
\li
" | 2008/4/8 | 9:36 | page i | #1Link�oping Studies in S
ien
e and Te
hnologyThesis No. 1363
Dynamic Abstraction for Interleaved

Task Planning and Executionby
Per Nyblom

Submitted to Link�oping Institute of Te
hnology at Link�oping University in partialful�lment of the requirements for degree of Li
entiate of EngineeringDepartment of Computer and Information S
ien
eLink�oping universitetSE-581 83 Link�oping, SwedenLink�oping 2008

\li
" | 2008/4/8 | 9:36 | page ii | #2

\li
" | 2008/4/8 | 9:36 | page iii | #3
Dynamic Abstraction for Interleaved Task

Planning and ExecutionbyPer NyblomApril 2008ISBN 978-91-7393-905-8Link�oping Studies in S
ien
e and Te
hnologyThesis No. 1363ISSN 0280{7971LiU{Tek{Li
{2008:21ABSTRACTIt is often bene�
ial for an autonomous agent that operates in a
omplex environment tomake use of di�erent types of mathemati
al models to keep tra
k of unobservable partsof the world or to perform predi
tion, planning and other types of reasoning. Sin
e amodel is always a simpli�
ation of something else, there always exists a tradeo� betweenthe model's a

ura
y and feasibility when it is used within a
ertain appli
ation dueto the limited available
omputational resour
es. Currently, this tradeo� is to a largeextent balan
ed by humans for model
onstru
tion in general and for autonomous agentsin parti
ular. This thesis investigates di�erent solutions where su
h agents are moreresponsible for balan
ing the tradeo� for models themselves in the
ontext of interleavedtask planning and plan exe
ution. The ne
essary
omponents for an autonomous agentthat performs its abstra
tions and
onstru
ts planning models dynami
ally during taskplanning and exe
ution are investigated and a method
alled DARE is developed that is atemplate for handling the possible situations that
an o

ur su
h as the rise of unsuitableabstra
tions and need for dynami

onstru
tion of abstra
tion levels. Implementationsof DARE are presented in two
ase studies where both a fully and partially observablesto
hasti
 domain are used, motivated by resear
h with Unmanned Air
raft Systems.The
ase studies also demonstrate possible ways to perform dynami
 abstra
tion andproblem model
onstru
tion in pra
ti
e.This work has been supported by the Swedish Aeronauti
s Resear
h Coun
il (NFFP4-S4203), the Swedish National Graduate S
hool in Computer S
ien
e (CUGS), theSwedish Resear
h Coun
il (50405001) and the Wallenberg Foundation (WITAS Proje
t).
Department of Computer and Information S
ien
eLink�oping universitetSE-581 83 Link�oping, Sweden

\li
" | 2008/4/8 | 9:36 | page iv | #4

\li
" | 2008/4/8 | 9:36 | page v | #5
AcknowledgementsI would like to thank my advisor Patri
k Doherty who has given me more orless free hands to investigate this fas
inating �eld of Arti�
ial Intelligen
e.It has truly been some of the most interesting years of my life and I apologizefor always pi
king subje
ts that you are less familiar with.During my time at the Arti�
ial Intelligen
e and Integrated ComputerSystems division (AIICS), I have re
eived valuable input from many people.Spe
ial thanks to Martin Magnusson, Fredrik Heintz, Per-Magnus Olsson,David Land�en, Piotr Rudol and Gianpaolo Conte for
ommenting drafts ofthis thesis and related papers at various (perhaps dynami
ally generated)levels of abstra
tion.Thanks to Martin Magnusson for providing the �re for many interestingand sometimes endless dis
ussions whi
h really make me grow as a person.Also thanks to Patrik Haslum for your endless wisdom and for supportingme during my early development. Thanks to Fredrik Heintz for your senseof detail and perfe
tion and Jonas Kvarnstr�om for your in
redible problemsolving
apabilities (and will to share them). Thanks to Tommy Person andBj�orn Wingman for your help with all the implementation issues and yourinsights into the UAS Te
h system.Finally, I thank my parents Kurt and Gunilla, my girlfriend Anna andmy daughter Anneli for love and support.

\li
" | 2008/4/8 | 9:36 | page vi | #6

\li
" | 2008/4/8 | 9:36 | page vii | #7

Contents

1 Introduction 11.1 Models and Tradeo�s . 11.2 Task Environments and Models 21.3 The UAS Te
h System . 41.4 Abstra
tions . 51.5 Planning Model Types . 71.6 Constru
ting Planning Models 91.7 Fo
us of Attention . 91.8 Dynami
 Abstra
tion . 101.9 Dynami
 Abstra
tion for Planning and Exe
ution 111.9.1 Example . 111.9.2 DARE . 131.10 Related Work . 131.11 Contributions . 141.12 Outline . 15
2 Preliminaries 162.1 Probability Theory . 172.1.1 Basi
 Assumptions . 172.1.2 Sto
hasti
 Variables 172.1.3 Distributions and Density Fun
tions 182.1.4 Joint Distributions . 182.1.5 Conditional Distributions 182.1.6 Bayes Rule . 202.1.7 Expe
tation . 202.2 Bayesian Networks . 202.2.1 De�nition . 212.2.2 Hybrid Models . 212.2.3 Inferen
e . 222.2.4 Impli
it Models . 222.2.5 Model Estimation . 222.3 Dynami
 Bayesian Networks 232.4 Optimization . 242.5 Exe
ution Systems . 25vii

\li
" | 2008/4/8 | 9:36 | page viii | #8viii CONTENTS2.5.1 Modular Task Ar
hite
ture 262.5.2 Other Ar
hite
tures 262.5.3 De�nition of Skills . 27
3 Dynamic Decision Networks 283.1 Example . 283.2 Lo
al Reward, Global Utility 303.3 Solution Te
hniques . 313.4 Spe
ial Case: Markov De
ision Pro
esses 313.4.1 Poli
y . 323.4.2 Solutions and Solver Methods 323.4.3 Value Iteration . 323.4.4 Reinfor
ement Learning 333.4.5 RL with Model Building 34
4 The DARE Method 374.1 Tasks and Beliefs . 384.2 Overview of DARE . 384.3 Exe
ution Assumptions . 394.4 Re�nement Assumptions . 394.5 Hierar
hi
al Solution Nodes 414.6 Subs
ription VS Poll . 434.7 The Method . 434.7.1 Main . 444.7.2 DynabsSolve . 444.7.3 CreateSubProblems 454.7.4 ReplanIfNe
essary . 464.8 Dis
ussion . 47
5 Case Study I 495.1 Task Environment Class . 495.2 Task Environment Model . 515.2.1 Danger Rewards . 525.2.2 Observation Target Rewards 535.3 Skills . 535.4 DARE Implementation . 545.4.1 Problem Models . 545.4.2 Dynami
 Abstra
tion 555.4.3 Solution Method . 575.4.4 Subproblem Generation 595.4.5 Replanning Conditions 605.5 Experiments . 615.5.1 Setup . 635.6 Comments . 67

\li
" | 2008/4/8 | 9:36 | page ix | #9CONTENTS ix
6 Case Study II 696.1 Task Environment Class . 706.2 Task Environment Model . 716.3 Skills . 746.4 Belief State and Filtering . 746.5 DARE Implementation . 766.5.1 Planning Model Generation 766.5.2 Solution Method . 796.5.3 Camera Movement . 816.5.4 DynabsSolve Implementation 816.5.5 Replanning . 826.6 Experiments . 826.6.1 Setup . 836.6.2 Results . 836.7 Dis
ussion . 84
7 Conclusion 867.1 Future Work . 867.1.1 Extentions to the Case Studies 877.1.2 Dynami
 Task Environment Models 88

\li
" | 2008/4/8 | 9:36 | page x | #10

\li
" | 2008/4/8 | 9:36 | page 1 | #11

Chapter 1

IntroductionIt is diÆ
ult to overestimate the importan
e of mathemati
al models in ourmodern so
iety be
ause of their
ommon use in e.g. natural s
ien
es andengineering di
iplines for many di�erent purposes. Many types of mod-els exists today that
an be used for a variety of tasks su
h as predi
tingweather, simulating vehi
le dynami
s, monitoring nu
lear power rea
torsand verifying
omputer programs.Models have also been used within the area of Arti�
ial Intelligen
e (AI)to develop autonomous agents. It is widely
onsidered that su
h agentsshould have models of their environments (and themselves) to make it pos-sible to operate more su

essfully. The models
an for example be used tokeep tra
k of the unobservable parts of the world, perform predi
tion [34℄,task planning [31℄ and other types of reasoning [10℄.
1.1 Models and TradeoffsOne
ommon trait for mathemati
al models used in pra
ti
al appli
ationsis that it is not always bene�
ial (or even possible) to model every aspe
t ofa system of study down to the smallest detail to get as a

urate as possible.The problem is that there is always a tradeo� between a

ura
y and fea-sibility of a model that should be used for a
ertain appli
ation on a givenar
hite
ture. There might be a demand for timely response of a system thatprohibits long deliberation time whi
h in turn
an make a highly detailed,but
omputationally demanding model inappropriate for use in that par-ti
ular domain. Although the
omputational resour
es that
an be madeavailable for di�erent appli
ations have been in
reasing exponentially sin
ethe dawn of ele
troni

omputers, there will always be a limit when a par-ti
ular system is being developed and deployed. This means that one willalways have to trade a model's a

ura
y for feasibility to get a reasonableperforman
e in any future system, whi
h is a fa
t that is often mentionedin the literature about pra
ti
al mathemati
al modelling [44℄ [24℄.1

\li
" | 2008/4/8 | 9:36 | page 2 | #122 CHAPTER 1. INTRODUCTION
1.2 Task Environments and ModelsWhen a model is to be
onstru
ted for an autonomous agent, it is importantto
onsider the task environment [63℄ in whi
h the agent will operate. The
omplexity of the task environment
an give signi�
ant hints about thedi�erent types of models that
an be used for whatever the purpose of themodel is.A task environment, whi
h
an be either real or simulated, spe
i�es:� what the agent
an do to the environment with its a
tuators,� what information it
an re
eive from its sensors,� how the environment works and what it
ontains, and� what is
onsidered \good or bad" with the help of a performan
emeasureA task environment for an autonomous ground robot
an e.g. spe
ifythat the a
tuators
onsist of a propulsion system and possibly a manipulatorarm. Su
h agents are also typi
ally equipped with sensors su
h as laser ranges
anners,
ameras and sometimes
ollision sensors. The environment may
onsist of tables,
hairs, walls, stairs et
., and its performan
e measure maybe de�ned in terms of power
onsumption and the time to
omplete anassigned task (su
h as delivering a pa
kage).A model that an agent uses should be
losely
onne
ted to the task envi-ronment that the agent operates within. For example, if a model is going tobe used for predi
ting the state of an autonomous agent's task environmentdepending on what a
tions it performs, it better in
lude spe
i�
ations ofhow the a
tuators, sensors and the surrondings work in order to be useful.Su
h a task environment model
an not be too detailed due to the tradeo�between a

ura
y and feasibility.A task environment or a model thereof
an be
lassi�ed a

ording tosome
ommonly used dimensions [63℄ whi
h to a large extent determinehow diÆ
ult it is to handle.� Fully Observable or Partially Observable: If the agent's sensors
an give a

ess to all the relevant information in the environmentit is
alled a fully observable task environment; otherwise the taskenvironment is
alled partially observable.� Deterministic or Stochastic: If the next state is
ompletely deter-mined by the
urrent state and the a
tion exe
uted by the agent thetask environment is
alled deterministi
. If there are several possibleout
omes of an a
tion it is
alled a sto
hasti
 environment. The termnon-deterministi
 is often used when out
omes do not have proba-bilities asso
iated with them.

\li
" | 2008/4/8 | 9:36 | page 3 | #131.2. TASK ENVIRONMENTS AND MODELS 3� Episodic or Sequential: In an episodi
 environment, the agent's
urrent de
ision does not in
uen
e the performan
e of any futureepisode. All environments
onsidered in this thesis will be sequen-tial whi
h means that the agent's
urrent de
ision might in
uen
e theperforman
e of the agent in future states.� Static or Dynamic: A task environment whi
h may
hange whilethe agent deliberates is
alled a dynami
 environment; otherwise it is
alled stati
.� Discrete or Continuous: A
ontinuous environment
ontains el-ements that are more a

urately des
ribed with
ontinuous modelsinvolving real values instead of an enumerable set of values. Taskenvironments that do not have any
ontinuous elements are
alleddis
rete.� Single Agent or Multiagent: A task environment where other ex-ternal agents, besides the main agent itself, try to rea
h goals or max-imize their utilities are
alled multiagent. If the external agents arebetter des
ribed without de
ision
apabilities, or if no external agentsexist, the environment
an be
onsidered single agent.In this thesis, these dimensions are used to
lassify the intrinsi
 prop-erties of a task environment. They are not assumptions that e.g. a designerof an agent
an make. On the other hand, a designer
an make assumptionsthat are re
e
ted in the agent's task environment models that it is supposedto use. Constru
ted models that represent parts of a task environment mustoften be a simpli�
ation of the real thing and the di�erent dimensions arethen used to
lassify the model
onstru
tion assumptions that are not al-ready a property of the task environment. This will be dis
ussed more inSe
tion 1.4.It is assumed that task environment models
an be simulated. Thismeans that di�erent a
tions
an be tested with the model whi
h may resultin one or several possible out
omes depending on whether the model isdeterministi
 or not. Sto
hasti
 models
an be simulated by pseudo randomnumber generators.A task environment
lass or environment
lass is a set of task envi-ronments with similar properties. An agent is often designed to operate ininstan
es of a parti
ular task environment
lass where e.g. the environment
an
ontain a di�erent number of obje
ts and agents but most of the otherproperties or assumptions stay the same. In this thesis, the task environ-ment instan
es in a parti
ular environment
lass are assumed to have thesame
lassi�
ation a

ording to the previously mentioned dimensions andthat the a
tuators and sensors are similarly modelled. Within a parti
ularenvironment
lass, the types of the obje
ts in the environment also stay thesame but the number and initial
onditions may vary in task environmentinstan
es asso
iated with the
lass.

\li
" | 2008/4/8 | 9:36 | page 4 | #144 CHAPTER 1. INTRODUCTIONThe next topi
 of this introdu
tion will des
ribe an example of a
omplextask environment
lass that has motivated mu
h of the work with this thesis.
1.3 The UAS Tech SystemThis thesis is very mu
h inspired by the UAS Te
h's Unmanned Air
raftSystem (UAS), whi
h
urrently
onsist of two autonomous Yamaha RMAXheli
opters equipped with sophisti
ated software and
ontrol systems thathave been developed in the past de
ade [17℄. Many examples in this thesisand the
ase studies have this platform in mind due to the huge variety oftasks that
an potentially be performed with su
h a system.A task environment in this environment
lass (see Se
tion 1.2)
an
on-sist of a varity of elements. A training area for res
ue workers in Revinge(southern Sweden) is often used as a test
ight area and that area
on-tains (or
an be modi�ed to
ontain) buildings, di�erent types of obsta
les,roads, vehi
les, landing spots, safety operators, ground stations where hu-man operators
an monitor the UASs, injured humans (simulated by Phdstudents) and in the future also �res, smoke sour
es and boxes that
an betransported.Depending on the task that is supposed to be performed by the system,the performan
e measure (see Se
tion 1.2) is di�erent. If the task is to takea set of pi
tures of a sele
ted number of building stru
tures, the perfor-man
e measure
ould in
lude the time it takes to perform the mission, thequality of the pi
tures and whether all the requested building stru
tureswere photographed. In the
ase of another standard mission where a UASis looking for vi
tims in a
atastrophe area (or the like) the performan
emeasure
ould in
lude the number of injured people dete
ted, number offalse positives and the time taken to perform the mission.The a
tuators of a UAS, for the purposes of this thesis, are
onsideredto be the signals that
ontrol the heli
opter's rotors,
amera (IR and
olor)pan/tilt unit, wireless network and General Pa
ket Radio Servi
e (GPRS)
ommuni
ation. The
ommuni
ation through the wireless network is per-formed with the help of the Common Obje
t Request Broker Ar
hite
ture(CORBA) [59℄. An a
tuator planned to be used in the future is an ele
-tromagnet atta
hed via a win
h system to the UAS whi
h
an be used totransport obje
ts su
h as medi
al supplies.On a UAS Te
h unmanned heli
opter, numerous sensors are mountedin
luding a Global Positioning System (GPS), Inertial Measurement Unit(IMU) and altimeter for pose estimation,
olor and infrared
ameras. Thewireless network and the GPRS
onne
tion are also
onsidered sensors.One of the UAS Te
h's unmanned heli
opters is pi
tured in �gure 1.1.Its
omputational
apabilities are distributed among three onboard
omput-ers where ea
h of them is used for image pro
essing [32℄,
ight and
amera
ontroller [11℄ and deliberative fun
tionality su
h as path planning [61℄, ge-ographi
 information system and the deliberative/rea
tive exe
ution system

\li
" | 2008/4/8 | 9:36 | page 5 | #151.4. ABSTRACTIONS 5[18℄, respe
tively.

Figure 1.1: One of the UAS Te
h's unmanned heli
opters.In order to perform
omplex tasks in
ompli
ated task environments(su
h as with the UAS Te
h system), it is ne
essary to stru
ture the exe-
ution of tasks and the representation of the environment in a suitable waywith the help of di�erent types of models. Sin
e the UAS Te
h system is sit-uated in the real world, the task environments in this environment
lass arethe most diÆ
ult ones a

ording to the dimensions listed in Se
tion 1.2. Onthe other hand, the models that the system uses of the task environmentsare always a simpli�
ation. Assumptions like full observability, determinismand single agent are
ommon, quite a

urate and useful in
ertain types ofmissions.
1.4 AbstractionsIn this thesis, the following de�nition of an abstra
tion is used:
Definition 1.1An abstraction is a simpli�
ation of the physi
al world or a simpli�-
ation of a model .An abstra
tion is a pro
ess that removes details and should expose themost essential features of the entity that it is applied to. This thesis is

\li
" | 2008/4/8 | 9:36 | page 6 | #166 CHAPTER 1. INTRODUCTIONprimarily
on
erned with abstra
tions of task environments whi
h are moreagent-
entered and in
lude de�nitions of performan
e measures.
Definition 1.2A task environment abstraction is a simpli�
ation of a task environ-ment or a simpli�
ation of a task environment model .Task environment abstra
tions are the only abstra
tions that will bedis
ussed in the rest of this thesis. Whenever an abstra
tion is mentioned,it is meant to refer to a task environment abstra
tion. Figure 1.2 illustrateshow abstra
tions
an be used to
onstru
t models from task environmentsor models thereof.In order to reason about
omplex task environments, abstra
tions areoften used to
onstru
t simpli�ed models with. This is espe
ially the
asewhen the task environment is part of the physi
al world where no exa
tmodel exists. But even task environments that are extremly open-ended
an be reasoned about by performing abstra
tions that are reasonably validunder many
ir
umstan
es.The UAS Te
h system's di�erent task environments are very
omplexand require abstra
tions. For example, the roadmap-based path planningmodule [61℄ uses a polygon representation of the environment to
onstru
t
ollision-free path segments that a UAS
an
y. The polygons are justsimpli�
ations of the environment but the resulting paths are still veryreliable. Another example where abstra
tions are used is in the
ontrolsystem whose design assumes that the heli
opter system is linear, whi
his never the
ase for roboti
 systems, but it is still possible to
ontrol theheli
opter reliably with standard te
hniques from
ontrol theory.Abstra
tions for higher level reasoning about task environments
an alsobe performed whi
h
ould result in fa
ts like \landed", \at position p",\obje
t o is visible from p". These fa
ts
an then be used to support taskplanning and exe
ution monitoring. If a UAS e.g. performs vehi
le tra
king,event des
riptions su
h as \vehi
le v turns left at interse
tion i" might beuseful to summarize a situation or send high level information to otheragents. In these
ases, the abstra
tion performs a dis
retization of parts ofthe
ontinuous task environment and summarizes the in�nitely many statesof the environment into a
ountable number of dis
rete ones.It is also possible to perform abstra
tions on models to
onstru
t evenmore simpli�ed models (See the upper part of Figure 1.2) that
an e.g.be used for
omputing heuristi
 fun
tions to guide problem solvers. Thesimpli�ed problem model
an often be solved mu
h faster (depending onthe abstra
tion) than the original model, and this te
hnique is frequentlyused to solve
lassi
al planning models (See Se
tion 1.5) and integer linearprogramming [65℄ (ILP) problems.An abstra
tion that transforms a task environment into another, sim-pli�ed task environment model
an be analysed with the same type of di-mensions (fully/partially observable et
) as real task environments. Theresulting model type might be in
apable of expressing sto
hasti
 and/or

\li
" | 2008/4/8 | 9:36 | page 7 | #171.5. PLANNING MODEL TYPES 7partially observable phenomena when in fa
t the real task environment hasthese properties. These dimensions are only a rough
ategorization of ab-stra
tions, but they they tend to be very important for de
iding the typeof the resulting model.The thesis fo
uses on abstra
tions and the resulting models used for taskplanning where there exists a ri
h set of model types that have di�erent
apabilities of expressing properties of task environments.
Task Environment

Model

Simplified
Task Environment

Model

Task Environment

Task Environment Abstraction

Task Environment Abstraction

Figure 1.2: An task environment abstra
tion is a simpli�
ation of a taskenvironment or a task environment model.
1.5 Planning Model TypesTask planning is a
ommon way for autonomous agents to �gure out whatto do to rea
h a
ertain goal or to maximize its utility. When task planningis used for exe
ution in real world environments, it is ne
essary to performsome kind of abstra
tion to
onstru
t a suitable task environmentmodel that
an be solved with sear
h or optimization algorithms where the solution isa des
ription of what should be done next. Many di�erent types of su
hplanning models exist that
an be
lassi�ed a

ording to the dimensionsmentioned in Se
tion 1.2.
Definition 1.3A planning model is a task environment model that models the per-forman
e measure and sequential nature of a task environment
Definition 1.4A planning model type is a set of models of a task environment
lass

\li
" | 2008/4/8 | 9:36 | page 8 | #188 CHAPTER 1. INTRODUCTIONThe term problem model or simply problem is in this thesis used todenote models that
an have solutions but are not ne

esarily sequentialin nature and/or in
ludes a performan
e measure. A planning model istherefore
onsidered to be a spe
ialized problem model.The so
alled
lassi
al planning model type makes the strongest as-sumptions a

ording to the dimensions of task environments. The PlanningDomain De�nition Language (PDDL) [30℄ is often used to spe
ify planningmodels in a su

in
t way with the help of a logi
al formalism. Many di�erentversions exist with various levels of expressivity [26℄ [29℄.One extension of PDDL makes it possible to express so
alled MarkovDe
ision Pro
esses (MDPs) [38℄ [62℄. MDPs
an express un
ertainties ina
tion out
omes and exogenous events with probability distributions anduse rewards to express the planning agent's performan
e measure. MDPsare
urrently one of the most
ommonly used models for planning underun
ertainty.MDPs make the assumption that the environment is fully observable,whi
h is often not an a

urate abstra
tion; it is sometimes ne
essary tomodel that an autonomous agent equipped with a
amera is unable to seethrough walls. An extension to the MDP model is the Partially ObservableMDP (POMDP) [38℄ whi
h
an model partially observable environmentsat the expense of in
reased
omplexity of solving the spe
i�ed problems.Approximative solution methods are often used to make it possible to s
aleup beyond systems
ontaining just a few states [49℄.Other types of planning models exist su
h as
onditional planning mod-els whi
h often assume that the world is non-deterministi
 and sometimesalso partially observable. The solution to su
h models are
onditional plansthat
an
ontain if-then-else
onstru
ts and while loops [8℄ [5℄.Another type of planning model type is based on
onstraints whi
h
anbe used to represent both plans and goals. This type of planning model isoften
onsidered very
exible be
ause parts of a plan
an be provided bya user whi
h
an be elaborated by the planning system. Su
h a planner
an also be used in a mixed-initiative framework where di�erent users add
onstraints [41℄ [51℄ [28℄. Constraint-based planners are often very expres-sive but often good heuristi
s must be manually
onstru
ted to solve largeproblems and the assumption is often that the task environment is fullyobservable and deterministi
.In this thesis, a highly expressive graphi
al model
alled Dynami
 De
i-sion Network (DDN) [14℄ will be used to represent planning models (seeChapter 3) whi
h
an be used to express POMDPs with fa
tored statespa
es. A so
alled hybrid DDN
an in addition to POMDPs in
lude amix of dis
rete and
ontinuous elements, whi
h is very useful when tryingto model
omplex task environments. DDNs will also be used as simulationand evaluation models. It is not possible to solve DDNs exa
tly so one mustrely on approximative solution algorithms and/or use them to
onstru
tsimpli�ed but solvable planning models.

\li
" | 2008/4/8 | 9:36 | page 9 | #191.6. CONSTRUCTING PLANNING MODELS 9By looking ba
k at the properties of task environments, one
an see thatHybrid DDNs make very few assumptions that limit the expressivity of atask environment. In the
ase studies (see Chapter 5 and 6), the environ-ment will also be
onsidered to be dynami
 as well whi
h means that thedeliberation time of the agent will be taken into a

ount. The only as-sumption that will be left untou
hed is the assumption of a single agent.Several external agents will be modelled but they will not be assumed to begoal-rea
hing or utility-maximizing.
1.6 Constructing Planning ModelsWhen a planning model (see Se
tion 1.5) is to be
onstru
ted for an au-tonomous agent, it is important to take the properties of the task environ-ment into
onsideration when the model is supposed to be used for guidingthe agent's exe
ution.The available
omputational resour
es must also be taken into a

ountso that it does not take too long to provide a solution. Planning is in generalmu
h harder than other tasks su
h as predi
tion or state estimation be
auseit is ne
essary to predi
t many di�erent state traje
tories that are
ausedby the agent's a
tions. This means either that the used models must bekept on a high level of abstra
tion for handling longer temporal horizons 1or kept rather small to make it feasible.There is often also a huge number of possible ways to represent a
tionsand sensors in di�erent types of planning models and the most detailed anda

urate a
tion or sensor des
ription is not ne

esarily the best.The most
ommon way to
onstru
t a model for task planning is thata human user �rst de
ides what types of abstra
tions to perform and why,and then spe
i�es how the a
tuators, sensors, environment and performan
emeasure will be abstra
ted and used in the resulting model. This pro
essis
onsidered rather diÆ
ult be
ause the resulting model should be bothas general as possible to avoid the
onstru
tion of several planning mod-els, while at the same time take the available
omputational resour
es andthe requirements for a timely response into
onsideration. The resultingplanning model often be
omes a rather
oarse view of how the environmentworks and many times also the only view for planning on that level ofabstra
tion.
1.7 Focus of AttentionDue to the manual abstra
tion pro
ess and
onstru
tion of planning models,agents that are supposed to use these models for planning their exe
utionare typi
ally not provided with any \fo
us of attention" me
hanism where1There is a di�eren
e in both temporal and spatial horizons between a model that uses
on
epts su
h as \
y to point p" and another that uses \des
end 0.3 meters" instead.

\li
" | 2008/4/8 | 9:36 | page 10 | #2010 CHAPTER 1. INTRODUCTIONthey
an
hoose or
onstru
t the models themselves that are most appro-priate for the situation and task at hand. Su
h a
apability would be veryuseful in
omplex task environments where it is not possible to use detailedmodels for everything that
an be relevant all the time. However, the agentmust still be able to
onstru
t or sele
t more detailed models of its task en-vironment when ne
essary, su
h as in situations where \something" in thetask environment does not behave as in the \normal"
ase and that moredetailed reasoning is required to resolve the problem.How
an agents then be given the ability to fo
us their attention duringplanning and exe
ution? In this thesis, agents are given this ability throughthe use of dynami
 planning models whi
h are
onstru
ted depending onwhat e�e
t they will have on the performan
e during exe
ution. This meansthat the a

ura
y of the model (whi
h is often used to evaluate models ingeneral) is allowed to de
rease if the performan
e of the agent in
reaseswhi
h makes the model less a

urate but also more feasible.Dynami
ally
hanging planning models
an be viewed as an instan
e ofthe more general problem of sele
ting or generating any simplifying modelwith some notion of suitability of models that depends on that model type'sparti
ular purpose. This problem will be des
ribed next.
1.8 Dynamic AbstractionThe term dynami
 abstra
tion refers to the
apability of a system to dy-nami
ally
hange its simpli�
ations of its task environment or models thereofdepending on the
urrent
ir
umstan
es. Sin
e any system with limited
omputational resour
es that needs to operate in and model a
omplex taskenvironment would have to perform abstra
tions, the
apability of dynam-i
ally
hanging the
urrently performed abstra
tions would provide both amore
exible and
apable system. A system that
an perform dynami
 ab-stra
tion
an
hoose how its environment should be modelled for the purposeof e.g. knowledge representation [10℄, predi
tion, explanation and planning.For knowledge representation, dynami
 abstra
tion will enable an agentto represent knowledge at many di�erent levels of abstra
tion and sele
tsuitable versions of knowledge to reason with depending on the situation.Humans are believed to be parti
ulary good at this task and seem
apableof dynami
ally
hanging their view of an environment and
onstru
ting andreasoning with abstra
t
on
epts.An agent's predi
tion and explanation me
hanisms
ould also be im-proved by using dynami
 abstra
tion sin
e the agent
ould then dynami-
ally sele
t what variables to take into
onsideration to get as good resultas possible, depending on its own available
omputational resour
es. Ingeneral, more
omplex models for predi
tion and explanation make it more
omputationally intensive and the important tradeo� between a

ura
y andfeasibility must be balan
ed at all times.

\li
" | 2008/4/8 | 9:36 | page 11 | #211.9. DYNAMIC ABSTRACTION FOR PLANNING AND EXECUTION11Dynami
 abstra
tion for task planning, whi
h is the fo
us of this thesis,will be dis
ussed in more detail in Se
tion 1.9.The general task of dynami
ally
onstru
ting models for a parti
ulartask is not easy. It is not
lear how to
ombine di�erent types of modelsinto one that makes sense and how the resulting models
an be evaluatedin order to improve the abstra
tion pro
ess. Compositional or
omponent-based modelling te
hniques [22℄ seem to make things easier, but the task isfar from trivial in the general
ase. Under limited
ir
umstan
es though, it isat least
urrently possible to perform dynami
 abstra
tion for task planningin
ombination with plan exe
ution, where it is possible to dire
tly evaluatethe performan
e of an agent that uses a
ertain planning model. Moreinformation about the state of the art in dynami
 abstra
tion
an be foundin Se
tion 1.10.
1.9 Dynamic Abstraction for Planning and

ExecutionThe main topi
 of this thesis is how dynami
 abstra
tion
an be used forplanning in the
ontext of exe
ution. The
onne
tion to exe
ution is im-portant be
ause feedba
k from the exe
ution should in
uen
e the dynami
abstra
tion pro
edure.Many years of resear
h within task planning have produ
ed many dif-ferent types of planning models and solution methods. The method used inthis thesis is to try to reuse these results.
1.9.1 ExampleImagine an agent that operates in a
omplex task environment and is ableto perform dynami
 abstra
tion in order to
onstru
t simpli�ed planningmodels that
aptures the most important aspe
ts of its environment. It isassumed that the models
an be solved with a suitable solution method.Suppose that the generated planning models are instan
es of MDPs (SeeSe
tion 1.5 and Chapter 3) and that the agent is able to reason about its
omputational resour
es in order to keep the models on a suitable level ofabstra
tion that enables the solution method to provide a solution withina reasonable time. An example of how the a
tual generation of MDPs
anbe performed with e.g.
ontinuous task environment models is dis
ussed inChapter 5.The agent then solves the planning model in order to use the solutionduring exe
ution. For MDPs, the solution is a so
alled poli
y whi
h mapall possible dis
ernible states to an a
tion that should be exe
uted in the
orresponding state. But the states and a
tions have been dynami
ally
onstru
ted by an abstra
tion te
hnique so we have to dis
uss further what
ould possibly happen when the agent should exe
ute the solution.

\li
" | 2008/4/8 | 9:36 | page 12 | #2212 CHAPTER 1. INTRODUCTIONFirst of all, unexpe
ted or simply ignored events in the agent's envi-ronment might
ause the problem model used during the solution phase tobe
ome invalid or unsuitable after a while. The agent might for exampledis
over that an obje
t, previously assumed to be a stationary obsta
le, is infa
t a vehi
le that it is supposed to inspe
t. The agent may have to
hangeits way to perform abstra
tions and replan if (or perhaps more a

urately,when) this happens. It would be bene�
ial for the agent that dis
overed thevehi
le if it is
apable of
hanging its way to view its environment by takingthe speed and dire
tion of the vehi
le into
onsideration in order to predi
twhere it is going. One may then argue that the agent should have usedthat view from the very beginning, but then one also must
onsider thatthe agent both has limited sensor
apabilities and
omputational resour
es.It is therefore just not feasible for the agent to represent everything in themost detailed manner just be
ause something might turn out to be more
ompli
ated than previously per
eived. Remember that the agent has madea de
ision about its abstra
tions and thereby fo
used its attention on theparts of the environment that it
onsidered to be most important. It hasmade an e�ort to make a good tradeo� between a

ura
y and feasibility ofthe planning model.Another problem is that it might turn out that a solution to the MDPmight be on su
h a high level of abstra
tion that the agent is in
apable ofexe
uting it. This depends of
ourse on how
omplex the agent's availablebehaviors or skills (see Se
tion 2.5.3) are but the agent is assumed not tohave skills for everything be
ause then it would not need to plan at all.Our UAS uses an exe
ution system where parameterized rea
tive skills su
has \Fly to a point p", \Take o�" or \Turn
amera towards point p" existbut more
ompli
ated missions like \Deliver a set of pa
kages to a set ofdestinations" does not have a dire
t mat
h to su
h a skill and task planningte
hniques are used instead. Compli
ated missions need to be planned downto the level where skills are available to
arry out the solution. The pointis that an abstra
t solution might need to be re�ned somehow, whi
h isa
ommon and natural te
hnique used within Hierar
hi
al Task Network(HTN) planning [21℄ and Hierar
hi
al Reinfor
ement Learning [6℄. For anMDP poli
y, ea
h planned a
tion might expand into a subproblem2 of itsown whi
h
an also be
onstru
ted with the agent's dynami
 abstra
tion
apabilities. These resulting subproblems, whi
h
ould be MDPs or otherplanning model types need to be solved as well. The re�nement shouldstop when there are skills available that
an reliably enough exe
ute at leastparts of a solution.The re�nement of solutions in this manner
reates an abstra
tion hier-ar
hy whi
h the agent needs to keep tra
k of and
he
k if they are still validand suitable during exe
ution. If higher level problem models suddenly be-
ome too ina

urate due to ignored, simpli�ed or
hanging
onditions, there2The term problem is used here be
ause it might be the
ase that an episodi
 modelis used.

\li
" | 2008/4/8 | 9:36 | page 13 | #231.10. RELATED WORK 13is a risk that the lower level solutions might be invalid or irrelevant.
1.9.2 DAREAll these
onsequen
es of using dynami
 planning models have been stud-ied in this thesis where a method
alled DARE (stands for Dynami
Abstra
tion-driven Replanning and Exe
ution) has been developed thattries to handle these problems (see Chapter 4). DARE is a very abstra
tmethod and needs to be instantiated with a parti
ular task environment
lass before it
an be used. Chapter 5 presents an instantiation of the DAREmethod where MDPs are used as the planning model type and subproblemsare
onstru
ted dynami
ally and solved until a suÆ
iently detailed level ofabstra
tion is rea
hed. In Chapter 6 DDNs are
onstru
ted instead whi
hmakes it possible to represent partial observability.
1.10 Related WorkThe general idea that abstra
tions are ne
essery for de
ision-making is
er-tainly not a new one. The development of HTN-planning [71℄ [64℄ waslargely driven by the need for planning with more abstra
t plan operators�rst, forming an abstra
t plan, and then re�ning the solution and ba
k-tra
king if ne
essary. The SIPE planning system [75℄ was one of the �rstdomain-independent HTN-planners whi
h was des
ribed in great detail. Inthe book that des
ribes SIPE [75℄, there was a dis
ussion about stoppingthe re�nement of task networks and only
onstru
ting plans at a
ertainlevel of abstra
tion. This idea was implemented in CYPRESS [77℄ wherethe so
alled A
t language [76℄ was used to des
ribe both planning and taskexe
ution re�nement in the same language. Planning was only performeddown to a
ertain level and then the task re�nement ki
ked in with the helpof the PRS [52℄ exe
ution system.Other domain-independent HTN planning systems su
h as O-Plan [72℄and SHOP2 [53℄ have been developed for real-world appli
ations and the
urrent situation is that when a planning system is used for solving largeand real-world like task planning models that require reasoning on severallevels of abstra
tion, HTN-planners with added
apabilities of dealing withmany di�erent types of
onstraints are often used.Automati
 abstra
tion has also been developed for so
alled STRIPS or
lassi
al planning [31℄ domains. A system
alled ALPINE [40℄ was used toautomati
ally generate abstra
tion hierar
hies given a domain des
ription.Most of the work within dynami
 abstra
tion for sto
hasti
 task environ-ments has been done within the area of hierar
hi
al reinfor
ement learning(HRL) [6℄ whi
h
an be viewed as a generalization e�ort for HTN-planningin sto
hasti
 environments. The main idea is to use abstra
t MDPs that
an use sub MDPs almost like primitive a
tions. There are many ways

\li
" | 2008/4/8 | 9:36 | page 14 | #2414 CHAPTER 1. INTRODUCTIONto a
tually do this but the three most
ited HRL systems are the Optionsframework [70℄, MAXQ [16℄ and Hiera
hi
al Abstra
t Ma
hines (HAM) [60℄.Jonsson and Barto [37℄ used a modi�ed version of the U-Tree algorithm[46℄ to automati
ally �nd state abstra
tions in the Options framework. AU-Tree is a form of de
ision tree whi
h keeps tra
k of the state abstra
tionby using a statisti
al test to sele
t when distin
tions between di�erent statesshould be made.Hengst [35℄ has developed an algorithm
alled HEXQ whi
h learns sub-task stru
tures by separating state variables that
hange at di�erent rates.Mannor et al. [45℄ use
lustering te
hniques to perform dynami
 ab-stra
tion by looking at the state transition history whi
h is
onverted to agraph where the
lustering takes pla
e. The
lusters are then used to learnpoli
ies that move between the di�erent
lusters whi
h
an then be used asabstra
t a
tions.Steinkraus and Kaelbling [66℄ use a stru
ture very similar to the HSN-stru
ture (see Se
tion 4.5), where di�erent abstra
tions are performed onthe way down to the most detailed abstra
tion.Another pie
e of work that is very mu
h related to this thesis is [43℄where the authors try to dynami
ally generate models depending on thequestions asked about a
ertain system. They express preferred modelswith a theory of abstra
tions about model fragments.Some work with hierar
hi
al POMDPs has been done as well ([73℄
ontains a small survey) but not to automati
ally sele
t abstra
tions forPOMDPs at di�erent levels. Kaelbling et al. [73℄ use reinfor
ement learn-ing methods to learn abstra
t poli
ies over ma
ro a
tions and demonstratemany bene�ts of using abstra
t states in POMDPs.Sturtevant and Buro [67℄ uses abstra
tions in the
ontext of path plan-ning and path exe
ution where the original path planning model is trans-formed into a hierar
hy of models on di�erent levels of abstra
tion. Theabstra
tion is performed by looking for
liques in the planning graph ortiles.
1.11 ContributionsAlthough the idea of dynami
 abstra
tion has been used within hierar
hi
alreinfor
ement learning, it has never been approa
hed from a more generalpoint of view where di�erent types of planning models are
ombined andsele
ted or generated depending on the
urrent situation and task. TheDARE method tries to �nd a way to do this in a more general frameworkand uses the
onne
tion to skills that are supposed to exe
ute the solution.Figure 4.2 on page 42 illustrates a vision where many di�erent types ofplanning models are
ombined and updated dynami
ally.Another
ontribution is the idea and implementation of using the taskenvironment's performan
e measure to fo
us the attention when the plan-ning models are
onstru
ted. In Chapter 5, this is done with the use of

\li
" | 2008/4/8 | 9:36 | page 15 | #251.12. OUTLINE 15relevan
e fun
tions. Chapter 6 uses a measure of the expe
ted utility ofpoints to build planning models.The two
ase studies
ontribute to the area of dynami
 abstra
tion bydemonstrating that (parts of) the abstra
tion pro
ess
an be formulated assolutions to optimization problems.The results presented in the
ase studies have been published in [57℄ and[58℄.
1.12 OutlineThe rest of the thesis is organized as follows: Chapter 2 brie
y providespreliminary information about probability theory, Dynami
 Bayesian Net-works (DBNs) and lo
al optimization te
hniques. Chapter 3 des
ribes ageneral graphi
al model
alled Dynami
 De
ision Networks (DDN) whi
h
an be used to model sto
hasti
 and partially observable planning models.DDNs are used to simulate the task environments used in the
ase studies.The same
hapter also des
ribes MDPs as a spe
ial
ase of DDNs where allvariables are dis
rete and observable.Chapter 4 des
ribes the DARE method whi
h tries to pinpoint the ne
-essary
apabilities of a planning and exe
ution agent that uses dynami
allygenerated planning models and needs to keep tra
k of the
orrespondingabstra
tions' validity.Chapter 5 presents the �rst implementation of DARE where the taskenvironment
lass is fully observable. The planning is performed on severallevels of abstra
tion and the planning models (MDPs) are dynami
ally gen-erated a

ording to the
urrently best
onsidered abstra
tion. Chapter 6
ontains a des
ription of the se
ond
ase study where planning models aredynami
ally
reated in a partially observable task environment
lass. In thisimplementation the levels of abstra
tion are �xed but the planning modelsare still generated dynami
ally depending on the agent's
urrent belief state.Finally, Chapter 7
ontains some
on
lusions and des
riptions of futurework.

\li
" | 2008/4/8 | 9:36 | page 16 | #26

Chapter 2

PreliminariesSin
e this thesis is
on
erned with how suitable planning models
an begenerated depending on the
urrent
ir
umstan
es, it is useful to know aboutsome of the tools to
onstru
t models that are used in the
ase studies inChapter 5 and 6.Probability theory is often used to model un
ertainty. In this thesis,probability theory is used to spe
ify task environment models and is alsothe basis of �ltering algorithms in partially observable environment
lasses.A brief introdu
tion to the relevant
on
epts in probability theory will there-fore be given in Se
tion 2.1.The graphi
al model
alled Bayesian Networks (BNs) will be used tosu

in
tly spe
ify probability distributions and illustrate dependen
ies be-tween variables in the sto
hasti
 planning models used in the
ase studies.The temporal version of BNs, Dynami
 Bayesian Networks (DBNs),
an beused to des
ribe sto
hasti
 pro
esses and is the basis for the Dynami
 De
i-sion Networks (DDNs) [14℄ that will be des
ribed in more detail in Chapter3. BNs and DBNs are des
ribed in Se
tion 2.2 and 2.3.The introdu
tory
hapter
ontained a des
ription of the tradeo� betweena

ura
y and feasibility of a
ertain model. When tradeo�s are performedby
omputers, they are often formulated as an optimization problem andsolved with some of the available te
hniques. This is also the
ase in this the-sis and a brief introdu
tion to optimization problems and relevant solutionte
hniques is provided in Se
tion 2.4.A solution to a planningmodel should be something that
an be exe
utedby an exe
ution system, and sin
e this thesis dis
usses the important
onne
-tion between planning and exe
ution, an introdu
tion to rea
tive exe
utionsystems in general and the Modular Task Ar
hite
ture (MTA) (des
ribedin [56℄) in parti
ular is given in Se
tion 2.5. MTA is used in the UAS Te
hsoftware ar
hite
ture to stru
ture the exe
ution and it uses the CommonObje
t Request Broker Ar
hite
ture (CORBA) [59℄ for
ommuni
ation.16

\li
" | 2008/4/8 | 9:36 | page 17 | #272.1. PROBABILITY THEORY 17
2.1 Probability TheoryThe
on
ept of variation is often a
entral part of many appli
ations. Vari-ation in this
ontext means that the out
ome of some event su
h as tossinga
oin or using a sensor, varies even if the initial
onditions are per
eivedto be the same.The
ause of the variation
an be dis
ussed and it might be the
asethat the phenomenon of study is a
tually deterministi
 if all the variablesare taken into a

ount. The problem is that it is not always possible toget a

ess to all the variables that determine an out
ome (the environmentmight be partially observable) and therefore it is ne
essary to deal withvariation, whether the world is deterministi
 or not.Probability theory is one way of representing variation and it is used inmany pra
ti
al situations su
h as representing measure error and buildingsto
hasti
 models su
h as MDPs (see Chapter 3) used for task planning.
2.1.1 Basic AssumptionsThe basi
 assumption of probability theory is that there exists a universeof out
omes U and ea
h event E � U (given some basi
 assumptions aboutE su
h as it must be a �-algebra [20℄) is given a number between 0 and 1,
alled the probability P (E) of the event E. The probability fun
tion P is
onstrained by the following fundamental axioms of probability:� For any set E � U , P (E) � 0� P (U) = 1� Any
ountable sequen
e of pairwise disjoint events [E1, E2; :::℄ satis�es:P (E1 [E2 [:::) =PP (Ei)
2.1.2 Stochastic VariablesSto
hasti
 variables are often used to spe
ify events whi
h
an be denotedby expressions su
h as \AltUAS > 10:2" 1 whose denotation de�nes theevent where the UAS's altitude is above 10.2 meters. The sto
hasti
 vari-able AltUAS is in this
ase used to represent the altitude. Events, su
h asthe one just mentioned,
an be given probabilities as long as they followthe fundamental axioms of probability. AltUAS is an example of a sto
has-ti
 variable with a
ontinuous domain (the altitude). Domains
an also bedis
rete sets su
h as frs1; rs2; rs3g, whi
h in this
ase represents three dif-ferent road segments in a road network. The expression \RS
ar = rs2"
an1A more theoreti
al and
omplete treatment of probability theory (see [20℄) de�nesto
hasti
 variables in a di�erent way, but for the purpose of this thesis, thinking aboutsto
hasti
 variables as something that
an be used to form expressions that denote eventsare suÆ
ient

\li
" | 2008/4/8 | 9:36 | page 18 | #2818 CHAPTER 2. PRELIMINARIESthen represent the event that a
ertain
ar is travelling on the road segmentdenoted by rs2.Simple expressions su
h as \AltUAS > 10:2"
an be used to form
om-bined events with logi
al operations like \AltUAS > 10:2 ^ AltUAS < 20"whi
h denotes the interse
tion of the events denoted by \AltUAS > 10:2"and \AltUAS < 20", whose intended meaning is that the UAS's altitude isbetween 10.2 and 20 meters.
2.1.3 Distributions and Density FunctionsA dis
rete sto
hasti
 variable X has a so
alled probability distributionasso
iated with it, whi
h de�nes the probability P (X = d) for all the ele-ments d 2 DX in that variable's domain DX 2. A probability distributionfor RS
ar might be h0:1; 0:7; 0:2i whi
h means that P (RS
ar = rs1) = 0:1,P (RS
ar = rs2) = 0:7 and P (RS
ar = rs3) = 0:2. The sum of all probabil-ities in the distribution must be equal to 1, a

ording to the fundamentalaxioms of probability. For a
ontinuous sto
hasti
 variable, it is not possi-ble to enumerate all possible events and one has to asso
iate a probabilitydensity fun
tion fX with the variable X instead. Figure 2.1 illustrates anexample of su
h a density fun
tion for the AltUAS sto
hasti
 variable. Theintegral of a probability density fun
tion fX , R1�1 fX(x)dx , must be equalto 1.
2.1.4 Joint DistributionsEvents that involve more than one sto
hasti
 variable
an be spe
i�ed withexpressions su
h as \RSTru
k = rs1 ^ RSCar = rs2" where the sto
hasti
variable RSTru
k represents the possible road segments for a tru
k and hasthe same domain as RSCar. The probability distribution for both of the twosto
hasti
 variables must be de�ned for every
ombination of values su
h asP (RSTru
k = rs1^RSCar = rs1) = 0:1, P (RSTru
k = rs2^RSCar = rs1) =0:12 and so on. The
omplete spe
i�
ation of all the sto
hasti
 variables'probability distributions and density fun
tions is
alled the joint probabilitydistribution. If dis
rete and
ontinuous sto
hasti
 variables are mixed in thesame model, the probability density fun
tions for all the
ontinuous variablesmust be de�ned for all
ombinations of values for the dis
rete variables inthe general
ase.
2.1.5 Conditional DistributionsThe
onditional probability P (E1jE2) given two eventsE1 andE2 is de�nedas:2The probability fun
tion P is in this way also used for expressions involving sto
hasti
variables and the intended meaning is the probability of the denoted event.

\li
" | 2008/4/8 | 9:36 | page 19 | #292.1. PROBABILITY THEORY 19

0 5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Altitude

Probability Density Function for the UAV’s altitude

Figure 2.1: An example of a probability density fun
tion asso
iated withthe AltUAS sto
hasti
 variable.P (E1jE2) = P (E1; E2)P (E2) (2.1)and is often used to model partially observable events or state transitiondistributions in e.g. MDPs.The
onditional probability distribution P(X jY) for the two dis
retesto
hasti
 variables X and Y is de�ned as:
P(X jY) = P(X; Y)

P(Y) (2.2)Equation 2.2 should be interpreted as the set of equations:P (X = xijY = yj) = P (X = xi ^ Y = yj)P (Y = yj) (2.3)for all
ombinations of the sto
hasti
 variables' domain elements xi andyj . Similarily, the
onditional density fun
tion fX;Y for two
ontinuoussto
hasti
 variables X and Y is de�ned as:fX;Y (xjy) = fX;Y (x; y)fY (y) (2.4)

\li
" | 2008/4/8 | 9:36 | page 20 | #3020 CHAPTER 2. PRELIMINARIESwhere fX;Y is the joint probability density fun
tion for X and Y and fYis the (marginalized) probability density fun
tion for Y whi
h is equal toR1�1 fX;Y (x; y)dx.
2.1.6 Bayes RuleBayes Rule is useful when one needs to
al
ulate the probability P (EijEj)in terms of P (Ej jEi), P (Ej) and P (Ei):P (EijEj) = P (Ej jEi)P (Ei)P (Ej) (2.5)Bayes rule is used extensively in probabilisti
 expert systems be
auseit is often the
ase that it is diÆ
ult and/or inappropriate to estimate ormeasure the
onditional probability in a
ertain \dire
tion" but not theother way around. In Chapter 6, Equation 2.5 will be used to
al
ulate theprobability of a state given noisy sensor data.Bayes rule
an be extended to hold for distributions and density fun
-tions similar to Equation 2.2 and 2.4.
2.1.7 ExpectationFor sto
hasti
 variables that have a domain of a subset of the integers orreals, it is possible to de�ne the expe
ted value given the
orrespondingdistribution or density fun
tion. The expe
tation of a dis
rete sto
hasti
variable X is de�ned as follows:E(X) = Xx2DX xP (x) (2.6)The
orresponding expression for
ontinuous sto
hasti
 variables in-volves an integral instead of a sum:E(X) = Z 1�1 xfX(x)dx (2.7)The expe
tation is often denoted mX and generalizes to ve
tors ofsto
hasti
 variables X as well.
2.2 Bayesian NetworksOne of the major problems with probabilisti
 models is that the number ofprobabilities that must be spe
i�ed for the joint distribution grows expo-nentially with the number of variables in the general
ase.There are often more su

in
t ways of impli
itly des
ribing a probabilitydistribution by only spe
ifying
onditional distributions between the vari-ables in the model. A graphi
al model
alled Bayesian Networks provides

\li
" | 2008/4/8 | 9:36 | page 21 | #312.2. BAYESIAN NETWORKS 21this fun
tionality and has been
redited with the extensive use of probabilis-ti
 te
hniques in AI appli
ations be
ause of the resulting in
reased eÆ
ien
yof probabilisti
 reasoning for larger models.
2.2.1 DefinitionA Bayesian network is a Dire
ted A
y
li
 Graph (DAG) where ea
h noderepresents a sto
hasti
 variable. Ar
s between nodes should as
losely aspossible represent \dire
t"
ausal in
uen
es between variables. Figure 2.2illustrates a typi
al Bayesian Network.

X

Z Y

B

A

P(y_1 | a_1, x_1) = 0.1

...
P(y_1 | a_2, x_1) = 0.02

P(y_1 | a_1, x_2) = 0.03

P(y_k | a_m, x_n) = 0.02

Figure 2.2: A typi
al Bayesian Network. Parts of the
onditional distribu-tion for the sto
hasti
 variable Y, given its parents values, is also shown.Instead of spe
ifying the full joint distribution for a set of sto
hasti
variables, one only needs to spe
ify the
onditional probability distributionsor densities of variables given their parents.The main assumption for a Bayesian Network with dis
rete variablesX1; :::; XN is that the full joint distribution P (X1; X2; :::; XN)
an be
al
u-lated by: P (X1; X2; :::; XN) = NYi=1P (XijParents(Xi)) (2.8)where Parents(Xi) is the set of parent nodes of Xi. Figure 2.2 illus-trates parts of one of these
onditional probabilities P (Y jX;A) whi
h is alot easier to spe
ify than the full joint distribution P (A;B;X; Y; Z) for all
ombinations of the variables' domains.
2.2.2 Hybrid ModelsSo
alled Hybrid Bayesian Networks
an in
lude both dis
rete and
ontinu-ous sto
hasti
 variables. A
ontinuous variable with dis
rete and
ontinuous

\li
" | 2008/4/8 | 9:36 | page 22 | #3222 CHAPTER 2. PRELIMINARIESparents must then have several
onditional density fun
tions for ea
h
om-bination of dis
rete values that may depend on the values of the
ontinuousparents as well. A dis
rete variable with
ontinuous and dis
rete parentsmust in the general
ase have several density fun
tions de�ned. Hybrid BNswill be used to de�ne parts of the task environment models used in the
asestudies (Chapter 5 and 6).
2.2.3 InferenceBNs
an be used for many di�erent purposes. One of the most basi

apabili-ties is to
al
ulate a
onditional probability P (EijEj). Events des
ribed withsto
hasti
 variables are
ommonly used to formulate su
h queries where itis often the
ase that a set of dis
rete variables Y are already known andanother set of dis
rete variables Z are unknown. The probability distribu-tion P(X jY;Z) of the query variable X is then
al
ulated by the inferen
epro
edure applied to the BN.In this thesis, inferen
e in Bayesian Networks is performed in a spe
ial-ized
ontext of �ltering where the probability distribution over the
urrentstate is estimated when a system is des
ribed with a so
alled Dynami
Bayesian Network (see Se
tion 2.3 and 6.4 for more information about thisparti
ular form of inferen
e).
2.2.4 Implicit ModelsAll the examples given so far have used either a tabular or expli
it prob-ability density representation of the probability distributions. This is notalways possible or even ne
essary. Suppose that one would like to repre-sent the probability distribution of the values of a laser s
an sensor giventhe sensor's pose and a map of the surroundings. An expli
it probabilitydensity representation of the sensor values given all possible poses is notpossible to store due to the
ontinuous sto
hasti
 variables. It is possible to
al
ulate one su
h density given that the pose is known, by using ray
ast-ing or similar te
hniques in the map, whi
h is an example of an impli
itrepresentation of a density fun
tion widely used in pra
ti
e [74℄, e.g. when amobile robot performs Monte Carlo Lo
alization (MCL) [25℄ with a parti
le�lter (whi
h is an approximative inferen
e method that does not need anexpli
it density representation).Impli
it densitiy fun
tions will be used in the
ase studies e.g. whenvisibility
onditions are used. Su
h
onditions are very
umbersome to rep-resent expli
itly but relatively easy to
al
ulate with ray
asting te
hniques.
2.2.5 Model EstimationA
onditional distribution
an be estimated by a suitable statisti
al te
h-nique su
h as general fun
tion approximation (if no parti
ular type of dis-

\li
" | 2008/4/8 | 9:36 | page 23 | #332.3. DYNAMIC BAYESIAN NETWORKS 23tribution is assumed) or parameterized models like Gaussian distributionsor mixture models. Maximum Likelihood (ML) (see [2℄) parameter estima-tion is a
ommon method whi
h is used in Chapter 5 to estimate transitiondistributions in MDPs.
2.3 Dynamic Bayesian NetworksBayesian Networks are a great tool for modelling situations where temporalaspe
ts are not taken into
onsideration. It is often the
ase that one wouldlike to model sto
hasti
 systems that evolve over time as well, and then anextension to Bayesian Networks
an be made to
reate Dynami
 BayesianNetworks (DBNs) [13℄.DBNs
an be used to model stationary sto
hasti
 pro
esses whi
h makesthe so
alled Markov assumption. Temporal sto
hasti
 models that makethis assumption assume that any state
an only depend on a �nite historyof sto
hasti
 variables. In a �rst order Markov model the
urrent state
an only depend on the previous one, whi
h is often the
ase for DBNs. A�rst order Markov model
an represent any �nite order Markov model byintrodu
ing extra sto
hasti
 variables.Figure 2.3 shows the typi
al stru
ture of a DBN model. The basi
 ideais to use a set of sto
hasti
 variables for ea
h time step and de�ne the
onditional probabilities of the variable set at time t given the variable setat time t � 1. The Markov assumption makes it possible to de�ne a DBNwith only two sets of variables, one set of prior distributions for time step0 and a set of
onditional distributions for ea
h sto
hasti
 variable.

Variable 1

t−1

Variable 2

t−1

.

.

.

Variable N

t−1

.

.

.

Variable 1

Variable 2

Variable N

t

t

t

Figure 2.3: A typi
al Dynami
 Bayesian Network.Given that a DBN
an represent a probability distribution over time,it
an be used by an autonomous agent to perform the following types of

\li
" | 2008/4/8 | 9:36 | page 24 | #3424 CHAPTER 2. PRELIMINARIESreasoning over time:� The probability distribution over the agent's
urrent state spa
e
anbe updated with �ltering. This is a very useful operation when thetask environment is partially observable.� Future distributions
an be estimated with predi
tion. This operationis useful when the agent performs planning.� The set of previous state distributions
an often be better estimatedwhen more information is re
eived whi
h is
alled smoothing andsometimes hindsight. Smoothing is espe
ially useful if any type ofma
hine learning [48℄ is used to update the distributions in the DBN.Filtering is used to
ompute the posterior probability distribution
P(Xt+1jY1:t+1) where Xt+1 and Y1:t+1 represents all unobserved variablesat time t + 1 and the sequen
e of observed variable sets (Y1; Y2; :::; Yt+1)respe
tively.The �ltering
omputation
an be des
ribed with the following equation:

P(Xt+1jY1:t+1) = P(Yt+1jXt+1)Pxt P(Xt+1jxt)P (xtjY1:t)
P(Yt+1jY1:t) (2.9)where P(Yt+1jXt+1) often is
alled the observation model whi
h treatsthe sto
hasti
 variables Yt+1 as observations of the hidden variables Xt+1.

P(Xt+1jXt) is often
alled the transition model.The
orresponding equation for performing predi
tion k + 1 steps intothe future with a DBN is the following:
P(Xt+k+1jY1:t) =Xxt+k P(Xt+k+1jxt+k)P (xt+kjY1:t) (2.10)A spe
ial
ase of DBN is the Markov
hain where only one dis
retesto
hasti
 variable with �nite domain is allowed. It is possible to model anydis
rete DBN with a single dis
rete variable, but it is often mu
h easier touse several variables sin
e the domain
an often be des
ribed more su

in
tlywith that approa
h. Markov De
ision Pro
esses (MDPs) (see Se
tion 3.4)use Markov
hains to model a sto
hasti
 system that is fully observable.

2.4 OptimizationMany planning model types make it possible to spe
ify some kind of
ostor utility of a solution to the problem. There are sometimes many di�erentways to solve a spe
i�
 planning model but some solutions might be betterthan others due to di�erent
ir
umstan
es. There might for example existmany di�erent paths for a UAS to
y from one point to another but some

\li
" | 2008/4/8 | 9:36 | page 25 | #352.5. EXECUTION SYSTEMS 25paths might be better than others due to the length of the path or other
riteria. When there are several possible solutions available to a modeland the solutions
an be
ompared in terms of
ost or other measurements,the model is
alled an optimization problem. In this thesis, optimizationproblems are used for other tasks than planning and a solution to su
h aproblem will typi
ally not be a plan or an a
tion but instead a de
isionabout abstra
tion parameters.One possible de�nition of an optimization problem is that there existsa set of variables V where ea
h variable has a domain DV that
an beany type of set. Let D be the
rossprodu
t of all the variables' domainsDv1 �Dv2 � :::�DvjV j . The obje
tive fun
tion U : D ! R is then used to
ompare di�erent solutions.The form of D and U spe
i�es the possible solution methods that
anbe used. When the set of variables all have dis
rete domains, a
ommonmethod is Bran
h and Bound [42℄ or some lo
al sear
h method su
h ashill
limbing and simulated annealing [39℄. For pure
ontinuous domainsand linear utility fun
tions, Linear Programming [65℄
an be used. Otheroptimization algorithmsmake use of the gradient and hessian of U to guidethe sear
h towards a global or lo
al maximum [55℄.In this thesis, di�erent types of lo
al sear
h are used to perform opti-mization as a method to sele
t abstra
tions. Lo
al sear
h methods makeuse of a so
alled neighbourhood fun
tion N : D ! 2D whi
h de�nes thepossible su

essors when the lo
al sear
h method is exploring a
ertain stated 2 D.N
an be used in di�erent ways to perform the sear
h. In hill
limbingsear
h, all the states in the neighbourhood are examined and the one withthe best utility is sele
ted and set as the new
urrent state. The neighbour-hood fun
tion
an also be sampled, as in simulated annealing, where the
urrent state is set to the sampled state with a
ertain probability that de-pends on the utility and the so
alled
ooling s
hedule whi
h makes
hoi
esthat are worse, less probable with time.
2.5 Execution SystemsThere are many possible ways to stru
ture exe
ution in an autonomous agentthat may have to operate in dynami
 task environments with both a
tionand sensor un
ertainty. Resear
hers within the area of AI roboti
s [50℄have been dealing with these isssues and di�erent paradigms for stru
turingexe
ution have evolved. The evolution started with Shakey [54℄ and the so
alled hierar
hi
al paradigm, whi
h is often very
omputationally expensiveand makes use of task environment models, and
ontinued with the rea
tiveparadigm with behaviors with only simple memoryless modules. The hybriddeliberative rea
tive paradigm is now more
ommonly used whi
h tries to
ombine the use of models with behaviors.

\li
" | 2008/4/8 | 9:36 | page 26 | #3626 CHAPTER 2. PRELIMINARIES
2.5.1 Modular Task ArchitectureThe UAS Te
h system uses the Modular Task Ar
hite
ture (MTA) (see [56℄for a des
ription) to stru
ture mu
h of the exe
ution and is
lassi�ed asa hybrid deliberative rea
tive ar
hite
ture. MTA makes use of the Com-mon Obje
t Request Broker Ar
hite
ture (CORBA) [59℄ for
ommuni
a-tion. The parameterized behavioral
omponents are
alled Task Pro
edures(TPs). TPs have a standardized way to be initialized, terminated and soon and
an
all any CORBA servi
e. In the UAS Te
h system, a path plan-ner, a geographi
 information system and knowledge pro
essing middlewareDyKnow [19℄ are all a

essed as CORBA servi
es. Before any a
tion
an beexe
uted, a TP instan
e (TPI) must be
reated by a request to a TP libraryservi
e.TPs have a behavioral
omponent that spe
i�es the exe
ution. Currentlythe implementation of the behavioral
omponent is based on state ma
hinesand the TPs are allowed to have lo
al and servi
e referen
e variables.A TPI
an
reate other TPIs as well and stru
tures of TPIs
an be
onstru
ted. Figure 2.4 illustrates a set of TPIs that is used in a part of amission where a set of building stru
tures are supposed to be investigated.In the UAS Te
h system, the set of TPIs are
hanging all the time. Theset of instan
es during takeo� or landing is di�erent from the ones shownin Figure 2.4.

NavToPoint

Fly3D

CameraControl

DoAtPoints

Photogrametry

Geographic Information Service

Path Planner Service

Helicopter Controller Service

CORBA Services

Task Procedure Instances

Figure 2.4: Task Pro
edure instan
es for the part of a mission where a setof building stru
tures are investigated. The �gure also shows the servi
esthat the TPIs are using.
2.5.2 Other ArchitecturesMany exe
ution system ar
hite
tures have been developed whi
h have manysimilarities with MTA due to the use of some notion of task or task instan
e

\li
" | 2008/4/8 | 9:36 | page 27 | #372.5. EXECUTION SYSTEMS 27that
an be used to perform exe
ution. The Rea
tive A
tion Pa
kage (RAP)[23℄ system uses hierar
hi
ally stru
tured \pa
kages" that
an perform sim-ple tasks in di�erent ways depending on the situation. The pa
kages
anstart up other pa
kages to perform subtasks and the
on
urrently exe
utingtasks are managed with the RAP memory and a me
hanism for syn
hro-nization. The Pro
edural Reasoning System (PRS) [52℄ with su

essors(e.g. Apex [27℄) builds on similar ideas. PRS uses a simple database withfa
ts that
an be �lled in by sensors and task exe
uting behaviors.
2.5.3 Definition of SkillsSin
e there are a lot of similarities between di�erent exe
ution system ar-
hite
tures su
h as MTA, RAP and PRS, the
olle
tive term Skill will beused to refer to any primitive task exe
uting pie
e e.g. TPIs, RAPS and soon:
Definition 2.1A skill is a rea
tive
omputational me
hanism that a
hieves a
ertainobje
tive in a limited set of
ir
umstan
es with the following
apabili-ties:� It
an have an internal state and/or use a shared database.� It
an send messages to other skills either through an event systemor a database.� It is possible to
ontrol and monitor it from the \outside" andterminate it safely on demand, even if it is not �nished with itsobje
tive.These
apabilities of skills are used to keep the DAREmethod (see Chap-ter 4) as general as possible and not spe
ialize it too mu
h towards use ofMTA. MTA, RAP and PRS are all
apable of de�ning skills that have theseproperties.

\li
" | 2008/4/8 | 9:36 | page 28 | #38

Chapter 3

Dynamic Decision

NetworksThe previous
hapter des
ribed the Dynami
 Bayesian Networks (DBNs)that
an be used to model any dis
rete time sto
hasti
 pro
ess that satis�esthe Markov assumption. DBNs
an be extended to spe
ify planning modelsand are then
alled Dynami
 De
ision Networks [14℄ (DDNs) whi
h arebased on De
ision theory [7℄. De
ision theory is a very general method forde
ision-making under un
ertainty.The main idea is to add a
tion and reward nodes to the basi
 DBN tomake it possible for an agent to
ontrol the pro
ess and determine the utilityof possible out
omes.This
hapter also des
ribes the Markov De
ision Pro
ess (MDP) [62℄,whi
h
an be viewed as a spe
ial
ase of DDN. Partially Observable MDPs(POMDPs) [38℄ are also a spe
ial
ase of DDNs but are not presented inthis
hapter be
ause none of the spe
ialized POMDP solution te
hniquesare used in this thesis.
3.1 ExampleFigure 3.2 shows an example DDN whi
h des
ribes the problem of deliveringa box to a target position on the ground. The box is atta
hed to a win
hon a UAS (see Figure 3.1). It is a standard (but often diÆ
ult) task ofmathemati
al model building to
reate a model of this system using the lawsof physi
s
ombined with parameter estimation te
hniques and possibly a
ollision dete
tion/handling system to predi
t the movement of the box ifit tou
hes or falls on the ground.In order to
ontrol the system, it is useful to de�ne a performan
e mea-sure model. DDNs try to solve this modelling problem by de�ning a
on-tinuous reward variable Rt that spe
i�es the immediate reward when the28

\li
" | 2008/4/8 | 9:36 | page 29 | #393.1. EXAMPLE 29system goes from one state to another (t � 1 to t). The main obje
tive isto maximize the total reward,PT+t0t=t0 Rt, from the
urrent state Xt0 with a�nite horizon T , but many variants exists su
h as maximizing the averagereward or using a dis
ount fa
tor with an in�nite horizon (see Se
tion 3.2).The reward variable
an in this example e.g. depend on whether the boxis \damaged" by
olliding too fast with the ground and the behavior of theUAS (if it is too
lose to the ground or makes some unwanted manouver)et
. Goals, su
h as \the box should stand on the ground and be deta
hedfrom the win
h",
an be spe
i�ed with a large reward when the box is
loseenough to the target position with zero velo
ity while at the same timebeing deta
hed.
UAS

Box

Winch

Target position

Figure 3.1: A UAS with a win
h, trying to deliver a box.Figure 3.2 only spe
i�es the relationship between di�erent
lasses ofrandom variables and the
ontents of e.g. UAS State is not spe
i�ed. Manydi�erent versions are possible su
h as using dis
rete domains for all variables,whi
h makes it possible to dire
tly model the problem with a POMDP, ortry to model most of the relationships with linear Gaussian distributions tomake it possible to use feasible �ltering and predi
tion te
hniques.The reward variable
an be used to spe
ify the desired behavior of thesystem. It is ne
essary to make a tradeo� between the UAS's and the box'ssafety whi
h raises important questions su
h as: How bad is it to
rash
ompared to a destroyed box? What is best, a solution that takes one hourthat su

eeds
awlessly with probability 0.99 or a solution that takes �veminutes and su

eeds with probability 0.95?

\li
" | 2008/4/8 | 9:36 | page 30 | #4030 CHAPTER 3. DYNAMIC DECISION NETWORKS
Reward

Map

Static

Observed
Box State

t

Winch control

UAS control

Actions

Box State

Winch State

UAS State

Box State

Winch State

UAS State
t−1

t−1

t−1 t

t

t

State

Observations

Observed

UAS State
tFigure 3.2: A DDN that des
ribes the sequential de
ision problem of deliv-ering a box.

3.2 Local Reward, Global UtilityThe lo
al reward variable in DDNs
an be used to spe
ify a global utilityfun
tion U of all states. This utility fun
tion typi
ally depends on the sumof the rewards. With U given with fully observable state variables, an agentthat tries to maximize its utility
an simply perform a one-step appli
ationof the P(XtjXt�1; At), where At is the set of a
tion variables, to maximizethe expe
ted utility (EU) by sele
ting the a
tion a that satis�es:argmaxa2AtXi U(xit)P (xitjXt�1; a) (3.1)This is a very general prin
iple of de
ision-making under un
ertaintyand
entral in the area of De
ision Theory (DT) [7℄.When the state is only partially observable, the utility fun
tion typi
allydepends on probability distributions over states instead whi
h makes theproblem of both representing U and �nding a solution mu
h more
omplex.The global utility of a state
an be used when the de
ision horizon Tis �nite. When the horizon is in�nite, the most
ommon method to makeit possible to
ompare in�nite sequen
es of rewards is to assign a so
alleddis
ount fa
tor
 2 [0::1). The dis
ount fa
tor makes sure that all stateutilities are �nite and it is then possible to
ompare state traje
tories.

\li
" | 2008/4/8 | 9:36 | page 31 | #413.3. SOLUTION TECHNIQUES 31
3.3 Solution TechniquesA hybrid DDN is generally not possible to solve, with any reasonable de�-nition of solution, due to the simple fa
t that it
an be used to spe
ify anynon-linear
ontinuous sto
hasti
 Markov model whi
h in
ludes POMDPsand many optimal
ontrol problems as spe
ial
ases.A
ommon approximate solution method is to dis
retize the a
tion nodes(if they do not already have dis
rete domains) and perform depth-limitedlookahead from the
urrent state or (approximated) belief state. It is
om-mon that the global utility for the state at the maximum depth is estimatedby a heuristi
 fun
tion. It is also
ommon to use iterative deepening depth-�rst lookahead to make sure that some kind of solution is ready as qui
klyas possible. The requirements of this type of in
omplete sear
h is that theagent must perform the lookahead before every de
ision is made, whi
h
anbe
omputationally intensive, espe
ially if the �ltering is expensive.In Chapter 6, depth-limited lookahead is used in
ombination with par-ti
le �lters to make an agent de
ide what to do when the environment isrepresented with a Hybrid DDN.
3.4 Special Case: Markov Decision ProcessesA spe
ial
ase of DDNs is the Markov De
ision Pro
ess (MDP) [62℄. In thismodel, all random variables are observable, whi
h means that no �lteringis ne
essary. All variables, ex
ept the reward variable, are also assumed tohave dis
rete domains.To be able to use the
ommon notation for MDPs, a random variable Sis de�ned whi
h has a domain of the
ross produ
t of all random variables'domains. An a
tion variable A is de�ned in the same way for all a
tionvariables present in the DDN model. Figure 3.3 illustrates the resultingDDN when the a
tion and state spa
e have been
reated.

S S’

A

RFigure 3.3: A DDN that represents an MDP.The so
alled transition distribution P(s0js; a) de�nes the probabilityof ending up in a state s0 2 S after exe
uting an a
tion a 2 A in s 2 S.

\li
" | 2008/4/8 | 9:36 | page 32 | #4232 CHAPTER 3. DYNAMIC DECISION NETWORKSThe reward density fun
tion fR(rjs; a) similarly de�nes the distributionof the reward r re
eived in the same
ontext. R(s; a) is used to denote theexpe
tation of the reward density fun
tion when a is exe
uted in state s.
3.4.1 PolicyThe assumption of sum of rewards together with the Markov property, makesit possible to de�ne a solution to an MDP as a mapping from the
urrentstate to an a
tion [62℄. Su
h a mapping is
alled a poli
y. It is possible to
ompute the value V � of a poli
y � for all states s 2 S through the followingre
ursive formula:V �(s) =
Xs0 P (s0js; �(s))V �(s0) +R(s; �(s)) (3.2)where s and s0 are equivalent to St�1 and St respe
tively. The valueis guaranteed to be �nite due to the dis
ount fa
tor
 2 [0; 1) and whenR(s; a) is bounded.
3.4.2 Solutions and Solver MethodsValue fun
tions de�ne a partial ordering over poli
ies. A poli
y � is stri
tlybetter than another poli
y �0 if V �(s) > V �0(s) for all states s 2 S. Thereis always at least one su
h poli
y �� that is stri
tly better than or as goodas all other poli
ies. Su
h poli
ies are
alled solutions to the MPD.The value fun
tion V � for all optimal poli
ies satis�es the followingBell-man equation for all states s 2 S:V �(s) = maxa Xs0
P (s0js; a)V �(s0) +R(s; a) (3.3)If the optimal value V � is known, without any referen
e to a spe
i�
poli
y, an optimal poli
y
an be extra
ted from V � through the followingformula: ��(s) = argmaxa Xs0 P (s0js; a)V �(s0) +R(s; a) (3.4)
3.4.3 Value IterationThe Bellman equation
an be used to develop an iterative solution algorithmthat updates a better and better estimate of the value fun
tion V . Onesu
h method is
alled the Value Iteration algorithm [62℄ and is shown inPro
edure 3.1. It uses the so
alled Bellman update rule to iterativelyupdate the value fun
tion until the optimality
riterium is rea
hed. Theoptimality
riterium is de�ned by � whi
h means that the resulting poli
y

\li
" | 2008/4/8 | 9:36 | page 33 | #433.4. SPECIAL CASE: MARKOV DECISION PROCESSES 33��� has a value V ��� that may be up to � less than the optimal poli
y's valueV �� .
Procedure 3.1 Value Iteration(
)Initialize V arbitrarily, e.g. V (s) = 0 for all s 2 S

repeat

for all s 2 S dov V (s)V (s) maxaPs0 P (s0js; a)
V (s0) +R(s; a)Æ max (Æ; jv � V (s)j)
end for

until Æ < �(1�
)=2
��� (s) argmaxaPs0 P (s0js; a)
V (s0) +R(s; a)Return ���
3.4.4 Reinforcement LearningThe Value Iteration method des
ribed in Se
tion 3.4.3 is quite eÆ
ient inits pure form but has some very high requirements. Both the transitiondistribution P (s0js; a) and the expe
tation of the reward distributionR(s; a)must be known in advan
e, whi
h
an sometimes be diÆ
ult to
al
ulate insome domains.There exists a set of MDP solution methods that does not dire
tly re-quire a transition and reward model of the environment. These methods gounder the name Reinfor
ement Learning (RL) [69℄ and they are
apableof learning solution poli
ies through intera
tion with an environment or asimulation of it, whi
h is often mu
h easier to
onstru
t than spe
ifying themodel dire
tly [69℄.
Q-FunctionsWithout a model of the transition distribution, it is not possible to extra
tan optimal poli
y �� through Equation 3.4. RL methods often use a so
alled Q-fun
tion instead whi
h is a mapping from both a
tion and stateto a value. The Q-value Q�(s; a) represents the expe
ted value if the a
tiona is exe
uted in state s and then the poli
y � is followed.
Q-LearningA simple variant of Reinfor
ement Learning is the Q-Learning algorithmwhi
h updates the Q-fun
tion after it has exe
uted an a
tion a in a state sand re
eived the reward r in the following manner:Q(s; a) Q(s; a) + �N (r +
maxa0 Q(s0; a0)�Q(s; a)) (3.5)

\li
" | 2008/4/8 | 9:36 | page 34 | #4434 CHAPTER 3. DYNAMIC DECISION NETWORKSThe �N parameter is
ommonly set to:1(1 + visitsN (s; a)) (3.6)where visitsN (s; a) is the total number of times the a
tion a has previ-ously been exe
uted in the state s.The updated Q-fun
tion is guaranteed to
onverge to the
orre
t valueif, in the limit, all a
tions are exe
uted an in�nite number of times. This
riteria
an be satis�ed by using suitable exploration fun
tions that some-times sele
t (a

ording to the
urrent Q-fun
tion estimation) non-optimala
tions. One su
h exploration fun
tion uses an �-greedy poli
y whi
h sele
tsa random a
tion with probability �.The Q-learning method des
ribed here is the most simple one possiblesin
e it uses a tabular representation of the Q-fun
tion. It is also very slow,espe
ially when many sequential a
tions are required to re
eive a reward.If the model of the environment is known in advan
e, the Q-fun
tion
anbe represented and learned with fun
tion approximation te
hniques su
h asNeural Networks [9℄.The full Q-learning algorithm is shown in Pro
edure 3.2.
Procedure 3.2 Q-learning(
)Initialize Q(s; a) arbitrarily, e.g. Q(s; a) = 0 for all s, a

repeats The
urrent (initial) state
repeata An a
tion derived from Q (e.g., �-gready)Exe
ute a and observe r and s0Q(s; a) Q(s; a) + �N (r +
maxa0 Q(s0; a0)�Q(s; a))s s0
until s is a terminal state

until Termination
onditionReturn Q
3.4.5 RL with Model BuildingIt is possible to
ombine the RL te
hnique of learning a poli
y through in-tera
tion with the environment and the eÆ
ient methods for solving MDPsgiven a model. The tri
k is to learn a model of the environment simul-taneously and use that to update the Q-fun
tion with. A straightforwardmethod is to update all Q-values with a Q-fun
tion version of Value iter-ation after every intera
tion but that is a very
omputationally expensivemethod and more eÆ
ient methods exist.

\li
" | 2008/4/8 | 9:36 | page 35 | #453.4. SPECIAL CASE: MARKOV DECISION PROCESSES 35
Model BuildingSin
e the environment is assumed to be fully observable, a Maximum Like-lihood (ML) [2℄ estimation of the model
an be applied. The transitionfun
tion des
ribes a multinomial probability distribution whi
h
an be MLestimated by keeping tra
k of the number of times the transitions have o
-
ured.Pro
edure 3.3 des
ribes the details of how the model is learned given theexe
uted
urrent a
tion a, previous state s0,
urrent state s and re
eivedreward r. Nd(s; a; s0) and N
(s; a)
ontain the
ounters that are neededto update the transition distribution P (s0js; a) and the expe
ted rewardR(s; a; s0) (whi
h needs to in
lude the resulting state s0 in order to performthe Bellman update for Q-fun
tions).
Procedure 3.3 UpdateModel(a, s, s0, r)Nd(s; a; s0) Nd(s; a; s0) + 1N
(s; a) N
(s; a) + 1Rsum(s; a; s0) Rsum(s; a; s0) + rR(s; a; s0) Rsum(s;a;s0)N
(s;a;s0)P (s0js; a) Nd(s;a;s0)N
(s;a)
DynaQ AlgorithmThe DynaQ Algorithm [68℄ is a simple but e�e
tive reinfor
ement learningalgorithm that
an be used together with UpdateModel(). DynaQ usesboth the update from Q-learning and the learned model to update the Q-fun
tion. The Q-fun
tion update with the model is performed with theBellman update adapted for Q-fun
tions:Q(s; a) =X s0P (s0js; a)(R(s0; a; s) +
maxa0 Q(s0; a0)) (3.7)whi
h requires that R(s0; a; s) keeps tra
k of the resulting state as well.The Bellman update is performed N times with a randomly previouslyvisited state sr and a
tion ar. The DynaQ algorithm is shown in Pro
edure3.4, whi
h is a version of DynaQ that
an return the Q-fun
tion when sometermination
ondition is met. In Chapter 5, the DynaQ algorithm is usedto perform planning and the termination
ondition is then that a
ertainnumber of simulation steps has been performed.

\li
" | 2008/4/8 | 9:36 | page 36 | #4636 CHAPTER 3. DYNAMIC DECISION NETWORKS
Procedure 3.4 DynaQ(
)Initialize QSet Nd(s; a; s0) = 0, N
(s; a) = 0, Rsum(s; a; s0) = 0 for all s, a, s0

repeats Current statea An a
tion derived from Q (e.g., �-gready)Exe
ute a
tion a. Observe resulting state s0 and the reward rQ(s; a) Q(s; a) + �N (r +
maxa0 Q(s0; a0)�Q(s; a))UpdateModel(a, s, s0, r)
for i 1 to N dosr A random, previouosly visited statear A random, previouosly taken a
tion in sQ(sr ; ar) Ps0 P (s0jsr; ar)(R(s0; ar; sr) +
maxa0 Q(s0; a0))
end for

until Termination
onditionReturn Q

\li
" | 2008/4/8 | 9:36 | page 37 | #47

Chapter 4

The DARE MethodAn agent that operates in a dynami
ally and rapidly
hanging world mustbe able to
ontinually augment its models at di�erent levels of abstra
tionsrelative to the task at hand. In the introdu
tory
hapter it was mentionedthat if an agent's problem models are allowed to vary during its opera-tion depending on the
urrent fo
us of attention (see Se
tion 1.7) and thetradeo� between a

ura
y and feasibility, there are some important
onse-quen
es that need to be taken
are of. A generated or sele
ted model
anbe too
oarse for exe
uting the
orresponding solution with the availableskills. Planning must therefore be performed on several dynami
ally
re-ated abstra
tion levels whi
h means that the agent needs to
ontinuouslymonitor the validity of the abstra
tions used. Replanning be
omes an im-portant instrument when abstra
tions be
ome invalid or when unsuspe
tedor unmodelled events o

ur. Due to the dynami
 abstra
tion levels, a more
exible subproblem generation is needed than those
urrently present for�xed abstra
tion levels [47℄ [75℄ [6℄.The purpose of this
hapter is to des
ribe a method 1
alled DARE(Dynami
 Abstra
tion-driven Replanning and Exe
ution) whi
h is de-signed to take the impli
ations of dynami
ally generated problem modelsand abstra
tion levels into
onsideration. The DARE method is a tem-plate that needs to be �lled with environment
lass-spe
i�
 subproblemgeneration pro
edures, abstra
tion validity monitoring and problem solvingte
hniques. For example, in Chapter 5, MDPs are generated and solvedon several levels of abstra
tion with the help of task environment modelsand reinfor
ement learning. A primitive a
tion in an abstra
t MDP's pol-i
y expands into a more detailed MDP whi
h is how the implementation ofDARE's subproblem generation pro
edure works for that environment
lass.1It is
alled a method and not an algorithm be
ause it is not detailed enough in orderto analyse it from a viewpoint of running time et
. whi
h is the
onvention used in [12℄
37

\li
" | 2008/4/8 | 9:36 | page 38 | #4838 CHAPTER 4. THE DARE METHOD
4.1 Tasks and BeliefsOne of the main ideas of DARE is that the abstra
tions used by the agentare strongly in
uen
ed by its
urrent tasks and beliefs:� Tasks: A task des
ribes an obje
tive-rea
hing a
tivity that denotesseveral possible sets of partially ordered skills. The denotation
aneither be dire
t or indire
t through the use of other tasks. A task
an often be performed in many di�erent ways depending on the sit-uation. The
urrent tasks of an agent should strongly in
uen
e itsabstra
tions. For example, if the agent is about to lift an obje
t withits a
tuators, it should fo
us its attention on that obje
t and otherthings that are relevant during su
h a task. The abstra
tion should�lter out irrelevant details.� Beliefs: An agent's beliefs are
onsidered to be the set of models thatthe agent uses to represent its environment and itself with. Maps,logi
al knowledge bases and probability distributions are all examplesof what are
onsidered to be beliefs. An agent's
urrent beliefs in
ombination with feedba
k from the environment should be used todetermine what abstra
tions to use. For example, when more andmore information be
omes available about an agent's environment,the level of un
ertainty de
reases and the planning horizon
an bein
reased and perhaps more simpli�ed models
an be used instead.
4.2 Overview of DAREFigure 4.1 shows a rough sket
h of how DARE works. The solid arrowsspe
ify the method's logi
 and the dotted ones spe
ify information
ow.The di�erent parts of the method are summarized in the following list:� Find suitable problem models in current context: The �rststep of DARE is to �nd a suitable model that
an be used to performor support planning. This step performs the dynami
 abstra
tionwith the help of the
urrent beliefs and tasks. The
urrent tasks ofthe agent are spe
i�ed in an HSN stru
ture whi
h is des
ribed fur-ther in Se
tion 4.5. The result of this step is a problem model (su
has an MDP or a
lassi
al planning problem). Chapter 5 and 6 de-s
ribe how this problem generation
an be performed in both fullyand partially observable task environments using optimization te
h-niques. The information about the sele
ted abstra
tions is stored inthe HSN stru
ture for later use.� Solve problem: The problem model is then solved with a suitablesolution te
hnique and the solution is stored in the HSN stru
ture. Forexample, if the problem model
an and will be solved with a
lassi
alplanner, the resulting sequential plan is stored in the HSN stru
ture.

\li
" | 2008/4/8 | 9:36 | page 39 | #494.3. EXECUTION ASSUMPTIONS 39� Refine solution?: A de
ision has to be made whether the solution is
on
rete enough to be exe
uted or if it must be re�ned �rst. It mightbe the
ase that a part of the solution is \travel to Sto
kholm" whi
hmight be re�ned into \go to
ar, enter
ar, drive towards interse
tion1, turn left at interse
tion 1, ... ,exit
ar". Then a subset of thissequential plan
an be re�ned further until it is de
ided that somea
tion
an be exe
uted.� Specify subproblems: If further re�nement is ne
essary, subprob-lems must be spe
i�ed. For example, if a sequential plan should bere�ned, the agent
an
hoose to re�ne a subset of all a
tions. MDPpoli
ies
an be re�ned in many ways su
h as re�ning all state-a
tionpairs into a separate subproblem et
. When this de
ision is taken,the HSN stru
ture is updated and DARE tries to �nd a suitable prob-lem model (or models) for this parti
ular re�nement. This pro
ess isrepeated until a
on
rete enough a
tion turns up.� Models invalid or refinement needed on some level?: Every ab-stra
tion must be
losely monitored so that the assumptions are validenough to trust the model. When an invalid abstra
tion is dete
ted,DARE tries to �nd new problem models that are more a

urate in the
urrent situation.� Update skills: The skills (see Se
tion 2.5.3) that are
urrently exe-
uting must also be updated to re
e
t
hanges to the solutions storedin the HSN stru
ture.
4.3 Execution AssumptionsSe
tion 2.5 brie
y des
ribed some of the available ar
hite
tures for au-tonomous agents, primarily used for roboti
 appli
ations. The
olle
tiveterm skills was used to des
ribe the behavior-generating parts of the ar-
hite
ture whi
h represents e.g. the Task Pro
edure Instan
es in MTA andRea
tive A
tion Pa
kages in RAPS.In this
hapter it is assumed that skills
an exe
ute in parallel with theDARE method and that it is possible to
hange the
urrent exe
uting skillsdynami
ally, whi
h is the
ase for the most
ommon exe
ution systems.
4.4 Refinement AssumptionsDARE heavily depends on the assumption that it is bene�
ial to partlyre�ne a solution in order to
onstru
t new problem models that are moredetailed or spe
ialized to solve that parti
ular part. This seems to be avery natural approa
h to problem solving and it has been used extensively

\li
" | 2008/4/8 | 9:36 | page 40 | #5040 CHAPTER 4. THE DARE METHOD
SkillsHSN structure

Find suitable problem models
in current context

Update skills

Beliefs

Specify subproblems

Solve problems

Models invalid

on some level?

Refine solution?

Entry

No

Yes

No

Yes

or refinement necessaryFigure 4.1: A rough sket
h of how the (poll-based) DARE method works to
ontrol the
urrently (in parallel) exe
uting skills in the system.in HTN-planning systems like SIPE [75℄ and O-Plan [72℄ for many pra
tialappli
ations. It is also used within Hierar
hi
al Reinfor
ement Learning [6℄where extended versions of MDPs are used in hierar
hies where a
ertainMDP
an have primitive a
tions that a
tually exe
ute a whole sub-MDP,whi
h in a way generalizes HTN planning to sto
hasti
 environments.All the existing systems that use task re�nement use it in a very well-stru
tured and well-understood way. Complexity results for HTN-planninghave been investigated in [21℄ and it is now e.g. possible to
ompare theexpressivity of HTN-planners with
lassi
al planners. Re�nement has beenviewed as an eÆ
ient method for humans to provide heuristi
s to a taskenvironment. But for this to work, one has to know the exa
t workings of theenvironment, what predi
ates to use and how operators work. Re�nementis almost always performed down to the most detailed level whi
h is notpossible in more open-ended and dynami
 task environments.Using dynami
 abstra
tion while performing re�nement makes things alot more
ompli
ated. The task environment model is allowed to
hange andproblemsmay be generated dynami
ally. Re�nement in this
ontext is not as
risply de�ned as with HTN-planners or hierar
hi
al reinfor
ement learningmethods. A simple example is when a
lassi
al planner is used to generatea solution to a dynami
ally generated problem. The steps in the solutionmight be re�ned in many di�erent ways depending on the situation, makingthe solution pro
ess more
exible but also less de�ned in the general
asedue to the multitude of alternatives. One or several steps might be expandedinto any suitable planning model (su
h as MDPs, POMDPs or even another

\li
" | 2008/4/8 | 9:36 | page 41 | #514.5. HIERARCHICAL SOLUTION NODES 41
lassi
al planning problem) and it is therefore mu
h more diÆ
ult to de�nethe relationship between the abstra
tion levels than in
urrently existingtask re�nement systems.Nevertheless, it is at least possible to measure the impa
t of a
ertaintask re�nement method if an agent with limited
omputational resour
esuses the method in an environment with a well-de�ned performan
e elementthat takes the deliberation time into a

ount (as will be demonstrated inChapter 5 and 6).
4.5 Hierarchical Solution NodesOne of the impli
ations of using dynami
 abstra
tion for problem solvingis the need to keep tra
k of the abstra
tions and the resulting models tomake sure that they are still useful. For example, if one of the assumptionsis that an obje
t in the environment is stati
, that assumption should be-
ome invalid when strong eviden
e to the
ontrary arrives. In the DAREmethod, the so
alled Hierar
hi
al Solution Nodes (HSNs) keep tra
k of theassumptions
urrently made and the
onditions that
an invalidate them.Assumptions are typi
ally made when problem models are
onstru
tedin a
ertain situation. Consider a UAS that is given the task of sear
hingan area for
ertain obje
ts su
h as �res, injured people, or
ertain vehi
les.It must make assumptions about the environment in order to
ope with thesituation and task. The sensor input that the UAS
an use to dete
t �resor bodies might for example
ome from a CCD
amera, laser and an IR
amera. It must be de
ided what the sensor input means and how it shouldbe related to the UAS's
urrent task. A possible abstra
tion is that bodiesin the environment are represented with a position ve
tor and the �res withsome kind of area representation format e.g. polygons or spe
ial values in agrid.The abstra
tions and the resulting problem models are used for theUAS's de
ision making and are therefore of utmost importan
e. It is im-portant that the abstra
tions remain reasonably valid in order to make theproblem models trustworthy. The abstra
tions must therefore be
ontinu-ously
he
ked or monitored and if some abstra
tion is
onsidered invalid,the abstra
tion must be
hanged and the problem model that relies on itmay have to
hange as well.A HSN is used to store all this ne
essary information and
an thereforebe
onsidered as a data stru
ture that keeps tra
k of abstra
tions, monitors,problem models and solutions.A HSN is supposed to be used to generate or modify a set of skills that
an be used to
arry out solutions to a problem. Depending on the typeof solution, level of detail in the abstra
tions and what types of skills thatare available, it might also be ne
essary to store or generate information inthe HSN that des
ribes how sensor data should be obtained to guide thebehavior.

\li
" | 2008/4/8 | 9:36 | page 42 | #5242 CHAPTER 4. THE DARE METHODAs mentioned earlier, a problem spe
i�
ation that is generated throughdynami
 abstra
tion might be at a very high abstra
tion level and needsto be re�ned further before any available skill
an exe
ute some subset ofthe solution. A HSN
an therefore
ontain a pointer to another HSN thatrepresents a more re�ned solution to parts of the problem in its parent HSN.The set of HSNs and the parent-
hild relationships between them forms aHSN stru
ture whi
h represents the abstra
tion levels
urrently present inan autonomous agent.Figure 4.2 illustrates a possible HSN stru
ture where a set of abstra
tionsand problem models are used at the same time with di�erent assumptionsabout how the environment works.
Abstraction monitoring information

(possible bindings of variables)
Solution

a1 = A1
t1 = 10
t2 = t1 + 20
investigate−area(a1, t1)
...

Root HSN

Soft constraints
problem model

HSN 1

HSN 2

Abstraction monitoring information

Solution
(an action)

LookAtPoint(camera1, 12.2, 127.3, 10.2)

Classical planning
problem model

Fly(pos12, pos7)

TurnCameraTowards(camera2, area2)

TakePhoto(uav1, area2)
...

Solution

(a plan)

Real−time search
problem model

problem model
solution

abstraction

abstraction

sub HSN

sub HSN

problem model

solution

problem model

solutionFigure 4.2: An HSN stru
ture that
ombines di�erent abstra
tions and prob-lem models.The soft
onstraints planning model, illustrated in Figure 4.2 as theroot HSN's problem model, de�nes the overall mission whi
h in this
ase isto monitor a
ertain area while at the same time try to ful�ll all sorts of
onstraints that
an typi
ally be used in
onstraint-based planners su
h asHSTS [51℄ and ASPEN [28℄. A solution to the planning model at this levelis a set of possible variable bindings that determines what the agent shoulddo next. Suppose that the solution is to investigate the areas A1, A3, andA2 in that order and then
y ba
k to base to refuel.Parts of that high-level solution are then re�ned a

ording to the re-�nement assumption. Suppose that the a
tion \investigate area A1" is the

\li
" | 2008/4/8 | 9:36 | page 43 | #534.6. SUBSCRIPTION VS POLL 43only a
tion that is re�ned in this example. In this
ase, DARE
onstru
tsa
lassi
al planning model whi
h takes the high level a
tion into
onsider-ation but also adds additional details and other obje
tives that the higherabstra
tion did not
onsider.In this thesis, it will be assumed that the model
onstru
tion me
hanismis
apable of
reating a reasonable model whi
h
an either guarantee theexisten
e of a solution or fail and inform the \higher" abstra
tion level thatthe re�nement was impossible to perform. This is not an issue for the
asestudies in Chapter 5 and 6 where the model type (MDPs and Depth-limitedlookahead models) make it easy to always guarantee that a solution exists.
4.6 Subscription VS PollThe DARE method
an be implemented in di�erent ways. Figure 4.1 de-s
ribes a version where the abstra
tions are
ontinuously monitored in the\Models invalid or re�nement ne
essary on some level?" test. This meansthat the method is poll-based ; the
onditions are
he
ked by the main threadin the method whi
h makes it
on
eptually easy to understand and imple-ment in simple environments.It is also possible to
reate a subs
ription-based version of DARE wherethe
onditions are
he
ked by monitors that run in parallel with the mainthread (or even in another pro
ess or on another
omputer). The mainthread then sets up the monitors for the di�erent abstra
tions that shouldbe
he
ked and the agent
an then rea
t to invalidated abstra
tions whenthey o

ur.In the UAS Te
h system, CORBA [59℄ is used as a
ommuni
ation mid-dleware and the di�erent software
omponents are distributed on several
omputers. In su
h a distributed system, it might be more natural to imple-ment the subs
ription-based DARE method instead due to the advantagesof using event-based
ommuni
ation in su
h a
ontext. It is therfore verylikely that an implementation of DARE in the UAS Te
h system will besubs
ription-based. However, it is mu
h easier to present and understandsingle-threaded methods and the two partial implementations of DARE areboth poll-based whi
h supports repeatability of the experiments (see Chap-ters 5 and 6).
4.7 The MethodIn this se
tion, the poll-based version of the DARE method will be des
ribedin more detail.

\li
" | 2008/4/8 | 9:36 | page 44 | #5444 CHAPTER 4. THE DARE METHOD
4.7.1 MainPro
edure 4.1 shows the entry point of the poll-based DARE method whi
htakes a set of beliefs (see Se
tion 4.1) Bel as input. Bel represents allavailable information that is
urrently a

essible to the agent. This setis allowed to
hange dynami
ally depending on e.g.
hanging
onditionsand di�erent fo
us of attention. A skill might for example need spe
i�
knowledge that is
al
ulated elsewhere.
Procedure 4.1 DARE(Bel)1: rootHSN new Hierar
hi
al Solution Node2: dynabsSolve(rootHSN, Bel)3: while not finished(Bel) do4: replanIfNe

essary(rootHSN, Bel)5: end whileDARE initially
onstru
ts the Root HSN, whi
h represents the highestabstra
tion and de
ision level in the system. No skills are assumed to beexe
uting in the system at this moment. It then
alls the dynabsSolve()pro
edure (see Se
tion 4.7.2) to generate the �rst HSN stru
ture that de-pends on the
urrent beliefs Bel and starts up the skills that will exe
ute theinitial solutions to the problems. Figure 4.2 illustrates an example of whata resulting HSN stru
ture might look like after
alling dynabsSolve().The next task is to a
tively monitor the abstra
tions and problemmodelsto see whether they need to be
hanged. This task is performed in a loop2 that is exe
uted until the agent
onsiders that it is �nished. Whether theloop �nishes or not by the agent's initiative depends on the appli
ation.Some tasks naturally have a well-de�ned end su
h as when a UAS is sentout to take a set of pi
tures of a building stru
ture and return to base, landautonomously and turn o� the engine. Other tasks are more
ontinuous innature su
h as
ying a patrol route while refueling when ne
essary. In that
ase, a human operator might trigger the �nished
ondition.Inside the loop, DARE
alls the replanIfNe

essary() pro
edure (seeSe
tion 4.7.4) whi
h
ontinuously
he
ks that the
urrent abstra
tions arevalid and performs replanning (by
alling dynabsSolve()) if this is ne
es-sary.
4.7.2 DynabsSolveThe dynabsSolve() pro
edure (listed in Pro
edure 4.2)
an be
onsideredthe
entral part of DARE sin
e it performs (or
oordinates) the followingimportant tasks:2In the subs
ription-based version of the method, the loop is simply repla
ed with await for input signals from the monitors.

\li
" | 2008/4/8 | 9:36 | page 45 | #554.7. THE METHOD 45
Procedure 4.2 dynabsSolve(hsn, Bel)1: abstra
tion(hsn) findAbstra
tion(Bel)2: problem(hsn) generateProblem(abstra
tion(hsn), Bel)3: solution(hsn) solve(problem(hsn), Bel)4: modifySkills(hsn, Bel)5:
reateSubProblems(hsn, Bel)� Selection of a suitable abstraction: An abstra
tion is sele
tedor generated by a
all to findAbstra
tion() whi
h e.g. answersquestions su
h as: Should the vehi
le v be viewed as a stationary3-dimensional obje
t or perhaps as a point with position and velo
-ity? Should the environment be
onsidered sto
hasti
 or determinis-ti
? The best de
ision should be the one that gives the best perfor-man
e of the task given the available algorithms and
omputationalresour
es.� Generation of a problem model: The abstra
tion is then used togenerate a problem model whi
h should depend on the
hosen abstra
-tions. DARE performs this step with a
all to generateProblem().If e.g. the abstra
tions determine that the environment should be
onsidered deterministi
, it might be possible to generate a
lassi
alplanning model et
.� Solving the problem: The solve() pro
edure is then used to solvethe generated problem model with a suitable solution algorithm.� Modifying the skills: The skills exe
uting in the system may haveto be modi�ed a

ording to the solution. This part is performed witha
all to modifySkills().� Creating subproblems: If it is
onsidered ne
essary to re�ne thesolution,
reateSubProblems()
reates subproblems and adds a subHSN to the
urrent HSN (see Se
tion 4.7.3).In Chapters 5 and 6,
on
rete implementations of dynabsSolve() willbe presented both where the generated problem is an MDP and a partiallyobservable DDN.
4.7.3 CreateSubProblemsThe main assumption within DARE is that a solution at one level
an bere�ned into subproblems that
an either be solved with a solution methodor exe
uted dire
tly with some parameterized skill. It was argued in Se
tion4.4 that this is a good thing to do.The task re�nement in DARE is performed with the
reateSubProb-lems() pro
edure (see Pro
edure 4.3. In that pro
edure, there is a
all to

\li
" | 2008/4/8 | 9:36 | page 46 | #5646 CHAPTER 4. THE DARE METHOD
utoffTest() whi
h
he
ks whether any more re�nement of the
urrentsolution should be performed. This
an depend on many things but shouldultimately be tuned by the expe
ted performan
e that it yields if used.
Procedure 4.3
reateSubProblems(hsn, Bel)1: if
utoffTest(hsn, Bel) then2: subNode(hsn) nil3: else4: subNode(hsn)
reateSubHSN(hsn, Bel)5: dynabsSolve(subNode(hsn))6: end ifA quite general
uto�
riteria might be that there exists skills that re-liably
an exe
ute the solution at the
urrent abstra
tion level and morere�nements would not yield a better performan
e (due to the extra
ompu-tational
ost to
all dynabsSolve() on
e more).
4.7.4 ReplanIfNecessaryThe poll-based DARE method
alls replanIfNe
essary()
ontinuously to
he
k that the
urrent abstra
tions are reasonable and to update the HSNstru
ture and modify the
urrently running skills if ne
essary.
Procedure 4.4 replanIfNe
essary(hsn, Bel)1: if hsn == nil then2: return fNo replanning ne
essaryg3: end if4: if abstra
tionInvalid(hsn, Bel) then5: subNode(hsn) nil6: dynabsSolve(hsn, Bel) fReplang7: else8: if keepSubHSN(hsn, Bel) then9: replanIfNe
essary(subNode(hsn), Bel)10: else11:
reateSubProblems(hsn, Bel)12: end if13: end ifThe HSN stru
ture is then traversed from the root and down and theabstra
tions are
he
ked for validity and other
riteria su
h as if a partialsolution should be extended. The abstra
tion validity
he
k is performedwith a
all to abstra
tionInvalid() and dynabsSolve() is
alled if anew abstra
tion is
onsidered ne
essary.Examples of reasons for
hanging abstra
tions
an be that somethingshould be viewed in a di�erent way depending on new information. An

\li
" | 2008/4/8 | 9:36 | page 47 | #574.8. DISCUSSION 47obje
t
an for example be
ome totally irrelevant for performing a
ertaintask. Examples of this are given in Chapter 5 and 6 where an observationtarget is
onsidered irrelevent after it has been
lassi�ed and will not be
onsidered when the problem models are
onstru
ted. Abstra
tions mayalso have to
hange when an a
tion that was previously
onsidered deter-ministi
 turns out to be unreliable for some reason (perhaps a me
hani
alerror). The available pro
essing power for the de
ision pro
ess may also
hange for di�erent reasons and then other types of abstra
tions are moresuitable. Other pra
ti
al de
isions su
h as sampling or generation rate ofdata may also have to be modi�ed dynami
ally depending on the avail-able
omputational resour
es and the requirements of the
urrent problemmodels.Even if the abstra
tions are valid in the
urrent HSN, it may still bethe
ase that the sub HSN must be repla
ed or modi�ed whi
h is
he
kedwith a
all to keepSubHSN(). An example of su
h a situation is when onlyparts of the solution have been re�ned in the sub HSN and it is ne
essaryto re�ne some more, possibly due to the agent's exe
ution.If the sub HSN is kept, replanIfNe
essary() is
alled re
ursively andapplied to that HSN.
4.8 DiscussionThis
hapter des
ribed the poll-based DARE method whi
h is a templatefor performing planning and exe
ution with dynami
 abstra
tions.The method is very abstra
t and many things have to be instantiated be-fore it
an be used. In this thesis, two instantiations have been
onstru
tedwhi
h demonstrate all parts of the method.DARE is very useful in dynami
 task environments where it is not pos-sible to represent the di�erent parts of the world
ompletely at all timesboth during exe
ution and planning and when it is bene�
ial to
hangerepresentation when ne
essary to adapt to
hanging
onditions. However,for well-spe
i�ed task environment models whi
h do not in
lude any funda-mental surprises, it is always possible to
onstru
t better spe
ialized agentsthat
an outperform DARE. The strengths of DARE lies in its potential ofhandling surprises that are not part of any �xed task environment model.A task environment that is part of the real world
an make any agent witha �xed model fail miserably be
ause of its inability to reason about detailedparts of its environment. An agent driven by a sophisti
ated DARE imple-mentation should be able to test di�erent ways of viewing its environmentand thereby be
ome mu
h more robust. This would probably require alarge e�ort where a formal language for des
ribing abstra
tions and model
onstru
tions would help, whi
h is a topi
 for future work (see Se
tion 7.1).The presented version of DARE
an be further improved. Generatedsolutions are
urrently thrown away if an abstra
tion is
onsidered invalid

\li
" | 2008/4/8 | 9:36 | page 48 | #5848 CHAPTER 4. THE DARE METHODwhi
h
an be very wasteful. It should be possible to reuse previously gener-ated solutions with some kind of
ase based reasoning [1℄ or other ma
hinelearning methods.

\li
" | 2008/4/8 | 9:36 | page 49 | #59

Chapter 5

Case Study IThe poll-based DARE method, that was presented in the previous
hapter,is very abstra
t and a lot of environment
lass-dependent work is neededto implement it. The reason for this abstra
t presentation is that the
oreprin
iples of DARE
an be applied to a large
lass of task environments andproblemmodels that bene�t from dynami
 abstra
tion to fo
us the attentionon the most important parts during the de
ision making. In this
hapter, a
on
rete implementation of the method is presented that has been adaptedto a
ontinuous, sto
hasti
 and fully observable environment
lass inspiredby the UAS Te
h system. The environment
lass
ontains a utility-basedagent that re
eives rewards when it
lassi�es dynami
 observation targetsor rea
hes a
ertain target area. At the same time it tries to avoid dangersthat in
i
t negative rewards if the agent is too
lose to them.In this environment
lass, MDPs (see Se
tion 3.4) are used as the plan-ning model at every abstra
tion level and solved with reinfor
ement learningtogether with task environment models that are possible to simulate. Thetask environment models are implemented with fully observable DDNs (seeChapter 3).Parts of the results in this
hapter have been published in [57℄.
5.1 Task Environment ClassThe instan
es of the task environment
lass
ontains a single agent thatoperates in a sequential, sto
hasti
,
ontinuous and fully observable 2D en-vironment (see Figure 5.1) whi
h
an
ontain any number of the followingelements:� Finish areas whi
h are re
tangular areas where the agent
an safely�nish its
urrent task or subtask. Ea
h area is asso
iated with a rewardthat
an be used to spe
ify several
ompeting target lo
ations.49

\li
" | 2008/4/8 | 9:36 | page 50 | #6050 CHAPTER 5. CASE STUDY I� Road networks whi
h are undire
ted graphs where the edges are linesegments that
an be traversed by di�erent types of external agents(see next item).� External agents whi
h are obje
ts that
an either move freely (assum-ing that it is a point with a
ertain mass and maximum a

eleration) inthe environment or bound to a road network. The external agents
aneither be dangers or observation targets. Dangers should be avoidedby the agent and they are asso
iated with a
ertain negative rewardthat the agent re
eives when it
omes too
lose to it. The agent
antry to
lassify an observation target, if it is
lose enough, and if it issu

essfull it re
eives a positive reward.
D1

F

Road network

D2

Cost radius

A = Agent

F = Finish area

D1 = Road network bound danger

D2 = Freely moving danger

OT = Road network bound observation target

A

OT

Maximum classification distance for OT

Figure 5.1: An instan
e of the fully observable UAS environment
lass. The
ost radius is des
ribed in Se
tion 5.2.1The UAS agent
an perform one of the following a
tions:� Move in eight possible dire
tions (also
alled \kings moves") with a
ertain speed (10 m/s in the implementation).� Wait at the
urrent position.� Finish at area whi
h means that the UAS agent moves towards a�nish area and �nishes when it is rea
hed. There is one su
h a
tionfor every existing �nish area.� Try to
lassify an observation target by moving towards it and
ontin-uously perform the
lassi�
ation. This a
tion models a more detailedsensor a
tion whi
h the agent
an use to extra
t more informationabout a target than its position.This task environment
lass will be
alled the fully observable UASenvironment
lass.

\li
" | 2008/4/8 | 9:36 | page 51 | #615.2. TASK ENVIRONMENT MODEL 51
5.2 Task Environment ModelThe task environment models are implemented by fully observable DDNswhose stru
ture is shown in Figure 5.2. The external agents are assumed tobe independent of ea
h other. A DDN
an be used for simulation with thehelp of a random number generator where the probability distributions aresampled. Su
h a task environment model for simulation and evaluation ofthe agent is supposed to have a �xed time step length dt. When a DDN isused by the agent during the planning phase, dt is determined dynami
ally(see Se
tion 5.4.2). An agent re
eives a reward of -1 for ea
h a
tion itexe
utes during one se
ond whi
h means e.g. that moving 100 meters givesa total reward of -10 if no dangers are around (see Se
tion 5.2.1).

Action

Road
Network
(static)

Reward

t

agent
variables

t − 1

External

t
variables

External
agent

t−1

Agent
position

Agent
position

Figure 5.2: The general stru
ture of the fully observable DDN that imple-ments the task environment model.Figure 5.3 shows the relationship between the state variables in a freelymoving external agent. The speed and dire
tion is assumed to
hange ran-domly a

ording to the Gaussian distributionsN(0; �dt;vel) and N(0; �dt;dir)where �dt;� (� 2 fdir; velg) depends on the time step length used. It is as-sumed that the standard deviation is equal to �1;� for a dt equal to onese
ond. In order to make the same standard deviation for N steps of length1=N se
onds, �dt;� is set to �1;�pdt.The road network bound agents (see Figure 5.4) are modelled impli
itly

\li
" | 2008/4/8 | 9:36 | page 52 | #6252 CHAPTER 5. CASE STUDY I
t − 1

Speed
t

Position
t

Direction

t

Direction
t − 1

Position

Speed
t − 1

Figure 5.3: The DBN for a freely moving external agent.by �rst generating a random length in
rease depending on the
urrent ve-lo
ity. The road network is then used to determine where the agent goesby using a uniform distribution at jun
tions. The distribution for the
ur-rent road segment and segment length is impli
itly determined (see Se
tion2.2.4) by a program that follows the
urrent road segment to a jun
tionand then samples the next way to go until the same distan
e has been
ov-ered as in the \distan
e to go" variable. This is possible sin
e the solutionmethod used (reinfor
ement learning) does not need an expli
it distributionor density fun
tion.
5.2.1 Danger RewardsIdeally, the (negative) reward re
eived from a danger do during the timetnow � dt to tnow
an be
al
ulated as follows:Rdo = Z tnowtnow�dtmin(�Cmax + CmaxCR jpa(�)� pdo(�)j; 0)d� (5.1)where pa(�) and pdo(�) are the fun
tions that des
ribe the movementof the agent and the danger. CR is the
ost radius whi
h determines thedistan
e from the danger where the reward is zero. Cmax is the highestnegative reward that
an be re
eived per se
ond. dt is quite small andan approximation of Rdo is used in the implementation by the followingformula: Rdo = dt �min(�Cmax + CmaxCR dmin; 0) (5.2)Here, dmin is the minimum distan
e between the danger and the agentduring [tnow � dt; tnow℄ whi
h makes the approximation a pessimisti
 one(from the agent's point of view).

\li
" | 2008/4/8 | 9:36 | page 53 | #635.3. SKILLS 53
Road

Network
(static)

Road
Segment

t

Distance
to go

Road
Segment

t − 1

RS
Distance

t − 1

Speed

t − 1

Speed

t

RS
Distance

t

Figure 5.4: The DBN for a road network bound observation target.
5.2.2 Observation Target RewardsFor every observation target in the task environment, the DDN in
ludesa boolean variable
lot whi
h spe
i�es if ot has been
lassi�ed. The prob-ability P (
lot;1jd) of
lassifying ot from a distan
e d during one se
ond isspe
i�ed with a so
alled Continuous-time Markov Pro
ess [4℄ with onlytwo possible states and with the intensity �d of going from \not
lassi�ed" to\
lassi�ed". The intensity de
reases linearly from a maximum value �ot;maxto zero at the maximum
lassi�
ation distan
e dot;max and beyond. Everyinstantiation of a DDN with a time step of dt uses a probability distri-bution P (
lot;dtjd) (see Equation 5.3) whi
h determines the probability of
lassifying ot if the
lassi�
ation a
tion is performed for a duration of dt.P (
lot = truejd; dt) = 1� e��ddt (5.3)If the
lassi�
ation su

eeds, the agent re
eives a reward R
l;ot that isindependent of the distan
e to the observation target.
5.3 SkillsThere are four di�erent parameterized skills available whi
h
an be used toexe
ute the a
tions des
ribed in Se
tion 5.1. Only one skill at a time
anbe exe
uted, whi
h makes it very easy to implement the modifySkills()

\li
" | 2008/4/8 | 9:36 | page 54 | #6454 CHAPTER 5. CASE STUDY Ipro
edure whi
h is
alled from dynabsSolve() in DARE (see Se
tion 4.7.2).In dynabsSolve(), the modifySkills() pro
edure is exe
uted every timea solution has been found, making it possible to stru
ture and
oordinateskills that operate with di�erent abstra
tion levels. This is not ne
essaryfor the implementation des
ribed in this
hapter where there
an only beexa
tly one skill exe
uting at all time, whi
h is the one that
orresponds tothe solution at the \lowest" abstra
tion level.The basi
 movement skills simply make the agent move in one of eightpossible dire
tions (kings move dire
tions) until the skill is terminated bymodifySkills(). The Finish at area skill moves the agent towards the
losest point in a �nish area and �nishes the exe
ution when the agentis within that area. The Try
lassify skill moves the agent towards anobservation target and tries to
lassify it at the same time. The probabilityof su

ess is spe
i�ed in Se
tion 5.2.2.
5.4 DARE ImplementationThis se
tion will des
ribe in detail how the di�erent parts of the DAREmethod are implemented for the fully observable UAS environment
lass.There are several questions that need to be answered when DARE is im-plemented su
h as what type of problem models to use and how they aregenerated and solved.
5.4.1 Problem ModelsThe task environment model presented in Se
tion 5.2 has
ontinuous statevariables whi
h means that it is diÆ
ult to use dire
tly for planning. Two
ommon methods will be
onsidered in this thesis to perform planningin su
h environment
lasses: Depth-limited lookahead and Reinfor
ementLearning (RL). Depth-limited lookahead will be explored in Chapter 6 andRL is used in this
ase be
ause of the fully observable state variables and theopportunity to demonstrate a simple but fully working dynami
 abstra
tionmethod (see Se
tion 5.4.2).As mentioned in Se
tion 3.4.4, RL methods assume that the environ-ment
an be represented with an MDP but it is not ne

essary to providedetailed transition and reward distributions in advan
e. In the fully ob-servable UAS environment
lass, a task environment model in the form of aDDN is available to the agent but this has a
ontinuous state spa
e whi
h
an not dire
tly be used without either some fun
tion approximation of theQ-fun
tion and/or dis
retization of the state spa
e. Fun
tion approximationis avoided in this
ase to make it possible to study the dynami
 abstra
tionmethod in isolation.

\li
" | 2008/4/8 | 9:36 | page 55 | #655.4. DARE IMPLEMENTATION 55
5.4.2 Dynamic AbstractionThe main idea of dynami
 abstra
tion is to dynami
ally generate modelsin a way that suits the
urrent
ir
umstan
es in the best possible way (seeSe
tion 1.8). The abstra
tions
hosen should also depend on the available
omputational power.In this implementation of DARE, mu
h of the abstra
tion is already de-
ided. MDPs are used to represent the planning models whi
h means thatthe environment is
onsidered to be sto
hasti
 but fully observable. In amore
exible and
apable dynami
 abstra
tion \module", this type of rea-soning should be performed automati
ally. This is
urrently
onsidered asfuture work and is further dis
ussed in Se
tion 7.1. The dynami
 abstra
-tion in this implementation will be
on
erned with how the state spa
e Sshould look like when the MDP is solved and how the mapping from thetask environment model's state variables to S is done.The most
ommon method when
reating a state spa
e is to use a �xeddis
retization. This implementation will however
hange the dis
retizationdepending on what parts of the environment are
onsidered most relevantat the moment. A danger that is very
lose to the agent should for examplebe
onsidered more relevant than a danger that is very far away and theindividual possible negative rewards that they
an in
i
t should be takeninto
onsideration.The main idea of the dynami

onstru
tion of S is then to fo
us moreon the more relevant obje
ts and state variables in the environment
lassby giving them a greater number of possible dis
rete values. At the sametime, jSj is limited by a
onstant, giving the less relevant obje
ts and statevariables fewer possible dis
rete values.
RelevanceThe number of possible dis
rete values for an external agent is determined byde�ning an optimization problem over possible dis
retizations. The utilityof a dis
retization is spe
i�ed to depend on the so
alled relevan
e of thedi�erent external agents. The relevan
e of an external agent de
reases withdistan
e d and also depends on the
ost radius Cmax;do for dangers andmaximum
lassi�
ation distan
e R
l;ot for observation targets.The relevan
e fun
tion for dangers do is de�ned as follows:Reldo(d) = Cmax;doe��do�d (5.4)where �do is set to a value that makes Reldo equal to 10 per
ent of itsmaximum value at the
ost radius. By using the exponential fun
tion, dan-gers will never be totally irrelevant. Other fun
tions are of
ourse possiblebut this seems to work well in the fully observable UAS environment
lass.The relevan
e fun
tion Relot for observation targets is similar to Reldoex
ept that R
l;ot is used instead of Cmax;do and an extra fa
tor
ot (see

\li
" | 2008/4/8 | 9:36 | page 56 | #6656 CHAPTER 5. CASE STUDY ISe
tion 5.5.1) is multiplied with Relot whi
h makes it possible to adjustthe relevan
e when the
ontinuous negative reward re
eived from dangers is
ompared with the \one shot" reward re
eived when an observation targetis
lassi�ed.The relevan
e fun
tion for observation targets ot is then de�ned as:Relot(d) =
otR
l;ote��ot�d (5.5)where �ot is (similarly to �do) set to a value that makes Relot take thevalue of 0:1 � R
l;ot at the maximum observation distan
e.The state variables of the agent itself must also be represented in S. It issimply assumed that the relevan
eRelXY for the agent's position variable (Xand Y
oordinate) is the same as the sum of the external agents' relevan
es.This means roughly that the agent should represent its own state variablesin S as mu
h as its environment's.
Discretization OptimizationThe relevan
e fun
tions are then used to de�ne the utility of a dis
retizationUdis
 using the following formula:Udis
 = Xi2OT[DO[fX;Y g (1 + RelijSij)�1 (5.6)where Si is the number of dis
rete values that are assigned to the obje
tor state variable i, OT is the set of observation targets, DO is the setof dangers and fX; Y g is the agent's position variables. This parti
ularformula was
hosen be
ause it seems to distribute the number of dis
retevalues in a reasonable way in the sense that the in
rease of Udis
 de
rease forhigher number of values. Other possible utility fun
tions in
lude variantsand
ombinations of the sigmoid and the tangent fun
tion.A maximum state spa
e size Smax is used to limit the size of S, be
ause itis then possible to partly
ontrol the time that is ne
essary to provide a rea-sonably good poli
y. The total state spa
e size is
al
ulated by multiplyingall the state
ontributions Si.A reasonable state distribution for a dis
retization is found in the
urrentimplementation by performing Hill
limbing sear
h (see Se
tion 2.4), maxi-mizing the utility distribution Udis
 from the initial state where all obje
tsand features have only one state ea
h.
ClusteringWhen the optimization is done, the dis
retization must also de�ne the map-ping from state variables to the di�erent states. The agent's position vari-ables are mapped to a standard grid with a width and height determined bythe state distribution. The mapping for the external agent's state variablesare determined dynami
ally with k-means
lustering [33℄. The k-means

\li
" | 2008/4/8 | 9:36 | page 57 | #675.4. DARE IMPLEMENTATION 57
lustering algorithm is shown in Pro
edure 5.1 where K is set to the valuere
eived from the state distribution and I is the set of instan
es.
Procedure 5.1 kMeanCluster(I, K)1: Centroids K number of random instan
es from I2: repeat3: for all i 2 I do4: Cal
ulate ea
h i's
losest
entroid i
5: end for6: for all
 2 Centroids do7: Cal
ulate the
enter of
 given its assigned instan
es I
8: Assign a new
entroid
new that is
losest to the
enter of
9: end for10: until All
entroids stay the same11: Return CentroidsThe set of instan
es I are generated by sampling the task environmentmodel from the
urrent state Ns runs with Np samples in ea
h run. Theso
alled temporal horizon Thoriz;ddn of the DDN de�nes how far aheadin time the task environment simulation and instan
e generation will beperformed. The temporal horizon for a DDN with width w and height his v�1A max(w; h) where vA is the agent's speed. The number of runs Ns isalways set to 10 and the number of samples at ea
h run Np is always 100whi
h gives a total of 1000 instan
es for ea
h external agent.The temporal horizon together with the standard grid determines thedt parameter that is used to
onstru
t a �xed time step DDN. The timestep dt is set to
dtmin(wg ; hg) where wg and hg is the width and height ofa standard grid
ell and
dt is a
onstant fa
tor that determines how longdt should be relative to the grid
ell size.
dt was set to 0.1 during theexperiments (see Se
tion 5.5).Figure 5.5 illustrates a typi
al result after the dis
retization optimizationand
lustering.
5.4.3 Solution MethodThe dis
retization, determined by the dynami
 abstra
tion method de-s
ribed in Se
tion 5.4.2,
an then be used for planning. Sin
e the tran-sition and reward distributions for the given dis
retization is unknown anddiÆ
ult to
al
ulate exa
tly from the DDN, the DynaQ (see Se
tion 3.4.5)reinfor
ement learning method is used to solve the indu
ed MDP. DynaQ istherefore used for both implementing the generateProblem() (transitionand reward distribution) and the solve() pro
edures in DARE.In the implementation, the �-greedy exploration fun
tion (see Se
tion3.4.4) is used with � set to 0.1 and the number of planning steps performed

\li
" | 2008/4/8 | 9:36 | page 58 | #6858 CHAPTER 5. CASE STUDY I
D2

D1

F

D2 centroids

D2’s current position

D1 centroids

Road network

D1’s current position

Agent position

Standard grid (4x4)

A

Figure 5.5: An example dis
retization after dis
retization optimization and
lustering. The total state spa
e is 16 �3 �2+1 = 97 where the standard grid
ontributes with 16, D1 with 3, D2 with 2 and the �nish area with 1 possibledis
rete values. D1 is a road network bound danger that is moving to theright and D2 is a freely moving danger that moves towards south-west.in DynaQ is set to 5. The step length time is determined by the width ofthe
ells in the standard grid with respe
t to the agents speed.DynaQ was originally designed to be used for
ontinuous intera
tionwith an environment and not to get a solution within a
ertain time. It
an easily be turned into an anytime algorithm [15℄ by letting it run for a
ertain amount of time or number of exe
ution steps. The question is then:How long should it run before the Q-fun
tion
an be used for exe
ution?The question is
entral and important for the use of dynami
 abstra
tionfor problem solving be
ause the time used for problem solving is importantwhen the tradeo� between feasibility and a

ura
y of the planning modelis determined. Se
tion 5.5 presents some experiments where this tradeo�is spe
i�ed when the dynami
s of the environment, S, exe
ution speed andnumber of simulation steps that DynaQ performs are taken into a

ount.Pro
edure 5.2 shows the implementation of dynabsSolve() in the fullyobservable UAS environment
lass. findDis
Dist() implements the dis-
retization optimization des
ribed in Se
tion 5.4.2. generateInstan
es()performs the
olle
tion of instan
es to the kMeanCluster() algorithm thatreturns the set of
entroids for all external agents. DynaQStepLimited()is an implementation of DynaQ where the number of simulation steps islimited whi
h determines the termination
ondition in DynaQ (Pro
edure3.4 on page 36). One of the experiments in Se
tion 5.5 determines the op-timal balan
e between state spa
e size and number of simulation steps forthe implementation.The dynami
 abstra
tion and solution method has now been de�nedwhen a
ertain task environment model is given to the agent. For taskenvironment models with many external agents the dis
retization be
omes

\li
" | 2008/4/8 | 9:36 | page 59 | #695.4. DARE IMPLEMENTATION 59
Procedure 5.2 dynabsSolve(hsn, V)1: dis
Dist(hsn) findDis
Dist(V)2: for all External agents ea do3: I generateInstan
es(TEModel(hsn), V)4:
lusters(ea, hsn) kMeanCluster(I, dis
Dist(ea, hsn))5: end for6: solution(hsn) DynaQStepLimited(hsn)7: timeStamp(hsn)
urrentTime()8:
reateSubProblems(hsn)9: if subNode(hsn) = nil then10: Set the
urrent skill a

ording to solution(hsn)11: end ifvery
oarse and the solution steps
an take a long time to exe
ute. There�nement assumption (see Se
tion 4.4) states that it might be bene�
ialto re�ne su
h
oarse solution steps into subproblems with the
reateSub-Problems() Pro
edure in DARE. This pro
edure is des
ribed in the nextse
tion.
5.4.4 Subproblem GenerationThe implementation of DARE's
reateSubProblems() for the fully ob-servable UAS environment
lass
reates subproblems by generating newDDNs that are determined by taking the solution poli
y into
onsidera-tion. If the solution e.g. has a Move East a
tion spe
i�ed for the
urrentstate, the sub DDN for that subproblem is
reated with an added �nisharea to the east of the agent. Figure 5.6 illustrates the di�erent types ofsubmodels that
an be
onstru
ted. The idea is to use that submodel togenerate a more detailed solution for moving the agent to the east, ignoringthe other parts of the environment at the moment. The relation between thesolution on one abstra
tion level and the re�ned solution is then spe
i�edwith dynami
ally generated task environment models.With this implementation of
reateSubProblems() it is possible, intheory, to re�ne solutions inde�nitely whi
h is not a

eptable. The
ut-OffTest() in DARE is in this
ase used to stop the re�nement when thesolution is
onsidered detailed enough. In this fully observable UAS envi-ronment
lass, the
uto� is made when the sub DDN's width or height issmaller than a
ertain threshold (50 meters in this
ase) or when the DDNdoes not
ontain any external agents.There is also a question of how mu
h of the solution to re�ne. At oneextreme, every state/a
tion pair in the poli
y
an be re�ned, leading tojSjjAj number of re�nements. A more likely situation is that only a stri
tsubset of the solution is re�ned due to demands of a reasonable responsetime. The
urrent implementation only re�nes the
urrent state and the

\li
" | 2008/4/8 | 9:36 | page 60 | #7060 CHAPTER 5. CASE STUDY I
FD

A F

D

A D

F

A

D

wait

OT

Move NorthEast Move East Try classify

A

Created finish areas
Original grid cell width

A = Agent, D = Danger, OT = Observation target, F = Finish areaFigure 5.6: Examples of sub DDNs that
an be
reated for some of theagent's a
tions. The new DDN's width is determined by the size of thestandard grid
ells and the type of a
tion that the DDN represents. New�nish areas are
onstru
ted in the generated DDN that represents the sub-problem's goal. Noti
e that the agent is allowed to �nish before it has
lassi�ed the observation target, whi
h means that the Try Classify sub-problem models the possibility of \giving up" if it is
onsidered to be toodangerous (
ostly). The sub DDNs for Move NorthWest, Move West et
.are
reated in similar ways.solution poli
y's a
tion in that state.The implementation of
reateSubProblems() for the fully observableUAS environment
lass is shown in Pro
edure 5.3 where
reateSubHSN()
onstru
ts a DDN a

ording to the
urrent solution poli
y.
Procedure 5.3
reateSubProblems(hsn, V)1: if not
utoffTest(hsn, V) then2: subNode(hsn)
reateSubHSN(hsn, V)3: dynAbsSolve(subNode(hsn))4: end if

5.4.5 Replanning ConditionsAfter dynabsSolve() has generated an initial solution in the poll-basedDARE method, a loop is entered (see Pro
edure 4.1 on page 44) where thereplanIfNe
essary() is
alled to
ontinuously
he
k if any replanningneeds to be performed due to unsuitable abstra
tions or other
onditions.The
all to abstra
tionInvalid() is made to
he
k if the
urrentlyused abstra
tions are invalid and need to be repla
ed with a
all to dyn-AbsSolve(). The implementation of abstra
tionInvalid() for the fully

\li
" | 2008/4/8 | 9:36 | page 61 | #715.5. EXPERIMENTS 61
Procedure 5.4
utoffTest(hsn, V)1: if No of external agents in the (not yet
reated)TEModel(subNode(hsn)) = 0 then2: Return true3: else if The width or heigth of TEModel(subNode(hsn)) < 50 meters

then4: Return true5: else6: Return false7: end if

Procedure 5.5
reateSubHSN(hsn, V)1: Create a new HSN newHSN2: TEModel(newHSN) The task environment model that
orrespondsto the a
tion in solution(hsn)3: Return newHSNobservable UAS environment
lass is shown in Pro
edure 5.7 whi
h per-forms the optimization of the state distribution and
he
ks if it di�ers toomu
h from the
urrent one. The
onstant DDmax determines how mu
hthe normalized state distributions
an di�er before the abstra
tion is
on-sidered invalid. The HSN stru
ture also keeps tra
k of the time when theabstra
tions �rst was used. An abstra
tion is also
onsidered invalid if ithas been used more than a fra
tion �g of the temporal horizon for the task.If the abstra
tion is
onsidered OK, the keepSubHSN() pro
edure is
alled to
he
k if the
urrent sub HSN should be kept or not. In the imple-mentation, if the agent exe
utes a solution to a subproblem that leads to agoal or subgoal, a new subproblem must be generated and solved with a
allto
reateSubProblems(). A new subproblem
an also be generated if astate
hange o

urs and the solution poli
y spe
i�es that a di�erent a
tionshould be exe
uted than the one used to generate the subproblem. If forexample an external agent makes the state
hange and the best a
tion is
onsidered to be Move South instead of Move East, a new subproblem is
reated that
orresponds to the Move South a
tion and dynabsSolve() is
alled with the
orresponding sub DDN.
5.5 ExperimentsA set of experiments have been performed with the implementation to testthe viability of this type of dynami
 abstra
tion method when used in thefully observable UAS environment
lass.

\li
" | 2008/4/8 | 9:36 | page 62 | #7262 CHAPTER 5. CASE STUDY I
Procedure 5.6 replanIfNe
essary(hsn, V)1: if hsn == nil then2: return fNo replanning ne
essaryg3: end if4: if abstra
tionInvalid(hsn, V) then5: set subNode(hsn) to nil6: dynAbsSolve(hsn, V) fReplang7: else8: if keepSubHSN(hsn, V) then9: replanIfNe
essary(subNode(hsn), V)10: else11:
reateSubProblems(hsn, V)12: end if13: end if

Procedure 5.7 abstra
tionInvalid(hsn, V)1: if (
urrentTime() - timestamp(hsn)) > Treplan then2: Return true3: end if4: di� j stateDist(hsn) - findDis
Dist(hsn) j5: if di� =jdi�j > DDmax then6: Return true7: else8: Return false9: end if

\li
" | 2008/4/8 | 9:36 | page 63 | #735.5. EXPERIMENTS 63
5.5.1 SetupAll experiments were performed in a so
alled simulated dynami
 modewhi
h means that the environment evolved during the agent's deliberation,whi
h is important to simulate in general if the task environment (see Se
-tion 1.2) is a
tually dynami
. The deliberation time was determined by thenumber of steps the DynaQ algorithm performs when the planning is per-formed at the abstra
tion levels, and is therefore assumed to be a fun
tionof the number of steps.A set of 500 randomly generated test task environments were generatedand used in the experiments where the same random seed was used everytime in a given environment. This means that the external agents behavedin the same way every time given a
ertain environment number, whi
hredu
ed the varian
e in
omparison tests [36℄. The agent had a

ess to allthe parameters of the task environment ex
ept for the a
tual out
omes ofthe random number generators. The step lengths during evaluation werealso di�erent from the models that the agent used during planning.Ea
h task environment had 1-5 observation targets with a random ob-servation reward between 10 and 50, 1-5 dangers with a Cmax (maximumnegative reward) of 10 per se
ond, and 1-3 �nish areas with a random rewardbetween 10 and 30. The starting position of the agent were randomized aswell in an area whi
h is always 400x300 meters.
State Space vs Simulation StepsThe maximum state spa
e size Smax during dis
retization optimization issupposed to approximately determine the time it takes to solve the generatedMDP. A larger Smax makes the solution more detailed and probably gives abetter performan
e, but only if DynaQStepLimited() is allowed to take asuÆ
iently large number of steps. More steps take more time whi
h makesthe total performa
e go down due to the simulated dynami
s model whi
h
ould yield an optimal
on�guration of those two parameters. Figure 5.7shows the result when the number of simulation steps and Smax are varied.It seems like there is a quite large range of Smax and number of simulationsteps that yields a

eptable performan
e, as long as neither of them areset too low. This is a good sign that indi
ates that detailed parametertuning is not vital for the performan
e. It is also important to point outthat Smax spe
i�es the maximum possible number of states that
an bedis
overed during the planning. In pra
ti
e, the number of dis
overed statesis sometimes mu
h less, espe
ially when Smax is very large (see Table 5.1).
Relevance Factor for Observation TargetsSe
tion 5.4.2 introdu
ed the relevan
e fa
tor
ot for observation targets thatis used to determine the relevan
e when so
alled \one-shot" rewards re-
eived from
lassifying observation targets are
ompared to the
ontinuous

\li
" | 2008/4/8 | 9:36 | page 64 | #7464 CHAPTER 5. CASE STUDY I

0
50

100
150

200
250

300
350

0

500

1000

1500

2000
−5

0

5

10

15

20

25

Max state size
Simulation steps

T
ot

al
 r

ew
ar

d

Figure 5.7: The result when the number of simulation steps and Smax arevaried.negative reward re
eived from being too
lose to dangers. One of the exper-iments was to determine an a

eptable value for
ot empiri
ally.
ot was inthat experiment varied between 0 and 5 and the result is shown in Figure5.8. The results indi
ate that even the
ot parameter
an have a wide rangeof possible values if just 0 is avoided. This is a quite surprising but positiveresult be
ause it demonstrates that no detailed tuning of
ot is ne
essary.
Temporal Validity FactorAn abstra
tion is always
onsidered invalid after a
ertain time Treplan (seePro
edure 5.7). Treplan is
al
ulated by �TThoriz;hsn where �T is
alledthe temporal validity fa
tor. Figure 5.9 shows the result when �T variesbetween 0 and 0.4. The best result seems to be when �T is set to approxi-mately 0.075 but a

eptable results are re
eived for values between 0.1 and0.3 as well and the performan
e seems to gradually drop after that.

\li
" | 2008/4/8 | 9:36 | page 65 | #755.5. EXPERIMENTS 65

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
15

16

17

18

19

20

21

22

23

Relevance factor

T
ot

al
 r

ew
ar

d

Figure 5.8: The result when
ot is varied.
Abstraction LevelsThere are many ways to test the bene�ts from using more abstra
tion lev-els. One su
h method is to in
rease the minimum
ell size, making there�nements o

ur less frequently. Another way is to simply set a maximumnumber of abstra
tion levels. Figure 5.10 shows the result when the maxi-mum number of abstra
tion levels are varied. The result veri�es that severalabstra
tion levels are bene�
ial, even when the dynami
s of the environmentpenalizes the extra
omputation. The �gure also demonstrates the e�e
t ofthe
uto�
ondition whi
h prevents that more than three abstra
tion levelsare
reated.
Architecture SpeedupA simple experiment was performed when the
omputational resour
es wasde
reased 10 times and in
reased 100 and 1000 times the original. Theresult is shown in Table 5.1. The reason for the large gap between Smax inthe two experiments was that the number of a
tually visited states duringthe solution phase was mu
h lower than 100000. The speedup of 100 givesa rather large step in the result (from approximately 21 to 36).

\li
" | 2008/4/8 | 9:36 | page 66 | #7666 CHAPTER 5. CASE STUDY I

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
17

18

19

20

21

22

23

24

25

Temporal validity factor

T
ot

al
 r

ew
ar

d

Figure 5.9: The result when the temporal validity fa
tor �T is varied.
Equal RelevanceIt is interresting to investigate how e�e
tive the dynami
 abstra
tion is
ompared to a �xed abstra
tion. The problem with su
h an experimentis that the
urse of dimensionality makes the state spa
e explode whenmany external agents are present. Suppose that the agent represents everyexternal agent with n dis
rete values in the dis
retization. If there are Nexternal agents in the environment and the agent represents its own positionwith Np number of dis
rete values, jSj be
omes Np �nN . When N is equal to10 (the highest number of external agents in the tests), by just setting n to 9dis
rete values (whi
h
ould be used to
onstru
t a 3x3 grid or use
lusters)and Np to 16 (possibly a 4x4 grid) leads to a state spa
e larger than 55billion. This size of S
an a
tually be dealt with if fun
tion approximationmethods are used or symmetries of the problem are exploited. In this wayit is possible to
onstru
t a �xed abstra
tion poli
y that
an be used topossibly outperform the dynami
 abstra
tion method. But what if just oneor two external agents are added or removed? With this approa
h, the statespa
e will be
ome totally di�erent and the solution poli
y may turn out tobe useless. The point is that if it is possible to know exa
tly how the statespa
e will look like (as in ba
kgammon or
hess), it is possible to
onstru
t

\li
" | 2008/4/8 | 9:36 | page 67 | #775.6. COMMENTS 67

1 1.5 2 2.5 3 3.5 4 4.5 5
18.5

19

19.5

20

20.5

21

21.5

Max number of abstraction levels

T
ot

al
 r

ew
ar

d

Figure 5.10: The result when the maximum number of abstra
tion levelsare varied.high quality solutions. In a more
exible environment where obje
ts
anbe added or removed in a mixed-initiative setting, the dynami
 abstra
tionmethod is probably more e�e
tive, even if only small problems
an be solvedat a time.An experiment was performed when the relevan
e for all features wasset to an equal value. The resulting mean reward for the equal relevan
ewas only 4.26. When the relevan
e information was used, the mean rewardre
eived was 20.94 instead whi
h demonstrates the importan
e (in this taskenvironment) of
onstru
ting the abstra
tions dynami
ally with a reasonablerelevan
e measure.
5.6 CommentsThis
hapter has presented an implementation of the DARE method forthe fully observable UAS environment
lass. The experiments only make
omparisons between di�erent settings of the parameters in the dynami
abstra
tion, but, by observing the behavior of the agent many de
isions itmakes are very reasonable. In some
ases, the agent makes greedy de
isions

\li
" | 2008/4/8 | 9:36 | page 68 | #7868 CHAPTER 5. CASE STUDY ISpeedup Smax Sim. steps Mean reward0.1 50 150 4.891 150 1000 20.94100 1000 20000 36.381000 100000 100000 40.16Table 5.1: Three results when the ar
hite
ture was slowed down 10 timesand sped up 1, 100, and 1000 times the original speed.where it takes an easy way out by �nishing at a nearby �nish area whenthere are still un
lassi�ed observation targets in the area that are diÆ
ultto rea
h due to dangers.The implementation performs well and s
ales up ni
ely when the numberof obje
ts in the environment
lass in
reases due to the dynami
 abstra
tion.It has been demonstrated how all parts of DARE
an be implemented inpra
ti
e and possibly the most interesting part is the implementation of thedynami
 abstra
tion whi
h a
tually performs an optimization over the statedistribution in the dis
retizations.It takes some e�ort to implement DARE in a given environment
lassand it may be an overkill in this parti
ular
ase. It is expe
ted that most ofthe bene�ts of DARE will be demonstrated in more
omplex environment
lasses where many di�erent types of abstra
tions and planning model typeshave to intera
t and it is too time-
onsuming to spe
ify beforehand how theagents should view the di�erent parts of the environment in every
ase.Figure 4.2 on page 42 illustrates one vision where di�erent planning modeltypes and abstra
tions
an be used at the same time depending on whetherthey are suitable to represent the abstra
tions suÆ
iently well.The experiments strongly indi
ate that the
hoi
e of abstra
tions shoulddepend on the available
omputational resour
es when the task environmentis dynami
 (see e.g. Table 5.1). For planning with a performan
e measure,this tradeo� between a

ura
y and feasibility
an a
tually be tested whenthe experiments take the deliberation time into a

ount through the modelwith simulated dynami
s.Although the fully observable UAS environment
lass is dynami
,
on-tinuous and sto
hasti
, it is a
tually not of mu
h use for any realisti
 missionfor the UAS Te
h system, mainly due to the assumtion of full observabilitybut also be
ause of the simpli�ed movement assumption and that no obsta-
les exist. The next
hapter will des
ribe a
ase study where some of theideas of DARE are applied to a partially observable extension of the fullyobservable UAS environment
lass.

\li
" | 2008/4/8 | 9:36 | page 69 | #79

Chapter 6

Case Study IIChapter 5 des
ribed an implementation of the DARE method whi
h demon-strated how dynami
 abstra
tion
an be performed in pra
ti
e and providenan example of problem generation and abstra
tion monitoring.The environment
lass used in that
ase study was rather simple. Theassumptions of a fully observable task environment, no obsta
les and a verysimple movement assumption (kings moves) makes it impossible to use di-re
tly for a mission for the UAS Te
h system. The environment
lass
anstill be diÆ
ult to handle without a dynami
 abstra
tion me
hanism due tothe
urse of dimensionality (if MDPs are used as planning models).Sin
e one of the goals of the work with the DARE method is to pushdynami
 abstra
tion te
hniques into realisti
 settings, the next step is toimplement it for a more realisti
 environment
lass, whi
h is the fo
us ofthis
hapter. This new environment
lass still has dangers and observationtargets as in the previous
ase study, but now these external agents are onlypartially observable and the environment
ontains obsta
les that must beavoided.In this environment
lass (des
ribed further in Se
tion 6.1), partial ob-servability means that the agent
an not see through the obsta
les with itsnoisy sensor (a
amera in this
ase) and not further than a
ertain range.Another modi�
ation of the environment
lass from Chapter 5 is thatthe agent is restri
ted to move on linear path segments that, in this
ase,are returned by a roadmap-based pathplanner [61℄.DDNs are still used to model the task environments, but in this
aseobservation variables are used as well and �ltering is ne
essary to keep tra
kof the external agents. Parti
le �lters are used be
ause of the apparent needto model the multi-modal and nonlinear
hara
teristi
 of the probabilitydistribution.The DARE method's approa
h of dynami
ally generating planning mod-els \on the
y" is also followed in this
ase study. The main di�eren
ebetween the method used in Chapter 5 is that the belief state is used to69

\li
" | 2008/4/8 | 9:36 | page 70 | #8070 CHAPTER 6. CASE STUDY IIgenerate problems and the type of planning model is di�erent; an adaptedversion of depth-limited lookahead is used instead of reinfor
ement learn-ing. Optimization is still used, but in this
ase the result of the optimizationdetermines the possible points that the UAS agent will
onsider
ying toinstead of the state distribution.All the features in the DARE method are not implemented e.g. dy-nami
 abstra
tion hierar
hies. The implementation uses two �xed levelsat all times; one for the
ight manouvers and one for the detailed
ameramovement. It is still
onsidered as dynami
 abstra
tion sin
e the planningmodels are generated depending on the
urrent situation.The results presented in this
hapter are published in [58℄.
6.1 Task Environment ClassFigure 6.1 shows an instan
e of the partially observable UAS environment
lass.

�������
�������
�������

�������
�������
�������

����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

������
������
������
������

�����
�����
�����
�����

���
���
���
���

���
���
���
���

�����
�����
�����
�����

�����
�����
�����
����� ��

��
��
��

��
��
��

��
��
��

��
��
��
��

D1

D2

OT

Agent

Obstacles

FA1

FA2

Camera view

Figure 6.1: An instan
e of the partially observable UAS environment
lass.D1 and D2 are dangers and OT is an observation target. The
ir
les aroundthe external agents show the
ost radius and the maximum
lassi�
ationdistan
e. FA1 and FA2 are �nish areas.In this environment
lass, the agent is only allowed to move on linearsegments that are returned from a pathplanner. The pathplanner in this
ase is roadmap-based whi
h is quite similar to one of the planners that areused in the UAS Te
h system [61℄ where a probabilisti
 roadmap planneris used. The main di�eren
e is that the environment is in this
ase two-dimensional and the roadmap is generated deterministi
ally by setting theverti
es to the surrounding points of the obsta
les and then
onne
ting everyvisible vertex. Plans are generated by
onne
ting the start and goal vertex

\li
" | 2008/4/8 | 9:36 | page 71 | #816.2. TASK ENVIRONMENT MODEL 71to the roadmap and performing A* sear
h with the straight-line heuristi
.Figure 6.2 illustrates an example of a path from A to B generated by thepathplanner.
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����
����

����
����
����
����
����
����

Obstacles

A

B

Path

Figure 6.2: The �gure illustrates a planned path from point A to B, returnedfrom the 2D roadmap-based pathplanner.The UAS agent is equipped with a
amera that
an be used to tra
k theexternal agents and
lassify the observation targets whi
h
an be viewed asa more detailed sensing a
tion where more information is extra
ted from thetarget than its position. It is assumed that it has a maximum range and thatsome kind of geographi
 information system (GIS) is used to map the imagetra
king information to world
oordinates. This type of fun
tionality isimplemented in the UAS Te
h system where a Kalman �lter is used to keeptra
k of the UAS's pose with the input given from the inertial navigationsystem and GPS [11℄.The rewards that are re
eived still depend on the distan
e to dangersand su

essful
lassi�
ations as in Chapter 5, but in this partially observableenvironment the external agent has to be visible from the agent to modifythe (positive or negative) reward.
6.2 Task Environment ModelFigure 6.3 on page 72 shows a DDN for an instan
e of the partially observ-able UAS environment
lass with one freely moving danger and one roadnetwork bound observation target. Every freely moving external agent issimulated by a DBN similar to the one used in
hapter 5 with the help ofa random number generator. The main di�eren
e is that the freely movingexternal agents try to avoid the obsta
les in the environment as well, whi
his performed with a simple
ollision avoidan
e te
hnique that makes theexternal agent slow down when it is about to hit an obsta
le.The DBNs for road network bound external agents are identi
al to theDBNs used in the fully observable UAS environment
lass.The main di�eren
e from the fully observable environment
lass is thepresen
e of observation variables that are used to model the noisy sensor of

\li
" | 2008/4/8 | 9:36 | page 72 | #8272 CHAPTER 6. CASE STUDY II
Classified

t − 1

Classified

t

Agent

Position

t

Action

Agent

Position
t − 1

Reward

Camera

Direction
t

Obstacles
(static)

Danger
Obs

Road
Network
(static)

Road
Segment

t − 1

RS
Distance

t − 1

Speed

t − 1

Distance
to go

Road
Segment

t

RS
Distance

t

Speed

t

Road Network Bound Observation Target

Speed

t − 1

Position

t − 1

Direction

t − 1

Speed

t

Position

t

Direction

t

Freely Moving Danger

OT
Obs

Figure 6.3: An example of a DDN for a task environment that
ontains oneroad network bound observation target and a freely moving danger.the agent. There is one observation variable Oea for ea
h external agent eawhi
h has a domain of R
2[NO whereNO indi
ates that ea was not observedat all. In Figure 6.3, these variables are
alled OT Obs and Danger Obsfor
larity.Sin
e parti
le �lters (see Se
tion 6.4) are used to represent the belief

\li
" | 2008/4/8 | 9:36 | page 73 | #836.2. TASK ENVIRONMENT MODEL 73state, likelihood fun
tions that are proportional to fObsea(ojX) have to be
onstru
ted for the observation variables where X is the set of state vari-ables that des
ribes the agent's position, ea's position (see Se
tion 6.4) andwhether ea is within line of sight and within the
amera's view area. Figure6.4 on page 73 illustrates the four di�erent
ases that are
onsidered in theobservation model.
NO

NO

NO NO

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

��
��
��
��
��

��
��
��
��
��

: Observation

: No observation received

Case 1 Case 2

Or

Case 4

Or

Case 3

Camera View

: Particle position

Figure 6.4: The four di�erent
ases in the observation model. Case 1: Anobservation was re
ieved and the parti
le is a
tually within the
amera view.Case 2: No observation was re
eived even if the parti
le is visible and withinthe
amera view. Case 3: A spurious observation was re
eived. Case 4: Noobservation was re
eived when the parti
le either is outside the
amera'sview or blo
ked by an obsta
le.

\li
" | 2008/4/8 | 9:36 | page 74 | #8474 CHAPTER 6. CASE STUDY IICase 1 in Figure 6.4 is handled by a gaussian likelihood fun
tion Lobs;v(d)with zero mean and a 5 meter standard deviation where d is the distan
efrom the observation to the external agent, obs means that an observationwas re
eived and v that the external agent a
tually was visible. Cases 2, 3and 4 are handled by three di�erent
onstant likelihoods Lno�obs;v, Lobs;vand Lno�obs;:v to model the possibility of spurious observations.
6.3 SkillsThe available skills in the partially observable UAS environment
lass mat
hthe a
tual Task Pro
edures that are available in the UAS Te
h system mu
hbetter than in the fully observable one. The agent has skills that
an performthe following a
tions:� Fly path: This skill
an
y a given linear path with a
onstant speedand it stops at the target position. It
an be interrupted at any time.� Wait: This skill
orresponds to the UAS Te
h system's hovering a
-tion. A simplifying assumption is that the agent
an stop immediatelywithout any delay.� Turn camera: A skill that
an turn the
amera in any dire
tion. Itis assumed that the
amera
an be instantaneously turned from oneangle to another and that the skill
an be exe
uted in parallel with allthe other skills in the system.� Finish: This skill
orresponds to the UAS Te
h system's automati
landing a
tion. The agent must be within a �nish area to be able toexe
ute that skill.It is also assumed that in parallel, the agent performs automati

las-si�
ation and tra
king of the external agents whi
h
ould be
onsidered asanother skill that is
ontinuously exe
uting.
6.4 Belief State and FilteringThe belief state of the agent is represented with a set of parti
le �lters, onefor ea
h external agent. It is assumed that the number and types of externalagents are known in advan
e.The parti
le �lter uses parti
les to represent a probability distributionand the parti
les are di�erent depending on what type of external agentit is. A road network bound external agent's parti
le in
ludes the
urrentroad segment, distan
e travelled on that segment and the
urrent velo
ity.A freely
ying agent instead has the
urrent position and velo
ity (both2-dimensional) in ea
h parti
le.

\li
" | 2008/4/8 | 9:36 | page 75 | #856.4. BELIEF STATE AND FILTERING 75The sequential importan
e resampling (SIR) [3℄ algorithm is used toupdate the belief state after ea
h step. The SIR algorithm is shown inPro
edure 6.1 and it uses a so
alled low varian
e resampling algorithm(see Pro
edure 6.2).Every parti
le �lter for the external agents is updated with a separate
all to SIR() to update the agent's full belief state. xk in SIR() is then theset of all state variables in the external agent's DBN (see e.g. Figure 6.3)and xik is the i:th parti
le in the
urrent parti
le set Xea;k. Obsea;k is theobservation state variable that was observed whi
h is set to a position orNO (no observation).
Procedure 6.1 SIR(Xea;k�1, Obsea;k)1: for i = 1 to Ns do2: Draw xik � P (Xkjxik�1)3: wik LObsea;k;v2xik(d)4: end for5: t PNsi wik6: for i = 1 to Ns do7: wik wikt8: end for9: Return lowVarian
eSample(wk, xk)
Procedure 6.2 lowVarian
eSample(wk, xk)1:
1 02: for i 2 to Ns do3:
i
i�1 +wik4: end for5: i 16: u1 �U[0; N�1s ℄7: for j 1 to Ns do8: while uj >
i do9: i i+ 110: end while11: xjk;res xik12: end for13: Return xk;resFigure 6.5 shows an example of a belief state that is represented withparti
le �lters in the partially observable UAS environment
lass. The truestate is illustrated in Figure 6.1. The agent has lo
alized the two dangers D1and D2 quite well but is still un
ertain of where the observation target OTis. The �gure shows the parti
le �lter's
apability of modeling the multi-modal
hara
teristi
 of the probability distribution that seems to be useful

\li
" | 2008/4/8 | 9:36 | page 76 | #8676 CHAPTER 6. CASE STUDY IIin this environment
lass.
Agent�������

�������
�������

�������
�������
�������

����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

������
������
������
������

�����
�����
�����
�����

���
���
���
���

���
���
���
���

�����
�����
�����
�����

�����
�����
�����
����� ��

��
��
��

��
��
��

��
��
��

��
��
��
��

Particles for D1 and D2

Particles for OT

FA1

FA2Figure 6.5: An example of a belief state represented with parti
le �lters.The agent has lo
alized the two dangers D1 and D2 but not the observationtarget OT.
6.5 DARE ImplementationThis se
tion des
ribes the partial implementation of DARE in this environ-ment
lass. It is only a partial implementation due to the fa
t that thenumber of abstra
tion levels does not
hange dynami
ally depending on thesituation. It is always assumed that the movement of the agent
an beplanned without taking the detailed
amera movement into
onsideration.The
amera movement is determined after the agent knows what dire
tion(if any) it should go.The implementation of DARE for this environment
lass still makes useof the dynami
 view of planning models. New planning models that
anbe used for depth-limited lookahead, are generated depending on the
ur-rent belief state of the agent and implements the generateProblem()pro
edure in DARE. The depth-limited lookahead implements the solve()pro
edure in DARE.Se
tion 6.5.1 presents the problem generation pro
edure and Se
tion6.5.2 des
ribes the details of how the depth-limited lookahead is performed.
6.5.1 Planning Model GenerationThe planning model generation
onsists of the following two steps:� Point sele
tion and� Conne
tion of the sele
ted points with a pathplanner

\li
" | 2008/4/8 | 9:36 | page 77 | #876.5. DARE IMPLEMENTATION 77
Point SelectionThe �rst step of the planning model generation pro
edure is to �nd a set ofgood points that the agent should
onsider
ying to. A good point shouldbe
lose to un
lassi�ed observation targets and suÆ
iently far from dangers.The number of points that are sele
ted, Npg, should not be too many (whi
hwould make the model too big) or too few. Npg is an important design pa-rameter when the tradeo� between a

ura
y and feasibility of the planningmodel is
onsidered for a
ertain ar
hite
ture (see Se
tion 6.6).The problem of sele
ting the set of points is formulated as an iterativeoptimization problem. A utility measure is de�ned for a point given the
urrent belief state and this measure is used to
ompare di�erent points.One point at a time is sele
ted and the previously sele
ted points are usedto modify the utility fun
tion for in
reased diversity of the points (otherwisethe same point
an be sele
ted over and over). The positions of dangers andobservation targets
ontribute to the utility but also the distan
e from thesele
ted point to the agent and whether the point is within a �nish area ornot matters.The belief state is represented with parti
le �lters and ea
h parti
lein every �lter
ontributes to the total utility. This yields some kind ofapproximation of the expe
ted utility of a sele
ted point.All the
ontributions from dangers, observation targets, �nish areas, dis-tan
e from the agent and previously sele
ted points are added and spe
ifythe total expe
ted utility of sele
ting that parti
ular point.The utility
ontribution from a danger's parti
le, Udo, depends on thedistan
e d from the parti
le to the agent:(Udo =min(�Cmax + CmaxCR d; 0) if do is visible from the agent0 otherwise (6.1)where CR is the
ost radius of the danger.Similarly, the point utility for observation targets also depends on thedistan
e but one also needs to
onsider whether it has been
lassi�ed pre-viously or not:Uot = (R
l;ot � R
l;otdot;max d d < dot;max and :
lot0 otherwise (6.2)where R
l;ot is the reward for
lassifying the target ot, dot;max is themaximum
lassi�
ation distan
e and
lot the boolean variable that spe
i�eswhether ot has been
lassi�ed previously or not. Noti
e that observationtargets that have been previously
lassi�ed provide nothing to the pointutility, making it possible for the agent to fo
us on more important externalagents or �nish areas.The utility
ontribution Ufa from a �nish area fa is the same as the
orresponding �nish reward if the point is within fa and the agent has not

\li
" | 2008/4/8 | 9:36 | page 78 | #8878 CHAPTER 6. CASE STUDY IIexe
uted the �nish a
tion yet (whi
h is only important when Ufa is usedduring the depth-limited lookahead. See Se
tion 6.5.2).To provide a simple way to
reate diversity of the sele
ted points, thepoint sele
tion takes the previously sele
ted points into a

ount. Thepenalty fun
tion Up is used for the set of previously sele
ted points p thatdepends linearly on the distan
e between the
onsidered point with one ex-
eption: if the newly sele
ted point is lo
ated within a �nish area and noother point is, no penalty is given.The distan
e from the
onsidered point to the agent also
ontributes tothe point's utility. The
ost of travelling in a straight line from the agent tothat point is used as the
ost estimate.Figure 6.6 shows an example of the utility fun
tion used for point sele
-tion when the belief state is the one in Figure 6.5.
0

100

200

300

400

500 0

100

200

300

400

−200

−150

−100

−50

0

50

FA 2

FA 1

Caused by the localized D1 and D2Figure 6.6: An instan
e of the utility fun
tion for the point sele
tion opti-mization problem for the belief state shown in �gure 6.5. The plot showsthe utility fun
tion when the �rst point is sele
ted. The
urrent positionof the agent is always added to the previously sele
ted points. Noti
e thenegative utility
aused by the lo
alized dangers.Sin
e it is rather expensive to estimate the expe
ted utility of points, alo
al sear
h algorithm (see Se
tion 2.4) is used to sele
t the points that arethen used to generate a planning model (see Se
tion 6.5.1).
Graph GenerationWhen the set of points have been sele
ted, paths are planned between every
ombination of distin
t point pairs to
onstru
t a graph. This operation is

\li
" | 2008/4/8 | 9:36 | page 79 | #896.5. DARE IMPLEMENTATION 79performed with a roadmap-based 2D pathplanner using A*-sear
h whi
h isquite similar to the PRM-based pathplanner that is used in the UAS Te
hsystem [61℄. The set of resulting paths determines the �nite set of a
tionsthat the agent
an perform, making it possible to perform lookahead-basedplanning in the partially observable UAS environment
lass.The number of paths is redu
ed to lower the bran
hing fa
tor for thedepth-limited lookahead whi
h in this
ase means that paths that
ontributelittle or nothing are removed. This is performed by
onsidering all triples ofdistin
t points. If the length of a path between two points a and b is givenby la;b, then if la;b + lb;
 < �l � la;
, the path from a and
 is removed fromthe planning model. �l is set to 1.1 in the implementation.Figure 6.7 shows an example of how a dynami
ally generated planningmodel
an look like given the utility fun
tion in �gure 6.6. Note that someof the paths are going straight through the positions of the dangers, whi
hseems to be very irrational. The point sele
tion does not take the path to thepoints into
onsideration and therefore these seemingly stupid paths arise.The \stupidity" of those
hoi
es is dis
overed later during the depth-limitedlookahead be
ause if the agent simulates su
h a path, a large negative rewardwill be re
eived.
�������
�������
�������

�������
�������
�������

����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

������
������
������
������

�����
�����
�����
�����

���
���
���
���

���
���
���
���

�����
�����
�����
�����

�����
�����
�����
����� ��

��
��
��

��
��
��

��
��
��

��
��
��
��

Agent

Paths

Selected points

FA1

FA2Figure 6.7: A generated planning model for depth-limited lookahead giventhe point value fun
tion illustrated in �gure 6.6. The sele
ted points aredrawn with
ir
les. The road network is hidden for
larity.
6.5.2 Solution MethodThe planning in the planning model is done by a depth-limited lookaheadfrom the
urrent belief state (whi
h is represented by the parti
le �lters).The planning model is not dire
tly suitable for applying the depth-limitedlookahead idea sin
e by simply
onsidering the movement from one point to

\li
" | 2008/4/8 | 9:36 | page 80 | #9080 CHAPTER 6. CASE STUDY IIanother as a primitive a
tion without modi�
ation ignores all the possibleobservations and rewards that are re
eived during the exe
ution.Pro
edure 6.3 shows the depth-limited lookahead algorithm that is usedin the implementation. It enumerates all a
tions as normal depth-limitedlookahead does but samples Nobs sequen
es of observations and belief statesinstead of enumerating the (in�nite) number of possible observations duringthe exe
ution of the a
tion.During lookahead, the
amera is assumed to have a 360 degree �eld ofview whi
h means that the movement of the
amera is planned at a laterstage. If the movement of the
amera would be
onsidered in depthLim-itedLookahead(), the bran
hing fa
tor would be
ome too large and thatabstra
tion would not be a good
hoi
e.
Procedure 6.3 depthLimitedLookahead(depth, BS
ur)1: if depth � d then2: Return hPx2BS
ur U(x)jBS
urj , Waiti3: end if4: BSstart BS
ur5: bestValue �16: bestA
tion Wait7: for all A
tions a possible in BS
ur do8: sum 09: for i 1 to Nobs do10: Filter a sequen
e of steps starting with BSstart11: Store belief state result BSend and reward r12: hUest; abesti depthLimitedLookahead(depth + 1, BSend)13: sum sum +r + Uest14: end for15: Uest(a) sumNobs16: if Uest(a) > bestValue then17: bestValue Uest(a)18: bestA
tion a19: end if20: end for21: Return hbestValue, bestA
tioniWhen a movement a
tion has been sele
ted by the depth-limited looka-head, the solution in the HSN
onsists simply of the bestAction returnedfrom depthLimitedLookahead(). This solution is then re�ned to sele
tthe
amera movement.

\li
" | 2008/4/8 | 9:36 | page 81 | #916.5. DARE IMPLEMENTATION 81
6.5.3 Camera MovementThe DARE method use the
reateSubproblems() pro
edure to re�nesolutions. The implementation of
reateSubproblems() in the partiallyobservable UAS environment
lass is fairly trivial sin
e it is always the
asethat the
amera movement is planned when a solution a
tion is returnedby depthLimitedLookahead(). The re�nement does not have to be �xedlike that. It
an be de�ned by generating a new DDN whi
h representsthe subproblem of performing the spe
i�ed a
tion su
h as moving towards a
reated �nish area (like in Se
tion 5.4.4) but that has not been implemented.The
amera movement, given the a
tion returned from the depth-limitedlookahead, is planned by enumerating a set of possible
amera dire
tionsand sele
ting the one that maximizes the expe
ted relevan
e of the visibleparti
les in the belief state. The relevan
e Rpdo for a visible danger obje
tparti
le pdo is
al
ulated by Cmax � e��pdo �d whi
h is the same measure usedin Se
tion 5.4.2 when the state distribution was determined. The maindi�eren
es are that the point to point visibility and the
amera's view areaare taken into a

ount and that it is the expe
ted relevan
e that is
al
ulatedwith a
ontribution from all parti
les.Sin
e the
amera is assumed to be
apable of pointing instantaneouslytowards a sele
ted point, independent of its previous angle, the
urrent beliefstate BS
ur is used dire
tly to sele
t the
amera angle.
6.5.4 DynabsSolve ImplementationAll the parts of the implementation of DARE's dynabsSolve() pro
edurehave been presented and are in this se
tion listed in Pro
edures 6.4 and6.5. What is missing for a full implementation of DARE is the dynami
generation of abstra
tion levels. This
an be done in many di�erent waysby
reating sub HSNs that
onsider the �rst step of the solution as a sub-problem. For example, a subproblem to a \
y path" a
tion
an view thetarget position as a �nish area and try to �nd a better way to get therethan the previously planned path. On that level of abstra
tion, it mightalso be possible to use more detailed a
tion des
riptions that e.g.
onsiderthe velo
ity of the agent.
Procedure 6.4 dynabsSolve(hsn, TEModel)1: points(hsn) findPoints(TEModel)2: problem(hsn)
reateProblem(TEModel, hsn)3: a
tion(hsn) depthLimitedLookahead(d, BS(TEModel))4: timestamp(hsn)
urrentTime()5: planCameraMovement(hsn)6: Update movement skill a

ording to a
tion(hsn)

\li
" | 2008/4/8 | 9:36 | page 82 | #9282 CHAPTER 6. CASE STUDY II
Procedure 6.5 planCameraMovement(hsn, TEModel)1: bestAngle findBestAngle(BS(TEModel))2: Update
amera skill with bestAngle
6.5.5 ReplanningA solution to a planning model is only kept for a
ertain time, as in Se
tion5.4.5 where a timestamp was used to keep tra
k of when a solution shouldbe
onsidered outdated. In the partially observable UAS environment
lass,two di�erent temporal horizons are used; one for the movement solution andone for the
amera dire
tion.Sin
e the
amera movement is relatively easy to
ompute, that solution is
onsidered outdated at every iteration of the replanIfNe
essary(). Theagent movement is replanned repeatedly every Tr se
ond and the defaultsetting for Tr is 2 se
onds.
Procedure 6.6 replanMovementIfNe
essary(hsn, TEModel)1: if (
urrentTime() - timestamp(hsn)) > Treplan then2: set subNode(hsn) to nil3: dynAbsSolve(hsn, TEModel) fReplang4: else5: planCameraMovement(hsn, TEModel)6: end if

6.6 ExperimentsA set of experiments have been performed with the implementation in or-der to show some of the tradeo�s between a

ura
y and feasibility whendeliberation time is
onsidered.The following parameters were varied in the experiments:� Number of points that are sele
ted during the planning model gener-ation, Npg� Depth for the depth-limited lookahead, d� Number of sampled observation sequen
es for the depth-limited looka-head, Nobs� Replanning period Tr� Number of parti
les used for belief state during depth-limited, Npfs� Number of parti
les used for belief state during point sele
tion, Npl� Whether simulated dynami
 mode is used, SD (see Se
tion 6.6.1)

\li
" | 2008/4/8 | 9:36 | page 83 | #936.6. EXPERIMENTS 83Npg d Nobs Tr Npfs Npl SD Value7 1 8 2.0 5 5 Yes 48.02Table 6.1: The default
on�guration.
6.6.1 SetupMost of the experiments were performed in simulated dynami
 mode whi
h,as in the fully observable
ase, means that the environment is evolving dur-ing the agent's deliberation. The deliberation time is in this
ase estimatedby
ounting the most frequently and
ostly operations that are performedduring point sele
tion and planning. The two operations that are used fordeliberation time estimation are the utility
al
ulations of a point duringpoint sele
tion and planning, and the simulation step of the DDN that isused for predi
tion during planning. The time for those operations were�rst measured in the implementation and then assumed to be �xed duringthe experiments (for the purpose of assuring repeatability).
6.6.2 ResultsSin
e it is not feasible to generate results for every possible
on�guration ofthe parameters des
ribed previously, some
on�gurations were tested thatpoint out interesting behavior of the implementation. First a default
on-�guration was
reated, with some trial and error, whi
h is shown in Table6.1 together with the resulting value. The value is equal to the mean sumof rewards that are re
eived during 500 test runs. The default
on�gurationis used as the basis for the experiments when a subset of the parameters are
hanged.
Number of ParticlesOne of the experiments was to investigate what happens when the numberof parti
les used during the lookahead and point sele
tion are varied. Sin
ethe dynami
s of the environment is simulated, deliberation time is penal-ized both by the
ost of waiting during planning but also with in
reasedresponse times in dangerous situations. The question is where the opti-mal (stati
) tradeo� between a

ura
y and feasibility is (with the Npl andNpfs parameters) given the simulated deliberation penalty. The result ofthe experiment is shown in Figure 6.8 whi
h demonstrates the importan
eof taking the dynami
s and available
omputational resour
es into a

ount.The best result was obtained when Npfs was set to 2 and Npl to 4 whi
hwas mu
h lower than expe
ted.

\li
" | 2008/4/8 | 9:36 | page 84 | #9484 CHAPTER 6. CASE STUDY II

0

5

10

15

20

25 0

5

10

15

20

25
0

10

20

30

40

50

60

Point Selection Particles
Planning Particles

V
al

ue

Figure 6.8: The result when the number of parti
les for point sele
tion andplanning are varied.
Lookahead Depth and ObservationsThe default
on�guration uses a lookahead depth of 1, whi
h is rather ex-treme. But the best results were in fa
t obtained when this setting was used.Table 6.2 shows the result of an experiment when the lookahead depth andnumber of observation samples are varied simultaneously. The result
learlyindi
ates that a lookahead depth of 1 should be used for this environment
lass when the
omputational resour
es are taken into a

ount. The bestlookahead depth also highly depends on the planning model generation,whi
h in this
ase generates models with very long temporal steps.
No Simulated DynamicsSome tests were also performed when the simulated dynami
s was disabled.Table 6.3 shows the three di�erent
on�gurations that were used togetherwith their
orresponding results. The results are
learly better than thebest result when simulated dynami
s is used (56.88) but as the table shows,the number of points sele
ted and parti
les used are mu
h higher and itrequires a lot more
omputation.
6.7 DiscussionThis
hapter has presented a partial implementation of the DAREmethod inmore realisti
 environment
lass than in Chapter 5 whi
h in
ludes partially

\li
" | 2008/4/8 | 9:36 | page 85 | #956.7. DISCUSSION 85d1 2 3 4Nobs 1 53.58 18.88 -247.2 -25022 53.71 -3.932 -2137 NA3 56.88 -64.09 NA NA4 53.56 NA NA NA5 56.43 NA NA NA6 52.24 NA NA NA7 49.31 NA NA NA8 48.02 NA NA NATable 6.2: The results when the number of observations and lookaheaddepth parameters are varied.Npg d Nobs Tr Npfs Npl SD Value10 1 15 1.0 50 50 No 59.3920 1 15 1.0 50 50 No 62.4620 1 20 1.0 200 200 No 64.30Table 6.3: Three results when no simulated dynami
s is used.observability and obsta
les.The experiments have demonstrated that it is important to take theavailable resour
es into a

ount when
reating planningmodels dynami
ally.All features of DARE have not been implemented. No dynami
 abstra
-tion hierar
hies are
reated. The author belives that this is probably moreuseful when the environment is more
omplex and
an e.g. in
lude arbitrary3-dimensional building stru
tures and more
omplex models of the externalagents or is part of the real world. Su
h environments would require sub-models on di�erent abstra
tion levels and the dynami
 abstra
tion wouldprobably be more useful than it
urrently is for this task environment
lass.For
omplex environment
lasses, dynami
 abstra
tion should be per-formed during the �ltering as well. It would then be possible to fo
us onmore relevant obje
ts at the moment but it is also important to be able toba
ktra
k in the \model spa
e" if a previously
onsidered irrelevant obje
tsuddenly be
omes relevant. The agent
an then
hange its models depend-ing on this new information but it may also have to update a belief statewhere this new obje
t is
onsidered. This is a good example where a mem-ory of previous per
epts and a
tions
an be used to update the
urrent beliefstate by \re�ltering" with this new belief state de�nition.

\li
" | 2008/4/8 | 9:36 | page 86 | #96

Chapter 7

ConclusionThis thesis has investigated the
onsequen
es of using a more dynami
 viewof planningmodels than traditionally proposed within Arti�
ial Intelligen
e.It has been argued that dynami
 abstra
tion is a suitable tool for planningin more open-ended environments where planning models
an be generateddynami
ally. The use of dynami
 abstra
tion for planning leads to the prob-lem of monitoring the di�erent abstra
tions
ontinuously and performingmodel re
onstru
tion and replanning when ne
essary. This methodology is
aptured in the DARE method that was presented in Chapter 4.Two partial implementations of DARE have been demonstrated whereplanning models have been generated depending on how important di�erentaspe
ts of the environment have been judged. Chapter 5 presented an im-plementation for a fully observable task environment
lass where dynami
abstra
tion hierar
hies were implemented and the planning models weregenerated dynami
ally depending on how important the di�erent featuresin the environment were. Chapter 6 illustrated how some ideas of DAREwere implemented for a more realisti
, partially observable task environment
lass.
7.1 Future WorkSome very spe
ialized methods to perform dynami
 abstra
tion have beenused in this thesis. What steps
an be taken to generalize these methods?One possible step is to try to extend the
ase studies (espe
ially the se
ondone) to make it work in a real roboti
 system e.g the UAS Te
h system.The task environment
lass would then be a part of the real world whi
hintrodu
es many problems. Future work related to this approa
h will bedis
ussed in Se
tion 7.1.1.Another approa
h is to investigate what type of high level reasoningis ne
essary to draw
on
lusions about what abstra
tions to use. Su
h aninvestigation
ould lead to some kind of theory of abstra
tions whi
h
an be86

\li
" | 2008/4/8 | 9:36 | page 87 | #977.1. FUTURE WORK 87used to perform more general dynami
 abstra
tion methods. This approa
hwill be dis
ussed in Se
tion 7.1.2 where the main fo
us is to develop su
h atheory to make it possible to generate task environment models dependingon relevan
e information given a
ertain task and beliefs.
7.1.1 Extentions to the Case StudiesThe se
ond
ase study was the most realisti
 implementation dis
ussed inthis thesis and was part of the author's intention towards the use of DAREfor real missions with the UAS Te
h system.A few things must be improved in order to use that solution. First of all,the implementation must be extended to work in 3D whi
h means that thepoint sele
tion and model generation has to work with one more dimension,whi
h is straightforward in theory but
ould be a problem in pra
ti
e due tothe in
reased
omplexity. The path planner that already is used in the UASTe
h system
ould be used to generate the set of paths needed to formulatethe planning model.The implementation in the se
ond
ase study simply stopped the agentduring the planning model generation and lookahead whi
h is probably notfeasible during a real mission due to the extra delay introdu
ed when aheli
opter system has to perform a breaking manouver before ea
h de
ision.A more eÆ
ient solution is to perform the planning model generation andlookahead during
ight instead whi
h means that the model generationshould start with a predi
tion of the future belief state where and whenthe solution will be used. To be sure that this time limit is followed (theunderlying
ontrol system demands that the next path segment is sent beforea
ertain time), one
ould try an idea where the
omplexity of the planningproblem is iteratively in
reased. Suppose that it starts with a very simpleproblem formulation with just a few points. Planning is performed anda possible de
ision is ready to use. If there is time left, a more
omplexplanning model
an be
onstru
ted with more points and possibly moreparti
les (one
an also reuse the old points).There is also a lot of work ahead with a more realisti
 sensor model andthe a
tual dete
tion and tra
king of vehi
les. Work is already underway tomake it possible to dete
t vehi
les with a
ombination of infrared,
olor andfeature input.Another extension to the se
ond
ase study is to make it possible tofo
us the attention of the agent with di�erent number of parti
les for therepresentation of external agents. The same kind of sear
h used in the �rst
ase study
an be used to sele
t a reasonable distribution of parti
les giventhe available time and
omputational resour
es.A di�erent type of planning method
an also be tested in the futurewhere only one target point is
onsidered at a time. Suppose that a pointis greedily sele
ted by the point sele
tion method and a path to that pointis planned with the path planner. Then that path is simulated a few times

\li
" | 2008/4/8 | 9:36 | page 88 | #9888 CHAPTER 7. CONCLUSIONas used in the task planning phase and a set of the rewards and time pointsduring the path are stored or generalized by the examples. Then a newpoint is sele
ted that takes these rewards and time points into a

ount anda path is planned where the path planner takes the previously rewards intoa

ount. This goes on until time runs out. The ni
e thing about thisapproa
h is that the path planner gets feedba
k from the task planner allthe time. The question is then how the resulting rewards are stored, but asimple instan
e-based learning method
ould be a start.
7.1.2 Dynamic Task Environment ModelsBoth of the
ase studies used task environment models in di�erent waysin order to perform task planning. These models were rather �xed at aparti
ular level of abstra
tion su
h as the representations of the externalagents and the road network were �xed. The step size
ould be variedwhi
h makes it possible to take fewer and larger steps.The task environment models determine to a large extent the level ofabstra
tion for the task planning if they are used in this way. It wouldtherefore be interesting to try and generate task environment models withthe help of relevan
e information given that a
ertain task should be exe-
uted by an agent in a parti
ular situation. This is parti
ularly importantwhen the task environment is part of the real world.In [43℄, Levy et al. automati
ally generatedmodels that des
ribe physi
aldynami
al systems depending on what is
onsidered relevent given a
ertainquery. The generated models are
omplex enough to answer the query butalso as \simple as possible" given a developed theory of relevan
e. Logi
programming was used to reason about possible models given the query asa goal statement.Could then the same pro
edure be used to generate task environmentmodels for task planning? Possibly, but there is no stri
t \query" to answerex
ept for the following: \how should the environment be modelled in orderto maximize performan
e?". Levy et al. used model fragments of di�erentdetail level whi
h was stru
tured in so
alled assumption
lasses whi
hrepresent the partial order of
omplexity and detail between the possiblemodel fragments. The same idea
an be used to generate task environmentmodels for planning but another method than the one des
ribed in [43℄ willprobably be used.

\li
" | 2008/4/8 | 9:36 | page 89 | #99

Bibliography[1℄ A. Aamodt and E. Plaza. Case-based reasoning: Foundational issues,methodologi
al variations, and system approa
hes. Arti�
ial Intelli-gen
e Communi
ations, 7(1):39{59, 1994.[2℄ J. Aldri
h. R. A. Fisher and the making of maximum likelihood 1912-1922. Statisti
al S
ien
e, 12:162{176, 1997.[3℄ S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial onparti
le �lters for on-line non-linear/non-gaussian bayesian tra
king.IEEE Transa
tions on Signal Pro
essing, 50(2):174{188, February2002.[4℄ P. Athanasios and P. S. Unnikrishna. Probability, Random Variablesand Sto
hasti
 Pro
esses. M
graw-Hill Edu
ation, 2002.[5℄ F. Ba

hus and R. Petri
k. Modeling an agent's in
omplete knowledgeduring planning and exe
ution. In Pro
eedings of the InternationalConferen
e on Prin
iples of Knowledge Representation and Rea-soning, pages 432{443, 1998.[6℄ A. G. Barto and S. Mahadevan. Re
ent advan
es in hierar
hi
al rein-for
ement learning. Dis
rete Event Dynami
 Systems, 13(4):341{379,2003.[7℄ J. O. Berger. Statisti
al De
ision Theory and Bayesian Analysis.Springer Verlag, 1980.[8℄ P. Bertoli, A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. MBP:a model based planner. In IJCAI'01 Workshop on Planning underUn
ertainty and In
omplete Information, 2001.[9℄ C. M. Bishop. Neural Networks for Pattern Re
ognition. OxfordUniversity Press In
., New York, 1995.[10℄ R. J. Bra
hman and H. Levesque. Knowledge Representation an Rea-soning. Morgan Kaufmann, 2004.89

\li
" | 2008/4/8 | 9:36 | page 90 | #10090 BIBLIOGRAPHY[11℄ G. Conte. Navigation fun
tionalities for an autonomous uav heli
opter.Li
entiate Thesis Link�oping Institute of Te
hnology at Link�opingUniversity, 2007.[12℄ T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introdu
tion toAlgorithms. MIT Press and M
Graw-Hill, 2000.[13℄ T. Dean and K. Kanazawa. A model for reasoning about persisten
eand
ausation. Arti�
ial Intelligen
e, 93(1-2):1{27, 1989.[14℄ T. Dean and M. Welman. Planning and Control. Morgan Kaufmann,1991.[15℄ T. L. Dean and M. Boddy. An analysis of time-dependent planning.In Pro
eedings of the Seventh National Conferen
e on Arti�
ialIntelligen
e, pages 49{54, 1988.[16℄ T. Dietteri
h. Hierar
hi
al reinfor
ement learning with the MAXQvalue fun
tion de
omposition. In Pro
eedings of the 15th Interna-tional Conferen
e on Ma
hine Learning, 1998.[17℄ P. Doherty. Advan
ed resear
h with autonomous unmanned aerial vehi-
les. Pro
eedings on the 9th International Conferen
e on Prin
iplesof Knowledge Representation and Reasoning, 2004.[18℄ P. Doherty, P. Haslum, F. Heintz, T. Merz, P. Nyblom, T. Persson, andB. Wingman. A distributed ar
hite
ture for autonomous unmannedaerial vehi
le experimentation. 7th International Symposium on Dis-tributed Autonomous Roboti
 Systems (DARS), 2004.[19℄ P. Doherty and F. Heintz. A knowledge pro
essing middleware frame-work and its relation to the JDL data fusion model. Journal of Intel-ligent and Fuzzy Systems, 17(4), 2006.[20℄ R. Durrett. Probability: Theory and Examples. Duxbury press, 2004.[21℄ K. Erol, J. Hendler, and D. Nau. Semanti
s for hierar
hi
al task-network planning. Te
hni
al report, University of Maryland Institutefor Advan
ed Computer Studies, 1994.[22℄ B. Falkenhainer and K. Forbus. Compositional modeling: Finding theright model for the job. Arti�
ial Intelligen
e, 51:95{143, 1991.[23℄ R. J. Firby. Adaptive Exe
ution in Complex Dynami
 Domains.PhD thesis, Yale University, 1989.[24℄ R. Fourer, M. Gay, and W. Kernighan. AMPL: A Modeling Languagefor Mathemati
al Programming. The S
ienti�
 Press, 1993.

\li
" | 2008/4/8 | 9:36 | page 91 | #101BIBLIOGRAPHY 91[25℄ D. Fox, W. Burgard, F. Dellaert, and S. Thrun. Monte
arlo lo
aliza-tion: EÆ
ient position estimation for mobile robots. In AAAI/IAAI,pages 343{349, 1999.[26℄ M. Fox and D. Long. An extension of PDDL for expressing temporalplanning domains. Journal of AI Resear
h, 20:61{124, 2003.[27℄ M. Freed. Simulating Human Performan
e in Complex, Dynami
Environments. PhD thesis, Northwestern University, 1998.[28℄ A. Fukunaga, G. Rabideau, S. Chien, and D. Yan. Towards an appli
a-tion framework for automated planning and s
heduling. In Pro
eedingsof the IEEE Aerospa
e Conferen
e, 1997.[29℄ A. Gerevini and D. Long. Plan
onstraints and preferen
es in PDDL3.Te
hni
al report, Department of Ele
troni
s for Automation, Universityof Bres
ia, Italy, 2005.[30℄ M. Ghallab, A. Howe, C. Knoblo
k, D. M
Dermott, A. Ram, M. Veloso,D. Weld, and D. Wilkins. PDDL|the planning domain de�nition lan-guage. Te
hni
al report, AIPS-98 Planning Committee, 1998.[31℄ M. Ghallab, D. Nau, and P. Traverso. Automated Planning, theoryand pra
ti
e. Morgan Kaufmann Publishers, 2004.[32℄ G. Granlund, K. Nordberg, J. Wiklund, P. Doherty, E. Skarman, andE. Sandewall. An intelligent autonomous air
raft using a
tive vision. InPro
eedings of the UAV 2000 International Te
hni
al Conferen
eand Exhibition, 2000.[33℄ J. A. Hartigan. Clustering algorithms. New York: John Wiley, 1975.[34℄ P. Haslum. Predi
tion as a knowledge representation problem: A
asestudy in model design. Li
entiate Thesis Link�oping Institute ofTe
hnology at Link�oping University., 2002.[35℄ B. Hengst. Dis
overing hierar
hy in reinfor
ement learning with HEXQ,2002.[36℄ D. S. Johnson. A theoreti
ian's guide to the experimental analysis ofalgorithms.[37℄ A. Jonsson and A. G. Barto. Automated state abstra
tion for optionsusing the u-tree algorithm. In Advan
es in Neural Information Pro-
essing Systems, pages 1054{1060, 2000.[38℄ L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and a
t-ing in partially observable sto
hasti
 domains. Arti�
ial Intelligen
e,101:99{134, 1998.

\li
" | 2008/4/8 | 9:36 | page 92 | #10292 BIBLIOGRAPHY[39℄ S. Kirkpatri
k, C. D. Gelatt, and M. P. Ve

hi. Optimization by simu-lated annealing. S
ien
e, 220(4598):671{680, 1983.[40℄ C. A. Knoblo
k. Automati
ally generating abstra
tions for planning.Arti�
ial Intelligen
e, 68(2):243{302, 1994.[41℄ P. Laborie and M. Ghallab. Planning with sharable resour
e
on-straints. In Pro
eedings of the International Joint Conferen
e onArti�
ial Intelligen
e, 1995.[42℄ A. H. Land and A. G. Doig. An automati
 method for solving dis
reteprogramming problems. E
onometri
a, 28:497{520, 1960.[43℄ Alon Y. Levy, Yumi Iwasaki, and Ri
hard Fikes. Automated modelsele
tion for simulation based on relevan
e reasoning. Arti�
ial Intel-ligen
e, 96(2):351{394, 1997.[44℄ L. Ljung and T. Glad.Modellbygge o
h Simulering. Studentlitteratur,2004.[45℄ S. Mannor, I. Mena
he, A. Hoze, and U. Klein. Dynami
 abstra
tionin reinfor
ement learning via
lustering. In Pro
eedings of the 21stInternational Conferen
e on Ma
hine Learning.[46℄ A. M
Callum. Reinfor
ement Learning with Sele
tive Per
eptionand Hidden State. PhD thesis, University of Ro
hester, 1995.[47℄ A. Meystel. Knowledge based nested hierar
hi
al
ontrol. Advan
es inAutomation and Roboti
s, 2:63{152, 1990.[48℄ T. M. Mit
hell. Ma
hine Learning. M
Graw-Hill, 1997.[49℄ K. Murphy. A survey of POMDP solution te
hniques.http://www.
s.ubs.
a/ murphy/Papers/pomdp.pdf, 2005.[50℄ R. R. Murphy. Introdu
tion to AI Roboti
s. The MIT Press, 2000.[51℄ N. Mus
ettola. HSTS: Integrating planning and s
heduling. InM. Zweben and M. S. Fox, editors, Intelligent S
heduling. MorganKaufmann, 1994.[52℄ K. L. Myers. A pro
edural knowledge approa
h to task-level
ontrol. InPro
eedings of the Third International Conferen
e on AI PlanningSystems, 1996.[53℄ D. Nau, T. C. Au, O. Ilghami O., U. Kuter, J. W. Murdo
k, D. Wu, andF. Yaman. SHOP2: An HTN planning system. Journal of Arti�
ialIntelligen
e Resear
h, 20:379{404, 2003.[54℄ N. J. Nilsson. Shakey the robot. Te
hni
al report, AI Center, SRIInternational, 1984.

\li
" | 2008/4/8 | 9:36 | page 93 | #103BIBLIOGRAPHY 93[55℄ J. No
edal and S. J. Wright. Numeri
al Optimization. Springer Ver-lag, 2006.[56℄ P. Nyblom. A language translator for roboti
 task pro
edure spe
i�
a-tions. Master's thesis, Link�oping Univirsity.[57℄ P. Nyblom. Dynami
 abstra
tion for hierar
hi
al problem solving andexe
ution in sto
hasti
 dynami
 environments. In Starting AI Re-sear
her Symposium (STAIRS), 2006.[58℄ P. Nyblom. Dynami
 problem generation in a UAV domain. In The6th IFAC Symposium on Intelligent Autonomous Vehi
les, 2007.[59℄ Obje
t Management Group (OMG). Common Obje
t Request BrokerAr
hite
ture: Core Spe
i�
ation, 2004.[60℄ R. Parr. Hierar
hi
al Control and Learning for Markov De
isionPro
esses. PhD thesis, University of California at Berkley, 1998.[61℄ P. O. Pettersson. Sampling-based path planning for an autonomousheli
opter. Li
entiate Thesis Link�oping Institute of Te
hnology atLink�oping University., 2006.[62℄ M. Puterman. Markov De
ision Pro
esses, Dis
rete Sto
hasti
 Dy-nami
 Programming. Wiley Inter-s
ien
e, 1994.[63℄ S. Russel and P. Norvig. Arti�
ial Intelligen
e, A Modern Approa
h.Prenti
e Hall, 2003.[64℄ E. D. Sa
erdoti. Planning in a hiear
hy of abstra
tion spa
es. Arti�
ialIntelligen
e, 5:115{135, 1974.[65℄ A. S
hrijver. Theory of Linear and Integer Programming. JohnWiley and sons, 1998.[66℄ K. Steinkraus and L. P. Kaelbling. Combining dynami
 abstra
tions inlarge mdps, 2004.[67℄ N. Sturtevant and M. Buro. Partial path�nding using map abstra
tionand re�nement. In Pro
eedings of the AAAI National Conferen
eon Arti�
ial Intelligen
e. AAAI, 2005.[68℄ R. S. Sutton. Integrated ar
hite
tures for learning, planning, and rea
t-ing based on approximating dynami
 programming. In Pro
eedings ofthe Seventh International Conferen
e on Ma
hine Learning, pages216{224, 1990.[69℄ R. S. Sutton and A. G. Barto. Reinfor
ement Learning An Introdu
-tion. The MIT Press, 1998.

\li
" | 2008/4/8 | 9:36 | page 94 | #10494 BIBLIOGRAPHY[70℄ R. S. Sutton, D. Pre
up, and S. P. Singh. Between MDPs and semi-MDPs: A framework for temporal abstra
tion in reinfor
ement learn-ing. Arti�
ial Intelligen
e, 112(1-2):181{211, 1999.[71℄ A. Tate. Proje
t planning using a hierar
hi
 non-linear planner. Te
h-ni
al report, Department of Arti�
ial Intelligen
e, University, 1975.[72℄ A. Tate, B. Drabble, and J. Dalton. O-plan: a knowledge-based plan-ner and its appli
ation to logisti
s. Advan
ed Planning Te
hnology,AAAI Press, 1996.[73℄ G. Theo
harous, S. Mahadevan, and L. P. Kaelbling. Spatial and tem-poral abstra
tions in pomdps applied to robot navigation, 2005.[74℄ S. Thrun, W. Burgard, and D. Fox. Probabilisti
 Roboti
s. 2005.[75℄ D. E. Wilkins. Pra
ti
al Planning: Extending the Classi
al AI Plan-ning Paradigm. MorganKaufmann Publishers In
., San Fran
is
o, CA,1988.[76℄ D. E. Wilkins and K. L. Myers. A
ommon knowledge representa-tion for plan generation and rea
tive exe
ution. Journal of Logi
 andComputation, 5(6):731{761, 1995.[77℄ D. E. Wilkins, K. L. Myers, J. D. Lowran
e, and L. P. Wesley. Plan-ning and rea
ting in un
ertain and dynami
 environments. Journal ofExperimental and Theoreti
al AI, 7(1):197{227, 1995.

\li
" | 2008/4/8 | 9:36 | page 95 | #105
Avdelning, InstitutionDivision, Department DatumDate

Spr̊akLanguage
2 Svenska/Swedish
2 Engelska/English
2

RapporttypReport
ategory
2 Li
entiatavhandling
2 Examensarbete
2 C-uppsats
2 D-uppsats
2 �Ovrig rapport
2

URL för elektronisk version

ISBN

ISRN

Serietitel och serienummerTitle of series, numbering ISSNLink�oping Studies in S
ien
e and Te
hnologyThesis No. 1363
TitelTitle
FörfattareAuthor
SammanfattningAbstra
t

NyckelordKeywords

It is often bene�
ial for an autonomous agent that operates in a
omplexenvironment to make use of di�erent types of mathemati
al models to keeptra
k of unobservable parts of the world or to perform predi
tion, planningand other types of reasoning. Sin
e a model is always a simpli�
ation ofsomething else, there always exists a tradeo� between the model's a

ura
yand feasibility when it is used within a
ertain appli
ation due to the limitedavailable
omputational resour
es. Currently, this tradeo� is to a large extentbalan
ed by humans for model
onstru
tion in general and for autonomousagents in parti
ular. This thesis investigates di�erent solutions where su
hagents are more responsible for balan
ing the tradeo� for models themselvesin the
ontext of interleaved task planning and plan exe
ution. The ne
essary
omponents for an autonomous agent that performs its abstra
tions and
on-stru
ts planning models dynami
ally during task planning and exe
ution areinvestigated and a method
alled DARE is developed that is a template forhandling the possible situations that
an o

ur su
h as the rise of unsuitableabstra
tions and need for dynami

onstru
tion of abstra
tion levels. Imple-mentations of DARE are presented in two
ase studies where both a fully andpartially observable sto
hasti
 domain are used, motivated by resear
h withUnmanned Air
raft Systems. The
ase studies also demonstrate possible waysto perform dynami
 abstra
tion and problem model
onstru
tion in pra
ti
e.

AIICS,Dept. of Computer and Information S
ien
e581 83 Link�oping April 24 2008978-91-7393-905-8LiU-Tek-Li
{2008:21 0280{7971

April 24 2008

Dynami
 Abstra
tion for Interleaved Task Planning and Exe
utionPer Nyblom

��

Dynami
 Abstra
tion, Task Planning, Automati
 Model Constru
tion

Department of Computer and Information Science
Linköpings universitet

Linköping Studies in Science and Technology
Faculty of Arts and Sciences - Licentiate Theses

No 17 Vojin Plavsic: Interleaved Processing of Non-Numerical Data Stored on a Cyclic Memory. (Available at:
FOA, Box 1165, S-581 11 Linköping, Sweden. FOA Report B30062E)

No 28 Arne Jönsson, Mikael Patel: An Interactive Flowcharting Technique for Communicating and Realizing Al-
gorithms, 1984.

No 29 Johnny Eckerland: Retargeting of an Incremental Code Generator, 1984.
No 48 Henrik Nordin: On the Use of Typical Cases for Knowledge-Based Consultation and Teaching, 1985.
No 52 Zebo Peng: Steps Towards the Formalization of Designing VLSI Systems, 1985.
No 60 Johan Fagerström: Simulation and Evaluation of Architecture based on Asynchronous Processes, 1985.
No 71 Jalal Maleki: ICONStraint, A Dependency Directed Constraint Maintenance System, 1987.
No 72 Tony Larsson: On the Specification and Verification of VLSI Systems, 1986.
No 73 Ola Strömfors: A Structure Editor for Documents and Programs, 1986.
No 74 Christos Levcopoulos: New Results about the Approximation Behavior of the Greedy Triangulation, 1986.
No 104 Shamsul I. Chowdhury: Statistical Expert Systems - a Special Application Area for Knowledge-Based Com-

puter Methodology, 1987.
No 108 Rober Bilos: Incremental Scanning and Token-Based Editing, 1987.
No 111 Hans Block: SPORT-SORT Sorting Algorithms and Sport Tournaments, 1987.
No 113 Ralph Rönnquist: Network and Lattice Based Approaches to the Representation of Knowledge, 1987.
No 118 Mariam Kamkar, Nahid Shahmehri: Affect-Chaining in Program Flow Analysis Applied to Queries of Pro-

grams, 1987.
No 126 Dan Strömberg: Transfer and Distribution of Application Programs, 1987.
No 127 Kristian Sandahl: Case Studies in Knowledge Acquisition, Migration and User Acceptance of Expert Sys-

tems, 1987.
No 139 Christer Bäckström: Reasoning about Interdependent Actions, 1988.
No 140 Mats Wirén: On Control Strategies and Incrementality in Unification-Based Chart Parsing, 1988.
No 146 Johan Hultman: A Software System for Defining and Controlling Actions in a Mechanical System, 1988.
No 150 Tim Hansen: Diagnosing Faults using Knowledge about Malfunctioning Behavior, 1988.
No 165 Jonas Löwgren: Supporting Design and Management of Expert System User Interfaces, 1989.
No 166 Ola Petersson: On Adaptive Sorting in Sequential and Parallel Models, 1989.
No 174 Yngve Larsson: Dynamic Configuration in a Distributed Environment, 1989.
No 177 Peter Åberg: Design of a Multiple View Presentation and Interaction Manager, 1989.
No 181 Henrik Eriksson: A Study in Domain-Oriented Tool Support for Knowledge Acquisition, 1989.
No 184 Ivan Rankin: The Deep Generation of Text in Expert Critiquing Systems, 1989.
No 187 Simin Nadjm-Tehrani: Contributions to the Declarative Approach to Debugging Prolog Programs, 1989.
No 189 Magnus Merkel: Temporal Information in Natural Language, 1989.
No 196 Ulf Nilsson: A Systematic Approach to Abstract Interpretation of Logic Programs, 1989.
No 197 Staffan Bonnier: Horn Clause Logic with External Procedures: Towards a Theoretical Framework, 1989.
No 203 Christer Hansson: A Prototype System for Logical Reasoning about Time and Action, 1990.
No 212 Björn Fjellborg: An Approach to Extraction of Pipeline Structures for VLSI High-Level Synthesis, 1990.
No 230 Patrick Doherty: A Three-Valued Approach to Non-Monotonic Reasoning, 1990.
No 237 Tomas Sokolnicki: Coaching Partial Plans: An Approach to Knowledge-Based Tutoring, 1990.
No 250 Lars Strömberg: Postmortem Debugging of Distributed Systems, 1990.
No 253 Torbjörn Näslund: SLDFA-Resolution - Computing Answers for Negative Queries, 1990.
No 260 Peter D. Holmes: Using Connectivity Graphs to Support Map-Related Reasoning, 1991.
No 283 Olof Johansson: Improving Implementation of Graphical User Interfaces for Object-Oriented Knowledge-

Bases, 1991.
No 298 Rolf G Larsson: Aktivitetsbaserad kalkylering i ett nytt ekonomisystem, 1991.
No 318 Lena Srömbäck: Studies in Extended Unification-Based Formalism for Linguistic Description: An Algorithm

for Feature Structures with Disjunction and a Proposal for Flexible Systems, 1992.
No 319 Mikael Pettersson: DML-A Language and System for the Generation of Efficient Compilers from Denotatio-

nal Specification, 1992.
No 326 Andreas Kågedal: Logic Programming with External Procedures: an Implementation, 1992.
No 328 Patrick Lambrix: Aspects of Version Management of Composite Objects, 1992.
No 333 Xinli Gu: Testability Analysis and Improvement in High-Level Synthesis Systems, 1992.
No 335 Torbjörn Näslund: On the Role of Evaluations in Iterative Development of Managerial Support Sytems,

1992.
No 348 Ulf Cederling: Industrial Software Development - a Case Study, 1992.
No 352 Magnus Morin: Predictable Cyclic Computations in Autonomous Systems: A Computational Model and Im-

plementation, 1992.
No 371 Mehran Noghabai: Evaluation of Strategic Investments in Information Technology, 1993.
No 378 Mats Larsson: A Transformational Approach to Formal Digital System Design, 1993.
No 380 Johan Ringström: Compiler Generation for Parallel Languages from Denotational Specifications, 1993.
No 381 Michael Jansson: Propagation of Change in an Intelligent Information System, 1993.
No 383 Jonni Harrius: An Architecture and a Knowledge Representation Model for Expert Critiquing Systems, 1993.
No 386 Per Österling: Symbolic Modelling of the Dynamic Environments of Autonomous Agents, 1993.
No 398 Johan Boye: Dependency-based Groudness Analysis of Functional Logic Programs, 1993.

No 402 Lars Degerstedt: Tabulated Resolution for Well Founded Semantics, 1993.
No 406 Anna Moberg: Satellitkontor - en studie av kommunikationsmönster vid arbete på distans, 1993.
No 414 Peter Carlsson: Separation av företagsledning och finansiering - fallstudier av företagsledarutköp ur ett agent-

teoretiskt perspektiv, 1994.
No 417 Camilla Sjöström: Revision och lagreglering - ett historiskt perspektiv, 1994.
No 436 Cecilia Sjöberg: Voices in Design: Argumentation in Participatory Development, 1994.
No 437 Lars Viklund: Contributions to a High-level Programming Environment for a Scientific Computing, 1994.
No 440 Peter Loborg: Error Recovery Support in Manufacturing Control Systems, 1994.
FHS 3/94 Owen Eriksson: Informationssystem med verksamhetskvalitet - utvärdering baserat på ett verksamhetsinrik-

tat och samskapande perspektiv, 1994.
FHS 4/94 Karin Pettersson: Informationssystemstrukturering, ansvarsfördelning och användarinflytande - En kompa-

rativ studie med utgångspunkt i två informationssystemstrategier, 1994.
No 441 Lars Poignant: Informationsteknologi och företagsetablering - Effekter på produktivitet och region, 1994.
No 446 Gustav Fahl: Object Views of Relational Data in Multidatabase Systems, 1994.
No 450 Henrik Nilsson: A Declarative Approach to Debugging for Lazy Functional Languages, 1994.
No 451 Jonas Lind: Creditor - Firm Relations: an Interdisciplinary Analysis, 1994.
No 452 Martin Sköld: Active Rules based on Object Relational Queries - Efficient Change Monitoring Techniques,

1994.
No 455 Pär Carlshamre: A Collaborative Approach to Usability Engineering: Technical Communicators and System

Developers in Usability-Oriented Systems Development, 1994.
FHS 5/94 Stefan Cronholm: Varför CASE-verktyg i systemutveckling? - En motiv- och konsekvensstudie avseende ar-

betssätt och arbetsformer, 1994.
No 462 Mikael Lindvall: A Study of Traceability in Object-Oriented Systems Development, 1994.
No 463 Fredrik Nilsson: Strategi och ekonomisk styrning - En studie av Sandviks förvärv av Bahco Verktyg, 1994.
No 464 Hans Olsén: Collage Induction: Proving Properties of Logic Programs by Program Synthesis, 1994.
No 469 Lars Karlsson: Specification and Synthesis of Plans Using the Features and Fluents Framework, 1995.
No 473 Ulf Söderman: On Conceptual Modelling of Mode Switching Systems, 1995.
No 475 Choong-ho Yi: Reasoning about Concurrent Actions in the Trajectory Semantics, 1995.
No 476 Bo Lagerström: Successiv resultatavräkning av pågående arbeten. - Fallstudier i tre byggföretag, 1995.
No 478 Peter Jonsson: Complexity of State-Variable Planning under Structural Restrictions, 1995.
FHS 7/95 Anders Avdic: Arbetsintegrerad systemutveckling med kalkylkprogram, 1995.
No 482 Eva L Ragnemalm: Towards Student Modelling through Collaborative Dialogue with a Learning Compani-

on, 1995.
No 488 Eva Toller: Contributions to Parallel Multiparadigm Languages: Combining Object-Oriented and Rule-Based

Programming, 1995.
No 489 Erik Stoy: A Petri Net Based Unified Representation for Hardware/Software Co-Design, 1995.
No 497 Johan Herber: Environment Support for Building Structured Mathematical Models, 1995.
No 498 Stefan Svenberg: Structure-Driven Derivation of Inter-Lingual Functor-Argument Trees for Multi-Lingual

Generation, 1995.
No 503 Hee-Cheol Kim: Prediction and Postdiction under Uncertainty, 1995.
FHS 8/95 Dan Fristedt: Metoder i användning - mot förbättring av systemutveckling genom situationell metodkunskap

och metodanalys, 1995.
FHS 9/95 Malin Bergvall: Systemförvaltning i praktiken - en kvalitativ studie avseende centrala begrepp, aktiviteter och

ansvarsroller, 1995.
No 513 Joachim Karlsson: Towards a Strategy for Software Requirements Selection, 1995.
No 517 Jakob Axelsson: Schedulability-Driven Partitioning of Heterogeneous Real-Time Systems, 1995.
No 518 Göran Forslund: Toward Cooperative Advice-Giving Systems: The Expert Systems Experience, 1995.
No 522 Jörgen Andersson: Bilder av småföretagares ekonomistyrning, 1995.
No 538 Staffan Flodin: Efficient Management of Object-Oriented Queries with Late Binding, 1996.
No 545 Vadim Engelson: An Approach to Automatic Construction of Graphical User Interfaces for Applications in

Scientific Computing, 1996.
No 546 Magnus Werner : Multidatabase Integration using Polymorphic Queries and Views, 1996.
FiF-a 1/96 Mikael Lind: Affärsprocessinriktad förändringsanalys - utveckling och tillämpning av synsätt och metod,

1996.
No 549 Jonas Hallberg: High-Level Synthesis under Local Timing Constraints, 1996.
No 550 Kristina Larsen: Förutsättningar och begränsningar för arbete på distans - erfarenheter från fyra svenska fö-

retag. 1996.
No 557 Mikael Johansson: Quality Functions for Requirements Engineering Methods, 1996.
No 558 Patrik Nordling: The Simulation of Rolling Bearing Dynamics on Parallel Computers, 1996.
No 561 Anders Ekman: Exploration of Polygonal Environments, 1996.
No 563 Niclas Andersson: Compilation of Mathematical Models to Parallel Code, 1996.
No 567 Johan Jenvald: Simulation and Data Collection in Battle Training, 1996.
No 575 Niclas Ohlsson: Software Quality Engineering by Early Identification of Fault-Prone Modules, 1996.
No 576 Mikael Ericsson: Commenting Systems as Design Support—A Wizard-of-Oz Study, 1996.
No 587 Jörgen Lindström: Chefers användning av kommunikationsteknik, 1996.
No 589 Esa Falkenroth: Data Management in Control Applications - A Proposal Based on Active Database Systems,

1996.
No 591 Niclas Wahllöf: A Default Extension to Description Logics and its Applications, 1996.
No 595 Annika Larsson: Ekonomisk Styrning och Organisatorisk Passion - ett interaktivt perspektiv, 1997.
No 597 Ling Lin: A Value-based Indexing Technique for Time Sequences, 1997.

No 598 Rego Granlund: C3Fire - A Microworld Supporting Emergency Management Training, 1997.
No 599 Peter Ingels: A Robust Text Processing Technique Applied to Lexical Error Recovery, 1997.
No 607 Per-Arne Persson: Toward a Grounded Theory for Support of Command and Control in Military Coalitions,

1997.
No 609 Jonas S Karlsson: A Scalable Data Structure for a Parallel Data Server, 1997.
FiF-a 4 Carita Åbom: Videomötesteknik i olika affärssituationer - möjligheter och hinder, 1997.
FiF-a 6 Tommy Wedlund: Att skapa en företagsanpassad systemutvecklingsmodell - genom rekonstruktion, värde-

ring och vidareutveckling i T50-bolag inom ABB, 1997.
No 615 Silvia Coradeschi: A Decision-Mechanism for Reactive and Coordinated Agents, 1997.
No 623 Jan Ollinen: Det flexibla kontorets utveckling på Digital - Ett stöd för multiflex? 1997.
No 626 David Byers: Towards Estimating Software Testability Using Static Analysis, 1997.
No 627 Fredrik Eklund: Declarative Error Diagnosis of GAPLog Programs, 1997.
No 629 Gunilla Ivefors: Krigsspel coh Informationsteknik inför en oförutsägbar framtid, 1997.
No 631 Jens-Olof Lindh: Analysing Traffic Safety from a Case-Based Reasoning Perspective, 1997
No 639 Jukka Mäki-Turja:. Smalltalk - a suitable Real-Time Language, 1997.
No 640 Juha Takkinen: CAFE: Towards a Conceptual Model for Information Management in Electronic Mail, 1997.
No 643 Man Lin: Formal Analysis of Reactive Rule-based Programs, 1997.
No 653 Mats Gustafsson: Bringing Role-Based Access Control to Distributed Systems, 1997.
FiF-a 13 Boris Karlsson: Metodanalys för förståelse och utveckling av systemutvecklingsverksamhet. Analys och vär-

dering av systemutvecklingsmodeller och dess användning, 1997.
No 674 Marcus Bjäreland: Two Aspects of Automating Logics of Action and Change - Regression and Tractability,

1998.
No 676 Jan Håkegård: Hiera rchical Test Architecture and Board-Level Test Controller Synthesis, 1998.
No 668 Per-Ove Zetterlund: Normering av svensk redovisning - En studie av tillkomsten av Redovisningsrådets re-

kommendation om koncernredovisning (RR01:91), 1998.
No 675 Jimmy Tjäder: Projektledaren & planen - en studie av projektledning i tre installations- och systemutveck-

lingsprojekt, 1998.
FiF-a 14 Ulf Melin: Informationssystem vid ökad affärs- och processorientering - egenskaper, strategier och utveck-

ling, 1998.
No 695 Tim Heyer: COMPASS: Introduction of Formal Methods in Code Development and Inspection, 1998.
No 700 Patrik Hägglund: Programming Languages for Computer Algebra, 1998.
FiF-a 16 Marie-Therese Christiansson: Inter-organistorisk verksamhetsutveckling - metoder som stöd vid utveckling

av partnerskap och informationssystem, 1998.
No 712 Christina Wennestam: Information om immateriella resurser. Investeringar i forskning och utveckling samt

i personal inom skogsindustrin, 1998.
No 719 Joakim Gustafsson: Extending Temporal Action Logic for Ramification and Concurrency, 1998.
No 723 Henrik André-Jönsson: Indexing time-series data using text indexing methods, 1999.
No 725 Erik Larsson: High-Level Testability Analysis and Enhancement Techniques, 1998.
No 730 Carl-Johan Westin: Informationsförsörjning: en fråga om ansvar - aktiviteter och uppdrag i fem stora svenska

organisationers operativa informationsförsörjning, 1998.
No 731 Åse Jansson: Miljöhänsyn - en del i företags styrning, 1998.
No 733 Thomas Padron-McCarthy: Performance-Polymorphic Declarative Queries, 1998.
No 734 Anders Bäckström: Värdeskapande kreditgivning - Kreditriskhantering ur ett agentteoretiskt perspektiv,

1998.
FiF-a 21 Ulf Seigerroth: Integration av förändringsmetoder - en modell för välgrundad metodintegration, 1999.
FiF-a 22 Fredrik Öberg: Object-Oriented Frameworks - A New Strategy for Case Tool Development, 1998.
No 737 Jonas Mellin: Predictable Event Monitoring, 1998.
No 738 Joakim Eriksson: Specifying and Managing Rules in an Active Real-Time Database System, 1998.
FiF-a 25 Bengt E W Andersson: Samverkande informationssystem mellan aktörer i offentliga åtaganden - En teori om

aktörsarenor i samverkan om utbyte av information, 1998.
No 742 Pawel Pietrzak: Static Incorrectness Diagnosis of CLP (FD), 1999.
No 748 Tobias Ritzau: Real-Time Reference Counting in RT-Java, 1999.
No 751 Anders Ferntoft: Elektronisk affärskommunikation - kontaktkostnader och kontaktprocesser mellan kunder

och leverantörer på producentmarknader,1999.
No 752 Jo Skåmedal: Arbete på distans och arbetsformens påverkan på resor och resmönster, 1999.
No 753 Johan Alvehus: Mötets metaforer. En studie av berättelser om möten, 1999.
No 754 Magnus Lindahl: Bankens villkor i låneavtal vid kreditgivning till högt belånade företagsförvärv: En studie

ur ett agentteoretiskt perspektiv, 2000.
No 766 Martin V. Howard: Designing dynamic visualizations of temporal data, 1999.
No 769 Jesper Andersson: Towards Reactive Software Architectures, 1999.
No 775 Anders Henriksson: Unique kernel diagnosis, 1999.
FiF-a 30 Pär J. Ågerfalk: Pragmatization of Information Systems - A Theoretical and Methodological Outline, 1999.
No 787 Charlotte Björkegren: Learning for the next project - Bearers and barriers in knowledge transfer within an

organisation, 1999.
No 788 Håkan Nilsson: Informationsteknik som drivkraft i granskningsprocessen - En studie av fyra revisionsbyråer,

2000.
No 790 Erik Berglund: Use-Oriented Documentation in Software Development, 1999.
No 791 Klas Gäre: Verksamhetsförändringar i samband med IS-införande, 1999.
No 800 Anders Subotic: Software Quality Inspection, 1999.
No 807 Svein Bergum: Managerial communication in telework, 2000.

No 809 Flavius Gruian: Energy-Aware Design of Digital Systems, 2000.
FiF-a 32 Karin Hedström: Kunskapsanvändning och kunskapsutveckling hos verksamhetskonsulter - Erfarenheter

från ett FOU-samarbete, 2000.
No 808 Linda Askenäs: Affärssystemet - En studie om teknikens aktiva och passiva roll i en organisation, 2000.
No 820 Jean Paul Meynard: Control of industrial robots through high-level task programming, 2000.
No 823 Lars Hult: Publika Gränsytor - ett designexempel, 2000.
No 832 Paul Pop: Scheduling and Communication Synthesis for Distributed Real-Time Systems, 2000.
FiF-a 34 Göran Hultgren: Nätverksinriktad Förändringsanalys - perspektiv och metoder som stöd för förståelse och

utveckling av affärsrelationer och informationssystem, 2000.
No 842 Magnus Kald: The role of management control systems in strategic business units, 2000.
No 844 Mikael Cäker: Vad kostar kunden? Modeller för intern redovisning, 2000.
FiF-a 37 Ewa Braf: Organisationers kunskapsverksamheter - en kritisk studie av ”knowledge management”, 2000.
FiF-a 40 Henrik Lindberg: Webbaserade affärsprocesser - Möjligheter och begränsningar, 2000.
FiF-a 41 Benneth Christiansson: Att komponentbasera informationssystem - Vad säger teori och praktik?, 2000.
No. 854 Ola Pettersson: Deliberation in a Mobile Robot, 2000.
No 863 Dan Lawesson: Towards Behavioral Model Fault Isolation for Object Oriented Control Systems, 2000.
No 881 Johan Moe: Execution Tracing of Large Distributed Systems, 2001.
No 882 Yuxiao Zhao: XML-based Frameworks for Internet Commerce and an Implementation of B2B

e-procurement, 2001.
No 890 Annika Flycht-Eriksson: Domain Knowledge Management inInformation-providing Dialogue systems,

2001.
FiF-a 47 Per-Arne Segerkvist: Webbaserade imaginära organisationers samverkansformer: Informationssystemarki-

tektur och aktörssamverkan som förutsättningar för affärsprocesser, 2001.
No 894 Stefan Svarén: Styrning av investeringar i divisionaliserade företag - Ett koncernperspektiv, 2001.
No 906 Lin Han: Secure and Scalable E-Service Software Delivery, 2001.
No 917 Emma Hansson: Optionsprogram för anställda - en studie av svenska börsföretag, 2001.
No 916 Susanne Odar: IT som stöd för strategiska beslut, en studie av datorimplementerade modeller av verksamhet

som stöd för beslut om anskaffning av JAS 1982, 2002.
FiF-a-49 Stefan Holgersson: IT-system och filtrering av verksamhetskunskap - kvalitetsproblem vid analyser och be-

slutsfattande som bygger på uppgifter hämtade från polisens IT-system, 2001.
FiF-a-51 Per Oscarsson:Informationssäkerhet i verksamheter - begrepp och modeller som stöd för förståelse av infor-

mationssäkerhet och dess hantering, 2001.
No 919 Luis Alejandro Cortes: A Petri Net Based Modeling and Verification Technique for Real-Time Embedded

Systems, 2001.
No 915 Niklas Sandell: Redovisning i skuggan av en bankkris - Värdering av fastigheter. 2001.
No 931 Fredrik Elg: Ett dynamiskt perspektiv på individuella skillnader av heuristisk kompetens, intelligens, mentala

modeller, mål och konfidens i kontroll av mikrovärlden Moro, 2002.
No 933 Peter Aronsson: Automatic Parallelization of Simulation Code from Equation Based Simulation Languages,

2002.
No 938 Bourhane Kadmiry: Fuzzy Control of Unmanned Helicopter, 2002.
No 942 Patrik Haslum: Prediction as a Knowledge Representation Problem: A Case Study in Model Design, 2002.
No 956 Robert Sevenius: On the instruments of governance - A law & economics study of capital instruments in li-

mited liability companies, 2002.
FiF-a 58 Johan Petersson: Lokala elektroniska marknadsplatser - informationssystem för platsbundna affärer, 2002.
No 964 Peter Bunus: Debugging and Structural Analysis of Declarative Equation-Based Languages, 2002.
No 973 Gert Jervan: High-Level Test Generation and Built-In Self-Test Techniques for Digital Systems, 2002.
No 958 Fredrika Berglund: Management Control and Strategy - a Case Study of Pharmaceutical Drug Development,

2002.
FiF-a 61 Fredrik Karlsson: Meta-Method for Method Configuration - A Rational Unified Process Case, 2002.
No 985 Sorin Manolache: Schedulability Analysis of Real-Time Systems with Stochastic Task Execution Times,

2002.
No 982 Diana Szentiványi: Performance and Availability Trade-offs in Fault-Tolerant Middleware, 2002.
No 989 Iakov Nakhimovski: Modeling and Simulation of Contacting Flexible Bodies in Multibody Systems, 2002.
No 990 Levon Saldamli: PDEModelica - Towards a High-Level Language for Modeling with Partial Differential

Equations, 2002.
No 991 Almut Herzog: Secure Execution Environment for Java Electronic Services, 2002.
No 999 Jon Edvardsson: Contributions to Program- and Specification-based Test Data Generation, 2002
No 1000 Anders Arpteg: Adaptive Semi-structured Information Extraction, 2002.
No 1001 Andrzej Bednarski: A Dynamic Programming Approach to Optimal Retargetable Code Generation for

Irregular Architectures, 2002.
No 988 Mattias Arvola: Good to use! : Use quality of multi-user applications in the home, 2003.
FiF-a 62 Lennart Ljung: Utveckling av en projektivitetsmodell - om organisationers förmåga att tillämpa

projektarbetsformen, 2003.
No 1003 Pernilla Qvarfordt: User experience of spoken feedback in multimodal interaction, 2003.
No 1005 Alexander Siemers: Visualization of Dynamic Multibody Simulation With Special Reference to Contacts,

2003.
No 1008 Jens Gustavsson: Towards Unanticipated Runtime Software Evolution, 2003.
No 1010 Calin Curescu: Adaptive QoS-aware Resource Allocation for Wireless Networks, 2003.
No 1015 Anna Andersson: Management Information Systems in Process-oriented Healthcare Organisations, 2003.
No 1018 Björn Johansson: Feedforward Control in Dynamic Situations, 2003.
No 1022 Traian Pop: Scheduling and Optimisation of Heterogeneous Time/Event-Triggered Distributed Embedded

Systems, 2003.
FiF-a 65 Britt-Marie Johansson: Kundkommunikation på distans - en studie om kommunikationsmediets betydelse i

affärstransaktioner, 2003.

No 1024 Aleksandra Tešanovic: Towards Aspectual Component-Based Real-Time System Development, 2003.
No 1034 Arja Vainio-Larsson: Designing for Use in a Future Context - Five Case Studies in Retrospect, 2003.
No 1033 Peter Nilsson: Svenska bankers redovisningsval vid reservering för befarade kreditförluster - En studie vid

införandet av nya redovisningsregler, 2003.
FiF-a 69 Fredrik Ericsson: Information Technology for Learning and Acquiring of Work Knowledge, 2003.
No 1049 Marcus Comstedt: Towards Fine-Grained Binary Composition through Link Time Weaving, 2003.
No 1052 Åsa Hedenskog: Increasing the Automation of Radio Network Control, 2003.
No 1054 Claudiu Duma: Security and Efficiency Tradeoffs in Multicast Group Key Management, 2003.
FiF-a 71 Emma Eliason: Effektanalys av IT-systems handlingsutrymme, 2003.
No 1055 Carl Cederberg: Experiments in Indirect Fault Injection with Open Source and Industrial Software, 2003.
No 1058 Daniel Karlsson: Towards Formal Verification in a Component-based Reuse Methodology, 2003.
FiF-a 73 Anders Hjalmarsson: Att etablera och vidmakthålla förbättringsverksamhet - behovet av koordination och

interaktion vid förändring av systemutvecklingsverksamheter, 2004.
No 1079 Pontus Johansson: Design and Development of Recommender Dialogue Systems, 2004.
No 1084 Charlotte Stoltz: Calling for Call Centres - A Study of Call Centre Locations in a Swedish Rural Region,

2004.
FiF-a 74 Björn Johansson: Deciding on Using Application Service Provision in SMEs, 2004.
No 1094 Genevieve Gorrell: Language Modelling and Error Handling in Spoken Dialogue Systems, 2004.
No 1095 Ulf Johansson: Rule Extraction - the Key to Accurate and Comprehensible Data Mining Models, 2004.
No 1099 Sonia Sangari: Computational Models of Some Communicative Head Movements, 2004.
No 1110 Hans Nässla: Intra-Family Information Flow and Prospects for Communication Systems, 2004.
No 1116 Henrik Sällberg: On the value of customer loyalty programs - A study of point programs and switching costs,

2004.
FiF-a 77 Ulf Larsson: Designarbete i dialog - karaktärisering av interaktionen mellan användare och utvecklare i en

systemutvecklingsprocess, 2004.
No 1126 Andreas Borg: Contribution to Management and Validation of Non-Functional Requirements, 2004.
No 1127 Per-Ola Kristensson: Large Vocabulary Shorthand Writing on Stylus Keyboard, 2004.
No 1132 Pär-Anders Albinsson: Interacting with Command and Control Systems: Tools for Operators and Designers,

2004.
No 1130 Ioan Chisalita: Safety-Oriented Communication in Mobile Networks for Vehicles, 2004.
No 1138 Thomas Gustafsson: Maintaining Data Consistency im Embedded Databases for Vehicular Systems, 2004.
No 1149 Vaida Jakoniené: A Study in Integrating Multiple Biological Data Sources, 2005.
No 1156 Abdil Rashid Mohamed: High-Level Techniques for Built-In Self-Test Resources Optimization, 2005.
No 1162 Adrian Pop: Contributions to Meta-Modeling Tools and Methods, 2005.
No 1165 Fidel Vascós Palacios: On the information exchange between physicians and social insurance officers in the

sick leave process: an Activity Theoretical perspective, 2005.
FiF-a 84 Jenny Lagsten: Verksamhetsutvecklande utvärdering i informationssystemprojekt, 2005.
No 1166 Emma Larsdotter Nilsson: Modeling, Simulation, and Visualization of Metabolic Pathways Using Modelica,

2005.
No 1167 Christina Keller: Virtual Learning Environments in higher education. A study of students’ acceptance of edu-

cational technology, 2005.
No 1168 Cécile Åberg: Integration of organizational workflows and the Semantic Web, 2005.
FiF-a 85 Anders Forsman: Standardisering som grund för informationssamverkan och IT-tjänster - En fallstudie

baserad på trafikinformationstjänsten RDS-TMC, 2005.
No 1171 Yu-Hsing Huang: A systemic traffic accident model, 2005.
FiF-a 86 Jan Olausson: Att modellera uppdrag - grunder för förståelse av processinriktade informationssystem i trans-

aktionsintensiva verksamheter, 2005.
No 1172 Petter Ahlström: Affärsstrategier för seniorbostadsmarknaden, 2005.
No 1183 Mathias Cöster: Beyond IT and Productivity - How Digitization Transformed the Graphic Industry, 2005.
No 1184 Åsa Horzella: Beyond IT and Productivity - Effects of Digitized Information Flows in Grocery Distribution,

2005.
No 1185 Maria Kollberg: Beyond IT and Productivity - Effects of Digitized Information Flows in the Logging

Industry, 2005.
No 1190 David Dinka: Role and Identity - Experience of technology in professional settings, 2005.
No 1191 Andreas Hansson: Increasing the Storage Capacity of Recursive Auto-associative Memory by Segmenting

Data, 2005.
No 1192 Nicklas Bergfeldt: Towards Detached Communication for Robot Cooperation, 2005.
No 1194 Dennis Maciuszek: Towards Dependable Virtual Companions for Later Life, 2005.
No 1204 Beatrice Alenljung: Decision-making in the Requirements Engineering Process: A Human-centered

Approach, 2005
No 1206 Anders Larsson: System-on-Chip Test Scheduling and Test Infrastructure Design, 2005.
No 1207 John Wilander: Policy and Implementation Assurance for Software Security, 2005.
No 1209 Andreas Käll: Översättningar av en managementmodell - En studie av införandet av Balanced Scorecard i ett

landsting, 2005.
No 1225 He Tan: Aligning and Merging Biomedical Ontologies, 2006.
No 1228 Artur Wilk: Descriptive Types for XML Query Language Xcerpt, 2006.
No 1229 Per Olof Pettersson: Sampling-based Path Planning for an Autonomous Helicopter, 2006.
No 1231 Kalle Burbeck: Adaptive Real-time Anomaly Detection for Safeguarding Critical Networks, 2006.
No 1233 Daniela Mihailescu: Implementation Methodology in Action: A Study of an Enterprise Systems Implemen-

tation Methodology, 2006.
No 1244 Jörgen Skågeby: Public and Non-public gifting on the Internet, 2006.
No 1248 Karolina Eliasson: The Use of Case-Based Reasoning in a Human-Robot Dialog System, 2006.
No 1263 Misook Park-Westman: Managing Competence Development Programs in a Cross-Cultural Organisation-

What are the Barriers and Enablers, 2006.
FiF-a 90 Amra Halilovic: Ett praktikperspektiv på hantering av mjukvarukomponenter, 2006.
No 1272 Raquel Flodström: A Framework for the Strategic Management of Information Technology, 2006.

No 1277 Viacheslav Izosimov: Scheduling and Optimization of Fault-Tolerant Embedded Systems, 2006.
No 1283 Håkan Hasewinkel: A Blueprint for Using Commercial Games off the Shelf in Defence Training, Education

and Research Simulations, 2006.
FiF-a 91 Hanna Broberg: Verksamhetsanpassade IT-stöd - Designteori och metod, 2006.
No 1286 Robert Kaminski: Towards an XML Document Restructuring Framework, 2006
No 1293 Jiri Trnka: Prerequisites for data sharing in emergency management, 2007.
No 1302 Björn Hägglund: A Framework for Designing Constraint Stores, 2007.
No 1303 Daniel Andreasson: Slack-Time Aware Dynamic Routing Schemes for On-Chip Networks, 2007.
No 1305 Magnus Ingmarsson: Modelling User Tasks and Intentions for Service Discovery in Ubiquitous Computing,

2007.
No 1306 Gustaf Svedjemo: Ontology as Conceptual Schema when Modelling Historical Maps for Database Storage,

2007.
No 1307 Gianpaolo Conte: Navigation Functionalities for an Autonomous UAV Helicopter, 2007.
No 1309 Ola Leifler: User-Centric Critiquing in Command and Control: The DKExpert and ComPlan Approaches,

2007.
No 1312 Henrik Svensson: Embodied simulation as off-line representation, 2007.
No 1313 Zhiyuan He: System-on-Chip Test Scheduling with Defect-Probability and Temperature Considerations,

2007.
No 1317 Jonas Elmqvist: Components, Safety Interfaces and Compositional Analysis, 2007.
No 1320 Håkan Sundblad: Question Classification in Question Answering Systems, 2007.
No 1323 Magnus Lundqvist: Information Demand and Use: Improving Information Flow within Small-scale Business

Contexts, 2007.
No 1329 Martin Magnusson: Deductive Planning and Composite Actions in Temporal Action Logic, 2007.
No 1331 Mikael Asplund: Restoring Consistency after Network Partitions, 2007.
No 1332 Martin Fransson: Towards Individualized Drug Dosage - General Methods and Case Studies, 2007.
No 1333 Karin Camara: A Visual Query Language Served by a Multi-sensor Environment, 2007.
No 1337 David Broman: Safety, Security, and Semantic Aspects of Equation-Based Object-Oriented Languages and

Environments, 2007.
No 1339 Mikhail Chalabine: Invasive Interactive Parallelization, 2007.
No 1351 Susanna Nilsson: A Holistic Approach to Usability Evaluations of Mixed Reality Systems, 2008.
No 1353 Shanai Ardi: A Model and Implementation of a Security Plug-in for the Software Life Cycle, 2008.
No 1356 Erik Kuiper: Mobility and Routing in a Delay-tolerant Network of Unmanned Aerial Vehicles, 2008.
No 1359 Jana Rambusch: Situated Play, 2008.
No 1363 Per Nyblom: Dynamic Abstraction for Interleaved Task Planning and Execution, 2008.

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 1
 same as current

 1
 1
 1
 562
 409

 CurrentAVDoc

 SameAsCur
 AfterCur

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 107 to page 111
 Trim: fix size 6.496 x 9.449 inches / 165.0 x 240.0 mm
 Shift: move down by 8.50 points
 Normalise (advanced option): 'original'

 32

 D:20071123131926
 680.3150
 S5
 Blank
 467.7165

 Tall
 1
 0
 No
 503
 356
 Fixed
 Down
 8.5039
 0.0000

 Both
 107
 SubDoc
 111

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 106
 112
 110
 5

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 5 to page 104
 Trim: fix size 6.496 x 9.449 inches / 165.0 x 240.0 mm
 Shift: move down by 8.50 points
 Normalise (advanced option): 'original'

 32

 D:20071123131926
 680.3150
 S5
 Blank
 467.7165

 Tall
 1
 0
 No
 503
 356
 Fixed
 Down
 8.5039
 0.0000

 Both
 5
 SubDoc
 104

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 4
 112
 103
 100

 1

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset -27.93, 668.10 Width 512.29 Height 36.65 points
 Origin: bottom left

 1
 0
 BL

 Both
 117
 AllDoc
 137

 CurrentAVDoc

 -27.9274 668.0967 512.2932 36.6547

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 4
 112
 111
 112

 1

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset -48.87, -16.12 Width 54.98 Height 714.77 points
 Mask co-ordinates: Horizontal, vertical offset 459.93, -17.87 Width 43.64 Height 714.77 points
 Origin: bottom left

 1
 0
 BL

 Both
 117
 AllDoc
 137

 CurrentAVDoc

 -48.8729 -16.1245 54.9821 714.7668 459.9293 -17.8699 43.6365 714.7668

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 8
 112
 111
 112

 1

 HistoryList_V1
 qi2base

