness
or cost of allocating the node to the candidate. Blindly testing candidates
for a node is an obvious source of inefficiency. Instead, the node is auctioned
out to the candidates. Each bidding platform bids its marginal cost for exe-
cuting the node. That is taking into account all previous tasks the platform
has been allocated, and calculating how much more would it cost the plat-
form to take on the extra task. The cost could for example be the total time
needed to complete all tasks. To be efficient, it is important that the cost
can be computed by the platform locally. We are currently evaluating the
cost of the current node, not the sub-TST rooted in the node. This leaves
room for interesting extensions. Low bids are favorable and the candidates
are sorted according to their bids. The bids are used as a heuristic function
that increases the chance of finding a suitable platform early in the search.

4.5.1 Distributed Backjumping

A dead-end is reached when a platform is trying to allocate a node Nk but
there is no consistent allocation. The platform must then undo previous
allocations until a partial allocation is found where Nk can be allocated.
This is the backjump point where the backtracking will start.

More formally, the current partial allocation can be seen as the assign-
ment A1, . . . , Ak of platforms to each node in the sequence N1, . . . , Nk. In-
stead of backtracking over the next allocation for N1, . . . , Nk−1 as in normal
chronological backtracking, the algorithm finds the node Nj with the high-
est index j such that a consistent allocation for Nk can be found given the
partial allocation A1, . . . , Aj . The node Nj is called the backjump point.
Using the fact that Nk must be allocated we can skip all partial allocations
of Nj+1, . . . , Nk−1 that do not lead to a consistent allocation of Nk.

The backjump point is found by disconnecting parts of the DisCSP net-
work and then trying all possible allocations for Nk. When the node can be
allocated with parts of the network disconnected, it means that the back-
jump point resides in the disconnected part of the network. The localization
of the backjump point continues in the previously disconnected network by
recursively dividing it into smaller parts. Each new partial allocation is
checked by trying to extend it with an allocation of Nk. Since the task allo-
cation process is distributed the backjump process must also be distributed.

To describe the algorithm, the following definitions are used. A platform
is in charge of all nodes below a node it has been allocated. The node that
could not be allocated is called the failure point. The platform trying to find
an allocation for the failure point is called failure point allocator. Discon-
necting a network means temporarily removing the variables in the network
from the DisCSP, which is equivalent to removing the corresponding alloca-
tions. When a platform disconnects networks and checks for consistency, an
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activation message is sent from the platform to the failure point allocator.
The failure point allocator will then try applicable platforms for the failure
point until an new allocation is found or none exists. The failure point al-
locator sends an allocation succeeded if an allocation is found, otherwise an
allocation failed message.

The procedures Search Upwards and Search Downwards are used to find
the backjump point, beginning with the Search Upwards procedure. Two
different search procedures are necessary since we first have to find which
platform is in control over the backjump point, and then have to find the
actual backjump point.

Search Upwards

1. Disconnect all child branches (that have been allocated) except the
branch that contains the failure point. Signal the failure point alloca-
tor to start finding an allocation for the failure point.

(a) If the failed node can be allocated, reconnect all child branches
and start searching for the backjump point by calling Search
Downwards.

(b) If no allocation can be found, then do a Search Upwards starting
from the parent of the node. If the node has no parent, then
there is no allocation.

Search Downwards

1. Disconnect child branches one at the time in the reverse order they
were allocated and check the consistency. If the network is consistent,
then the backjump point is in that branch.

2. When a branch containing the backjump point is located, check if the
child branch has a composite action node as the top-node. In that case,
do a recursive Search Downwards starting at that node. Otherwise,
the backjump point has been found.

Example

Consider the TST in Figure 3.1 (on page 20). Assume that the operator
has put a time bound of 30 minutes on the TST. AllocateTST works with
the top-Node N0 on platform P0. The candidates for N0 are platform P0

and P1. P0 auctions out the node N0 to the platforms, and each platform
returns their bid on the node. Let us assume the order is P1, P0 based on
the bids. Platform P0 will now try to allocate the node to platform P1. If
it does not work, it will try with itself instead, before it gives up.

When platform P1 is chosen to be allocated to node N0, the TST with
top-node N0 is delegated from the delegator P0 to the contractor P1. P1

allocates itself to N0. The constraint network is formed on P1 and it is
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Figure 4.5: Nodes N0–N3 are allocated to platform P1, node N4 remains.

consistent. Since the node N0 has two child nodes, P1 has to allocate them
before concluding the delegation from P0. For each of the child nodes, N1

and N4, P1 will now work as the delegator in the same way as P0 worked as
delegator for N0.

Assume that all nodes except N4 have been allocated (see Figure 4.5).
Platform P1 has two candidates for N4, itself and P0. P1 cannot be allocated
to N4 within the time bound. P0 is tested instead, with the same result.
P0 must now backtrack to find the point where it can make a new choice
and from there on allocate the remaining nodes in the TST. Backtracking
to node N3 and choosing the next candidate in the list for that allocation
makes it possible to allocate N4 within the time bound, see Figure 4.6.
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Figure 4.6: The complete allocation after backtracking.

4.6 Alternative Approaches

In this section we consider other approaches to the task allocation problem.

4.6.1 An Alternative DisCSP Approach

An alternative DisCSP approach to the task allocation problem would sim-
ply involve all possible candidate platforms for all tasks the platforms are
capable of. The resulting DisCSP would be much larger than the DisCSP
solved by AllocateTST, but on the other hand it will not need to add and
remove constraints. This approach is explored in Chapter 7, in Section 7.6.
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4.6.2 An Integer or Linear Programming Approach

The task allocation problem is similar to the winner determination prob-
lem for combinatorial auctions. This problem has been solved with Integer
Programming and Linear Programming [21], which makes those approaches
interesting for our problem. One approach could be to replace the local
CSP solver with a dedicated Integer Programming and Linear Program-
ming solver and run the AWCS algorithm on top. Another possibility is
to use a complete distributed Linear or Integer programming approach [5]
instead of a DisCSP algorithm. Evaluating and comparing those approaches
to our chosen approach is left for future work.

4.7 Related Work

Task allocation algorithms suitable for a comparison with AllocateTST are
algorithms that can handle more of the hard features in the task alloca-
tion classification (such as time extended allocation (TE), constrained task
(CT) and interrelated utilities (IU). Most task allocation algorithms can
only handle problems with independent tasks (IT) for task dependencies
and unrelated utilities (UU) for utility dependencies. But there are ex-
ceptions, such as Zlot’s and Gerkey’s task allocation algorithms described
in [57, 106]. Zlot’s task allocation algorithm [106] can handle complex tasks,
which in this case is a form of constrained task trees. The task tree con-
sists of AND/OR nodes and elementary nodes, similar to our TSTs with
composite and elementary action nodes. The main difference between com-
plex tasks and our TSTs is the interrelated utilities. None of the referred
task allocation algorithms can solve problems with this property. Trying to
allocate a TST using the task allocation algorithm described in [57] would
not work since the algorithm cannot handle task structures. The schedule
might not be correct and resources could be overbooked, leading to a failures
during execution. Trying to solve the problem with the auction-based algo-
rithm from [106] could produce an allocation, but since interrelated utilities
are not taken into account, the allocation may contain overbooked resources
and not result in a working solution. This is because the task allocation
algorithms [57, 106] assume that it is easy to find a solution, but hard to
find the best solution or a good solution.

Many task allocation algorithms are auction-based, for instance [23, 105].
The tasks are auctioned out to the agent most fit for the work, which is de-
termined by a utility function. The auction concept decentralizes the task
allocation process, which is very useful especially in multi-robot systems,
where centralized solutions are impractical. The auction-based approach
has been successful for tasks that have unrelated utilities. This is because
UU ensures that a task or a sub-task tree can be treated as an independent
entity, and can be auctioned out without affecting other parts of the allo-
cation. When a robot puts a bid on a task it only has to take that task
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into consideration. In our problem, possible resource conflicts and the fact
that the allocation is IU means we do not have this isolation of sub-tasks. A
bid can be different depending on the other commitments of the platforms.
An auction-based solution for our problem would need to include combi-
natorial auctions or changing or replacing tasks to deal with interrelated
utilities. Such interrelated utilities are called complementarities in auction
terminology.

Distributed constraint optimization, which is basically a DisCSP with an
objective function for optimization, is becoming a popular problem solving
method [81]. This problem solving method is not necessarily a useful ap-
proach to our problem because it is not obvious what should be optimized.
If we optimize on execution time, the platforms might waste too much re-
sources compared to the gain in time. If we optimize on the number of
violated constraints, we might get solutions that can not be executed even
if only a few constraints are violated. For our task allocation problem we
are interested in finding a solution not necessarily the optimal one, since it
is not clear what is an optimal solution.

Various modifications of the DisCSP introduces different dynamic as-
pects to the problem. One example is the network cosnsitency problem [14].
There has been some work on extending the DisCSP problem to take into
account addition and removal of constraints, which relates to our condi-
tional DisCSP problem. Typical DisCSP and DisCOP algorithms such as
AWCS and ADOPT [77] assumes a static constraint network, which is de-
termined from the start. But there are extensions to the algorithms that
allow additions of constraints and variables [47, 85].

Dynamic DisCSP approaches have been applied to dynamic versions of
the task allocation problem. In the original task allocation problem it is
assumed that there is an evaluation function that can be used to measure
the utility of a given allocation. In dynamic task allocation, the value of
an allocation can vary during the assignment process. Variations depend
on changing circumstances in the environment, changes in robot behavior
and changing the capabilities and resources of robots [86]. In the dynamic
version of the task allocation problem, called dynamic task-reallocation,
tasks must be reallocated as the circumstances change so that the entire
problem can be solved. An algorithm for dynamic task-reallocation problems
called SOLO has been proposed for problems of this type. The algorithm
builds on the Asynchronous Backtracking Algorithm with multiple variables
per agent [86].

The task in a dynamic task allocation problem can be described as an
abstract task, modeled by a dynamic constraint network which reflects the
current configuration of the problem (there is a notion of time both during
allocation and execution). A framework for solving this type of problem has
been suggested [66]. The framework contains operations for adding and re-
moving constraints to the network, adding and deleting variables and check-
ing consistency continuously. The system is used in the Extendible Uni-
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form Remote Operations Planner Architecture (EUROPA), which is used
for solving AI planning, scheduling, constraint programming, and optimiza-
tion problems. EUROPA does not use distributed constraint satisfaction
problem solving, but extends the centralized CSP formulation to include dy-
namic aspects of the problem. A planning problem in EUROPA is mapped
to a dynamic CSP (DCSP) [52].
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Chapter 5

Extending the FIPA
Abstract Architecture for
Delegation

“How can R1 and R2 be realized on a collaborative UAS?”

To find an answer to the third research question, we start by defining the
basic requirements of a collaborative multi-robot system. With this as a
foundation we describe how the tasks a platform is capable of carrying out
can be represented and what functionalities are needed to support the del-
egation of tasks.

A collaborative multi-robot system is a special type of multi-agent system
where the agents are physical robots acting in the real world. A starting
point for building the infrastructure of a multi-robot system would then
be to study an infrastructure of a corresponding pure software multi-agent
system. Much research has already been done in this field by the FIPA
organization, resulting in the FIPA Abstract Architecture specification [48]
and many other specifications of agent communication and communication
protocols.

5.1 The FIPA Abstract Architecture

The aim of the FIPA organization is to promote agent-based technology
and provide standards for agent interoperability. The organization has re-
leased a number of standards for agent communication and multi-agent sys-
tem. For agent communication FIPA has introduced the agent communica-
tion language FIPA ACL. For multi-agent systems has FIPA introduced the
FIPA Abstract Architecture specification. The name refers to a collection
of components that provide foundational services for a multi-agent system.

51



Chapter 5. Extending the FIPA Abstract Architecture for Delegation

The idea behind the specification is to standardize the functionality that is
needed in most multi-agent systems. The components of the FIPA Abstract
Architecture contain functionality to:

• Keep track of agents, to know which agents that are in the multi-agent
system, and be able to handle events such as agents leaving or entering
the system.

• Keep records of agents’ abilities. With the assumption that the agents
in the multi-agent system have services that they can provide for each
other, this functionality keeps track of which agents that can provide
a service.

• Allow agents to communicate. In other words providing basic func-
tionality for finding agent addresses and providing the functionality
needed for message based communication between agents in the sys-
tem.

• Provide an agent communication language (high-level speech-act based
communication).

The functionalities are provided by the following components:

Agent Directory This component provides “white pages services”, mean-
ing that it maintains a list of all agents in a multi-agent system and
can give information about how to contact them. It handles events
such as agents entering and leaving the multi-agent system. It can be
implemented as an agent or as a service.

Directory Facilitator This component provides “yellow pages services”,
meaning it maintains a list of all services provided by agents in a
multi-agent system and can provide information about which agents
that provide a certain service. It can be implemented as an agent or
as a basic service component.

Message Transport System This component is the basis for all commu-
nication in a multi-agent system. It handles sending and receiving of
messages, network protocols and other low-level communication func-
tionality needed for communication. Agent communication languages
and protocols are then built on top of this component.

Agent Communication Language In the FIPA Abstract Architecture,
agent communication is message-based and realized using an agent
communication language, such as FIPA ACL.

The four components are shown in Figure 5.1. The components consti-
tute an empty multi-agent system, without any agents or application-specific
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Figure 5.1: The components of the FIPA Abstract Architecture.

functionality. The idea is then to populate the system with agents and im-
plement domain-specific ontologies, protocols and other application-oriented
functionality, using the four components as basic functionality.

The Abstract Architecture is a good starting point for our collaborative
robotic shell, but unfortunately it is not enough. Since we are developing a
robotic system we must handle real-world constraints such as the platforms’
locations and resources and how those affect the platforms’ capabilities to
perform tasks. The Capabilities and Resources predicates for tasks that
platforms are capable of must be tied to the platforms actual services and
resources. The information about what tasks the platforms are capable of
must also be made available somehow. The Abstract Architecture does not
cover all those issues. The main weakness lies in how the FIPA Abstract
Architecture specifies services. The following requirements must be met by
the collaborative robotic shell to realize the delegation functionality and
handle tasks.

• It must be possible to specify how resources are used when a platform
carries out a task. This is needed to make sure that resources are used
as efficiently as possible and avoid double bookings when allocating
TSTs.

• It must be possible to specify and find platforms that are capable of a
certain task. It must also be possible to determine if a platform can be
delegated a task by involving the platform in a task allocation process.

• It must be possible to implement protocols such as the auction and
the delegation protocol.

• It must be possible to implement the delegation and task execution
processes without regard to the actual realization of elementary tasks,
capabilities and resources which are platform specific.

• Further it must be possible to implement the agent layer with inter-
faces both to other platforms and to the platform’s legacy system.
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In Chapter 2, the collaborative robotic shell and its parts were briefly
introduced. We repeat some of the important parts here. The collaborative
shell is assumed to be built on top of a legacy system, a robot architecture
with an already existing software and hardware architecture. The collab-
orative shell consists of an agent layer that wraps the legacy system, and
provides interfaces to the legacy system and to other platforms. The agent
layer consists of four services, the Interface Service for platform to platform
communication, a Delegation Service for handling delegations, an Execution
Service for handling the execution of allocated tasks and communication
with the legacy system, and a Resource Service for handling the platforms
resources. Most of the previous listed requirements and the functionality
in the agent layer is met by the FIPA Abstract Architecture, except the
representation of resources and capabilities. The legacy system can provide
services and carry out tasks. However those services and tasks must be rep-
resented in suitable way to be integrated with the task specification format
and the task allocation algorithm. We describe our extended service model
for handling such issues in the next section.

5.2 An Extended Service Model

The Directory Facilitator is basically a list of service names and for each
entry a list of names of agents providing the service. Agents can ask the
Directory Facilitator (using a basic ontology for service queries) for agents
providing a service, and get a list of agent names back.

The service concept in the FIPA Abstract Architecture is very wide to
cover a broad spectrum of applications. Basically it describes an agent’s
ability to do something. Platforms in a collaborative UAS can carry out
tasks. A task specification tree describes what tasks that should be car-
ried out. The platforms’ capabilities in some sense correspond to the FIPA
service concept.

With the FIPA service concept it is possible to state the question “which
platform can provide service X?”. Querying the Directory Facilitator pro-
vides a map between services and agents. We could use the FIPA service
concept to specify what tasks a platform is capable of by storing the name of
the task, the parameters of the task, and the agent’s name in the Directory
Facilitator. The problem with this is that the resource usage aspect of a
task is missing, which is necessary for realizing the delegation speech act.

The FIPA Abstract Architecture must therefore be extended with a plat-
form specification that also takes into account the use of resources. The
platform specification captures both the static and the dynamic aspects of a
task, which make it possible to answer questions such as “how can a platform
carry out a task under the current circumstances?”. The platform specifica-
tion consists of the two components Capabilities(B, τ, [ts, te, . . .], cons) and
Resources(B, τ, [ts, te, . . .], cons) for each task a platform is capable of. A
composite action node distinguishes itself from an elementary action node
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in that it currently only has a Capabilities() predicate. For each predicate
pair in the platform specification, the platform has a platform-dependent,
constraint-based representation of how the platform’s static and dynamic
resources are used when carrying out the corresponding task.

We extend the Abstract Architecture with a platform specification by
introducing a Resource Service that keeps track of a platform’s resources,
and how they are used when carrying out tasks. The Resource Service is
described in Section 5.3.1. For each task, the static part, the Capabilities()
is represented by the name of the task it is capable of as stored in the
Directory Facilitator. Finding a platform that can be delegated a task then
becomes a two step process. In the first step, a list of possible candidate
platforms is created by asking the Directory Facilitator for platforms capable
of a certain task. This shows which platforms the task can be delegated to.
The second step is interleaved with the delegation process, where also the
dynamic part is evaluated on a platform per platform basis.

How the collaborative robotic shell is built up from legacy system to the
agent layer is shown below. Two platforms and their legacy systems (and
the legend for this and the following two figures) are shown in Figure 5.2.

Figure 5.2: Two platforms and their legacy systems are shown in Figure 5.2.
Each platform contains its own services and resources.

In the FIPA Abstract Architecture, the services in the system would be
registered in the Directory Facilitator as shown in Figure 5.3.

In this case there is no description of how resources are used by the ser-
vices because there is no resource concept in the Abstract Architecture. Our
extension includes an agent layer containing a platform specification that not
only registers the capabilities of the platform in the Directory Facilitator,
but also adds a capability and resource model to represent how resources
are used when carrying out a task, see Figure 5.4. The light-colored circles
on a task describes the task’s parameters. We need this extension for de-
scribing how resources are used when carrying out tasks, and also to connect
the functionality in the legacy system to the tasks a platform is capable of
performing.
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Figure 5.3: A multi-agent system based on the FIPA Abstract Architec-
ture. The agent layer is depicted in light blue. Only the Gateway Agents
are shown, but the platforms also contain other agents. The services are
registered in the Directory Facilitator.

Figure 5.4: A collaborative multi-robot system where each platform has
a platform specification, containing the capability and resource predicates,
is shown in Figure 5.4. The names of the tasks a platform is capable of
performing are stored in the Directory Facilitator.

Example

A platform P0 has the service flyto which contains the procedural code for
steering and moving the platform from one position to another. This func-
tionality is part of the legacy system of P0. Adding an implementation of
the FIPA Abstract Architecture on top of the legacy system introduces a
Directory Facilitator. Storing the platform–service tuple in the Directory
Facilitator expresses the fact that the platform has the flyto service.

However, a collaborative UAS uses task specification trees, not services,
to describe the tasks platforms should carry out. A platform specification
has Capabilities(B, τ, [ts, te, . . .], cons) andResources(B, τ, [ts, te, . . .], cons)
predicates to describe how the tasks use services and resources in the legacy
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system. This model must be added to the FIPA Abstract Architecture.
For the task flyto, a Capabilities() predicate represents that a platform

has the static capabilities for the flyto task (has the procedural knowledge).
The name of the task and the platform’s name is stored in the Directory
Facilitator, i.e. P0 – flyto. The Capabilities() and Resources() predicates
are implemented as sets of resource constraints that describe the time it
takes to carry out the legacy system’s flyto service and how resources are
used in the process. For the flyto task, the constraints express the time
required to move from one position to another depending on the distance
and the speed of the platforms (the constraints are shown in the example
on page 28). A more complex model can for instance express how dynamic
resources such as fuel are consumed depending on the speed of a platform.

5.3 The Agent Layer

In Chapter 2, we provided an overview of the software architecture being
used to support the delegation-based collaborative system. It consists of an
agent layer added to the extended FIPA Abstract Architecture on top of a
legacy system. The agent layer contains five of the agents in the collabora-
tive robotic shell. The agents are the Interface Agent, the Resource Agent,
the Delegation Agent, Execution Agent and the Directory Facilitator, see
Figure 5.5. The Gateway Agent belongs to the legacy system. In the pre-
vious chapter, we described the delegation process which includes recursive
delegation, the generation of TSTs, allocation of tasks in TSTs to platforms,
and the use of distributed constraint solving in order to guarantee the va-
lidity of an allocation of a TST. This complex set of processes is realized
in the software architecture by extending the FIPA Abstract Architecture
with a number of application-dependent services and protocols:

• Four services are defined, an Interface Service, a Resource Service,
a Delegation Service and an Execution Service, associated with the
corresponding Interface, Resource, Delegation, and Execution Agent.
These services are local to each platform.

• Three interaction protocols are defined, the Capability Lookup Proto-
col, the Auction Protocol and the Delegation Protocol. These proto-
cols are used by agents to guide the interactions between them as the
delegation process unfolds.

5.3.1 Services

To implement the delegation process the Directory Facilitator and the four
previously mentioned services are needed. The Delegation Service is respon-
sible for coordinating delegations. The Delegation Service uses the Interface
Service to communicate with other platforms, the Directory Facilitator to
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Figure 5.5: Overview of an agentified platform or ground control station.

find platforms with appropriate capabilities, the Resource Service to keep
track of local resources and the Execution Service to execute tasks using the
legacy system.

Directory Facilitator

The Directory Facilitator (DF) is part of the FIPA Abstract Architecture. It
provides a registry over services where a service name is associated with an
agent providing that service. In the collaborative robotic shell the DF is used
to keep track of a platform’s capabilities. Every platform should register
the names of the tasks that it has the capability to achieve. This provides
a mechanism to find all platforms that have the appropriate capabilities for
a particular task. To check that a platform also has the necessary resources
a more elaborate procedure is needed, which is provided by the Resource
Service. The Directory Facilitator also implements the Capability Lookup
protocol described below.

The Interface Service

The Interface Service, implemented by an Interface Agent, is a clearinghouse
for communication. All requests for delegation and other types of commu-
nication pass through this service. Externally, it provides the interface to a
specific platform / ground operator control station. The Interface Service
does not implement any protocols, rather it forwards approved messages to
the right internal service.
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The Resource Service

The Resource Service, implemented by a Resource Agent, is responsible for
keeping track of the local resources of a platform. It determines whether
the platform has the resources to achieve a particular task with a particular
set of constraints. It also keeps track of the bookings of resources that are
required by the tasks the platform has committed to. When a resource is
booked a booking constraint is added to the local constraint store. During
the execution of a complex task, the Resource Service is responsible for mon-
itoring the resource constraints of the task and detecting violations as soon
as possible. Since resources are modeled using constraints, this reasoning is
mainly a constraint satisfaction problem, which is solved using local solvers
that are part of the service.

In the implementation, constraints are expressed in ESSENCE’ which
is a sub-set of the ESSENCE high-level language for specifying constraint
problems [53]. The idea behind ESSENCE is to provide a high-level, solver-
independent, language which can be translated or compiled into solver spe-
cific languages. This opens up the possibility for different platforms to
use different local solvers. We use the translator Tailor [56] which can
compile ESSENCE’ problems into either Minion [55] or ECLiPSe [96], and
Gecode [90]. We currently use Minion as the local CSP solver.

The Resource Service implements the Auction protocol described in Sec-
tion 5.3.2.

Using Capabilities

Section 3.3 described the Capabilities() and Resources() predicates that
represent the static and dynamic aspects of a task in the form of constraints,
called resource constraints. The resource constraints are formed in the del-
egation process when a task is going to be allocated to a platform. The
process goes through different stages, each using different representations
of the resource constraints. In the first stage, the resource constraints of
a task are loaded, containing a set of abstract constraints. The abstract
constraints are instantiated with the platforms current state and resource
status, producing a set of concrete constraints. Finally, booking constraints
are added to the constraint set (if any exist). The resulting constraint set
will then form a DisCSP Node (or extend an already existing DisCSP Node)
on the platform.

A DisCSP Node is the collection of constraints and variables a platform
has collected during the task allocation. It is basically the same thing as
an agent in the DisCSP terminology. The variables are indexed after the
platform’s id and the task node’s id, making sure the variable have unique
names. A DisCSP Node has an agent view, describing the variables of other
platforms’ DisCSP Nodes it is interested in. Those are variables involved
in the platform’s global constraints, i.e. the constraints from the TST. A
DisCSP Node is checked for consistency during task allocation.
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Resource constraints: The resource constraints are created when a plat-
form is going to be assigned to a task. Typically, the resource con-
straints are different on different platforms for the same task, and
depend on the current context and how the platform implements the
capability. The resulting resource constraints only involve the param-
eters of the resource predicate and internal variables of the resource
constraints. For some resource predicates the resource constraints are
parameterized and must be instantiated with node parameters before
they can be used. Meaning that node parameters determines the val-
ues of the parameters and resource constraint variables, whereas some
resource constraint variable are internal and can not be modified by
the delegator.

Abstract constraints: Abstract constraints are constraints containing func-
tions where the node parameters and internal resource variables are
parameters. The functions cannot be replaced by values through con-
straint solving. Instead, the parameters should be given values ac-
cording to the platforms state and the functions should be evaluated
and replaced with their function values. This operation makes the
constraints concrete.

An example is shown on page 68.

Concrete constraints: Concrete constraints are constraints without func-
tions. Such constraints are formed when preparing resource constraints
for a platform’s current state.

Booking constraints: A booking constraint is a type of resource constraint
that represents the unavailability of a resource. Booking constraints
are added to the resource constraints when a capability with previously
booked resources is loaded. Booking constraints represent intervals
when a resource is booked and assure resources are not overbooked.

The Delegation Service

The Delegation Service, implemented by a Delegation Agent, coordinates
delegation requests to and from the platform using the Execution, Resource
and Interface Services. It does this by implementing the Delegation Process
described in Section 4.2. The Delegation Service implements the Delegation
Protocol described in Section 5.3.2.

The Execution Service

The Execution Service, implemented by an Execution Agent, is responsible
for executing tasks using the legacy system (with the help of the Gateway
Agent) on the platform. In the simplest case, this corresponds to calling a
single function in the legacy system, while in more complicated cases the
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Figure 5.6: An overview of the agents involved in the Auction (A), Capa-
bility Lookup (C), and Delegation (D) protocols.

Execution Service might have to call local planners to generate a local plan
to achieve a task with a particular set of constraints.

5.3.2 Protocols

This section describes the three main protocols used in the collaboration
framework: the Capability Lookup Protocol, the Auction Protocol, and the
Delegation Protocol. An overview of the agents involved in the protocols is
shown in Figure 5.6.

The Capability Lookup Protocol

The Capability Lookup Protocol is based on the FIPA Request Protocol.
It is used to find all platforms that have the capabilities for performing a
certain task. The content of the request message is the name of the task.
The reply is an inform message with a list of the platforms that have the
capabilities required for the task.

The Auction Protocol

The Auction Protocol is based on the FIPA Request Protocol. The protocol
is used to request bids for tasks from platforms. The bid should reflect the
cost for the platform to accept the task and is calculated by an auction strat-
egy. An auction strategy could for instance be the marginal cost strategy,
where the bid is the marginal cost (in time) for a platform to take on the
task. The content of the request message is the task that is being auctioned
out. If the platform makes a bid, then the reply is an inform message con-
taining the task and the bid. Otherwise, a refuse message is returned. One
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Figure 5.7: An overview of the Delegation Protocol.

reason for not making a bid could be that the platform lacks the capabilities
or resources for the task.

The Delegation Protocol

The Delegation Protocol, which is an extension of the FIPA Contract Net
protocol [51, 88], implements the Delegation Process described in Section 4.2.
The Delegation Protocol, like the Contract Net Protocol, has two phases,
each containing the sending and receiving of a message. The first phase al-
locates platforms to tasks satisfying the pre-conditions of the S-Delegate
speech act and the second phase executes the task satisfying the post-
conditions of the S-Delegate speech act.

In the first phase a call-for-proposal message is sent from the delegator,
and a propose or refuse message is returned by the potential contractor. The
content is a declarative representation of the task in the form of a TST and
a set of constraints. When a potential contractor receives a call-for-proposal
message, an instance of the Delegation Protocol is started. When the first
phase is completed, if successful, the pre-conditions for the S-Delegate speech
act are satisfied and all the sub-tasks in the TST have been allocated to
platforms such that all the constraints are satisfied.

In the second phase, an accept-proposal is sent from the delegator to the
contractor. This starts the execution of the task (possibly later in time).
If the execution is successful, then the contractor returns an inform mes-
sage otherwise a failure message. Such failure messages will invoke repair
processes and are left for future work.

An overview of the steps in the Delegate Protocol is shown in Figure 5.7.
When a Delegation Agent receives a call-for-proposal message with a TST
the platform becomes a potential contractor. To check if the platform can
accept the delegation it first updates that part of its constraint network
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representing all the constraints related to the TST. This is done by instan-
tiating the platform specific resource constraints for the action associated
with the top node of the TST. If the resulting constraint problem is incon-
sistent, then a refuse message is returned to the delegator. Otherwise, the
resources required for the node are booked through the Resource Service
and the sub-tasks of the TST are recursively delegated. When a platform
books its resources, it places commitments in the form of constraints in
its constraint stores and schedulers which reserves resources and schedules
activities relative to the temporal constraints that are part of the TST so-
lution.

For each sub-task of the TST, the Delegation Protocol goes through the
steps shown in Figure 5.8. First, it uses the Capability Lookup Protocol
to find all the platforms that have the capabilities, but not necessarily the
resources, to achieve the task. Then it will use the Auction Protocol to
request bids from these platforms in parallel. The bids are used to decide
the order in which the platforms are tried. The platform with the lowest bid,
i.e. the lowest cost, will be allocated the task first. If that allocation fails,
then the platform with the next lowest bid is allocated the task. Allocating a
task to a platform involves sending a call-for-proposal message with the task
to the platform. This triggers the Delegation Protocol on that platform. If

Figure 5.8: An overview of the recursive delegation of sub-tasks part of the
Delegation Protocol.
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an allocation fails, then backtracking starts. If backtracking has exhausted
all the choices, then the potential contractor returns a refuse message to the
delegator.

If all sub-tasks can either be allocated to the platform or delegated to
some other platform, then a propose message with the allocated TST is
returned to the delegator.

5.4 Task Allocation Algorithm
Implementation

This section describes an implementation of the task allocation algorithm.
The AllocateTST algorithm and its sub-modules are illustrated in Fig-
ure 5.9. The algorithm is used by the Delegation Agent to delegate task
specification trees.

The work of AllocateTST can be seen as the interplay between two al-
gorithms, the asynchronous weak commitment search (AWCS) algorithm
and a TST allocation algorithm. The AWCS algorithm is used for checking
the consistency of the constraint network formed when the constraints of
the TST are connected with the resource constraints of allocated tasks. The
TST allocation algorithm has an overarching role in that it makes the actual
allocation and uses the AWCS algorithm in the process. The TST allocation
algorithm performs a number of sub-tasks during the allocation, including:
finding platforms with a certain capabilities, handling node auctions and
determining the order of platforms for nodes when there are choices, se-
lecting the appropriate node constraints for capability names and loading
the platform’s DisCSP Node with the constraints. The TST allocation al-
gorithm uses the AWCS algorithm to determine consistency in the current
constraint network. The algorithm also handles the booking of resources
using the platform’s resource database interface. The algorithm also per-
forms backtracking when all possible candidates have been tested for a node
without success. During backtracking the allocation algorithm removes con-
straints from the constraint network and removes bookings for resources in
the resource database.

The TST allocator is the main module in the implementation of Allo-
cateTST. The module parses the TST and extracts the next node to allo-
cate. Using the capability lookup and auction handler, the platform finds
candidates for the node. The delegation handler delegates the node to the
selected platform. If the delegation fails, then a new platform is selected
for the current node, and if no platforms are available, or all tried without
success, the backtracking module is used to revert to the backtrack point.

When delegated a task, the TST Allocator derives the resource con-
straints using the capability loader. The constraints are added to the plat-
form’s DisCSP Node using the DisCSP Node interface. When consistency
has been determined, a booking is added to the platform’s resource database

64



Chapter 5. Extending the FIPA Abstract Architecture for Delegation

Figure 5.9: The TST Allocator and its components. Arrows show uses–
relationships with submodules.

if the allocated node uses resources on the platform. In case of inconsistency
the delegation is refused.

5.4.1 Capability Lookup

For a given task name the capability lookup handler searches for platforms
that have the capability to achieve the task in the Directory Facilitator
and returns the matching platforms (using the capability lookup protocol).
Queries can be combined to return platforms that have the capabilities for
a set of tasks.

Example

Before platform P0 can delegate the task represented by node N2 in Fig-
ure 5.10, it must find candidates for the node. Following the capability
lookup protocol, P0 sends a request message containing the task name scan.
A list of platform names is returned in an inform message, containing plat-
forms P0 and P1.

5.4.2 Auction Handler

The auction handler provides an auction mechanism that auctions out a node
to a set of candidates and collects the bids using the auction protocol. The
handler is used both to hold and participate in auctions. As an auctioneer,
the platform uses the handler to ask for bids on a node from a number of
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Figure 5.10: A TST with tree constraints and unallocated nodes.

candidates, to gather the bids and to determine an ordering of the candidates
according to the bids. As a bidder, a platform uses an auction strategy to
derive a bid. An auction strategy could for instance be the marginal cost
bidding strategy where the bid is the marginal cost (in time) for a platform
to take on the task that is up for auction.

With the marginal cost bidding strategy, each platform bids the time it
would take for it to carry out the task, given its previous commitments. A
platform always records the position of the platform for the last allocated
task and uses it to calculate the distance to the next task. The time to carry
out a task is based on the distance between the two positions, and with the
assumption that the platform moves at its highest speed.

Example

Platform P0 has two possible candidates for node N4 (in Figure 5.10), itself
and platform P1. Following the auction protocol, P0 sends a request message,
containing the task for node N4 to itself and to P1. Platform P1 bids 18
for the task, whereas platform P0 bids 45. The difference in bids depends
on where the platforms are in the world in relation to the position to fly
to (actually where the platforms are expected to be after carrying out their
last previously allocated task). Platform P1 has previously allocated itself to
node N3, the elementary action scan (AreaB in Figure 5.11). The position
of the elementary action scan is in the middle of the field for the area to be
scanned. P0 has previously been allocated the other elementary scan action
N2 (AreaA in Figure 5.11). P0 is closer to the position of the auctioned
elementary action N4 (Dest4 in Figure 5.11) and therefore bids lower than
P1. Both platforms return their bids together with the task in an inform
message. P0 can now order the candidates for node N4 according to the
bids, P0 followed by P1.

5.4.3 Delegation Handler

The delegation handler is used to delegate a node (and the sub-TST rooted
in that node) to a platform, using the delegation protocol. The handler is
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Figure 5.11: P0 is allocated to the scan task for area AreaA and P1 is
allocated for the scan task AreaB . In the auction of N4, P0 returns the
lowest bid because it is closer than P1.

in charge of the sending and receiving of delegation messages, and reporting
whether the delegation succeeded or not.

The second part of the protocol describes the choice and activation of
a solution. In the second part of the protocol, an accept-proposal or reject-
proposal is sent from the delegator, and an inform or failure message is
returned by the contractor. The protocol ends when τ has been executed.

Example

Platform P0 has two possible candidates for node N2 in Figure 5.10, the
bid order after auctioning is P1, P0. Following the delegation protocol,
P0 sends a call-for-proposal message containing the task for node N2 to P1.
Platform P1 receives the task and allocates itself to the node. The constraint
network is extended (using the Capability Loader and the DisCSP Node
Interface) and checked for consistency (using the DisCSP Node Interface).
The network is consistent, and platform P1 sends a propose message back.

When the entire TST is allocated and consistent, platform P0 sends an
accept-proposal message to P1, making the platform ready for executing the
task represented by N2. When the task is executed and finished, platform P1

returns an inform message to P0 or a failure message in case the execution
failed.

5.4.4 Capability Loader

The capability loader loads the resource constraints for the task to be al-
located. It also instantiates the resource constraints with the platform’s
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Figure 5.12: 1) A task which requires capability CapA is delegated to the
platform containing the TST allocator. 2) The corresponding resource con-
straints are loaded, 3) and instantiated with the platform’s current resources,
state, etc. 4) forming a concrete instantiation of the resource constraints.
5) The constraints are connected to the tree constraints.

current resource status, state, etc., following the steps described in Sec-
tion 5.3.1. The end result is a set of concrete resource constraints. The
constraints are connected to the tree constraints in the current constraint
network, which is a preparation stage for running the AWCS algorithm (see
Figure 5.12).

The capability loader is also used by the backtrack handler to determine
which constraints to remove from the constraint network during backtrack-
ing. The module is used in combination with the DisCSP Node Interface to
add and remove constraints to and from the platforms DisCSP Node.

Example

Platform P1 has allocated itself to node N2 in Figure 5.10. The capability
for the task in N2 is scan. The capability model for scan is loaded by
the capability loader. The capability model contains the following abstract
constraints (scan coverage is the area size the platform can scan at any given
time point):

te = ts + area
scan coverage·speed

SpeedMin ≤ speed ≤ SpeedMax

Instantiating the constraints creates the concrete constraints:

te = ts + 1000
speed
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1 ≤ speed ≤ 10

The constraint set is connected to the tree constraints in N2, by connect-
ing the node interface of N2 with the capability interface of the constraint
network for scan as displayed in Figure 4.2 on page 32.

5.4.5 DisCSP Node Interface

Every platform participating in the allocation of a TST has a DisCSP Node.
The AllocateTST algorithm accesses the platform’s DisCSP Node configu-
ration through the DisCSP Node Interface. Operations provided by the
interface are adding and removing constraints retrieved from the capability
loader or from the TST in the form of tree constraints. Other operations
include testing for consistency with the current constraint network and re-
trieving a solution for the constraint variables.

5.4.6 AWCS

AllocateTST uses a DisCSP algorithm for checking the consistency of a
constraint network, in this case the AWCS algorithm. The AWCS module
uses the local CSP solver and the AWCS handler for sending and receiving
messages.

In the AWCS algorithm, each agent (node in the distributed problem)
has a number of variables and constraints. Constraints can be local or global.
Local constraints only involves the agent’s own variables. Global constraints
involve more than one agent’s variables. An agent has an agent view, which
is a list of variables belonging to other platforms that are involved in the
agents global constraints.

When an agent solves its local constraint problem, it sends suggestions
of values for its variables that are involved in the global constraints to the
affected agents. Such values are sent in Ok messages. If an agent receives
an Ok message and it is not possible to find a solution given the value of
its agent view, it will return a Nogood message, containing the combination
of values that made the problem unsolvable. The combinations, or Nogoods
as they are called, are saved to make sure that they are only sent once. The
algorithm will terminate when no more Ok messages are sent or when the
agent can not satisfy its constraints and at the same time can not produce
a new Nogood. The AWCS algorithm is described in [101, 103].

A termination detection algorithm is used in conjunction with AWCS to
detect when no more Ok messages are sent [11].

5.4.7 AWCS Handler

The AWCS Handler handles the message passing between platforms for
AWCS, such as the Ok and Nogood messages.

69



Chapter 5. Extending the FIPA Abstract Architecture for Delegation

5.4.8 Resource Database Interface

The Resource Database Interface provides operations on the platform’s re-
source data-base. Operations relevant for AllocateTST include reading the
current status of resources and adding or removing bookings of resources in
the resource database. Bookings are needed to describe the current resource
usage on the platform.

When a resource is booked and a booking interval is added to the resource
database, a booking constraint will be derived the next time a node with a
capability requiring the same resource is allocated to the platform.

Resource Database Query Protocols

Two protocols, both based on the FIPA-request protocol, are available when
using the resource database interface. The first protocol is an add or remove
protocol for bookings, where the content of the request message is an add
or remove operation, a time interval and a resource. An inform message is
returned, describing the result of the request.

The second protocol is used to retrieve booking constraints for a particu-
lar resource. The request message in the protocol contains a resource name,
the returned inform message contains a booking constraint, or is empty
when no bookings exists.

Example

Platform P1 has been allocated to scan an area during 200s, starting at
13:00. A booking constraint for the platform is registered in the resource
database describing that the platform is occupied during this time. The next
task to be allocated to P1 is an elementary action of type flyto. The platform
has been previously booked for another elementary action, scan. The scan
action takes place during the interval 0 to 200 (where time 0 denotes when
the mission starts). The booking constraint on the platform forbids the node
interface variables ts and te of the elementary action to be assigned values
less than 200.

5.4.9 Backtrack Handler

The backtrack handler keeps track of the platform – node combinations that
have already been tried for the part of the TST the platform is responsible
for (i.e. where the platform has worked as a delegator).

Backtracking can be carried out using different strategies, such as chrono-
logical backtracking or backjumping. The backtracking strategy determines
to which point in the allocation the algorithm should revert to and how to
find that point.
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Backjumping Protocol

The chronological backtracking strategy does not need any special protocol,
since the delegation protocol can be used to determine when to backtrack,
e.g. when all platforms have been tried for delegation of some task without
success.

The backjumping strategy, on the other hand, needs a special protocol.
The protocol is based on the FIPA-request protocol. The request message
contains an activation message, sent to the failure point allocator, an inform
message containing an allocation failed or allocation succeed is returned.

Example

Consider the TST in Figure 5.10 again. Let us assume that platform P0 has
been allocated to nodeN0, N1 andN3, and P1 has been allocated to nodeN2.
The last node, N4 is to be allocated, but none of the candidates P0 or P1 can
do the task. Platform P0 is now the failure point allocator. The backtracking
starts by removing all previous allocations to the left of the failure point. P0

achieves this by removing the connection points to the left branch from its
agent view. The network is now consistent. P0 can try out a candidate for
node N4. It selects P0. Following the search downwards pattern (described
in Section 4.5.1), P0 reconnects the left branch, and then disconnect the
sub-branches in reverse order as they where allocated. Disconnecting N3

has no effect. Disconnecting N2 makes the network consistent. The failure
point is found.

P0 continues from N2 testing the next best candidate, P0, itself. The
network is consistent. Node N3 is allocated to platform P1 and node N4 to
P0.

5.5 Related Work

Cooperative multi-robot systems have a long history in robotics, multi-agent
systems and AI in general. One early study presented a generic scheme based
on a distributed plan merging process [2], where robots share plans and coor-
dinate their own plans to produce coordinated plans. In our approach, coor-
dination is achieved by finding solutions to a distributed constraint problem
representing the complex task, rather than by sharing and merging plans.
Another early work is ALLIANCE [79], which is a behavior-based framework
for instantaneous task assignment of loosely coupled subtasks with ordering
dependencies. Each agent decides on its own what tasks to do based on
its observations of the world and the other agents. Compared to our ap-
proach, this is a more reactive approach which does not consider what will
happen in the future. M+ [8] integrates mission planning, task refinement
and cooperative task allocation. It uses a task allocation protocol based on
the Contract Net protocol with explicit, pre-defined capabilities and task
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costs. A major difference to our approach is that in M+ there is no tem-
porally extended allocation. Instead, robots make incremental choices of
tasks to perform from the set of executable tasks, which are tasks whose
prerequisite tasks are achieved or underway. The M+CTA framework [1] is
an extension of M+, where a mission is decomposed into a partially ordered
set of high-level tasks. Each task is defined as a set of goals to be achieved.
The plan is distributed to each robot and task allocation is done incremen-
tally like in M+. When a robot is allocated a task, it creates an individual
plan for achieving the task’s goals independently of the other agents. After
the planning step, robots negotiate with each other to adapt their plans in
the multi-robot context. Like most negotiation-based approaches, M+CTA
first allocates the tasks and then negotiates to handle coordination. This
is different from our approach which finds a valid allocation of all the tasks
before committing to the allocation. ASyMTRe [80], uses a reconfigurable
schema abstraction for collaborative task execution providing sensor shar-
ing among robots, where connections among the schemas are dynamically
formed at runtime. The properties of inputs and outputs of each schema is
defined and by determining a valid information flow through a combination
of schemas within, and across, robot team members a coalition for solving a
particular task can be formed. Like ALLIANCE, this is basically a reactive
approach which considers the current task, rather than a set of related tasks
as in our approach. Other Contract-Net and auction-based systems simi-
lar to those described above are COMETS [71], MURDOCH system [58],
Hoplites [67] and TAEMS [22].

In this chapter we described how the collaborative robotic shell could
be realized. The collaborative UAS is an open multi-agent system. Mul-
tiagent systems of this type are characterized by the lack of knowledge
about what agents are present and what their capabilities are. Such fea-
tures lead to interoperability issues, such as how can the agents communi-
cate, what common language should they use, what are the communication
protocols of interest, etc. Much of the research behind the FIPA specifica-
tions [48, 49, 50, 51] is relevant since it deals with interoperability issues in
open multi-agent systems. The FIPA communication protocols are general
concepts and are meant to be extended for each multi-agent system using
them, as we extended them to create the capability lookup, auction and
delegation protocols. the protocols are not enough on their own. Whereas
FIPA has mainly concentrated on agent communication, they have also done
some work on the representation of services. The director facilitator is the
outcome of this research, and the idea is that the services an agent can
provide to another are described in an ontology. The agents that communi-
cate regarding service usage must then have access to the relevant ontology,
which can be accessed, for instance, from a specific ontology agent (and
each agent understands a basic ontology to communicate with the ontology
agent).

The InfoSleuth [78] project argues that the agents in an open multi-agent
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system need three supporting functionalities to use capabilities. The first
requirement is that it must be possible to exchange information about capa-
bility between agents. The second requirement is it must also be possible to
formulate requirements on the capabilities, and the third is that there must
be some means of semantic matchmaking or other ways of determining if ca-
pabilities meet the task at hand. In the InfoSleuth project, the matchmaking
is handled with a logical deduction language called LDL++ [4]. InfoSleuth
uses KQML as an agent communication language. If we try to relate our
solution to the three requirements, we see that the first requirement is met
by the registration of the platforms static part of their capabilities in the Di-
rectory Facilitator and the ontology used to retrieve this information. The
second requirement is described in the task specification trees (described
Chapter 3) and the third requirement is achieved with distributed constraint
solving (described in Chapter 4).

Representing capabilities with constraints or logical formulations are two
approaches. Another way is to pre-calculate the scope (all the possible
values) of the capabilities, which can be done if the capabilities are few
and/or the scope is small. In [104] the reachability of a robot’s arm is
represented as a 3D map. The representation is pre-calculated and can be
used to determine which movements are possible in a given situation.

Interoperability issues is one aspect related to the realization of the col-
laborative robotic shell, another related issue is the need of situation depen-
dent capability models. This problem has been researched in projects that
combine the idea of service-oriented-architectures and multi-agent systems.
A merge between multi-agent systems and semantic web services to form
an architecture for context aware services has been proposed [18]. Another
system that combines service oriented architectures (SOA) and agent sys-
tems is the Flexible User and ServIces Oriented multiageNt Architecture
(FUSION) [17].

5.6 Summary

In this chapter we have described how the collaborative robotic shell may
be realized. We demonstrated how the FIPA Abstract Architecture can
be extended to support delegation among collaborative agents. An imple-
mentation of the task allocation algorithm described in Chapter 4 and the
modules needed for its operation was described. In the next chapter we
will exemplify the use of the system in a number of case studies of realistic
multi-UAV missions.
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Chapter 6

UAS Case Studies:
Assisting Emergency
Services

In this chapter we describe the operations of the collaborative UAS in a
number of different scenarios. The purpose of this chapter is to give the
reader a feel for how the task allocation algorithm is used in the delegation of
tasks in practice. We also show how the operator can adjust the autonomy of
the contractor by adding user constraints on a TST, and how goal nodes are
intended to be handled in a future extension of the system that incorporates
a planner that can generate TSTs.

The case studies consist of three scenarios, each can be seen as an inte-
grated part of a larger search and rescue mission.

6.1 Introduction

On December 26th, 2004, a devastating earthquake of high magnitude oc-
curred off the west coast of Sumatra. This resulted in a tsunami which hit
the coasts of India, Sri Lanka, Thailand, Indonesia, and many other islands.
Both the earthquake and the tsunami caused great devastation. During the
initial stages of the catastrophe, there was a great deal of confusion and
chaos in setting into motion rescue operations in such wide geographic ar-
eas. The problem was exacerbated by a shortage of manpower, supplies, and
machinery. The highest priorities in the initial stages of the disaster were
searching for survivors in many isolated areas where road systems had be-
come inaccessible and providing relief in the form of delivery of food, water,
and medical supplies.

Let us assume that one has access to a fleet of autonomous unmanned he-
licopter systems with ground operation facilities. How could such a resource
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be used in the real-life scenario described?
A prerequisite for the successful operation would be the existence of a

multi-agent (UAV platforms, ground operators, etc.) software infrastruc-
ture for assisting emergency services. At the very least, one would require
the system to allow mixed-initiative interaction with multiple platforms and
ground operators in a robust, safe, and dependable manner. As far as the
individual platforms are concerned, one would require a number of differ-
ent capabilities, not necessarily shared by each individual platform, but by
the fleet in total. These capabilities would include: the ability to scan and
search for salient entities such as injured humans, building structures, or
vehicles; the ability to monitor or survey these salient points of interest and
continually collect and communicate information back to ground operators
and other platforms to keep them situationally aware of current conditions;
and the ability to deliver supplies or resources to these salient points of in-
terest if required. For example, identified injured people should immediately
receive a relief package containing food, water, and medical supplies.

To be more specific in terms of the scenario, we can assume there are
two separate legs or parts to the emergency relief scenario in the context
sketched previously.

Leg I In the first part of the scenario, it is essential that for specific ge-
ographic areas, the UAV platforms should cooperatively scan large
regions in an attempt to identify injured people. The result of such a
cooperative scan would be a saliency map pinpointing potential vic-
tims and their geographical coordinates and associating sensory output
such as high resolution photos and thermal images with the potential
victims. The saliency map could then be used directly by emergency
services or passed on to other UAVs as a basis for additional tasks.

Leg II In the second part of the scenario, the saliency map from Leg I would
be used for generating and executing a plan for the UAVs to deliver
relief packages to the injured. This should also be done in a cooperative
manner.

One approach to solving logistics problems is to use a task planner to
generate a sequence of actions that will transport each box to its destination.
Each action must then be executed by a UAV. We have previously shown
how to generate pre-allocated plans and monitor their execution [35, 68]. In
this thesis we show how a plan without explicit allocations expressed as a
complex task tree can be allocated to a set of UAV platforms which were
not known at the time of planning.

6.2 The Victim Search Scenario

We will now consider a particular instance of the emergency services assis-
tance scenario. In this instance there is a UAS consisting of two platforms
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Figure 6.1: The TST for the victim search scenario.

(P1 and P2) and an operator (OP1). In the first part of the scenario the
UAS is given the task of searching two areas for victims. The main capabil-
ity required by the platforms is to fly a search pattern scanning for people.
In this scenario, both platforms have this capability. It is implemented by
looking for salient features in the fused video streams from color and ther-
mal cameras [83]. In the second part the UAS is given the task to deliver
boxes with food and medical supplies to the identified victims. To transport
a box it can either be carried directly by an unmanned aircraft or it can
be loaded onto a carrier, which is then transported to a key position from
where the boxes are distributed to their final locations. In this scenario,
both platforms have the capability to transport a single box while only plat-
form P1 has the capability to transport a carrier. Both platforms also have
the capabilities to coordinate sequential and concurrent tasks.

6.2.1 The TST for Victim Search Scenario

The scenario starts with the scanning of the region in the search for sur-
vivors. The region assigned to operator OP1 is divided into two sections,
each can be scanned by a platform. When the scan is finished, one platform
should return to the operator and be ready to load emergency supplies on
a carrier next to the operator’s control center. We use the TST for the
mission, shown again in Figure 6.1.

The goal of the mission is to create a saliency map with the victims as
saliency points. The map is needed as input for the next part of the mission,
where emergency supplies should be delivered to the victims.
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6.2.2 Allocating the Victim Search TST

To allocate the TST in Figure 6.1 the operator OP1 invokes AllocateTST on
the top node N0. After an auction between P1 and P2 for N0, OP1 sends
a call-for-proposals message with the TST to the winner P1. This invokes
TryAllocateTST for N0 on P1.

P1 is now responsible for N0 and for allocating the remaining nodes in
the TST (see Figure 6.2 for the schedule). The task allocation algorithm
traverses the TST in depth-first order. P1 should first find a platform for
node N1, and when the entire sub-TST rooted in N1 is allocated, find an
allocation for node N4. Node N0 and N1 are two composite action nodes
which have the same marginal cost for all platforms. P1 therefore recur-
sively allocates N1 to itself (see Figure 6.3 for the extended schedule). The
constraints from nodes N0–N1 are added to the constraint network of P1.
The network is consistent because the composite action nodes describe a
schedule without any restrictions.

Figure 6.2: The schedule after assigning node N0 .

Figure 6.3: The schedule after assigning node N1 .

Platform P1 should now allocate the elementary action nodes N2 and N3.
A capability lookup operation followed by an auction of node N2 determines
the candidates P1 and P2. A call-for-proposals message containing N2 is sent
to platform P2.

P2 received the call-for-proposals message, loads and instantiates the
resource constraints for the platform’s scan task. The constraint network
retrieved is connected to the constraint network from the TST. The network
is checked for consistency. The network is consistent and node N2 is now
allocated to platform P2. The constraint network now involves both plat-
forms. Figure 6.4 displays the schedule. P2 returns a propose message to
P1.

Continuing with node N3, platform P1 searches for candidates for the
node. The capability lookup and auctioning determines platform P1 as a
better choice than P2 for the second scan node. P1 delegates the node to
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Figure 6.4: The schedule after assigning node N2 .

itself. The extended constraint network is consistent. Figure 6.5 shows the
extended schedule.

Figure 6.5: The schedule after assigning node N3 .

The remaining node, N4 is delegated to platform P2. The entire TST is
now allocated. The complete schedule is in Figure 6.6.

Figure 6.6: The complete schedule after assigning node N4 .

The operator is satisfied with the allocation and starts the mission. An
accept-proposal message is sent to P1. P1 traverses the TST, marking the
nodes as ready for execution in depth-first order. Nodes not allocated to
the platform, are marked by sending an accept-proposal to the platform
owning the node. P1 sends accept-proposal to P2 for node N2 and N4. The
execution starts, and the platforms scan the area creating the saliency map
in Figure 6.7.
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6.3 The Supply Delivery Scenario

The supply delivery scenario is the second part of the search and rescue mis-
sion described in Section 6.1. The goal of the mission is to deliver emergency
supplies to the injured people found in the first part of the mission.

The supply delivery scenario involves victims, boxes containing emer-
gency supplies, carriers, an operator and platforms, some with the capability
of delivering a supply box, some with the additional capability of deliver-
ing a carrier. A carrier can hold boxes. Sometimes it is beneficial to load
a carrier and deliver it to a key position in the region and distribute the
boxes from there, instead of distributing each box from its original site to
its destination. The goal of the scenario is to deliver an emergency supply
box to each victim.

6.3.1 The TST for the Supply Delivery Scenario

In this instance of the supply delivery scenario, shown in Figure 6.7, five
survivors (S1–S5) are found in Leg I, and there are three platforms (P1–
P3) and one carrier available. To start Leg II, the operator creates a TST,
for example using a planner that will achieve the goal of distributing relief
packages to all survivor locations in the saliency map [68]. The resulting
TST is shown in Figure 6.8. The TST contains a sub-TST (N1–N12) for
loading a carrier with four boxes (N2–N6), delivering the carrier (N7), and
unloading the packages from the carrier and delivering them to the survivors
(N8–N12). A package must also be delivered to the survivor in the right
uppermost part of the region, far away from where most of the survivors
were found (N13). The delivery of packages can be done concurrently to save
time, but the loading, moving, and unloading of the carrier is a sequential
operation. UAVs and equipment should be allocated carefully to assure that
all relief packages reach their destinations in time.

Another operator OP2 is performing a scan mission, with the platforms
P3 and P4 north of the area in Figure 6.7. P3 is currently idle and OP1 is
therefore allowed to borrow it.

6.3.2 Allocating the Supply Delivery TST

To allocate the TST in Figure 3.1 the operator OP1 invokes AllocateTST on
the top node N0. After an auction between P1 and P2 for N0, OP1 sends
a call-for-proposals message with the TST to the winner P1. This invokes
TryAllocateTST for N0 on P1.

P1 is now responsible for N0 and for allocating the remaining nodes in
the TST. The task allocation algorithm traverses the TST in depth-first
order, so P1 should first find a platform for node N1, and when the entire
sub-TST rooted in N1 is allocated, find an allocation for node N13. Node
N1 and N2 are two composite action nodes which have the same marginal
cost for all platforms. P1 therefore recursively allocates N1 and N2 to itself.
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Figure 6.7: The disaster area with platforms P1–P3, survivors S1–S5, and
operators OP1 and OP2 .

The constraints from nodes N0–N2 are added to the constraint network of
P1. The network is consistent because the composite action nodes describe
a schedule without any restrictions.

Below node N2 are four elementary action nodes. Since P1 is responsible
for N2, it tries to allocate them one at the time. For elementary action
nodes, the choice of platform is the key to a successful allocation. This is
because of each platform’s unique state, constraint model for the action, and
available resources. The candidates for node N3 are platform P1 and P2. P1

is closest to the package depot, and therefore gives the best bid for the node.
P1 is allocated to N3. For node N4, platform P1 is still the best choice, and
it is allocated to N4. Given the new position of P1 after being allocated
N3 and N4, P2 is now closest to the depot, resulting in the lowest bid and
being allocated to N5 and N6. The schedule defined by nodes N0–N2 is now
constrained further by how long it takes for P1 and P2 to carry out action
nodes N3–N6. The constraint network is now shared between platforms P1

and P2.

The next node to allocate for P1 is node N7, the carrier delivery node.
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Figure 6.8: The TST for the supply delivery scenario.

P1 is the only platform that has the capability required for this task. The
node is allocated to P1. Continuing with the nodes N8–N12, the platform
with the lowest bid for each node is platform P1, since it is in the area after
delivering the carrier. P1 is therefore allocated to nodes N8–N12.

The final node, N13, is allocated to platform P2 and the allocation is
completed. The only non-local information used by P1 were the capabilities
of the available platforms which was gathered through a broadcast. Ev-
erything else is local. The bids are made by each platform based on local
information and the consistency of the constraint network is checked through
distributed constraint satisfaction techniques.

The total mission time is 58 minutes, much longer than the operator
expected. Since the constraint problem defined by the allocation to the TST
is shared between the platforms, it is possible for the operator to modify the
constraint problem by adding more constraints, and in this way modify
the task allocation. The operator puts a time constraint on the mission,
restricting the total time to 30 minutes.

To re-allocate the modified TST, operator OP1 sends a reject-proposal
to platform P1. The added time constraint to the mission makes the cur-
rent allocation inconsistent. The last allocated node must therefore be re-
allocated. However, no platform for N13 can make the allocation consistent,
not even the newly added P3. Backtracking starts. Platform P1 is in charge
since it is responsible for allocating node N13. The N1 sub-network is dis-
connected. Trying different platforms for the node N13, P1 discovers that
N13 can be allocated to P2. P1 sends a backjump-search message to the
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platform in charge of the sub-TST with top-node N1, which happens to be
P1, to start an Upward Search. When receiving the message P1 continues
the search for the backjump point. Since removing all constraints due to
the allocation of node N1 and its children made the problem consistent, the
backjump point is in the sub-TST rooted in N1. Removing the allocations
for sub-tree N8 does not make the problem consistent so further backjump-
ing is necessary. Notice that with a single consistency check the algorithm
could show that no possible allocation of N8 and its children can lead to a
consistent allocation of N13. Removing the allocation for node N7 does not
make a difference either. Removing the allocations for sub-TST N2 makes
the problem consistent. When finding an allocation of N13 after removing
the constraints from N6 the allocation process continues from N6 and tries
the next platform for the node, P1.

When the allocation reaches node N11 it is discovered that since P1 has
taken on nodes N3–N8, there is not enough time left for P1 to unload the last
two packages from the carrier. Instead, P3, even though it made a higher bid
for N11–N12, is allocated to both nodes. Finally, platform P2 is allocated to
node N13. It turns out that since platform P2 helped P1 loading the carrier,
does not have enough time to deliver the final package. Instead, a new
backjump point search starts, finding node N5, and continuing from there.
This time around, nodes N3–N9 are allocated to platform P1, platform P3 is
allocated to node N10–N12, and platform P2 is allocated to node N13. The
allocation is consistent. The allocation algorithm finishes on platform P1,
by sending a propose message back to the operator. The operator inspects
the allocation and approves it, thereby starting the execution of the mission.

Figure 6.9: The complete schedule when using two platforms and no dead-
line.

6.4 The Communication Relay Scenario

Another impact of a disaster such as an earthquake or tsunami is the de-
struction of the infrastructure in the affected area. A related problem to the
search and rescue is then how to establish a communication relay chain so
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Figure 6.10: The complete schedule when adhering the new deadline.

that the gathered information can be relayed back to the operator’s control
center or between different operators’ control centers.

In the communication relay scenario data should be relayed from one
platform, the observer, to a ground station. The operation is carried out
in a city, where building and other obstacles can obstruct the communica-
tion range of the platforms. Each platform also has a limited communication
range even without any obstacles around it. The communication relay prob-
lem and algorithms for generating relay chains are described in [9].

6.4.1 The TST for the Communication Relay Scenario

The TST for communication relay scenario describes how a number of plat-
forms should take positions and form a relay chain so that the data from
the survey platform can be relayed back to the operator’s control station.
The TST contains goal nodes that must be expanded before the TST can be
allocated. For example, see Figure 6.11(a), where a goal node contains the
goal of generating a relay chain. Goal nodes must be expanded by some form
of planning. In the relay scenario, the planning is done using an algorithm
that places platforms in a relay chain [9]. A sub-TST describing the relay
chain, is added to the right of the expanded node, under the goal node’s
parent. The TST in Figure 6.11 displays the TST before (Figure 6.11(a))
and after (Figure 6.11(b)) the expansion of the first goal node. The relay
chain consists of four relay points, containing sub-TSTs describing how a
platform flies to a position and relays data from that position. The last
sub-TST describes the work of the surveyor platform – the platform in the
end of the relay chain that is producing the data that is relayed back to
the operator through the relay chain. Each sub-TST must be executed in
parallel, which is enforced by the constraints.

6.4.2 Allocating the Communication Relay TST

The operator specifies a relay mission by pointing out a starting point and
an end point in the main user interface, see Figure 6.12. The starting point
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(a)

(b)

Figure 6.11: The TST for the communication relay scenario.

marks the operator’s position, the end point marks the area to survey. The
operator may also adjust other mission parameters, such as the communi-
cation distance of platforms, the maximum number of platforms that can
be allocated for the mission, and the algorithm used to calculate the relay
chain.

When the operator presses the “Create Mission” button in the main
user interface, the mission is compiled into a TST. The TST is added to the
mission list in the mission user interface, (see Figure 6.13). Selecting the
mission displays the TST, (see Figure 6.15). For now the TST only has two
nodes: A sequential node with a child goal node. The operator can click on
the nodes in the TST and the node’s data is displayed in a new window,
see Figure 6.14. The operator can also change parameters in the nodes. By
specifying P0 as the platform for the sequence node, the operator assures
that the TST must be delegated to that platform. Unassigned nodes, such
as the goal node, can be delegated to any platform that has the required
capabilities. By selecting the sequence node and pressing “FIPA Delegate”,
a delegation from the operator to P0 is initiated.

P0 receives a call-for-proposal message, containing the TST with top-
node N0 . The constraint network is extended for the node and is checked
for consistency. P0 allocates itself to N0 . The schedule after allocating node
N0 is depicted in Figure 6.16. N0 has one child, the goal node N1 . Since
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both node N0 and node N1 belongs to the same compound task, the only
platform candidate is P0 .

P0 is allocated to N1 . The node is expanded. A new sub-tree is added
under N0 , after N1 . The extended schedule is depicted in Figure 6.17.

P0 continues with the new child node N2 . The node is unassigned and
needs the capability for the task coordinate-concurrent. A capability lookup
returns a list with candidates P0–P5 . The node is auctioned out. P0 sends
a call-for-proposal with N2 to the winner, which is itself.

P0 tries to allocate N2 to itself. The constraint network is extended to
include node N2 . The constraint network is consistent (see Figure 6.18).
Node N2 has five child nodes, each is a sequential node with a single goal
node as child. Each sub-tree is grouped together in a compound task. The
capability lookup returns a list of platforms P1–P5 as possible candidates
for the child N3 . A node auction for N3 determines the candidate order.
P0 sends a call-for-proposal message to the first candidate P1 , containing
the sub-tree with top-node N3 .

P1 extends the constraint network to include node N3 , the network is
consistent and P1 assigns itself to node N3 . N3 and N4 belongs to the
same compound task. P1 is also assigned to N4 . The constraint network
is extended to include node N3 . The network now spans platforms P0 and
P1 .

P1 is allocated to node N4 . N4 is expanded. Two more nodes (N4b ,
N4c) are added under N3 , after N4 .

Figure 6.12: The operator’s user interface for the relay scenario.
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Figure 6.13: The Mission User Interface containing the list of TSTs.

Figure 6.14: The content of a node in the relay TST.

86



Chapter 6. UAS Case Studies: Assisting Emergency Services

Figure 6.15: The relay TST before it is expanded.

Figure 6.16: The schedule after assigning node N0 .

P1 continues with the new child node N4b . The node is not assigned to
any platform, since it belongs to the same compound task as N3 , making P1

the only candidate. P1 allocates itself to node N4b . In contrast to previous
encountered tasks, the flyto is an exclusive task because the platform cannot
make more than one flight at the same time. The resource database on P1 is
queried, and yields an empty constraint set. The resource constraints for the
elementary action node is loaded, instantiated and the resulting constraint
network is connected to the constraint network from the TST. The network
is checked for consistency. The platform is booked during this time interval,
and the interval is added to the platform’s resource database.

P1 continues with child node N4c . The platform has the capability for
the task send data. N4c is assigned to P1 . The resource constraints for the
elementary action node is retrieved, instantiated and the resulting constraint
network is connected to the constraint network from the TST. The task
send data is also an exclusive task because the platform must hover and
transfer data. Querying the resource database on P1 yields a constraint
set describing the N4bs–N4be interval. The interval is added to the resource
constraints. The network is checked for consistency. The solution determines
the interval for N4c . The platform is booked during this time interval, and
the interval is added to the platform’s resource database.

P0 has now managed to delegate the sub-tree with top-node N3 to P1 .
P0 continues with the second child, N5 . P0 examines if N5 is assigned. The
node is unassigned and the capability lookup returns the list of platforms
P1–P5 . P1 wins the auction for node N5.

P1 receives a call-for-proposal message containing the TST N5 . P1

assign itself to N5 . N5 and N6 belongs to the same compound task. P1 is
also assigned to N6 . The extended schedule is depicted in Figure 6.20.

Node N6 is expanded. Two more nodes (N6b , N6c) are added under N5 ,
after N6 . N6 is already assigned to P1 . The extended schedule is depicted
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Figure 6.17: The schedule after assigning node N1 .

Figure 6.18: The schedule after assigning node N2 .

Figure 6.19: The schedule after assigning node N4c .

Figure 6.20: The schedule after assigning node N5 .

88



Chapter 6. UAS Case Studies: Assisting Emergency Services

in Figure 6.21.

Figure 6.21: The schedule after assigning node N6 .

P1 tries to allocate N6b to itself. The platform has the required capabil-
ity for the task flyto. N6b is assigned to P1 . Querying the resource database
on P1 yields a constraint set describing the N4bs–N4be and N4cs–N4ce inter-
vals. Those constraints are combined with the constraint network derived
form the resource constraints of node N6b . This time, the constraint network
is inconsistent because the intervals overlap, see Figure 6.22(a). A refuse
message is sent back. Backtracking starts, but no solution can be found,
meaning that P1 cannot be used for the sub-tree N5 . N6 is unexpanded
(the sub-TST created by the expansion of the goal node is removed). The
children N6b and N6c are removed. The constraints added from this dele-
gation are removed from the constraint network. The schedule is reverted,
see Figure 6.22(b).

P0 receives a refuse message from P1 . P0 tries the next best candidate
for N5. It can be assigned to the nodes in the sub-TST with top-node N5.
P2 is the next candidate for the sub-TST.

P0 continues with the remaining children N7 , N9 , N11 . The procedure
is similar, except for the sub-tree N11 with the task survey, which requires
another capability than the previous sub-TSTs. When all children of N2

are assigned, and all propose messages are returned, we have the schedule
in Figure 6.23. The solution is presented to the operator.

The operator approves it by sending an accept-proposal to P0 containing
the TST N0 . Further accept-proposal messages are sent to the child nodes
of N0 .

The process continues until all nodes in the TST N0 are approved. In
the nodes that have variables to update, the values from the solution are
chosen and the TST updated. The execution starts from the top of the
approved TST, executing the TST, following the ordering of the composite
action nodes. When a leaf node is successfully executed an inform message
is returned to the delegator. If there is a failure, a failure message is returned
instead. When the TST is completely executed, a final inform message is
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(a)

(b)

Figure 6.22: The schedule after trying to assign node N6 and after removing
the conflicting assignment.

sent back to the operator indicating that the mission is completed.

Figure 6.23: The complete schedule when the problem is solved.
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6.5 Summary

With this chapter we have shown the use of the collaborative UAS. The case
studies show how different types of TSTs are allocated by AllocateTST. The
delegation process relieves the operator of micro-managing all the aspects
of the task allocation, but the operator can also, when necessary, give input
in the form of user constraints that express the operators requirements and
constraints on the mission. By adding user constraints and pre-allocating
platforms to nodes, the autonomy of the platforms is restricted during task
allocation and execution.

The TST of the communication relay scenario is different from previous
TSTs in this thesis by its use of goal nodes. Goal nodes must be expanded
so that their expansion can be allocated. In this scenario we used a special-
purpose algorithm for creating a TST for a goal node, in this case for cal-
culating a relay chain. Future work includes building a planner that creates
TSTs for goal nodes in general.
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Performance Evaluation

In this chapter we evaluate the scalability of the task allocation algorithm
AllocateTST, by applying it to different instances of the logistics task de-
scribed in the UAS case studies chapter (Chapter 6). To evaluate the scala-
bility we varied the size of the TST (the number of boxes to be delivered), the
number of available platforms and the maximal allowed expected execution
time for the tasks. The test cases are based on the supply delivery scenario
(the TST in Figure 6.8 on page 81, without the last fly box action N13).
The load-deliver-unload-carrier pattern described by the sub-TST rooted in
N1 was repeated, creating the TSTs shown in Figure 7.1. Each occurrence
of the pattern consists of 12 nodes and moves 4 boxes. The number of plat-
forms available were also varied from one to four. A test case consisting of
x carrier patterns and y platforms is denoted by Cx-Py.

AllocateTST is evaluated using both chronological backtracking and
backjumping.

An important aspect of the performance evaluation is the expected ex-
ecution time. With this term we mean the time it is expected to take to
execute an allocated TST. As an allocated TST describes a schedule of all
its sub-tasks, the expected execution time is the end time of the last sub-
task in the schedule. For instance, the expected execution time is 1 hour
for the allocation of the TST in Figure 6.11. The allocation of the TST
is shown in Figure 6.23. Another important term is the bound on the ex-
pected execution time. With this we mean an upper limit on the permitted
expected execution time for a TST which is specified before task alloca-
tion. Since constraining the total expected execution time makes it harder
to find an allocation this corresponds to varying the difficulty of the allo-
cation problem. The bound is important because in many cases a mission
is only allowed to take a certain amount of time. The operator has a task
that should be done and the question is, can the available platforms carry
out the task within a specified time frame? The allocation with the shortest
expected execution time is called the tightest allocation.
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With task allocation time we mean the time needed to find an allocation.

(a) (b)

(c) (d)

Figure 7.1: The C1, C2, C3 and C4 TSTs used in the evaluation.

7.1 Comparison Metrics

Task allocation algorithms can be compared qualitatively on how complex
problems they can solve, like we compared AllocateTST to other task al-
location algorithms in Chapter 4. In this chapter, we make a quantitative
evaluation of the AllocateTST algorithm. Before we can evaluate the algo-
rithm, we must decide what comparison metrics to use, i.e. which aspects
of task allocation should be used to rank the allocations.

One possible metric is the task allocation time, i.e. how much time is
required to find a solution. Using task allocation time has the drawback
that it is dependent on the hardware and the quality and optimization of the
implementation. All experiments are run on two identical laptops. When an
experiment is run, the computer that hosts the experiment runs the legacy
system, agent layer and associated process for all the platforms involved
in the experiment. Therefore, the measured task allocation time is not
an accurate measurement in an absolute sense. The task allocation time
measured on the UASTech platforms would most likely be shorter since
the work required would be distributed and each UASTech platform would
only have to run a single legacy system. On the other hand, the computers
on the UASTech platforms are less powerful, and there is an overhead in
sending and receiving messages over the air. Therefore, we try to find better
comparison metrics than task allocation time.

Comparison metrics that do not depend on the hardware include the
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type and number of messages sent during the task allocation, the number of
times the AWCS algorithm is restarted, and how many times a platform’s
local CSP solver is used by the AWCS algorithm. The message types are
auction, delegation and constraint messages. Each message, not protocol, is
counted, meaning a failed or successful delegation produces two messages,
and an auction produces two messages per bidding platform. The constraint
messages are produced by single-message protocols sending Ok and Nogood
messages, as described by Yokoo in [101]. Only messages sent between
different platforms are counted. Nodes with only one possible candidate
are not auctioned out, but delegated to the candidate directly. Such cases
occur when the operator has specified a platform for the task or only one
platform has the required capabilities for the task. Distributed constraint
satisfaction algorithms are also usually evaluated on the number and sizes of
messages sent, and / or operations needed. Choosing this as a comparison
metric for task allocation follows the same convention which makes it easier
to compare the results with other work.

Another comparison metric candidate for task allocation problems such
as ours, that does not depend on the hardware, is the expected execution
time. If we use the expected execution time as a comparison metric it would
be natural to try to minimize it during the task allocation. However, in
our case, this is not always desirable. If the expected execution time is
minimized then the expected execution time of each sub-task in the TST
will also be minimized, resulting in a very tight schedule. However, for a
multi-robot system, a tight schedule may result in cascading problems when
an action is not executed exactly as planned, since the model was slightly
inaccurate and breaking the rest of the schedule. We will therefore not
try to optimize the expected execution time. For our type of missions it
is common that the operator only accepts solutions within a bound, which
is represented by a user constraint on the TST. That is why we want to
determine if a solution can be found with an expected execution time lower
than a (possibly unlimited) bound.

In summary, we will use the following as comparison metrics:

• The number of messages sent (delegation messages, constraint mes-
sages and auction messages) by the AllocateTST and AWCS algo-
rithms.

• The number of times the AWCS algorithm is invoked and the num-
ber of times the local CSP solver is invoked, (AWCS and Local CSP
invocations).

To be more exact, one could count the non concurrent constraint che-
cks [75], but for showing the scalability of AllocateTST it is enough to count
the number of times the local CSP solvers are called.
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7.2 The Purpose of the Experiments

In this section we describe what we want to evaluate and why. The ex-
periments can be divided into two parts. The first part contains scalability
evaluations of AllocateTST in different circumstances. The evaluation is
needed to show what size of TSTs that can be used in the collaborative
UAS and how bounds affect the task allocation. In the second part we
estimate the efficiency of the AllocateTST approach to the task allocation
problem by comparing it to the results of an alternative DisCSP formulation
and a centralized CSP formulation for the same problem. Different formu-
lations result in slightly different versions of the problem, so the comparison
will not be exact, but it will give a coarse ordering of the efficiency of the
different approaches.

Each experiment class is described below.

Scalability of AllocateTST – Unbounded Allocation. The purpose of
this experiment is to show the scalability of AllocateTST when increas-
ing the TST size and number of platforms. An important feature of the
experiment is that there is no bound on the expected execution time,
and the results describe how AllocateTST behaves in the most benefi-
cial circumstances. The experiment can be seen as a way to determine
the baseline for AllocateTST (the performance for the most beneficial
cases). We will carry out this experiment by increasing the TST size
from C1 to C8 and varying the platforms from 2 to 4. Chronological
backtracking and the marginal cost auction strategy is used.

Scalability of AllocateTST – Bounded Allocations. The purpose of
this experiment is to show the scalability of AllocateTST when apply-
ing bounds on the expected execution time and increasing the TST
size and number of platforms. The rationale behind this experiment
is that in typical collaborative UAS scenarios, the operator wants a
mission to be done within a certain time. The question is, can it be
done in time with the available platforms? We expect that for each
test case, there is a region where AllocateTST will have a hard time
finding a solution, and that will be around the bound on expected
execution time for the tightest allocation. We want to determine how
AllocateTST behaves for such bounds for different TSTs.

Note that the experiment is not about finding the tightest allocation,
but to find a solution, given a bound. It is an evaluation of how
the hardness of the problem depends on the bound. Chronological
backtracking is compared to backjumping, and the auction strategy
used is the marginal cost auction strategy.

Compare AllocateTST to a Centralized Approach. The purpose of
this experiment is to compare AllocateTST to solving a centralized
CSP formulation of the task allocation problem. With this experi-
ment we want to determine an upper bound for the performance of
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AllocateTST. We also want to show that it is the features of the prob-
lem itself rather than the distributed solving method that makes the
problem hard. Like the unbounded and bounded experiments with Al-
locateTST, the centralized CSP formulation is expressed in the Tailor
constraint format.

Compare AllocateTST to a Different DisCSP Approach. A straigh-
tforward DisCSP approach to the task allocation problem is to take the
constraints and variables of the centralized formulation and distribute
them. Each variable would then be owned by a virtual agent and
the constraints would span between the agents. The purpose of this
experiment is to show that our approach with AllocateTST is vastly
better. With this experiment we also want to determine a baseline for
AllocateTST.

The constraint code for this experiment is expressed in the FRODO
format [70]. The FRODO constraint code is created by translating
the Tailor constraint code for the centralized formulation to FRODO
code. Thus, a different constraint solver is used in this experiment.

7.3 Scalability of AllocateTST –
Unbounded Allocation

In the first experiment, the size of the TST and the number of available
platforms is varied. The number of carriers is varied between 1 and 11
(C1-C11), corresponding to between 4 and 44 boxes and between 13 and
133 nodes. A carrier pattern consist of 43 Tailor variables, meaning the
test cases contain between 45 and 475 Tailor variables (the concurrent top-
node contributes 2 variables to each test case). The Tailor code in turn is
translated to Minion code that contains additional auxiliary variables. The
number of platforms is varied between 2 and 4. For each combination, the
total number of exchanged messages is counted when the algorithm allocated
the TST to the available platforms using chronological backtracking. The
invocations (of AWCS and local CSP) are also counted.

There is no bound on the expected execution time of the task. Since
there is no bound, there is no backtracking and no retries in the AllocateTST
algorithm (but the underlying DisCSP algorithm can of course backtrack).
The number of messages sent are shown in Figure 7.2. The experiment shows
that it is possible to allocate TSTs of size C10 consisting of 121 nodes. The
allocations fails for C11-P2, C12-P3 and C12-P4 due to exhausted memory.

The expected execution time of the solution found by AllocateTST di-
vided by the expected execution time of the tightest allocation is shown
in Figure 7.3. For the simple cases when there is only one platform, Allo-
cateTST finds the tightest allocation, which is expected. For the remaining
test cases, AllocateTST finds solutions whose expected execution time is at
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Figure 7.2: Total number of messages sent for each group of platforms, when
increasing the size of the TST. Chronological backtracking is applied, but
not used since no bound.

most 2.16 times the shortest possible execution time and most cases are not
more than 1.5 times as long. The results show that the fewer platforms,
the closer is AllocateTST to the tightest allocation, because fewer platforms
means less possibilities for making suboptimal choices. For some cases, the
results are somewhat better when the number of carrier patterns and plat-
forms are easily divisible, such as for test case C2-P2, C4-P2 and C3-P3. For
such cases it is often beneficial to allocate a whole sub-TST to one platform.

7.4 Scalability of AllocateTST –
Bounded Allocation

To evaluate how AllocateTST scales when the problem becomes harder, we
apply different bounds to a TST and measure the constraint solving activity
and messages sent for each bound. As mentioned before, an allocated TST
describes a schedule of all the tasks in a TST. The expected execution time
for the tightest allocation for each test case is shown in Table 7.1. Adding a
bound on permitted expected execution time for the task makes the problem
much harder to solve. It is not possible to find a shorter solution than the
shortest expected execution time, and in many cases it is very hard to find
a solution yielding exactly the tightest bound. The intuition is that the
more constrained the schedule is, the fewer solutions there are and the more
important the choices of allocations are. With a very tight bound, even a
slightly suboptimal choice may result in extensive backtracking.

Each test case is evaluated with a range of bounds covering cases where
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Figure 7.3: The ratio between the expected execution time of the solution
found by AllocateTST and the expected execution time of the tightest allo-
cation. Chronological backtracking is applied, but not used since no bound.

there is no solution until increasing the bound further makes no impact
on the time required for finding a solution. There are 10 time steps be-
tween each measuring point for the bound on expected execution time. Both
chronological backtracking and backjumping are used and the result is com-
pared for each test case.

The results are shown in three types of graphs, each comparing chrono-
logical backtracking and backjumping. The first graph shows the number
of messages, the second shows the number of times the AWCS algorithm is
invoked and the third the number of times the local CSP solvers are invoked.
The expected results for both messages and constraint solving activity, is
hill-formed graphs, both increasing until the point where the first solution
is found and then rapidly decreasing afterwards. The initial part of this
shape is expected because the number of messages and the constraint solv-
ing activity will increase as larger and larger (but still too low) bounds allow
the task allocation algorithm (which uses a depth-first search method) to
process more of the TST before failing. From the point where the first solu-
tion is found, the number of messages and constraint solving activity should
decrease for each increase in the bound, as more and more assignments re-

98



Chapter 7. Performance Evaluation

Scenario P1 P2 P3 P4

C1 90 65 59 53
C2 189 96 82 72
C3 317 157 106 97
C4 427 208 142 105

Table 7.1: The shortest expected execution time (time steps) for the tightest
allocation for the 16 test cases.

sult in valid allocations. The results for bound values around the bound of
the tightest allocation corresponds to a phase transition in constraint sat-
isfaction problems, the transitions from a problem without solutions to a
problem where one solution can be found.

In the experiments either chronological backtracking or backjumping are
used. The auction strategy used is marginal cost. The results are presented
in several sections, starting with a section for the test-cases containing only
one platform, followed by a section for each of the test cases C1-P2, C1-P3
and C1-P4, and finally a section for the remaining test cases. The results are
presented in this way because the C1-P2 – C1-P4 test cases are the smallest
but still interesting test cases, where more than one platform causes choices
in the task allocation problem, and are therefore studied in detail. The
remaining test cases show similar results and are therefore grouped into one
section. The results of the Cx-P1 test cases are of less importance but are
still included to show how the algorithm works in such special cases.

Only one platform can be coordinator in this experiment. The reason for
this is that having multiple platforms with the coordinator capability, will
only lead to additional backtracking when no solution exists. This is because
the coordinator task is platform-independent. Trying different platforms for
a platform independent task will not have any affect on the end result but for
TSTs that can not be allocated this will lead to more costly backtracking,
because more configurations must be tested. A solution to this problem
could be to extend AllocateTST with the ability to identify symmetries
and incorporate this information in the candidate selection method. As
mentioned before, our priorities here are first to evaluate the basic version
of AllocateTST before making any optimizations for handling special cases.
Improving the algorithm by breaking symmetries is left to future work.

7.4.1 Performance for Bounded Allocation of Cx-P1

The four test cases C1-P1 to C4-P1 are special cases in that they only use
one platform. No messages will be sent and there are no choices between
candidates. The problem is purely centralized, since all constraints will end
up on one platform. Following the AllocateTST algorithm, the constraints
for each (task-to-platform) allocation are added to the DisCSP Node on the
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platform, node by node. If the bound is too tight, the allocation fails and not
all nodes can be allocated. In such cases backtracking takes additional time,
until all previously allocated nodes are unallocated. Since there is only one
platform, each step in the backtracking will lead to another backtracking
step, until all allocations are removed. This is the reason the allocation
time decreases somewhat for the case when the solution is found (at 90 for
C1-P1, at 189 for C2-P1, at 317 for C3-P1 and at 427 for C4-P1), and no
deallocation is needed (see Figure 7.4). The time lines fall into each other
because the larger test cases contains the smaller test cases, i.e., C1 is part
of C2, C2 is a part of C3 etc. In this and in the following figures, the bound
on expected execution time yielding the tightest allocation are marked out
with black vertical lines.

AllocateTST could be improved so that it returns directly when there
are no more platforms to try. This is a minor optimization that is left for
future work. Since there are no messages sent between different platforms
in this experiment we measure the task allocation time instead.

Figure 7.4: The task allocation time for C1–C4 with one platform and varied
bounds. Chronological backtracking is used in the experiments.

7.4.2 Performance for Bounded Allocation of C1-P2

In this experiment we study how AllocateTST behaves when the bound on
the expected execution time is varied while the size of the TST is fixed to
C1 and the number of available platforms is fixed to 2. The bound is varied
between 10 and 100. When the bound is lowered the constraint problem
becomes harder and there are fewer solutions. The tightest allocation, with
respect to the total expected execution time used to complete the task, is 65.
This means that for bounds less than 65 there is no solution. The algorithm
has its hardest time at 60, where despite extensive backtracking no solution
can be found. As shown in Figure 7.5, the messages needed are less at the
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bound of the tightest allocation (65), than for 70, and 80. The reason for
this is that with a higher bound, more allocations can be tested in the sub-
TST rooted in the second concurrent node (the unloading of the carrier),
before AllocateTST backtracks to the sub-TST rooted in the first concurrent
node (the loading of the carrier) and makes the necessary change needed for
the solution. With a bound of 65, AllocateTST does not get the chance to
test as many allocations in the sub-TST rooted in the second concurrent
node, which speeds up the process of finding the solution. With a bound of
90, the bound has no effect since the marginal cost strategy directly finds
such an allocation (in this case giving all the nodes to platform P0). In
the tightest allocation both platforms, P0 and P1, load the carrier with two
boxes each and also unload the carrier together. AllocateTST will be guided
by the marginal cost strategy to allocate all the nodes to the platform that
is allocated the first load-box-to-carrier node (since this platform is then
the closest). The tightness of the bound will then determine how much the
other platform must be used. As the bound increases the algorithm ends up
using relatively few messages to find an acceptable solution. The number
of messages sent and the constraint solving activity needed are shown in
Figure 7.5. For the sake of clarity, only the total number of messages are
shown in Figure 7.5(a). The different message types adding up to the total
number of messages for C1-P2 using backjumping are shown in Figure 7.5(d).
The proportions of the message types are similar in the remaining test cases.

Chronological backtracking uses more messages than backjumping as
shown in Figure 7.5. The difference is mainly for smaller bounds. For
such cases, backjumping is able to determine that no allocation is possible,
because no platform can be allocated to the unallocated task that initiated
the backtracking, even if all previous tasks are considered unallocated. The
graphs for the constraint solving activity follows the same pattern as for the
messages.

7.4.3 Performance for Bounded Allocation of C1-P3

In this experiment we study how AllocateTST behaves when the bound on
the task is varied while the size of the TST is fixed to C1 and the number of
available platforms is fixed to 3. The bound is varied between 10 and 100.
For the test case C1-P3, the first solution is at 59. The solution is obtained
when platforms P1 and P2 load and unload one box each from the carrier
and platform P0 handles the remaining two boxes.

The expected result is a hill-shaped graph. The results are in Fig-
ure 7.6(a), Figure 7.6(b) and Figure 7.6(c). As expected, the results show
that the greatest effort is needed when the bound is less than the lowest ex-
pected execution time (at 59). The graphs are similar to those in Figure 7.6,
but higher, which is expected because there is one more platform to try.

Similar to C1-P2, chronological backtracking uses more messages than
backjumping, mostly in the beginning where the effect is enhanced by the in-
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Figure 7.5: For chronological backtracking and backjumping, the number
and types of messages sent (top-left) and the constraint solver activity (top-
right, bottom-left) for allocating the C1 TST to 2 platforms when the bound
on the expected execution time to complete the task varies. Note the log-
scale for invocations and messages. The last graph (bottom-right) shows
the composition of messages for the backjumping case.

crease in available platforms. After the bound of the tightest allocation (59),
backjumping uses slightly more messages than back-tracking, because only
minor consecutive changes are needed in the later part of the configuration
and for such cases backjumping does more operations than backtracking,
basically backjumping follows the same path as backtracking.

7.4.4 Performance for Bounded Allocation of C1-P4

In this experiment we study how AllocateTST behaves when the bound on
the task is varied while the size of the TST is fixed to C1 and the number
of available platforms is fixed to 4. The bound is varied between 10 and
100. The first solution is at 53 for the C1-P4 test case. Similar to test case
C1-P3, the tightest allocation is found when each platform loads one box
onto the carrier, and unloads one box of the carrier. The tightest allocation
can only be found after backtracking because an effect of using the marginal
cost as the auction strategy, in this case, is that all tasks are allocated to
platform P0. When platform P0 is allocated to the first task, it is also
the best candidate for the next task because when platform P0 has loaded
the first box onto the carrier it is also closer to the next box to be moved.
Therefore, P0 will win the next auction too, and so on. This problem occurs
for other test cases too, but is illustrated best with the C1-P4 test case,
whose tightest allocation uses all four platforms concurrently. Since there
are more platforms available to test, the constraint solving activity and the
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Figure 7.6: For chronological backtracking and backjumping, the number
and types of messages sent (top-left) and the constraint solver activity (top-
right, bottom) for allocating the C1 TST to 3 platforms when the bound on
the expected execution time varies. Note the log-scale for invocations and
messages.

messages sent increases compared to the C1-P2 and C1-P3 test cases. The
increase is tenfold in the constraint solving activity, showing that the number
of platforms is an important factor when no allocation can be found. The
results are in Figure 7.7(a), Figure 7.7(b) and Figure 7.7(c).

Chronological backtracking uses more messages than backjumping for
smaller bounds because of the previous mentioned reason. The results are
similar to C1-P3, but the effects are enhanced both before and after the
bound of the tightest allocation. The reasons are the same as for C1-P3.

7.4.5 Performance for Bounded Allocation of
C2-P2 – C4-P4

The results for the remaining detail studies are similar, but more time- and
resource-consuming, using more messages and more constraint solver and
AWCS invocations. It is important to note that a solution can be found
fast if the bound is not too tight. As the bound on expected execution time
increase and surpasses the bound for the tightest allocation, less messages
and constraint solving activity is needed to find an allocation.

The results of the remaining detail studies are in Figure 7.8, Figure 7.9
and Figure 7.10. The gaps in the graphs represent that it takes more than
18000s to find a solution due to the fact that those bounds are requiring too
much time for backtracking. The graphs have similar characteristics as the
previous detail studies, but magnified, which was also expected.

Similar to test cases C1-P2, C1-P3 and C1-P4, chronological backtrack-
ing uses more messages than back-jumping in the beginning, where back-
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Figure 7.7: For chronological backtracking and backjumping, the number
and types of messages sent (top-left) and the constraint solver activity (top-
right, bottom) for allocating the C1 TST to 4 platforms when the bound on
the expected execution time varies. Note the log-scale for invocations and
messages.

jumping can cancel the allocation when the failed task can not be allocated
even on its own. For larger bounds, backjumping can not cancel a failed
allocation attempt, because with larger bounds even the later tasks can be
allocated on their own. Chronological backtracking and backjumping uses
similar amount of messages for such cases.

For bounds where the backjumping algorithm can not determine if the
entire allocation is impossible, the number of messages needed are similar
or more than for backtracking.

7.4.6 Discussion – Bounded Allocation Results

The results for the bounded allocations experiments show that the messages
sent and constraint solving activity needed for finding an allocation or de-
termining that none exists, increases very fast towards the time point where
the allocation with the tightest schedule is found. After this time point, the
number of messages sent and constraint solving activity levels out as more
and more solutions can be found. As shown in figures 7.4–7.10, the compu-
tations are most expensive around the bound. The experiments also show
that a more efficient backtracking method or auction strategy is needed for
larger TSTs, when no solutions can be found. Improvements in the auction
strategy is left as future work.

How many platforms and how large TSTs the task allocation algorithm
can handle depends very much on how tight the bound on the expected
execution time for the problem is. Figure 7.11, Figure 7.12 and Figure 7.13
(on page 108) show how the number of messages and constraint solving
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Figure 7.8: For chronological backtracking and backjumping, the constraint
solver activity and the number of messages sent when allocating the C2 TST
with 2–4 platforms and varied bounds. Note the log-scale for invocations
and messages.
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Figure 7.9: For chronological backtracking and backjumping, the constraint
solver activity and the number of messages sent when allocating the C3 TST
with 2–4 platforms and varied bounds. Note the log-scale for invocations
and messages.
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Figure 7.10: For chronological backtracking and backjumping, the constraint
solver activity and the number of messages sent when allocating the C4 TST
with 2–4 platforms and varied bounds. Note the log-scale for invocations
and messages.

107



Chapter 7. Performance Evaluation

activity increases, when the bound is tightened (when using backjumping).
The x-axis shows the percentage ratio between the bound on the expected
execution time and the expected execution time of the tightest allocation.
We call this ratio the compactness. The messages sent and the constraint
solver activity increases sharply as the bound on the expected execution
time gets closer to the bound of the tightest allocation. The results for
backtracking is similar.

The marginal cost strategy can produce suboptimal allocation sugges-
tions for the child nodes of a concurrent node in some cases. In some cases
it is beneficial to strive for maximal concurrent execution for the child nodes
of a concurrent node (allocate to different platforms), sometimes it is not.
For example compare test cases C1-P4 and C4-P4. In C1-P4, the tightest
allocation is found when each platform loads and unload one box on the car-
rier. For the C4-P4 case, the tightest allocation is found when each platform
is responsible for one carrier pattern each. Improving the auction strategy
to take into account the platforms’ already committed tasks and the time
left to the bound (if any) would likely also reduce the search for cases when
there is no solution.

Figure 7.11: The number of messages sent when tightening the bound for
the test cases.
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Figure 7.12: The number of AWCS invocations when tightening the bound
for the test cases.

The resource model of a TST node consists of many variables and con-
straints. Each node is a complete task and can be seen as a constraint
problem by itself. Usually, a TSTs has also interrelated utilities, where
previous individual allocations affect further allocations, which occurs when
there are more elementary action nodes than platforms. With this as back-
ground, it is good result that AllocateTST can handle TSTs with up to 10
nodes without a bound and about 25 nodes with bounds of at most 110%
compactness. For TSTs with up to 25-50 nodes, the algorithm can find solu-
tions with at most 130% compactness (for some cases, 100% compactness).
It should also be noted that DisCSP solving algorithms, such as the AWCS
used by AllocateTST, can usually handle fewer variables than their central-
ized counter parts. In Section 7.6 we will also show that existing DisCSP
approaches can not even solve the C1− Py test cases.

One could think that having many platforms would be a limiting factor.
Whether this is the case or not depends on the situation. Having many
platforms to chose from will often make the problem easier to solve, if there
is no bound on the TST and a solution exists. If there is no solution, the
number of platforms will lead to more choices that must be tried during

109



Chapter 7. Performance Evaluation

Figure 7.13: The number of local CSP invocations when tightening the
bound for the test cases.

backtracking. The same is true for TSTs with bounds when backtracking is
needed to find a solution. How the number of platforms influences the per-
formance should rather be seen as a relation between the number of nodes
and the bound on the expected execution time. With too few platforms, the
problem can quickly be detected as unsolvable. With too many platforms,
the problem can be solved without much backtracking. The same is true for
the bound. A very low bound leads to less backtracking before it is discov-
ered that no solution exists, compared to the case when the bound is only
slightly lower than the expected execution time of the tightest allocation.
The auction strategy has the most impact on the cases where the bound is
slightly above the shortest expected execution time for the available plat-
forms to allocate the TST. In such cases there is a solution and a good
auction strategy will select the candidates in such a way that a solution is
found without extensive backtracking. The platforms must be allocated in
the right order so that the allocated TST fits into the time frame expressed
by the bound.

In summary, the AllocateTST algorithm can handle task specification
trees for TSTs containing up to 50 nodes and finds solutions with at least
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130% compactness, when applying bounds. For large TSTs, and when hav-
ing many platforms, it is important to note that a tight bound can lead
to very expensive computations. Improving the auction strategy might im-
prove the results. A problem with the marginal cost strategy is that it only
considers the extra cost for the platform and not for the team. In cases with
child nodes of a concurrency node, it is sometimes better to assign the nodes
to different platforms, regardless of the marginal cost.

7.5 A CSP Formulation

An alternative formulation of the task allocation problem is to represent
all possible allocations as a single centralized CSP. The formulation has
variables representing which platform a task is allocated to together with
constraints describing that a task can only be allocated to one platform.
The formulation also includes constraints describing that distances depend
on what other tasks a platform is committed to. AllocateTST does not have
such constraints because it incrementally adds the constraints for each task
and platform combination. In AllocateTST, the platform to task assign-
ments are completely outside the DisCSP, with no variables representing
task assignments, whereas in the centralized CSP formulation, those vari-
ables are in the formulation and are determined by the CSP solver. In
AllocateTST, the adding / removing mechanism assures that only one plat-
form is allocated to a task. A side effect of this is that the distances can be
calculated when the constraints of a task are added because the platforms
previous commitments are determined. The centralized CSP formulation
thus requires more variables and constraints than AllocateTST does, but
AllocateTST needs to run the constraint solver more than once, at least as
many times as there are nodes in the TST.

The CSP formulations uses the following types of variables:

XS, XE: Variables for start and end time of an interval. X is the name
of some action, for instance: C LoadC1 S, means the start time for
the concurrent node containing the sub-task of loading carrier 1. The
corresponding end time is C LoadC1 E.

X dist unloaded, X dist loaded: Variables for distances a platform must
move in some action described byX. For example flyC1 dist unloaded,
meaning the distance to the position of the carrier 1. Unloaded means
before the carrier is loaded. The opposite is flyC1 dist loaded, mean-
ing the distance to fly with the carrier when loaded with boxes.

X speed nobox, X speed wbox: Variables for the speed of a platform
when flying and holding nothing, and when flying and holding a box.

flyC1, loadC1B1: Task selector variables. The value of a variable repre-
sents which platform (by platform number) that is assigned to the task.
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The example variables means the platform that will deliver carrier 1,
respectively the platform to load carrier 1 with box 1.

There are also a few constants in the CSP formulations, for exam-
ple LOADBOX TIME meaning the time needed to pick up a box and
MAX SPEED meaning the maximum speed of a platform.

The constraints in the CSP formulation are of the following types: struc-
tural constraints, action constraints, booking constraints and distance con-
straints. Examples are shown below:

structural constraints Constraints of this type describe the relations be-
tween a task’s start and end times as specified by a TST. This group
of constraints represents the constraints of composite actions, such as
the constraints of the sequence node (described on page 25).

Example: C LoadC1 S ≤ C LoadC1 E

action constraints Constraints of this type describe how the end time of
an elementary action depends on the start time and the time needed
for the activity of the elementary action. The example below shows
the action constraints of moving a box. The end time depends on
the start time, the distance to fly to the box that should be picked
up, the time required to pick up the box, the distance to fly to the
destination from the place where the box is picked up, and the speed
of the platform. This group of constraints represents the constraints
for elementary action nodes, and the following example is similar to
the constraints in the example on page 28.

Example:
loadC1B1 E = loadC1B1 S +
(loadC1B1 dist unloaded/loadC1B1 speed nobox) +
LOADBOX TIME+(loadC1B1 dist loaded/loadC1B1 speed wbox)

booking constraints Constraints of this type describe the fact that ac-
tions allocated to the same platform may not overlap if they use the
same resources. A booking constraint thus assures that a mutual ex-
clusive resource is not used concurrently. In the cases when a booking
constraint forces child nodes of a concurrent node to be executed in
sequence (because they belong to the same platform and uses a mutual
exclusive resource), the nodes have the same order as the child nodes of
a sequence node, i.e. a child node A that is to the left of another child
node B, means that A comes before B in time. The resource itself is
not explicitly represented by a variable but is implicitly represented
by task selector variables in a booking constraint.

Example:
(loadC1B1 = loadC1B2)→ (loadC1B1 E ≤ loadC1B2 S)
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distance constraints Constraints of this type describe the distance needed
to move a platform before or during a task for a particular platform
and task, given the other tasks the platform is committed to. In the
CSP formulation, all possible routes are specified in this manner.

Example:
((flyC1 = 1) ∧ (flyC1 6= loadC1B1) ∧
(flyC1 6= loadC1B2) ∧ (flyC1 6= loadC1B3) ∧
(flyC1 6= loadC1B4))→ (flyC1 dist unloaded = 36)

The constraints describe that if platform P1 (the value 1) is assigned
to the task of flying with the carrier flyC1 and not to any of the
other actions mentioned in the constraint, the distance for flying to
the position of the carrier will be 36 meters.

An instance of the centralized CSP formulation can be illustrated with the
following example (see Figure 7.14). For example, a structural constraint
describes that ts1 must begin before te1 and that te3 is before or equal to
te1 . The structural constraints build up the schedule represented by the
TST. Action constraints involve the start and end time variables ts2 , te2 ,
ts3 and te3 . There are two action constraints per elementary action node
(one for each platform) and they are similar to the action constraint in
the example above. In the example, a booking constraint describes that if
the same platform is allocated to both of the elementary action nodes (N2

and N3), the elementary actions must be in sequence, i.e. te2 ≤ ts3 . There
are two such booking constraints for the example, since both platforms can
take on both N2 and N3. Distance constraints describe how the distance
a platform must move when allocated to a task depends on the platform’s
previous commitments. Allocating a platform to node N3 creates different
distances, depending on what other tasks the platform has committed to.
For this particular case, two distances are possible for a platform, depending
on if it moves from the area where the first box was loaded (the platform is
also allocated to node N2) or if it moves directly from its start position. In
Figure 7.15, the distances are marked for platform P0.

The number of constants, variables and constraints needed for the cen-
tralized formulation are shown in Table 7.2. We solved the task allocation
problem as a centralized problem, using the same CSP solver as used on
each platform by AllocateTST. We compare how much time is needed to
find the tightest allocation for various TST sizes and number of platforms.

Figure 7.16 and Figure 7.17 show the time needed to find the tightest
allocation (and all other allocations) for the test cases C1-P1 – C8-P4. Each
experiment is given 18000 seconds (5 hours) to complete. A bar of 18000
seconds (from bottom to top in the graph) means that it could not be
proven that the most tight allocation found is the tightest allocation. For
the smaller TSTs C1–C2 is it possible to determine the tightest allocation
in a very short time. Among the test cases using the TST sizes C1–C4,
only C4-P4 was not completed within 18000s. The number of platforms is a
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Figure 7.14: A TST describing a concurrent scan operation.

Figure 7.15: Provided that P0 is assigned to N3, the distance P0 has to
move to reach N3 depends on P0’s previous commitments. If P0 is allocated
to N2, there is one distance (d1) for P0 when the platform is also allocated
to N3. If N3 is platform P0’s first allocation, the distance is counted from
the platform’s start position instead (d2). The distance constraints describe
such distance rules for all possible platforms and task combinations.
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constants variables constraints

C1-P1 48 22 129
C1-P2 35 35 138
C1-P3 35 35 147
C1-P4 35 35 156
C2-P1 87 43 417
C2-P2 62 68 435
C2-P3 62 68 453
C2-P4 62 68 471
C3-P1 126 64 867
C3-P2 89 101 894
C3-P3 89 101 921
C3-P4 89 101 948
C4-P1 165 85 1479
C4-P2 116 134 1515
C4-P3 116 134 1551
C4-P4 116 134 1587

Table 7.2: The number of constants, variables and constraints for each test
case in the CSP formulation.

significant factor because it determines the number of choice constraints (of
platforms for tasks) and the number of variables in those constraints that
have to be evaluated. The special case with only one platform is simple
because the problem contains no constraints describing choices. For larger
TSTs (C5-P1–C8-P4), it is not possible to find and determine the tightest
allocation in 18000s, when using more than one platform.

Figure 7.16 and Figure 7.17 only shows the time needed to determine the
tightest allocation. We also evaluated the time needed to find each allocation
for twelve of the sixteen test cases. The test cases with only one platform
were excluded, because there is only one allocation for each of them, which
makes them less interesting in this experiment. By increasing the allowed
task allocation time more allocations can be found. The experiments show
that finding an allocation is not hard, but finding the tightest allocation is,
which can be compared to the tests with AllocateTST where a decreasing
bound permits fewer and fewer allocations which becomes increasingly costly
to find.

Each allocation is plotted as a relation of a percentage value and the
time it takes to find the allocation. The percentage value is the expected
execution time of the tightest allocation divided by the expected execution
time of the allocation. The experiments show for each allocation and test
case the time it takes to find an allocation and how close the found allocation
is to the tightest allocation.
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Figure 7.16: The time needed to find the tightest allocations for test cases
C1-P1 – C4-P4. Note the log-scale for time.

Figure 7.17: The time needed to find the tightest allocations for test cases
C5-P1 – C8-P4. Note the log-scale for time.

For instance, see Figure 7.18. The graph shows that the more platforms
there are, the longer time it takes to determine the tightest allocation and
the longer time it takes to find an allocation of a certain expected execution
time. This value is expressed as compactness, which is the ratio between the
bound on the expected execution time and the expected execution time of
the tightest allocation. A solution with 200% compactness for test case C3-
P2 can be found in 5 milliseconds, for the C3-P3 and C3-P4 it takes about
100 milliseconds respectively 200 milliseconds to get the same compactness.

The results for the rest of the test cases are displayed in Figure 7.19,
one graph per TST size. The time needed for finding all solutions for a
particular number of platforms when varying the size of the TST is shown
in Figure 7.20, which is another way of organizing the same results shown
in the previous figure.

The centralized approach shows that the task allocation problem is a
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Figure 7.18: The time needed for finding all solutions for TST size C3, when
varying the number of platforms P2–P4. Note the log-scale for time.

hard and costly problem to solve when searching for the tightest allocation,
meaning that the decentralization of the problem (in AllocateTST) is not
the only factor making the problem hard. Finding the tightest allocation for
TSTs in the test case range C1-P1–C2-P4 was possible in a relatively short
time for the centralized approach. Most test cases were solved around 1 sec-
ond (see Figure 7.16). For the C3-P1–C4-P4 test cases, it takes longer time,
up to hours to determine if the tightest allocation is found (see Figure 7.16).
The number of platforms is a significant factor because it determines the
number of choice constraints (of platforms for tasks) and the number of vari-
ables in those constraints that has to be evaluated. The special case with
only one platform is simple because the problem contains no constraints de-
scribing choices. It was not possible to find the tightest allocation for many
of the larger test cases (C5-P1–C8-P4) in 5 hours time. Figures 7.16 and
Figures 7.17 shows the time needed to determine if the most tight allocation
found is the tightest allocation, just finding an allocation takes very little
time, as shown in Figures 7.19–7.20.
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Figure 7.19: The time needed for finding all solutions for TST size C1–C4,
when varying the number of platforms P2–P4. Note the log-scale for time.
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Figure 7.20: The time needed for finding all solutions for a particular number
of platforms (two, three or four platforms) when varying the size of the TST
(C1–C4). Note the log-scale for time.

119



Chapter 7. Performance Evaluation

7.6 An Alternative DisCSP Formulation

Another alternative problem formulation is created when taking the central-
ized formulation and reformulating it as a DisCSP. In this case, each variable
in the DisCSP will be owned by a virtual agent. The constraints from the
centralized case will then become global constraints, i.e. constraints between
different agents. As in the centralized formulation, the DisCSP formulation
has constraints describing that a task can only be allocated to one platform.
The difference compared to the DisCSP approach taken with AllocateTST
is that AllocateTST adds the constraints for each task and platform com-
bination that is tested to the DisCSP and only keeps the constraints if the
DisCSP is consistent. If it is inconsistent, the constraints of the combina-
tion are removed and another allocation is tried. In the alternative problem
formulation, we will never add or remove constraints: everything is in the
DisCSP from the beginning. We expect this approach to perform worse and
it can be seen as a baseline for our approach.

The characteristics of the alternative DisCSP formulation are shown in
Table 7.6. To get any results, we had to simplify the test case. A test
case is denoted by Bx-Py meaning x boxes are moved by y platforms, in a
simplified version of the C1 TST.

It should be noted that in these experiments, each variable in the con-
straint problem is held by one agent, which makes the problem more dis-
tributed than AllocateTST, even if the problem is of the type Bx-P1. It
is usually the case that one agent owns one variable in DisCSP and Dis-
COP algorithms. For the alternative DisCSP formulation, there is no clear
mapping between platforms and virtual agents. The virtual agents are simu-
lated on a single computer and they have nothing to do with the distribution
among platforms. It is actually not obvious how the problem can be dis-
tributed without reformulating the DisCSP. How should the global selector
constraints be distributed over the platforms when they are not known in
advance? In AllocateTST on the other hand, the platform – agent map-
ping is straightforward because we use a DisCSP algorithm where one agent
can own many local variables. In AllocateTST the content of a conditional
branch, containing the constraints of a task and platform combination, be-
longs to the platform in question.

We evaluated the alternative DisCSP approach using the ADOPT (Asyn-
chronous Distributed OPTimization) [77], DPOP (Distributed Pseudotree
Optimization Procedure) [82] and Synch-BB (Synchronous Branch and Bou-
nd) [64] algorithms, in the FRODO framework [70]. When these algorithms
are applied to the full problem they do not find a solution within reasonable
time. Therefore, we had to decrease the size of the test TST to get any
results. We used a TST similar to the C1 TST in the logistics scenario, but
with only 1, 2 or 3 boxes. The distances were scaled down with a factor of 5
and the maximum speed was also scaled down with a factor of 2. We had to
decrease those values because the size of the domains influences the perfor-
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mance and the problem could not be solved without decreasing the domains.
The task allocation time is shown in the following tables, for ADOPT see
Table 7.3, for DPOP see Table 7.4 and for SynchBB see Table 7.5. We use
task allocation time as a measurement instead of counting messages since
the latter causes problems with exhausted memory. The ’-’ means that the
algorithm could not find a solution.

With this approach to the task allocation problem only very small TSTs
can be handled (1-2 boxes and 2-4 platforms). This is fewer boxes than
in the C1-Px test cases, which shows that the approach taken with Allo-
cateTST is better. The differences in performance can probably be traced
to the following factors. In the alternative DisCSP formulation, the DisCSP
contains more constraints than what AllocateTST must handle. The selec-
tor constraints describing the different choices of platforms and tasks must
be explicit in this formulation, compared to AllocateTST, where this is han-
dled by the algorithm by adding or removing the constraints of individual
task allocations to the problem. With this mechanism, AllocateTST solves
a conditional DisCSP, where the conditional variables are platform / task
selectors, and determines which platform and task combinations that should
be included in the problem. AllocateTST then solves a sequence of simpler
problems. In AllocateTST, the allocation time is further decreased because
each platform solves its local problem in a centralized manner, and does not
use one virtual agent per variable as in the alternative DisCSP formulation.
In AllocateTST, a new individual allocation (a platform to a task) is done
with the accumulated knowledge of previous allocated platforms, and there
is no need for complex distance constraints as there is in the alternative
formulations.

Another reason is that the solver for the alternative DisCSP formulation
has no problem-specific heuristic such as our marginal cost heuristic to guide
which constraints to evaluate next. The solver also lacks efficient constraint
propagation and a domain dependent variable ordering heuristic.

1 Platform 2 Platforms 3 Platforms 4 Platforms

1 Box 2.2s 6.4s 7s 8s
2 Boxes 492s - - -
3 Boxes - - - -

Table 7.3: Task allocation time with ADOPT.

7.7 Discussion

In this chapter we have evaluated the scalability of the task allocation algo-
rithm AllocateTST on TSTs with and without bounds. We have also evalu-
ated two alternative approaches to the task allocation problem, a centralized
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1 Platform 2 Platforms 3 Platforms 4 Platforms

1 Box 15s 479s 740s -
2 Boxes - - - -
3 Boxes - - - -

Table 7.4: Task allocation time with DPOP.

1 Platform 2 Platforms 3 Platforms 4 Platforms

1 Box 0.6s 1.3s 1.7s 1.6s
2 Boxes 825s 148s 2608s 240s
3 Boxes - - - -

Table 7.5: Task allocation time with SynchBB.

Domains Values Variables Rel. Tup. Cons.
1B-P1 3 42 20 6 564 29
1B-P2 5 46 50 18 1818 62
1B-P3 5 47 56 20 1864 71
1B-P4 5 48 61 21 1887 79
2B-P1 3 46 28 9 1163 48
2B-P2 5 49 93 21 2689 123
2B-P3 5 50 104 23 2741 139
2B-P4 5 51 113 24 2767 153
3B-P1 3 48 36 9 1359 71
3B-P2 5 49 148 23 2881 204
3B-P3 5 50 164 25 2933 227
3B-P4 5 51 177 26 2959 247

Table 7.6: The number of domains, values, variables, relations, tuples in the
relation and constraints in the test cases for the DisCSP formulation.

problem formulation and an alternative DisCSP problem formulation. Since
AllocateTST and the alternative approaches use different comparison met-
rics, task allocation time for the alternative approaches and sent messages
and constraint solving activity for AllocateTST, it is not possible to make
an exact comparison between the different approaches. However, we can
make a coarse comparison. A coarse ordering of the different approaches,
from best to worst, is the centralized CSP formulation, followed by the Al-
locateTST and last the straightforward DisCSP formulation. We are not
interested in the centralized formulation as an approach to the task allo-
cation problem for the following reasons. Usually, the reasons for using a
DisCSP approach over a CSP approach is that the time to gather the data
for the CSP is great, because each part of the problems is large, or because
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the gathering will have to be redone for each change in the problem. For our
case, changes to a platform’s state, resources, etc., affect the platform’s local
constraints for the task allocation problem. All such changes will not neces-
sarily lead to changes that must be conveyed to other platforms. However,
with a centralized solution, all such changes would lead to a resolving of the
entire problem. Another common reason for the DisCSP approach is privacy
and security concerns [102]. The agents do not want to send their internal
constraints for privacy reasons. One of the ideas with the TST approach
is to keep the resource constraints hidden. The only connection point is
the node interface variables in the TST. With this setup, the platforms can
even have different constraint representations of their resource constraints
and different local solvers as long as they can participate in the DisCSP
algorithm.

The centralized problem is useful though as a baseline comparison. The
results show that the approach taken for the AllocateTST algorithm is better
than the alternative DisCSP formulation. It was also shown that it is the
features of the problem itself rather than the distributed solving method
that makes the problem hard (comparing the results of AllocateTST and
the centralized CSP formulation with tight bounds).

Without bounds, AllocateTST can allocate TSTs with up to 130 nodes,
containing up to 450 tailor variables and using 2 to 4 platforms. With help
of the marginal cost strategy, AllocateTST finds allocations that are at most
2.16 times the shortest possible execution time and in most cases not more
than 1.5 times as long. The better cases occur when the number of carrier
patterns and platforms are easily divisible.

With bounds, the results show that the effort to find an allocation in-
creases towards the bound of the tightest allocation. As the bound on
expected execution time increases and surpasses the bound for the tightest
allocation, fewer messages and less constraint solving activity is needed to
find an allocation. The result also shows that the messages sent and the
constraint solver activity increases sharply as the bound on the expected
execution time gets closer to the bound of the tightest allocation. The Allo-
cateTST algorithm can handle task specification trees for TSTs containing
up to 50 nodes, and find solutions with at most 130% compactness, when
applying bounds.
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Conclusions

8.1 Summary

The problem of determining who should do what given a set of tasks and
a set of agents is called the task allocation problem. The problem occurs
in many multi-agent system applications where tasks somehow should be
distributed to a number of agents. In our case, the task allocation problem
occurs as an integral part of a larger problem of determining if a task can
be delegated between two agents. In order to solve this problem, three
related concepts must be determined. The task specification format used
to express the tasks, the multi-agent system infrastructure needed to enable
delegations, and finally the delegation problem itself (and its inherit task
allocation problem). The delegation concept is used in a multi-robot system
of UAVs, interacting with one or more operators. Since a platform only
can carry a limited payload, efficient resource usage becomes an issue when
delegating tasks.

In this thesis we have developed a task specification formalism (task
specification trees), a complex task allocation algorithm for allocating the
tasks in a task specification tree to UAV platforms (AllocateTST ), and a
generic collaborative system shell for robotic systems (an extension of the
FIPA Abstract Architecture). Each part is the answer to a research question
involved in the ambition to make an earlier proposed collaborative robotic
framework concrete [36, 40]. The framework builds on three fundamental, in-
terdependent conceptual issues: delegation, mixed-initiative interaction and
adjustable autonomy. The concept of delegation is particularly important
and in some sense provides a bridge between mixed-initiative interaction
and adjustable autonomy. A speech act for delegation has previously been
formalized with pre- and post-conditions specified in the KARO formalism,
which is an amalgam of dynamic logic and epistemic/doxastic logic, aug-
mented with several additional modal operators in order to deal with the
motivational aspects of agents. The formalization is inspired by the work of
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Falcone & Castelfranchi on delegation [10, 46].

Delegation is the basis for the collaborative framework. In a realization
of the framework, the agents work as delegators and contractors of complex
tasks. There is no fixed agent hierarchy, instead the agent forms collabora-
tion structures depending on how they can contribute with their capabilities
to the solution of the delegated task.

The delegation theory and the proposed collaborative robotic framework
only provide an abstract definition of a task, and do not describe exactly
how the pre- and post-conditions of delegation can be fulfilled. The first step
in our work towards a concretization of the collaborative robotic framework
was to connect the Can predicate of the speech act to a representation of the
tasks and the agents capabilities for such tasks. In this process we identified
three central problems that must be solved before the collaborative robotic
framework can be realized.

The first problem is stated as the research question R1 – “R1 - How can
a task τ in the delegation theory be specified to make the realization of the
delegation speech act possible?” In addressing the problem of representing
tasks, we introduced a task specification formalism, called the TST formal-
ism. With this formalism it is possible to specify distributed task-structures,
called task specification trees that can be delegated. The formalism can be
used to express complex tasks suitable for different types of collaborative
UAS missions. The constraint-based task trees make it possible to realize
a form of adjustable autonomy – where the contractor’s autonomy can be
restricted by the delegator but not changed by the contractor.

We also described a model, a platform specification, for how platforms
use their static and dynamic resources when carrying out a task.

The second problem is stated as the research question R2 – “How can
the preconditions of the delegation speech act be assured, so that a task τ
specified according to R1 can be delegated?” This is the core of the delega-
tion process, how do we find contractors that actually have the capabilities
and resources for the task that should be delegated? The problem of finding
and allocating platforms to tasks is an instance of a complex task allocation
problem, a problem which turns out to be very hard to solve for realistic
missions given constraints on time and resources. In Section 4.3, we ex-
tended the multi-robot task allocation classification introduced by Gerkey
and Matarić [59] with four new dimensions and argued that allocating task
specification trees is more challenging than most allocation problems cur-
rently considered.

The problem of allocating TSTs to robot platforms was defined and a
distributed heuristic algorithm for finding a consistent allocation was pre-
sented. The algorithm recursively searches among the potential allocations
in a distributed manner and uses distributed constraint satisfaction tech-
niques to check if an allocation satisfies the constraints.

The third problem is stated as the research question R3 – “How can
R1 and R2 be realized on a collaborative UAS?” A collaborative robotic

125



Chapter 8. Conclusions

shell was developed as an extension of the FIPA Abstract Architecture.
The extension includes functionality to support the delegation of tasks and
the concept of a platform specification for describing how a platform car-
ries out tasks. A platform specification describes how a platform fulfils the
Can predicate in the delegation speech act for a given task. The specifi-
cation offers a more sophisticated capability and resource model than the
one provided by the FIPA Abstract Architecture, which only describes what
services a platform provides. With the extended model we can describe how
resources are used and the time needed for carrying out a task. An im-
plementation in JADE [92] of the collaborative robotic shell was used to
evaluate the system.

A number of case studies was presented, describing how the task alloca-
tion algorithm works in the collaborative UAS. We show how the operator
can add user constraints to a TST to restrict the task allocation and thereby
the autonomy of platforms during the allocation of a task specification tree.

The task allocation algorithm was evaluated on task specification trees
from the case studies. The experiments show that the algorithm is capable
of allocating relatively large TSTs, and that the number of platforms does
not significantly influence the number of messages sent when there is no
bound on the available time for the execution of the allocated task. They
also show that user constraints, such as bounds on the time to complete a
task, is a highly significant factor.

We also formulated the task allocation problem as a centralized problem
and as an alternative DisCSP, where each constraint variable is handled by
a virtual agent. The centralized problem formulation shows that the task
allocation problem is a complex problem, even without the extra complexity
brought by the distributed approach to the problem. As we expected the
alternative DisCSP formulation performs worse than the approach taken
with AllocateTST. The DisCSP approach only managed to solve a sub-set
of the test cases solved with AllocateTST. One reason for the discrepancy in
performance between AllocateTST and the alternative DisCSP formulation
can be attributed to the lack of constraint propagation rules and variable
order heuristics in the DisCSP algorithms used in this experiment. But it is
probably also because AllocateTST solves a conditional CSP, where different
instances of the problem are solved depending on the choices of platforms
and tasks. The problem solved by AllocateTST is thus smaller than in the
alternative approaches. AllocateTST can also be helped by its marginal cost
heuristics.

8.2 Future Work

The collaborative UAS that is the outcome of the work in this thesis is
a prototype of the conceptual robot framework described in Chapter 1–2.
The prototype should be seen as an intermediate step towards a complete
realization of the conceptual framework.

126



Chapter 8. Conclusions

Most aspects of the collaborative UAS can be improved. In this section
we focus on the parts that were developed in the thesis and tied to the
research questions R1–R3. For research question R2, the task allocation
algorithm AllocateTST can be improved in its auction strategy, in its pre-
processing of the TST, and in its constraint solving algorithm.

The task allocation algorithm can be improved by developing other can-
didate orderings methods. One improvement would be to take into account
both how many other tasks the platform is committed to and how much
time that is left before the bound and integrate the information with the
marginal cost bidding strategy. For example, the platforms could report the
end time of all the tasks they are committed to and this could be weighed
together with the bids to avoid serialization of concurrent tasks. Such a
heuristic might be better than only using marginal cost.

Another improvement would be to extend AllocateTST with the ability
to identify symmetries and incorporate this information in the candidate se-
lection method. Identifying and avoiding symmetrical configurations would
save much effort, especially during backtracking, when fewer configurations
need to be tested.

Another related question is whether it is possible to decompose a task
specification tree and allocate the parts in parallel. A TST can easily be
decomposed if there are no interrelated utilities between the decomposed
parts. A TST with interrelated utilities might be decomposed by introducing
more constraints on the decomposed parts. It would then be interesting
to see if it is possible to design a candidate selection method that creates
decomposable TSTs during the task allocation. One way is to minimize the
width of the resulting DisCSP tree, which is achieved by allocating adjacent
nodes to the same platform so that the number of regions in the TST that
the platform is allocated to is minimized. In general, algorithms and tools
that can be used to pre-process the TST before the task allocation starts and
give additional information to the candidate selection method are interesting
issues. Examples are analysis of how the area the tasks in the TST cover
and how the sub-areas can be grouped together to be allocated to a single
platform.

Another way of improving AllocateTST is in the choice of DisCSP al-
gorithm. An important question is how the DisCSP algorithm can be spe-
cialized and made more efficient for our type of task allocation problem?
Since the allocated TST creates a schedule it might be beneficial to inte-
grate functionality for constraint-based scheduling, for instance a local solver
with special scheduling constraints. Another related issue is the type of con-
straint problem solving that can be used for the TST allocation problem.
Can the problem be solved more efficiently if represented and solved as an
integer programming problem? This question was to a lesser degree studied
in Chapter 4, but needs more work before we can rule out this approach to
the problem.

For research question R1, the task specification format can be improved
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by adding more composite action nodes, such as the selector and loop nodes
and their corresponding Can() predicates. But it makes most sense to focus
on R2 and improve the task allocation algorithm before adding more TST
nodes that our algorithm must handle. For research question R3, future
work depends on what extensions are made to R1 and R2.

8.3 Conclusions

In the beginning of this thesis three research questions were stated:

• R1 - How can a task τ in the delegation theory be specified to make
the realization of the delegation speech act possible?

• R2 - How can the preconditions of the delegation speech act be assured,
so that a task τ specified according to R1 can be delegated?

• R3 - How can R1 and R2 be realized on a collaborative UAS?

A task specification format (TST) was constructed as an answer to re-
search question R1. With its help it is possible to specify complex multi-
agent tasks that can be delegated. The task specification tree is a form of
compromise between an explicit plan in a plan library and a plan gener-
ated through an automated planner [68]. We need this flexibility to express
adjustable autonomy and open and close delegation. The task allocation for-
mat serves its purpose and is useful for expressing real-world collaborative
UAS missions, which was demonstrated with a number of case studies.

A delegation process and a task allocation algorithm AllocateTST was
developed as an answer to the second research question R2. Task allocation
is a part of delegation because delegating a task includes the problem of
finding who can carry out the task. For complex tasks, this problem may
include relations between sub-tasks, and between the agents that are to be
assigned the sub-task, turning the task allocation problem into a complex
task allocation problem. AllocateTST was evaluated on a number of realistic
collaborative UAS tasks. It was shown that AllocateTST can allocate task
specification trees with up to 130 nodes, which cover the TST sizes of typical
collaborative UAS scenarios. For TSTs restricted by user constraints, the
task allocation algorithm can be costly in the cases when the bound is set to
a value lower than expected execution time of the tightest allocation because
of excessive and fruitless backtracking. Still, the AllocateTST gave better
results than the alternative approach.

A collaborative robotic shell was developed as an answer to research ques-
tion R3. The shell extends the FIPA Abstract Architecture and contains
delegation functionality and a representation of the platforms capabilities
and resources. The extension has a more sophisticated service model than
the original FIPA service model, which is necessary for our type of resource-
bounded scenarios. The collaborative robotic shell was implemented in
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JADE [92] forming an agent wrapper around the UASTech platforms’ legacy
systems. The viability of the system was shown with a number of case studies
and a performance evaluation of the implemented task allocation algorithm
AllocateTST.

With the task specification format, the task allocation algorithm Al-
locateTST, and the extension of the FIPA Abstract Architecture we have
realized a prototype for the proposed collaborative UAS framework.
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[70] T. Léauté, B. Ottens, and R. Szymanek. FRODO 2.0: An Open-
Source Framework for Distributed Constraint Optimization. In Pro-
ceedings of the IJCAI’09 Distributed Constraint Reasoning Workshop
(DCR’09), pages 160–164, 2009. http://liawww.epfl.ch/frodo/.

[71] T. Lemaire, R. Alami, and S. Lacroix. A Distributed Tasks Alloca-
tion Scheme in Multi-UAV Context. In Proceedings of the 2004 IEEE
International Conference on Robotics and Automation (ICRA), pages
3622–3627, 2004.

[72] V. R. Lesser and D. D Corkill. The Distributed Vehicle Monitoring
Testbed: A Tool for Investigating Distributed Problem Solving Net-
works. AI Magazine, 4(3):15–33, 1983.

[73] D. C. MacKenzie, R. Arkin, and J. M. Cameron. Multiagent Mission
Specification and Execution. Autonomous Robots, 4(1):29–52, 1997.

[74] M. Magnusson, D. Landén, and P. Doherty. Planning, Executing, and
Monitoring Communication in a Logic-based Multi-agent System. In
Proceedings of the 18th European Conference on Artificial Intelligence
(ECAI 2008), pages 933–934, 2008.

[75] A. Meisels, I. Razgon, E. Kaplansky, and R. Zivan. Comparing perfor-
mance of Distributed Constraints Processing Algorithms. In Proceed-
ings of AAMAS-2002 Workshop on Distributed Constraint Reasoning
DCR, pages 86–93, 2002.

[76] T. Merz, P. Rudol, and M. Wzorek. Control System Framework for
Autonomous Robots Based on Extended State Machines. In Proceed-
ings of the International Conference on Autonomic and Autonomous
Systems, 2006.

[77] P. Modi, W-M. Shen, M. Tambe, and M. Yokoo. ADOPT: Asyn-
chronous Distributed Constraint Optimization with Quality Guaran-
tees. Artificial Intelligence, 161:149–180, 2006.

[78] M. H. Nodine, J. Fowler, T. Ksiezyk, B. Perry, M. C. Taylor, and

A. Unruh. Active Information Gathering in InfosleuthTM. Interna-
tional Journal of Cooperative Information Systems (IJCIS), 9(1-2):3–
28, 2000.

[79] L. E. Parker. Alliance: An Architecture for Fault Tolerant Multi-
robot Cooperation. IEEE Transactions on Robotics and Automation,
14(2):220–240, 1998.

136



Bibliography

[80] L. E. Parker and F. Tang. Building Multirobot Coalitions Through
Automated Task Solution Synthesis. Proceedings of the IEEE, Special
Issue on Multi-Robot Systems, pages 1289–1305, 2006.

[81] J. P. Pearce, M. Tambe, and R. T. Maheswaran. Solving multia-
gent networks using distributed constraint optimization. AI Magazine,
29(3):47–62, 2008.

[82] A. Petcu and B. Faltings. A Scalable Method for Multiagent Con-
straint Optimization. In Proceedings of the 19th international joint
conference on Artificial intelligence, pages 266–271, 2005.

[83] P. Rudol and P. Doherty. Human Body Detection and Geolocalization
for UAV Search and Rescue Missions Using Color and Thermal Im-
agery. In Proceedings of the IEEE Aerospace Conference, pages 1–8,
2008.

[84] P. Rudol, M. Wzorek, G. Conte, and P. Doherty. Micro Unmanned
Aerial Vehicle Visual Servoing for Cooperative Indoor Exploration. In
Proceedings of the IEEE Aerospace Conference, pages 1–10, 2008.

[85] K. Saenchai, L. Benedicenti, and R. Paranjape. Solving Dynamic
Distributed Constraint Satisfaction Problems with a Modified Weak-
Commitment Search Algorithm. In Engineering Self-Organising Sys-
tems, Third International Workshop, ESOA 2005, pages 130–137,
2005.

[86] W-M. Shen and B. Salemi. Towards Distributed and Dynamic Task
Reallocation. Intelligent Autonomous Systems, 7:570–575, 2002.

[87] R. Simmons and D. Apfelbaum. A Task Description Language for
Robot Control. In Proceedings of the Conference on Intelligent Robots
and Systems (IROS), pages 1931–1937, 1998.

[88] R. Smith. The Contract Net Protocol. IEEE Transactions on Com-
puters, C-29(12):1104–1113, 1980.

[89] K. Sycara, M. Paolucci, M. van Velsen, and J. Giampapa. The
RETSINA MAS Infrastructure. Journal of Autonomous Agents and
Multi-Agent Systems, 7(1-2):29–48, 2003.

[90] G. Tack. Constraint Propagation - Models, Techniques, Implementa-
tion. Phd thesis, Saarland University, Germany, 2009.

[91] M. Tambe. Agent Architectures for Flexible, Practical Teamwork.
In Proceedings of the National Conference on Artificial Intelligence,
pages 22–28, 1997.

[92] Telecom Italia Lab. The Java Agent Development Framework (JADE).
http://jade.tilab.com.

137



Bibliography

[93] P. Ulam, Y. Endo, A. Wagner, and R. C. Arkin. Integrated Mis-
sion Specification and Task Allocation for Robot Teams - Design and
Implementation. In Proceedings of the 2007 IEEE International Con-
ference on Robotics and Automation (ICRA), pages 4428–4435, 2007.

[94] A. Viguria, I. Maza, and A. Ollero. Distributed Service-Based Coop-
eration in Aerial/Ground Robot Teams Applied to Fire Detection and
Extinguishing Missions. Advanced Robotics, 24:1–23, 2010.

[95] B. van Linder W. van der Hoek and J-J. C. Meyer. An Integrated
Modal Approach to Rational Agents. In Foundations of Rational
Agency, volume 14 of Applied Logic Series, pages 133–168. Kluwer,
1998.

[96] M. G. Wallace, J. Schimpf, and S. Novello. A Platform for Constraint
Logic Programming. ICL System Journal, 12(1):159–200, 1997.

[97] M. Wzorek, G. Conte, P. Rudol, T. Merz, S. Duranti, and P. Do-
herty. From Motion Planning to Control – A Navigation Framework
for an Unmanned Aerial Vehicle. In Proceedings of the 21st Bristol
International Conference on UAV Systems, pages 17.1–17.15, 2006.

[98] M. Wzorek and P. Doherty. Reconfigurable Path Planning for an
Autonomous Unmanned Aerial Vehicle. In Proceedings of the 16th In-
ternational Conference on Automated Planning and Scheduling, pages
438–441, 2006.

[99] M. Wzorek, J. Kvarnström, and P. Doherty. Choosing Path Replan-
ning Strategies for Unmanned Aircraft Systems. In Proceedings of
the International Conference on Automated Planning and Scheduling
(ICAPS), pages 193–200, 2010.

[100] M. Wzorek, D. Landén, and P. Doherty. GSM Technology as a Com-
munication Media for an Autonomous Unmanned Aerial Vehicle. In
Proceedings of the 21st Bristol International Conference on UAV Sys-
tems, pages 24.1–24.15, 2006.

[101] M. Yokoo. Asynchronous Weak-commitment Search for Solving Dis-
tributed Constraint Satisfaction Problems. In Proceedings of the First
International Conference on Principles and Practice of Constraint
Programming, pages 88–102, 1995.

[102] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. The Dis-
tributed Constraint Satisfaction Problem: Formalization and Algo-
rithms. IEEE Trans. on Knowl. and Data Eng., 10(5):673–685, 1998.

[103] M. Yokoo and K. Hirayama. Distributed Constraint Satisfaction Al-
gorithm for Complex Local Problems. In Proceedings of the 3rd In-
ternational Conference on Multi Agent Systems, ICMAS ’98, pages
372–379, 1998.

138



Bibliography

[104] F. Zacharias, C. Borst, and G. Hirzinger. Capturing Robot Workspace
Structure: Representing Robot Capabilities. In Proceedings of Inter-
national Conference on Intelligent RObots and Systems (IROS), pages
3229–3236, 2007.

[105] R. Zlot. An Auction-Based Approach to Complex Task Allocation for
Multirobot Teams. Phd thesis, Carnegie Mellon University, 2006.

[106] R. Zlot and A. Stentz. Complex Task Allocation For Multiple Robots.
In Proceedings of the 2005 IEEE International Conference on Robotics
and Automation (ICRA), pages 1515–1522, 2005.

139



Bibliography

140



Avdelning, Institution
Division, Department

Datum
Date

Spr̊ak

Language

� Svenska/Swedish

� Engelska/English

�

Rapporttyp
Report category

� Licentiatavhandling

� Examensarbete

� C-uppsats

� D-uppsats
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