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C Résumée en Français 135
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Introduction

1 Context: field robotics

The work presented in this thesis is related to outdoor robots (figure 1), that have to au-
tonomously achieve high level missions, such as transport, surveillance, exploration... The
autonomous achievement of such missions is desirable for various reasons: because commu-
nications with distant operators are very constrained, to relieve the operator’s work load, or
even to reduce the numbers of involved operators in the mission.

Figure 1: Three robots adapted to evolved in open and semi-structured terrains. From left
to right: Dala and Mana from LAAS, respectively equipped with a stereovision bench and a
panoramic Velodyne Lidar, and rTrooper from Thales TOSA, equipped with two stereovision
benches.

On the importance of environment models

Executing autonomously such high level missions calls for the achievement of more elementary
tasks, such as motions, observations, communications, object grabbing... These tasks are
always defined with respect to the environment of the robot:

• motions: a model of the terrain is necessary to compute the easiest, safest and quickest
path between two positions.

• observations: for instance, if the robot is tasked to take a picture of a given area, it
needs a visibility model to know the positions from where the building can be observed.

• communications: similarly to the observations, a model of the environment is required to
assess the places from where communications with other robots of the operator station
are possible.
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• object grabbing requires not only a 3D model of the object, but also a model of the
surrounding environment to define the accessible positions from which the object can
be grabbed.

This non exhaustive list of tasks shows that several environment models are required to
plan and decide the robot actions: the planning and decisions processes call for the evaluation
of the outcome of the possible actions, which is provided by confronting the environment
models to the models of the robot actions (including perception actions). Each environment
model is dedicated to the achievement of one particular task. For instance a traversability
model can be exploited to plan motions, whereas a 3D volumetric model is required to plan
observations. Nevertheless, there can be overlaps between the information represented in
the various models – and the environment geometry is in particular an essential information,
encoded in various forms in most of the necessary environment models.

On the importance of localisation

An estimate of the robot position is also required for various reasons:

• Missions are mostly expressed in localisation terms (e.g. GoTo ‘‘position’’, Explore
‘‘area’’...),

• The achievement of motions defined as geometric trajectories requires a precise knowl-
edge of the robot position,

• To be spatially consistent, the environment models built on the basis of the data ac-
quired by the robot require the knowledge of the robot position at the time of the data
acquisitions.

Roughly, one can categorise the solutions to the localisation problem in three groups:

• Motion estimation: the current robot position is derived (or rather, “integrated”) from
the composition of elementary motion estimates. Odometry and inertial navigation fall
in this category.

• Absolute localisation with respect to known beacons: the determination of distances
or angles of beacons whose position is known in a given reference frame provides a
position in this reference frame. Beacons can be of various natures, e.g. lighthouses
used by sailors, low frequency radio emitters for Loran, or satellites for GPS.

• Map-based localisation: a map of the environment can be seen as a generalisation of
beacons, each element localised on the map (building, crossroads...) playing the role of
a beacon.

Motion estimation has an important intrinsic drawback: the localisation information is in-
deed obtained by compounding elementary motions that are systematically measured with an
error. As a consequence, however small this error can be, the localisation estimate eventually
drifts over time or distance, this drift being not bounded.

Beacon-based localisation is very effective and provides a localisation estimate with a
bounded error. But it requires the existence of beacons, which can not be ensured in every
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environment – and even though GPS satellites are present all around the earth, their signal
can be outed by obstacles or jammers.

Similarly to beacon-based localisation, a map of the environment is required for map-
based localisation solutions. However, it calls for the ability to associate map elements with
perceived data (a problem that is straightforwardly solved by dedicated sensors in beacon-
based localisation).

Simultaneous localisation and mapping

The links between environment models and localisation are pretty obvious: on the one hand
environment models can be a solution to the localisation problem (map-based localisation),
but on the other hand, the localisation problem must be solved in order to build spatially
consistent environment models.

In robotics, in the absence of an a priori map of the environment, the robot is facing a kind
of “chicken and egg problem”: it makes observations on the environment that are corrupted by
noise, from positions which estimates are also corrupted with noise. These errors in the robot’s
localisation have an influence on the estimate of the observed environment feature locations
(these features being referred to as landmarks), and similarly, the use of the observations of
previously perceived landmarks to locate the robot provide position estimates that inherits
from both errors: the errors of the robot’s pose and the map features estimates are correlated.

It has been understood early in the robotic community that the mapping and the locali-
sation problems are intimately tied together [Chatila and Laumond, 1985,Smith et al., 1987],
and that they must therefore be concurrently solved in a unified manner, turning the chicken
and egg problem into a virtuous circle. The approaches that solve this now classic problem
in robotics are commonly denoted as “Simultaneous Localisation and Mapping” (SLAM):
roboticists have thoroughly studied this problem, and proposed numerous effective solutions
for either indoor robots, field robots, aerial robots or submarine robots.

2 Thesis objective: towards rich geometric maps

We have mentioned that the environment geometry is a basic information that is required
to build most of the environment models required for autonomy. The notion of obstacle or
of traversable area is indeed essentially geometric, it is in particular closely related to the
geometry of the considered robots. Geometry is naturally what defines the visibility models.
Also, localisation (of the robot and of landmarks or other environment features) is by definition
a position in a given Cartesian reference frame, and therefore a geometric concept.

Note that if geometry is an essential information to recover to build the environment
models, it is not the sole necessary information: for instance traversability is also a function
of the physical nature of the terrain, and the material of volume impacts the radio commu-
nications visibility model. Regarding localisation, some tasks can be achieved without the
explicit knowledge of the robot position, such as servoing to a visually detected target. Sim-
ilarly, some authors tackled the SLAM problem according to a non-metric (non-geometric)
approach (e.g. [Cummins and Newman, 2008, Angeli et al., 2008]): the environment map is
here a collection of signatures (or image indexes) and the localisation is only defined with
respect to previously perceived data. In such approaches, not only the environment model
does not exhibit any geometric structure, but also it is sensor-centric, as it is defined on the
basis of the sensor signal.
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However, geometry is an intrinsic characteristic of any environment. As opposed to visual
appearance for instance, it is not dependant on illumination conditions or sensor photometric
calibration. A purely geometric model based on geometric primitives (whatever they are,
from the simplest 3D points to planar areas or higher order objects such as pieces of quadrics,
or spline representations of surfaces) has therefore the following characteristics:

• sensor independence: some geometric primitives can be detected by a wide range of
sensors: e.g. planar areas can be detected using either a camera, a 3D Lidar, a millimeter
wave radar...

• view-point independence: a geometric primitive being intrinsically defined, its nature
does not depend on the sensor viewpoints from which it is observed. The only issue is
that some singular sensor/primitive configurations and occlusions may lead to partial
observations of its parameters.

• compatibility with existing models: whatever the environment considered (even other
planets of the solar system), there is now a huge amount of information that is available
(e.g. through [Google, ,IGN, ]). Most of these information are geometric (digital terrain
models, 3D cities models, ...).

These properties of geometric representations make them a must in most of the mobile
robotics systems. For instance, geometry is the only environment information that be ex-
ploited to define cooperation schemes between a micro-drone equipped with a camera and a
ground robot equipped with a Lidar.

Approach

A very interesting property of landmark-based SLAM approaches is that they solve both the
geometric localisation and mapping problems in a sound and consistent manner. The resulting
environment model is therefore a geometric model, but remains however very restricted: it
is a collection of landmarks, located in the environment with an estimated error, to which
is sometimes attached a descriptor. In the early stages of SLAM, landmarks were 2D lines
detected by a horizontal laser scanner, and nowadays most of the 3D SLAM approaches
consider 3D points as landmarks (e.g. interest points when using vision). Such environment
models are not very expressive: they cannot be used to assess the traversability or a given
area or to compute visibilities for instance: landmark models are dedicated to the SLAM
problem, the most important outcome of SLAM becoming the localisation of the robot.

Our approach to build a rich versatile geometric model consists in providing a SLAM
algorithm with higher level geometric landmarks, namely planer facets and line segments.
Since we rely on a SLAM approach, errors on the parameters of the modelled primitives
are explicitly taken into account. The resulting landmarks model represents therefore more
explicitly the geometric structure of the environment than point landmarks for instance:
the most important outcome of our approach is a consistent rich geometric model of the
environment.

Whatever the geometric primitives used to represent landmarks, the resulting model is
a sparse description of the environment, a “cloud” of heterogeneous landmarks. We define
a graph structure over the set of landmarks to allow its manipulation, and in particular to
ease data association processes with a existing 3D model or between models built by different
robots.
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3. Manuscript outline

Contributions

In the direction towards endowing robots to build meaningful geometric environment models,
the contributions of this thesis are the following:

• The definition of geometric landmarks to allow the application of a SLAM approach
that leads to more structured landmark maps than most of the existing contributions.
We introduce planar facets and line segments landmarks, and the associated vision
algorithms to detect, track and match them in images.

• The exploitation of such landmarks in an EKF based SLAM approach. In particular,
we have participated to the extension of the hierarchical SLAM approach introduced
in [Estrada et al., 2005] to a multi-robot SLAM approach, and applied our algorithms
to the building of an environment model using data gathered by a ground and an aerial
robot.

• The definition of the graph structure on the basis of maps of heterogeneous landmarks.
This structure is in particular dedicated to the definition of a map matching algorithm.

3 Manuscript outline

The manuscript is organized in three parts:

• The first part is an analysis of the environment modeling problem. Chapter 1 starts
with a synthetic review of the state of the art in SLAM. It then presents a multi-robot
multi-maps SLAM approach, and the overall organization of the use of heterogeneous
landmarks geometric model in a SLAM approach. Chapters 2 and 3 then respectively
present the essential techniques required to detect features in the perceived data and to
associate them when perceived in different conditions.

• The second part gathers our contributions in the definition of landmark detection, track-
ing and matching algorithms:

– Chapter 4 introduces an approach to match interest points, that exploits their
repartition in the image.

– Chapter 5 introduces a higher level of geometric landmarks: “facets” are oriented
points that correspond to locally planar areas. The algorithms to detect them
from a stereoscopic pair of images and to match them from various viewpoints are
presented.

– Chapter 6 is devoted to the detection and tracking of straight lines in images. A
new approach to this classical vision problem is proposed, that yields more robust
extractions than the existing approaches.

Chapter 7 compares the various landmarks introduced in this part. It illustrates their
use in a EKF based hierarchical SLAM approach, and presents some results of building
an environment model from images acquired with a ground and an aerial robot.
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• The third part of the manuscript is devoted to the definition of a generic geometric model
composed of various kinds of geometric landmarks. A way to organize and structure the
detected landmarks within a graph-based representation is presented in chapter 8, and
an algorithm to exploit this representation for the data association problem is presented
in chapter 9.

The manuscript ends with a discussion that draws some perspectives for further researches
towards the achievement of a robust and versatile geometric environment modeling system.
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Part I

The problems of environment
modeling

Our approach to build a 3D geometric environment model stems on the use of SLAM,
because this allows to explicitly deal with the various sensors noise

To be able to construct environment models, a robot must be endowed with the capacity
to sense the environment, detect relevant features, track and match them, and estimate their
positions. The feature detection is performed by a signal processing algorithm, and usually
yield a feature description composed of two parts: metric information and a signal descriptor.
The metric information is used by the estimation process to update the model. A critical
part of that process is to match current observations with past observations.

In the context of an outdoor robot, possibly operating in cooperation with other robots,
environment modeling raises two main challenges:

• The robot travels long distances: as a consequence the robot will collect a lot of infor-
mation, that need to be managed in a way that the algorithms remains efficient.

• The built model must explicit the environment geometry: this is the sole intrinsic envi-
ronment characteristics that can be fused among robots equipped with various kind of
sensors, or with an existing environment map.

This part is an analysis of the various essential functions required to build a geometric
environment model. Chapter 1 summarizes the SLAM problem and the main solutions of the
literature, and introduces the multi-map approach that we are relying on. Chapter 2 recalls
some basics of environment perception, and chapter 3 introduces the matching problem and
its various instances.

11



Chapter 1

Simultaneous Localisation and
Mapping

This chapter starts with a synthetic overview of the SLAM problem and the various solutions
that have been proposed in the literature, insisting naturally on the nature of the resulting
geometric environment models. It then briefly describes the development of a multi-robot
multi-map SLAM approach to which we have contributed with a post-doctoral student from
the lab, and that we have been exploiting to evaluate our landmarks detection, tracking
and matching algorithms. The chapter ends with an overview of the organisation of our
environment modeling approach within a multi-map SLAM context.

1.1 A short introduction to the SLAM problem

The SLAM problem has now been widely studied. A historical presentation of the main
contributions can be found in [Dissanayake et al., 2001], and a recent synthesis of the state
of the art is given in the two papers [Durrant-Whyte and Bailey, 2006] and [Bailey and
Durrant-Whyte, 2006].

The principle of the incremental landmark-based solutions is presented figure 1.1. Such
solutions encompasses the following four steps:

• Landmark detection. This consists in detecting in the perceived data elements of the
environment that are salient, and whose position relatively to the current robot posi-
tion can be estimated. This process naturally depends on the kind of the considered
environment, on the sensor(s) used, and on the definition of the landmarks. It is a
perception process.

• Estimation of relative measures. This consists in two distinct processes:

– Estimation of the landmarks position with respect to the current robot pose: this
is the observation process.

– Estimation of the relative robot motions between two consecutive landmark obser-
vations. This estimation is the prediction process.

12



1.1. A short introduction to the SLAM problem

A DCB

Figure 1.1: The four main steps of the SLAM process illustrated for a robot evolving in a plane:
detection, prediction, matching, estimation. In (A), landmarks present in the environment
are detected and located relatively to the robot position with given errors. In (B), the robot
moves, and a measure of its displacement is provided by any other mean – also with a given
error. Landmarks are perceived again and matched with the previously detected landmarks
in (C), and finally (D) illustrates the outcome of the estimation process: both the robot and
landmarks positions are known with a better precision in the global frame. This process
is iteratively repeated as the robot moves and gathers information on the landmarks of the
environment.

• Data association. Landmarks can help to refine the robot position estimates only if they
can be observed from different positions. For that purpose, it is necessary to associate
the landmarks perceived form different positions.

• Estimation. Estimation is the heart of any SLAM process: it consists in fusing the
various relative measures to produce an estimate of the robot and landmarks positions
in a global common frame.

Stochastic approaches to this problem estimate an a posteriori distribution on the the
landmarks and robot positions from all the acquired data. This distribution can be
written as:

p(Xr(k), {Xf (k)}|z,u) (1.1)

where Xr(k) is the current robot pose (at time k) and {Xf (k)} is the set of landmarks
poses, conditioned on all the relative landmark observations z and the relative motion
estimates u.

Besides these four processes, a SLAM solution must also deal with the following two issues:

• Loop closing. When the robot only discovers new landmarks (as when moving along a
straight line for instance), the precision of the estimate of its position decreases. But
when it navigates in a previously visited zone, the precision of its position estimate can
be improved by re-perceiving previously mapped landmarks, which also improves the
precision of all the mapped landmarks (figure 1.2). It is with such events, nick-named
loop-closings, that makes SLAM approaches so relevant.

Handling properly a loop-closure requires that the robot is able to associate the current
landmark observations with previously mapped landmarks. This is a data association

13



Chapter 1. Simultaneous Localisation and Mapping

Figure 1.2: Errors on the landmark positions before a loop-closure (left) and after (right).
Note the reduction of the ellipsoids whose volume represent the trace of the associated co-
variance matrices associated to the landmark positions – landmarks are here points detected
and localized by stereovision (figure excerpt from [Lemaire et al., 2007]).

process, that can be very difficult if the precision on the current robot pose estimate is
too low to allow the association on the sole basis of the landmarks pose estimates, or
if the current viewpoint is very different from the one under which the landmarks have
first been detected.

• Map management. Maintaining a single map of all the perceived landmarks yields an
algorithmic complexity problem, and can hinder the overall consistency of the system
– particularly for the EKF based SLAM approaches, whose consistency can not be
guaranteed because of the various non-linearities present in the observation and predic-
tion equations. Both problems can be resolved by a proper way of managing the map:
various solutions have been proposed in the literature for this purpose.

So every SLAM process requires the implementation of the four steps mentioned above,
plus a proper way to manage the landmark map and the loop closure events. The following
sections summarizes the main contributions of the literature to achieve these steps.

1.1.1 Defining a landmark

The definition of the landmark to use is naturally essential. A minimum definition is that
a landmark is defined by its geometric position, and must exhibit characteristics that allow
its extraction from the perceived data. Data association can then be made on the sole basis
of the estimation of its geometric position, which can only be achieved if the motion and
landmark positions estimates are very precise. “2D segments” landmarks extracted from a
horizontal laser scanner in the early ages of SLAM are of this kind [Wijk and Christensen,
2000,Thrun et al., 2000,Dissanayake et al., 2001].

Such a geometric description is required by the estimation processes, but can be enriched
by information that ease the data association process. A classic example is the use of visual

14



1.1. A short introduction to the SLAM problem

descriptors, such as the one associated to interest points (i.e. Harris points [Harris and
Stephens, 1988a] or SIFT [Lowe, 2004]). Such descriptors allow to solve the data association
problem without strongly relying on the current estimates of the geometric positions of the
landmarks.

In 3D SLAM applications, most of the considered landmarks are points. A few recent
contributions have focused on the use of higher level geometric primitives (segments detected
in the images [Eade and Drummond, 2006, Smith et al., 2006, Lemaire and Lacroix, 2007a],
or planar areas [Silveira et al., 2007]). We are convinced that this is the direction to take,
because it can be the basis of the definition of a geometric environment model that exhibits
more structure than point-based approaches.

1.1.2 Relative measures estimation

Relative estimation of the landmark positions. This measure is defined by the land-
mark detection process. Let’s simply mention here that these observations can be complete
(all the parameters that define the landmark position are observed), or partial, as in the case
of bearing-only SLAM.

Relative estimation of the robot motions. Various means can be employed for this
purpose, provided they are independent from the ones that provides the landmarks positions.
One can use odometers for ground rovers, a dynamic model of the robot that predicts motions
as a function of the control input, or simply an hypothesis on the robot behavior – such as a
constant speed model for instance.

For both landmarks and robot motions measures, a key point is to have good error models:
an optimistic error model rapidly leads to inconsistent estimates, while a pessimistic one yields
estimates with a poor precision.

1.1.3 Data association

Data association consists in establishing correspondences between landmarks detected from
two different positions. We distinguish two cases:

• Between two consecutive positions k and k + 1, data association comes to a tracking
process.

• Between arbitrarily distant viewpoints, data association comes to a matching process.

What actually distinguishes these two cases is the difference between the viewpoints:

• In the tracking case, data association is eased by the fact that the predicted position
of the landmark in the data acquired at k + 1 is precisely estimated: the robot motion
being small, the associated error is also small. Furthermore, tracking a landmark does
not necessarily requires a detection step at time k + 1: landmarks detected at time k
can be directly associated to the data of time k + 1 (see e.g. the famous KLT tracker
– [Shi and Tomasi, 1994a]).

• In the matching case, the error on the robot position estimate can be large, and the
comparison between the predicted and observed positions of the landmarks can be of
no help to associate them.
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Chapter 1. Simultaneous Localisation and Mapping

Generally speaking, whatever the landmark is, the tracking case is well solved, whereas
the matching case raises difficult issues, as the difference of viewpoints can yield very dif-
ferent “appearances” of the landmarks. Even if some sound statistical approaches rely on
the predicted and estimation positions to match landmarks [Neira and Tardos, 2001], we are
convinced that approaches that match landmark independently from their position estimates
are more robust. Interest points matching algorithms such as the one we present in chapter
4 fall in this category of solutions.

1.1.4 Estimation and stochastic maps management

Various estimation formalisms

Most of the contribution on SLAM deal with the estimation framework. In particular, stochas-
tic approaches are well adapted [Thrun, 2002]. Among those, the use of Kalman filter is
historically quite popular: it is proved that a Kalman filter is a solution to SLAM in the lin-
ear case [Dissanayake et al., 2001]. Besides non-linearities, one of the main drawback of this
approach is that the algorithm complexity is quadratic with respect to the number of land-
marks: various contributions deal with this issue – see e.g. [Guivant and Nebot, 2001,Knight
et al., 2001].

The information filter, a dual version of the Kalman filter, enables the elimination of the
less significant correlations, and hence lead to linear complexity approaches [Thrun et al.,
2004]. The FastSLAM approach [Montemerlo et al., 2003] introduces the use of particle
filters for SLAM. Other estimation approaches have been proposed, mainly to cope with
the fact the the involved errors are not necessarily Gaussians (for instance, set-membership
approaches [Kieffer et al., 2000]). Other authors tackle the problem as a global minimization
problem – the first contribution is [Lu and Milios, 1997], and these approaches have recently
gained a lot of interest: in particular, they can handle the non-linearities. GraphSLAM
has been introduced in [Thrun and Montemerlo, 2005, Folkesson and Christensen, 2004],
which relies on the use of sparse constraint graphs, where the nodes are landmarks and the
different positions of the robot. Similarly, in [Olson et al., 2007], a method using incremental
optimization of the graph has been proposed.

Map management

A proper management of the landmark map can limit the algorithmic complexity, but also
inconsistencies (figure 1.3). In the standard approach, a single global reference frame is used:
in this frame the robot pose and the landmark estimates can have arbitrary large errors,
which are likely to produce large linearisation errors. The main idea of other map structures
is to adopt a representation where these errors can be bounded.

At the opposite of the monolithic global map approach, the relative map representation
has been proposed in [Newman, 1999]. Rather than estimating the global transformation
of a landmark, relative transformations between neighbour landmarks are estimated. This
raises the problems of choosing which relative transformations to put in the map, a problem
of consistency for loops of landmarks, and also the problem of retrieving the global coordi-
nates. These issues are addressed in [Newman, 1999] with the development of the Geometric
Projection Filter (GPF).

In between the absolute map and the relative maps algorithms, there is the family of local
maps, or sub-maps algorithms [Estrada et al., 2005]. The local maps are maintained using a
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1.1. A short introduction to the SLAM problem

Figure 1.3: Various landmark maps structures (the arrows represent the position information
that is memorized). From left to right: “classic” single global map approach, sub-0map
approach, and relative maps approach.

simple estimation technique, for instance a Kalman filter. The local maps are controlled so
as to maintain:

• a bounded map update processing time: when the number of landmarks is too high, a
new sub-map is created,

• a bounded robot estimate error: when the uncertainty on the robot pose is too large,
or when the robot has moved for a given amount of distance, a new sub-map is also
created.

The case of partial observations

In the first classic SLAM approaches, the sensors used and landmark chosen allow a full
observability of the landmark position parameters: each newly detected landmark is simply
added to the landmark map.

But in the case of partial observability, a process of landmark initialization is required.
A pioneer solution to this problem in the case of (monocular) vision-based SLAM has been
proposed in [Davison, 2003], where the initially unobservable point landmark depth is rep-
resented by a uniform distribution in a given range by a set of particles. As the landmark
is tracked in successive frames, this distribution is updated, and once it can be modelled by
a Gaussian distribution, the landmark is added to the map. Various improvements to this
approach have been proposed [Lemaire et al., 2007,Sola et al., 2005], until in 2006 where an
undelayed initialisation process has been proposed in [Montiel et al., 2006], which is now the
“gold standard” in EKF-based vision SLAM.

1.1.5 Loop closures

Even with matching algorithms that are independent of the landmarks pose estimates, de-
tecting a loop closure remains challenging.

Efforts have been invested in the development of approaches that rapidly indicate if the
current position corresponds to a previously visited area, mainly exploiting image indexing
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Chapter 1. Simultaneous Localisation and Mapping

techniques [Cummins and Newman, 2008,Angeli et al., 2008] – these approaches being natu-
rally well suited to panoramic images. In landmark based SLAM, by providing a qualitative
estimate of the robot current position, these approaches can focus the search for matches
with landmarks in the vicinity of this position, or can allow to retrieve the image stored in a
database that is the closest to the current one, on which a landmark matching algorithm can
be run [Lemaire and Lacroix, 2007b].

As we mentioned in the introduction of the manuscript, these approaches are sensor-
centric, and can therefore not be used in a heterogeneous multi-robot context, nor be gener-
alized to establish data associations with an a priori existing environment model.

1.2 Multi-maps and multi-robots

We mentioned that a limitation of the EKF-based SLAM approach is that it does not scale to
large maps. Furthermore, while it is possible to have two robots in the same filter, this would
mean that the mapping is centralized, which require that all robots are constantly communi-
cating. For obvious reasons, this is not practical, the mapping need to be decentralized.

A solution to this problem is to use different maps for each robot, and to use small maps
for each robot. We summarize in this section work made in collaboration with Teresa Vidal
during her post-doctoral stay in the laboratory. The approach focuses on making possible
for multiple robots to construct locally independent maps, and to connect them at a higher
level, to create a global map and to improve the localization of the robots. But the actual
communication problem remains to be solved, especially the aspect of synchronization of the
global level, as well as ensuring the consistency and avoiding the duplication of information.

1.2.1 Multi-maps

In [Estrada et al., 2005], Estrada proposes a hierarchical approach, with two levels: at the
low level the robot uses locally independent maps, that are connected together at the higher
global level in a graph of maps.

In the graph of maps, each node corresponds to one map, each map is connected to other
maps by an edge that contains a transformation between the two connected maps. This
connection between maps is defined when a new map is started: the transformation between
the two maps is equal to the position of the robot in the previous map. When there is a cycle
in the graph of maps (a loop closure), the transformations between the maps of that cycle
can be optimized.

Each of the local maps is constructed independently, when a map is started, the robot
position in that map is set to 0, with a null covariance, and the features are reinitialized with
new observations, then the robot moves and the map is updated, until a new map is started.
See algorithm 1.

The multimap approach has been extended to multiple robots in [Vidal-Calleja et al.,
2009]: the idea is that each robot constructs its own local map, and only the global level is
shared, which allows to connect two maps coming from two different robots, improving the
localization of both robots.
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1.2. Multi-maps and multi-robots

Algorithm 1 Multimap algorithm

1. Initialize a new map Mi , the robot is initialized in (0, 0, 0) with a null covariance,
initialize the features

2. The robot move and update the map

3. When the map is too large, or when the robot local uncertainty is too important, a
new map Mi+1 is started, and the graph is updated with a link between the previous
mapMi and the new mapMi+1, the transformation is the position of the robot in the
previous map Mi.

1.2.2 Multi-robots events

In the case of a single robot [Estrada et al., 2005], a loop can only be closed between two
maps when the robot moves to a previously visited location. In a multiple robots system,
various events generate loop closures [Vidal-Calleja et al., 2009]:

A

B

Figure 1.4: Multi-robot, multi-maps. The event A is triggered by a rendez-vous between the
robots, while in event B, the helicopter detect an area mapped by the ground robot.

1. map-matching : this event happen when a robot comes to a location that has already
been mapped by any of the other robots

2. rendez-vous: this event happen when a robot detect another robot, the relative trans-
formation between the two robots can be observed directly using a camera, for instance
if each robot is tagged with a recognizable pattern, alternatively a match between what
both robots are observing can be used
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Chapter 1. Simultaneous Localisation and Mapping

3. GPS fix : this event happen when a robot receives a GPS signal that locates it in the
geo-referenced frame. Provided other GPS fixes occurred before, this event define a
loop in the graph of maps.

All of those events trigger a link between maps at the global level.

1.2.3 Simulation results

We show here the effects of multiple loop closures between three robots. Two ground robots
r1 and r2 move along circles in different locations on the environment. They never meet,
and their maps never overlap. The third robot r3 is an aerial robot that moves in a circular
trajectory which extends from the area covered by r1 to the one covered by r2.

The three robots start at a well known location, then at 240 s, r1 and r3 have a rendez-
vous, later at 610 s and 700 s the robot r3 detects a loop closure with two maps of r2 (the
first part of the video shows a run of this experiment). The uncertainties are expressed in the
wrf so that the effects of the loop closure can be seen. The consistency plots for a single run
are shown in Figure 1.5. The final map is shown in Figure 1.5(d).

1.3 Our approach to construct maps

In this thesis, high level geometric landmarks are mapped according to an EKF-based mul-
timap approach, to be able to deal with large maps or multi-robot systems. The process
of constructing the environment is divided in four functional blocks: localization (or motion
estimation), mapping (SLAM), multimap management, map structuring.

Localization The localization process have access to the different incremental sensors:
odometry, inertial, visual odometry [Lacroix et al., 1999]. These provide an estimation of
the current movement of the robot, that is used for the prediction of the SLAM process (local
level maps: the local position estimates are not integrated with the information coming from
the multimap manager to get the global position of the robot).

Another input of the localization process is GPS data: such information is given to the
map manager to optimise the position of the local maps.

SLAM The SLAM process is used to construct the local map of the environment, and to
refine the local position of the robot. It takes as inputs the motions estimates of the robot,
and detects and track landmarks – as presented in part II. At the end of the estimation, the
condition to terminate the current map and create a new map are checked.

Once a local map is terminated, it is transmitted to the map structuring block.

Map manager The role of the multimap manager is limited to keeping track of the position
of previous map, to optimize the graph of maps when there is a loop-closure event (GPS or
feature match) and to give absolute position of the robot and geometric objects.

Map structuring: “SPAF” This process creates and updates the geometric model, ac-
cording to the framework detailed in part III. As an input, it gets a terminated local landmark
map, and transforms it into a local graph of features1. This graph structure is exploited to

1“SPAF” stands for “spatial features”
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(a) Robot paths and Global level

0 200 400 600 800
−2

−1

0

1

2

E
rr

or
 x

(m
)

Position Errors Robot
1

0 200 400 600 800
−2

−1

0

1

2

E
rr

or
 y

(m
)

0 200 400 600 800
−2

−1

0

1

2

Time (s)

E
rr

or
 z

(m
)

0 200 400 600 800
−4

−2

0

2

4

Position Errors Robot
2

0 200 400 600 800
−4

−2

0

2

4

0 200 400 600 800
−4

−2

0

2

4

Time (s)

0 200 400 600 800
−4

−2

0

2

4

Position Errors Robot
3

0 200 400 600 800
−4

−2

0

2

4

0 200 400 600 800
−4

−2

0

2

4

Time (s)

(b) Position Errors r1, r2 and r3

0 200 400 600 800

−0.1

−0.05

0

0.05

0.1

E
rr

or
 y

aw
(r

ad
)

Orientation Errors Robot
1

0 200 400 600 800

−0.1

−0.05

0

0.05

0.1

Time (s)

0 200 400 600 800

−0.1

−0.05

0

0.05

0.1

Time (s)

E
rr

or
 r

ol
l(r

ad
)

0 200 400 600 800

−0.1

−0.05

0

0.05

0.1

Orientation Errors Robot
2

0 200 400 600 800

−0.1

−0.05

0

0.05

0.1

0 200 400 600 800

−0.1

−0.05

0

0.05

0.1

Time (s)

0 200 400 600 800

−0.1

−0.05

0

0.05

0.1

Orientation Errors Robot
3

0 200 400 600 800

−0.1

−0.05

0

0.05

0.1

0 200 400 600 800

−0.1

−0.05

0

0.05

0.1

Time (s)

(c) Orientation Errors r1, r2 and r3 (d) The resulting map

Figure 1.5: Simulation results for the 3 robots exploration; one aerial and two ground robots.
In a) the odometry is shown in green, real and estimated trajectories are shown in red and
blue respectively. 3σ ellipsoids are plotted on the basis of each lrf. b) shows the global
position errors for each robot and their global 3σ uncertainty bounds. c) shows the global
orientation errors for each robot and their global 3σ uncertainty bounds (the jump on the
yaw curve around t = 450 is due to a switch from −π to π).

match local maps to establish loop closures.
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Figure 1.6: The four main processes involved in our approach to environment modeling
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Chapter 2

Detection

When a robot needs to interact with its surrounding environment, before creating a model, it
firsts need to be able to extract information from this environment, information that comes
from exteroceptive sensors.

In this chapter we will show the sensors (section 2.1) that can be used to perceive the
environment, what kind of information to extract (section 2.2), and a few basis of how to
extract it (section 2.3 and section 2.4).

2.1 Sensors

A robot can use two types of sensors, active sensor (2.1.1) which detect the radiation emitted
or reflected by an artificial source, while the passive sensor (2.1.2) are detecting radiation
emitted by a natural source [Everett, 1995].

2.1.1 Active sensors

An active sensor works by emitting a radiation (light, electric wave...), the measurement of
the delay between its emission and its detection gives the distance between the sensor and
the object, this type of sensor is capable of measuring the distance between the robot and
objects, they are often refered as range sensors.

Sonar A Sonar (SOund Navigation And Ranging, figure 2.1(a)) uses acoustic waves. It is
mostly use underwater, but it can also be used in the air (bats use acoustic waves to sense
their environment).

Radar A Radar (RAdio Detection And Ranging, figure 2.1(b)) emits electromagnetic waves.
The quality of the results is highly dependent on the reflection of materials, for instance,

metallic surface have a good reflectance for a radar, while rock have very low reflectance
making it more difficult to be detected. But this can be used to get information about the
material, for instance, vegetation is transparent to radar waves, so a robot could have better
detection of real obstacles.

Lidar A Lidar (LIght Detection And Ranging) is a sensor that measures the properties of
the reflection of scattered light (usually a pulsating laser) on objects.
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Chapter 2. Detection

Figure 2.1: On the left, a cheap sonar, on the right the Cemagreph’s K2Pi Radar

(a) Sick (2D) (b) Velodyne (3D) (c) 3DLS-K (d) Swissranger

Figure 2.2: Example of Lidar systems

On a 2D Lidar, there is a single laser rotating in a plane, and acquiring data at a high
frequencies. Some 3D Lidar are based on a 2D Lidar, either by using two of them, in a 360◦

rotation (figure 2.2(c)), or by rotating a single one. An other type of 3D Lidar relies on a
rotation of multiple lasers pointing in different direction (figure 2.2(b)). The last type of 3D
Lidar is the Swiss ranger camera (figure 2.2(d), [AG, ]), infrared light is pulsed on the scene,
and an infrared camera is used to detect the return of the light, this sensor works mostly on
the short range.

Lidar, based on a laser, usually have a better angular accuracy than Radar and are able
to give more accurate data. But they also have a shorter range.

The main advantage of active sensor is that they are reasonably easy to use, since they
give directly range information, they also have very good accuracy, while the price range from
a few Euros (for a sonar) to several thousands Euro (for a 3D Lidar like the Velodyne).

Active sensors have a rather limited range, while biggest radar can have a range of a
hundred kilometres, embedded radar (such as IMPALA, [Cemagref et al., ]) have a range
of 150 meters, Lidars tend to have a range between 50 and 120 meters (for the Velodyne,
figure 2.2(b), [Velodyne, ]).

They are also subject to interferences, when multiple robots are located in the same area,
or by a malicious agent that scrambles the signals. For military applications, another issue
with active sensors is that the signals emitted by those sensors can be detected by the enemy,
which would give away the position of the robot.
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2.1. Sensors

2.1.2 Camera

For environment modelling, the most useful passive sensor is the camera. There are different
type of cameras, the two common models are perspective camera (figure 2.3(a)) and omnidi-
rectional camera, which are either made by a few perspective cameras arranged on a circle,
or by a single camera with a mirror in front of it (figure 2.3(b)).

(a) Perspective Camera

(b) Catadrioptic Camera

Figure 2.3: Different types of camera and what the image they acquire for the same scene.

This section only covers some basic element of camera models, the reader interested for
more information would be advised to read [Hartley and Zisserman, 2000] for a more complete
description of the perspective camera model as well as stereovision.

Perspective camera In a real system, camera are built using a multiple lenses system,
which is modelled with a single lens, situated at the optical center (O) of the camera. The
axis of the lens is called optical axis. The image is projected on a plane perpendicular to that
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axis and called image plane (at distance −f from the O), F is called the focal point of the
lens.

(a) With a focus lens (b) Projection

Figure 2.4: Model of a perspective camera

Perspective cameras are often modeled using the pinhole model, where the lens is replaced
by a very small hole, and real world points are projected on the camera using lines (the blue
line on figure 2.4 ) that pass through the optical center.

The following equation gives the projection from a 3D points (X,Y, Z) on the image plane:

 x
y
1

 =

 f 0 0
0 f 0
0 0 1

 ·
 X
Y
Z

 (2.1)

u− u0 = ures · x (2.2)
v − v0 = vres · y (2.3)

(x, y) are the physical coordinate of the projection of the point on the sensor, (u0, v0) is
the projection of the optical center on the resulting image, and (u, v) is the coordinate of the
pixel in the image that correspond to the projection of the point(X,Y, Z). ures and vres are
the horizontal and vertical resolution of the sensor. A calibration process [Bouguet, ] allow
to compute αu = f · ures and αv = f · vres.

This model ignores the distortion that appears when using lenses. With r = ||(x, y)||, the
following equations are used to model the distortion:[

x′

y′

]
= (1 +

∑
n>0

dn · rn) ·
[
x
y

]
(2.4)

Omnivision Omnidirectional camera offer the advantage of capturing information from all
directions, as can be seen on figure 2.3(b). The model of omnidirectional camera can be found
in [Geyer and Daniilidis, 1999] and [Barreto and Araujo., 2001].

Stereovision A monovision camera, with a single frame, does not allow to recover depth
information. To recover depth information, it is necessary to have at least two shots from
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2.2. Extracting information

two different positions, either by taking new shots when the robots move, or by having two
cameras on the robots, with a known transformation between them.

Figure 2.5: Epipolar geometry of a stereovision bench

Then a correlation algorithm [Dhond and Aggarwal, 1989] is used to match the pixels of
the two images, and using the disparity d, the distance between the pixel in the two images.
the geometry of the system and camera model (figure 2.5), it is possible to recover the depth,
and the coordinates of the 3D point in the world [Hartley and Zisserman, 2000], using the
following equations:

Z = α/d (2.5)
X = Z · (u− u0)/αu (2.6)
Y = Z · (v − v0)/αv (2.7)

Where α, u0, v0, αu = f · ures and αv = f · vres are estimated using a calibration process,
for instance using the Calibration toolbox of mathlab [Bouguet, ]. α is called the baseline
and correspond to the distance between the two cameras, (u0, v0) are the coordinates of the
optical center in the image and ures and vres are the resolutions in pixel per meter of the
sensor.

2.2 Extracting information

Using the sensors presented in the previous section, the robot is capable of sensing the envi-
ronment, this section focuses on what kind of information to extract from the data, and on
giving basic rudiments of signal processing.

2.2.1 What information to extract ?

Since the different models of the environment store different information, they also need to
extract different type of information.

Landmark Sea charts, used by sailors to localize their boat, highlight the most remarkable
elements (lighthouse, mountain, rock...) of the environment, and then a sailor can use a
compass to trace the direction between the landmark and the boat. The characteristic for a
good landmark for a sea chart is to be seen from a long distance and to have a unique shape
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to be easily recognized and detected in the environment. A group of shapes (for instance,
three rocks) is also a good landmark.

Good landmarks for localizing a robot would share similar characteristics, as they would
need to be salient, easily detectable, measurable and matchable. For instance, a good land-
mark in a signal, can be associated to a local extrema of the signal.

A landmark contains two parts, geometric information and optionally appearance infor-
mation. The minimum geometric information is the position in the world, but it can also
contain information such as the size or the direction. The existence of appearance information
is depending on the type of sensor, for a camera it can be the texture, for instance.

Occupancy grids As mentioned in section 2, another type of environment model relies
on the use of occupancy grid, either for obstacle detection or for observability. Such grids
are either in 2D or 3D, the main idea is to associate to each cell of the grid a probability of
obstacle.

Several techniques exist to construct such a grid, but generally it is done by checking if
there is a measurement of an object in a cell. For instance, the output of a laser is a set of
distances between the sensor and an obstacle, by projecting each distance on the grid, it is
possible to know the cell that contains the obstacle, and then to raise the probability of an
obstacle in the cell.

A 2D grid [Moravec and Elfes, 1985] is made of a single horizontal layer of cells, which
means that 2D grids suffer from the lack of vertical information, and therefore, they are more
suitable for an indoor environment, where the ground is flat, and the robot will stay on the
same plane. But they can be extended to outdoor if each cell of the grid also record the height
of the ground in the cell, such grids are often referred as “Digital Terrain map” (DTM). They
are very efficient in an outdoor environment to give a model of the ground, but they are not
very efficient to when there is a vertical wall or when the robot goes under a bridge or indoor,
in a multiple floor building, unless a multiple height grid is used.

A 3D occupancy grid [Moravec, 1996] is made of several layers, which allows to store
volume information. But, the memory footprint of such a grid increases drastically compared
to 2D grids, while most of the grid would be free.

The size of the cells give the precision of the grid. A too fined grain map will give accurate
information, but will require more memory, more computational time for the update and for
the use.

2.3 Rudiments of signal processing

In the previous section 2.2, we have shown what kind of information we need to extract from
the data. This section will focus on the basic tools that are used to extract information from
data to be able to use it in the environment model.

This section is a quick overview of signal processing, a reader interested in more details
about signal processing would be advised to read [Moon and Stirling, 2000] for a deeper
presentation of signal processing algorithms.
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2.3. Rudiments of signal processing

2.3.1 Signal

A signal is a time-varying or space-varying measurable quantity. In the real-world, that
quantity is often a piecewise continuous function, we will note f(t) a 1D continuous signal
and f(x, y) a 2D continuous signal. Discrete signals are noted D(n) and D(u, v).

Discretisation While a natural signal is usually a continuous function, sensors do mea-
surement by sampling, either of time, or of space. The interval between two measurement t1
and t2 used for the sampling is called sampling interval, and noted ε = t2 − t1.

We define the sampling function s(t) as follow:

n ∈ Z,∀t ∈ [n · ε, (n+ 1) · ε, sε(t) = n] (2.8)

Figure 2.6: Discretisation of the signal, the green curve is the continuous signal f(t) the green
area show the standard deviation of the signal, the blue curve show the discretised signal, the
blue area show the standard deviation of the error for the measurement, while the red one
shows the observation of the signal with the measurement noise.

The discretised signal, and the continuous signal are linked by the following equations
(Figure 2.6):

n ∈ Z, D(n) =

n+1∫
t=n

f( tε)dt (2.9)

(u, v) ∈ Z2, D(u, v) =

u+1∫
x=u

v+1∫
y=v

f(xε ,
y
ε )dydx (2.10)

Theorem 1 (Nyquist–Shannon) If a function x(t) contains no frequencies higher than B
hertz, it is completely determined by giving its ordinates at a series of points spaced 1/(2B)
seconds apart.
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The theorem 1 of Nyquist-Shannon [Shannon, 1949] indicates the condition for a discetised
signal to fully represent a continuous signal, provided that an infinite number of sampling are
made and that signal is band-limited (all the coefficient of its Fourier decomposition are null
above a finite frequency). While the theorem is expressed in 1D, it can easily be extended to
multiple dimensions.

If those conditions are respected, it is possible to recover the original signal with the
following formula:

f(t) =
∞∑

n=−∞
D(n) · sinc( t− n · ε

ε
) (2.11)

f(x, y) =
∞∑

v=−∞

( ∞∑
u=−∞

D(u, v) · sinc(x− u · ε
ε

)

)
· sinc(y − v · ε

ε
) (2.12)

With sinc(x) = sin(π·x)
π·x .

Aliasing When the Nyquist-Shannon condition is not fulfilled, i.e. when the resolution of
the sampling of the signal is too small compared to the frequency of the signal, the sampling
of the signal creates unwanted artefacts, called aliasing.

Aliasing occurs when the sampling rate is too large compared to the frequency of the data,
then the same measures can correspond to two different signals (see figure 2.7). A classical
example of the aliasing problem occurred when displaying a line on a computer screen.

Figure 2.7: Same measures, different signals. The left graph show the measurement point,
while the blue and green curve are two possible sinusoidal signals for that measurement.

In image processing, aliasing shows itself as a Moiré pattern, which is especially visible
when downsampling a small repetitive pattern, such as a grid (Figure 2.8).

Aliasing raises problems in the processing of the signal: there is no good method to remove
aliasing after the sampling and it is necessary to avoid aliasing before sampling the data. For
instance, on a camera an optical anti-aliasing filter can be used in front of the sensor, this
filter will work by reducing the frequency before the camera sensor.

Modeling of signal noise
fo(t) = f(t) + w(t) (2.13)

Where w(t) is a white Gaussian noise, uncorrelated to data, of standard deviation σ.

Discretisation error Since the signal is detected by a sensor as a discretised signal, it
means that the value measured correspond to multiple instants, or to an infinite number of
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2.3. Rudiments of signal processing

Figure 2.8: The Moiré effect, on left unscaled circles, on center a reduction by three and on
right a reduction by four

real-world points for an image. This means that when an element of the dataset is selected
as a landmark, there is an uncertainty on the point of the real world that really corresponds
to that landmark.

Figure 2.9: The red line shows the pixel of size s, while the blue line show the localisation
error e of a point located at distance d and projected on the pixel with a camera of focal f .

For instance, in the case of stereovision, the Jacobian of the function that computes the
coordinates of a 3D points (Equations (2.5) to (2.7)) from signal information is given by:

J =

 − α
d·αu

α·(u−u0)
d2·αu

− α
d·αv

α·(v−v0)
d2·αv
− α
d2

 (2.14)

Considering that the error around u and v is given by σu = σv = 0.5px, half the size of a
pixel. Then, the error of the 3D point is given by:

E = J ·

 σu
σv

σd = 2 · σu

 · J t (2.15)

2.3.2 Cross-correlation

The cross correlation is a measurement of the similarity of two signals, for two continuous
signals, it is defined by:

(f ? g)(t) =
∫ ∞
−∞

f∗(τ) · g(τ + t)dτ (2.16)

31



Chapter 2. Detection

Where f∗ is the conjugate of the function f . For two discrete signals, this equation
becomes:

(D1 ? D2)(t) =
∞∑

τ=−∞
D∗1(τ) ·D2(τ + t) (2.17)

But the absolute values of the signal can change when the condition of the data acquisition
change, for instance, the values of the pixels of an image are very dependent to change of
lightning and the time taken to acquire the data, hence the idea to subtract the mean and
normalize by the standard deviation, giving the Zero mean Normalised Cross Correlation
(ZNCC, also known, in statistics, as the sample Pearson correlation coefficient):

ZNCC =
1
n

n∑
t=0

(D1(t)−D1) · (D2(t)−D2)
σD1 · σD2

(2.18)

Where D1 and D2 are the means of D1 and D2, and σD1 and σD2 are the standard
deviations. The ZNCC score is equal to 1 when the two signals D1 and D2 are equal, it is
equal to −1 when the D2 = −D1, a score of 0 means the two signals are uncorrelated.

2.3.3 Derivation

In the section 2.2.1, we mention that a good landmark would be located on an extrema of the
signal, which a good landmark is located when the derivative get null, for a 1D signal this
gives:

∂f

∂t
(t) = lim

h→0

f(t+ h)− f(t− h)
2 · h

= 0 (2.19)

In the strict mathematical sense, a derivative can not be defined for a discrete signal D(n),
but assuming it corresponds to a continuous signal, it is possible to have an approximation
of the derivative of the signal, with the following formula:

D′(n) =
D(n+ 1)−D(n− 1)

2
' ∂f

∂t
(sε(t)) (2.20)

This is easily extended to 2D signal, a maximum of the signal is found when both deriva-
tives on x and y are null:

∂f

∂x
(x, y) =

∂f

∂y
(x, y) = 0 (2.21)

D′(u, v) =
D(u+ 1)−D(u− 1)

2
' ∂f

∂x
(sε(x), sε(y)) (2.22)

D′(u, v) =
D(v + 1)−D(v − 1)

2
' ∂f

∂y
(sε(x), sε(y)) (2.23)

But due to the discretisation, it is unlikely that the condition D′(n) = 0 is ever found,
and it is much simpler to check D(n − 1) < D(n) < D(n + 1). But computing derivatives
allows to find a maximum on that derivative, which is very interesting, since a maximum of
the derivative correspond to an edge in the signal.
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2.3. Rudiments of signal processing

2.3.4 Histograms

An histogram H is a piecewise constant function, which means it exists a sequence a(v), such
as:

∀v ∈ N∀x ∈ [a(v); a(v + 1)[, H(x) = H(a(v)) (2.24)

For a robotic signal, the sequence a(v) is usually finite, and v 6 n, and unless the infor-
mation is limited (for instance the pixel value of an image), often a(n+ 1) =∞.

A signal is an injective function, for each instant t there is a definite value of f(t) or D(t),
but it is usually not bijective, each value of the signal can be reached at different instant t1,
t2... An histogram of the signal is a count of how many times the signal have a given value.
In case of a discrete signal, it is defined by:

H(a(v)) =
∑
t

(votev(D(t))) (2.25)

votev is a voting function that defines how much the value D(t) contribute to the bin v,
the most basic voting function would simply count the number of time D(t) is contains in the
interval [a(v), a(v + 1)[ of the bin v:

votev(x) =
{

1, x ∈ [a(v), a(v + 1)[
0, x /∈ [a(v), a(v + 1)[

(2.26)

But a more sophisticated procedure can be used to spread the votes in the neighbourhood
of the value to take into account that the value can be noisy:

votev(x) =


1
2 , x ∈ [a(v), a(v + 1)[
1
4 , x ∈ [a(v − 1), a(v)[ or x ∈ [a(v + 1), a(v + 2)[
0, x /∈ [v − 1; v + 1]

(2.27)

The voting function of an histogram can be a continuous, for instance, if the value is
associated to a density of probability px(t). In that case, the voting function is the integral:

votev(x) =
∫ a(v+1)

a(v)

px(t)dt (2.28)

To make an histogram of a continuous signal, the first step is to discretised it. And an
histogram can also be considered as a signal, so all that apply to signal (like correlation) also
work for histograms.

2.3.5 Indexing of histograms

Histograms are widely used to index data, either indexing and retrieval of images [Stricker
and Swain, 1994], or as a descriptor of interest points [Lowe, 1999]. This raises the need for
fast and efficient methods to compare two histograms:

• euclidean distance: √∑
v

(H1(v)−H2(v))2 (2.29)
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• histogram intersection [Swain and Ballard, 1991]:∑
v
min(H1(v), H2(v))

min(|H1|, |H2|
(2.30)

Where |H1| and |H2| are the number of samples used to create H1 and H2.

But if the number of samples can be different, or the data is to noisy, the use of a cross-
correlation gives better results for comparing histograms. For an histogram H(v), to compute
fast comparison, the zero mean normalized histogram can be used:

H ′(v) =
H(v)−H

σD1

(2.31)

Where H is the mean of the histogram and σD1 the standard deviation.
Then the comparison between two histograms H1 and H2 is equal to the sum of the

product of values:
n∑
v=0

H1(v) ·H2(v) (2.32)

While computing this distance between two histograms is a very fast operation, the com-
putational cost increase drastically when we want to retrieve an histogram in a database. To
reduce the cost, [Beis and Lowe, 1997] proposes to use a kd-tree, a binary tree, where each
node is a point of dimension k, then each subnode is a subdivision of the remaining points
using the median of the i th coordinate. A search is performed in that tree by defining in
which leaf the histogram belongs, then the histogram is compared to the other histogram in
that branch.

2.4 Rudiments of image processing

This section introduces some of the basics tool that are specific to image processing, [Gonzalez
and Woods, 2002] contains more specific details and algorithms on image processing. Most
of those tools rely on the use of a convolution kernel.

2.4.1 Convolution kernel

A convolution is an integral that blends a function g towards an other function f , it is defined
as:

(f ⊗ g)(t) =
∫ ∞
−∞

f(τ) · g(t− τ)dτ (2.33)

For a 2D discrete signal this translates to:

(D1 ⊗D2)(u, v) =
∞∑

µ=−∞

∞∑
ν=−∞

D1(µ, ν) ·D2(u− µ, v − ν) (2.34)

Usually, for an image, the convolution is done between the image I and a kernel K of
finite width wK and finite height hK , which leads to the following formula:
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2.4. Rudiments of image processing

(K ⊗ I)(u, v) =
wK/2∑

µ=−wK/2

hK/2∑
ν=−hK/2

K(µ, ν) · I(u− µ, v − ν) (2.35)

An example of a convolution kernel, to blur an image (low pass filter):

K =
1
16
·

 1 2 1
2 4 2
1 2 1

 (2.36)

2.4.2 Gradient

As mentioned in section 2.3.3, a maximum of the derivative indicates an edge in the signal, for
an image it is therefore interesting to compute the gradient, and then to look for maximum
of gradient to find edges in an image.

Sobel The Sobel filter [Sobel and Feldman, 1968] is very useful in image processing to
compute an approximate of the derivative for an image. It is defined by the two following
convolution kernels:

Ku =

 1 0 −1
2 0 −2
1 0 −1

 Kv =

 1 2 1
0 0 0
−1 −2 −1

 (2.37)

Gu = Ku ⊗ I Gv = Kv ⊗ I (2.38)

Gu gives the derivative on the image on the horizontal direction, and Gv on the vertical
direction. The magnitude of the gradient G(I) and the angle Θ(I) are then computed by the
following formula:

G(I) =
√

(G2
u +G2

v) Θ(I) = arctan(GvGu ) (2.39)

Canny In [Canny, 1986], Canny introduce an edge detector based on a maximum of gradi-
ent. Using Θ(I), the direction of the gradient is approximated, then the pixel is considered
to be on an edge if it is a maximum in that direction and :

1. if Θ(I)(u, v) = 0◦, G(I)(u, v) > G(I)(u, v + 1) and G(I)(u, v) > G(I)(u, v − 1)

2. if Θ(I)(u, v) = 45◦, G(I)(u, v) > G(I)(u+ 1, v − 1) and G(I)(u, v) > G(I)(u− 1, v + 1)

3. if Θ(I)(u, v) = 90◦, G(I)(u, v) > G(I)(u+ 1, v) and G(I)(u, v) > G(I)(u− 1, v)

4. if Θ(I)(u, v) = 135◦, G(I)(u, v) > G(I)(u+ 1, v+ 1) and G(I)(u, v) > G(I)(u− 1, v− 1)

The resulting image of maximum of gradients is usually binarised with a threshold T to
select only strong edges and to further reduce the noise.

Result of canny without threshold are shown on figure 2.10(e), and with a threshold set
to G(I)(u, v) > 100 on figure 2.10(f).
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(a) Original (b) Gu (c) Gv

(d) G (e) Canny with T = 0 (f) Canny with T = 100

Figure 2.10: Examples of the effect of a Sobel filter (sobel filters results are inverted for the
purpose of printing) and Canny filter

2.4.3 Hough transform

The Hough method was introduced in [Hough, 1962], it allows to map an observation space,
to a parameter space using a voting procedure, it was first applied to detecting segment in
images in [Duda and Hart, 1972], while in [Ballard, 1981] the method was extended to the
detection of any kind of shape in an image.

The main idea is to have the pixels of the image to vote for the parameter of the shape that
we want to detect, for instance, the best parametrization for a line in 2D is (ρ, θ) ∈ R+×[0, 2π[,
where θ is the angle of the direction of the line, and ρ is the distance to the origin. The main
advantage of this parametrization over v = u · a+ b is that there is no singularity on vertical
lines. With (ρ, θ), the line equation is given by:

ρ = u · cos(θ) + v · sin(θ) (2.40)

Since that there are only two parameters, and an inifinite numbers of line passing through
a pixel (u, v), each maximum of gradient in the image votes in the parametric space according
to the following sinusoidal:

ρu,v(θ) = u · cos(θ) + v · sin(θ) (2.41)

When two sinusoidal ρu,v and ρu′,v′ intersects, that means that the pixel (u, v) and (u′, v′)
are on the same segment.
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2.4.4 Pyramid

A pyramid is a multi-scale representation of an image, it contains the same image at different
scale. [Adelson et al., 1984] contains an overview of the different method to construct a
pyramid: in the gaussian pyramid, the level G0 contains the original image, and to constuct
level Gk+1 from level Gk a low-pass filter (for instance (2.36)) is applied on Gk and then the
result is resized:

Gk+1 = REDUCE(K ⊗Gk) (2.42)

And the laplacian pyramid is constructed from computing a difference of the gaussian
between two consecutive levels, the bottom level Ln is equal to the bottom level Gn of the
gaussian pyramid, then the level Lk is equal to the difference between Gk and a scaled version
of Gk+1:

Lk = Gk − EXPAND(Gk+1) (2.43)
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Chapter 3

Data association

Once objects are detected in the environment, it is necesserary to track them between frames,
and to match what the robot is currently detecting with the models it has in memory.

When constructing a model of the environment, a false positive during the data association
process can have devastating effects on the resulting model. Imagine a robot on a circular
trajectory, and that two opposite points of that circle are matched and considered identical,
instead of a circle the trajectory become two circles. But at the same time, if the matching
algorithm is too selective, the number of good matches become too law, which hinders their
exploitation.

In other words, the main challenge of data association is the balance between detecting
the greatest number of correct matches while avoiding false positive.

The data association process can use signal information (like the pixels surrounding an
interest point) and geometric information (position and size of objects), in the first section
of this chapter, we list the tools and information available to compute a match (section 3.1),
then we explain the problem of the loop closure (section 3.2) and we finish by giving some of
the solution of a special case of data association: tracking (section 3.3).

3.1 Features matching

As mentioned in section 2.2.1, a landmark contains two parts, geometric information and sig-
nal information. Using the signal information and a correlation measure (section 2.3.2), it is
possible to match the landmark with part of the signal that is currently observed. First, fea-
tures are extracted from the current data set, and then each features is compared individually
to the features in the database.

Since comparing all the descriptors with the content of the database can be a very slow
process when the database grows, in the case of vision, when the signal descriptor used is
an image patch (a small image around an interest point), it is possible to use a kd-tree as
proposed in [Lepetit and Fua, 2006], to reduce the number of descriptor comparisons.

But individual matches isn’t sufficient, since data is usually very repeatitive, especially in
human made environment. There is a need to do a global match, and to define constraints
on the relative position of the matches, the literature contains several method to solve that
problem:

• The RANSAC [Fischler and Bolles, 1981] algorithm is a statistic method that uses a
voting procedure to define a transformation between features in the observation set
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and the ones in the database. In a first step, the algorithms select a random number
of features in the observation set, and using the individual matches, it computes a
transformation, then the algorithm counts the number of matches that validate that
transformation. This process is repeated multiple times, the final set of matches is
determined by the transformation with the most votes.

• The model of the sensor can be used to set constraints on the position of the features
in the signal, for instance, the epipolar geometry of a stereovision bench ( [Hartley and
Zisserman, 2000] and figure 2.5).

• Another possibility is to use the geometric constraint during the matching, in [Jung
and Lacroix, 2001] Jung introduces the idea of a seed-and-growth algorithm, a graph of
neighboring features is generated, then an initial hypothesis is found by comparing one
observed feature with the features in the database, then the algorithm walks into the
graph to find other matches, a more detailed version of that algorithm can be found in
section 4.3 for matching points in the image plane, while a version extend to the 3D has
been used for facets matching in section 5.2.1.

3.2 Loop closure

The loop closure is a specific problem of the SLAM context, it is the process of recognizing
that the current location of the robot has already being mapped. In other words, it is an
algorithm that detects that two parts of the map are the same in the real world. This is a
complex problem, and different types of algorithms have been created to solve that problem,
either by comparing two data sets, or projecting a model on a data set, or by comparing data
to the content of the map and lastly by map-to-map matching.

3.2.1 Data-to-data

The first possibility to detect a loop closure is two compare the current output of the sensors,
with the output at a previous location. For instance, the robots store the images of past
locations, the images are indexed in a database, using interest points [Mikolajczyk and Schmid,
2001], a possible speed up can be done using image histograms like in [Gonzalez-Barbosa and
Lacroix, 2002] and then to use an interest point matching algorithm such as presented in the
chapter 4. This kind of loop closure detection is improved by the use of panoramic images,
since the robot will be able to recognize a location independently of its orientation. The main
issue with that solution is the need to store a large amount of data.

To reduce the amount of data used for the image-to-image matching, it is possible to
use a dictionnary of features. In [Cummins and Newman, 2008], [Cummins and Newman,
2009], Cummins uses a fixed dictionnary of SIFT points [Lowe, 2004], for each image, a set
of SIFT points is extracted in the image and compared to the dictionnary, this allows to
associate each image with a probability that the image contains a given word. To reduce
false positives, in [Cummins and Newman, 2008], statistics on whether words are often seen
together in the image are computed, this is usefull in case of a repeating pattern, for instance
on a brick wall, the same pattern is repeated multiple times, and looking at two pictures of
different brick wall would lead to a false match. But in [Cummins and Newman, 2008], the
dictionnary needs to be learned offline, and [Angeli et al., 2008] extended the idea with the
use of a dictionnary learned inline, they also use epipolar geometry to discard false matches.
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(a) Fabmap (b) Projection of a model

Figure 3.1: The two images of figure 3.1(a) are excerpts from [Cummins and Newman, 2008]
and show a loop closure with scene changes, while figure 3.1(b) are excerpts from [Nuske
et al., 2009] and show the projection of a model, green lines, on an image.

3.2.2 Model-to-data

It is also possible to match a model on the data, like in [Nuske et al., 2009], using approximate
knowledge of the position of the robot, a wireframe model of the environment is projected on
the image plane, then with a nearest-edge search [Deriche and Faugeras, 1990] the parameters
of the segment are estimated, which gives a match between the wireframe model and the
image.

3.2.3 Map-to-map

Almost all SLAM process will use gating to check that an observation is compatible with a
model. Usually, the gating is done using the Mahalanobis distance, which allows to measure
the similarity between two data sets, given the xo = (xo0, ...x

o
n) an observation of covariance

xCovo and xf = (xf0 , ...x
f
n) the feature of the model of covariance xCovf , the Mahalanobis

distance is:
DM =

√
(xo − xf )T · (xCovf + xCovo)−1 · (xo − xf ) (3.1)

While it is possible to use the gating of individual features to compute matches, using the
individual compatibility neirghest neighbor algorithm, which simply match features that are
the most compatible. But this doesn’t guarantee that two matching are jointly compatible,
this is the problem addressed in [Neira and Tardos, 2001] with joint compatibility maps,
with the idea to make an initial individual match, then to complete that match with other
matches that are also jointly compatible, if it has been established that H = (Ei, Fj)... is
a set of matches that are compatible among themselves then a new match (Ek, Fl) will be
added to H if and only if it is compatible with all the other matches.

In [Bailey, 2002], Bailey proposes the use of a combined constraint data association, where
all features of the map are connected in a graph, each edge contains the transformation infor-
mation between features. To close the loop, the correspondance grah is constructed, the nodes
of this graph contain all possible matches, and the edges are the compatible transformations
created using the graph of features. The set of matches is determined by the maximum clique
extracted from this graph.

3.2.4 Data-to-Map

Data-to-map is a loop closure method that uses both information coming from signal com-
parison, and from joint compatibility matching. In [Williams et al., 2008], during the map
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building a graph of which features has been observed at the same time is constructed and
signal information (such as an image patch) is recorded. Then this graph is used to validate
the output of a map-to-map algorithm, to make sure the geometric features do indeed match
the signal data.

3.3 Tracking

When a good estimate of the position of the feature is available, a tracking method is an
efficient way to compute data association, since it allows to avoid the detection step. One
drawback of tracking is the danger of having the feature position drift in the data, but for
some type of features (such as segments), tracking is the only way to collect data frame after
frame.

The goal of the tracker is to find the displacement δ(u, t, τ) between the previous position
up of the the feature and the real position u of the feature in the signal (see figure 3.2), such
as:

D(u, t+ τ) = D(u+ δ(u, t, τ), t) (3.2)

The offset δ(u, t, τ) is computed using an optimisation process, initialised using the pre-
diction of the position of the feature.

Figure 3.2: Tracking of signal, on the left the pattern representing the signal, on the right the
signal at the current instant, the red offset will have to be corrected by the tracking process

Offset approximation In [Shi and Tomasi, 1994b], it is suggested that the displacement
for an image can be approximated by an affine motion field, such as:

δ(u, v) = D ·
[
u
v

]
+ d (3.3)

Where: D =
[
duu duv
dvu dvv

]
and d =

[
du
dv

]
(3.4)

Where D is the deformation matrix, and d is equal to the translation of the feature window’s
center. d is also the value of interest in a feature tracking process. This is an approximation
that works if there are very small changes between the current image and the original template,
this is why the descriptor of the feature is updated at every frame, but this can cause a feature
drift.
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Another approximation of the offset using an homography H:

δ(u, v) =

[
δu
δc
δv
δc

]
(3.5)

Where:

 δu
δv
δc

 = s ·H ·

 u
v
1

 and s ·H =

 h1,1 h1,2 h1,3

h2,1 h2,2 h2,3

h3,1 h3,2 h3,3

 (3.6)

The rank of homography matrix H is equal to 8, which means H is known up to a scale
coefficient s (often defined such as (s ·H)(3, 3) = 1.0). The interest of using an homography
is that the window corresponding to a plan, can be transformed by an homography between
two different view points.

Image alignement The goal of image alignment is to find the parameters of the function
δ(x, t, τ), assuming the current image is I, and the template of the feature is T , the image
alignment process will need to minimize the following function:

∑
x

[I(W (x))− T (x)]2 (3.7)

Where: W (x) = x + δ(x, t, τ) (3.8)

The KLT tracker featured in [Shi and Tomasi, 1994b] presents a method in the case
of the affine motion field (equation 3.3), [Baker and Matthews, 2004] contains an overview
of all the methods to compute the minimization of equation 3.7, among them, the two most
intersting algorithms in the case of the homography approximation are “Inverse Compositional
Estimation” (ICE, [Baker and Matthews, 2001]) and “Efficient Second-order Minimisation”
(ESM, [Malis, 2004] ).
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Part II

Landmarks models

Landmarks models play naturally a critical role in the definition of a SLAM solution: a
good landmark must be salient in the data, it should be easily detected, tracked and matched
from different points of view. And all these processes must allow the estimate of relative
positions estimation, with an associated error model.

Any solution to the image feature matching problem calls for three steps [Brown, 1992]:
definition of the feature space, definition of a similarity measure over the feature space, and
match search strategy. The definition of the features to match is of course essential, as it
conditions the whole process. Features can be directly the image signal, or edges, contours,
lines, regions detected on the image, up to higher level semantic information. The literature
contains many contributions on matching methods based on local gray values similarity scores
[Shi and Tomasi, 1994b,Zabih and Woodfill, 1994,Martin and Crowley, 1995]. But in order to
generate reliable matches, these approaches require to focus the match search (e.g. assuming
the transformation between the two images is close to identity or known, so that the epipolar
constraint can be applied). To establish matches when several unknown changes occur in the
image, one must consider features that are as much invariant as possible with respect to any
image transformation.

In this part, we present three different landmark models, and the associated algorithms
to detect, track and match them in images. Chapter 4 deals with the detection and matching
of points. In chapter 5, points are extended to small planar facets, and chapter 6 presents
the extraction and tracking of segments.
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Chapter 4

Interest points

Point features, often denoted as “interest points”, are salient in images, have good invariant
properties, and can be extracted with a small computational cost. A comparison of various
interest points detectors is presented in [Schmid et al., 1998] and [Mikolajczyk and Schmid,
2004]: it introduces a modified version of the Harris detector [Harris and Stephens, 1988b]
which uses Gaussian functions to compute the two-dimensional image derivatives, and that
gives a better repeatability under rotation and scale changes (the repeatability being defined
as the percentage of repeated interest points between two images).

4.1 Interest point detection

In this section we present some of the most classical algorithms used for point extraction,
along with a point similarity measure as well as a descriptor ( [Mikolajczyk and Schmid,
2005]). The point similarity is used to compute a quick comparison between points, while the
descriptor is used in the confirmation step of the matching algorithm. If the comparison of
descriptor is cheap to compute, it can be used as a point similarity measure.

4.1.1 Harris points

To locate points in the image where the signal changes bi-directionally, the Harris corner
detector computes the local moment matrix M of two normal gradients of intensity for each
pixel x = (u, v) in the image [Harris and Stephens, 1988b]:

M(x, σ̃) = G(x, σ̃)⊗
(

Iu(x)2 Iu(x)Iv(x)
Iu(x)Iv(x) Iv(x)2

)
(4.1)

where G(., σ̃) is the Gaussian kernel of standard deviation σ̃, and Iu(.) and Iv(.) are the
first order derivatives of the intensity respectively in the u and v directions. The eigenvalues
(λ1, λ2) of M(x, σ̃) are the principal curvatures of the auto-correlation function: the pixels
for which they are locally maximum are declared as interest points. It has been shown
in [Schmid et al., 1998] that interest points are more stable when the derivatives are computed
by convolving the image with Gaussian derivatives (see section 2.4.1):

Iu(x, σ) = Gu(x, σ)⊗ I(x)

Iv(x, σ) = Gv(x, σ)⊗ I(x)
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4.1. Interest point detection

whereGu(., σ), Gv(., σ) are the first order derivatives of the Gaussian kernel of standard de-
viation σ along the u and v directions. The auto-correlation matrix is then denotedM(x, σ, σ̃).
Note that to maintain the derivatives stable with respect to the image scale change s, the
Gaussian functions can be normalised with respect to s – the auto-correlation matrix is then
M(x, σ, σ̃, s) [Dufournaud et al., 2004].

Point similarity. If the geometric transformation T between two images I and I ′ is strictly
equal to a scale change s and rotation change θ, the following equality is satisfied for two
matching points (x,x′) in the images:(

Iu(x, σ, θ)
Iv(x, σ, θ)

)
= R(θ)

(
Iu(x, σ)
Iv(x, σ)

)
=
(
I ′u′(x′, sσ)
I ′v′(x′, sσ)

)
where R(θ) is the rotation and Iu(x, σ, θ) and Iv(x, σ, θ) are the steered Gaussian deriva-

tives of the image in the direction θ [Freeman and Adelson, 1991]. As a consequence, we can
write:

R(θ)M(x, σ, σ̃)R(θ)T = M(x′, σ, σ̃, s)

Since

M(x, σ, σ̃) = U

(
λ1 0
0 λ2

)
UT

and

M(x′, σ, σ̃, s) = U ′
(
λ′1 0
0 λ′2

)
U ′T

where the columns of U and U ′ are the eigenvectors. The principal curvatures of the two
matched points are therefore equal: λ1 = λ′1 and λ2 = λ′2.

For two matching points in two images of real 3D scenes, this equality is of course not
strictly verified, because of signal noise, and especially because the true transformation of the
image is seldom strictly equal to a rotation and scale change. We define the point similarity
Sp between two interest points on the basis of their eigenvalues and their intensity:

SP (x,x′) =
Sp1(x,x′) + Sp2(x,x′) + SpI(x,x′)

3
where

Sp1(x,x′) =
min(λ1, λ

′
1)

max(λ1, λ′1)
, Sp2(x,x′) =

min(λ2, λ
′
2)

max(λ2, λ′2)
, and SpI(x,x′) =

min(I(x), I ′(x′))
max(I(x), I ′(x′))

The maximum similarity is 1.0. Statistics show that the evolution of Sp1 and Sp2 for
matched points is almost not affected by rotation and scale changes, and is always larger
than 0.8 (figure 4.1).

As shown on figure 4.1(b), the repeatability steeply decreases with significant scale changes:
in such cases, a scale adaptive version of the Harris detector is required to allow point match-
ing [Dufournaud et al., 2004]. When no information on scale change is available, matching
features becomes quite time consuming, scale being an additional dimension to search through.
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Figure 4.1: Evolution of the mean and standard deviation of repeated points similarity with
known rotation (4.1(a)) and scale changes (4.1(b)). On the right curve, the solid lines repre-
sent the evolution of the similarity when the scale of the detector is set to 1: the similarity
decreases when the scale change between the images increases. The dashed lines show the
values of the similarity when the scale of the detector is set to 1.5: the similarity is then closer
to one when the actual scale change between the images is of the same order.

Descriptor The descriptor used for Harris point is a window of the image I centred around
the interest point. To compare the descriptor of two interest point p1 and p2, a zero-mean
normalised correlation score (ZNCC) is used (as shown in section 2.3.2).

ZNCC(p1, p2) =
1

card(W )

∑
u,v∈W

(Ip1(u, v)− µIp1 ) · (Ip2(u, v)− µIp2 )
σIp1 · σIp2

(4.2)

Where Ip1 and Ip2 is the luminance around p1 and p2, µIp1 and µIp1 are the mean of
the pixels of the image patch, and σIp1 and σIp2 are the standard deviation of the pixels,
card(W ) is the number of pixels of the window W .

If ZNCC(p1, p2) = 1.0, then the two image patches are identical. The ZNCC score also
has the interesting property of decreasing quickly when the data set are slightly different. It
is also invariant to affine change in illumination.

4.1.2 Scale-invariant point

Scale-space theory A solution to the problem of the scale selection is to apply the scale-
space theory ( [Witkin, 1983] or [Lindeberg, 1991]), a framework that represents the different
scales of a signal as a function of a parameter t, called scale parameter. An overview of the
scale-space theory applied to computer vision can be found in [Lindeberg, 2009]: a pyramid is
computed from an image, where each level of the pyramid corresponds to a different scale of the
image (Section 2.4.4). But Lindeberg has shown in [Lindeberg, 1994] that the Gaussian kernel
and its derivatives are the only possible smoothing kernels for a scale space representation.

In the case of interest point detection, the idea is to select all pixels that are a maximum
or a minimum of a function F , across the pyramid, the scale that maximises the function is
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4.2. Tracking interest points

called characteristic scale. A pixel (x, y) at scale t is selected as an interest point if the pixel
fulfils the following conditions:

∀i, j ∈ −1, 0, 12, F (x+ i, y + j, t− 1) < F (x, y, t) (4.3)
F (x+ i, y + j, t+ 1) < F (x, y, t) (4.4)

∀i, j ∈ {−1, 1}2, F (x+ i, y + j, t) < F (x, y, t) (4.5)

In [Lindeberg, 1998], Lindeberg has shown that a good function for interest point detection
is the scale normalised Laplacian of Gaussian: σ2∇2G.

An extension of the Harris detector to the scale-space theory has been proposed in [Miko-
lajczyk and Schmid, 2002].

SIFT David Lowe introduces ( [Lowe, 1999], [Lowe, 2004]) a scale-invariant detector, where
the scale normalised Laplacian is approximated by the difference of Gaussian:

D(x, y, σ) = L(x, y, kσ̇)− L(x, y, σ) (4.6)

In [Lowe, 1999], a method to quickly compute the difference of Gaussian is explained.
In [Lowe, 2004], Lowe mentioned that images usually contains a large number of maximum
and minimum of the difference of Gaussian, but that a careful selection of the scale-space
frequencies allows to select the most stable ones, then followed by a check on the eigenvalues
of the Hessian matrix.

Lowe also proposes a descriptor, in a first step the orientation of the interest point is
computed, then the window around the point is divided in four zones, in each pixel of each
zone, the gradient is computed at the characteristic scale and then projected on eight orien-
tations, this makes four histograms. This descriptor is invariant to illumination change, to
scale change and to orientation change.

SURF In [Bay et al., 2008] Bay introduces another type of scale invariant interest point
detector, it exploits an approximation of the Hessian matrix [Lindeberg, 1998], using integral
images. An interest point is selected when it maximises the determinant of the Hessian matrix
in the scale space:

H(x, σ) =
[
Lxx(x, σ) Lxy(x, σ)
Lxy(x, σ) Lyy(x, σ)

]
(4.7)

Like for the SIFT descriptor, the orientation of the interest point is computed, then the
response to a Haar wavelet decomposition is computed.

SIFT and SURF descriptors can be used as point similarity for the matching algorithm.
Figure 4.2 show the result of extractions for Harris, Sift and Surf.

4.2 Tracking interest points

When a good estimation of the position of interest point between two images is known, for
instance for two consecutive images in a video flow, it is possible to focus the data association
problem as presented in section 3.3.

Between two images I1 and I2, assuming T1→2 is the transformation between the two
images, the most simple way to track interest point between I1 and I2 is to extract the
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(a) Harris points

(b) Sift points

(c) Surf points

Figure 4.2: Extraction of interest point at different distance.

interest points IP1 = {x1} and IP2 = {x2} in each image, and then using the transformation
T1→2, for each interest point of x1 ∈ IP1, the list of track candidate in IP2 can be computed,
by selecting the points around T1→2(x1). The descriptors can then be used to select the
tracked point.

Other techniques do not require to compute an interest point detection of I2, and instead
compute a deformation of the local image between the interest point detected in I1 and their
prediction in I2 using T1→2, either using an affine deformation model [Shi and Tomasi, 1994b]
or an homographic deformation model [Malis, 2004] and [Baker and Matthews, 2001].

4.3 Matching interest points

To match interest points, a cross-correlation measure of the signal can be used [Lhuillier and
Quan, 2003], but this requires a precise knowledge of the search area. To cope with this, local
grey value invariants can be used, as in [Schmid and Mohr, 1997]. The approach we propose
here imposes a combination of geometric and signal similarity constraints, thus being more
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4.3. Matching interest points

robust than approaches solely based on point signal characteristics (a simpler version of this
algorithm has been presented in [Jung and Lacroix, 2001]). It relies on interest point group
matching: an interest point group is a small set of neighbouring interest points, that represents
a small region of the image. With groups composed of a small number of interest points, the
corresponding region is small enough to ensure that a simple rotation θ approximates fairly
well the actual region transformation between the images – the translation being ignored
here. The estimate of this rotation is essential in the algorithm, as a group match hypothesis
(i.e. a small set of point matches) is assessed on both the signal similarity between interest
points and the point matches compliance with the rotation. The matching procedure is a
seed-and-grow algorithm initiated by a reliable group match (see Algorithm 2).

Algorithm 2 Overview of the interest point matching algorithm
Given two images I and I ′:

1. Extract the interest points {x} and {x′} in both images

2. In both images, establish the groups of extracted points. This defines two sets of groups
G = {G} and G′ = {G′}, and the neighbourhood relations establish a graph between
the detected points – this procedure is depicted in section 4.3.1.

3. While G 6= ∅:

(a) Establish an initial group match M(Gi,G′j), which defines a rotation θi,j , and
remove Gi from G – this procedure is depicted in section 4.3.2.

(b) Recursive propagation: starting from the neighbors of Gi, explore the neighboring
points to find group matches compliant with θi,j . Remove the new matched groups
from G, and iterate until no matches compliant with θi,j can be found – this
procedure is depicted in section 4.3.3.

4. Check the validity of the propagated group matches

4.3.1 Grouping process

The sets of interest points {x}, {x′} detected respectively in the two images I, I ′ are structured
in local groups, formed by a pivot point g0 and its n closest neighbors {g1, . . . ,gn} (figure 4.3).
To ensure that the image region covered by the points of a group is small enough, n is rather
small (e.g. we use n = 5). The groups are generated by studying the neighborhood of each
point following a spiral pattern: the grouping process is stopped if the spiral meets the image
border before n neighbors are found. Also, a maximum threshold on the distance between the
neighbor points and the pivot is applied, to avoid the formation of groups that cover a too
large image region (in low textured areas for instance, where there are scarce interest points).
This implies that a few points do not belong to any group: their matching is processed
individually (see section 4.3.3).

After the grouping process, we end up with two group sets G = {G1, . . . ,GN} and G′ =
{G′1, . . . ,G′M}, Gi denoting the local group generated with the point xi as a pivot:
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Chapter 4. Interest points

Figure 4.3: Illustration of the point grouping procedure, with n = 2 for readability purposes.
Groups have not been generated around points a and b as they are too close to the image
border, and neither around d as no neighbor is close enough. Three groups have been gener-
ated, with points c, e and f as a pivot. b→ e means “b is a neighbor of e”, which defines a
graph relation between the points.

Gi = {g0,g1, . . . ,gn}, g0 = xi

The neighbors {g1, . . . ,gn} are ordered by their distance to the pivot:

‖ v1 ‖< · · · <‖ vn ‖

where the vectors vi are defined as vi = gi − g0 and ‖ . ‖ is the norm operator. For each
neighbor of the group, we also compute its angle, defined as:

θgp = tan−1

(
vp · v
vp · u

)
where u and v are the image axes.

4.3.2 Group matching

The procedure to establish a group match is essential in our approach: in particular, a wrong
initial group match would cause the algorithm to fail. The procedure consists in three steps
depicted in the next paragraphs:

1. Given a group Gi in I with g0 as a pivot, all the groups G′j in I ′ whose pivot g′0 is
similar to g0 are candidate group matches.

2. For each candidate group match G′j , determine all the group match hypotheses H(Gi,G′j)
on the basis of the possible individual neighbor matches, and select the best one
H∗(Gi,G′j).

3. Select the best group match among all the H∗(Gi,G′j), and apply a validation criteria.
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Point similarity. Two points x,x′ are defined as similar if their similarity measure is above
a threshold TSp :

SP (x,x′) > TSP

This test is used to asses the similarity of points in steps 1 and 2 of the group matching
procedure.

Building group match hypotheses. Given two groups (Gi,G′j) whose pivots have passed
the point similarity test, one must evaluate all the possible associated group match hypotheses,
i.e. the various combinations of matches between the neighbor points of the groups. A group
match hypothesis H(Gi,G′j) is defined as:

• a rotation θ

• a set M(Gi,G′j) of interest point matches which respect the rotation θ and whose simi-
larity score is above the threshold TSP :

M(Gi,G′j) = {(gp,g′q) ∈ Gi × G′j | SP (gp,g′q) > TSP and |θgp − θg′q | < Tθ} ∪ {(g0,g′0)}

• a group hypothesis similarity score SG, defined as the sum of the similarity of the
corresponding matched interest points:

SG(H(Gi,G′j)) =
∑

(gp,g′q)∈M(Gi,G′j)

SP (gp,g′q)

The best group match hypothesis among all the ones that can be defined on the basis
of two candidate groups (Gi,G′j) is determined according to Algorithm 3: this provides the
best group match hypothesis H∗, if it exists, between Gi and G′j . Note in this procedure the
introduction of a threshold ∆SG in the comparison of hypotheses, to ensure that the best
hypotheses has a much better score than the second best: this is useful to avoid wrong group
matches for images with repetitive patterns, in which many points are similar.

Selection of the best group match hypothesis. Now that we have determined the best
group match hypothesis H∗ for each candidate group match G′j for the group Gi, one must
determine the one that actually corresponds to a true group match. This is simply done by
comparing their similarity SG, applying the same threshold ∆SG as above to make sure the
best match is not ambiguous.

Finally, the validity of the found group match is confirmed by comparing the descriptors of
the pivots of (g0,g′0), when the orientation of the point isn’t associated to the descriptor (like
the image patch of 4.1.1), then the knowledge of the rotation θ defined by the group match
hypothesis can be used to compute a more accurate score. For instance, for the descriptor
used for Harris points, θ is used to compute a rotation of the image patch.
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Algorithm 3 Determination of the best match hypothesis for two groups
• Init: S∗G = 0

• For p = 1 to |Gi|, For q = 1 to |G′j |:

• if SP (gp,g′q) > TSP then create and evaluate a group match hypothesis Hp,q(Gi,G′j):

– Set M(Gi,G′j) = {(g0,g′0), (gp,g′q)}. This defines the rotation θ for this hypothesis:
θ = θgp − θg′q

– complete M(Gi,G′j) with the other points in Gi that are similar to points in G′j ,
such that:

∀s > p and t > q, SP (gs,g′t) < TSP and |θ − (θgs − θg′t)| < Tθ

Note here that the fact that the neighbours are ordered by their distance to the
pivot reduces the search for additional point matches – see figure 4.4.

– Evaluate the hypothesis Hp,q(Gi,G′j):
if SG(Hp,q(Gi,G′j)) > S∗G + ∆SG , then H∗ = Hp,q(Gi,G′j) and S∗G = SG(H∗).

g0

g1

g5

g4

g3

g2

g’0

g’5

g’4

g’3

g’2

g’1

H4,3

v’5

v5
v4

v3

v2

v1
v’4

v’3v’2

v’1

Figure 4.4: Completion of a group match hypothesis. Given the hypothesis H4,3 defined by
the point matches (g0,g′0) and (g4,g′3), the best potential match for g5 is determined by
evaluating geometric and point similarity constraints. The indexes of the neighbors being
ordered according to their distance to the pivot, only the matches (g5,g′4), and (g5,g′5) are
evaluated – on this example, (g5,g′5) is the sole valid match.

4.3.3 Finding further matches

Propagation process. Once a reliable group match hypothesis is established, a propaga-
tion process searches for new matches. The principle of the propagation is to exploit the graph
defined by the grouping process and the estimated rotation associated to the current hypoth-
esis: additional point matches consistent with the current rotation estimate are searched in
the neighbourhood of the current group match. This process is depicted in Algorithm 4 .
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Algorithm 4 Propagation process
Given a group match (Gi,G′j) and the associated rotation θ :

• Init: set Mpropage = M(Gi,G′j) \ {(g0,g′0)}.

• While Mpropage 6= ∅:

– Select a point match (gp,g′q) ∈ Mpropage. gp and g′q are respectively the pivots of
the groups Gp and G′q.

– For s = 1 to |Gp|, For t = 1 to |G′q|:
if SP (gs,g′t) < TSP and |θ − (θgs − θg′t)| < Tθ, add (gs,g′t) to Mpropage

– Remove (gp,g′q) from Mpropage

During the propagation, the translation between matched points is computed: when the
propagation ends, this allow to focus the search for new matches, as illustrated in figure 4.5.

Figure 4.5: Illustration of the propagation process. Red crosses are interest points, yellow
lines indicate neighbourhood relations defined by the grouping process. Here, g2 and g′2 are
the pivots of the initial group hypothesis H(G2,G′2), and the corresponding list of individual
points matches is M(G2,G′2) = {(g2,g′2), (g1,g′1), (g3,g′3), (g4,g′4)}. During the propagation,
matches for points neighbouring the ones of M(G2,G′2) are evaluated – here the match (g5,g′6)
is added and the propagation stops. Thanks to the estimate of the translation between the
points matched so far, the group match hypothesis H(G7,G′8) can be evaluated, and new
matches are added for a little computational cost.
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Propagation monitoring. Repetitive patterns with a size similar to the group size can
lead to false matches, although the initial group match has passed the tests described in sec-
tion 4.3.2. The occurrence of such cases can be detected by checking whether the propagation
process succeeds or not around the first group match: if it fails, it is very likely that the initial
group match hypothesis is a wrong one, and it is then discarded (figure 4.6). Note that this
test also eliminates group matches if a group is isolated or if the overlap between the two
images I and I ′ is restricted to the size of the group: these are degenerated cases in which
the algorithm does not match the groups.

Figure 4.6: Illustration of the propagation monitoring. The top images show two group
matches independently established according to the process of section 4.3.2: the “Car 2”
group is properly matched, whereas “Car 1” has been incorrectly matched. The bottom
images show the additional matches established by the propagation process: no additional
matches have been determined around the “Car 1” group, whereas other matches around the
“car 2” have been determined: the “Car 1” group match is a false one.

Non-grouped points matching. As mentioned in section 4.3.1, some points are not as-
sociated to groups after the grouping procedure, mainly near the image borders. Once the
propagation procedure is achieved, for each non grouped point xb of I, matches are searched
among the set of points Xb in the image I ′:

Xc = {x|x ∈W (x̂′b)}

where x̂′b is the estimated position of xb in I ′ provided by the application of the transfor-

54



4.4. Results

mation defined by the mean of the rotations and translations estimated so far, and W (x̂′b) is a
search window centred on x̂′b. The points comprised in W (x̂′b) are evaluated according to the
hypothesis pruning process presented in section 4.3.2: test on the point similarity measure
SP and verification with the comparison of descriptors.

4.4 Results

The algorithm provides numerous good matches while keeping the number of outliers very
small, in different kinds of scenes and in a wide variety of conditions, tolerating noticeable
scene modifications and viewpoint changes. Figure 4.7 presents matches obtained in various
conditions, with the computational time required for the detection and matching – the pro-
cessed image size is 512 × 384, and time measures have been obtained on 3.2GHz Pentium
IV). The algorithm does not explore various scale changes: when a scale change greater than
half a unit occurs, it must be provided as a parameter to the interest point detection routine.
This is a limitation as compared to scale invariant point features, but a coarse knowledge of
the scale change is sufficient: in a SLAM context, such an estimate is readily obtained.

Maximum group size 5
Minimum group size 2

Size of correlation window for ZNCC 9× 9
Threshold TSP

on point similarity SP 0.7
Threshold on ZNCC TZNCC 0.6

Threshold ∆SG
to discriminate group hypotheses 0.1

Threshold on rotation change, Tθ 0.2rad

Table 4.1: Thresholds and parameters of the matching algorithm.

Table 4.1 lists the parameters required by the matching algorithm and their values. These
values are used for all the results presented throughout the thesis, and during our everyday
use of the algorithm: no parameter tuning is required.

The first three parameters are used during the grouping process presented section 4.3.1.
The Minimum group size is naturally set to 2, the minimum size that allows to run the group
matches determination presented section 4.3.2. The Maximum group size is a compromise: on
the one hand, the more members in a group, the more reliable are the group match hypotheses.
On the other hand, a big number of points in a group tends to violate the hypothesis that
a simple rotation approximates its transformation between the two images: empirical tests
show that a value of 5 offers a good balance. Finally, the Maximum distance between pivot
and group member threshold is set to 3

√
D, where D is the density of interest points in the

image.
The threshold TSP on the similarity measure is used to evaluate if two points match: its

value is set to 0.7, according to the variations of the point similarities presented in section 4.1.1.
The threshold TZNCC on the correlation score to confirm a point match is set to 0.6, a value
smaller than usually used for this score (e.g. in dense stereovision): this is due to the fact
that a rotation is imposed to one of the correlation window before computing the score, which
smooths the signal in the window, and also to the fact that we aim at matching points seen
from different viewpoints. Finally, the threshold on rotation change Tθ is set to 0.2rad, a
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Figure 4.7: Points matched with an increasing change in viewpoint, red crosses show the in-
terest points, and green squares indicates successful matches. There are 619 matches between
the first image, 299 and then 43.
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quite large value that is necessary to cope with the errors on the interest points detection,
that can reach at most 1.5 pixel [Schmid et al., 1998].
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Chapter 5

Facets

In this chapter, we propose a landmark model based on planar patches, called “facets” de-
tected using stereovision ( [Berger and Lacroix, 2008]). Relying on interest points, this model
contains six geometric parameters and image patch information: this description gives a bet-
ter observability of the robot position by the perception of a small number of landmarks,
as opposed to [Molton et al., 2004], in which facets are only used to ease the matching pro-
cess, and makes the matching process easier when perceiving a landmark from different view
points. Section 5.1 presents this landmark model and the corresponding detection process in
a pair of stereoscopic images. Section 5.2 describes tracking and matching algorithms.

Related work There are various contributions that represent the environment with small
planar patches. For instance, [Murray and Little, 2005a] presents a method to extract patch-
lets from stereo images in order to model the perceived surfaces, but do not register multiple
views. The main approaches that consider planar surfaces in a SLAM context are the follow-
ing:
• In [Gee et al., 2007], the authors present a monocular SLAM approach in which 3D

points are augmented with normal information. When points are found to be on the same
plane, their state vector in the EKF filter is “collapsed”, so as to reduce the computational
cost.
• In [Chekhlov et al., 2007], the authors use SLAM with point landmarks, and find the

planes among the point cloud using a RANSAC process, thus allowing to derive a map with
higher level structural information.
• [Castle et al., 2007] presents an approach that recognizes known planar objects that

have been previously modelled and stored in a data base.
• In [Silveira et al., 2007], the authors present a method to detect and track larger planar

patches in the environment using a monocular camera.
It is worth to notice that besides [Silveira et al., 2007], these contributions deal with the

problem in small confined environments.

5.1 Planar facets detection

Facets correspond to planar areas detected around interest points, by checking whether an
homography between their two stereoscopic views can be fitted or not.
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5.1. Planar facets detection

5.1.1 Facet model

A facet is a set of geometric properties that represent its position and orientation, com-
pleted by signal information. Figure 5.1 shows an example of facets extracted from a pair of
stereoscopic images.

Figure 5.1: Left image of a stereoscopic image pair, and extracted facets.

Two equivalent geometric models are defined:

• A matrix representation of the position and orientation of the facet (12 parameters: the
facet centre, plus the 3 vectors of the associated frame)

• A minimal representation (six Euler parameters)

The matrix representation is used to compute comparisons and transformations during
detection and matching, whereas the Euler angles are used for the SLAM estimation.

To simplify the matching process, facets correspond to a constant size of planar patches
in the environment (we typically use a size of 10×10 centimetres), and the associated image
patch is stored in a fixed size image (25×25 pixels in our implementation).

5.1.2 Facets extraction

Interest point detection A facet can be associated to a Harris point or to scale invariants
points – the later offer a better repeatability, at the expense of a much higher computation
time.

Homography estimation Dense pixel stereovision could be used to estimate the normal
vector of the surface corresponding to an interest point, with a least square plane fitting
algorithm applied to the neighbouring 3D points. But fast stereovision algorithms yields
noisy coordinates of the 3D points, which make the estimation of the normal very unstable.

An approach based on the homography estimation is more robust and reliable. The two
image projections I1 and I2 of a plane P corresponding to different viewpoints are linked
by a homography s · H, where H is a 3x3 matrix, and s is an unknown scale factor (often
defined such as (s ·H)(3, 3) = 1.0). So two image patches Ip1 and Ip2 extracted from I1 and I2
correspond to a planar patch in the environment if there is a matrix H that satisfies:
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Chapter 5. Facets

T (H, Ip2 ) = Ip1 (5.1)

Where T (H, I) is the image resulting from the transformation applied to the image I
using the homography H.

Alignment algorithms which compute the value of H are optimisation procedures whose
goal is to minimise:

E = T (H, Ip2 )− Ip1 − (µ(T (H, Ip2 ))− µ(Ip1 )) (5.2)

Where µ(T (H, Ip2 )) and µ(Ip1 ) are the mean of the pixels of T (H, Ip2 ) and Ip1 , which reduce
the influence of lightning change between two images.

[Baker and Matthews, 2001] provides an analysis of various alignment algorithms, and also
introduce the “Inverse Compositional Estimation” (ICE) method for homography estimation.
[Malis, 2004] introduce the “Efficient Second-order Minimisation” (ESM) used for tracking
planar areas using an homography estimation.

For small image areas, both methods are able to estimate an homography which either
precisely corresponds to the associated plane or is totally erroneous. Experimental trials
show that when an erroneous homography is estimated, the resulting normal is completely
unpredictable and not reproductible: those cases can therefore be identified by analysing
successive observations (see 5.2.3). Figure 5.2 shows some evaluations of the two algorithms
on synthetic images. It appears that ICE gives more facets but with a bigger error, while
ESM tracks less facets, but is more accurate.

Figure 5.2: Comparison of the ICE (dash lines) and ESM (solid lines) algorithms. A plane
textured with a real image is rotated in front of the camera: the plot shows the estimated
normal error (left y-axis, blue lines) and the number of detected facets (right y-axis, red line),
as a function of the plane orientation with respect to the camera. The collapse of the facet
numbers around 40◦ is due to the fact that the interest point matching algorithm can hardly
match points under large viewpoint changes.
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5.1. Planar facets detection

Normal estimation Once the homography is computed, the normal of the facet is com-
puted using the geometric parameters of the stereovision bench – e.g. by computing the
coordinates of three points of the plane using the homography.

Completing the facet orientation information The facet orientation is defined by three
vectors: it is only necessary to compute two of them, the third one being the result of their
cross product. The first vector is the normal vector, and the second vector is computed using
the image patch of the facet, so as to represent its orientation: the gradient is computed on
each pixel P of a square window W around the interest point IP , using Sobel masks. The
facet orientation is then defined as the following weighted sum:

Orientation =
∑

P∈W w(d(P, IP ) · atan2(Gy(P ), Gx(P ))∑
P∈W w(d(P, IP ))

(5.3)

Where d(P, IP ) is the distance between the pixel P and the interest point IP and w(x) is a
Gaussian weighting function.

Unfortunately, despite the decrease of sensitivity to noise and to viewpoint changes brought
by the weighted sum, the orientation is either very stable (in most cases) or very unpredictable
and not reproductible. As for the computation of homography, facets whose orientation is not
stable can be eliminated by analysing successive observations (see 5.2.3). In our convention,
this orientation is the third Euler angle of the facet (“roll”, denoted w).

The orientation is a reliable information for the basis, since the physical size (in real world
coordinates) of the image patch is constant and the perspective of the image patch of window
W is corrected using the normal.

5.1.3 Image patch

The image patch of a facet F is interpolated from the image of the camera, using the geometric
properties of the facet. Each point pt of the image patch correspond to a 3D point P ∈ F ,
this point P is then projected on a pixel pc of the camera.

Let PCamera the projection matrix of a point in the environment on the focal plane of the
camera, OF the vector from the origin of the world to the centre of the facet F , and v and
w, the orientation vectors parallel to the facet plane. Assuming the image patch pixels are
indexed from the facet centre by i and j, and given r the resolution of the image patch, the
following equation gives the value for each pixel of image patch as shown figure 5.3 :

pt(i, j) = pc(PCamera(OF + i · v · r + j · w · r)) (5.4)

By applying this interpolation to memorise the facet image patch, it is represented the
way it would have been perceived with the camera “aligned” to the facet, i.e. with the optical
axis parallel to the facet normal, and the horizontal axis aligned to the facet orientation w.
Thanks to this representation, during matching, a pixel by pixel comparison of the image
patch allows to get a similarity score between the observed image patch and the memorised
one. Note that to avoid situations of undersampling, facets which are too far from the robots
are not used so that a 10x10cm patch correspond to at least 25x25 pixels.
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Chapter 5. Facets

Figure 5.3: Interpolation of the image patch of a facet. The blue line shows an association of
an image pixel to a pixel of the memorized image patch.

5.1.4 Error model

The error model for the minimal geometric representation of a facet is composed of covariances
of its centre coordinates and of its Euler angles. The centre coordinates and the orientation
angles being computed by independent processes, the centre/orientation covariances are equal
to 0. Similarly, the facet normal estimate is provided by the homography estimate, and
its orientation by an analysis of the image patch: these parameters variances are therefore
independent. This yield a covariance matrix with the following form:

M stereo
[3×3] 0[3×3]

σ2
u σ2

u/v 0
02
[3×3] σ2

v/u σ2
v 0

0 0 σ2
w

 (5.5)

Where M stereo
[3×3] is the stereovision usual error model [Xiong and Matthies, 1997]. The

variance and covariance values for the angles are empirically set as follows: σu = σv = σw =
0.01rad and σu/v = 0.1rad.

5.2 Facets matching

5.2.1 General Algorithm

The method used for facets matching is an extension to the third dimension of an interest
point matching algorithm described in [Jung and Lacroix, 2001]: the idea is to mix signal
information with geometric relations between neighbouring facets to assess robust matches.

Let F1 and F2 two sets of facets within which we are looking for matches. The algorithm is
a hypothesise-and-test procedure: it starts by establishing a first match between a facet from
F1 and one from F2 using only signal information (figure 5.4(b)). This first match hypothesis
gives a geometric transformation T1→2(f), which is used to focus the search of additional
matches, the establishment of additional matches reinforcing the initial hypothesis.

1. Given f1 ∈ F1, let f2 ∈ F2 the facet whose image patch is the closest to the one of f1 –
in other words, the facet f ∈ F2 which maximises CompareImagePatch(f1, f) where
CompareImagePatch is an image patch comparison function (for instance the ZNCC
score)
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5.2. Facets matching

(a) Facets to match (b) Initial match hy-
pothesis

(c) Transformation (d) Propagation and
confirmation

Figure 5.4: This figure illustrates the three steps of the matching algorithm. The facets in
the circle, on the left, is the list of facets detected at given time, while the facets on the right
are the facets stored in memory.

2. This first match allows to compute the geometric transformation (figure 5.4(c)) T1→2(f)
such that:

T1→2(f1) = f2 (5.6)

3. In the last step, to confirm the match we attempt to propagate the match in the neigh-
bourghood of the facets using the geometric transformation (figure 5.4(d)): ∀f ′1 ∈ F1,
if there is f ′2 ∈ F2 which satisfies the following two conditions:

T1→2(f ′1) ≈ f ′2 (5.7)
CompareImagePatch(f ′1, f

′
2) > Timagepatch (5.8)

Then the couple (f ′1, f
′
2) is a match.

Figure 5.5 shows two examples of facet matching results.

5.2.2 Facets tracking

One of the advantages of using planar facets is the possibility to re-project them and to predict
how a camera will observe them from a different viewpoint. Especially, if the transformation
is precisely known, it is very easy to compare the observation with the image patch in memory.
This is of a limited interest for SLAM when the change of view point is not very well known
– typically when closing a loop. But between t and t + 1, the estimation of the viewpoint
change Tt→(t+1) provided by the prediction step is precise enough to predict the position and
orientation of the facets observed at time t to track them.

Let Ip(I lt+1) and Ip(Irt+1) the list of interest points detected at time t+ 1 in the left and
right images I lt+1 and Irt+1, and F(t) the set of facets detected at time t.

1. ∀f ∈ F(t), the projection P lf of f on the image I lt+1 is computed

2. Let C the list of interest points located close to the predicted position of the facet on
the image:

C = Ipl ∈ Ip(I l2), |Ip− PF | < ε (5.9)

Using the motion estimate Tt→(t+1)(base), it is possible to predict the facet parameters,
and especially to use its predicted normal to compute the image patch for each point of
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Figure 5.5: Two results of facets matching. Red “+” denote the detected facets, and green
numbered squares show the ones that have been matched.

(a) (b) (c)

Figure 5.6: This figure illustrates the tracking process, the set of facets detected at t− 1 (in
the circle) is projected on the left and right images.

C as in section 5.1.3. Let I lp(F ) ∈ C the interest point whose image patch is the closest
to the one of the facet.

3. The same method is used to find Ipr(F ) in the right image, with the added constraint
that the two interest points must satisfy the epipolar constraint

4. Using the couple (Ipl, Ipr), the parameters of the facet ftrack are computed as in sec-
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5.2. Facets matching

tion 5.1, this allow to check that ftrack = Tt→(t+1)(f)

With respect to other tracking methods (such as [Shi and Tomasi, 1994a] or [Malis, 2004]),
this approach offers the interest to get a direct control on the facets parameters, the possibility
to update their models and to filter out the ones for which an erroneous homography has been
estimated, as shown in the following sections. For 200 facets, a tracking step takes 300 ms
(including all processing: image rectification, interest point detection and facets tracking),
whereas an initial facet detection requires 500ms, and the matching without any prior motion
estimate requires a second 1.

Figure 5.7: Tracked facets in two consecutive images. The red “+” denote detected facets,
the blue points are Harris points, and green squares shows tracked facets.

5.2.3 Unreliable facets elimination

After the application of the matching or tracking algorithms, some facets remain unmatched,
or their observation is not consistent with the matched facets observation. Such facets corre-
spond either to an interest point with a too small repeatability, or to an erroneous normal or
rotation estimate (see section 5.1.2). This can be due to various causes: for instance, if the
neighbourhood of an interest point has a weak image patch, this can lead to a wrong homog-
raphy (a black point on a white wall is a strong interest point, but the resulting homography
is very likely to be erroneous).

Unmatchable, untrackable and inconsistent facets are considered to be weak facets, and
are simply discarded as illustrated in Figure 5.6(c).

1Time measured on a Intel core Duo @ 2GHz using only one thread, on 512× 392 images.
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Line Segments

Image line segments carry a lot of information on the perceived scene structure, and are basic
primitives on which several vision applications are built on (e.g. structured object recogni-
tion [David and DeMenthon, 2005], or structured scenes 3D reconstruction in geomatics or
robotics [Smith et al., 2006,Lemaire and Lacroix, 2007a]). Figure 6.1 shows, on a same image,
how extracting segments give more information about the structure of the environment than
points. Line segments have indeed numerous advantageous properties: they of course per-
fectly represent the straight lines of a scene, they can be used to estimate various geometric
transformations, and they are invariant to large viewpoint and scale changes. But this latter
property actually only holds if the line segment extraction process is itself robust and stable:
classic segment extraction processes remain fragile with respect to image noise and viewpoint
changes.

Over the last decade, achievements in the extraction and identification of stable feature
points (Harris, SIFT features...) have diminished the interest in line segments. Nevertheless,
however stable and robust are they, point primitives lack the structure expressivity of line
segments. A stable, robust and fast segment detection and tracking process is therefore
desirable, and is still the object of recent contributions [Chen and al, 2007,R. Grompone von
Gioi and Randall, 2008].

6.1 Line Segment Detection

6.1.1 Related work

There are two classical approaches to the line segment detection problem, that both rely on the
Canny filter [Canny, 1986]. The first approach consists in applying a threshold on the gradient,
grouping neighboring local maxima of the gradient into contours, and applying a split and
merge line fitting process to define the line segments [Etemadi, 1992]. The second approach
originally proposed in [Ballard, 1987] exploits a generalized Hough transform computed on
the gradient, and an edge splitting step.

Some other approaches ( [Burns et al., 1986], [Steger, 1998], [Desolneux et al., 2000],
[R. Grompone von Gioi and Randall, 2008]) relies on detecting a region, and then line segment
parameters are fit on the region.
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6.1. Line Segment Detection

Figure 6.1: Segments and points

Canny/Linking First the Canny filter (see section 2.4.2) is applied on the image, this
gives the position of the maxima in the direction of gradient in the image. Then the maxima
are linked to their neighbourgh, then the chains are splited [Etemadi, 1992] to create line
segments.

Hough The Hough method was introduced in [Hough, 1962], it allows to map an observation
space (in our case an image), to a parameter space (segments) using a voting procedure
(Section 2.4.3). The Canny filter [Canny, 1986] is used to find the maximums of gradient,
then each maximum of gradient vote for a set of segments parameters. Since this method
only allows to find the infinite line support, it is needed to apply a spliting algorithm to find
line segments in the image. One of the main advantage of the Hough transformation is that
it allows to detected any kind of shape in the image.

Many improvements to the method have been introduced over the years. For instance,
in [Ballard, 1987] the voting procedure was extend to also use the direction information. While
in [Kiryati et al., 1991], random samples of the observations are used to speed up the process,
in [Guo et al., 2008], the votes are weigthed to give more importance to pixel with a clear
boundary. In [Xu and Velastin, 1994] a Kalman filter is used to improve voting procedure
of the Hough transformation, and in [Yacoub and Jolion, 1995] a hierarchical approach has
been proposed.

Region based In [Burns et al., 1986], pixels with a similar gradient orientation are grouped,
and then line parameters are estimated from the rectangle. In [Desolneux et al., 2000], region
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hypotheses are generated, then for each region the number of pixels with aligned gradients
are counted, if there is a sufficient number the region is considered to be a segment.

Recently, Grompone in [R. Grompone von Gioi and Randall, 2008], proposed a Line
Segment Detector (LSD) built upon the work of Burns [Burns et al., 1986] and Desolneux
[Desolneux et al., 2000], mixing both approaches, and offering improvements:

1. Like in [Burns et al., 1986], the image is segmented in regions according to a gradient
direction criteria. The segmentation is done by a region growing algorithm, a first pixel
is selected (based on the gradient strength), the angle of the gradient around that pixel
defines the angle θ for the region, then the angle of the gradient in the neighbourgh
pixels are compared to that angle θ, and if they are close enough, the pixels are added
to the region, after each step, the angle θ is updated to be the mean of all the angles in
the region.

2. Regions are then approximated as a rectangle, using the center of mass of the region
as the center of the rectangle ( [Kahn et al., 1990]), and the first inertia axis is used to
select the orientation. The norm of the gradient defines the mass of each pixel.

3. The last step applies the idea of [Desolneux et al., 2000] to the rectangle generated in
the previous steps, which adjust the parameters of the rectangle until a linear segment
is found.

One of the main improvements of this method over the previous ones is that it does not
require the tuning of parameters, it also gives more accurate segments.

Other region based detectors are extracting lines with their width, for instance, in [Steger,
1998], Steger propose a method to extract curvilinear structures, but this does not give directly
geometric parameters.

Model-driven All the previous methods are data-driven, as they consist in grouping pixels
using data characteristics in a first step, a line segment model being introduced afterwards.
In [Mansouri et al., 1987,Chen and al, 2007], a model-driven approach has been proposed, that
directly fits a segment on the data, using measures on the gradient to adjust the parameters.

6.1.2 Direct line segment detection (DSeg)

After introducing the parametric model chosen to represent the line segments, this section
depicts the detection process, that relies on a seed-and-grow scheme: null length line segments
are initialized on the basis of gradient and phase information, and further extended and
updated thanks to the Kalman filter. The section ends with an analysis of the influence of
the algorithm parameters.

Line model A line is represented in the image frame with the following parametric linear
model:

x(t) = a · t+ x0 (6.1)
y(t) = b · t+ y0 (6.2)

Where (a, b) is the direction vector of the line and (x0, y0) its origin. Although this model
is over-parametrized, it brings forth two essential advantages: it can represent any 2D line
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(no singularity), and the single parameter t allows to specify any point on the line. The fact
that this model is not minimal is not an issue for the estimation process, as no constraints
link its parameters.

Detection process initialization The main idea of the approach is to fit the line segment
model on the image. It would be naturally very time consuming to search for segments around
every pixel: the process is therefore only initiated for seeds, i.e. pixels that correspond to a
local gradient maximum.

Let Gi,j and φi,j the norm and the phase of the gradient on pixel (i, j) computed by a
Canny filter. A pixel (i, j) is considered as a seed if it satisfies the following conditions1:

Gi,j −Gi+cos(φi,j),j+sin(φi,j) > τgradmax (6.3)
Gi,j −Gi−cos(φi,j),j−sin(φi,j) > τgradmax (6.4)

Gi,j > Gi−sin(φi,j),j+cos(φi,j) (6.5)
Gi,j > Gi+sin(φi,j),j−cos(φi,j) (6.6)

The first two conditions ensure that the considered pixel is likely to belong to a line
segment, while the two others state that the considered pixel gradient is a local maximum
along the hypothetical line segment, and are mostly needed to give more robust seeds.

Given a seed, the parameters of the line model that initializes the state of the Kalman
filter are:

x0 = i, y0 = j (6.7)
a = −sin(φi,j), b = cos(φi,j) (6.8)

Line extension process Once an initial point has been found, an iterative extension pro-
cess is applied: it searches additional support points along the current estimated direction of
the line model. This is made according to the following procedure (figure 6.2):

1. t = 1

2. t ← t ± δt, where δt is the distance along the line at which new support points are
searched.

3. Prediction: using the current estimated parameters of the line and their associated
variances, an estimation of the coordinates (xt, yt) of the next support point is computed,
and scalar error e that represents the error across the line direction is computed.

4. Observation: a set of measures are made along the normal of the current line that
intersects (xt, yt), and a selection process defines the one that will be incorporated as a
support point to update the line model.

The observation selection process is as follows. Let a′ = a/
√
a2 + b2 , b′ = b/

√
a2 + b2.

s = (−b′ · e/no, a′ · e/no)T is the direction vector of the search2, with a norm that depends on
1In all the algorithm steps, subpixel values are obtained by bi-cubic interpolation.
2Bold notation denotes vectors
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t = 0

t = 1

t = 2t = -2

t = -1

t = -3 t = 3

Figure 6.2: Segment extension process. The red line represents the current segment, the black
crosses are the current support points. Additional support points are searched at a distance
δt (here equal to 1), along a direction normal to the current line, within a range cross-distance
to the line that depends on the variance on the current segment estimation. The blue crosses
are the 2no + 1 measure points that are checked (no = 2 here): the ones that correspond to
a local gradient maxima are considered as observations of the current line segments. When
there is more than one gradient maxima among the measure points, the closest to the current
line is selected as an observation (at t = 3 in the picture), and when two local maxima are at
an equal distance to the line (at t = −3 in the picture), the one with the closest phase angle
to the current line orientation is selected. The orange ellipses show the position uncertainty
of the two selected observations (see section 6.1.2).

the error e and on no, a constant that defines the number of considered measures. The set of
measure points is:

M = {(xt, yt) + i · s}, i ∈ [−no, no] (6.9)

and the measure mi ∈ M that is selected as an observation of the current line is the one
that satisfies the following conditions:

• Local gradient maximum:

G(xt,yt)+i·s > G(xt,yt)+(i+1)·s (6.10)
G(xt,yt)+i·s > G(xt,yt)+(i−1)·s (6.11)

• Direction gradient compatible with the current line:

cos(φ(xt,yt)+i·s − atan2(a,−b)) > τangle (6.12)

If two measures mi1 and mi2 pass these tests, their distance to the line is first checked, and
in case of equal distances, the one which the most compatible phase angle with the current
line is selected. e.g. mi1 is selected if | i1 |<| i2 |, and if | i1 |=| i2 |, mi1 is selected if:

cos(φ(xt,yt)+i1·s − atan2(a,−b)) < cos(φ(xt,yt)+i2·s − atan2(a,−b)) (6.13)

When no further support points are found, the search is extended a step further ahead to
avoid spurious segment splits due to image noise: t± δt, and if no additional observations are
then found, the extension process ends.
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Line Parameters Estimation

System model The line parameters are estimated by a Kalman filter: they are initial-
ized as in section 6.1.2, and updateded using the observations produced by the line extension
process.

The state in the Kalman filter is the set of line parameters: xk = (a, x0, b, y0)T . Since
there is no process noise and the model is stationary, the state equation is:

xk = xk−1 (6.14)

The observation equation is:
zk = Hk · xk + vk (6.15)

It is a linear observation model, where vk is the observation noise with covariance P , and
Hk the observation matrix:

Hk =
[
t 1 0 0
0 0 t 1

]
(6.16)

The initial values for the state vector are computed as in section 6.1.2, and the associated
covariances are initialized to:

P0|0 =


σ2
a 0 0 0

0 σ2
x0 0 0

0 0 σ2
a 0

0 0 0 σ2
y0

 (6.17)

Observation error. The observation error is defined by two uncorrelated variances in
the frame associated to the current line estimate, that are set by the discretisation applied
for the line extension process (orange ellipses figure 6.2). The along-track variance is δ2t , the
cross-track variance is 0.52, error of the image discretisation – note that these are conservative
values. In the frame associated to the line, the observation error matrix is:[

δ2t 0
0 0.52

]
(6.18)

A frame transformation is applied to obtain the observation error matrix Skin the image
reference frame:

Sk = R×
[
δ2t 0
0 0.52

]
×RT (6.19)

where R =
[
cos(α) −sin(α)
sin(α) cos(α)

]
is the rotation matrix between the line frame and the

image reference frame, α being the current estimated angle of the line in the image reference
frame.

We now have all the parameters necessary to the application of the linear Kalman filter
after each new observation (support point) provided by the line extension process.
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Line merging After the detection process, it can occur that the newly detected line
segment Sn overlap with a previously detected segment Sp (figure 6.3). In such cases, a
merging process is applied: a chi-square test is applied to check whether the extremities of
Sp can be considered as observations (support points) compatible with Sn. If yes, Sn and Sp
are merged, and the parameters of Sn are updated with the new observations by iterating the
Kalman filter.

Figure 6.3: Line merging process. Left, two overlapping segments. Right, the line resulting
from the merging process.

Parameters The detection process involves the definition of some parameters and thresh-
olds. Large conservative values for these parameters are easy to specify, as they do not impact
the detection results. Table 6.1 lists the parameters and their values – used in all our trials
and for the results shown in the next section.

σa = σb σx0 = σy0 δt τangle τgradmax no
0.05 1.0 1px 1.0 - σa 10 2

Table 6.1: Parameters required and associated values

The two parameters that are defined empirically are σa = σb and τgradmax, since σx0 = σy0
indicates how well the position of the local maximum of a gradient is known, and the resolution
of the image is known up to one pixel. Figure 6.4 show the lack of influence of τgradmax and
τangle on the number of detected segments. τgradmax determines whether low contrast segments
will be extracted or not. For τangle, we choose a quite large value (0.95, acos(0.95) = 31◦ ),
so that the process is not disturbed by noise and still ignore drastic change in orientation.

Figure 6.4: Distribution of the detected segment lengths for various values of τgradmax (left)
and τangle (right).
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Results Finally figure 6.7 present some results obtained with DSeg.

6.1.3 Hierarchical direct segment detection

(a) Detection on multiple levels. (b) The red segment is detected at the coarser
level, at the next level, it can correspond to
either the green segment, or to one of the two
blue segments, or both of them.

Figure 6.5: Hierarchical direct segment detection

In this section we present an extension of the previous algorithm, where segments are first
detected on a scaled down image, and then their position is tracked on the different levels of
the pyramid (Figure 6.5). The main interest is that scaling down the image reduces the noise
level, but it also gives less precise segments, therefore, with a hierachical approach, segments
are initialized using less noisy data, while retaining the precision given by using the full size
image.

Because scaling down is emulating a distance change, another interest is to only detect
segments that are likely to be visible on a broader range, when the robots move backwards,
the segments are more likely to be stable with respect to scale change.

(a) [a, idx1] , [idx1, b] (b) [a, idx1] (c) [idx2, b] (d) ∅

Figure 6.6: These figures show how intervals are splitted after a detection of a segment. idx1
and idx2 are respectively the distance of the first and second extremity of the newly detected
segment to the origin (which is defined as one of the extremity of the segment detected at a
upper level). One situation is not shown here, when idx2 < a or b < idx1, in which case the
interval [a, b] is not changed.
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Chapter 6. Line Segments

Detection process From the image, a n levels pyramid is computed (see Section 2.4.4).
The level leveli=0 correspond to the bottom of the pyramid with the full size image, while
leveli=n−1 is the level with the smallest image;

1. On the top leveli=n−1, segments are detected as in DSeg (6.1.2)

2. Given a segment segij detected at leveli, its parameters at leveli−1 are obtained by
multiplying by two the parameters at leveli: segi−1

j = 2 · segij . Given Oij(xi−1, yi−1)
the coordinates of one of the extremities, u the vector director of the segment, v is the
vector orthogonal to u, and l the length of the segment, we initialize a list of intervals
L = {[0, l]}.

(a) Given an interval I = [a, b] from L, look for a maximum of gradient in the direction
of v, around the point:

c =
a+ b

2
(6.20)

(xI , yI) = (xi−1, yi−1) + c · u (6.21)

(b) If there is a maximum of gradient in (xI , yI), (xI , yI)+v or (xI , yI)−v, we initiate
a segment extension as described in section 6.1.2.

(c) For each segment detected at leveli−1, compute the projection P (ext1) and P (ext2)
of its extremeties ext1 and ext2 on 2 · segij . Then, using idx1 =< OijP (ext1),u >

and idx2 =< OijP (ext2),u >, we can remove from the intervals of L, the area
where a segment has already being detected, as explained in figure 6.6.

(d) If no segment is found, the interval I = [a, b] is splited in [a, c], [c, b], which are
inserted in L.

(e) Return to step (a) until L is empty.

An interval is inserted in L only if its length is superior to the minimum segment length.

Parameters “Hierarchical DSeg” has only two more parameters than “DSeg”: the number
np of images in the pyramid, and the scale sp between two images. The number of detected
segments is too small if the top of the pyramid uses too small images, which sets a limit on
np.

The scale parameter sp should be inferior to 2 (sp < 2), as for a bigger value, it will be
needed at step 2(b) to check for a maximum of a gradient around more points. It is better
interesting to have more images in the pyramid than to use a bigger scaling coefficient.

We usually use sp = 2 and np = 3, which means the top image in the pyramid is divided
by four.

Results Figure 6.7 shows the result of a detection on different images.

6.1.4 Comparison

We present here a comparison of our approach (DSeg, Hierarchical DSeg), with the Proba-
bilistic Hough transformation approach ( [Guo et al., 2008] Hough, OpenCV implementation),
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6.1. Line Segment Detection

Figure 6.7: Some results of DSeg and Hierarchical DSeg. Note the stability of long segments
extracted on the square arch building with respect to large scale changes. We can also see
that we get less segments than with the hierarchical approach than with full image approach.

the segments chaining approach (Split and merge, LAAS implementation), and the approach
presented in [R. Grompone von Gioi and Randall, 2008] (LSD, using the authors implemen-
tation).

Note that we had to adjust parameters for each image with the Hough and Chaining
approaches to obtain good results – especially the two threshold on the results of the Canny
filter, which needs to be tuned depending on the contrast and noise level of the image. Whereas
for the LSD approach and ours, it has not been necessary to change any parameter.

Figure 6.9 shows the line segments detected by the four approaches, with the associated
computed times3 – only segments longer than 20 pixels are shown. DSeg extracts more seg-
ments than the three other approaches, and especially more long segments – as highlighted by
red and blue segments in the figures. Note that on more contrasted images (Figure 6.8), DSeg
and LSD behave quite similarly, but still better than the Hough and Chaining approaches.

3Assessed on an 2.2 GHz Intel processor

75



Chapter 6. Line Segments

(a) Image 640x480 (b) Canny (c) Probabilistic Hough (82ms)

(d) Chaining (60ms) (e) LSD (86ms) (f) DSeg (168ms)

(g) Hierarchical DSeg (181ms) (h) Segment length

Figure 6.8: Line segment extracted on a well contrasted image.

All approaches take a rather similar amount of computational time, with an advantage for
Hough and Canny. One might note that Hierarchical DSeg does not provide a performance
enhancement compared to DSeg, the reason is that the most costly part of both algorithms is
the segment growing process, and Hierarchical DSeg uses that process several times for each
segments at every level.

More quantitative results on the number and length of the detected segments are provided
by the histogram of figures 6.9(h) and 6.8(h) : DSeg finds the longest segments, and in total
a larger number of segments. Naturally, Hierarchical DSeg finds less segments.

6.2 Sensitivity analysis

To assess the robustness of the algorithm with respect to image noise and to illumination
changes, we analyse the repeatability of the detected segments by adding noise to an image,
and on a sequence of images taken during 24 hours with a still camera.
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6.2. Sensitivity analysis

(a) Image 512x384 (b) Canny (c) Probabilistic Hough (70ms)

(d) Chaining (30ms) (e) LSD (151ms) (f) DSeg (78ms)

(g) Hierarchical DSeg (83ms) (h) Segment length

Figure 6.9: Line segment extracted on a low contrast image.

6.2.1 Segment repeatability

To be able to automatically compute the repetability of the detection of segments with a fixed
camera filming a static environment, it is necesserary to be able to compute which segment of
the reference frame corresponds to the segment detected at a given time. To do this, we define
a similarity measure, that uses the area contained between the two segments, ponderated by
the length, angle and overlap (Figure 6.10):

sim(AB,CD) =
A(AB,P (AB,CD))

(|P (AB,CD)| · R(P (AB,CD), CD) · |cos(angle(AB,CD))|)
(6.22)

distance(AB,CD) = sim(AB,CD) + sim(CD,AB) (6.23)

Where P (AB,CD) is the projection of the segment AB on CD, A(AB,P (AB,CD)) is the
area between the segment AB and its projection on the segment CD, |P (AB,CD)| is the
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length of the projected segment, R(P (AB), CD) measures the overlap between the projection
and the segment CD, and angle(AB,CD) is the angle between the two segments.

The similitude defined in equation (6.22) is used to define the distance (6.23), which
allows to find the segment of the reference image which is the closest to the segment in
the current image. The distance (6.23) is not a distance in the mathematical sense, since
distance(AB,CD) = 0 means that A(AB,P (AB,CD)) = 0, which can happen when A, B, C
andD are aligned, orAB and CD are on orthogonal lines, but in that case, cos(angle(AB,CD)) =
0. But it respects distance(AB,CD) = distance(CD,AB), and if distance(AB,CD) <
distance(AB,EF ), then CD appears to be closer of AB than EF .

Given two sets of segments Σref and Σt, we can compute the repeatability as the number
of segment Siref ∈ Σref that satisfy the following conditions:

∃Sjt ∈ Σt/∀k 6= j, distance(Siref , S
j
t ) < distance(Siref , S

k
t ) (6.24)

∀l 6= j, distance(Siref , S
j
t ) < distance(Slref , S

j
t ) (6.25)

distance(Siref , S
j
t ) < τdist (6.26)

Since it’s always possible to find a closest segment, a threshold τdist is used to eliminate
segments that are not close to the current segment.

Figure 6.10: Distance between two lines segment. Here the overlap is R(P (AB), CD) =
|P (A)D|
|P (B)C| .

6.2.2 Sensitivity to noise

To test the sensitivity of the algorithms to the noise, additive and multiplicative noise is
added to the luminance value of a reference image Iref :

I(i) = R(σim) · Iref +R(σia) (6.27)

where R(σ) is a random number generator with a Gaussian distribution of standard de-
viation σ and a null mean.

Direct segment detection Figure 6.11 shows the number of segments detected for dif-
ferent values of τgradmax, as a function of the image noise. τgradmax has no influence on the
repeatability of segment extraction, and that the algorithm is resistant to a significant level
of noise.

Comparison Figure 6.12 shows the comparison of the sensitivy to the noise for the different
algorithms, the number of segments detected by Probabilistic Hough increases drastically with
the noise, which triggers a lot of unmatched segments as well as splited segments, this is due
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6.2. Sensitivity analysis

(a) τgradmax = 0 (b) τgradmax = 10

(c) τgradmax = 20 (d) τgradmax = 30

(e) Reference image (f) Image half noise (g) Image full noise

Figure 6.11: Sensitivity to noise for DSeg.
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to the nature of the algorithm, since the increase of noise increases the number of segment
directions represented in the image, but it could be limited by tweaking the parameters.
The LSD algorithm is very conservative to noise, which can be seen by the rapid drop in
number of detected segments, and therefor in repeatability, but it has slightly less unmatched
segments compared to DSeg. Unsurprisingly, the two algorithms with the strongest noise
filter (through image scaling) DSeg on image divided by four, and Hierarchical DSeg have the
highest repetability. But DSeg on image divided by four have a higher number of unmatched
segments, which might be explained by the decrease on precision.

6.2.3 Sensitivity to day light changes

Here, we took images with a still camera every 5 minutes during 24 hours.

Direct segment detection Figure 6.13 and 6.14 show the performance of the “DSeg”
algorithm on the 24 hours images, on figure 6.14 the drop visible at the end of the day is
caused by the fall of the night, but since the lights were on, some segments (mostly inside the
room) were still visible. The figures show that the repeatability remains around 0.9 during
daylight, and that some segments are still correctly extracted during the night.

Comparison Figure 6.15 shows how the various algorithm performs when the light of the
day changes, we can see that Hierarchical DSeg detects as much segments as DSeg on an
image divided by four, that Probabilistic Hough has the highest number of detected segments
but to the price of a lower repeatability and a higher number of splited segments. During
the day Hierarchical DSeg, DSeg and LSD have a similar repetability, which is higher than
Split and merge and Hough, while during the night, DSeg on image divided by four gets the
highest repetability, followed by Hierarchical DSeg.

6.3 Line Segment Tracking

We present in this section the approach to track segments from one image to another. The
process relies on a Kalman filter, as in [Deriche and Faugeras, 1990], that fuses a prediction
provided by a motion model with observations that are made in a way similar to which the
segments are extended during the detection phase – making our tracking scheme akin to the
approach to fit rigid object models in an image introduced in [Harris, 1992].

When tracking segments, the main difficulties are caused by the presence of close parallel
segments. Indeed, even a precise motion model may yield predictions that are off up to a
few pixels, which eventually leads to wrong associations between close parallel segments (for
instance, in figure 6.16, segment 2 would jump to the position of segment 3). We focus on this
issue here: a selection process discards the segments that may lead to false associations, and
information related to the gradient along the segment are exploited to enforce the association
provided by the tracking process.

6.3.1 Segments selection

The direction of a line segment is defined on the basis of the corresponding gradient phase
angles, as shown figure 6.16. Two segments (S1 and S2) are considered to be closely parallel,
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(a) Number of detected segments

(b) Repetabilty

(c) Number of unmatched segments

(d) Number of splited segments

Figure 6.12: Comparison of the sensitivity to noise.
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(a) length = 20 (b) length = 50

(c) length = 100 (d) Image 0

(e) Image 14 (f) Image 200

Figure 6.13: Sensitivity to change of illumination for “DSeg”, when changing the minimal
length of segments with DSeg.
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(a) length = 20 (b) length = 50

(c) length = 100 (d) Image 0

(e) Image 100 (f) Image 200

Figure 6.14: Robustness to the change illumination when changing the minimal length of
segments with DSeg.
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(a) Number of detected segments

(b) Repetabilty

(c) Number of unmatched segments

(d) Number of splited segments

Figure 6.15: Comparison of the robustness to change of light.
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Figure 6.16: Line segment direction: the green vectors indicates the line direction, derived
from the gradient phase angles (black arrows).

and in the same direction, if the following conditions are met:

cos(dirS1 − dirS2) > τangle (6.28)

d(ext1S1, segment2) < τd (6.29)

d(ext1S2, segment2) < τd (6.30)

Where ext1S1 and ext1S2 are the two extremities of the segment S1, and d(point, segment) is
the distance in pixels between a point and a segment.

If two closely parallel segments are of similar lengths, they are both discarded from the
tracking process, and when small segments are closely parallel to a longer one, the small
segments are discarded.

6.3.2 Association hypothesis

The tracking of a segment is initialized by the selection of an hypothesis. Then, an algorithm
similar to the line segment extension process described in section 6.1.2 is used to refine the
position of the segment.

Two steps are involved to find an association hypothesis: a prediction step, and a confirma-
tion step, that evaluates a small set of observations to assess the likelihood of the hypothesis.

Prediction. Several prediction models can be considered. The most simple is a static model,
i.e. in which the same segment parameters of the source image are considered. A constant
velocity model is often used (e.g. in [Neubert et al., 2008]): in such case, one needs to use four
Kalman filters for the tracking process, one for each parameter, which are independent from
each others. An optimal solution would be to have the speed parameters in the Kalman filter
used for detection but that would increase the computational cost of updating the filter while
observing the segment. Nevertheless, such a model does not work well in case of irregular
camera motions. Finally, if the actual camera motion can be measured, as when mounted
on a robot for instance, it can be used to estimate a motion model for the segments – this
model being even better if the 3D parameters of the line segments are estimated, as in a
simultaneous localization and mapping process for instance [Lemaire and Lacroix, 2007a].

Each prediction model gives an estimated position of the origin (x0, y0) of the segment,
and of its orientation φpred.

Initial guess from the signal. Given the predicted state of the line segment, nkp key points
are selected along it, and the tracking algorithm searches for a local gradient maximum along
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the normal of the key points. For each key point, we select the local maximum (i, j) that
maximizes:

cos(φi,j − (φpred + π/2)) · ratio(Gi,j , Gmean) (6.31)

Where Gmean is the mean of the gradient on the segment computed at the previous tracking
(or detection) step, and ratio(x, y) is the function that returns x/y if x < y or y/x otherwise.

The first part of this equation allows to check that the direction of the gradient is com-
patible with the direction of the predicted segment. This is what ensures that the direction
of the segment is maintained, which is important for the case of close segments with similar
directions. The second part ensures that the selected local maximum has a value close to the
gradient in the previous frame.

Once a local maximum has been found for the nkp key points, the median of the phase
angles φmedian is computed. Key points for which |cos(φi,j − φmedian)| > 1.0 − τangle are
discarded. With the remaining maximums, we compute the median of the translation, which
is used to discard some outliers. The mean of the translation and of the angles are then
computed, and used to initialize the Kalman filter for the extension procedure of section 6.1.2.

6.3.3 Parameters

The parameters τd is depending on the displacement between images, the bigger the displace-
ment the bigger the value of τd is. It also depends on the quality of the prediction, it is
necessary to select τd > max(σt)/2 (where σt is the error on the translation).

For the sequence used in our experiments, the pixel displacement between two images was
of around 2 pixels. To be safe, we used τt = 5.0. We used nkp = 20 key points (a higher
number of key points ensures a better estimation, at the cost of additional computational
time).

6.3.4 Results

Static evaluation. A first evaluation of the tracker is done using twice the same image, but
applying a translation t on the predicted segments. The results of this experiment are shown
on figure 6.17. The false positives in 6.17(a) are counted using the Mahalanobis distance
between the parameters of the segment in the reference extraction and after the tracking
procedure. For this experiment, the error in position for the segment is equal to the norm of
the translation vector σ = |t|, which means, since the search area for key points is equal to
3.0 · σ, for a translation of 10 pixels, the key points are selected among 60 pixels (30 pixels in
each direction): this clearly indicates the need for an accurate prediction.

The two graphs also show the benefit of the selection process, since the segments tracked
after selection are also tracked without the selection, it is logical that the number of false
positive is inferior with the selection. We observed that the wrong matches are mostly caused
by segments which are located on curved features and that do not correspond to a real line
segment. The graph 6.17(b) shows that errors remains small for a translation smaller than 4
pixels, and remain acceptable up to 10 pixels, whereas without the selection the number of
mismatched segments increases considerably.

Tracking along a sequence. In figure 6.18 we show the result of tracking segment over
a set of images using only the segments detected in the first frame. The time for tracking
35 segments at each step is around 60ms. For this experiment, we used a static prediction
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(a) (b)

Figure 6.17: (a): tracking success rate as a function of the translation difference between the
real segment pose and their predicted position; (b) mean error between real segments and
prediction. Without the segment selection, 109 segments were used, while after selection,
only 35 segments are used.

model, increasing the error in translation for the Kalman filter by sigma σt = 2 and on the
angle σangle = 0.31rad.

Figure 6.18: Tracking results.
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Chapter 7

Discussion

We briefly compare in this chapter the three considered landmark types, and present some
results of their use in a SLAM context.

7.1 Comparison of landmarks types

Interest points. The main advantage of using interest points is that they are easily de-
tected, and the literature presents various mature algorithms for this purpose. Similarly,
point-based SLAM processes are well established. But points yield to a sparse low-density
model of the environment, that does no not exhibit its geometric structure. The extraction
of points in images is also not robust with respect to large viewpoint changes.

Facets. We have proposed an algorithm that extends interest points to local planar facets in
chapter 5. Facets carry more information on the environment geometric structure than inter-
est points, and yield improvements on the localisation of the robot in a SLAM approach: this
is due to the fact that each facet contains enough geometric information to fully observe the
robot position – while a minimum of three points is needed for this purpose. The drawbacks
of facets is the computational time required to compute the homography and their normals.
Also, since they are centered around interest points, they suffer from the same problem of
detection robustness with respect to large viewpoint changes.

Line Segments. We have proposed two new algorithms to extract and track segments in
images in chapter 6. The choice between Hierarchical DSeg and DSeg depends on whether
the application requires more segments from the image, or robust segments. Our experiments
show that segment detection is as fast as interest point. Most importantly, segments exhibit
more structure of the environment than points or facets. However, despite some attempts
(e.g. [Schmid and Zisserman, 2000]), there is no good matching process of segments in the
image space.

Segment parametrisation is an important issue in a SLAM context. In [Gee and Mayol,
2006] and [Smith et al., 2006] lines are parametrised in the SLAM filter using two inverse
depth points, while we used the Plücker representation described in [Solà et al., 2009].

Planes. Planes would exhibit more spatial information than facets and segments. While we
have not contributed to the definition of algorithms to extract planes from data, we mention
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here the main possiblities to achieve this.

• Plane extraction in depth images. On the basis of depth images provided either by dense
pixel stereo of a Lidar, several techniques are possible to extract planes, e.g. the Hough
transform [Vosselman and Dijkman, 2001] or planar regions segmentation [Baumstarck
et al., 2006]. In [Viejo and Cazorla, 2006], the normal of each points is computed, and
then points with similar normal are grouped together in a plane. This can also be done
by first creating a set of facets [Murray and Little, 2005b, Weingarten and Siegwart,
2006], and then grouping the facets that have a similar normal into one plane.

However, these techniques remain fragile and are very sensitive to the noise level of the
data.

• Plane extraction in vision. In [Silveira et al., 2007], Silveira shows how to use the ESM
homography estimator [Malis, 2004] to track planes in a sequence of monocular images,
from frame to frame in a monovision process, and how to estimate the plan parameters.
We believe that these approaches are very promising, especially when the detection of
candidate planar areas is focused by the detection of line segments.

• Fusing laser and vision information. The main problem when using images for ex-
tracting planes is that vision algorithm fails in textureless environments. Exploiting
both Lidar range imagery and vision provides more reliable plane detection [Wolf et al.,
2005]. But 3D lasers are either very expensive, or slow to acquire data (the 3D laser
used in [Baumstarck et al., 2006] takes one minute to scan the environment). In an
indoor environment, one possible solution is to fuse information coming from a 2D laser
with camera data [Baltzakis et al., 2003].

7.2 SLAM Results

Figure 7.1: The different SLAM trajectories obtained with points (in red), facets (in blue)
and line segments (purple). The green trajectory is the one estimated by odometry. The
black dot indicates the final position of the robot.
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The same data set has been used to compare an implementation of SLAM using either
interest points, planer facets and line segments. Figure 7.1 compares the resulting robot
trajectory estimation, without enforcing any loop closure. Using a visual motion estimation
like in [Lacroix et al., 1999], it is possible to compute the distance between the last frame
and the first frame, and to determine the final error of localisation for each type of feature.
It shows an error of 3m for points, 0.78m for facets and 2.5m for segments. As expected,
facets give a more accurate results: this comes from the fact that a single observation gives
the position of the robot, while segments give similar results to points.

More interestingly, figure 7.2 show the resulting landmark maps.

Multi-maps, multi-robots, multi-landmarks In this experiment, we use two robots, a
ground robot and an helicopter, that are mapping the same area, extracting interest points
and segments. Figure 7.4 show the resulting map of extracting images from a house, by the
ground robot and by the helicopter.

Figure 7.3 show the result of a loop closure event, that was triggered by manually com-
puting a transformation between the ground and aerial robot. In the future, such an event
should be computed automatically. For this purpose, we believe structuring the geometry of
the landmark maps can yield to robust and efficient map matching algorithms: the next part
of the manuscript is devoted to this problem.

90



7.2. SLAM Results

Figure 7.2: From top to bottom: landmark models with points, facets and segments, built
with the same set of images.
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Figure 7.3: Final global graph (the global level) with Dala’s trajectory in blue and Ressac’s
trajectory in red in the wrf.

(a) View of the house by dala (b) Dala local map

(c) View of the house by Ressac (d) Ressac local map

Figure 7.4: Plot-view of 3D local maps. Robot pose, points and line segments are displayed
in local reference frame.
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Part III

Geometric model

One of the limitations of the multi-robots multi-maps experiment of the chapter 7 is
that there is no automatic loop closure detection between both kinds of robots. The signal
information (such as image patches) is indeed too different from a robot to another – not to
mention that it can change depending on the scene illumination.

Since the environment geometry is invariant, one must therefore rely geometric landmarks:
but since individual features are very similar from one another, the only way to have accurate
matching at the geometric level is to use the neighbourhood of a feature, and to compute
multiple matches at the same time. In this part we introduce a structuring of the geometry
of the environment into a graph (chapter 8). This graph structure is then used in chapter 9
to solve the data association problem at a geometric level.
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Chapter 8

Graph based structuration of a
cloud of geometric landmarks

In section 8.1, we define the geometric obects and their parametric representations. Sec-
tion 8.2 presents the different relations that exist between geometric objects for modeling
the environment, then section 8.3 presents how to compute the partial transformation vector,
used to define the geometric environment around a feature.

The last two sections cover the structure of the graph (section 8.4) and its construction
(section 8.5).

8.1 Geometric objects

The geometric objects used in this chapter are part of the Euclidean geometry system, and
their parameters are expressed in the Cartesian space.

A representation of an object is “multiform”, the representation used in the estimation
process does not need to be the same as the one used in the matching process, or to ex-
press relations among objects. For instance, a point in monocular SLAM is represented by
six parameters [Davison, 2003], but to express relations between objects the minimal three
parameters representation is enough.

This section first gives the notation and definitions of geometric objects and operators
in section 8.1.1, then later in section 8.1.2 we detail the possible parametrisation of atomic
objects.

8.1.1 Notations and definitions

Geometric objects There are two types of geometric objects, objects that can be self-
defined, (for instance, using a set of equations), referred to as atomic objects, and geometric
objects that are defined as a set of other objects, referred to as composite objects.

Definition 1 An atomic object is a geometric object that can be used as a basic building
block. It is usually self contained, can be detected in the data, and can not be expressed as a
finite set of other atomic objects.

Definition 2 A composite object is a geometric object which can be constructed using,
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directly or indirectly, a finite set of atomic objects. A composite object is indirectly con-
structed from atomic objects, when it is defined by a set of other composite objects.

A geometric object (atomic or composite) is noted o, while an atomic object is noted å.
The list of atomic objects we consider is:

• a point (P ) is a sizeless 0D object

• a line (L) is an infinite 1D object

• a line segment (S) is a line bounded by two points

• a circle (Ci) is a set of points at equal distance to the center

• a plane (Π) is an infinite 2D object

Some examples of composite objects:

• a polygon (Po) is a set of line segments connected to each other

• a facet (F ) is a plane bounded by a polygon

• a cylinder (Cy) is a volume defined by two circles

• a box (Bo) is a 3D volume made of any set of planes

Operators Since we are interested in how geometric objects relate to each other, we need
to define the list of operators that can be used to define these relations:

• d(o1, o2) is the distance between two objects o1 and o2

• θ(o1, o2) is the angle between two objects (if it can be defined)

• l(S) is the length of a line segment. Given P1 ans P2 the extremities of the segment S:

l(S) = d(P1, P2) (8.1)

• p(Po) is the perimeter of a polygon:

p(Po) =
∑
S∈Po

l(S) (8.2)

• s(F ) is the surface of a facet.

• v(̊a) is the volume of an object.

• µ(x1,x2,M1 + M2) is the Mahalanobis distance between a vector x1 (of covariance
matrix M1 ) and x2 (of covariance matrix M2).

• proj(P,L) and proj(P,Π) are the respective projections of the point P on a line L and
on a plane Π
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8.1.2 Atomic objects

There are four common atomic objects, each corresponding to an increase in the number of
dimensions: point (0D), line (1D), plane (2D) and basis (3D).

Point A point is defined by three coordinates (x, y, z).

Line There are multiple representations of a line, the minimum number of parameters is
four:

• the coordinates of two points (P1, P2), six parameters: (x1, y1, z1, x2, y2, z2)

• the coordinate of one point and one direction vector (OL,−→u ), six parameters:
(x, y, z, u, v, w)

• two equations, the general form would be the interesection of two planes:

xa+ yb+ zc = d (8.3)
xe+ yf + zg = h (8.4)

But for all lines which are not contains in a plane z = zP , it can be reduced to:

x = a′ + b′z (8.5)
y = c′ + d′z (8.6)

For lines contains in a plane z = zP , the following equations can be used:

z = zP (8.7)
y = a′ + b′x or x = c′ + d′y (8.8)

• the direction vector and the distance to the origin, four parameters: (u, v, w, d)

• the Plücker representation uses six parameters, and is defined by the direction vector
−→u , and the moment vector −→m, with the following constraint < −→u ,−→m >= 0.

For two homogeneous points on the line (x1, x2, x3, x0) and y = (y1, y2, y3, y0), the
algebraic definition of the Plücker coordinates are (p0,1, p0,2, p0,3, p2,3, p3,1, p1,2), with
pi,j = xiyj − xjyi.

The geometric definition is given by (
−→
d = −→y −−→x ,−→m = −→x ×−→y ) (where × is the cross

product between vectors).

The main interest in the Plücker representation is that it makes possible to quickly check
some properties of line, for instance two lines (

−→
d1,
−→m1) and (

−→
d2,
−→m2) are coplanar, if and only

if:
<
−→
d1,
−→m2 > + <

−→
d2,
−→m1 >= 0 (8.9)

It is possible to easily switch from any representation to an other. For instance, to change
from a two points (P1, P2) representation to a one point and one direction vector (OL,−→u ):

OL = P1 and −→u =
−−−→
P1P2

‖
−−−→
P1P2‖

(8.10)
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Plane Plane is a two dimensions object, the minimal representation is four parameters, but
there are many different representations:

• The coordinates of three points, nine parameters

• An equation, four parameters:

P = (x, y, z) ∈ Π ⇐⇒ ax+ by + cz + d = 0 (8.11)

• the normal vector and the distance to the origin, four parameters: (u, v, w, d)

• A line (d,m) and a point y = (y1, y2, y3, y0) defines the following plane equation:

x = (x1, x2, x3, x0) ∈ Π ⇐⇒ 0 =< y,−→m > x0+ < (y ×
−→
d − y0

−→m), x > (8.12)

Segment Lines and planes are infinite objects. In the context of environment modelling
this can be a problem, since the physical appearance of a line is limited in space. But they
provide support for segments: line segments or facets or a partition of space.

There is no good parametrisation of a facet, other than to define the plane and the
boundary as a polygon. While a line segment can be described by the parameters of a line
and information on the position of the extremities a minimum of six parameters:

• the line parametrisation with the coordinates of two points (P1, P2) gives six param-
eters: (x1, y1, z1, x2, y2, z2) and is a minimal representation for a segment.

• the one point and one direction vector S = (P,−→u ) parametrisation can be consid-
ered as a minimum representation of a segment, if |−→u | = d, and the point P2 = P +−→u
is the second extremity.

• the equation parametrisation can be extended to segment by adding a constraint on the
parameter, using one of the following equations:

a < x < b or a < y < b or a < z < b (8.13)

• the direction vector and the distance to the origin can be augmented with two
parameters s1 and s2 which represent the distance between the projection of the origin
on the line and the two extremities.

Basis It is not a geometric object, it allows to define the coordinates of other object, the
minimal representation for a basis is six parameters:

• Euler angles, and translation, six parameters

• The origin, and three vectors, 12 parameters

8.2 Relations between geometric objects

In this section we describe the relations that can be defined between two geometric objects,
whether topological (i.e. a point as the intersection of two lines), constructive (i.e. a cube is
made of six facets) or scale (the detail of the scene changes as a function of the distance).
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8.2.1 Definitions

Definition 3 A topological relation between a set of geometric objects is a relation that
decreases the degree of freedom (the minimal number of parameters of the object) of at least
one of the object.

Definition 4 There is a constructive relation between one object o and a set of objects
{oi} when all parameters of o are defined by the parameters of the objects {oi}.

Straightforwardly from the definition, the constructive relation is a topological relation
which reduces the degree of freedom of one object to zero:

Lemme 1 A topological relation between an object o and the set of objects {oi} decreases
the degree of freedom of o to zero, if and only if, there is a constructive relation between o
and {oi}.

Definition 5 There is a scale relation between two sets of objects {oi} and {ok} when the
objects of both sets correspond to the same object at two different scales.

8.2.2 Topological relations

A general formalism for topological relations is described in [Egenhofer, 1991], but for atomic
geometric features, we prefer the less general definition 3.

A topological relation is defined for atoms with numerical parameters, points, lines, planes
and segments. While in definition 3 of topological relations it is mentioned that the relation
decreases the degree of freedoms of one object, in reality, it is the degree of freedom of the
group of objects that is decreased. For instance, if two lines are parallel, it is possible to move
the plane that contains the two lines as well as the distance between them.

Point Table 8.1 list topological relations for a point.

Notation Description Degree of freedom Degree of freedom
of the first object of the system

P 3 3
P ∈ L A point on a line 1 5
P ∈ S A point on a segment 1 (bounded) 7
P ∈ Π A point on a plane 2 6
P = L1

⋂
L2 The intersection of 0 7

(L1 6= L2 and L1 ∦ L2) two lines
P = Π

⋂
L The intersection of a 0 7

(L 6∈ Π and L ∦ Π ) line with a plane

Table 8.1: Topological relations for a point with associated degree of freedom.

P = L1
⋂
L2 and P = Π

⋂
L are also constructive relations, since the point P is totally

defined by the relation.
In case of P = L1

⋂
L2 and P = Π

⋂
L the degree of freedom of the system is reduced by

1 to enforce an intersection constraint between L1 and L2, or between P and L.
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Line Table 8.2 lists of topological relations for a line.

Notation Description Degree of freedom Degree of freedom
of the first object of the system

L 4 4
L ∈ Π A line in a plane 2 6
L1 ‖ L2 Two parallels line 2 6
L1 ⊥ L2 Two perpendicular line 2 6
L ‖ Π A line parallel to a plane 2 6
L = Π1

⋂
Π2 The intersection of two planes 0 8

(Pi1 6= Pi2)

Table 8.2: Topological relations for a line with associated degree of freedom.

In table 8.2, the degree of freedom for L1 ⊥ L2 are expressed for the case where there is an
intersection between the two lines, but this relation can be extended to the case where there
is no intersection, which adds an extra degree of freedom: the distance between the lines.

Plane Table 8.3 lists of topological relations for a plane.

Notation Description Degree of freedom Degree of freedom
of the first object of the system

Π 3 3
Π1 ‖ Π2 Two parallels planes 1 5
Π1 ⊥ Π2 Two perpendicular planes 2 6

Table 8.3: Topological relations for a point with associated degree of freedom.

Line segment they have the same topological relations as lines (Table 8.2). One can also
define a relation for sharing one extremity, which has a degree of freedom for one segment of
5 and for the system of 9. Segments can also be connected to two points: S = [P1, P2].

8.2.3 Constructive relations and composite objects

Composite objects are defined as a set of geometric objects (see definition 2). There is a
constructive relation between a composite object o and each of the object oi that define this
object.

Besides being directly defined by atomic objects, it is also possible to define a composite
object with other composite objects, for instance a cube is made of eight square facets, each of
which are made of a plane and a polygon made of lines segments. In this case, the composite
object has a constructive relation with other composite objects.

Table 8.4 gives some examples of composite objects.
In an environment, it will not always be possible to detect all parts of an object, it is

then possible to define virtual geometric objects, that complete an object. For instance, the
bottom face of a box that lies on the ground cannot be observed.
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Name Description
Polygon A polygon is a list of segment Si, where ∀i, Si and Si+1 share

a common extremity
Facet A facet F is made of a plane P which is the support for a polygon PoF ,

such as ∀S ∈ Po⇒ S ∈ P
Box A box Bo is a volume of space, closed by a set of facets:

∀Fi ∈ Bo∀S ∈ PoFi ,∃!Fj ∈ Bo/S ∈ PoFj
Parallelepiped A parallelepiped is a special case of facets, containing only six

perpendicular facets:
∀Fi ∈ Pa,∀Fj ∈ Pa, PoFi

⋂
PoFj 6= ∅ ⇒ Fi ⊥ Fj

Cube A cube Cu is a special case of parallelepiped, where all facets have
the same size:
∃s/∀F ∈ Cu, ∀S ∈ F, l(S) = s

Table 8.4: Most common composite objects.

Among the atomic objects, there is one that does not have a physical appearance, and
cannot be detected by usual mean: the basis. It is still possible to have virtual basis, like
the origin of the world, or the origin of a local map. Otherwise it is possible to define a basis
using other elements. The following set of atomic objects define a basis:

• three points

• a point and a segment (or line)

• two segments

• two non parallel lines

• a plane and a point

• a plane and two points (included in the plane)

• a plane and a segment

• a plane and a line (non parallel to the plane)

• a facet (as defined in chapter 5)

8.2.4 Numeric relations

Since objects can either be represented as parameters (section 8.1.2) or as a set of other
parametrisable atoms (section 8.2.3), it is possible to compute the following measures between
two atoms: angle, distance, coplanarity and a partial transformation vector (a vector that links
two atoms together, see section 8.3.
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angle To be able to compute an angle between two objects o1 and o2, each object needs to
be defined by a vector. Points does not include a vector and can not be used to compute an
angle, for a line it is the vector director, and for a plane the normal.

Assuming that an object o1 is defined by the vector −→v1 of covariance matrix M1 and o2
by −→v2 of covariance matrix M2, then:

θ(o1, o2) = acos (ip) (8.14)

ip =
< −→v1 ,−→v2 >
‖ −→v1 ‖‖ −→v2 ‖

(8.15)

covθ(o1,o2) = J1 ·M1 · J t1 + J2 ·M2 · J t2 (8.16)

Ji =
−→vj√

1− ip2
where (i = 1, j = 2) or (i = 2, j = 1) (8.17)

distance The distance between two points P1 of covariance M1 and P2 of covariance M2 is
given by:

d(P1, P2) =‖ P1 − P2 ‖ (8.18)
covd(P1,P2) = J · (M1 +M2) · J t (8.19)

J =
P1 − P2

d(P1, P2)
(8.20)

A general definition of the distance between two objects o1 and o2 is the minimal distance
between a point of o1 and a point of O2:

∀(P1, P2) ∈ o1 × o2, d(o1, o2) ≤ d(P1, P2) (8.21)
∃(P1, P2) ∈ o1 × o2, d(o1, o2) = d(P1, P2) (8.22)

The distance between a point and a line, or between a point and a plane is given by com-
puting the projection of the point on the line or plane (see appendix A), then equation (8.20)
is used to compute the distance between the point and its projection.

Appendice A contains more on the equations on how to compute the distance between
two geometric objects.

Coplanarity Between two lines, using equation (8.9) it is possible to define a coefficient of
coplanarity.

Composite objects Since composite objects are made of a set of atomic objects, it means
that several values for the angle, distance and partial transformation vector could be com-
puted, but for most of the composite objects it is possible to define a basis that can then be
used to compute the measures.

Expressing topological relations from numerical relations Many of the topological
relations defined in section 8.2.2 can be expressed with a numerical relation, as shown in
table 8.5.
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Topological relation Numerical relation
å1 ∈ å2 d(̊a1, å2) = 0
å1 = å2

⋂
å3 d(̊a1, å2) = 0 and d(̊a1, å3) = 0

å1 ‖ å2 angle(̊a1, å2) = 0
å1 ⊥ å2 angle(̊a1, å2) = 90◦

Table 8.5: Link between topological relations and numerical relations

8.2.5 Link between numeric relations and topological relations

Topological relations are a special case of a numeric relations, the equivalence is given by the
following list:

• P ∈ o⇔ d(P, o) = 0

• P = o1
⋂
o2 ⇔ d(P, o1) = d(P, o2) = 0

• L ∈ Π⇔ d(L,Π) = 0 and θ(L,Π) = π
2

• o1 ‖ o2 ⇔ θ(o1, o2) = 0

• o1 ⊥ o2 ⇔ θ(o1, o2) = π
2

• L ‖ Π⇔ θ(L,Π) = π
2

• L = Π1
⋂

Π2 ⇔ d(L,Π1) = d(L,Π2) = 0 and θ(L,Π1) = θ(L,Π2) = π
2

8.2.6 Scale relations

An object has a different appearance when it is seen from a close distance, it has more details,
the scale relation connects geometric objects that belong to the same real-world object but
seen from a different distance.

8.3 Partial transformation vector

Angles and distances allow to give a rough estimate of the locus of the location of a feature
compared to one other. For instance, let us take two points P1 and P2, if the coordinates of
P1 and the distance d = |

−−−→
P1P2| are known, then we know that the point P2 is included on the

sphere centred on P1 and of radius d, but the information on how to retrieve the location of
the second point is lost.

Let us consider four points, P1, P2, P3 and P4, with P2, P3 and P4 at the same distance
d = |

−−−→
P1P2| = |

−−−→
P1P3| = |

−−−→
P1P4| from P1. If we also now the distances between the other points,

we can reconstruct the geometry (up to a given rotation). But let us assume that we do not
know the distance between all those points, for instance, because we are only able to make
measurements between P1 and each of the other points (this would be the case in environment
modelling if during the observation phases the other points are hidden from one other). Let
us assume that later we can make an observation with all four points, and we want to be able
to match each points. With only the knowledge of d, it is not possible to make a distinction
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Figure 8.1: Angles between partial transformation vector

between P2, P3 and P4, but if we have been also able to compute the angles ̂−−−→
P1P2,

−−−→
P1P3,

̂−−−→
P1P2,

−−−→
P1P4 and ̂−−−→

P1P3,
−−−→
P1P4 (which is possible since we can do a measurement of the vector

−−−→
P1P2,

−−−→
P1P3 and

−−−→
P1P4), then it is possible to get the structure of the objects (see Figure 8.1).

We call that vector the partial transformation vector. Section 9.2.3 shows why such a
vector is useful, and demonstrates the interest of having the information centred on the
feature rather than relying only on distributed information, such as distance. The remaining
of this section details how the partial transformation vector is computed for each type of
feature.

Definition 6 A partial transformation vector is a unique vector
−→
ptv(o1, o2), between two

geometric objects o1 and o2, which is anchored on points of the two objects: ∃(P1, P2) ∈ (o1, o2)
such as

−→
ptv(o1, o2) = P2 − P1.

The anchors of the vector are stable by a transformation: given a transformation T (rota-
tion and/or translation), if P1 and P2 are two anchors of

−→
ptv(o1, o2), then T (P1) and T (P2)

are two anchors for
−→
ptv(T (o1), T (o2)):

−→
ptv(o1, o2) = P2 − P1 ⇔

−→
ptv(T (o1), T (o2)) = T (P2)− T (P1) (8.23)

The actual values of a partial transformation vector are dependent of the orientation of
each feature, but the angle and anchor points between two of those vectors is not. From the
definition, it comes that the partial transformation vector is antisymetric:

−→
ptv(o1, o2) = −−→ptv(o2, o1) (8.24)

Table 8.6 shows the possible partial transformation vectors, it is worth to note that it is
not possible to define a

−→
ptv between a line and a plane, and between two planes.

8.3.1 Points

The partial transformation vector between two points P1 and P2 is simply defined by:

−→
ptv(P1, P2) =

−−−→
P1P2 (8.25)

This definition fulfils equation (8.24), since
−→
ptv(P1, P2) =

−−−→
P1P2 = −

−−−→
P2P1 = −−→ptv(P2, P1),

and it is a unique vector.
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points lines planes

points

lines

planes

Table 8.6: Partial transformation vector for points, lines and planes.

The partial transformation vector between a point P and a line L is defined by:

−→
ptv(P,L) =

−−−−−−−−→
Pproj(P,L) (8.26)

This definition fulfils equation (8.24), since
−→
ptv(P,L) =

−−−−−−−−→
Pproj(P,L) = −

−−−−−−−−→
proj(P,L)P =

−−→ptv(L,P ), and it is an unique vector.
The partial transformation vector between a point and a facet is defined in the same way

as for lines.

8.3.2 Lines

The partial transformation vector is undefined for two lines that intersect.
For two parallels line L1 and L2, given a point P1 ∈ L1, its projection on L2 is P2 =

proj(P1, L2), the partial transformation vector is then defined by:

−→
ptv(L1, L2) =

−−−→
P1P2 (8.27)

Given that proj(P2, L1) = P1, this definition fulfils equation (8.24). The choice of P1 does
not matter: ∀P ∈ L1,

−−−→
P1P2 =

−−−−−−−−−→
Pproj(P,L2), which means the uniqueness is guaranteed.

8.4 Geometric graph structure

8.4.1 Rudiments of graph theory

Definition 7 A graph G = (V,E) is a representation of a set of objects, called vertices
V = {vi}, that are linked together by edges E = {ei,j = (vi, vj)}.
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The edges and vertices can contain information, used to discriminate edges or vertices one
from the other. If the information is a number or a name, it is called a label, otherwise the
information is called attribute. Edges can be oriented or not, if an edge is oriented then
ei,j 6= ej,i.

Definition 8 A subgraph Gp = (V p, Ep) of the graph G = (V,E), is a graph such that
V p ⊂ V and Ep ⊂ E.

Definition 9 A graph G = (V,E) is called a complete graph if all vertices of V are con-
nected by an edge of E to all other vertices:

∀vi ∈ V , ∀vj ∈ V , vi 6= vj ⇒ ∃ei,j = (vi, vj) ∈ E (8.28)

Definition 10 A clique is a complete subgraph Gp = (V p, Ep) of the graph G = (V,E). A
maximal clique Gp is a clique for which it is not possible to add another vertices of the
graph G that is connected to all other vertices of Gp:

Gp is a maximal clique ⇔ ∀vi ∈ V \ V p, ∃vj ∈ V p such as ei,j = (vi, vj) /∈ E (8.29)

Definition 11 The complement graph G = (V,E of the graph G = (V,E) is the graph such
as there is an edge ei,j = (vi, vj) in the graph G if and only if there is no edge ei,j in the graph
G.

8.4.2 Geometric vertices

A vertex of the graph represents a single geometric object o. If the object is an atom, then
the vertex is labelled with the type and its attributes are the geometric parameters of the
object o (later we will add to the attributes a geometric descriptor, in section 9.2). When the
object is an output of a vision process, it is also possible to add a vision-based descriptor to
the label.

While the vertices and their associated objects are two different concepts, the first one is a
mathematical abstraction in a graph of the second is the geometric appearance of a landmark.
Since there is a one to one mapping between vertices and geometric objects, it is convenient
to refer directly to the object as being in the graph, and vice versa, to use the vertex to refer
to the object in a geometric context.

8.4.3 Geometric edges

Edges in the graph correspond to relations between two objects represented by two vertices.
For each type of relations defined in section 8.2, a type of edge can be defined.

Numeric edge The backbone of the graph is made by the numeric edges en = (v1, v2),
defined by the numeric relation, that connect the features together.

For each edge en = (v1, v2), two characteristic vectors −→c1 and −→c2 are associated, computed
with respect to each vertex v1 and v2. Given o1 the object associated to v1, and o2 the object
associated to v2, if either o1 or o2 is a point, then the partial transformation vector is used
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and −→c1 =
−→
ptv(o1, o2) and −→c2 =

−→
ptv(o2, o1). If o2 is a line, then −→c1 is equal to the vector director

of the line o2, and if o2 is a plane, then −→c1 is equal to the normal of the plane of o2.
The attributes of the edge en = (v1, v2) are the distance between two features, and the

cosinus of the angle. But it also contains the two characteristic vector −→c1 and −→c2 .
Despite that the attributes of a numeric edge contains an information is dependent of the

extremities of the edge, the numeric edges are not oriented in the graph and en = (o1, o2) =
(o2, o1), as the information carried by this edge is bidirectional.

Composite edge A composite relation defines an oriented composite edge. For a composite
object o, made with the set of object oi, there is an edge ec = (o, oi) between o and all object
oi, o is the starting point of the edge, while oi is the end.

Topological edge A Topological relation between two objects define a topological edge et,
it is labelled with the type of topological information.

The intersection relation o1 = o2
⋂
o3 is equivalent to o1 ∈ o2 and o1 ∈ o3, therefore the

intersection relation is represented in the graph using two belonging relations.
There are two types of topological edges, oriented edges and unoriented edges. Edges

labelled with a belonging relation are oriented, while edges labelled with parallel or perpen-
dicular relation are unoriented.

Scale edge The scale relation allows to define a scale edge which is also oriented from the
coarser level to the more detailed level.

8.4.4 Geometric graph

A graph is made of the whole set of features of the environment, connected by the different
edges of section 8.4.3. Figure 8.2 shows a graph with different type of features, and the label
associated to edges and nodes. The graph G = (V,E) of the environment can be split in four
different subgraphs, one for each type of edge, the numeric graph Gn = (V,En = en), the
topological graph Gt = (V,Et = et), the composite graph Gc = (V,Ec = ec) and the scale
graph Gs = (V,Es = es). Figure 8.3 shows the different types of connections and subgraphs.

The topological graph and composite graph are trivially non complete, since very few
geometric objects are actually connected by topological relations, and atomic objects have no
reason to be always part of a composite objects.

The numeric graph is not complete, which means that a vertex is connected to a limited
set of vertices. The reason is that the number of edges in a complete graph of n vertices
is equal to n·(n−1)

2 , so a complete graph would be possible to define in a small environment
with very few landmarks, but it does not scale to large environment when the number of
edges become large. Furthermore, many of the numeric edges, in a complete graph, would
be meaningless, since the relative position of distant geometric objects would have a high
uncertainty.

8.5 Geometric graph construction

In the previous section, we have presented the basic elements of the graph (vertices and edges)
and how they are related to the geometric representations defined in section 8.2. But, using
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Figure 8.2: The graph with the information contained on the edges as well as on the node.
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Figure 8.3: A graph with different types of edges

these elements, it is possible to construct many different graphs. Since we are interested
in using the graph to solve the data association problem, the graph needs to be usable for
matching purposes.

To use the graph for matching, it is important to ensure the repeatability of its con-
struction: two observations of the same place in the environment needs to lead to two similar
graphs. But it is also important that the graph contains meaningful information, for instance,
if the parameters of the edge between two features are known with a big uncertainty, then
this edge will appear similar to many other edges in the graph, which would increase the
number of possible matches, and therefore the complexity of the matching process (it would
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also decrease the reliability of the result and increase the number of false positives).
In [Bailey, 2002], a complete graph (as defined in 9) of the environment is used. It offers

the guarantee of the repeatability of the construction, but as mentioned in section 8.4.4, the
number of edges in the graph is in o(n2), and many edges between distant features will have
an important uncertainty.

But, since there is no way to guarantee the repeatability of the detection of features, the
matching algorithm will need to be robust to occlusions, so it should be able to be resistant
to small variations in the construction of the graph. This is why in this section we present
how we construct a partial graph of the environment.

Section 8.5.1 covers the insertion in the graph of a model of the environment, known
beforehand, while section 8.5.2 covers the case of the insertion and update of the graph from
information coming from a multi-map environment (as described in section 1.3).

8.5.1 Global construction

Global construction is relatively straightforward, usually a model of the environment coming
from a geographic information system, such as [IGN, ], contains a list of features in a global
frame, with an associated error on the parameters of the features.

The following algorithm will create the graph G = (V,E) for such a model:

Given the set of objects O = {oi} in the model:

1. insert in the graph, a vertex vi for each object oi ∈ O

2. for all vertex vi ∈ V , associated to object oi, and for all vertex vj ∈ V/j 6= i, given oj
the object associated to vj , if d(oi, oj) + 3σd(oi,oj) < Td connect the two vertices with a
proximity edge

Where σd(oi,oj) is the uncertainty associated with the distance d(oi, oj). For a given model,
this algorithm defines a unique graph.

8.5.2 Incremental construction and update

The challenge of constructing a graph from a map built by a mobile robot is to ensure that
the numeric edges are meaningful, in other words, that the relative relation between two
features remains known with a high level of confidence. Assuming there is no loop closure,
the problem with a SLAM approach is that the error on the position of the robot increases
when the robot moves in the map, therefore the uncertainty on the position of the landmarks
also increases, and since the relative relations are computed from these positions, it makes it
problematic to compute meaningful information.

The problem of the increase of uncertainty can be kept under control using a multi-map
approach like in [Estrada et al., 2005] (see section 1.2), since in multi-map, the error on the
position of the robot, and the local error on the position of the landmarks, is kept small.
This means that the incremental construction can only compute reliable relations between
landmarks that belong to the same local map.

It is important to note that two objects o1 and o2 can be available in two different maps
M1 and M2 ( o1 ∈ M1, o1 ∈ M2, o2 ∈ M1 and o2 ∈ M2), in which case the map where the
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8.5. Geometric graph construction

relative transformation is the smallest is used to label the numeric edge between o1 and o2.
The following algorithm corresponds to the SPAtial Feature rectangle in figure 1.6, it takes

as input a finished map M = oi, and update the graph G = (V,E).

1. ∀oi ∈ M, if there is no vertex in V corresponding to oi, add a new vertex vi in the
graph G

2. ∀(oi, oj) ∈M2/i 6= j:

• if there is already an edge between eni,j = (vi, vj), check if the transformation given
by the new map is more accurate, and then update the edge eni,j . Then check that
d(oi, oj) + 3σd(oi,oj) < Td is still true, if it is not then the edge eni,j is removed

• if there is no existing edge, and if d(oi, oj) + 3σd(oi,oj) < Td, then add an edge
eni,j = (vi, vj)
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Chapter 9

Graph matching

The previous chapter shows how the features in the environment can be connected together
in a graph that exhibits the relations between the geometric features. As explained in [Bailey
and Durrant-Whyte, 2006], it is important to use the neighborhood of features to get an
accurate match. The geometric graph allow an easier manipulation of that neighborhood.

Section 9.1 contains a review of existing algorithm for graph matching, as well as an
explanation of why we think they are inadequate for solving the problem of spatial graph
matching. The algorithm we are proposing relies on finding an initial set of matches, and
then extending this set. To find the initial matches, the use of a geometric descriptor is
proposed in section 9.2, and an algorithm to select the seeds using the descriptors is described
in section 9.3. Then the seed and growth approach that has been used for interest points in
section 4.3 and facets in section 5.2 is extended to all types of features in section 9.4

9.1 Graph match metric

Inexact graph matching Graph matching is an active research field, since graphs are an
efficient way to represent objects, and relations between them, being able to match graphs
allow to match different objects. There are applications to graph matching in many fields,
such as computer vision, scene and object recognition, chemistry and biology.

The problem of exact graph matching between two graphs Gobs = (V obs, Eobs) and Gdb =
(V db, Edb) is to find a mapping f between the vertices of V obs and the ones of V db, such as
for all (u, v) ∈ Eobs, (f(u), f(v)) ∈ Edb. When such a mapping f is an isomorphism, Gobs

and Gdb are isomorph. But the mapping f can exist only if the two graphs have the same
number of elements card(V obs) = card(V db), which does not happen for matching the graph
of the environment with an observation graph. Assuming card(V obs) < card(V db), the inexact
graph matching problem can then be transformed in an exact problem by finding a match
between Gobs and a subgraph of Gdb. But in the case of the SLAM problem, the model of
the environment is not complete, in other words, the robot can observe new features, which
means there are features in V obs that are not available in V db, the problem at hand is then
to match a subgraph of Gobs to a subgraph of Gdb.

In [Abdulkader, 1998], the inexact graph matching has been proven to be a NP-complex
problem, which means that a solution to the matching can be verified in polynomial time, but
there is no efficient algorithm to find a solution. [Skiena, 2008] lists the algorithm that gives
the best answer to the inexact graph matching. But all these algorithms have an exponential
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9.2. A Geometric descriptor for fast seed selection

computational cost, which makes them impractical for use to match graphs of the size of an
environment graph, in a context of a robot that needs to get match results quickly.

Graph matching for SLAM In the context of the SLAM problem, graph matching has
been applied to solve the loop closure problem in [Bailey, 2002]. As explained in chapter 3, this
algorithm uses a complete graph of the environment, initial matches are found by comparing
the attributes and labels of the nodes, then all the matches with similar edges are connected
together in a match graph, finally the set of good matches is selected as the maximum clique
of the match graph. This raises several problems, the use of complete graph does not scale
to a large environment, as mentioned in section 8.5, and the search of the maximum clique
problem is also a NP-complex problem.

Overview of our approach Compared to [Bailey, 2002], our algorithm for matching works
on a partial graph, the first step is very similar and generates initial matches using the
attributes of the node, and similarly we construct a graph of matches with similar edges.
Since finding the maximum clique would not work on a partial graph, our algorithm makes
an approximation. The last stage of the algorithm uses the graph structure to find other
matches:

1. Find an initial list of seeds

(a) compute an initial set of matches using a geometric descriptor

(b) generate a joint compatibility graph (a graph connecting two matches with similar
edges) and an exclusive graph (a graph that connect two matches that share at
least one node)

(c) compute a transformation T between the observed features and the data base, and
use that transformation to find the list of seeds

2. Complete the initial set of matches using the transformation T and a seed-and-growth
approach.

Numeric Edge comparison To compare two numeric edges, the Mahalanobis distance is
used on the distance and cosinus. For two edges e1 (with distance d1 and cosinus c1) and e2
(with distance d2 and cosinus c2), σx is the standard deviation of the value x, the condition
of similarity for the two edges is:

e1 ∼ e2 ⇔
(d2 − d1)2

σ2
d1

+ σ2
d2

+
(c2 − c1)2

σ2
c1 + σ2

c2

< τ2 (9.1)

With τ = 9, corresponding to a probability of 90% that the two edges are equals.

9.2 A Geometric descriptor for fast seed selection

An exhaustive search with the a “seed and grow” algorithm forces to look for each potential
seed with each other node in the graph. Since this would be very costly, it is important to
find a method to have a limited number of seeds. For interest points (see Chapter 4), or for
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Chapter 9. Graph matching

facets (see Chapter 5), we have been able to select the seed using a signal-based descriptor,
comparing the texture of the detected features with the content of the database.

But it is not always possible to use such a descriptor, for instance, there is currently no
good segments signal based descriptor (see in the perspective, section 2.1). And in a multiple
sensors system, the signal information is not usable from one type of sensor to an other. It
is also possible that the information might not be available, for instance if the robot uses a
pre-existing model. An other case where signal information fails is when there is an important
change of viewpoint, which makes it impossible to use signal information for mapping with a
ground robot and aerial robot, for instance.

Hence the need for a descriptor that does not rely on signal information, but on information
that is available all the time, and is of same nature for each source of information, such as
geometric information.

We list the properties of a good geometric descriptor (section 9.2.1), then we present
existing descriptors for a shape made of a 3D points cloud (section 9.2.2). Then we see
how to extend these descriptors to other types of features, like segments and planes (sec-
tion 9.2.3), and how to weight the vote for an histogram using uncertainties (section 9.2.4).
In section 9.2.5, we put all the pieces together and show how to compute the descriptor, and
section 9.2.7 features some results obtained with the descriptor.

9.2.1 Properties of a good geometric descriptor

Importance of the neighbourhood The geometric information of a single feature is not
good enough, for instance, points are sizeless, so individually they have the same geometric
appearance. This is also true for segments or facets, since because of the detection process
and of occultation the boundary of segments and facets is not accurate.

But the surrounding of features carry interesting information, for instance, the descriptor
has to be able to distinguish a segment that is isolated, from one where many segments were
detected around it (Figure 9.1).

Figure 9.1: In this case the green segments are isolated, so if the robot is detecting two
isolated segments, then it can deduce that it is not in the area with the black segments, and
therefore it should not try to match the two isolated segment with the black segments.

Use of metric information So a geometric descriptor should count the number of each
type of features. But this is not enough, since a given environment is bound to contain a
lot of features with the same number of features types in the neighbourhood, for instance
consider a set of three points on a line (first point at x1 = 0, second at x2 = 2 and last at
x3 = 3), all points have the same numbers of points in their neighbourhood.
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9.2. A Geometric descriptor for fast seed selection

That is why a good geometric descriptor must also take into account other geometric
information such as distance, angles, or partial transformation vector (see section 8.3). For
our example with three points and with a geometric descriptor that contains the list of
distances, the descriptor of the first point is d1 = (2, 3), the second point is d2 = (1, 2) and
for the last one d3 = (1, 3), all of them are different.

Uncertainty The geometric parameters of features are estimated with a known uncertainty,
which means that the descriptor has to take this uncertainty into account.

Occultation Since it is not possible to guarantee a full observability of the feature, and of
its surrounding at all time, the descriptor has to be able to rely on the parameters that are
always observable, and to remain accurate when a feature is not visible.

Fast comparison Since the descriptor is supposed to help finding a seed, comparing de-
scriptor, and finding the best set of candidates needs to be done quickly. This can be ensured
if the size of the descriptor is fixed and the comparison is done by computing a distance. For
efficient matching and retrieval, it should be possible to store it in a kd-tree [Beis and Lowe,
1997].

9.2.2 Shape descriptors for 3D Clouds

In case of a cloud of 3D points, the Extended Gaussian Image was introduced in [Horn, 1984],
it relies on the use of a histogram (see Section 2.3.4) of the direction of each triangle weighted
by the surface of the triangle, this histogram is invariant by translation, but rotates with the
object. To make the Extended Gaussian Image invariant to rotation, in [Kang and Ikeuchi,
1991] Kang suggests to use a complex value for the voting, where the area of the triangle is
the amplitude and the normal distance from the triangle to the center of mass is the phase.

Figure 9.2: Possible division of space for a shape histogram, from left to right: shell, sectors
and spiderweb.

For shape retrieval in a spatial database, a shape histogram was introduced in [Ankerst
et al., 1999], the space is divided around the center of mass of an object (either using a shell,
sectors or spider pattern, see figure 9.2), the value of each bin is the number of points present
in a given sector. For a shell division, the out-most shell is unbounded, this representation is
invariant to rotation. Shape distributions were proposed as generalization of shape histogram
in [Osada et al., 2001], instead of computing the distances with the center of mass, the
histogram is computed using either the distance between two random points or the surface of
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Points Segments Facets
Points d, ptv d, ptv d, ptv

Segments d, θ, ptv d (unreliable), θ
Facets d (unreliable), θ

Table 9.1: This table show what kind of relations can be computed for each type of features,
d (distance), θ (angle) and ptv (partial transformation vector).

the triangle made by three random points or the volume contained in the tetrahedron made
of four random points.

In [Kazhdan et al., 2004], Kazhdan introduces a method to measure the level of reflective
and rotational symmetry around an axis, the measures around different axes give a descriptor
for the shape. The level of symmetry is given by the distance between the symmetric of an
object and the closest real object.

9.2.3 Generalization to different types of features

All the existing shape descriptors [Tangelder and Veltkamp, 2004] are used to describe the
shape of a single object, made of a cloud of points. This makes it straightforward to extend
them to be a geometric descriptor for an environment model made of points, instead of using
the center of mass as a reference, the point feature is the center of the descriptor, and the
cloud of points is the set of neighbour features.

We are going to base our generalisation using the shape descriptor of [Ankerst et al.,
1999], since this is a descriptor that relies on angles and distances, which as we have shown
in section 8.2.4 can be computed for all types of features.

Table 9.1 show which kind of relations can be computed between each type of features.
It is worth to note that the distance between segments and facets, and facets and facets is
unreliable because it would rely on the boundary of each type of facets. There are two ways
to compute a distance between two segments, a reliable one which is computed between the
supporting lines of the segment, and an unreliable one, computed between the two segments,
which is a better indication of proximity than infinite line, but requires a full observability of
the segment extremities.

Characteristic vector and anchor It would also be interesting to include in the geometric
feature descriptor the relation between the neighboring features. For a given atom å0, with two
neighbors atoms å1 and å2, the geometric descriptor of å0 should also contain information of
how å1 relates to å2, a distance can always be computed, but using the partial transformation
vector for points (section 8.3), the vector director of segments and the normal of planes, we
can also compute an angle and another distance.

As shown in section 8.3, the partial transformation vector is really well defined only for
points, it can be extended to provide a meaning in case of line segments that do not intersect,
but it is not possible to define a good one for a plane. That is why for segments and planes
it is easier to use the vector director and the normal. The partial transformation vector is
also associated to an anchor, for a point the anchor is the projection of the point on the other
atom. In case of two segments S1 and S2, the anchor would be defined as the closest point
of segment S2 on segment S1, and in case of parallel line, a point at the infinite, in case of
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a segment and plane, the anchor point can be defined in the same way. But for two planes
Π1 and Π2, the anchor has to be a line, which is fine since we are going to compute distances
between anchors to fill the histogram.

The following list sums up how to define the characteristic vector and its anchor point
between an atom å0 and å1 :

• when either å0 or å1 is a point, the partial transformation vector (section 8.3) can be
used

• when either å0 or å1 is a segment (and none a point), the direction vector or the normal
is used, the anchor is the closest point between the two atoms

• when both atoms are planes, the normal is used and the anchor is the intersection line

It is worth to note that if the feature for which we compute the descriptor is a point, then
the distance between anchors is always equal to 0. And that if it is a plane, all the partial
transformation vector of points are going to be parallel.

The characteristic vector is transformed into an histogram, by computing the angle be-
tween all the vectors, and the distance between the anchors.

Occupancy histogram An occupancy histogram is made by having each neighbour feature
vote for the cell they are occupying. For instance a point vote for the cell at the distance
from the object, while a segment or facet vote for multiple cells.

An atom å vote for a cell Ck (̊a0) of the occupancy histogram of the atom å0 if

å
⋂
Ck (̊a0) 6= ∅ (9.2)

A cell for the occupancy histogram is defined by

∀k ∈ [0;n− 1[, Ck (̊a0) = {P | k · s < d(P, å0) < (k + 1) · s} (9.3)
Cn(̊a0) = {P | n · s < d(P, å0)} (9.4)

An other way to define the occupancy histogram is to compute the minimum and max-
imum distances between a point of å and å0, and then to use this interval to vote for each
cell. These minimum and maximum distances define an interval called the distance interval :
for an atom å in respect of an atom å0 is the interval [d1, d2] such as:

d1 = max(δ | ∀P ∈ å, δ < d(P, å0) (9.5)
d2 = min(δ | ∀P ∈ å, d(P, å0) < δ (9.6)

This histogram allows to recover information when a feature is split, but it is too much de-
pendent on the boundaries, and extremities of segments and planes are not reliably extracted.
For points, the occupancy histogram is equal to the distance histogram.

List of possible histograms :

• distance

• support distance
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• angle

• distance between neighbour features

• angle between characteristic vectors

• distance between anchor points

• occupancy histogram

9.2.4 Uncertain weighted histogram

In case of a dense cloud of 3D points the noise can be considered as negligible with respect to
the number of points. But in our model of the environment, the number of features is very
small, this increases the sensitivity to noise. And the discretisation of the histogram amplifies
the problems: let’s take the example of a two bins histogram ] −∞, 0.0] and [0.0,+∞[, the
measurement µ = 0.05 with a standard deviation of σ = 0.1 would contribute fully to the
second bin, while there is a probability of 0.30854 that the actual measurement is inferior
to 0.0 and belongs to the first bin. Using uncertainty to weight the histogram, the first bin
would receive a vote of 0.300854 and the second one 0.699146 (see Figure 9.3 to see how a
Gaussian covers an histogram).

Figure 9.3: This shows the Gaussian distribution in (red) centred around the value µ. Using
a “classical” histogram, only the fourth bin is incremented, with an “uncertain weighted”
histogram, each bin is incremented by the corresponding surface of the Gaussian.

Gaussian weight The Gaussian distribution is given by:

Eµ,σ(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (9.7)

Which means that the probability that the measurement is inferior to x is given by the
following equation:

Pµ,σ(x) =
∫ x

−∞
Eµ,σ(t)dt (9.8)

=
1
2

[
1 + erf

(
x− µ
σ
√

2

)]
(9.9)

lim
x→∞

(Pµ,σ(x)) = 1

As shown in equation (2.28) of section 2.3.4, the weight of the vote for a bin in the interval
Ia,b = [a, b], corresponds to the area below the Gaussian in the interval (Figure 9.3), this is
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given by the equation:

Wµ,σ(a, b) = Pµ,σ(b)− Pµ,σ(a) (9.10)∑
Ia,b

Wµ,σ(a, b) = 1 (9.11)

Uncertain weighted occupancy histogram To compute the uncertain weighted occu-
pancy histogram for a given feature å, the distance interval [d1, d2] ((9.5) and (9.6)) is used,
if σd1 and σd2 are the standard deviations of d1 and d2, then the vote function f(δ) is given
by:

fµ,σ(δ) =

{
δ < µ, e−

(x−µ)2

2σ2

δ ≥ µ, 2.0− e−
(x−µ)2

2σ2

(9.12)

f(δ) =
1

(σd2 + σd1)
√

2π
(fd1,σd1 − fd2,σd2 ) (9.13)

This function f(δ) is continuous, since limδ→d−1
fµ,σ(δ) = 1.0 = limδ→d+1

fµ,σ(δ) and an

other interesting property is that when σd1 = σd2 , then
∫ ∞
−∞

f(t)dt = d2 − d1, which means

that for a segment the total vote to the occupancy histogram is equal to the length of the
segment.

The figure 9.4 show the vote curve for the histogram.

321 4 5 6

Figure 9.4: The uncertain weighted occupancy histogram means that the cell around the
extremities do not get a full vote. The green line shows the two extreme distances with the
uncertainty on the distance, while the red curve shows the value of the vote.

9.2.5 A Geometric Descriptor

The geometric descriptor is made of a selection of the histograms of section 9.2.3, computed
using uncertain weighted histogram as explained in the previous section. The information
needed to compute these histograms is available in the graph as shown on figure 8.2 of
section 8.4.4. The choice of the histogram require experimentation and probably depend on
the experiment and the type of matching needed.

9.2.6 Descriptor comparison

Since the histograms can be computed with a different number of neighbour features (due to
occultation), to compute the comparison between descriptors we use the zero mean normalised
cross correlation coefficient described in section 2.3.5.
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9.2.7 Results

To validate the use of the descriptor, we made several experiments using synthetic segments.
The goal is to show that the descriptor is robust to noise and to a certain extent to occul-
tations, but also that the descriptor gives a good description of the neighborghood of the
geometric objects.

For each experiment, we synthesize a set of features, we select one feature as the center
of the descriptor, then we generate the edges between that feature and the other features, to
compute many different descriptors. Then we can compute the correlation between all the
descriptors and a selected descriptor.

When looking at the graph of the result, it is important to keep in mind that a score of
0.0 means that two histograms are uncorrelated, while a score of 1.0 means the histograms
are equal (section 2.3.2).

The results usually show the result of histograms comparison for two standard deviations,
0.1m and 0.01m, which corresponds to the range of error obtained in the slam process. The
standard deviation is the error for the point or for the extremities of the segments.

Experiment #1: rotating segments The goal of this experiment is to demonstrate how
the information on the angle of segments is represented by the histogram, this is simulating
the corner of a building. So all segments are starting from the origin, and the end points are
located on half of a sphere, the vector director of all segments is given by:

(θ, φ) ∈ [0, π]× [0,
π

2
], (cos(θ), sin(θ), cos(φ)) (9.14)

For practical reason, the angles θ and φ are discretised:

i ∈ [0, 17] ∩ N, θ =
i

18
· π (9.15)

j ∈ [0, 8] ∩ N, φ =
i

9
· π

2
(9.16)

Then we will consider all the possible corners using Si=j=0 as the central segment. We
create an edge between Si=j=0 and two other segments Si1,j1 and Si2,j2 , then we compute the
descriptor for Si=j=0, since there are 18 ∗ 9 = 162 segments, we have 12880 possible corners
and descriptors. Then a random corner is chosen as the reference, and the comparison of its
histogram with all other descriptors is computed.

Figure 9.5 shows the curve of the correlation score, with a strong peak around 0.0 showing
uncorrelated data, while on figure 9.6 the comparison score when only the angle information
or rotation between characteristic vectors is used. This experiment shows that for segments,
the descriptor is quite efficient at eliminating most of the possible configuration, and as shown
on figure 9.7, the configuration with a high correlation score are very close to the reference
configuration.

Experiment #2: points on a sphere We did the same experience as previously, but
using points instead. The central point, that is used to compute the descriptor, is the origin
(0, 0, 0). And 162 points are equally dispatched on the quarter of a sphere. This time, three
neighbour points are used to create the graph.

The results are shown on figure 9.8. Again, they show a peak of uncorrelated configuration
around 0 and demonstrates the selectiveness of the descriptor.
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(a) σ = 0.01m (b) σ = 0.1m

Figure 9.5: Histogram of the correlation score between the descriptor for a segment with other
segments, using an angle and the characteristic vector histograms. The horizontal axis show
the correlation score between [−1, 1] and the vertical axis the number of features for a given
score.

(a) Angle (b) Characteristic Vector

Figure 9.6: σ = 0.01m Histogram of the correlation score between the descriptor for a segment
with other segments, using an angle and characteristic vector histograms.

Experiment #3: points on multiple spheres This experiment demonstrates the use of
the distance histogram, so we dispatch points on 5 spheres. 15931 configurations are generated
for this experiment, figure 9.9 show the correlation results.

Experiment #4: Robustness to noise For this experience, we want to demonstrate that
the descriptor is robust to the noise. To do this we use three segments, and using a normal
distribution we add noise to those segments to generate 10000 configurations.

Figure 9.10 shows that most configurations have a score higher of 0.98 for a standard
deviation of 0.01m and higher than 0.9 for a standard deviation of 0.1m.

Experiment #5: occultation This experiment demonstrates how the descriptor behave
when segments are removed from the configuration. For this experiment, we use the same
set of segments as in the first experiment, except that this time the reference configuration
contains all the 160 segments, and we generate 157 other configurations by removing one
segment until only 3 segments are left. As shown on figure 9.11, the correlation score decreases
slowly when the number of segments decreases, and the error on the extremities of a segment
makes no difference for the occultation.
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(a) XY (b) YZ (c) ZX

c < 0.5

(d) XY (e) YZ (f) ZX

0.5 < c < 0.95

(g) XY (h) YZ (i) ZX

0.95 < c

Figure 9.7: Projection of segments on the XY, YZ and ZX planes, the red segments are the
three segments of the reference configuration, the greener the segment is the higher correlation
score c the configuration has with the reference one, the bluer the lower.

(a) σ = 0.01m (b) σ = 0.1m

Figure 9.8: Points on a sphere, at equal distance of the origin, only the histogram of the
characteristic vector is used.
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(a) Distance (b) Characteristic vector

(c) Distance and PTV

Figure 9.9: Cloud of points at different distance using a standard deviation of σ = 0.01m

(a) σ = 0.01m (b) σ = 0.1m

Distance, angle and characteristic vector

(c) Angle at σ = 0.01m (d) Characteristic vector at σ = 0.01m

Figure 9.10: Robustness to noise, the interval for the correlation is [0.8; 1.0]
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(a) angle and characteristic vector at σ = 0.01m (b) angle and characteristic vector at σ = 0.1m

Figure 9.11: Occultation of segments. The horizontal axis show the number of segments in
the configuration, while the vertical show the correlation

9.3 Seeds selection

Given the graph of observations Gobs and the graph of the features in the model Gdb (also
called reference graph), the first step of our algorithm requires to find a set of initial matches,
commonly called seeds.

(a) Gdb (b) Gobs

Figure 9.12: Example of graphs, on the left observation, on the right reference

The seeds selection algorithm uses the descriptor to find an initial set of matches. Then
the next two steps of the algorithms are about generating two graphs that will be used to
determine which nodes are good matches. The joint compatibility graph connect matches that
are related to each other, matches with an edge in both the observed graph Gobs and in the
reference graph Gdb. While the inclusive graph connects matches that share the same vertex.
The last step computes a transformation T between the observed features and the reference
features.

Initial matches set Given two graphs of features Gobs = (V obs, Eobs) and Gdb = (V db, Edb),
we note D(v) the descriptor of the vertex v. The initial set of matchesM (Figure 9.13(a)) is
given by:

M =
{
mi,j = (vobsi , vdbj ) ∈ V obs × V db/

ZNCC(D(vobsi , vdbj ) > TD
type(vobsi ) = type(vdbj )

}
(9.17)

type(v) return the type of the feature, the condition type(vobsi ) = type(vdbj ) ensures that
the type of the match is consistent, and that a point is associated to a point, and not to other
type of features.
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(a) Initial matches set (b) Joint Compatibil-
ity Graph

(c) Inclusive graph (d) Exclusive graph

Figure 9.13: Example of an initial set and of the induced graphes.

Joint compatibility graph The joint compatibility graph Gcommon (Figure 9.13(b)) is used
to connect together matches whose vertex are connected together in the geometric graphs Gobs

and Gdb.
Gcommon = (M, Ecommon), with an edge ecommon(i,j)↔(k,l) = (mi,j ,mk,l) if and only if there is an

edge eobsi,k ∈ Eobs and an edge edbj,l ∈ Edb, and if the edge eobs is compatible with edb.
By definition of the graph, the vertices inside the joint compatibility graph are grouped

by cluster of possible set of seeds, using a depth-first search algorithm [Cormen et al., 1990]
those clusters are separated in a set of graphs {Gcandidatesi }.

Inclusive graph Some of the matches ofM contains features that appear more than once,
for instance, it is possible to have mi,j = (vobsi , vdbj ) ∈ M and (vobsi , vdbk ) ∈ M. Selecting
the match with the higher ZNCC is not a good solution, since because of occlusions, and
imperfections of the descriptor, a good match can have a lower score than a wrong one.

To solve this problem a inclusive graph (Figure 9.13(c)) is built, it is defined such as
Gcomp(M, Ecomp), with an edge ecomp(i,j)↔(k,l) = (mi,j ,mk,l) if and only if i 6= k and j 6= l. Since
the lack of an edge between two matches indicates a conflict between these two matches, any
clique of that graph Gcomp ensure that the objects in the matches are used only once.

The complement graph of compatibility Gcomp is the exclusive graph (Figure 9.13(d))
Gincomp, where two edges indicate a conflict.

Seeds selection A set Si = {mi,j = (vi, vj) ∈M} of possible seeds is needs to fulfil the
following constraints:

∃!T , vi = T · vj (9.18)
∀mk,l ∈ Sii 6= k and j 6= l (9.19)

Equation (9.19) ensure that vertices of the graph of observation and of the reference graph
are used only once, while equation (9.18) ensure the spatial compatibility of the matches.

To compute T and fill the set Si, a RANSAC [Fischler and Bolles, 1981] process is used,
the graphs Gcandidatesi = (V candidates

i , Ecandidatesi ) are used to focus the compatibility check:
The set Smax ∈ {Si} is the set with the maximum number of matches, and it is the set

that is used for the seeds:

Smax ∈ {Si} where ∀i card(Si) ≤ Smax (9.20)
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1. Randomly take the minimal number of matches in V candidates
i to compute T (the number

of features needed, depends on the type of features, see annexe B)

2. Count the number of matches mi,j = (vi, vj) ∈ V candidates
i such as vi = T · vj

3. This process is repeated a given number of times, the transformation T is chosen as the
transformation that validate the most matches

uncertainty on 0.001 0.011 0.021 0.031 0.041 0.051 0.061 0.071 0.081 0.091
the observation
good matches 125 128 121 114 98 82 50 31 17 10
false matches 0 0 0 2 4 2 2 2 2 1

Table 9.2: Number of matches as a function of the uncertainty

9.4 Seed and grow

Between two graphs G1(V 1, E1) and G2(V 2, E2), once an initial set of matchesM = (v1
i , v

2
i )

has been found, it is interesting to expand this set using the transformation T between the
matches, ∀(v1

i , v
2
i ) ∈M, v1

i = T · v2
i .

The idea of the seed and grow approach is to “walk” in the graph, jumping from node to
node, following the edges:

Given an initial set of matches M = (v1
i , v

2
i ), and the transformation T . As long as M 6= ∅

1. Take a match (v1
i , v

2
i ) ∈M and remove it from M

2. Given E1
i the subset of edges from E1 that contains the vertex v1

i , and E2
i the subset

of edges from E2 that contains the vertex v2
i .

∀e1i,j = (v1
i , v

1
k) ∈ E1

i , E2
i (j) is the set of edges in E2

i that is compatible with e1i,j (as
defined in section 9.1 ), then if there is e2i,k = (v1

i , v
1
k) ∈ E2

i (j) such as v1
j = T · v2

k, then
(v1
j , v

2
k) is a match and is added to M.

9.5 Simulated test

To validate the algorithm, we used an existing dataset representing a small village, containing
11327 segments. The associated graph is constructed as in section 8.5.1, with an uncertainty
on the extremity set to σ = 0.01m. Then observations are produced by applying a rotation
and noise on subset of the segments, as shown on figure 9.14.

Table 9.2 contains the evolution of the number of matches as a function of the uncertainty
on the observation set.
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9.5. Simulated test

Figure 9.14: The top figure shows the initial environment model, the bottom left figure is a
closeup of a given area of the village, and the bottom right shows the result of a simulated
perception of this area. To simulate this perception, noise is added and the overall model
is moved in a different reference frame – as shown by the difference with the grid. The red
segments indicate successful matches before the “seed and growth” process
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Conclusions

Augmenting the information contained in environment models requires to develop new algo-
rithms to extract more information from the perceived data. In part II, we have presented
two new landmarks detectors, for planar facets in chapter 5 and line segments in chapter 6.

But there is currently no efficient matching process for segments in the image frame, and
that we are also interested in the possibility to match data coming from different sensors,
as well as data coming from existing geographic information systems. Therefore, in part III,
we have presented a method to define a structure over a environment model composed of
heterogeneous landmarks, and a method to match geometric landmarks.

Future work would focus on further validation of this geometric model, first in the context
of vision, then by extending it to other type of sensors (especially 3D Lidars), then for the use
of geographic information system. But this raises a Lot of interesting challenges, both for the
geometric model approach, as well as the need to develop and improve existing algorithms.

1 A multi source environment

Currently most of the work on mobile outdoor robot has focused on a self-sufficient robots
operating alone in the environment. But we believe that in the future robots should be able
to communicate with a large variety of other systems, that would be either other robots in
the close vicinity, sensors arrays present in the environment, and other information database
systems.

A multimap approach like in [Vidal-Calleja et al., 2009] allows for a system of robots to
map the same environment. It has been designed to work in decentralized manner, but the
algorithms have actually not been fully decentralized. Indeed in our experiments, while the
robots build independent maps, they share the same graph of local maps. In a real world
application, the robots will not be able to communicate which other in a permanent manner:
each robot will need to maintain his copy of the graph of local map, and can only exchange
information when it is possible. This exchange of information is essential, since it is the only
way to keep the system consistent (by ensuring that no information is used twice), and of
course for the robots to cooperate.

There is naturally a need to select what information has to be exchanged. Some infor-
mation are indeed of no use for the map-matching process (e.g. a single non discriminative
landmark). Grouping features is a way to structure and select relevant information to be
exchanged – it also allows to reduce the information to store in the stochastic map with
collapsing techniques [Gee et al., 2007].
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2 Landmark detection

Of course, the more information are present in the landmark models, the better the resulting
overall geometric model is. We draw here some work perspectives on the definition and
extraction of landmarks.

2.1 Towards a line segment descriptor

Our line segment detectors are currently only able to extract geometric information from an
image: there is no signal-based descriptor associated to segments. While a matching process
as defined for points in chapter 4 is not necessarily needed because geometric matching can
be sufficient, a signal-based descriptor is still useful to increase the differentiation between
the different segments.

But defining a reliable signal-based descriptor for line segment is tricky. For points, an
hypothesis of local planarity and signal invariance in the close vicinity can be used to use
the image patch as a descriptor (or as a base for a gradient descriptor). But this assumption
does not hold for segments, whose length in the image implies that it is not possible to ignore
the distortion due to the projection. Also, many segments correspond to a 3D edge, and in
many case, only one side of the segment can have a stable descriptor, which requires to have
two descriptors for each side. It could be possible to use the depth information, recovered
from the estimation of the 3D geometric parameters from a SLAM process, to compute a
projection of the image patch around a segment like we did for facets in chapter 5.

2.2 Planes detection

Compared to points, segments and facets increase the density of the model of the environment.
But the extraction of planes would yield a much better geometric model. Some ways to extract
planes have been mentioned in chapter 7: an other one would be to rely on the detected facets
and segments, that could be grouped to generate plane hypotheses. A further process could
then confirm these hypotheses, e.g. by fitting homographies on the image area defined by the
grouping process.

2.3 Composite object detection

Since individual landmarks are not discriminant enough and may lead to false matches, work
has been devoted to do batch matching of multiple landmarks at the same time ( [Neira and
Tardos, 2001,Bailey, 2002], and the work depicted in part III of this manuscript). But we think
it is interesting to extend the graph matching approach to directly match composite objects,
because this would increase the discriminancy of individual objects. The main difficulty is to
define a good grouping algorithm: for instance, in chapter 5, the grouping algorithm work by
defining the center of the group as the center of gravity of a set of facets, which gives different
results depending on whether a set of facets is completely or only partially detected. This
does not prevent the matching algorithm to work, but this prevents some of the group to be
used as a seed, and thus decreases the efficiency of the algorithm.

The geometric descriptor of chapter 9 could be used to check which features are likely to
be part of a composite object. To do this it is necessary to use a model of the composite
object, and then to compute the descriptor for each object. But since observed features are
likely to be connected to features that are not part of the composite object, instead of using a

128



3. Geometric graph

ZNCC score to check features, it is needed to compute whether a feature has a descriptor Df

that dominates the descriptor of the model Dm (∀iDf (i) ≥ Dm(i)). Then a graph matching
method could be used to check the compatibility between the set of features and the composite
model.

3 Geometric graph

3.1 Extending the graph

It is important to reduce the number of geometric features to check in a graph match algo-
rithm. This can be done using the current estimation of the position in the environment, but
when the uncertainty on the position of the robot is large, other information can be used to
reduce the number of candidates. As in chapter 5, each feature can be associated to a signal
descriptor (for facets it is an image patch), and this signal descriptor is also used. It is also
be interesting to associate a descriptor to the general surrounding of the environment, like
mixing a topological map with a metric map, or use a fab maps approach [Cummins and
Newman, 2009] to detect a loop closure.

Such information could be inserted in the graph by introducing a new type of vertex,
called “location” that contains the information of the descriptor of the current place.

3.2 Graph construction

Improvements on the graph construction could relate on how links are established between
features. Currently the features are connected using a distance measure, ensuring that the
uncertainty on the distance remains small. Using a visibility map, or the information matrix
(two features that have been perceived from the same position are highly correlated), it is
possible to only connect two features that are likely to be visible together. Hopefully, this
would decrease the likelihood that the two features are not found in the set of observed
features.

One of the issue of the graph matching algorithm is that occlusions decrease the efficiency
of the geometric descriptor, which prevents good matches to occur. An algorithm that de-
tects the occurrence of occlusions could be exploited to trigger further observations before
attempting the establishment of matches.

More generally, work on the data acquisition strategy is required to make the best use of
a set of robots, and to increase the amount of information encoded in the maps.
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Appendix A

Computing distances and projection

1 Projections

1.1 A point on a line

Given a line L of origin −→oL and direction
−→
dL, with M−→oL and M−→

dL
the respective covariance,

and given a point P of covariance MP , the projection of the point P on L is given by:

proj(P,L) =<
−→
dL, P −−→oL > ·

−→
dL +−→oL (A.1)

covproj(P,L) = Jp ·M · Jpt + Jo ·M−→oL · Jo
t + Jd ·M−→

dL
· Jdt (A.2)

with Jp =
−→
dL ×

−→
dL (A.3)

Jo = −Jp+ I3 (A.4)

Jd =
−→
dL × (P −−→oL)+ <

−→
dL, P −−→oL > ·I3 (A.5)

1.2 A point on a plane

The projection of a point P on a plane Π, with O ∈ Π and −→n is given by:

P− < P −O,−→n > ·−→n (A.6)

2 Distances

2.1 Closest points between two line

Given two lines L1 (defined by its direction
−→
d1 and by a point O1 ∈ L1 ) and L2 (defined by

its direction
−→
d2 and by a point O2 ∈ L2 ), the closest point P1 ∈ L1 from L2, and the closest

point P2 ∈ L2 from L1:

P1 =
<
−→
d1,
−→
d2 > · <

−→
d2,
−−−→
O1O2 > − <

−→
d1,
−−−→
O1O2 >

1− <
−→
d1,
−→
d2 >2

·
−→
d1 +O1 (A.7)

P2 =
<
−→
d2,
−−−→
O1O2 > − <

−→
d1,
−→
d2 > · <

−→
d1,
−−−→
O1O2 >

1− <
−→
d1,
−→
d2 >2

·
−→
d2 +O2; (A.8)
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2.2 Line to line

The distance between two lines is simply given by the distance between the closest points
defined in section 2.1.

2.3 Line Segment to line

Given a line segment S1 (with extremeties A and B) and line L2, the closest point between
the line support of S1 and L2 are P1 and P2, then the distance is given by:

t =
<
−−→
AP1,

−−→
AB >

||
−−→
AB||2

(A.9)

d(S1, L1) =


||
−−→
AP2||, t < 0
||
−−→
BP2||, t > 1
||
−−−→
P1P2||, t ∈ [0, 1]

(A.10)

2.4 Line Segment to Segment

Given two segment S1 (with extremeties A1 and B1) and S2 (with extremeties A2 and B2),
the closest point between the line supports of S1 and S2 are P1 and P2, then the distance is
given by:

t1 =
<
−−−→
A1P1,

−−−→
A1B1 >

||
−−−→
A1B1||2

(A.11)

t2 =
<
−−−→
A2P2,

−−−→
A2B2 >

||
−−−→
A2B2||2

(A.12)

d(S1, L1) =



||
−−−→
A1A2||, t1 < 0 and t2 < 0
||
−−−→
A1B2||, t1 < 0 and t2 > 1
||
−−−→
A1P2||, t1 < 0 and t2 ∈ [0, 1]
||
−−−→
B1A2||, t1 > 0 and t2 < 0
||
−−−→
B1B2||, t1 > 0 and t2 > 1
||
−−−→
B1P2||, t1 > 0 and t2 ∈ [0, 1]
||
−−−→
P1A2||, t1 ∈ [0, 1] and t2 < 0
||
−−−→
P1B2||, t1 ∈ [0, 1] and t2 > 1
||
−−−→
P1P2||, t1 ∈ [0, 1] and t2 ∈ [0, 1]

(A.13)
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Finding the transformation between
geometric objects

1 Between two lines

A quaternion is an extension of the complex numbers, that introduces two other numbers,
such as:

i2 = j2 = k2 = ijk = 1 (B.1)

Given two quaternions:

q = q1 + q2 · i + q3 · j + q4 · k (B.2)
p = p1 + p2 · i + p3 · j + p4 · k (B.3)

The multiplication between the two quaternion is given by:

q · p =(q1p1 − q2p2 − q3p3 − q4p4)
+(q1p2 + q2p1 + q3p4 − q4p3)i
+(q1p3 + q2p4 + q3p1 + q4p2)j
+(q1p4 + q2p3 − q3p2 + q4p1)k (B.4)

While a rotation of angle θ around the axis u = (x, y, z) is represented by the following
quaternion:

q =
(
cos

(
θ

2

)
, sin

(
θ

2

)
u
)

(B.5)

The rank of the quaternion is 3, meaning that ∀s, qs = s · q represent the same rotation.
Given a vector −→v of quaternion pv = (0, v), its rotation

−→
v′ is given by:

pv′ = q · pv · q−1 (B.6)

Since a vector director of a line is of rank two, it is necesserary to use two non parallels
lines to recover the rotation. So given two lines L1 and L2 of vector directors (x1, y1, z1)
and (x2, y2, z2), and L′1 and L′2 the result of the rotation of L1 and L2 by the rotation q, to
compute the value of q, we set q1 = 1, and need to solve the following system:
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(x′1 − x1) · q2 + (y′1 − y1)·q3 + (z′1 − z1) · q4 = 0 (B.7)
−(z′1 + z1)·q3 + (y′1 + y1) · q4 = −(x′1 − x1) (B.8)

(x′2 − x2) · q2 + (y′2 − y1)·q3 + (z′1 − z1) · q4 = 0 (B.9)

Given a point P1 of L1, and P2 of L2. First, the rotation of the point P1, P r1 = q·P1 ·q−1 is
projected on line L′1, this give a first translation vector

−→
t1 , then the rotation of P2 translated

by
−→
t1 is projected on L′2 following the direction of L′1, this gives a second translation vector

−→
t2 , the full translation vector is then given by

−→
t =

−→
t1 +

−→
t2 .
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Résumée en Français

1 Introduction

L’objectif de la robotique mobile d’extérieur (figure 1) est de permettre aux robots d’accomplir
une mission de manière autonome, tel que le transport, la surveillance ou l’exploration. De
tel missions se décomposent en tâches élémentaires: déplacement, observations, saisie d’un
objet, qui sont définies en fonction de l’environnement du robot, et elles nécessitent pour la
planification et l’exécution des modèles de l’environnement de nature différentes: carte de
traversabilité, carte d’amers... Pour exécuter ces tâches dans de bonne conditions, il est aussi
important pour le robot de connâıtre, de manière précise sa position, qu’elle soit relative par
rapport à un objet, ou absolue. Elle peut être obtenue soit par l’intégration du déplacement
du robot (odométrie...), soit à l’aide de balises (GPS...) ou encore en utilisant des cartes
de l’environnement. Chacune de ses méthodes présentent divers inconvénients, l’odométrie
présente une dérive, le GPS souffre de masquage et de brouillage du signal, tandis que la
localisation par carte soulève le problème de l’existence de ses cartes et de la capacité à en
associer le contenu avec l’observation de l’environnement.

Localisation et cartographie simultanées Ainsi le lien entre modèles de l’environnement
et localisation apparâıt comme évident, d’une part les modèles peuvent fournir une solution
au problème de la localisation, et d’autre part une localisation précise est nécessaire pour
assurer la cohérence spatiale lors de la construction de nouveaux modèles par le robot.

Dans de nombreuses situations, il n’existe pas à priori de cartes de l’environnement, le
robot doit donc construire sa propre carte, et se trouve confronté au problème de l’oeuf
et de la poule, entre la nécessité d’une localisation précise pour construire le modèle qui
est utilisé pour donner la position. En robotique, ce problème est appelé “localisation et
cartographie simultanées” (Simultaneous Localisation and Mapping, SLAM) [Chatila and
Laumond, 1985,Smith et al., 1987].

L’objectif de la thèse: vers des modèles riche en géométrie De la connaissance de la
géométrie de l’environnement découle la construction des autres modèles de l’environnement,
par exemple, la notion d’obstacle est une information géométrique. Mais elle est ni suffisante,
une information de traversabilité est renforcé par la connaissance de la texture, ni nécessaire
pour résoudre tous les problèmes, un suivi visuel est suffisant pour permettre au robot de
saisir un objet. De même, la localisation absolue peut être effectuée sur des informations

135
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purement visuel [Cummins and Newman, 2008,Angeli et al., 2008].
Cependant la géométrie est une information caractéristique de l’environnement, et con-

trairement à une information visuel, elle est indépendante de l’illumination, du capteur utilisé
pour les observations, du point de vue, et elle est compatible avec les modèles existant des
systèmes d’information géographiques (Geographic Information System, GIS). Ceci fait de
l’information géométrique un élément clé des systèmes multi robots, en effet la géométrie est
la seule information commune entre un drone aérien et un robot terrestre.

L’approche Un des points forts des approches SLAM utilisant des amers est qu’elle résolve
la localisation géométrique et le problème de la cartographie. Le modèle résultant est donc
par essence géométrique, mais restreint à une collection d’amers. Les premières versions
du SLAM utilisaient des segments 2D obtenus par des lasers, les approches 3D récentes
utilisent un nuage de points. De tels représentations sont dédiées exclusivement à un usage
de localisation, par exemple, il n’est pas possible d’en déduire une carte de traversabilité, et
elles ne sont utilisables qu’avec un seul type de capteur.

Notre approche consiste à utiliser les mécanismes d’estimation géométrique du SLAM et
des les utiliser avec des amers comportant une information géométrique plus importante, des
plans et des segments. Cependant un tel ensemble d’amer reste une représentation creuse de
l’environnement, c’est pourquoi nous avons aussi définie un graphe d’amers pour permettre
d’exhiber la structure de l’environnement, et de faciliter la mise en correspondance.

Contributions Les contributions de cette thèse dans le cadre d’une modélisation de
l’environnement sont les suivantes:

• Nous avons introduits l’usage de facettes et de segments pour des amers dans une
approche de type SLAM.

• Ces amers ont été exploités dans une extension du filtre de Kalman pour une approche
multi-robot.

• La définition d’un graphe d’amers et de son utilisation dans le problème d’association
de données.

2 Le problème de la modélisation d’environnement

Pour être capable de construit un modèle de l’environnement, les robots doivent avoir la
capacité de l’observer, de détecter des amers, de les suivre, de les associer et d’estimer leur
position. La détection est effectué par un processus de traitement du signal qui produit une
information métrique, utilisé pour mettre à jour les paramètres d’un amer, et un descrip-
teur du signal. Tandis qu’un autre processus est chargé de mettre en correspondance les
observations avec le modèle. Qui sont ensuite traitées dans un filtre de Kalman.

2.1 Cartographie et Localisation Simultanée

Une rapide introduction au problème du SLAM Un présentation de l’historique des
principales contributions se trouve dans [Dissanayake et al., 2001], et une synthèse de l’état
de l’art est disponible dans ces deux articles: [Durrant-Whyte and Bailey, 2006] et [Bailey
and Durrant-Whyte, 2006].
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La figure 1.1 présente la méthode incrémentale de mise à jour des amers. En quatre étapes:

• Détection d’amers, des éléments saillants dans l’environnement.

• Estimation des mesures relatives des amers par rapport au robot, et du déplacement
du robot.

• Association de données: les amers permettent d’améliorer la position du robot, unique-
ment si le robot est capable de les observer plusieurs fois.

• L’estimation est la partie centrale des algorithme de SLAM, elle permet la fusion des
mesures relatives et permet d’obtenir la position absolue du robot et des amers.

En plus de ces étapes, les algorithmes de SLAM sont confrontés à deux problèmes princi-
paux:

• La fermeture de boucle, plus le robot se déplace, plus l’incertitude sur sa position aug-
mente, mais ceci peut-être corrigé lorsque le robot revient dans une zone connue, le
robot doit alors être capable de reconnâıtre des amers déjà vu, ce qui corrige l’ensemble
des informations de la carte, la position du robot et des amers (Figure 1.2).

• La complexité algorithmique et les problèmes de consistance des processus d’estimation
rend délicat la gestion de la carte.

Définition d’un amer : il est, au minimum, définit par ses paramètres géométriques, et
doit avoir des caractéristiques qui permettent de le distinguer dans l’environnement. Bien que
l’association de donnée puisse se faire uniquement sur les informations géométriques, elles sont
généralement complétées par une information de signal, tel un descripteur visuel comme par
exemple SIFT [Lowe, 2004]. Le SLAM 3D repose généralement sur l’usage de points, et plus
récemment de segments et de plans.

L’association de donnée consiste à mettre en correspondance des amers observées depuis
différents points de vue successifs (suivie de points) ou non (appariement).

L’estimation des paramètres géométriques est effectué par un processus de filtrage,
la méthode classique pour le SLAM est l’usage d’un filtre de Kalman étendu. La figure 1.3
montre les différentes méthodes possible pour gérer les cartes. Une possibilité introduite
dans [Estrada et al., 2005] est l’usage d’un ensemble de cartes locales et indépendantes,
reliées entre elle dans un niveau global.

Multi-robots: dans un contexte multi-robots, chaque robot doit pouvoir être capable
d’évoluer dans l’environnement de manière indépendante, mais il doit être capable d’utiliser
une information qui provient des autres robots. [Vidal-Calleja et al., 2009] montre l’intérêt de
l’approche multi-cartes dans le cas d’un systèmes de robots, avec deux types d’évènements,
rendez-vous entre les robots et reconnaissances d’amers. Ces évènements permettent des fer-
metures de boucle entre des cartes qui ont été construites par des robots différents, comme
sur la figure 1.4.
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Notre approche pour la construction de cartes est composée de quatre processus
comme sur la figure 1.6, la localisation utilise les capteurs de déplacement pour produire
une estimation du déplacement qui est utilisée par le SLAM lors de la construction de carte
locale. Le gestionnaire de carte est chargé des mises à jour des liaisons entre les cartes, tandis
que notre algorithme de structuration de carte SPAF (pour SPAtial Features) détecte des
fermetures de boucles.

2.2 Détection

La détection est la phase qui permet au robot de détecter des objets dans son environnement
à l’aide de capteurs.

Capteurs actifs et passifs Il existe deux types de capteurs, les capteurs actifs qui émettent
un signal (infrarouge, radar, laser...) et qui mesurent le retour du signal. Ils offrent l’avantage
d’une grande facilitée de mise en oeuvre, puisqu’ils fournissent directement l’information de
distance avec les objets. Par contre ils ont une portée limitée, et sont soumis à des problèmes
d’interférence, et nuise à la discrétion du robot. Il existe aussi des capteurs passifs qui captent
les émissions de radiations naturelles, par exemple des caméras. Elles offrent l’avantage
d’une portée théorique infinie, de ne pas émettre de signal, mais sont plus complexe de mise
en oeuvre, puisqu’elles ne permettent que d’obtenir un positionnement angulaire de l’amer.
Cependant, l’utilisation de deux caméras en stéréovision permet à l’aide de deux mesures
angulaires d’obtenir la profondeur de l’objet, mais avec une portée utile limitée.

Extraction d’information Les bon amers marins sont ceux visibles de loin, et qui ont
une forme unique pour être facilement reconnu et apparier, les amers détectés par un robot
devront avoir les même caractéristiques. Par exemple, dans une image, le maximum local de
gradient permet d’obtenir la position de points d’intérêts.

2.3 Association de données

Une fois des objets détectés dans l’environnement, il est nécessaire de le suivre entre deux
instants, afin de mettre à jour le filtre, il est aussi nécessaire de détecter les fermetures de
boucle. La principale difficulté de l’association de donnée est d’éviter les faux appariements,
qui ont des effets néfastes sur la qualité des modèles construits, tout en gardant un maximum
de bons appariements.

Appariement d’amers en utilisant les informations du signal, comme le descripteur, et
une fonction de corrélation. Dans une première étape, les amers sont extraites, chaque amer
est comparé avec le contenu de la base de données. Mais des appariements individuels sont in-
suffisant, étant donné que l’information est souvent répétitive, il est nécessaire de tenir compte
des appariements voisins, plusieurs techniques sont envisageables : des techniques statistiques
(RANSAC [Fischler and Bolles, 1981]), l’utilisation d’un modèle du capteur [Hartley and Zis-
serman, 2000], ou des contraintes géométriques et un regroupement des amers [Jung and
Lacroix, 2001].
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Fermeture de boucles Il s’agit d’un problème spécifique au SLAM, il s’agit de détecter si
l’endroit courant a déjà été cartographié. Plusieurs types de techniques ont été développées
pour résoudre ce problème:

• Une première possibilité est d’utiliser des techniques d’appariement d’amers, ou de
comparaison d’image à image [Mikolajczyk and Schmid, 2001], ou encore d’utiliser un
dictionnaire de points [Cummins and Newman, 2009].

• Il est aussi possible de projeter un modèle dans les données, pour retrouver les éléments.

• Ou encore d’utiliser les informations géométriques pour un appariement carte à carte
[Neira and Tardos, 2001]. Ces méthodes consistent à apparier les amers par groupe
d’amers d’appariement compatible.

• Le dernier type consiste à apparier les données extraites avec le contenu de la carte
[Williams et al., 2008].

Suivie Lorsqu’une bonne estimé de la position des amers est connu, des techniques de suivie
(tracking) sont envisageables pour résoudre le problème de l’association de données. Elles ont
l’avantage d’être plus performante, et de fournir des résultats plus sûr. Elles consistent à
optimiser l’estimée initial de la position des amers, avec des techniques d’optimisation, par
exemple, pour des points d’intérêts la méthode KLT [Shi and Tomasi, 1994b].

3 Modèles d’amers

Le modèle d’amer est un élément critique dans la définition d’un solution au problème du
SLAM, un bon amer est une donnée saillante, facilement détectable, suivable et appariable
depuis différents points de vues. Tous ces processus doivent permettre d’estimer la position
relative des estimées, associé à un modèle d’erreur.

Toute solution au problème d’appariements d’amers nécessitent trois étapes, définition des
amers, définition d’une mesure de similarité, et une stratégie d’appariement. De la définition
du type d’amers découle les algorithmes utilisables pour l’appariement. Un amer peut être
un élément de signal, un coin, un contour, une ligne, une région...

3.1 Points d’intérêt

La solution classique au problème du SLAM 3D en vision repose sur la détection de points dans
une image, différentes méthodes sont possibles, comme le point de Harris [Harris and Stephens,
1988b], ils sont centrés sur des maximums locaux de gradients dans toutes les directions. Cette
méthode de détection souffre d’une faible répétabilité au changement d’échelle et de point de
vue, ce qui a conduit au D’autre méthodes développement d’autres méthode comme les points
SIFT [Lowe, 2004] ou SURF [Bay et al., 2008] qui offre une meilleur répétabilité.

3.2 Facettes

L’utilisation de points d’intérêts offre un modèle creux de l’environnement, c’est pourquoi
nous avons proposés l’extension des points aux facettes dans [Berger and Lacroix, 2008]. Le
modèle de facette repose sur six paramètres géométriques et une image. Ce modèle offre une
meilleur observabilité de la position du robot, et facilite le processus d’appariement.
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Le modèle de facette La figure 5.1 montre un exemple d’extraction de facettes. Une
facette est définie par les trois coordonnées de son centre, et par trois angles d’Euler. Ainsi
que par une image.

Les étapes de l’extraction de facettes Pour extraire les facettes, l’utilisation d’un ban
stéréovision est nécessaire. Les facettes sont centrées sur un point d’intérêt, à l’aide de la
stéréovision et d’un algorithme d’appariement de points d’intérêt, les coordonnées en 3D sont
obtenues. Ensuite pour établir si le voisinage du point est planaire, une homographie H
est calculée entre l’image de la caméra gauche et celle de la caméra droite, en utilisant une
méthode d’optimisation avec déformation de l’homographie [Baker and Matthews, 2001,Malis,
2004]. A partir de cette homographie, il est possible de calculer le vecteur normal de la facette,
et le calcul du gradient de l’image autour du point d’intérêt donne le troisième angle d’Euler.

En utilisant le vecteur normal et l’orientation du gradient l’image de la facette est extraites
et sa perspective est corrigée afin de favoriser les appariements.

Modèle d’erreur L’extraction des coordonnées 3D des points d’intérêt et des informations
angulaires sont indépendantes, la matrice de covariance d’une facette (équation 5.5) est donc
diagonale par bloque. Le premier bloque correspondant à un modèle classique de stéréovision,
et le second bloque a une matrice diagonale avec les variances sur les angles.

Suivie de facettes L’un des avantages d’utiliser des facettes est la possibilité de prédire
leur apparence quand la transformation est connue. Lors d’un faible déplacement, entre
deux acquisitions d’images, une bonne estimation du déplacement du robot est connu, ce qui
permet d’avoir une bonne estimation de la projection des facettes dans l’image et de leur
apparence. Ainsi, pour chaque instant t+ 1, la liste des points d’intérêts est extraite, et pour
chaque facette de l’instant t on compare l’image de la facette avec le voisinage des points
proches de l’estimation, ceci permet de trouver une nouvelle estimation de la position. Un tel
processus est appliquée sur l’image de la caméra gauche et de la caméra droite, ce qui permet
de recalculer l’ensemble des paramètres et d’obtenir une nouvelle observation de l’amer.

Appariement de facettes Dans le cas générale, lorsqu’aucune transformation n’est connu,
par exemple dans le cas d’un fermeture de boucle. Il est nécessaire de recourir à un algorithme
général d’appariement. La première étape est d’effectuer une détection de facettes dans les
images. Ensuite, en comparant les images de chaque facettes de la base de donnée avec
l’une des facettes dernièrement détectées, on obtient un premier appariement. Ce premier
appariement permet de calculer une transformation entre les facettes observées et la base
de donnée. Ensuite en utilisant cette transformation, il est possible de focaliser la recherche
d’appariements pour les autres facettes détectées.

3.3 Segments de lignes

Les segments de lignes représentent une part importante de la structure d’une image, en
effet, dans en environnement semi-urbain, ils constituent les limites de nombreuses structures
artificielles. Parmi les avantages des segments, on trouve une plus grande expressivité, comme
montré dans la figure 6.1, mais aussi une plus grande robustesse par rapport aux changements
de point de vue, d’échelle et de luminosité. Mais cela est vrai, uniquement si l’algorithme
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d’extraction est lui même robuste et stable, ce qui n’est pas le cas des algorithmes classiques
de châınage [Etemadi, 1992], ou de Hough probabiliste [Hough, 1962,Guo et al., 2008].

Direct Segment Detection Nous utilisons un modèle paramétrique pour représenter les
lignes en 2D :

x(t) = a · t+ x0 (C.1)
y(t) = b · t+ y0 (C.2)

(a, b) est le vecteur directeur de la ligne, et (x0, y0) correspond à l’origine. Bien que
ce modèle soit une représentation surparamétrée pour des lignes 2D, il a l’avantage de ne
présenter aucune singularité et que tous les points de la ligne sont obtenue linéairement en
fonction de t. Et comme aucune contrainte existe entre les paramètres, le modèle peut être
utilisé sans aucune difficulté dans un processus d’estimation.

La première étape de notre algorithme consiste à trouver un point de départ de la ligne,
pour se faire nous utilisons un filtre de Canny [Canny, 1986] qui donne les maximums de
gradients dans la direction du gradient. Cette première étape permet d’initialiser l’origine
(x0, y0) du segment ainsi que le vecteur directeur (a, b) de la ligne qui est perpendiculaire à
la direction du gradient.

Extension de segments Ensuite nous avons développées un algorithme d’extension de
segments, figure 6.2:

1. t = 1

2. t← t± δt, où δt est la distance curviligne à laquelle un nouveau point est recherché

3. Prédiction: en utilisant l’estimation courante des paramètres de la ligne et leurs vari-
ances, une estimation des coordonnées du nouveau point (xt, yt) de recherche est obtenu,
ainsi que l’erreur e associée à ses coordonnées

4. Observation: un ensemble de mesures sont effectuées le long de la normal de la ligne
qui intersecte en (xt, yt) l’estimation courante du segment, la meilleur observation est
sélectionnée comme étant le maximum de gradient le plus proche de (xt, yt) et ayant le
gradient le plus orthogonal au segment

L’algorithme s’arrête lorsque qu’aucune observation n’est trouvé. Cependant, le bruit
et la discrétisation peuvent causer des trous dans le segment, pour remédier à ce problème,
l’algorithme peut regarder un cran plus loin si il continue à trouver des observations.

Estimation des paramètres de la ligne Un filtre de Kalman est utilisée pour met-
tre à jour les paramètres de la ligne. Le vecteur d’état contient les paramètres de la ligne
(a, x0, b, y0), étant donné l’absence de bruits de processus et que le modèle est stationnaire,
l’état reste constant comme le montre l’équation 6.14. Le modèle d’observation est linéaire,
équation 6.15. A l’initialisation la matrice de covariance de l’état est linéaire, équation 6.17.

Fusion de lignes A la fin du processus de détection, il arrive qu’un segment chevauche un
autre segment. Dans ce cas un test du Chi2 est utilisé pour vérifier si les paramètres des deux
segments sont compatibles, si c’est le cas les paramètres de l’un des segments sont mis à jour
en utilisant les paramètres de l’autre comme observation.
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Paramètres Le processus de détection nécessite la définition de quelques paramètres et
seuils, mais l’utilisation de valeurs importantes et conservatrices est suffisante, et la figure 6.4
montre que les paramètres ont une faible influence sur les résultats.

Extension multi-échelle La réduction de l’image permet de filtrer le bruit, elle permet
aussi de simuler l’éloignement, et donc de détecter des segments de meilleur qualité et qui
devrait pouvoir être suivi sur une plus longue distance. Mais le prix à payer est une perte
de précision sur la position métrique des segments, en effet les pixels de l’image réduite
corresponde à une surface plus importante sur le capteur que ceux de l’image originelle.

Pour obtenir de segments de meilleur qualité tout en conservant la précision sur la local-
isation, nous avons proposé une approche multi-échelle. Les segments détectée dans l’image
réduite serve de graine pour trouver des segments dans l’image non-réduite, comme montré
sur la figure 6.5. Pour une image donnée, une pyramide à n niveau est construite, en divisant
la taille de l’image par deux entre chaque niveau, le niveau leveli=0 correspond au plus bas
étage de la pyramide et à l’image pleine résolution, tandis que leveli=n−1 correspond à l’image
la plus petite.

1. L’algorithme DSeg est utilisé sur le niveau leveli=n−1 pour détecter les premiers seg-
ments

2. Pour un segment segij détecté au niveau leveli, ces paramètres pour le niveau leveli−1

sont obtenus en multipliant par deux les paramètres au niveau leveli: segi−1
j = 2 · segij .

Soit Oij(xi−1, yi−1) les coordonnées de l’une des extrémités, u le vecteur directeur du seg-
ment, v est le vecteur orthogonal à u, et l la longueur du segment, une liste d’intervalles
L = {[0, l]} est initialisée.

(a) Soit un I = [a, b] ∈ L, un maximum de gradient est recherché dans la direction de
v, autour du point:

c =
a+ b

2
(C.3)

(xI , yI) = (xi−1, yi−1) + c · u (C.4)

(b) Si il y a un maximum de gradient dans (xI , yI), (xI , yI) + v ou (xI , yI)− v, il est
utilisé comme point de départ pour l’algorithme d’extension de lignes.

(c) Pour chaque segment détecté au niveau leveli−1, la projection P (ext1) et P (ext2)
de ces extrémités ext1 et ext2 est calculé sur 2 ·segij . Ensuite, en utilisant idx1 =<
OijP (ext1),u > et idx2 =< OijP (ext2),u >, on peut retirer des intervalles de L,
l’air où le segment a déjà été détectée, comme expliqué dans la figure 6.6.

(d) Si aucun segment n’est trouvé l’intervalle I = [a, b] est coupé en deux intervalles
[a, c], [c, b], qui sont inséré dans L.

(e) Retour à l’étape (a) tant L n’est pas vide.

Un intervalle est inséré dans L seulement si sa longueur est supérieur à la longueur
minimal d’un segment.
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Résultats La figure 6.7 montre des résultats d’extraction de segments avec DSeg et Hier-
archical DSeg, il apparâıt que le nombre de segments extraits avec Hierarchical DSeg est plus
faible qu’avec DSeg, et que de long segments sont extraits sur les images avec d’important
changements d’échelle et d’orientation.

Analyse de la sensibilité Nous avons testé la sensibilité des deux algorithmes en fonction
de l’augmentation du bruit et des changements de luminosités. Pour se faire nous avons
utilisé des séquences d’images avec un bruit et une luminosité changeante, mais le point de
vue reste identique. Pour la séquence de bruit, un bruit gaussien est ajouté à l’image, pour
le changement de luminosité une caméra a été posée sur un pied et a acquis des images à
intervalle régulier. Nous avons définit une métrique 6.23 pour déterminer si deux segments
détecté dans deux images prises correspondent au même segment, ceci permet de calculer la
répétabilité.

La figure 6.11 montre l’influence du bruit sur la répétabilité, les résultats sont présentés
pour différentes valeur des paramètres, et montre que le changement de paramètres a une
faible influence sur le résultat. Les figures 6.13 et 6.14 montre la sensibilité au changement
de luminosité pour différentes longueur minimale de segments.

Comparaison Nous avons comparé nos deux algorithmes DSeg et Hierarchical DSeg, avec
d’autres algorithmes: Probabilistic Hough ( [Guo et al., 2008] implémentation d’OpenCV),
Split and merge (châınage sur Canny, implémentation du LAAS), et l’approche LSD
( [R. Grompone von Gioi and Randall, 2008], avec l’implémentation de ses auteurs). Des
figures 6.8 et 6.9, il apparâıt que LSD et DSeg sont plus lent que les deux autres algorithmes,
mais DSeg produit des segments plutôt plus long, et aussi les deux algorithmes n’ont pas
nécessité de réglage lors des expériences, alors que pour Probabilistic Hough et Split and
merge, il a fallu ajuster les paramètres aux différentes condition d’acquisition des images.

Nous avons aussi effectué l’analyse de sensibilité sur les cinq algorithmes, ainsi qu’en
utilisant DSeg sur une image divisé par quatre. Les résultats sont visibles sur les figures 6.12
et 6.15. Ils montrent un avantage de nos méthodes sur les autres en terme de répétabilité. Le
faible succès de LSD lorsque le bruit augmente s’explique par un algorithme volontairement
conservatif afin d’éviter au maximum les faux segments qui peuvent apparâıtre dans des
images bruités. Il est intéressant de remarquer que l’approche Hierarchical DSeg présente
une meilleur répétabilité que DSeg, proche de celle de DSeg sur une image divisé par quatre.

Suivi de segments Le processus de suivi de segments d’une image à l’autre repose sur
l’usage d’un filtre de Kalman, comme dans [Deriche and Faugeras, 1990], qui fusionne la
prédiction fournie par un modèle avec des observations, de manière similaire à la méthode
d’extension de lignes.

La principale difficulté du suivi de segments vient des segments proches et parallèles. En
effet, même en utilisant un modèle de mouvement précis, la prédiction peut être fausse de
quelques pixels, ce qui peut conduire à des erreurs d’associations avec des segments proches
et parallèles (comme sur la figure 6.16). Pour résoudre ce problème nous avons utilisé
un processus de sélection qui élimine les segments qui pourraient conduire à de mauvaises
associations, et nous avons aussi utilisé les informations de gradients le long des segments.
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Chapter C. Résumée en Français

Sélection de segments Le processus de sélection élimine les segments qui sont proche et
dont le gradient de ses pixels est dans la même direction. La deuxième condition implique que
les segments sont parallèles, mais il est possible de faire la différence deux segments proches
et parallèles mais dont les gradients sont en direction opposées. Cependant si l’un des deux
segments est plus long, il est possible de le conserver, et de n’éliminer que le petit segment,
en effet, en utilisant la partie du segment long qui n’est pas doubler par le segment court on
peut faire la différence dans l’appariement.

Première hypothèse La première étape du suivie consiste à initialiser les paramètres qui
serviront au processus d’extension de ligne. Dans un premier temps, la position du segment
est prédite, soit avec un modèle constant, à accélération constante ou du SLAM. A partir de
ce segment, un certain nombre de points de contrôles sont utilisés pour trouver des maximums
de gradients (équation 6.31), qui vont servir de support à la ligne.

Une fois la première hypothèse trouvée, l’algorithme d’extension de ligne est appliqué pour
ajuster les paramètres du segment.

Résultat Pour évaluer les résultats, nous avons fait une évaluation statique en utilisant la
même image, mais en appliquant une translation sur la prédiction des segments, ceci montre
l’effet de la sélection sur la figure 6.17. La figure 6.18 montre le résultat d’un suivi de segments
lorsque le robot se déplace.

3.4 Discussion

Au cours de la thèse nous avons utilisé principalement trois types d’amers, des points d’intérêt,
des facettes et des segments.

Les points d’intérêt Le principal intérêt des points d’intérêts est leur facilité de détection,
et la présence dans la littérature de nombreux algorithmes matures d’extraction, ainsi que
pour un usage dans le SLAM. Mais les points fournissent un modèle de l’environnement avec
une faible densité, et détaché de sa structure géométrique. Et l’extraction de points dans les
images n’est pas robuste lors d’important changement de points de vue.

Facettes Nous avons proposé une extension des points d’intérêt à des facettes localement
planes. Facettes qui contiennent une information de la structure géométrique plus importante,
et qui présente une amélioration de la localisation du robot dans une approche SLAM, ceci
vient du ait que chaque facette contient suffisamment d’information géométrique pour donner
une observation complète de la position du robot, alors qu’il est nécessaire d’observer un min-
imum de trois points pour obtenir la même information. En revanche, les facettes nécessitent
un temps de calcul plus important pour le calcul de l’homographie et de la normale. Étant
centrées autour d’un point d’intérêt, elles soufrent du même problème de robustesse lors de
changement important de point de vue.

Segments de ligne Nous avons proposé deux algorithmes d’extraction de segments, ainsi
qu’un algorithme de suivie. Le choix entre Hierarchical DSeg et DSeg dépends de l’utilisation
que l’on veut faire des segments, entre plus de segments ou des segments plus robustes. Nos
expériences ont montrés que l’extraction de segments était aussi rapide que celle des points
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d’intérêts, et ils fournissent une information géométrique plus riche. Cependant, ils n’existent
pas de bonne méthode d’appariement des segments dans une image.

La paramétrisation des segments est un aspect important dans le contexte du SLAM.
Dans [Gee and Mayol, 2006] et [Smith et al., 2006] les lignes sont paramétrées dans le filtre
de Kalman en utilisant deux points en “inverse depth”, alors que nous avons utilisé une
représentation de Plücker décrite dans [Solà et al., 2009].

4 Modèle géométrique

Une des limitations de nos expériences multi-robots et multi-cartes est l’absence de détection
automatique des fermetures de boucle entre des robots aériens et terrestres. Les informations
de signal (comme une petite image) est trop différente d’un robot à l’autre, sans compter sur
les changements d’illumination.

Cependant, la géométrie de l’environnement est invariante, il est donc nécessaire d’utiliser
les amers géométriques : mais elles sont très similaires les unes par rapport aux autres, il est
donc nécessaire d’utiliser le voisinage de chaque amer, et de calculer plusieurs appariements
en même temps. Pour ce faire nous avons introduit une structuration de l’environnement dans
un graphe, structure qui est utilisée pour résoudre le problème de l’association de données au
niveau géométrique.

4.1 Structuration d’un nuage d’amers géométriques dans un graphe

Les objets géométriques considérés font partie du système de géométrie Euclidien, et leurs
paramètres sont exprimés dans l’espace Cartésien. Chaque objet peut avoir différente
représentation, en fonction de l’utilisation, en effet, la représentation sera différente pour une
utilisation dans le filtre de Kalman ou dans un processus d’appariement ou pour exprimer
des relations entre les objets.

Objets géométriques Il existe deux types d’objets géométriques, des objets qui sont auto
définies (par exemple avec un ensemble d’équations), appelé objets composites , ou des objets
qui sont définies comme un ensemble d’autres objets, appelé objets atomiques.

Un point (P ), une ligne (L), un segment de ligne (S), un cercle (Ci), ou encore un plan
(Π) sont des objets atomiques. Tandis qu’un polygone (Po, ensemble de segments de ligne
connectés les uns aux autres), une facette (F , plan limité par un polygone), un cylindre (Cy,
volume délimité par deux cercles), une bôıte (Bo volume délimité par un ensemble de plans)
sont des exemples d’objets composites.

Pour définir des relations entre les objets, un certain nombre d’opérateurs sont utilisés :
distance (d(o1, o2)), angle (θ(o1, o2)), longueur (l(S)), périmètre (p(Po)), surface (s(F )), vol-
ume (v(̊a)), projections (proj(o1, o2))...

Relations entre objets géométriques Les objets géométriques sont reliés entre eux par
des relations numériques, topologiques, constructives ou bien d’échelle.

Une relation topologique entre un ensemble d’objets géométriques est une relation qui
réduit le degré liberté d’au moins l’un des objets.

Il existe une relation constructive entre un objet o et un ensemble d’objets {oi} lorsque
touts les paramètres de o sont définis par les paramètres des objets de {oi}.
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Une relation d’échelle entre deux ensembles d’objets est établie lorsque les objets des deux
ensembles correspondent au même objet réel.

Relations topologiques Les différentes relations topologiques définissent l’appartenance,
l’intersection, le parallélisme ou si les objets sont perpendiculaires. Par exemple un point sur
une ligne définit une relation topologique, de même pour deux lignes parallèles ou perpendic-
ulaires.

Relations constructives et objets composites Les objets composites sont définis comme
un ensemble d’objets, il existe donc une relation constructive entre l’objet composite o et tous
les objets oi qui le composent. Les objets oi étant soit des objets atomiques, soit d’autres
objets composites.

Dans un environnement, il n’est pas toujours possible d’observer tous les éléments d’un
objet composite, par exemple la face du bas d’un cube posé sur le sol est caché, dans ce cas
il est possible de créer des objets géométriques virtuels, non observables, mais qui viennent
compléter l’information des objets réels.

Parmi les objets atomiques, il en est un qui n’a pas d’existence physique, il s’agit de la
base. Par contre, on peut définir une base avec une combinaison d’objets atomiques : trois
points, un point et une ligne...

Relations numériques Les objets atomiques sont exprimés à l’aide de paramètres
numériques, tandis que les objets composites sont directement, ou indirectement, un groupe
d’objets atomiques, et donc peuvent être exprimés avec des paramètres numériques. Il est
donc possible de calculer un certains nombre de mesures entre les objets : angle, distance,
coplanarité, vecteur de transformation partielle.

Un angle est défini entre deux objets définis par un vecteur, l’angle entre les objets est
l’angle entre les vecteurs. La distance entre deux objets o1 et o2 est définie comme la distance
minimum entre tous les points de o1 et tous les points de o2.

Pour les objets composites, plusieurs valeurs peuvent être calculé pour les relations
numériques, mais en fait, pour la plus part des objets composites il est possible de définir une
unique base qui sert alors à calculer les relations numériques.

Les relations topologiques peuvent être exprimés à l’aide des relations numériques.

Vecteur de transformation partielle L’angle et la distance permettent d’obtenir le lieu
des positions de l’amer, les uns par rapport aux autres. Par exemple, considérons deux points
P1 et P2, si les coordonnées de P1 et la distance d = |

−−−→
P1P2| sont connues, alors le point P2

appartient à la sphère centrée sur P1 et de rayon d, mais l’information sur la position exacte
de P2 reste inconnue.

Si l’on considère quatre points, P1, P2, P3 et P4, avec P2, P3 et P4 équidistant de P1

avec une distance d = |
−−−→
P1P2| = |

−−−→
P1P3| = |

−−−→
P1P4|. Si la distance entre les autres points est

aussi connu, il est possible de reconstituer la géométrie (à une rotation près). Mais si cette
distance n’est pas connu, par exemple, parce que les points ne sont pas toujours observés en
même temps. Mais à un instant donné, on fait une observation des quatre points en même
temps, et on veut être capable d’apparier les points. La seule connaissance de d ne permet de

distinguer entre P2, P3 et P4. Mais avec la connaissance des angles ̂−−−→
P1P2,

−−−→
P1P3, ̂−−−→

P1P2,
−−−→
P1P4
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et ̂−−−→
P1P3,

−−−→
P1P4 (ce qui est possible avec la connaissance des vecteurs

−−−→
P1P2,

−−−→
P1P3 et

−−−→
P1P4), il

est alors possible d’obtenir la position relative des objets (voir Figure 8.1).
Nous appelons ce vecteur le vecteur de transformation partielle. La section 9.2.3 montre

l’intérêt de ce vecteur, et la raison pour laquelle il est utile d’avoir une information de voisinage
centrée sur l’amer plutôt que distribué.

Definition 12 Le vecteur de transformation partiel est un vecteur unique
−→
ptv(o1, o2),

entre deux objets géométriques o1 et o2, qui est ancré sur les points de deux objets: ∃(P1, P2) ∈
(o1, o2) tel que

−→
ptv(o1, o2) = P2 − P1.

Les points d’ancrage du vecteur sont stable lors d’une transformation : soit une transfor-
mation T (rotation et/ou translation), si P1 et P2 sont deux points d’ancrage de

−→
ptv(o1, o2),

alors T (P1) et T (P2) sont deux points d’ancrage de
−→
ptv(T (o1), T (o2)):

−→
ptv(o1, o2) = P2 − P1 ⇔

−→
ptv(T (o1), T (o2)) = T (P2)− T (P1) (C.5)

La valeur du vecteur de transformation partiel est dépendante de l’orientation de chaque
amer, mais l’angle et la distance des points d’ancrage entre deux vecteurs sont indépendant.

Le vecteur de transformation partiel entre deux points est définie par le vecteur d’un point
à l’autre, et entre un point et un autre objet il s’agit du vecteur de projection. Entre deux
lignes, il s’agit du vecteur entre les deux points les plus proches. Il n’existe pas de vecteur
entre deux plans, et entre un plan et une ligne, mais cela n’est pas un problème, le vecteur
de transformation partiel peut être remplacé par le vecteur directeur ou normal pour calculer
des angles entre amers.

4.2 Graphe géométrique

Les noeuds du graphe sont les amers de l’environnement, tandis que les arcs correspondent aux
relations entre les amers. Il s’agit d’un graphe non complet, même le sous-graphe qui contient
uniquement les arcs de relation numériques, en effet, bien qu’il soit théoriquement possible
de connecter tous les noeuds avec une relation numérique, cela conduirait une importante
complexité algorithmique, sans compter que plus les noeuds sont éloignés, plus l’incertitude
sur les mesures numériques devient importantes.

Construction d’un graphe géométrique Par nature, il n’y a pas unicité du graphe, à
partir du même jeu de données il est possible de créer une infinité de graphe différent. Cepen-
dant, pour la phase d’appariement, il est nécessaire de s’assurer d’une certaine répétabilité
dans la construction du graphe, deux observations du même endroit doivent conduire à la
création de deux graphes similaires. Tout en assurant que le graphe contienne un information
utile, une trop grande incertitude sur un arc conduit un trop grand nombre d’appariements
potentiels, ce qui augmente le temps de calcul pour les appariements, et diminue la fiabilité
du résultat.

Construction globale Dans le cas d’un modèle préexistant de l’environnement, l’ensemble
des amers est connu à la construction du graphe. Un noeud est créer pour chaque amer, et
un arc avec les informations numériques est crée entre les amers qui sont proches les unes des
autres.
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Construction incrémentale La principale difficulté de la construction d’un graphe d’une
carte construite par un robot mobile est de s’assurer que les arcs numériques contiennent
une information utile, en d’autres mots, que la relation relative entre deux amers est connu
avec un haut niveau de confiance. En supposant, qu’il n’y a pas de fermeture de boucle,
le problème avec une approche de SLAM est que l’erreur sur la position augmente avec le
déplacement du robot dans la carte, ce qui conduit à une augmentation de l’incertitude sur
la position des amers, et donc à une augmentation de l’incertitude sur les mesures relatives
qui sont obtenues à partir de ces positions, ce qui réduit l’utilité de l’information.

Le problème de l’augmentation de l’incertitude peut être résolu en utilisant une approche
multi-cartes comme dans [Estrada et al., 2005] (voir section 1.2), en effet, avec une approche
multi-cartes, l’erreur sur la position du robot et l’erreur local sur la position des amers sont
maintenu réduite. Ce qui signifie que la construction incrémental du graphe ne peut obtenir
des informations de relations entre amers fiables qu’entre des amers qui se trouve dans la
même carte.

Il est important de remarquer que deux objets o1 et o2 peuvent apparâıtre simultanément
dans deux cartes différentes M1 et M2 ( o1 ∈M1, o1 ∈M2, o2 ∈M1 et o2 ∈M2), au quel cas
la carte qui donne la transformation relative la plus faible est utilisé pour fournir l’information
à l’arc numérique entre o1 et o2.

L’algorithme ci-dessous corresponds au rectangle SPAtial Feature de la figure 1.6, il prend
en entré une carte finie M = oi, et procède à la mise à jour du graphe G = (V,E).

1. ∀oi ∈ M, si il n’y a pas de noeud V correspondant à oi, ajoute un nouveau noeud vi
dans le graphe G

2. ∀(oi, oj) ∈M2/i 6= j:

• si il y a déjà un arc entre eni,j = (vi, vj), si la transformation dans la nouvelle carte
est plus précise, alors l’arc eni,j est mise à jour. Ensuite si la condition d(oi, oj) +
3σd(oi,oj) < Td devient fausse, l’arc est retiré eni,j
• si il n’y a pas d’arc et si d(oi, oj) + 3σd(oi,oj) < Td, alors un arc eni,j = (vi, vj) est

ajouté

4.3 Descripteur géométrique

La représentation des objets sous forme de graphe est une méthode classique pour la reconnais-
sance d’objets, ce qui a conduit à de nombreux développement d’algorithmes d’appariements
de graphe, malheureusement ces algorithmes ne s’appliquent pas bien à notre cas, pour des
raisons de performances, mais aussi parce que généralement il est supposé que le graphe de
l’objet est complet, ce qui n’est pas le cas pour un graphe de l’environnement.

Dans [Bailey, 2002], une approche utilisant un graphe complet de l’environnement est
proposée pour résoudre le problème d’association de données dans le cadre du SLAM. Cette
méthode est efficace pour des petits environnements, mais ne peut s’appliquer à un environ-
nement de taille importante, c’est pourquoi nous avons développé une méthode similaire mais
qui fonctionne en utilisant un graphe partiel, et s’applique donc à des environnements plus
large :
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1. Recherche d’une liste initiale de graines :

(a) détermination d’un ensemble d’appariements initiaux en utilisant un descripteur
géométrique

(b) génération d’un graphe de compatibilité jointe (un graphe connectant deux ap-
pariements ayant un arc similaire) et un graphe d’exclusion (un graphe qui connecte
deux appariements d’un même noeud)

(c) calcul d’une transformation T entre les amers observés et ceux de la base de donnée,
cette transformation est utilisée pour raffiner la liste des graines

2. L’ensemble d’appariements initiaux est complété en utilisant la transformation T et une
approche de propagation à partir d’une graine.

La comparaison entre deux arcs est effectuée en utilisant la distance de Mahalanobis
(équation 9.1).

Descripteur géométrique Une recherche d’appariement exhaustive avec une approche de
propagation nécessite d’effectuer la recherche pour toutes les graines potentielles avec tous
les noeuds du graphe. Comme cela serait extrêmement coûteux en temps de calcul, il est
important de trouver une méthode qui utilise un nombre limité de graines. Pour les points
d’intérêt ou les facettes, l’utilisation d’un descripteur de signal, comme la comparaison d’une
image avec le contenu de la base de donnée permet d’effectuer cette sélection de graine. Mais
pour de nombreuses raisons évoqués précédemment, il n’est pas toujours possible d’utiliser un
descripteur utilisant une information de signal. Il est donc nécessaire d’utiliser un descripteur
basé sur l’information géométrique.

Caractéristique importante d’un bon descripteur géométrique Comme l’information
géométrique d’un seul amer n’est pas suffisante, le descripteur doit être capable de représenter
l’information de voisinage. Mais un simple comptage du nombre d’amers de chaque type
dans le voisinage n’est pas suffisant, il faut aussi rajouter des informations métrique, et leur
incertitude associé, il faudra veiller à être le plus robuste possible aux occultations, et en
effet, comme il va falloir effectuer de nombreuses comparaisons entre différent descripteurs, il
faut pouvoir effectuer des comparaisons rapides.

Descripteur de formes pour un nuage de points 3D Dans [Ankerst et al., 1999],
l’espace est divisé autour du centre de masse d’un objet, et la valeur de chaque élément de
l’histogramme est le nombre de point contenu dans un secteur donné de l’espace.

Généralisation pour des types variés d’amers Ce descripteur de nuage de points 3D
s’applique directement pour un modèle d’environnement composé uniquement de points, en
effet, au lieu d’utiliser comme le centre de masse comme référence du descripteur, il suffit
d’utiliser l’amer pour laquelle on cherche à calculer un descripteur. De la même manière,
puisque l’on peut calculer une distance et un angle entre tous types d’objets géométriques, le
descripteur s’applique aussi bien à des points, qu’à des segments, plans, cubes...

A l’histogramme sur les distances et angles, on en rajoute un qui utilise l’information
fournie par le vecteur caractéristique, qui est soit le vecteur de transformation partielle, soit
la normal soit le vecteur directeur. En effet, ce vecteur caractéristique permet de calculer un
angle entre tous les amers voisins d’un amer donné.
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Des histogrammes pondérés par l’incertitude Dans le cas d’un nuage dense de points
3D, le bruit est considéré comme négligeable par rapport à la quantité de points. Mais
cette hypothèse n’est pas valide dans le cas d’un modèle de l’environnement contenant un
faible nombre d’amers, il est donc nécessaire de prendre en compte l’information d’incertitude
dans le calcul de l’histogramme. Ce qui est fait en pondérant le vote de chaque mesure
dans l’histogramme par son incertitude. Par exemple dans le cas d’un histogramme à deux
éléments ]−∞, 0.0] et [0.0,+∞[, la mesure µ = 0.05 avec un écart type de σ = 0.1 contribue
entièrement au deuxième élément, alors qu’il y a une probabilité de 0.30854 que la mesure
réel soit inférieur à 0.0 et corresponde au premier élément de l’histogramme. En utilisant un
histogramme pondéré par l’incertitude, le premier élément reçoit un vote de 0.300854 et le
second de 0.699146.

Comparaison de descripteurs Le score de corrélation ZNCC est utilisé pour comparer
deux descripteurs.

Résultats Pour valider le descripteur, nous avons synthétisé un certain nombre de con-
figuration et étudier le comportement de la comparaison. En particulier, nous avons voulu
vérifier que le descripteur était suffisamment distinctif, comme montré sur la figure 9.7 pour
des segments ou la figure 9.8 pour des points. Il a fallu aussi s’assurer de la résistance au
bruit, figure 9.10 et aux occultations, figure 9.11.

4.4 Appariement de graphe

L’appariement de graphe se déroule en deux étapes, une première étape de sélection de graines,
et une étape de propagation.

Sélection de graines Soit le graphe Gobs des amers observés et le graphe Gdb des amers
du modèle d’environnement. Pour la sélection de graines, la première étape consiste à trou-
ver l’ensemble des appariements possibles en utilisant uniquement le descripteur. Ensuite le
graphe de compatibilité jointe et le graphe d’exclusion sont utilisés pour sélectionner les ap-
pariements possibles. En effet, l’appariement sur le descripteur génère plusieurs hypothèses
d’appariements pour un amer donné, et il est nécessaire de n’en sélectionner qu’un seul, et
de s’assurer qu’il est compatible avec d’autres appariements dans le voisinage.

A partir de l’ensemble d’appariements possible et deux graphes, il existe plusieurs ensem-
ble d’hypothèse, il s’agit donc de les départager, pour se faire un algorithme de RANSAC
est utilisé pour calculer la transformation entre l’observation et le modèle, cette transforma-
tion T est utilisé pour trouver l’ensemble avec le plus grand nombre d’appariement qui sont
compatibles avec cette transformation.

Propagation La transformation T est ensuite utilisé pour tenté de trouver d’autres ap-
pariements en se déplaçant dans le graphe.

Tests en simulation La figure 9.14 montre la capacité de l’algorithme a trouver des ap-
pariements dans un environnement de grande taille sans connaissance à priori de la position.
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5 Conclusion et perspective

Enrichir l’information contenu dans les modèles d’environnement nécessite de développer de
nouveaux algorithmes pour extraire plus d’information des données perçues. Dans un premier
temps nous avons proposés deux nouveaux algorithmes de détection d’amers, pour des facettes
et des segments de lignes.

Mais en l’absence d’un processus efficace d’appariement de segments dans une image,
et comme nous souhaitons pouvoir être capable d’apparier des données qui proviennent de
différents capteurs, ainsi que des données provenant de systèmes d’information géographique,
nous avons aussi proposé une représentation de la géométrie de l’environnement dans un
modèle hétérogène d’amer, avec une méthode d’appariement des amers.

Les travaux futurs devront se focaliser sur une validation plus approfondie de ce modèle,
dans un premier temps dans un contexte de vision, et ensuite en étendant les tests à d’autres
types de capteurs (en particulier, les lasers 3D), et à l’utilisation de systèmes d’informations
géographiques. Mais ceci soulève un grand nombre de challenges, autant sur le modèle
géométrique, que la nécessité de développer de nouveaux algorithmes, et d’améliorer les algo-
rithmes existants.

5.1 Un environnement multi source

Jusqu’à présent, l’essentiel des travaux sur la robotique mobile d’extérieur s’est concentré
sur des robots autonomes et solitaires dans l’environnement. Mais nous pensons que les
futurs robots devront être capable de communiquer avec une grande variété de systèmes, soit
d’autres robots, des réseaux de capteurs ou des base de données d’information.

Une approche multi-cartes, comme présentée dans [Vidal-Calleja et al., 2009], permet à
un système de robots de cartographier le même environnement et de partager l’information.
Bien que conçu pour fonctionner de manière décentralisée, dans l’implémentation actuelle
certains aspects demeurent centralisé. Ainsi, les robots construisent des cartes localement
indépendantes, mais ils partagent le même graphe de cartes. Dans une application réel, les
robots ne seront pas capables de communiquer en permanence, ainsi chaque robot devras
conserver sa copie du graphe de cartes, et échanger l’information lorsque c’est possible. Il est
nécessaire d’être prudent lors de l’échange d’information pour s’assurer que le système reste
consistant (en particulier, d’éviter que l’information soit utilisée deux fois.

Il y a cependant un besoin de sélectionner quel information doit être échangée. Re-
grouper des amers est aussi une possibilité qui permet de structurer l’information et de
réduire l’information à échanger, elle permet aussi de réduire l’information utilisé dans les
cartes stochastiques ( [Gee et al., 2007]).

5.2 Détection d’amers

Il est évident que plus il y a d’information dans les modèles d’amer, meilleur est le modèle
géométrique résultant. Nous allons présenter quelques perspectives sur la définition et
l’extraction d’amers.

Vers un descripteur de segment de lignes Nos détecteurs de segments ne sont pour
le moment capables d’extraire que l’information géométrique d’une image, il n’y pas de de-
scripteur du signal associé aux segments. Bien qu’un procédure d’appariement de segments
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similaire à celle utilisée pour les points ne soit pas nécessaire, un descripteur du signal pourrait
être utile pour mieux faire la différence entre les segments.

Cependant définir un descripteur fiable du signal pour les segments de ligne n’est pas
évident. Pour les points, une hypothèse de planéité local et d’invariance du signal dans le
voisinage du point est utilisée pour définir le descripteur comme étant une portion de l’image
(ou comme base à un descripteur de gradients). Mais cette hypothèse n’est pas valide pour les
segments, dont la longueur implique qu’il n’est pas possible d’ignorer la distorsion provoquée
par la projection. Dans une image, les segments correspondent souvent à un coin 3D, ce qui
signifie que seul un côté du segment a un descripteur stable, ce qui nécessite l’utilisation de
deux descripteurs, un pour chaque côté du segment. Il est envisageable d’utiliser l’information
de profondeur, obtenu par l’estimation des paramètres géométrique 3D provenant d’un pro-
cessus de SLAM, pour calculer la projection de l’image autour du segment, d’une manière
similaire à ce que nous avons fait pour les facettes.

Détection de plans Par rapport aux points, les segments et facettes améliorent la densité
du modèle de l’environnement. Mais l’extraction de plans permettraient un bien meilleur
modèle géométrique. Quelques méthodes d’extraction de plans ont été mentionnées dans le
chapitre 7: une autre possibilité serait d’utiliser les facettes et segments détectés, et de les
regrouper dans des hypothèses de plans. Ensuite un algorithme devra être développé pour
confirmer ses hypothèses, par exemple en effectuant une recherche d’homographie dans le
voisinage des amers de l’hypothèse.

Objets composites: regrouper les amers Puisque des amers individuels ne sont pas suff-
isamment discriminantes, et peuvent conduire à de faux appariements, de nombreux travaux
ont été consacrés à l’appariement de plusieurs amers en même temps ( [Neira and Tardos,
2001, Bailey, 2002], ainsi que les travaux décrits dans III). Mais nous pensons qu’il serait
intéressant d’étendre la procédure d’appariement de graphe pour travailler directement avec
des groupes d’objets, pour augmenter la discriminance des objets individuels. La princi-
pale difficulté est de définir un bon algorithme de regroupement d’amers, par exemple au
chapitre 5, l’algorithme de regroupement repose sur la définition d’un centre de gravité d’un
ensemble de facettes, mais l’on obtient un résultat différent selon que l’ensemble d’amers est
détecté partiellement ou non. Ceci n’empêche pas la procédure d’appariement de fonctionner,
mais empêche certains groupes d’être utilisé comme point de départ, et diminue l’efficacité
de l’algorithme.

Le descripteur géométrique du chapitre 9 pourrait être utilisé pour déterminer quels amers
font probablement partie d’un objet composite. Pour ce faire, il est nécessaire de définir un
modèle de l’objet composite (par exemple, quatre segments perpendiculaires), et ensuite de
calculer le descripteur correspondant à chaque sous-objet du modèle. Mais comme les objets
observés seront vraisemblablement connectés à des amers extérieur à l’objet composite, il
n’est pas possible d’utiliser un score de corrélation, il sera nécessaire de vérifier si l’objet a
un descripteur Df qui domine le descripteur du modèle Dm (∀iDf (i) ≥ Dm(i)). Ensuite une
procédure d’appariement de graphe peut être utilisée pour vérifier la compatibilité entre un
ensemble d’objet et le modèle composite.
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5.3 Graphe géométrique

Extension du graphe Il est important de réduire le nombre d’objets géométriques testé
dans un algorithme d’appariement de graphe. L’estimation de la position courante du robot
dans l’environnement peut être utilisée, mais quand l’incertitude sur la position du robot
est trop importante, d’autres informations peuvent être utilisées pour réduire le nombre de
candidats. Comme dans le chapitre 5, chaque amer peut être associée à un descripteur
du signal qui est alors utilisé pour réduire le nombre de candidats. Il est aussi intéressant
d’associer les objets à un descripteur plus général de l’environnement, mélangeant cartes
topologiques et cartes métriques, ou d’utiliser une approche de type FabMaps pour détecter
les fermetures de boucles.

Une telle information pourrait être insérée dans le graphe par l’introduction d’un nouveau
type de vertex, appelé “lieu” qui contient l’information du descripteur de lieu.

Construction du graphe Des améliorations à la construction du graphe pourrait être
apporté sur le choix de quel amer est connecté à quel autre amer. Pour le moment, les
amers sont connectés en utilisant une mesure de distance, pour s’assurer que l’incertitude
sur les distances reste faible. En utilisant une carte de visibilité, ou la matrice d’information
(deux amers ont été perçus de la même position lorsque leur corrélation dans la matrice
d’information est importante), ainsi il serait possible de ne connecter deux amers que si il est
probable de les observer ensemble. Ceci devrait augmenter la probabilité d’observer les amers
connectés en même temps.

Un des problèmes de l’algorithme d’appariement de graphe est que les occlusions diminuent
l’efficacité du descripteur géométrique, ce qui peut empêcher de bons appariements de se
produire. Un algorithme qui détecte les occlusions pourraient être utilisé pour déclencher de
nouvelles observations avant d’essayer de trouver des appariements.

Plus généralement, un important travail est nécessaire sur les stratégies d’acquisition de
données, afin de faire une meilleur utilisation d’un groupe de robots, et d’accrôıtre la quantité
d’information contenue dans les cartes.
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TITLE: Perception of the environment geometry for autonomous navigation

ENGLISH SUMMARY:
The goal of the mobile robotic research is to give robots the capability to accomplish

missions in an environment that might be unknown. To accomplish his mission, the robot
need to execute a given set of elementary actions (movement, manipulation of objects...)
which require an accurate localisation of the robot, as well as a the construction of good
geometric model of the environment.

Thus, a robot will need to take the most out of his own sensors, of external sensors, of
information coming from an other robot and of existing model coming from a Geographic
Information System. The common information is the geometry of the environment.

The first part of the presentation will be about the different methods to extract geometric
information. The second part will be about the creation of the geometric model using a
graph structure, along with a method to retrieve information in the graph to allow the robot
to localise itself in the environment.

KEYWORDS: mobile robotic, SLAM, environment modelling
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RÉSUMÉ EN FRANÇAIS:
Le but de de la recherche en robotique mobile est de donner aux robots la capacité

d’accomplir des missions dans un environnement qui n’est pas parfaitement connu. Mis-
sion, qui consiste en l’exécution d’un certain nombre d’actions élémentaires (déplacement,
manipulation d’objets...) et qui nécessite une localisation précise, ainsi que la construction
d’un bon modèle géométrique de l’environnement, a partir de l’exploitation de ses propres
capteurs, des capteurs externes, de l’information provenant d’autres robots et de modèle ex-
istant, par exemple d’un système d’information géographique. L’information commune est la
géométrie de l’environnement.

La première partie du manuscrit couvre les différents méthodes d’extraction de l’information
géométrique. La seconde partie présente la création d’un modèle géométrique en utilisant un
graphe, ainsi qu’une méthode pour extraire de l’information du graphe et permettre au robot
de se localiser dans l’environnement.

MOTS-CLÉS: robotique mobile, SLAM, modélisation d’environnement

DISCIPLINE ADMINISTRATIVE: Systèmes embarquées
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