
\li" | 2008/4/8 | 9:36 | page i | #1Link�oping Studies in Siene and TehnologyThesis No. 1363
Dynamic Abstraction for Interleaved

Task Planning and Executionby
Per Nyblom

Submitted to Link�oping Institute of Tehnology at Link�oping University in partialful�lment of the requirements for degree of Lientiate of EngineeringDepartment of Computer and Information SieneLink�oping universitetSE-581 83 Link�oping, SwedenLink�oping 2008

\li" | 2008/4/8 | 9:36 | page ii | #2

\li" | 2008/4/8 | 9:36 | page iii | #3
Dynamic Abstraction for Interleaved Task

Planning and ExecutionbyPer NyblomApril 2008ISBN 978-91-7393-905-8Link�oping Studies in Siene and TehnologyThesis No. 1363ISSN 0280{7971LiU{Tek{Li{2008:21ABSTRACTIt is often bene�ial for an autonomous agent that operates in a omplex environment tomake use of di�erent types of mathematial models to keep trak of unobservable partsof the world or to perform predition, planning and other types of reasoning. Sine amodel is always a simpli�ation of something else, there always exists a tradeo� betweenthe model's auray and feasibility when it is used within a ertain appliation dueto the limited available omputational resoures. Currently, this tradeo� is to a largeextent balaned by humans for model onstrution in general and for autonomous agentsin partiular. This thesis investigates di�erent solutions where suh agents are moreresponsible for balaning the tradeo� for models themselves in the ontext of interleavedtask planning and plan exeution. The neessary omponents for an autonomous agentthat performs its abstrations and onstruts planning models dynamially during taskplanning and exeution are investigated and a method alled DARE is developed that is atemplate for handling the possible situations that an our suh as the rise of unsuitableabstrations and need for dynami onstrution of abstration levels. Implementationsof DARE are presented in two ase studies where both a fully and partially observablestohasti domain are used, motivated by researh with Unmanned Airraft Systems.The ase studies also demonstrate possible ways to perform dynami abstration andproblem model onstrution in pratie.This work has been supported by the Swedish Aeronautis Researh Counil (NFFP4-S4203), the Swedish National Graduate Shool in Computer Siene (CUGS), theSwedish Researh Counil (50405001) and the Wallenberg Foundation (WITAS Projet).
Department of Computer and Information SieneLink�oping universitetSE-581 83 Link�oping, Sweden

\li" | 2008/4/8 | 9:36 | page iv | #4

\li" | 2008/4/8 | 9:36 | page v | #5
AcknowledgementsI would like to thank my advisor Patrik Doherty who has given me more orless free hands to investigate this fasinating �eld of Arti�ial Intelligene.It has truly been some of the most interesting years of my life and I apologizefor always piking subjets that you are less familiar with.During my time at the Arti�ial Intelligene and Integrated ComputerSystems division (AIICS), I have reeived valuable input from many people.Speial thanks to Martin Magnusson, Fredrik Heintz, Per-Magnus Olsson,David Land�en, Piotr Rudol and Gianpaolo Conte for ommenting drafts ofthis thesis and related papers at various (perhaps dynamially generated)levels of abstration.Thanks to Martin Magnusson for providing the �re for many interestingand sometimes endless disussions whih really make me grow as a person.Also thanks to Patrik Haslum for your endless wisdom and for supportingme during my early development. Thanks to Fredrik Heintz for your senseof detail and perfetion and Jonas Kvarnstr�om for your inredible problemsolving apabilities (and will to share them). Thanks to Tommy Person andBj�orn Wingman for your help with all the implementation issues and yourinsights into the UAS Teh system.Finally, I thank my parents Kurt and Gunilla, my girlfriend Anna andmy daughter Anneli for love and support.

\li" | 2008/4/8 | 9:36 | page vi | #6

\li" | 2008/4/8 | 9:36 | page vii | #7

Contents

1 Introduction 11.1 Models and Tradeo�s . 11.2 Task Environments and Models 21.3 The UAS Teh System . 41.4 Abstrations . 51.5 Planning Model Types . 71.6 Construting Planning Models 91.7 Fous of Attention . 91.8 Dynami Abstration . 101.9 Dynami Abstration for Planning and Exeution 111.9.1 Example . 111.9.2 DARE . 131.10 Related Work . 131.11 Contributions . 141.12 Outline . 15
2 Preliminaries 162.1 Probability Theory . 172.1.1 Basi Assumptions . 172.1.2 Stohasti Variables 172.1.3 Distributions and Density Funtions 182.1.4 Joint Distributions . 182.1.5 Conditional Distributions 182.1.6 Bayes Rule . 202.1.7 Expetation . 202.2 Bayesian Networks . 202.2.1 De�nition . 212.2.2 Hybrid Models . 212.2.3 Inferene . 222.2.4 Impliit Models . 222.2.5 Model Estimation . 222.3 Dynami Bayesian Networks 232.4 Optimization . 242.5 Exeution Systems . 25vii

\li" | 2008/4/8 | 9:36 | page viii | #8viii CONTENTS2.5.1 Modular Task Arhiteture 262.5.2 Other Arhitetures 262.5.3 De�nition of Skills . 27
3 Dynamic Decision Networks 283.1 Example . 283.2 Loal Reward, Global Utility 303.3 Solution Tehniques . 313.4 Speial Case: Markov Deision Proesses 313.4.1 Poliy . 323.4.2 Solutions and Solver Methods 323.4.3 Value Iteration . 323.4.4 Reinforement Learning 333.4.5 RL with Model Building 34
4 The DARE Method 374.1 Tasks and Beliefs . 384.2 Overview of DARE . 384.3 Exeution Assumptions . 394.4 Re�nement Assumptions . 394.5 Hierarhial Solution Nodes 414.6 Subsription VS Poll . 434.7 The Method . 434.7.1 Main . 444.7.2 DynabsSolve . 444.7.3 CreateSubProblems 454.7.4 ReplanIfNeessary . 464.8 Disussion . 47
5 Case Study I 495.1 Task Environment Class . 495.2 Task Environment Model . 515.2.1 Danger Rewards . 525.2.2 Observation Target Rewards 535.3 Skills . 535.4 DARE Implementation . 545.4.1 Problem Models . 545.4.2 Dynami Abstration 555.4.3 Solution Method . 575.4.4 Subproblem Generation 595.4.5 Replanning Conditions 605.5 Experiments . 615.5.1 Setup . 635.6 Comments . 67

\li" | 2008/4/8 | 9:36 | page ix | #9CONTENTS ix
6 Case Study II 696.1 Task Environment Class . 706.2 Task Environment Model . 716.3 Skills . 746.4 Belief State and Filtering . 746.5 DARE Implementation . 766.5.1 Planning Model Generation 766.5.2 Solution Method . 796.5.3 Camera Movement . 816.5.4 DynabsSolve Implementation 816.5.5 Replanning . 826.6 Experiments . 826.6.1 Setup . 836.6.2 Results . 836.7 Disussion . 84
7 Conclusion 867.1 Future Work . 867.1.1 Extentions to the Case Studies 877.1.2 Dynami Task Environment Models 88

\li" | 2008/4/8 | 9:36 | page x | #10

\li" | 2008/4/8 | 9:36 | page 1 | #11

Chapter 1

IntroductionIt is diÆult to overestimate the importane of mathematial models in ourmodern soiety beause of their ommon use in e.g. natural sienes andengineering diiplines for many di�erent purposes. Many types of mod-els exists today that an be used for a variety of tasks suh as preditingweather, simulating vehile dynamis, monitoring nulear power reatorsand verifying omputer programs.Models have also been used within the area of Arti�ial Intelligene (AI)to develop autonomous agents. It is widely onsidered that suh agentsshould have models of their environments (and themselves) to make it pos-sible to operate more suessfully. The models an for example be used tokeep trak of the unobservable parts of the world, perform predition [34℄,task planning [31℄ and other types of reasoning [10℄.
1.1 Models and TradeoffsOne ommon trait for mathematial models used in pratial appliationsis that it is not always bene�ial (or even possible) to model every aspet ofa system of study down to the smallest detail to get as aurate as possible.The problem is that there is always a tradeo� between auray and fea-sibility of a model that should be used for a ertain appliation on a givenarhiteture. There might be a demand for timely response of a system thatprohibits long deliberation time whih in turn an make a highly detailed,but omputationally demanding model inappropriate for use in that par-tiular domain. Although the omputational resoures that an be madeavailable for di�erent appliations have been inreasing exponentially sinethe dawn of eletroni omputers, there will always be a limit when a par-tiular system is being developed and deployed. This means that one willalways have to trade a model's auray for feasibility to get a reasonableperformane in any future system, whih is a fat that is often mentionedin the literature about pratial mathematial modelling [44℄ [24℄.1

\li" | 2008/4/8 | 9:36 | page 2 | #122 CHAPTER 1. INTRODUCTION
1.2 Task Environments and ModelsWhen a model is to be onstruted for an autonomous agent, it is importantto onsider the task environment [63℄ in whih the agent will operate. Theomplexity of the task environment an give signi�ant hints about thedi�erent types of models that an be used for whatever the purpose of themodel is.A task environment, whih an be either real or simulated, spei�es:� what the agent an do to the environment with its atuators,� what information it an reeive from its sensors,� how the environment works and what it ontains, and� what is onsidered \good or bad" with the help of a performanemeasureA task environment for an autonomous ground robot an e.g. speifythat the atuators onsist of a propulsion system and possibly a manipulatorarm. Suh agents are also typially equipped with sensors suh as laser rangesanners, ameras and sometimes ollision sensors. The environment mayonsist of tables, hairs, walls, stairs et., and its performane measure maybe de�ned in terms of power onsumption and the time to omplete anassigned task (suh as delivering a pakage).A model that an agent uses should be losely onneted to the task envi-ronment that the agent operates within. For example, if a model is going tobe used for prediting the state of an autonomous agent's task environmentdepending on what ations it performs, it better inlude spei�ations ofhow the atuators, sensors and the surrondings work in order to be useful.Suh a task environment model an not be too detailed due to the tradeo�between auray and feasibility.A task environment or a model thereof an be lassi�ed aording tosome ommonly used dimensions [63℄ whih to a large extent determinehow diÆult it is to handle.� Fully Observable or Partially Observable: If the agent's sensorsan give aess to all the relevant information in the environmentit is alled a fully observable task environment; otherwise the taskenvironment is alled partially observable.� Deterministic or Stochastic: If the next state is ompletely deter-mined by the urrent state and the ation exeuted by the agent thetask environment is alled deterministi. If there are several possibleoutomes of an ation it is alled a stohasti environment. The termnon-deterministi is often used when outomes do not have proba-bilities assoiated with them.

\li" | 2008/4/8 | 9:36 | page 3 | #131.2. TASK ENVIRONMENTS AND MODELS 3� Episodic or Sequential: In an episodi environment, the agent'surrent deision does not inuene the performane of any futureepisode. All environments onsidered in this thesis will be sequen-tial whih means that the agent's urrent deision might inuene theperformane of the agent in future states.� Static or Dynamic: A task environment whih may hange whilethe agent deliberates is alled a dynami environment; otherwise it isalled stati.� Discrete or Continuous: A ontinuous environment ontains el-ements that are more aurately desribed with ontinuous modelsinvolving real values instead of an enumerable set of values. Taskenvironments that do not have any ontinuous elements are alleddisrete.� Single Agent or Multiagent: A task environment where other ex-ternal agents, besides the main agent itself, try to reah goals or max-imize their utilities are alled multiagent. If the external agents arebetter desribed without deision apabilities, or if no external agentsexist, the environment an be onsidered single agent.In this thesis, these dimensions are used to lassify the intrinsi prop-erties of a task environment. They are not assumptions that e.g. a designerof an agent an make. On the other hand, a designer an make assumptionsthat are reeted in the agent's task environment models that it is supposedto use. Construted models that represent parts of a task environment mustoften be a simpli�ation of the real thing and the di�erent dimensions arethen used to lassify the model onstrution assumptions that are not al-ready a property of the task environment. This will be disussed more inSetion 1.4.It is assumed that task environment models an be simulated. Thismeans that di�erent ations an be tested with the model whih may resultin one or several possible outomes depending on whether the model isdeterministi or not. Stohasti models an be simulated by pseudo randomnumber generators.A task environment lass or environment lass is a set of task envi-ronments with similar properties. An agent is often designed to operate ininstanes of a partiular task environment lass where e.g. the environmentan ontain a di�erent number of objets and agents but most of the otherproperties or assumptions stay the same. In this thesis, the task environ-ment instanes in a partiular environment lass are assumed to have thesame lassi�ation aording to the previously mentioned dimensions andthat the atuators and sensors are similarly modelled. Within a partiularenvironment lass, the types of the objets in the environment also stay thesame but the number and initial onditions may vary in task environmentinstanes assoiated with the lass.

\li" | 2008/4/8 | 9:36 | page 4 | #144 CHAPTER 1. INTRODUCTIONThe next topi of this introdution will desribe an example of a omplextask environment lass that has motivated muh of the work with this thesis.
1.3 The UAS Tech SystemThis thesis is very muh inspired by the UAS Teh's Unmanned AirraftSystem (UAS), whih urrently onsist of two autonomous Yamaha RMAXheliopters equipped with sophistiated software and ontrol systems thathave been developed in the past deade [17℄. Many examples in this thesisand the ase studies have this platform in mind due to the huge variety oftasks that an potentially be performed with suh a system.A task environment in this environment lass (see Setion 1.2) an on-sist of a varity of elements. A training area for resue workers in Revinge(southern Sweden) is often used as a test ight area and that area on-tains (or an be modi�ed to ontain) buildings, di�erent types of obstales,roads, vehiles, landing spots, safety operators, ground stations where hu-man operators an monitor the UASs, injured humans (simulated by Phdstudents) and in the future also �res, smoke soures and boxes that an betransported.Depending on the task that is supposed to be performed by the system,the performane measure (see Setion 1.2) is di�erent. If the task is to takea set of pitures of a seleted number of building strutures, the perfor-mane measure ould inlude the time it takes to perform the mission, thequality of the pitures and whether all the requested building strutureswere photographed. In the ase of another standard mission where a UASis looking for vitims in a atastrophe area (or the like) the performanemeasure ould inlude the number of injured people deteted, number offalse positives and the time taken to perform the mission.The atuators of a UAS, for the purposes of this thesis, are onsideredto be the signals that ontrol the heliopter's rotors, amera (IR and olor)pan/tilt unit, wireless network and General Paket Radio Servie (GPRS)ommuniation. The ommuniation through the wireless network is per-formed with the help of the Common Objet Request Broker Arhiteture(CORBA) [59℄. An atuator planned to be used in the future is an ele-tromagnet attahed via a winh system to the UAS whih an be used totransport objets suh as medial supplies.On a UAS Teh unmanned heliopter, numerous sensors are mountedinluding a Global Positioning System (GPS), Inertial Measurement Unit(IMU) and altimeter for pose estimation, olor and infrared ameras. Thewireless network and the GPRS onnetion are also onsidered sensors.One of the UAS Teh's unmanned heliopters is pitured in �gure 1.1.Its omputational apabilities are distributed among three onboard omput-ers where eah of them is used for image proessing [32℄, ight and ameraontroller [11℄ and deliberative funtionality suh as path planning [61℄, ge-ographi information system and the deliberative/reative exeution system

\li" | 2008/4/8 | 9:36 | page 5 | #151.4. ABSTRACTIONS 5[18℄, respetively.

Figure 1.1: One of the UAS Teh's unmanned heliopters.In order to perform omplex tasks in ompliated task environments(suh as with the UAS Teh system), it is neessary to struture the exe-ution of tasks and the representation of the environment in a suitable waywith the help of di�erent types of models. Sine the UAS Teh system is sit-uated in the real world, the task environments in this environment lass arethe most diÆult ones aording to the dimensions listed in Setion 1.2. Onthe other hand, the models that the system uses of the task environmentsare always a simpli�ation. Assumptions like full observability, determinismand single agent are ommon, quite aurate and useful in ertain types ofmissions.
1.4 AbstractionsIn this thesis, the following de�nition of an abstration is used:
Definition 1.1An abstraction is a simpli�ation of the physial world or a simpli�-ation of a model .An abstration is a proess that removes details and should expose themost essential features of the entity that it is applied to. This thesis is

\li" | 2008/4/8 | 9:36 | page 6 | #166 CHAPTER 1. INTRODUCTIONprimarily onerned with abstrations of task environments whih are moreagent-entered and inlude de�nitions of performane measures.
Definition 1.2A task environment abstraction is a simpli�ation of a task environ-ment or a simpli�ation of a task environment model .Task environment abstrations are the only abstrations that will bedisussed in the rest of this thesis. Whenever an abstration is mentioned,it is meant to refer to a task environment abstration. Figure 1.2 illustrateshow abstrations an be used to onstrut models from task environmentsor models thereof.In order to reason about omplex task environments, abstrations areoften used to onstrut simpli�ed models with. This is espeially the asewhen the task environment is part of the physial world where no exatmodel exists. But even task environments that are extremly open-endedan be reasoned about by performing abstrations that are reasonably validunder many irumstanes.The UAS Teh system's di�erent task environments are very omplexand require abstrations. For example, the roadmap-based path planningmodule [61℄ uses a polygon representation of the environment to onstrutollision-free path segments that a UAS an y. The polygons are justsimpli�ations of the environment but the resulting paths are still veryreliable. Another example where abstrations are used is in the ontrolsystem whose design assumes that the heliopter system is linear, whihis never the ase for roboti systems, but it is still possible to ontrol theheliopter reliably with standard tehniques from ontrol theory.Abstrations for higher level reasoning about task environments an alsobe performed whih ould result in fats like \landed", \at position p",\objet o is visible from p". These fats an then be used to support taskplanning and exeution monitoring. If a UAS e.g. performs vehile traking,event desriptions suh as \vehile v turns left at intersetion i" might beuseful to summarize a situation or send high level information to otheragents. In these ases, the abstration performs a disretization of parts ofthe ontinuous task environment and summarizes the in�nitely many statesof the environment into a ountable number of disrete ones.It is also possible to perform abstrations on models to onstrut evenmore simpli�ed models (See the upper part of Figure 1.2) that an e.g.be used for omputing heuristi funtions to guide problem solvers. Thesimpli�ed problem model an often be solved muh faster (depending onthe abstration) than the original model, and this tehnique is frequentlyused to solve lassial planning models (See Setion 1.5) and integer linearprogramming [65℄ (ILP) problems.An abstration that transforms a task environment into another, sim-pli�ed task environment model an be analysed with the same type of di-mensions (fully/partially observable et) as real task environments. Theresulting model type might be inapable of expressing stohasti and/or

\li" | 2008/4/8 | 9:36 | page 7 | #171.5. PLANNING MODEL TYPES 7partially observable phenomena when in fat the real task environment hasthese properties. These dimensions are only a rough ategorization of ab-strations, but they they tend to be very important for deiding the typeof the resulting model.The thesis fouses on abstrations and the resulting models used for taskplanning where there exists a rih set of model types that have di�erentapabilities of expressing properties of task environments.
Task Environment

Model

Simplified
Task Environment

Model

Task Environment

Task Environment Abstraction

Task Environment Abstraction

Figure 1.2: An task environment abstration is a simpli�ation of a taskenvironment or a task environment model.
1.5 Planning Model TypesTask planning is a ommon way for autonomous agents to �gure out whatto do to reah a ertain goal or to maximize its utility. When task planningis used for exeution in real world environments, it is neessary to performsome kind of abstration to onstrut a suitable task environmentmodel thatan be solved with searh or optimization algorithms where the solution isa desription of what should be done next. Many di�erent types of suhplanning models exist that an be lassi�ed aording to the dimensionsmentioned in Setion 1.2.
Definition 1.3A planning model is a task environment model that models the per-formane measure and sequential nature of a task environment
Definition 1.4A planning model type is a set of models of a task environment lass

\li" | 2008/4/8 | 9:36 | page 8 | #188 CHAPTER 1. INTRODUCTIONThe term problem model or simply problem is in this thesis used todenote models that an have solutions but are not neesarily sequentialin nature and/or inludes a performane measure. A planning model istherefore onsidered to be a speialized problem model.The so alled lassial planning model type makes the strongest as-sumptions aording to the dimensions of task environments. The PlanningDomain De�nition Language (PDDL) [30℄ is often used to speify planningmodels in a suint way with the help of a logial formalism. Many di�erentversions exist with various levels of expressivity [26℄ [29℄.One extension of PDDL makes it possible to express so alled MarkovDeision Proesses (MDPs) [38℄ [62℄. MDPs an express unertainties ination outomes and exogenous events with probability distributions anduse rewards to express the planning agent's performane measure. MDPsare urrently one of the most ommonly used models for planning underunertainty.MDPs make the assumption that the environment is fully observable,whih is often not an aurate abstration; it is sometimes neessary tomodel that an autonomous agent equipped with a amera is unable to seethrough walls. An extension to the MDP model is the Partially ObservableMDP (POMDP) [38℄ whih an model partially observable environmentsat the expense of inreased omplexity of solving the spei�ed problems.Approximative solution methods are often used to make it possible to saleup beyond systems ontaining just a few states [49℄.Other types of planning models exist suh as onditional planning mod-els whih often assume that the world is non-deterministi and sometimesalso partially observable. The solution to suh models are onditional plansthat an ontain if-then-else onstruts and while loops [8℄ [5℄.Another type of planning model type is based on onstraints whih anbe used to represent both plans and goals. This type of planning model isoften onsidered very exible beause parts of a plan an be provided bya user whih an be elaborated by the planning system. Suh a planneran also be used in a mixed-initiative framework where di�erent users addonstraints [41℄ [51℄ [28℄. Constraint-based planners are often very expres-sive but often good heuristis must be manually onstruted to solve largeproblems and the assumption is often that the task environment is fullyobservable and deterministi.In this thesis, a highly expressive graphial model alled Dynami Dei-sion Network (DDN) [14℄ will be used to represent planning models (seeChapter 3) whih an be used to express POMDPs with fatored statespaes. A so alled hybrid DDN an in addition to POMDPs inlude amix of disrete and ontinuous elements, whih is very useful when tryingto model omplex task environments. DDNs will also be used as simulationand evaluation models. It is not possible to solve DDNs exatly so one mustrely on approximative solution algorithms and/or use them to onstrutsimpli�ed but solvable planning models.

\li" | 2008/4/8 | 9:36 | page 9 | #191.6. CONSTRUCTING PLANNING MODELS 9By looking bak at the properties of task environments, one an see thatHybrid DDNs make very few assumptions that limit the expressivity of atask environment. In the ase studies (see Chapter 5 and 6), the environ-ment will also be onsidered to be dynami as well whih means that thedeliberation time of the agent will be taken into aount. The only as-sumption that will be left untouhed is the assumption of a single agent.Several external agents will be modelled but they will not be assumed to begoal-reahing or utility-maximizing.
1.6 Constructing Planning ModelsWhen a planning model (see Setion 1.5) is to be onstruted for an au-tonomous agent, it is important to take the properties of the task environ-ment into onsideration when the model is supposed to be used for guidingthe agent's exeution.The available omputational resoures must also be taken into aountso that it does not take too long to provide a solution. Planning is in generalmuh harder than other tasks suh as predition or state estimation beauseit is neessary to predit many di�erent state trajetories that are ausedby the agent's ations. This means either that the used models must bekept on a high level of abstration for handling longer temporal horizons 1or kept rather small to make it feasible.There is often also a huge number of possible ways to represent ationsand sensors in di�erent types of planning models and the most detailed andaurate ation or sensor desription is not neesarily the best.The most ommon way to onstrut a model for task planning is thata human user �rst deides what types of abstrations to perform and why,and then spei�es how the atuators, sensors, environment and performanemeasure will be abstrated and used in the resulting model. This proessis onsidered rather diÆult beause the resulting model should be bothas general as possible to avoid the onstrution of several planning mod-els, while at the same time take the available omputational resoures andthe requirements for a timely response into onsideration. The resultingplanning model often beomes a rather oarse view of how the environmentworks and many times also the only view for planning on that level ofabstration.
1.7 Focus of AttentionDue to the manual abstration proess and onstrution of planning models,agents that are supposed to use these models for planning their exeutionare typially not provided with any \fous of attention" mehanism where1There is a di�erene in both temporal and spatial horizons between a model that usesonepts suh as \y to point p" and another that uses \desend 0.3 meters" instead.

\li" | 2008/4/8 | 9:36 | page 10 | #2010 CHAPTER 1. INTRODUCTIONthey an hoose or onstrut the models themselves that are most appro-priate for the situation and task at hand. Suh a apability would be veryuseful in omplex task environments where it is not possible to use detailedmodels for everything that an be relevant all the time. However, the agentmust still be able to onstrut or selet more detailed models of its task en-vironment when neessary, suh as in situations where \something" in thetask environment does not behave as in the \normal" ase and that moredetailed reasoning is required to resolve the problem.How an agents then be given the ability to fous their attention duringplanning and exeution? In this thesis, agents are given this ability throughthe use of dynami planning models whih are onstruted depending onwhat e�et they will have on the performane during exeution. This meansthat the auray of the model (whih is often used to evaluate models ingeneral) is allowed to derease if the performane of the agent inreaseswhih makes the model less aurate but also more feasible.Dynamially hanging planning models an be viewed as an instane ofthe more general problem of seleting or generating any simplifying modelwith some notion of suitability of models that depends on that model type'spartiular purpose. This problem will be desribed next.
1.8 Dynamic AbstractionThe term dynami abstration refers to the apability of a system to dy-namially hange its simpli�ations of its task environment or models thereofdepending on the urrent irumstanes. Sine any system with limitedomputational resoures that needs to operate in and model a omplex taskenvironment would have to perform abstrations, the apability of dynam-ially hanging the urrently performed abstrations would provide both amore exible and apable system. A system that an perform dynami ab-stration an hoose how its environment should be modelled for the purposeof e.g. knowledge representation [10℄, predition, explanation and planning.For knowledge representation, dynami abstration will enable an agentto represent knowledge at many di�erent levels of abstration and seletsuitable versions of knowledge to reason with depending on the situation.Humans are believed to be partiulary good at this task and seem apableof dynamially hanging their view of an environment and onstruting andreasoning with abstrat onepts.An agent's predition and explanation mehanisms ould also be im-proved by using dynami abstration sine the agent ould then dynami-ally selet what variables to take into onsideration to get as good resultas possible, depending on its own available omputational resoures. Ingeneral, more omplex models for predition and explanation make it moreomputationally intensive and the important tradeo� between auray andfeasibility must be balaned at all times.

\li" | 2008/4/8 | 9:36 | page 11 | #211.9. DYNAMIC ABSTRACTION FOR PLANNING AND EXECUTION11Dynami abstration for task planning, whih is the fous of this thesis,will be disussed in more detail in Setion 1.9.The general task of dynamially onstruting models for a partiulartask is not easy. It is not lear how to ombine di�erent types of modelsinto one that makes sense and how the resulting models an be evaluatedin order to improve the abstration proess. Compositional or omponent-based modelling tehniques [22℄ seem to make things easier, but the task isfar from trivial in the general ase. Under limited irumstanes though, it isat least urrently possible to perform dynami abstration for task planningin ombination with plan exeution, where it is possible to diretly evaluatethe performane of an agent that uses a ertain planning model. Moreinformation about the state of the art in dynami abstration an be foundin Setion 1.10.
1.9 Dynamic Abstraction for Planning and

ExecutionThe main topi of this thesis is how dynami abstration an be used forplanning in the ontext of exeution. The onnetion to exeution is im-portant beause feedbak from the exeution should inuene the dynamiabstration proedure.Many years of researh within task planning have produed many dif-ferent types of planning models and solution methods. The method used inthis thesis is to try to reuse these results.
1.9.1 ExampleImagine an agent that operates in a omplex task environment and is ableto perform dynami abstration in order to onstrut simpli�ed planningmodels that aptures the most important aspets of its environment. It isassumed that the models an be solved with a suitable solution method.Suppose that the generated planning models are instanes of MDPs (SeeSetion 1.5 and Chapter 3) and that the agent is able to reason about itsomputational resoures in order to keep the models on a suitable level ofabstration that enables the solution method to provide a solution withina reasonable time. An example of how the atual generation of MDPs anbe performed with e.g. ontinuous task environment models is disussed inChapter 5.The agent then solves the planning model in order to use the solutionduring exeution. For MDPs, the solution is a so alled poliy whih mapall possible disernible states to an ation that should be exeuted in theorresponding state. But the states and ations have been dynamiallyonstruted by an abstration tehnique so we have to disuss further whatould possibly happen when the agent should exeute the solution.

\li" | 2008/4/8 | 9:36 | page 12 | #2212 CHAPTER 1. INTRODUCTIONFirst of all, unexpeted or simply ignored events in the agent's envi-ronment might ause the problem model used during the solution phase tobeome invalid or unsuitable after a while. The agent might for exampledisover that an objet, previously assumed to be a stationary obstale, is infat a vehile that it is supposed to inspet. The agent may have to hangeits way to perform abstrations and replan if (or perhaps more aurately,when) this happens. It would be bene�ial for the agent that disovered thevehile if it is apable of hanging its way to view its environment by takingthe speed and diretion of the vehile into onsideration in order to preditwhere it is going. One may then argue that the agent should have usedthat view from the very beginning, but then one also must onsider thatthe agent both has limited sensor apabilities and omputational resoures.It is therefore just not feasible for the agent to represent everything in themost detailed manner just beause something might turn out to be moreompliated than previously pereived. Remember that the agent has madea deision about its abstrations and thereby foused its attention on theparts of the environment that it onsidered to be most important. It hasmade an e�ort to make a good tradeo� between auray and feasibility ofthe planning model.Another problem is that it might turn out that a solution to the MDPmight be on suh a high level of abstration that the agent is inapable ofexeuting it. This depends of ourse on how omplex the agent's availablebehaviors or skills (see Setion 2.5.3) are but the agent is assumed not tohave skills for everything beause then it would not need to plan at all.Our UAS uses an exeution system where parameterized reative skills suhas \Fly to a point p", \Take o�" or \Turn amera towards point p" existbut more ompliated missions like \Deliver a set of pakages to a set ofdestinations" does not have a diret math to suh a skill and task planningtehniques are used instead. Compliated missions need to be planned downto the level where skills are available to arry out the solution. The pointis that an abstrat solution might need to be re�ned somehow, whih isa ommon and natural tehnique used within Hierarhial Task Network(HTN) planning [21℄ and Hierarhial Reinforement Learning [6℄. For anMDP poliy, eah planned ation might expand into a subproblem2 of itsown whih an also be onstruted with the agent's dynami abstrationapabilities. These resulting subproblems, whih ould be MDPs or otherplanning model types need to be solved as well. The re�nement shouldstop when there are skills available that an reliably enough exeute at leastparts of a solution.The re�nement of solutions in this manner reates an abstration hier-arhy whih the agent needs to keep trak of and hek if they are still validand suitable during exeution. If higher level problem models suddenly be-ome too inaurate due to ignored, simpli�ed or hanging onditions, there2The term problem is used here beause it might be the ase that an episodi modelis used.

\li" | 2008/4/8 | 9:36 | page 13 | #231.10. RELATED WORK 13is a risk that the lower level solutions might be invalid or irrelevant.
1.9.2 DAREAll these onsequenes of using dynami planning models have been stud-ied in this thesis where a method alled DARE (stands for DynamiAbstration-driven Replanning and Exeution) has been developed thattries to handle these problems (see Chapter 4). DARE is a very abstratmethod and needs to be instantiated with a partiular task environmentlass before it an be used. Chapter 5 presents an instantiation of the DAREmethod where MDPs are used as the planning model type and subproblemsare onstruted dynamially and solved until a suÆiently detailed level ofabstration is reahed. In Chapter 6 DDNs are onstruted instead whihmakes it possible to represent partial observability.
1.10 Related WorkThe general idea that abstrations are neessery for deision-making is er-tainly not a new one. The development of HTN-planning [71℄ [64℄ waslargely driven by the need for planning with more abstrat plan operators�rst, forming an abstrat plan, and then re�ning the solution and bak-traking if neessary. The SIPE planning system [75℄ was one of the �rstdomain-independent HTN-planners whih was desribed in great detail. Inthe book that desribes SIPE [75℄, there was a disussion about stoppingthe re�nement of task networks and only onstruting plans at a ertainlevel of abstration. This idea was implemented in CYPRESS [77℄ wherethe so alled At language [76℄ was used to desribe both planning and taskexeution re�nement in the same language. Planning was only performeddown to a ertain level and then the task re�nement kiked in with the helpof the PRS [52℄ exeution system.Other domain-independent HTN planning systems suh as O-Plan [72℄and SHOP2 [53℄ have been developed for real-world appliations and theurrent situation is that when a planning system is used for solving largeand real-world like task planning models that require reasoning on severallevels of abstration, HTN-planners with added apabilities of dealing withmany di�erent types of onstraints are often used.Automati abstration has also been developed for so alled STRIPS orlassial planning [31℄ domains. A system alled ALPINE [40℄ was used toautomatially generate abstration hierarhies given a domain desription.Most of the work within dynami abstration for stohasti task environ-ments has been done within the area of hierarhial reinforement learning(HRL) [6℄ whih an be viewed as a generalization e�ort for HTN-planningin stohasti environments. The main idea is to use abstrat MDPs thatan use sub MDPs almost like primitive ations. There are many ways

\li" | 2008/4/8 | 9:36 | page 14 | #2414 CHAPTER 1. INTRODUCTIONto atually do this but the three most ited HRL systems are the Optionsframework [70℄, MAXQ [16℄ and Hierahial Abstrat Mahines (HAM) [60℄.Jonsson and Barto [37℄ used a modi�ed version of the U-Tree algorithm[46℄ to automatially �nd state abstrations in the Options framework. AU-Tree is a form of deision tree whih keeps trak of the state abstrationby using a statistial test to selet when distintions between di�erent statesshould be made.Hengst [35℄ has developed an algorithm alled HEXQ whih learns sub-task strutures by separating state variables that hange at di�erent rates.Mannor et al. [45℄ use lustering tehniques to perform dynami ab-stration by looking at the state transition history whih is onverted to agraph where the lustering takes plae. The lusters are then used to learnpoliies that move between the di�erent lusters whih an then be used asabstrat ations.Steinkraus and Kaelbling [66℄ use a struture very similar to the HSN-struture (see Setion 4.5), where di�erent abstrations are performed onthe way down to the most detailed abstration.Another piee of work that is very muh related to this thesis is [43℄where the authors try to dynamially generate models depending on thequestions asked about a ertain system. They express preferred modelswith a theory of abstrations about model fragments.Some work with hierarhial POMDPs has been done as well ([73℄ontains a small survey) but not to automatially selet abstrations forPOMDPs at di�erent levels. Kaelbling et al. [73℄ use reinforement learn-ing methods to learn abstrat poliies over maro ations and demonstratemany bene�ts of using abstrat states in POMDPs.Sturtevant and Buro [67℄ uses abstrations in the ontext of path plan-ning and path exeution where the original path planning model is trans-formed into a hierarhy of models on di�erent levels of abstration. Theabstration is performed by looking for liques in the planning graph ortiles.
1.11 ContributionsAlthough the idea of dynami abstration has been used within hierarhialreinforement learning, it has never been approahed from a more generalpoint of view where di�erent types of planning models are ombined andseleted or generated depending on the urrent situation and task. TheDARE method tries to �nd a way to do this in a more general frameworkand uses the onnetion to skills that are supposed to exeute the solution.Figure 4.2 on page 42 illustrates a vision where many di�erent types ofplanning models are ombined and updated dynamially.Another ontribution is the idea and implementation of using the taskenvironment's performane measure to fous the attention when the plan-ning models are onstruted. In Chapter 5, this is done with the use of

\li" | 2008/4/8 | 9:36 | page 15 | #251.12. OUTLINE 15relevane funtions. Chapter 6 uses a measure of the expeted utility ofpoints to build planning models.The two ase studies ontribute to the area of dynami abstration bydemonstrating that (parts of) the abstration proess an be formulated assolutions to optimization problems.The results presented in the ase studies have been published in [57℄ and[58℄.
1.12 OutlineThe rest of the thesis is organized as follows: Chapter 2 briey providespreliminary information about probability theory, Dynami Bayesian Net-works (DBNs) and loal optimization tehniques. Chapter 3 desribes ageneral graphial model alled Dynami Deision Networks (DDN) whihan be used to model stohasti and partially observable planning models.DDNs are used to simulate the task environments used in the ase studies.The same hapter also desribes MDPs as a speial ase of DDNs where allvariables are disrete and observable.Chapter 4 desribes the DARE method whih tries to pinpoint the ne-essary apabilities of a planning and exeution agent that uses dynamiallygenerated planning models and needs to keep trak of the orrespondingabstrations' validity.Chapter 5 presents the �rst implementation of DARE where the taskenvironment lass is fully observable. The planning is performed on severallevels of abstration and the planning models (MDPs) are dynamially gen-erated aording to the urrently best onsidered abstration. Chapter 6ontains a desription of the seond ase study where planning models aredynamially reated in a partially observable task environment lass. In thisimplementation the levels of abstration are �xed but the planning modelsare still generated dynamially depending on the agent's urrent belief state.Finally, Chapter 7 ontains some onlusions and desriptions of futurework.

\li" | 2008/4/8 | 9:36 | page 16 | #26

Chapter 2

PreliminariesSine this thesis is onerned with how suitable planning models an begenerated depending on the urrent irumstanes, it is useful to know aboutsome of the tools to onstrut models that are used in the ase studies inChapter 5 and 6.Probability theory is often used to model unertainty. In this thesis,probability theory is used to speify task environment models and is alsothe basis of �ltering algorithms in partially observable environment lasses.A brief introdution to the relevant onepts in probability theory will there-fore be given in Setion 2.1.The graphial model alled Bayesian Networks (BNs) will be used tosuintly speify probability distributions and illustrate dependenies be-tween variables in the stohasti planning models used in the ase studies.The temporal version of BNs, Dynami Bayesian Networks (DBNs), an beused to desribe stohasti proesses and is the basis for the Dynami Dei-sion Networks (DDNs) [14℄ that will be desribed in more detail in Chapter3. BNs and DBNs are desribed in Setion 2.2 and 2.3.The introdutory hapter ontained a desription of the tradeo� betweenauray and feasibility of a ertain model. When tradeo�s are performedby omputers, they are often formulated as an optimization problem andsolved with some of the available tehniques. This is also the ase in this the-sis and a brief introdution to optimization problems and relevant solutiontehniques is provided in Setion 2.4.A solution to a planningmodel should be something that an be exeutedby an exeution system, and sine this thesis disusses the important onne-tion between planning and exeution, an introdution to reative exeutionsystems in general and the Modular Task Arhiteture (MTA) (desribedin [56℄) in partiular is given in Setion 2.5. MTA is used in the UAS Tehsoftware arhiteture to struture the exeution and it uses the CommonObjet Request Broker Arhiteture (CORBA) [59℄ for ommuniation.16

\li" | 2008/4/8 | 9:36 | page 17 | #272.1. PROBABILITY THEORY 17
2.1 Probability TheoryThe onept of variation is often a entral part of many appliations. Vari-ation in this ontext means that the outome of some event suh as tossinga oin or using a sensor, varies even if the initial onditions are pereivedto be the same.The ause of the variation an be disussed and it might be the asethat the phenomenon of study is atually deterministi if all the variablesare taken into aount. The problem is that it is not always possible toget aess to all the variables that determine an outome (the environmentmight be partially observable) and therefore it is neessary to deal withvariation, whether the world is deterministi or not.Probability theory is one way of representing variation and it is used inmany pratial situations suh as representing measure error and buildingstohasti models suh as MDPs (see Chapter 3) used for task planning.
2.1.1 Basic AssumptionsThe basi assumption of probability theory is that there exists a universeof outomes U and eah event E � U (given some basi assumptions aboutE suh as it must be a �-algebra [20℄) is given a number between 0 and 1,alled the probability P (E) of the event E. The probability funtion P isonstrained by the following fundamental axioms of probability:� For any set E � U , P (E) � 0� P (U) = 1� Any ountable sequene of pairwise disjoint events [E1, E2; :::℄ satis�es:P (E1 [E2 [:::) =PP (Ei)
2.1.2 Stochastic VariablesStohasti variables are often used to speify events whih an be denotedby expressions suh as \AltUAS > 10:2" 1 whose denotation de�nes theevent where the UAS's altitude is above 10.2 meters. The stohasti vari-able AltUAS is in this ase used to represent the altitude. Events, suh asthe one just mentioned, an be given probabilities as long as they followthe fundamental axioms of probability. AltUAS is an example of a stohas-ti variable with a ontinuous domain (the altitude). Domains an also bedisrete sets suh as frs1; rs2; rs3g, whih in this ase represents three dif-ferent road segments in a road network. The expression \RSar = rs2" an1A more theoretial and omplete treatment of probability theory (see [20℄) de�nestohasti variables in a di�erent way, but for the purpose of this thesis, thinking aboutstohasti variables as something that an be used to form expressions that denote eventsare suÆient

\li" | 2008/4/8 | 9:36 | page 18 | #2818 CHAPTER 2. PRELIMINARIESthen represent the event that a ertain ar is travelling on the road segmentdenoted by rs2.Simple expressions suh as \AltUAS > 10:2" an be used to form om-bined events with logial operations like \AltUAS > 10:2 ^ AltUAS < 20"whih denotes the intersetion of the events denoted by \AltUAS > 10:2"and \AltUAS < 20", whose intended meaning is that the UAS's altitude isbetween 10.2 and 20 meters.
2.1.3 Distributions and Density FunctionsA disrete stohasti variable X has a so alled probability distributionassoiated with it, whih de�nes the probability P (X = d) for all the ele-ments d 2 DX in that variable's domain DX 2. A probability distributionfor RSar might be h0:1; 0:7; 0:2i whih means that P (RSar = rs1) = 0:1,P (RSar = rs2) = 0:7 and P (RSar = rs3) = 0:2. The sum of all probabil-ities in the distribution must be equal to 1, aording to the fundamentalaxioms of probability. For a ontinuous stohasti variable, it is not possi-ble to enumerate all possible events and one has to assoiate a probabilitydensity funtion fX with the variable X instead. Figure 2.1 illustrates anexample of suh a density funtion for the AltUAS stohasti variable. Theintegral of a probability density funtion fX , R1�1 fX(x)dx , must be equalto 1.
2.1.4 Joint DistributionsEvents that involve more than one stohasti variable an be spei�ed withexpressions suh as \RSTruk = rs1 ^ RSCar = rs2" where the stohastivariable RSTruk represents the possible road segments for a truk and hasthe same domain as RSCar. The probability distribution for both of the twostohasti variables must be de�ned for every ombination of values suh asP (RSTruk = rs1^RSCar = rs1) = 0:1, P (RSTruk = rs2^RSCar = rs1) =0:12 and so on. The omplete spei�ation of all the stohasti variables'probability distributions and density funtions is alled the joint probabilitydistribution. If disrete and ontinuous stohasti variables are mixed in thesame model, the probability density funtions for all the ontinuous variablesmust be de�ned for all ombinations of values for the disrete variables inthe general ase.
2.1.5 Conditional DistributionsThe onditional probability P (E1jE2) given two eventsE1 andE2 is de�nedas:2The probability funtion P is in this way also used for expressions involving stohastivariables and the intended meaning is the probability of the denoted event.

\li" | 2008/4/8 | 9:36 | page 19 | #292.1. PROBABILITY THEORY 19

0 5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Altitude

Probability Density Function for the UAV’s altitude

Figure 2.1: An example of a probability density funtion assoiated withthe AltUAS stohasti variable.P (E1jE2) = P (E1; E2)P (E2) (2.1)and is often used to model partially observable events or state transitiondistributions in e.g. MDPs.The onditional probability distribution P(X jY) for the two disretestohasti variables X and Y is de�ned as:
P(X jY) = P(X; Y)

P(Y) (2.2)Equation 2.2 should be interpreted as the set of equations:P (X = xijY = yj) = P (X = xi ^ Y = yj)P (Y = yj) (2.3)for all ombinations of the stohasti variables' domain elements xi andyj . Similarily, the onditional density funtion fX;Y for two ontinuousstohasti variables X and Y is de�ned as:fX;Y (xjy) = fX;Y (x; y)fY (y) (2.4)

\li" | 2008/4/8 | 9:36 | page 20 | #3020 CHAPTER 2. PRELIMINARIESwhere fX;Y is the joint probability density funtion for X and Y and fYis the (marginalized) probability density funtion for Y whih is equal toR1�1 fX;Y (x; y)dx.
2.1.6 Bayes RuleBayes Rule is useful when one needs to alulate the probability P (EijEj)in terms of P (Ej jEi), P (Ej) and P (Ei):P (EijEj) = P (Ej jEi)P (Ei)P (Ej) (2.5)Bayes rule is used extensively in probabilisti expert systems beauseit is often the ase that it is diÆult and/or inappropriate to estimate ormeasure the onditional probability in a ertain \diretion" but not theother way around. In Chapter 6, Equation 2.5 will be used to alulate theprobability of a state given noisy sensor data.Bayes rule an be extended to hold for distributions and density fun-tions similar to Equation 2.2 and 2.4.
2.1.7 ExpectationFor stohasti variables that have a domain of a subset of the integers orreals, it is possible to de�ne the expeted value given the orrespondingdistribution or density funtion. The expetation of a disrete stohastivariable X is de�ned as follows:E(X) = Xx2DX xP (x) (2.6)The orresponding expression for ontinuous stohasti variables in-volves an integral instead of a sum:E(X) = Z 1�1 xfX(x)dx (2.7)The expetation is often denoted mX and generalizes to vetors ofstohasti variables X as well.
2.2 Bayesian NetworksOne of the major problems with probabilisti models is that the number ofprobabilities that must be spei�ed for the joint distribution grows expo-nentially with the number of variables in the general ase.There are often more suint ways of impliitly desribing a probabilitydistribution by only speifying onditional distributions between the vari-ables in the model. A graphial model alled Bayesian Networks provides

\li" | 2008/4/8 | 9:36 | page 21 | #312.2. BAYESIAN NETWORKS 21this funtionality and has been redited with the extensive use of probabilis-ti tehniques in AI appliations beause of the resulting inreased eÆienyof probabilisti reasoning for larger models.
2.2.1 DefinitionA Bayesian network is a Direted Ayli Graph (DAG) where eah noderepresents a stohasti variable. Ars between nodes should as losely aspossible represent \diret" ausal inuenes between variables. Figure 2.2illustrates a typial Bayesian Network.

X

Z Y

B

A

P(y_1 | a_1, x_1) = 0.1

...
P(y_1 | a_2, x_1) = 0.02

P(y_1 | a_1, x_2) = 0.03

P(y_k | a_m, x_n) = 0.02

Figure 2.2: A typial Bayesian Network. Parts of the onditional distribu-tion for the stohasti variable Y, given its parents values, is also shown.Instead of speifying the full joint distribution for a set of stohastivariables, one only needs to speify the onditional probability distributionsor densities of variables given their parents.The main assumption for a Bayesian Network with disrete variablesX1; :::; XN is that the full joint distribution P (X1; X2; :::; XN) an be alu-lated by: P (X1; X2; :::; XN) = NYi=1P (XijParents(Xi)) (2.8)where Parents(Xi) is the set of parent nodes of Xi. Figure 2.2 illus-trates parts of one of these onditional probabilities P (Y jX;A) whih is alot easier to speify than the full joint distribution P (A;B;X; Y; Z) for allombinations of the variables' domains.
2.2.2 Hybrid ModelsSo alled Hybrid Bayesian Networks an inlude both disrete and ontinu-ous stohasti variables. A ontinuous variable with disrete and ontinuous

\li" | 2008/4/8 | 9:36 | page 22 | #3222 CHAPTER 2. PRELIMINARIESparents must then have several onditional density funtions for eah om-bination of disrete values that may depend on the values of the ontinuousparents as well. A disrete variable with ontinuous and disrete parentsmust in the general ase have several density funtions de�ned. Hybrid BNswill be used to de�ne parts of the task environment models used in the asestudies (Chapter 5 and 6).
2.2.3 InferenceBNs an be used for many di�erent purposes. One of the most basi apabili-ties is to alulate a onditional probability P (EijEj). Events desribed withstohasti variables are ommonly used to formulate suh queries where itis often the ase that a set of disrete variables Y are already known andanother set of disrete variables Z are unknown. The probability distribu-tion P(X jY;Z) of the query variable X is then alulated by the infereneproedure applied to the BN.In this thesis, inferene in Bayesian Networks is performed in a speial-ized ontext of �ltering where the probability distribution over the urrentstate is estimated when a system is desribed with a so alled DynamiBayesian Network (see Setion 2.3 and 6.4 for more information about thispartiular form of inferene).
2.2.4 Implicit ModelsAll the examples given so far have used either a tabular or expliit prob-ability density representation of the probability distributions. This is notalways possible or even neessary. Suppose that one would like to repre-sent the probability distribution of the values of a laser san sensor giventhe sensor's pose and a map of the surroundings. An expliit probabilitydensity representation of the sensor values given all possible poses is notpossible to store due to the ontinuous stohasti variables. It is possible toalulate one suh density given that the pose is known, by using rayast-ing or similar tehniques in the map, whih is an example of an impliitrepresentation of a density funtion widely used in pratie [74℄, e.g. when amobile robot performs Monte Carlo Loalization (MCL) [25℄ with a partile�lter (whih is an approximative inferene method that does not need anexpliit density representation).Impliit densitiy funtions will be used in the ase studies e.g. whenvisibility onditions are used. Suh onditions are very umbersome to rep-resent expliitly but relatively easy to alulate with rayasting tehniques.
2.2.5 Model EstimationA onditional distribution an be estimated by a suitable statistial teh-nique suh as general funtion approximation (if no partiular type of dis-

\li" | 2008/4/8 | 9:36 | page 23 | #332.3. DYNAMIC BAYESIAN NETWORKS 23tribution is assumed) or parameterized models like Gaussian distributionsor mixture models. Maximum Likelihood (ML) (see [2℄) parameter estima-tion is a ommon method whih is used in Chapter 5 to estimate transitiondistributions in MDPs.
2.3 Dynamic Bayesian NetworksBayesian Networks are a great tool for modelling situations where temporalaspets are not taken into onsideration. It is often the ase that one wouldlike to model stohasti systems that evolve over time as well, and then anextension to Bayesian Networks an be made to reate Dynami BayesianNetworks (DBNs) [13℄.DBNs an be used to model stationary stohasti proesses whih makesthe so alled Markov assumption. Temporal stohasti models that makethis assumption assume that any state an only depend on a �nite historyof stohasti variables. In a �rst order Markov model the urrent statean only depend on the previous one, whih is often the ase for DBNs. A�rst order Markov model an represent any �nite order Markov model byintroduing extra stohasti variables.Figure 2.3 shows the typial struture of a DBN model. The basi ideais to use a set of stohasti variables for eah time step and de�ne theonditional probabilities of the variable set at time t given the variable setat time t � 1. The Markov assumption makes it possible to de�ne a DBNwith only two sets of variables, one set of prior distributions for time step0 and a set of onditional distributions for eah stohasti variable.

Variable 1

t−1

Variable 2

t−1

.

.

.

Variable N

t−1

.

.

.

Variable 1

Variable 2

Variable N

t

t

t

Figure 2.3: A typial Dynami Bayesian Network.Given that a DBN an represent a probability distribution over time,it an be used by an autonomous agent to perform the following types of

\li" | 2008/4/8 | 9:36 | page 24 | #3424 CHAPTER 2. PRELIMINARIESreasoning over time:� The probability distribution over the agent's urrent state spae anbe updated with �ltering. This is a very useful operation when thetask environment is partially observable.� Future distributions an be estimated with predition. This operationis useful when the agent performs planning.� The set of previous state distributions an often be better estimatedwhen more information is reeived whih is alled smoothing andsometimes hindsight. Smoothing is espeially useful if any type ofmahine learning [48℄ is used to update the distributions in the DBN.Filtering is used to ompute the posterior probability distribution
P(Xt+1jY1:t+1) where Xt+1 and Y1:t+1 represents all unobserved variablesat time t + 1 and the sequene of observed variable sets (Y1; Y2; :::; Yt+1)respetively.The �ltering omputation an be desribed with the following equation:

P(Xt+1jY1:t+1) = P(Yt+1jXt+1)Pxt P(Xt+1jxt)P (xtjY1:t)
P(Yt+1jY1:t) (2.9)where P(Yt+1jXt+1) often is alled the observation model whih treatsthe stohasti variables Yt+1 as observations of the hidden variables Xt+1.

P(Xt+1jXt) is often alled the transition model.The orresponding equation for performing predition k + 1 steps intothe future with a DBN is the following:
P(Xt+k+1jY1:t) =Xxt+k P(Xt+k+1jxt+k)P (xt+kjY1:t) (2.10)A speial ase of DBN is the Markov hain where only one disretestohasti variable with �nite domain is allowed. It is possible to model anydisrete DBN with a single disrete variable, but it is often muh easier touse several variables sine the domain an often be desribed more suintlywith that approah. Markov Deision Proesses (MDPs) (see Setion 3.4)use Markov hains to model a stohasti system that is fully observable.

2.4 OptimizationMany planning model types make it possible to speify some kind of ostor utility of a solution to the problem. There are sometimes many di�erentways to solve a spei� planning model but some solutions might be betterthan others due to di�erent irumstanes. There might for example existmany di�erent paths for a UAS to y from one point to another but some

\li" | 2008/4/8 | 9:36 | page 25 | #352.5. EXECUTION SYSTEMS 25paths might be better than others due to the length of the path or otherriteria. When there are several possible solutions available to a modeland the solutions an be ompared in terms of ost or other measurements,the model is alled an optimization problem. In this thesis, optimizationproblems are used for other tasks than planning and a solution to suh aproblem will typially not be a plan or an ation but instead a deisionabout abstration parameters.One possible de�nition of an optimization problem is that there existsa set of variables V where eah variable has a domain DV that an beany type of set. Let D be the rossprodut of all the variables' domainsDv1 �Dv2 � :::�DvjV j . The objetive funtion U : D ! R is then used toompare di�erent solutions.The form of D and U spei�es the possible solution methods that anbe used. When the set of variables all have disrete domains, a ommonmethod is Branh and Bound [42℄ or some loal searh method suh ashilllimbing and simulated annealing [39℄. For pure ontinuous domainsand linear utility funtions, Linear Programming [65℄ an be used. Otheroptimization algorithmsmake use of the gradient and hessian of U to guidethe searh towards a global or loal maximum [55℄.In this thesis, di�erent types of loal searh are used to perform opti-mization as a method to selet abstrations. Loal searh methods makeuse of a so alled neighbourhood funtion N : D ! 2D whih de�nes thepossible suessors when the loal searh method is exploring a ertain stated 2 D.N an be used in di�erent ways to perform the searh. In hilllimbingsearh, all the states in the neighbourhood are examined and the one withthe best utility is seleted and set as the new urrent state. The neighbour-hood funtion an also be sampled, as in simulated annealing, where theurrent state is set to the sampled state with a ertain probability that de-pends on the utility and the so alled ooling shedule whih makes hoiesthat are worse, less probable with time.
2.5 Execution SystemsThere are many possible ways to struture exeution in an autonomous agentthat may have to operate in dynami task environments with both ationand sensor unertainty. Researhers within the area of AI robotis [50℄have been dealing with these isssues and di�erent paradigms for struturingexeution have evolved. The evolution started with Shakey [54℄ and the soalled hierarhial paradigm, whih is often very omputationally expensiveand makes use of task environment models, and ontinued with the reativeparadigm with behaviors with only simple memoryless modules. The hybriddeliberative reative paradigm is now more ommonly used whih tries toombine the use of models with behaviors.

\li" | 2008/4/8 | 9:36 | page 26 | #3626 CHAPTER 2. PRELIMINARIES
2.5.1 Modular Task ArchitectureThe UAS Teh system uses the Modular Task Arhiteture (MTA) (see [56℄for a desription) to struture muh of the exeution and is lassi�ed asa hybrid deliberative reative arhiteture. MTA makes use of the Com-mon Objet Request Broker Arhiteture (CORBA) [59℄ for ommunia-tion. The parameterized behavioral omponents are alled Task Proedures(TPs). TPs have a standardized way to be initialized, terminated and soon and an all any CORBA servie. In the UAS Teh system, a path plan-ner, a geographi information system and knowledge proessing middlewareDyKnow [19℄ are all aessed as CORBA servies. Before any ation an beexeuted, a TP instane (TPI) must be reated by a request to a TP libraryservie.TPs have a behavioral omponent that spei�es the exeution. Currentlythe implementation of the behavioral omponent is based on state mahinesand the TPs are allowed to have loal and servie referene variables.A TPI an reate other TPIs as well and strutures of TPIs an beonstruted. Figure 2.4 illustrates a set of TPIs that is used in a part of amission where a set of building strutures are supposed to be investigated.In the UAS Teh system, the set of TPIs are hanging all the time. Theset of instanes during takeo� or landing is di�erent from the ones shownin Figure 2.4.

NavToPoint

Fly3D

CameraControl

DoAtPoints

Photogrametry

Geographic Information Service

Path Planner Service

Helicopter Controller Service

CORBA Services

Task Procedure Instances

Figure 2.4: Task Proedure instanes for the part of a mission where a setof building strutures are investigated. The �gure also shows the serviesthat the TPIs are using.
2.5.2 Other ArchitecturesMany exeution system arhitetures have been developed whih have manysimilarities with MTA due to the use of some notion of task or task instane

\li" | 2008/4/8 | 9:36 | page 27 | #372.5. EXECUTION SYSTEMS 27that an be used to perform exeution. The Reative Ation Pakage (RAP)[23℄ system uses hierarhially strutured \pakages" that an perform sim-ple tasks in di�erent ways depending on the situation. The pakages anstart up other pakages to perform subtasks and the onurrently exeutingtasks are managed with the RAP memory and a mehanism for synhro-nization. The Proedural Reasoning System (PRS) [52℄ with suessors(e.g. Apex [27℄) builds on similar ideas. PRS uses a simple database withfats that an be �lled in by sensors and task exeuting behaviors.
2.5.3 Definition of SkillsSine there are a lot of similarities between di�erent exeution system ar-hitetures suh as MTA, RAP and PRS, the olletive term Skill will beused to refer to any primitive task exeuting piee e.g. TPIs, RAPS and soon:
Definition 2.1A skill is a reative omputational mehanism that ahieves a ertainobjetive in a limited set of irumstanes with the following apabili-ties:� It an have an internal state and/or use a shared database.� It an send messages to other skills either through an event systemor a database.� It is possible to ontrol and monitor it from the \outside" andterminate it safely on demand, even if it is not �nished with itsobjetive.These apabilities of skills are used to keep the DAREmethod (see Chap-ter 4) as general as possible and not speialize it too muh towards use ofMTA. MTA, RAP and PRS are all apable of de�ning skills that have theseproperties.

\li" | 2008/4/8 | 9:36 | page 28 | #38

Chapter 3

Dynamic Decision

NetworksThe previous hapter desribed the Dynami Bayesian Networks (DBNs)that an be used to model any disrete time stohasti proess that satis�esthe Markov assumption. DBNs an be extended to speify planning modelsand are then alled Dynami Deision Networks [14℄ (DDNs) whih arebased on Deision theory [7℄. Deision theory is a very general method fordeision-making under unertainty.The main idea is to add ation and reward nodes to the basi DBN tomake it possible for an agent to ontrol the proess and determine the utilityof possible outomes.This hapter also desribes the Markov Deision Proess (MDP) [62℄,whih an be viewed as a speial ase of DDN. Partially Observable MDPs(POMDPs) [38℄ are also a speial ase of DDNs but are not presented inthis hapter beause none of the speialized POMDP solution tehniquesare used in this thesis.
3.1 ExampleFigure 3.2 shows an example DDN whih desribes the problem of deliveringa box to a target position on the ground. The box is attahed to a winhon a UAS (see Figure 3.1). It is a standard (but often diÆult) task ofmathematial model building to reate a model of this system using the lawsof physis ombined with parameter estimation tehniques and possibly aollision detetion/handling system to predit the movement of the box ifit touhes or falls on the ground.In order to ontrol the system, it is useful to de�ne a performane mea-sure model. DDNs try to solve this modelling problem by de�ning a on-tinuous reward variable Rt that spei�es the immediate reward when the28

\li" | 2008/4/8 | 9:36 | page 29 | #393.1. EXAMPLE 29system goes from one state to another (t � 1 to t). The main objetive isto maximize the total reward,PT+t0t=t0 Rt, from the urrent state Xt0 with a�nite horizon T , but many variants exists suh as maximizing the averagereward or using a disount fator with an in�nite horizon (see Setion 3.2).The reward variable an in this example e.g. depend on whether the boxis \damaged" by olliding too fast with the ground and the behavior of theUAS (if it is too lose to the ground or makes some unwanted manouver)et. Goals, suh as \the box should stand on the ground and be detahedfrom the winh", an be spei�ed with a large reward when the box is loseenough to the target position with zero veloity while at the same timebeing detahed.
UAS

Box

Winch

Target position

Figure 3.1: A UAS with a winh, trying to deliver a box.Figure 3.2 only spei�es the relationship between di�erent lasses ofrandom variables and the ontents of e.g. UAS State is not spei�ed. Manydi�erent versions are possible suh as using disrete domains for all variables,whih makes it possible to diretly model the problem with a POMDP, ortry to model most of the relationships with linear Gaussian distributions tomake it possible to use feasible �ltering and predition tehniques.The reward variable an be used to speify the desired behavior of thesystem. It is neessary to make a tradeo� between the UAS's and the box'ssafety whih raises important questions suh as: How bad is it to rashompared to a destroyed box? What is best, a solution that takes one hourthat sueeds awlessly with probability 0.99 or a solution that takes �veminutes and sueeds with probability 0.95?

\li" | 2008/4/8 | 9:36 | page 30 | #4030 CHAPTER 3. DYNAMIC DECISION NETWORKS
Reward

Map

Static

Observed
Box State

t

Winch control

UAS control

Actions

Box State

Winch State

UAS State

Box State

Winch State

UAS State
t−1

t−1

t−1 t

t

t

State

Observations

Observed

UAS State
tFigure 3.2: A DDN that desribes the sequential deision problem of deliv-ering a box.

3.2 Local Reward, Global UtilityThe loal reward variable in DDNs an be used to speify a global utilityfuntion U of all states. This utility funtion typially depends on the sumof the rewards. With U given with fully observable state variables, an agentthat tries to maximize its utility an simply perform a one-step appliationof the P(XtjXt�1; At), where At is the set of ation variables, to maximizethe expeted utility (EU) by seleting the ation a that satis�es:argmaxa2AtXi U(xit)P (xitjXt�1; a) (3.1)This is a very general priniple of deision-making under unertaintyand entral in the area of Deision Theory (DT) [7℄.When the state is only partially observable, the utility funtion typiallydepends on probability distributions over states instead whih makes theproblem of both representing U and �nding a solution muh more omplex.The global utility of a state an be used when the deision horizon Tis �nite. When the horizon is in�nite, the most ommon method to makeit possible to ompare in�nite sequenes of rewards is to assign a so alleddisount fator 2 [0::1). The disount fator makes sure that all stateutilities are �nite and it is then possible to ompare state trajetories.

\li" | 2008/4/8 | 9:36 | page 31 | #413.3. SOLUTION TECHNIQUES 31
3.3 Solution TechniquesA hybrid DDN is generally not possible to solve, with any reasonable de�-nition of solution, due to the simple fat that it an be used to speify anynon-linear ontinuous stohasti Markov model whih inludes POMDPsand many optimal ontrol problems as speial ases.A ommon approximate solution method is to disretize the ation nodes(if they do not already have disrete domains) and perform depth-limitedlookahead from the urrent state or (approximated) belief state. It is om-mon that the global utility for the state at the maximum depth is estimatedby a heuristi funtion. It is also ommon to use iterative deepening depth-�rst lookahead to make sure that some kind of solution is ready as quiklyas possible. The requirements of this type of inomplete searh is that theagent must perform the lookahead before every deision is made, whih anbe omputationally intensive, espeially if the �ltering is expensive.In Chapter 6, depth-limited lookahead is used in ombination with par-tile �lters to make an agent deide what to do when the environment isrepresented with a Hybrid DDN.
3.4 Special Case: Markov Decision ProcessesA speial ase of DDNs is the Markov Deision Proess (MDP) [62℄. In thismodel, all random variables are observable, whih means that no �lteringis neessary. All variables, exept the reward variable, are also assumed tohave disrete domains.To be able to use the ommon notation for MDPs, a random variable Sis de�ned whih has a domain of the ross produt of all random variables'domains. An ation variable A is de�ned in the same way for all ationvariables present in the DDN model. Figure 3.3 illustrates the resultingDDN when the ation and state spae have been reated.

S S’

A

RFigure 3.3: A DDN that represents an MDP.The so alled transition distribution P(s0js; a) de�nes the probabilityof ending up in a state s0 2 S after exeuting an ation a 2 A in s 2 S.

\li" | 2008/4/8 | 9:36 | page 32 | #4232 CHAPTER 3. DYNAMIC DECISION NETWORKSThe reward density funtion fR(rjs; a) similarly de�nes the distributionof the reward r reeived in the same ontext. R(s; a) is used to denote theexpetation of the reward density funtion when a is exeuted in state s.
3.4.1 PolicyThe assumption of sum of rewards together with the Markov property, makesit possible to de�ne a solution to an MDP as a mapping from the urrentstate to an ation [62℄. Suh a mapping is alled a poliy. It is possible toompute the value V � of a poliy � for all states s 2 S through the followingreursive formula:V �(s) = Xs0 P (s0js; �(s))V �(s0) +R(s; �(s)) (3.2)where s and s0 are equivalent to St�1 and St respetively. The valueis guaranteed to be �nite due to the disount fator 2 [0; 1) and whenR(s; a) is bounded.
3.4.2 Solutions and Solver MethodsValue funtions de�ne a partial ordering over poliies. A poliy � is stritlybetter than another poliy �0 if V �(s) > V �0(s) for all states s 2 S. Thereis always at least one suh poliy �� that is stritly better than or as goodas all other poliies. Suh poliies are alled solutions to the MPD.The value funtion V � for all optimal poliies satis�es the followingBell-man equation for all states s 2 S:V �(s) = maxa Xs0 P (s0js; a)V �(s0) +R(s; a) (3.3)If the optimal value V � is known, without any referene to a spei�poliy, an optimal poliy an be extrated from V � through the followingformula: ��(s) = argmaxa Xs0 P (s0js; a)V �(s0) +R(s; a) (3.4)
3.4.3 Value IterationThe Bellman equation an be used to develop an iterative solution algorithmthat updates a better and better estimate of the value funtion V . Onesuh method is alled the Value Iteration algorithm [62℄ and is shown inProedure 3.1. It uses the so alled Bellman update rule to iterativelyupdate the value funtion until the optimality riterium is reahed. Theoptimality riterium is de�ned by � whih means that the resulting poliy

\li" | 2008/4/8 | 9:36 | page 33 | #433.4. SPECIAL CASE: MARKOV DECISION PROCESSES 33��� has a value V ��� that may be up to � less than the optimal poliy's valueV �� .
Procedure 3.1 Value Iteration()Initialize V arbitrarily, e.g. V (s) = 0 for all s 2 S

repeat

for all s 2 S dov V (s)V (s) maxaPs0 P (s0js; a)V (s0) +R(s; a)Æ max (Æ; jv � V (s)j)
end for

until Æ < �(1�)=2��� (s) argmaxaPs0 P (s0js; a)V (s0) +R(s; a)Return ���
3.4.4 Reinforcement LearningThe Value Iteration method desribed in Setion 3.4.3 is quite eÆient inits pure form but has some very high requirements. Both the transitiondistribution P (s0js; a) and the expetation of the reward distributionR(s; a)must be known in advane, whih an sometimes be diÆult to alulate insome domains.There exists a set of MDP solution methods that does not diretly re-quire a transition and reward model of the environment. These methods gounder the name Reinforement Learning (RL) [69℄ and they are apableof learning solution poliies through interation with an environment or asimulation of it, whih is often muh easier to onstrut than speifying themodel diretly [69℄.
Q-FunctionsWithout a model of the transition distribution, it is not possible to extratan optimal poliy �� through Equation 3.4. RL methods often use a soalled Q-funtion instead whih is a mapping from both ation and stateto a value. The Q-value Q�(s; a) represents the expeted value if the ationa is exeuted in state s and then the poliy � is followed.
Q-LearningA simple variant of Reinforement Learning is the Q-Learning algorithmwhih updates the Q-funtion after it has exeuted an ation a in a state sand reeived the reward r in the following manner:Q(s; a) Q(s; a) + �N (r + maxa0 Q(s0; a0)�Q(s; a)) (3.5)

\li" | 2008/4/8 | 9:36 | page 34 | #4434 CHAPTER 3. DYNAMIC DECISION NETWORKSThe �N parameter is ommonly set to:1(1 + visitsN (s; a)) (3.6)where visitsN (s; a) is the total number of times the ation a has previ-ously been exeuted in the state s.The updated Q-funtion is guaranteed to onverge to the orret valueif, in the limit, all ations are exeuted an in�nite number of times. Thisriteria an be satis�ed by using suitable exploration funtions that some-times selet (aording to the urrent Q-funtion estimation) non-optimalations. One suh exploration funtion uses an �-greedy poliy whih seletsa random ation with probability �.The Q-learning method desribed here is the most simple one possiblesine it uses a tabular representation of the Q-funtion. It is also very slow,espeially when many sequential ations are required to reeive a reward.If the model of the environment is known in advane, the Q-funtion anbe represented and learned with funtion approximation tehniques suh asNeural Networks [9℄.The full Q-learning algorithm is shown in Proedure 3.2.
Procedure 3.2 Q-learning()Initialize Q(s; a) arbitrarily, e.g. Q(s; a) = 0 for all s, a

repeats The urrent (initial) state
repeata An ation derived from Q (e.g., �-gready)Exeute a and observe r and s0Q(s; a) Q(s; a) + �N (r + maxa0 Q(s0; a0)�Q(s; a))s s0
until s is a terminal state

until Termination onditionReturn Q
3.4.5 RL with Model BuildingIt is possible to ombine the RL tehnique of learning a poliy through in-teration with the environment and the eÆient methods for solving MDPsgiven a model. The trik is to learn a model of the environment simul-taneously and use that to update the Q-funtion with. A straightforwardmethod is to update all Q-values with a Q-funtion version of Value iter-ation after every interation but that is a very omputationally expensivemethod and more eÆient methods exist.

\li" | 2008/4/8 | 9:36 | page 35 | #453.4. SPECIAL CASE: MARKOV DECISION PROCESSES 35
Model BuildingSine the environment is assumed to be fully observable, a Maximum Like-lihood (ML) [2℄ estimation of the model an be applied. The transitionfuntion desribes a multinomial probability distribution whih an be MLestimated by keeping trak of the number of times the transitions have o-ured.Proedure 3.3 desribes the details of how the model is learned given theexeuted urrent ation a, previous state s0, urrent state s and reeivedreward r. Nd(s; a; s0) and N(s; a) ontain the ounters that are neededto update the transition distribution P (s0js; a) and the expeted rewardR(s; a; s0) (whih needs to inlude the resulting state s0 in order to performthe Bellman update for Q-funtions).
Procedure 3.3 UpdateModel(a, s, s0, r)Nd(s; a; s0) Nd(s; a; s0) + 1N(s; a) N(s; a) + 1Rsum(s; a; s0) Rsum(s; a; s0) + rR(s; a; s0) Rsum(s;a;s0)N(s;a;s0)P (s0js; a) Nd(s;a;s0)N(s;a)
DynaQ AlgorithmThe DynaQ Algorithm [68℄ is a simple but e�etive reinforement learningalgorithm that an be used together with UpdateModel(). DynaQ usesboth the update from Q-learning and the learned model to update the Q-funtion. The Q-funtion update with the model is performed with theBellman update adapted for Q-funtions:Q(s; a) =X s0P (s0js; a)(R(s0; a; s) + maxa0 Q(s0; a0)) (3.7)whih requires that R(s0; a; s) keeps trak of the resulting state as well.The Bellman update is performed N times with a randomly previouslyvisited state sr and ation ar. The DynaQ algorithm is shown in Proedure3.4, whih is a version of DynaQ that an return the Q-funtion when sometermination ondition is met. In Chapter 5, the DynaQ algorithm is usedto perform planning and the termination ondition is then that a ertainnumber of simulation steps has been performed.

\li" | 2008/4/8 | 9:36 | page 36 | #4636 CHAPTER 3. DYNAMIC DECISION NETWORKS
Procedure 3.4 DynaQ()Initialize QSet Nd(s; a; s0) = 0, N(s; a) = 0, Rsum(s; a; s0) = 0 for all s, a, s0

repeats Current statea An ation derived from Q (e.g., �-gready)Exeute ation a. Observe resulting state s0 and the reward rQ(s; a) Q(s; a) + �N (r + maxa0 Q(s0; a0)�Q(s; a))UpdateModel(a, s, s0, r)
for i 1 to N dosr A random, previouosly visited statear A random, previouosly taken ation in sQ(sr ; ar) Ps0 P (s0jsr; ar)(R(s0; ar; sr) + maxa0 Q(s0; a0))
end for

until Termination onditionReturn Q

\li" | 2008/4/8 | 9:36 | page 37 | #47

Chapter 4

The DARE MethodAn agent that operates in a dynamially and rapidly hanging world mustbe able to ontinually augment its models at di�erent levels of abstrationsrelative to the task at hand. In the introdutory hapter it was mentionedthat if an agent's problem models are allowed to vary during its opera-tion depending on the urrent fous of attention (see Setion 1.7) and thetradeo� between auray and feasibility, there are some important onse-quenes that need to be taken are of. A generated or seleted model anbe too oarse for exeuting the orresponding solution with the availableskills. Planning must therefore be performed on several dynamially re-ated abstration levels whih means that the agent needs to ontinuouslymonitor the validity of the abstrations used. Replanning beomes an im-portant instrument when abstrations beome invalid or when unsuspetedor unmodelled events our. Due to the dynami abstration levels, a moreexible subproblem generation is needed than those urrently present for�xed abstration levels [47℄ [75℄ [6℄.The purpose of this hapter is to desribe a method 1 alled DARE(Dynami Abstration-driven Replanning and Exeution) whih is de-signed to take the impliations of dynamially generated problem modelsand abstration levels into onsideration. The DARE method is a tem-plate that needs to be �lled with environment lass-spei� subproblemgeneration proedures, abstration validity monitoring and problem solvingtehniques. For example, in Chapter 5, MDPs are generated and solvedon several levels of abstration with the help of task environment modelsand reinforement learning. A primitive ation in an abstrat MDP's pol-iy expands into a more detailed MDP whih is how the implementation ofDARE's subproblem generation proedure works for that environment lass.1It is alled a method and not an algorithm beause it is not detailed enough in orderto analyse it from a viewpoint of running time et. whih is the onvention used in [12℄
37

\li" | 2008/4/8 | 9:36 | page 38 | #4838 CHAPTER 4. THE DARE METHOD
4.1 Tasks and BeliefsOne of the main ideas of DARE is that the abstrations used by the agentare strongly inuened by its urrent tasks and beliefs:� Tasks: A task desribes an objetive-reahing ativity that denotesseveral possible sets of partially ordered skills. The denotation aneither be diret or indiret through the use of other tasks. A taskan often be performed in many di�erent ways depending on the sit-uation. The urrent tasks of an agent should strongly inuene itsabstrations. For example, if the agent is about to lift an objet withits atuators, it should fous its attention on that objet and otherthings that are relevant during suh a task. The abstration should�lter out irrelevant details.� Beliefs: An agent's beliefs are onsidered to be the set of models thatthe agent uses to represent its environment and itself with. Maps,logial knowledge bases and probability distributions are all examplesof what are onsidered to be beliefs. An agent's urrent beliefs inombination with feedbak from the environment should be used todetermine what abstrations to use. For example, when more andmore information beomes available about an agent's environment,the level of unertainty dereases and the planning horizon an beinreased and perhaps more simpli�ed models an be used instead.
4.2 Overview of DAREFigure 4.1 shows a rough sketh of how DARE works. The solid arrowsspeify the method's logi and the dotted ones speify information ow.The di�erent parts of the method are summarized in the following list:� Find suitable problem models in current context: The �rststep of DARE is to �nd a suitable model that an be used to performor support planning. This step performs the dynami abstrationwith the help of the urrent beliefs and tasks. The urrent tasks ofthe agent are spei�ed in an HSN struture whih is desribed fur-ther in Setion 4.5. The result of this step is a problem model (suhas an MDP or a lassial planning problem). Chapter 5 and 6 de-sribe how this problem generation an be performed in both fullyand partially observable task environments using optimization teh-niques. The information about the seleted abstrations is stored inthe HSN struture for later use.� Solve problem: The problem model is then solved with a suitablesolution tehnique and the solution is stored in the HSN struture. Forexample, if the problem model an and will be solved with a lassialplanner, the resulting sequential plan is stored in the HSN struture.

\li" | 2008/4/8 | 9:36 | page 39 | #494.3. EXECUTION ASSUMPTIONS 39� Refine solution?: A deision has to be made whether the solution isonrete enough to be exeuted or if it must be re�ned �rst. It mightbe the ase that a part of the solution is \travel to Stokholm" whihmight be re�ned into \go to ar, enter ar, drive towards intersetion1, turn left at intersetion 1, ... ,exit ar". Then a subset of thissequential plan an be re�ned further until it is deided that someation an be exeuted.� Specify subproblems: If further re�nement is neessary, subprob-lems must be spei�ed. For example, if a sequential plan should bere�ned, the agent an hoose to re�ne a subset of all ations. MDPpoliies an be re�ned in many ways suh as re�ning all state-ationpairs into a separate subproblem et. When this deision is taken,the HSN struture is updated and DARE tries to �nd a suitable prob-lem model (or models) for this partiular re�nement. This proess isrepeated until a onrete enough ation turns up.� Models invalid or refinement needed on some level?: Every ab-stration must be losely monitored so that the assumptions are validenough to trust the model. When an invalid abstration is deteted,DARE tries to �nd new problem models that are more aurate in theurrent situation.� Update skills: The skills (see Setion 2.5.3) that are urrently exe-uting must also be updated to reet hanges to the solutions storedin the HSN struture.
4.3 Execution AssumptionsSetion 2.5 briey desribed some of the available arhitetures for au-tonomous agents, primarily used for roboti appliations. The olletiveterm skills was used to desribe the behavior-generating parts of the ar-hiteture whih represents e.g. the Task Proedure Instanes in MTA andReative Ation Pakages in RAPS.In this hapter it is assumed that skills an exeute in parallel with theDARE method and that it is possible to hange the urrent exeuting skillsdynamially, whih is the ase for the most ommon exeution systems.
4.4 Refinement AssumptionsDARE heavily depends on the assumption that it is bene�ial to partlyre�ne a solution in order to onstrut new problem models that are moredetailed or speialized to solve that partiular part. This seems to be avery natural approah to problem solving and it has been used extensively

\li" | 2008/4/8 | 9:36 | page 40 | #5040 CHAPTER 4. THE DARE METHOD
SkillsHSN structure

Find suitable problem models
in current context

Update skills

Beliefs

Specify subproblems

Solve problems

Models invalid

on some level?

Refine solution?

Entry

No

Yes

No

Yes

or refinement necessaryFigure 4.1: A rough sketh of how the (poll-based) DARE method works toontrol the urrently (in parallel) exeuting skills in the system.in HTN-planning systems like SIPE [75℄ and O-Plan [72℄ for many pratialappliations. It is also used within Hierarhial Reinforement Learning [6℄where extended versions of MDPs are used in hierarhies where a ertainMDP an have primitive ations that atually exeute a whole sub-MDP,whih in a way generalizes HTN planning to stohasti environments.All the existing systems that use task re�nement use it in a very well-strutured and well-understood way. Complexity results for HTN-planninghave been investigated in [21℄ and it is now e.g. possible to ompare theexpressivity of HTN-planners with lassial planners. Re�nement has beenviewed as an eÆient method for humans to provide heuristis to a taskenvironment. But for this to work, one has to know the exat workings of theenvironment, what prediates to use and how operators work. Re�nementis almost always performed down to the most detailed level whih is notpossible in more open-ended and dynami task environments.Using dynami abstration while performing re�nement makes things alot more ompliated. The task environment model is allowed to hange andproblemsmay be generated dynamially. Re�nement in this ontext is not asrisply de�ned as with HTN-planners or hierarhial reinforement learningmethods. A simple example is when a lassial planner is used to generatea solution to a dynamially generated problem. The steps in the solutionmight be re�ned in many di�erent ways depending on the situation, makingthe solution proess more exible but also less de�ned in the general asedue to the multitude of alternatives. One or several steps might be expandedinto any suitable planning model (suh as MDPs, POMDPs or even another

\li" | 2008/4/8 | 9:36 | page 41 | #514.5. HIERARCHICAL SOLUTION NODES 41lassial planning problem) and it is therefore muh more diÆult to de�nethe relationship between the abstration levels than in urrently existingtask re�nement systems.Nevertheless, it is at least possible to measure the impat of a ertaintask re�nement method if an agent with limited omputational resouresuses the method in an environment with a well-de�ned performane elementthat takes the deliberation time into aount (as will be demonstrated inChapter 5 and 6).
4.5 Hierarchical Solution NodesOne of the impliations of using dynami abstration for problem solvingis the need to keep trak of the abstrations and the resulting models tomake sure that they are still useful. For example, if one of the assumptionsis that an objet in the environment is stati, that assumption should be-ome invalid when strong evidene to the ontrary arrives. In the DAREmethod, the so alled Hierarhial Solution Nodes (HSNs) keep trak of theassumptions urrently made and the onditions that an invalidate them.Assumptions are typially made when problem models are onstrutedin a ertain situation. Consider a UAS that is given the task of searhingan area for ertain objets suh as �res, injured people, or ertain vehiles.It must make assumptions about the environment in order to ope with thesituation and task. The sensor input that the UAS an use to detet �resor bodies might for example ome from a CCD amera, laser and an IRamera. It must be deided what the sensor input means and how it shouldbe related to the UAS's urrent task. A possible abstration is that bodiesin the environment are represented with a position vetor and the �res withsome kind of area representation format e.g. polygons or speial values in agrid.The abstrations and the resulting problem models are used for theUAS's deision making and are therefore of utmost importane. It is im-portant that the abstrations remain reasonably valid in order to make theproblem models trustworthy. The abstrations must therefore be ontinu-ously heked or monitored and if some abstration is onsidered invalid,the abstration must be hanged and the problem model that relies on itmay have to hange as well.A HSN is used to store all this neessary information and an thereforebe onsidered as a data struture that keeps trak of abstrations, monitors,problem models and solutions.A HSN is supposed to be used to generate or modify a set of skills thatan be used to arry out solutions to a problem. Depending on the typeof solution, level of detail in the abstrations and what types of skills thatare available, it might also be neessary to store or generate information inthe HSN that desribes how sensor data should be obtained to guide thebehavior.

\li" | 2008/4/8 | 9:36 | page 42 | #5242 CHAPTER 4. THE DARE METHODAs mentioned earlier, a problem spei�ation that is generated throughdynami abstration might be at a very high abstration level and needsto be re�ned further before any available skill an exeute some subset ofthe solution. A HSN an therefore ontain a pointer to another HSN thatrepresents a more re�ned solution to parts of the problem in its parent HSN.The set of HSNs and the parent-hild relationships between them forms aHSN struture whih represents the abstration levels urrently present inan autonomous agent.Figure 4.2 illustrates a possible HSN struture where a set of abstrationsand problem models are used at the same time with di�erent assumptionsabout how the environment works.
Abstraction monitoring information

(possible bindings of variables)
Solution

a1 = A1
t1 = 10
t2 = t1 + 20
investigate−area(a1, t1)
...

Root HSN

Soft constraints
problem model

HSN 1

HSN 2

Abstraction monitoring information

Solution
(an action)

LookAtPoint(camera1, 12.2, 127.3, 10.2)

Classical planning
problem model

Fly(pos12, pos7)

TurnCameraTowards(camera2, area2)

TakePhoto(uav1, area2)
...

Solution

(a plan)

Real−time search
problem model

problem model
solution

abstraction

abstraction

sub HSN

sub HSN

problem model

solution

problem model

solutionFigure 4.2: An HSN struture that ombines di�erent abstrations and prob-lem models.The soft onstraints planning model, illustrated in Figure 4.2 as theroot HSN's problem model, de�nes the overall mission whih in this ase isto monitor a ertain area while at the same time try to ful�ll all sorts ofonstraints that an typially be used in onstraint-based planners suh asHSTS [51℄ and ASPEN [28℄. A solution to the planning model at this levelis a set of possible variable bindings that determines what the agent shoulddo next. Suppose that the solution is to investigate the areas A1, A3, andA2 in that order and then y bak to base to refuel.Parts of that high-level solution are then re�ned aording to the re-�nement assumption. Suppose that the ation \investigate area A1" is the

\li" | 2008/4/8 | 9:36 | page 43 | #534.6. SUBSCRIPTION VS POLL 43only ation that is re�ned in this example. In this ase, DARE onstrutsa lassial planning model whih takes the high level ation into onsider-ation but also adds additional details and other objetives that the higherabstration did not onsider.In this thesis, it will be assumed that the model onstrution mehanismis apable of reating a reasonable model whih an either guarantee theexistene of a solution or fail and inform the \higher" abstration level thatthe re�nement was impossible to perform. This is not an issue for the asestudies in Chapter 5 and 6 where the model type (MDPs and Depth-limitedlookahead models) make it easy to always guarantee that a solution exists.
4.6 Subscription VS PollThe DARE method an be implemented in di�erent ways. Figure 4.1 de-sribes a version where the abstrations are ontinuously monitored in the\Models invalid or re�nement neessary on some level?" test. This meansthat the method is poll-based ; the onditions are heked by the main threadin the method whih makes it oneptually easy to understand and imple-ment in simple environments.It is also possible to reate a subsription-based version of DARE wherethe onditions are heked by monitors that run in parallel with the mainthread (or even in another proess or on another omputer). The mainthread then sets up the monitors for the di�erent abstrations that shouldbe heked and the agent an then reat to invalidated abstrations whenthey our.In the UAS Teh system, CORBA [59℄ is used as a ommuniation mid-dleware and the di�erent software omponents are distributed on severalomputers. In suh a distributed system, it might be more natural to imple-ment the subsription-based DARE method instead due to the advantagesof using event-based ommuniation in suh a ontext. It is therfore verylikely that an implementation of DARE in the UAS Teh system will besubsription-based. However, it is muh easier to present and understandsingle-threaded methods and the two partial implementations of DARE areboth poll-based whih supports repeatability of the experiments (see Chap-ters 5 and 6).
4.7 The MethodIn this setion, the poll-based version of the DARE method will be desribedin more detail.

\li" | 2008/4/8 | 9:36 | page 44 | #5444 CHAPTER 4. THE DARE METHOD
4.7.1 MainProedure 4.1 shows the entry point of the poll-based DARE method whihtakes a set of beliefs (see Setion 4.1) Bel as input. Bel represents allavailable information that is urrently aessible to the agent. This setis allowed to hange dynamially depending on e.g. hanging onditionsand di�erent fous of attention. A skill might for example need spei�knowledge that is alulated elsewhere.
Procedure 4.1 DARE(Bel)1: rootHSN new Hierarhial Solution Node2: dynabsSolve(rootHSN, Bel)3: while not finished(Bel) do4: replanIfNeessary(rootHSN, Bel)5: end whileDARE initially onstruts the Root HSN, whih represents the highestabstration and deision level in the system. No skills are assumed to beexeuting in the system at this moment. It then alls the dynabsSolve()proedure (see Setion 4.7.2) to generate the �rst HSN struture that de-pends on the urrent beliefs Bel and starts up the skills that will exeute theinitial solutions to the problems. Figure 4.2 illustrates an example of whata resulting HSN struture might look like after alling dynabsSolve().The next task is to atively monitor the abstrations and problemmodelsto see whether they need to be hanged. This task is performed in a loop2 that is exeuted until the agent onsiders that it is �nished. Whether theloop �nishes or not by the agent's initiative depends on the appliation.Some tasks naturally have a well-de�ned end suh as when a UAS is sentout to take a set of pitures of a building struture and return to base, landautonomously and turn o� the engine. Other tasks are more ontinuous innature suh as ying a patrol route while refueling when neessary. In thatase, a human operator might trigger the �nished ondition.Inside the loop, DARE alls the replanIfNeessary() proedure (seeSetion 4.7.4) whih ontinuously heks that the urrent abstrations arevalid and performs replanning (by alling dynabsSolve()) if this is nees-sary.
4.7.2 DynabsSolveThe dynabsSolve() proedure (listed in Proedure 4.2) an be onsideredthe entral part of DARE sine it performs (or oordinates) the followingimportant tasks:2In the subsription-based version of the method, the loop is simply replaed with await for input signals from the monitors.

\li" | 2008/4/8 | 9:36 | page 45 | #554.7. THE METHOD 45
Procedure 4.2 dynabsSolve(hsn, Bel)1: abstration(hsn) findAbstration(Bel)2: problem(hsn) generateProblem(abstration(hsn), Bel)3: solution(hsn) solve(problem(hsn), Bel)4: modifySkills(hsn, Bel)5: reateSubProblems(hsn, Bel)� Selection of a suitable abstraction: An abstration is seletedor generated by a all to findAbstration() whih e.g. answersquestions suh as: Should the vehile v be viewed as a stationary3-dimensional objet or perhaps as a point with position and velo-ity? Should the environment be onsidered stohasti or determinis-ti? The best deision should be the one that gives the best perfor-mane of the task given the available algorithms and omputationalresoures.� Generation of a problem model: The abstration is then used togenerate a problem model whih should depend on the hosen abstra-tions. DARE performs this step with a all to generateProblem().If e.g. the abstrations determine that the environment should beonsidered deterministi, it might be possible to generate a lassialplanning model et.� Solving the problem: The solve() proedure is then used to solvethe generated problem model with a suitable solution algorithm.� Modifying the skills: The skills exeuting in the system may haveto be modi�ed aording to the solution. This part is performed witha all to modifySkills().� Creating subproblems: If it is onsidered neessary to re�ne thesolution, reateSubProblems() reates subproblems and adds a subHSN to the urrent HSN (see Setion 4.7.3).In Chapters 5 and 6, onrete implementations of dynabsSolve() willbe presented both where the generated problem is an MDP and a partiallyobservable DDN.
4.7.3 CreateSubProblemsThe main assumption within DARE is that a solution at one level an bere�ned into subproblems that an either be solved with a solution methodor exeuted diretly with some parameterized skill. It was argued in Setion4.4 that this is a good thing to do.The task re�nement in DARE is performed with the reateSubProb-lems() proedure (see Proedure 4.3. In that proedure, there is a all to

\li" | 2008/4/8 | 9:36 | page 46 | #5646 CHAPTER 4. THE DARE METHODutoffTest() whih heks whether any more re�nement of the urrentsolution should be performed. This an depend on many things but shouldultimately be tuned by the expeted performane that it yields if used.
Procedure 4.3 reateSubProblems(hsn, Bel)1: if utoffTest(hsn, Bel) then2: subNode(hsn) nil3: else4: subNode(hsn) reateSubHSN(hsn, Bel)5: dynabsSolve(subNode(hsn))6: end ifA quite general uto� riteria might be that there exists skills that re-liably an exeute the solution at the urrent abstration level and morere�nements would not yield a better performane (due to the extra ompu-tational ost to all dynabsSolve() one more).
4.7.4 ReplanIfNecessaryThe poll-based DARE method alls replanIfNeessary() ontinuously tohek that the urrent abstrations are reasonable and to update the HSNstruture and modify the urrently running skills if neessary.
Procedure 4.4 replanIfNeessary(hsn, Bel)1: if hsn == nil then2: return fNo replanning neessaryg3: end if4: if abstrationInvalid(hsn, Bel) then5: subNode(hsn) nil6: dynabsSolve(hsn, Bel) fReplang7: else8: if keepSubHSN(hsn, Bel) then9: replanIfNeessary(subNode(hsn), Bel)10: else11: reateSubProblems(hsn, Bel)12: end if13: end ifThe HSN struture is then traversed from the root and down and theabstrations are heked for validity and other riteria suh as if a partialsolution should be extended. The abstration validity hek is performedwith a all to abstrationInvalid() and dynabsSolve() is alled if anew abstration is onsidered neessary.Examples of reasons for hanging abstrations an be that somethingshould be viewed in a di�erent way depending on new information. An

\li" | 2008/4/8 | 9:36 | page 47 | #574.8. DISCUSSION 47objet an for example beome totally irrelevant for performing a ertaintask. Examples of this are given in Chapter 5 and 6 where an observationtarget is onsidered irrelevent after it has been lassi�ed and will not beonsidered when the problem models are onstruted. Abstrations mayalso have to hange when an ation that was previously onsidered deter-ministi turns out to be unreliable for some reason (perhaps a mehanialerror). The available proessing power for the deision proess may alsohange for di�erent reasons and then other types of abstrations are moresuitable. Other pratial deisions suh as sampling or generation rate ofdata may also have to be modi�ed dynamially depending on the avail-able omputational resoures and the requirements of the urrent problemmodels.Even if the abstrations are valid in the urrent HSN, it may still bethe ase that the sub HSN must be replaed or modi�ed whih is hekedwith a all to keepSubHSN(). An example of suh a situation is when onlyparts of the solution have been re�ned in the sub HSN and it is neessaryto re�ne some more, possibly due to the agent's exeution.If the sub HSN is kept, replanIfNeessary() is alled reursively andapplied to that HSN.
4.8 DiscussionThis hapter desribed the poll-based DARE method whih is a templatefor performing planning and exeution with dynami abstrations.The method is very abstrat and many things have to be instantiated be-fore it an be used. In this thesis, two instantiations have been onstrutedwhih demonstrate all parts of the method.DARE is very useful in dynami task environments where it is not pos-sible to represent the di�erent parts of the world ompletely at all timesboth during exeution and planning and when it is bene�ial to hangerepresentation when neessary to adapt to hanging onditions. However,for well-spei�ed task environment models whih do not inlude any funda-mental surprises, it is always possible to onstrut better speialized agentsthat an outperform DARE. The strengths of DARE lies in its potential ofhandling surprises that are not part of any �xed task environment model.A task environment that is part of the real world an make any agent witha �xed model fail miserably beause of its inability to reason about detailedparts of its environment. An agent driven by a sophistiated DARE imple-mentation should be able to test di�erent ways of viewing its environmentand thereby beome muh more robust. This would probably require alarge e�ort where a formal language for desribing abstrations and modelonstrutions would help, whih is a topi for future work (see Setion 7.1).The presented version of DARE an be further improved. Generatedsolutions are urrently thrown away if an abstration is onsidered invalid

\li" | 2008/4/8 | 9:36 | page 48 | #5848 CHAPTER 4. THE DARE METHODwhih an be very wasteful. It should be possible to reuse previously gener-ated solutions with some kind of ase based reasoning [1℄ or other mahinelearning methods.

\li" | 2008/4/8 | 9:36 | page 49 | #59

Chapter 5

Case Study IThe poll-based DARE method, that was presented in the previous hapter,is very abstrat and a lot of environment lass-dependent work is neededto implement it. The reason for this abstrat presentation is that the orepriniples of DARE an be applied to a large lass of task environments andproblemmodels that bene�t from dynami abstration to fous the attentionon the most important parts during the deision making. In this hapter, aonrete implementation of the method is presented that has been adaptedto a ontinuous, stohasti and fully observable environment lass inspiredby the UAS Teh system. The environment lass ontains a utility-basedagent that reeives rewards when it lassi�es dynami observation targetsor reahes a ertain target area. At the same time it tries to avoid dangersthat init negative rewards if the agent is too lose to them.In this environment lass, MDPs (see Setion 3.4) are used as the plan-ning model at every abstration level and solved with reinforement learningtogether with task environment models that are possible to simulate. Thetask environment models are implemented with fully observable DDNs (seeChapter 3).Parts of the results in this hapter have been published in [57℄.
5.1 Task Environment ClassThe instanes of the task environment lass ontains a single agent thatoperates in a sequential, stohasti, ontinuous and fully observable 2D en-vironment (see Figure 5.1) whih an ontain any number of the followingelements:� Finish areas whih are retangular areas where the agent an safely�nish its urrent task or subtask. Eah area is assoiated with a rewardthat an be used to speify several ompeting target loations.49

\li" | 2008/4/8 | 9:36 | page 50 | #6050 CHAPTER 5. CASE STUDY I� Road networks whih are undireted graphs where the edges are linesegments that an be traversed by di�erent types of external agents(see next item).� External agents whih are objets that an either move freely (assum-ing that it is a point with a ertain mass and maximum aeleration) inthe environment or bound to a road network. The external agents aneither be dangers or observation targets. Dangers should be avoidedby the agent and they are assoiated with a ertain negative rewardthat the agent reeives when it omes too lose to it. The agent antry to lassify an observation target, if it is lose enough, and if it issuessfull it reeives a positive reward.
D1

F

Road network

D2

Cost radius

A = Agent

F = Finish area

D1 = Road network bound danger

D2 = Freely moving danger

OT = Road network bound observation target

A

OT

Maximum classification distance for OT

Figure 5.1: An instane of the fully observable UAS environment lass. Theost radius is desribed in Setion 5.2.1The UAS agent an perform one of the following ations:� Move in eight possible diretions (also alled \kings moves") with aertain speed (10 m/s in the implementation).� Wait at the urrent position.� Finish at area whih means that the UAS agent moves towards a�nish area and �nishes when it is reahed. There is one suh ationfor every existing �nish area.� Try to lassify an observation target by moving towards it and ontin-uously perform the lassi�ation. This ation models a more detailedsensor ation whih the agent an use to extrat more informationabout a target than its position.This task environment lass will be alled the fully observable UASenvironment lass.

\li" | 2008/4/8 | 9:36 | page 51 | #615.2. TASK ENVIRONMENT MODEL 51
5.2 Task Environment ModelThe task environment models are implemented by fully observable DDNswhose struture is shown in Figure 5.2. The external agents are assumed tobe independent of eah other. A DDN an be used for simulation with thehelp of a random number generator where the probability distributions aresampled. Suh a task environment model for simulation and evaluation ofthe agent is supposed to have a �xed time step length dt. When a DDN isused by the agent during the planning phase, dt is determined dynamially(see Setion 5.4.2). An agent reeives a reward of -1 for eah ation itexeutes during one seond whih means e.g. that moving 100 meters givesa total reward of -10 if no dangers are around (see Setion 5.2.1).

Action

Road
Network
(static)

Reward

t

agent
variables

t − 1

External

t
variables

External
agent

t−1

Agent
position

Agent
position

Figure 5.2: The general struture of the fully observable DDN that imple-ments the task environment model.Figure 5.3 shows the relationship between the state variables in a freelymoving external agent. The speed and diretion is assumed to hange ran-domly aording to the Gaussian distributionsN(0; �dt;vel) and N(0; �dt;dir)where �dt;� (� 2 fdir; velg) depends on the time step length used. It is as-sumed that the standard deviation is equal to �1;� for a dt equal to oneseond. In order to make the same standard deviation for N steps of length1=N seonds, �dt;� is set to �1;�pdt.The road network bound agents (see Figure 5.4) are modelled impliitly

\li" | 2008/4/8 | 9:36 | page 52 | #6252 CHAPTER 5. CASE STUDY I
t − 1

Speed
t

Position
t

Direction

t

Direction
t − 1

Position

Speed
t − 1

Figure 5.3: The DBN for a freely moving external agent.by �rst generating a random length inrease depending on the urrent ve-loity. The road network is then used to determine where the agent goesby using a uniform distribution at juntions. The distribution for the ur-rent road segment and segment length is impliitly determined (see Setion2.2.4) by a program that follows the urrent road segment to a juntionand then samples the next way to go until the same distane has been ov-ered as in the \distane to go" variable. This is possible sine the solutionmethod used (reinforement learning) does not need an expliit distributionor density funtion.
5.2.1 Danger RewardsIdeally, the (negative) reward reeived from a danger do during the timetnow � dt to tnow an be alulated as follows:Rdo = Z tnowtnow�dtmin(�Cmax + CmaxCR jpa(�)� pdo(�)j; 0)d� (5.1)where pa(�) and pdo(�) are the funtions that desribe the movementof the agent and the danger. CR is the ost radius whih determines thedistane from the danger where the reward is zero. Cmax is the highestnegative reward that an be reeived per seond. dt is quite small andan approximation of Rdo is used in the implementation by the followingformula: Rdo = dt �min(�Cmax + CmaxCR dmin; 0) (5.2)Here, dmin is the minimum distane between the danger and the agentduring [tnow � dt; tnow℄ whih makes the approximation a pessimisti one(from the agent's point of view).

\li" | 2008/4/8 | 9:36 | page 53 | #635.3. SKILLS 53
Road

Network
(static)

Road
Segment

t

Distance
to go

Road
Segment

t − 1

RS
Distance

t − 1

Speed

t − 1

Speed

t

RS
Distance

t

Figure 5.4: The DBN for a road network bound observation target.
5.2.2 Observation Target RewardsFor every observation target in the task environment, the DDN inludesa boolean variable lot whih spei�es if ot has been lassi�ed. The prob-ability P (lot;1jd) of lassifying ot from a distane d during one seond isspei�ed with a so alled Continuous-time Markov Proess [4℄ with onlytwo possible states and with the intensity �d of going from \not lassi�ed" to\lassi�ed". The intensity dereases linearly from a maximum value �ot;maxto zero at the maximum lassi�ation distane dot;max and beyond. Everyinstantiation of a DDN with a time step of dt uses a probability distri-bution P (lot;dtjd) (see Equation 5.3) whih determines the probability oflassifying ot if the lassi�ation ation is performed for a duration of dt.P (lot = truejd; dt) = 1� e��ddt (5.3)If the lassi�ation sueeds, the agent reeives a reward Rl;ot that isindependent of the distane to the observation target.
5.3 SkillsThere are four di�erent parameterized skills available whih an be used toexeute the ations desribed in Setion 5.1. Only one skill at a time anbe exeuted, whih makes it very easy to implement the modifySkills()

\li" | 2008/4/8 | 9:36 | page 54 | #6454 CHAPTER 5. CASE STUDY Iproedure whih is alled from dynabsSolve() in DARE (see Setion 4.7.2).In dynabsSolve(), the modifySkills() proedure is exeuted every timea solution has been found, making it possible to struture and oordinateskills that operate with di�erent abstration levels. This is not neessaryfor the implementation desribed in this hapter where there an only beexatly one skill exeuting at all time, whih is the one that orresponds tothe solution at the \lowest" abstration level.The basi movement skills simply make the agent move in one of eightpossible diretions (kings move diretions) until the skill is terminated bymodifySkills(). The Finish at area skill moves the agent towards thelosest point in a �nish area and �nishes the exeution when the agentis within that area. The Try lassify skill moves the agent towards anobservation target and tries to lassify it at the same time. The probabilityof suess is spei�ed in Setion 5.2.2.
5.4 DARE ImplementationThis setion will desribe in detail how the di�erent parts of the DAREmethod are implemented for the fully observable UAS environment lass.There are several questions that need to be answered when DARE is im-plemented suh as what type of problem models to use and how they aregenerated and solved.
5.4.1 Problem ModelsThe task environment model presented in Setion 5.2 has ontinuous statevariables whih means that it is diÆult to use diretly for planning. Twoommon methods will be onsidered in this thesis to perform planningin suh environment lasses: Depth-limited lookahead and ReinforementLearning (RL). Depth-limited lookahead will be explored in Chapter 6 andRL is used in this ase beause of the fully observable state variables and theopportunity to demonstrate a simple but fully working dynami abstrationmethod (see Setion 5.4.2).As mentioned in Setion 3.4.4, RL methods assume that the environ-ment an be represented with an MDP but it is not neessary to providedetailed transition and reward distributions in advane. In the fully ob-servable UAS environment lass, a task environment model in the form of aDDN is available to the agent but this has a ontinuous state spae whihan not diretly be used without either some funtion approximation of theQ-funtion and/or disretization of the state spae. Funtion approximationis avoided in this ase to make it possible to study the dynami abstrationmethod in isolation.

\li" | 2008/4/8 | 9:36 | page 55 | #655.4. DARE IMPLEMENTATION 55
5.4.2 Dynamic AbstractionThe main idea of dynami abstration is to dynamially generate modelsin a way that suits the urrent irumstanes in the best possible way (seeSetion 1.8). The abstrations hosen should also depend on the availableomputational power.In this implementation of DARE, muh of the abstration is already de-ided. MDPs are used to represent the planning models whih means thatthe environment is onsidered to be stohasti but fully observable. In amore exible and apable dynami abstration \module", this type of rea-soning should be performed automatially. This is urrently onsidered asfuture work and is further disussed in Setion 7.1. The dynami abstra-tion in this implementation will be onerned with how the state spae Sshould look like when the MDP is solved and how the mapping from thetask environment model's state variables to S is done.The most ommon method when reating a state spae is to use a �xeddisretization. This implementation will however hange the disretizationdepending on what parts of the environment are onsidered most relevantat the moment. A danger that is very lose to the agent should for examplebe onsidered more relevant than a danger that is very far away and theindividual possible negative rewards that they an init should be takeninto onsideration.The main idea of the dynami onstrution of S is then to fous moreon the more relevant objets and state variables in the environment lassby giving them a greater number of possible disrete values. At the sametime, jSj is limited by a onstant, giving the less relevant objets and statevariables fewer possible disrete values.
RelevanceThe number of possible disrete values for an external agent is determined byde�ning an optimization problem over possible disretizations. The utilityof a disretization is spei�ed to depend on the so alled relevane of thedi�erent external agents. The relevane of an external agent dereases withdistane d and also depends on the ost radius Cmax;do for dangers andmaximum lassi�ation distane Rl;ot for observation targets.The relevane funtion for dangers do is de�ned as follows:Reldo(d) = Cmax;doe��do�d (5.4)where �do is set to a value that makes Reldo equal to 10 perent of itsmaximum value at the ost radius. By using the exponential funtion, dan-gers will never be totally irrelevant. Other funtions are of ourse possiblebut this seems to work well in the fully observable UAS environment lass.The relevane funtion Relot for observation targets is similar to Reldoexept that Rl;ot is used instead of Cmax;do and an extra fator ot (see

\li" | 2008/4/8 | 9:36 | page 56 | #6656 CHAPTER 5. CASE STUDY ISetion 5.5.1) is multiplied with Relot whih makes it possible to adjustthe relevane when the ontinuous negative reward reeived from dangers isompared with the \one shot" reward reeived when an observation targetis lassi�ed.The relevane funtion for observation targets ot is then de�ned as:Relot(d) = otRl;ote��ot�d (5.5)where �ot is (similarly to �do) set to a value that makes Relot take thevalue of 0:1 � Rl;ot at the maximum observation distane.The state variables of the agent itself must also be represented in S. It issimply assumed that the relevaneRelXY for the agent's position variable (Xand Y oordinate) is the same as the sum of the external agents' relevanes.This means roughly that the agent should represent its own state variablesin S as muh as its environment's.
Discretization OptimizationThe relevane funtions are then used to de�ne the utility of a disretizationUdis using the following formula:Udis = Xi2OT[DO[fX;Y g (1 + RelijSij)�1 (5.6)where Si is the number of disrete values that are assigned to the objetor state variable i, OT is the set of observation targets, DO is the setof dangers and fX; Y g is the agent's position variables. This partiularformula was hosen beause it seems to distribute the number of disretevalues in a reasonable way in the sense that the inrease of Udis derease forhigher number of values. Other possible utility funtions inlude variantsand ombinations of the sigmoid and the tangent funtion.A maximum state spae size Smax is used to limit the size of S, beause itis then possible to partly ontrol the time that is neessary to provide a rea-sonably good poliy. The total state spae size is alulated by multiplyingall the state ontributions Si.A reasonable state distribution for a disretization is found in the urrentimplementation by performing Hilllimbing searh (see Setion 2.4), maxi-mizing the utility distribution Udis from the initial state where all objetsand features have only one state eah.
ClusteringWhen the optimization is done, the disretization must also de�ne the map-ping from state variables to the di�erent states. The agent's position vari-ables are mapped to a standard grid with a width and height determined bythe state distribution. The mapping for the external agent's state variablesare determined dynamially with k-means lustering [33℄. The k-means

\li" | 2008/4/8 | 9:36 | page 57 | #675.4. DARE IMPLEMENTATION 57lustering algorithm is shown in Proedure 5.1 where K is set to the valuereeived from the state distribution and I is the set of instanes.
Procedure 5.1 kMeanCluster(I, K)1: Centroids K number of random instanes from I2: repeat3: for all i 2 I do4: Calulate eah i's losest entroid i5: end for6: for all 2 Centroids do7: Calulate the enter of given its assigned instanes I8: Assign a new entroid new that is losest to the enter of 9: end for10: until All entroids stay the same11: Return CentroidsThe set of instanes I are generated by sampling the task environmentmodel from the urrent state Ns runs with Np samples in eah run. Theso alled temporal horizon Thoriz;ddn of the DDN de�nes how far aheadin time the task environment simulation and instane generation will beperformed. The temporal horizon for a DDN with width w and height his v�1A max(w; h) where vA is the agent's speed. The number of runs Ns isalways set to 10 and the number of samples at eah run Np is always 100whih gives a total of 1000 instanes for eah external agent.The temporal horizon together with the standard grid determines thedt parameter that is used to onstrut a �xed time step DDN. The timestep dt is set to dtmin(wg ; hg) where wg and hg is the width and height ofa standard grid ell and dt is a onstant fator that determines how longdt should be relative to the grid ell size. dt was set to 0.1 during theexperiments (see Setion 5.5).Figure 5.5 illustrates a typial result after the disretization optimizationand lustering.
5.4.3 Solution MethodThe disretization, determined by the dynami abstration method de-sribed in Setion 5.4.2, an then be used for planning. Sine the tran-sition and reward distributions for the given disretization is unknown anddiÆult to alulate exatly from the DDN, the DynaQ (see Setion 3.4.5)reinforement learning method is used to solve the indued MDP. DynaQ istherefore used for both implementing the generateProblem() (transitionand reward distribution) and the solve() proedures in DARE.In the implementation, the �-greedy exploration funtion (see Setion3.4.4) is used with � set to 0.1 and the number of planning steps performed

\li" | 2008/4/8 | 9:36 | page 58 | #6858 CHAPTER 5. CASE STUDY I
D2

D1

F

D2 centroids

D2’s current position

D1 centroids

Road network

D1’s current position

Agent position

Standard grid (4x4)

A

Figure 5.5: An example disretization after disretization optimization andlustering. The total state spae is 16 �3 �2+1 = 97 where the standard gridontributes with 16, D1 with 3, D2 with 2 and the �nish area with 1 possibledisrete values. D1 is a road network bound danger that is moving to theright and D2 is a freely moving danger that moves towards south-west.in DynaQ is set to 5. The step length time is determined by the width ofthe ells in the standard grid with respet to the agents speed.DynaQ was originally designed to be used for ontinuous interationwith an environment and not to get a solution within a ertain time. Itan easily be turned into an anytime algorithm [15℄ by letting it run for aertain amount of time or number of exeution steps. The question is then:How long should it run before the Q-funtion an be used for exeution?The question is entral and important for the use of dynami abstrationfor problem solving beause the time used for problem solving is importantwhen the tradeo� between feasibility and auray of the planning modelis determined. Setion 5.5 presents some experiments where this tradeo�is spei�ed when the dynamis of the environment, S, exeution speed andnumber of simulation steps that DynaQ performs are taken into aount.Proedure 5.2 shows the implementation of dynabsSolve() in the fullyobservable UAS environment lass. findDisDist() implements the dis-retization optimization desribed in Setion 5.4.2. generateInstanes()performs the olletion of instanes to the kMeanCluster() algorithm thatreturns the set of entroids for all external agents. DynaQStepLimited()is an implementation of DynaQ where the number of simulation steps islimited whih determines the termination ondition in DynaQ (Proedure3.4 on page 36). One of the experiments in Setion 5.5 determines the op-timal balane between state spae size and number of simulation steps forthe implementation.The dynami abstration and solution method has now been de�nedwhen a ertain task environment model is given to the agent. For taskenvironment models with many external agents the disretization beomes

\li" | 2008/4/8 | 9:36 | page 59 | #695.4. DARE IMPLEMENTATION 59
Procedure 5.2 dynabsSolve(hsn, V)1: disDist(hsn) findDisDist(V)2: for all External agents ea do3: I generateInstanes(TEModel(hsn), V)4: lusters(ea, hsn) kMeanCluster(I, disDist(ea, hsn))5: end for6: solution(hsn) DynaQStepLimited(hsn)7: timeStamp(hsn) urrentTime()8: reateSubProblems(hsn)9: if subNode(hsn) = nil then10: Set the urrent skill aording to solution(hsn)11: end ifvery oarse and the solution steps an take a long time to exeute. There�nement assumption (see Setion 4.4) states that it might be bene�ialto re�ne suh oarse solution steps into subproblems with the reateSub-Problems() Proedure in DARE. This proedure is desribed in the nextsetion.
5.4.4 Subproblem GenerationThe implementation of DARE's reateSubProblems() for the fully ob-servable UAS environment lass reates subproblems by generating newDDNs that are determined by taking the solution poliy into onsidera-tion. If the solution e.g. has a Move East ation spei�ed for the urrentstate, the sub DDN for that subproblem is reated with an added �nisharea to the east of the agent. Figure 5.6 illustrates the di�erent types ofsubmodels that an be onstruted. The idea is to use that submodel togenerate a more detailed solution for moving the agent to the east, ignoringthe other parts of the environment at the moment. The relation between thesolution on one abstration level and the re�ned solution is then spei�edwith dynamially generated task environment models.With this implementation of reateSubProblems() it is possible, intheory, to re�ne solutions inde�nitely whih is not aeptable. The ut-OffTest() in DARE is in this ase used to stop the re�nement when thesolution is onsidered detailed enough. In this fully observable UAS envi-ronment lass, the uto� is made when the sub DDN's width or height issmaller than a ertain threshold (50 meters in this ase) or when the DDNdoes not ontain any external agents.There is also a question of how muh of the solution to re�ne. At oneextreme, every state/ation pair in the poliy an be re�ned, leading tojSjjAj number of re�nements. A more likely situation is that only a stritsubset of the solution is re�ned due to demands of a reasonable responsetime. The urrent implementation only re�nes the urrent state and the

\li" | 2008/4/8 | 9:36 | page 60 | #7060 CHAPTER 5. CASE STUDY I
FD

A F

D

A D

F

A

D

wait

OT

Move NorthEast Move East Try classify

A

Created finish areas
Original grid cell width

A = Agent, D = Danger, OT = Observation target, F = Finish areaFigure 5.6: Examples of sub DDNs that an be reated for some of theagent's ations. The new DDN's width is determined by the size of thestandard grid ells and the type of ation that the DDN represents. New�nish areas are onstruted in the generated DDN that represents the sub-problem's goal. Notie that the agent is allowed to �nish before it haslassi�ed the observation target, whih means that the Try Classify sub-problem models the possibility of \giving up" if it is onsidered to be toodangerous (ostly). The sub DDNs for Move NorthWest, Move West et.are reated in similar ways.solution poliy's ation in that state.The implementation of reateSubProblems() for the fully observableUAS environment lass is shown in Proedure 5.3 where reateSubHSN()onstruts a DDN aording to the urrent solution poliy.
Procedure 5.3 reateSubProblems(hsn, V)1: if not utoffTest(hsn, V) then2: subNode(hsn) reateSubHSN(hsn, V)3: dynAbsSolve(subNode(hsn))4: end if

5.4.5 Replanning ConditionsAfter dynabsSolve() has generated an initial solution in the poll-basedDARE method, a loop is entered (see Proedure 4.1 on page 44) where thereplanIfNeessary() is alled to ontinuously hek if any replanningneeds to be performed due to unsuitable abstrations or other onditions.The all to abstrationInvalid() is made to hek if the urrentlyused abstrations are invalid and need to be replaed with a all to dyn-AbsSolve(). The implementation of abstrationInvalid() for the fully

\li" | 2008/4/8 | 9:36 | page 61 | #715.5. EXPERIMENTS 61
Procedure 5.4 utoffTest(hsn, V)1: if No of external agents in the (not yet reated)TEModel(subNode(hsn)) = 0 then2: Return true3: else if The width or heigth of TEModel(subNode(hsn)) < 50 meters

then4: Return true5: else6: Return false7: end if

Procedure 5.5 reateSubHSN(hsn, V)1: Create a new HSN newHSN2: TEModel(newHSN) The task environment model that orrespondsto the ation in solution(hsn)3: Return newHSNobservable UAS environment lass is shown in Proedure 5.7 whih per-forms the optimization of the state distribution and heks if it di�ers toomuh from the urrent one. The onstant DDmax determines how muhthe normalized state distributions an di�er before the abstration is on-sidered invalid. The HSN struture also keeps trak of the time when theabstrations �rst was used. An abstration is also onsidered invalid if ithas been used more than a fration �g of the temporal horizon for the task.If the abstration is onsidered OK, the keepSubHSN() proedure isalled to hek if the urrent sub HSN should be kept or not. In the imple-mentation, if the agent exeutes a solution to a subproblem that leads to agoal or subgoal, a new subproblem must be generated and solved with a allto reateSubProblems(). A new subproblem an also be generated if astate hange ours and the solution poliy spei�es that a di�erent ationshould be exeuted than the one used to generate the subproblem. If forexample an external agent makes the state hange and the best ation isonsidered to be Move South instead of Move East, a new subproblem isreated that orresponds to the Move South ation and dynabsSolve() isalled with the orresponding sub DDN.
5.5 ExperimentsA set of experiments have been performed with the implementation to testthe viability of this type of dynami abstration method when used in thefully observable UAS environment lass.

\li" | 2008/4/8 | 9:36 | page 62 | #7262 CHAPTER 5. CASE STUDY I
Procedure 5.6 replanIfNeessary(hsn, V)1: if hsn == nil then2: return fNo replanning neessaryg3: end if4: if abstrationInvalid(hsn, V) then5: set subNode(hsn) to nil6: dynAbsSolve(hsn, V) fReplang7: else8: if keepSubHSN(hsn, V) then9: replanIfNeessary(subNode(hsn), V)10: else11: reateSubProblems(hsn, V)12: end if13: end if

Procedure 5.7 abstrationInvalid(hsn, V)1: if (urrentTime() - timestamp(hsn)) > Treplan then2: Return true3: end if4: di� j stateDist(hsn) - findDisDist(hsn) j5: if di� =jdi�j > DDmax then6: Return true7: else8: Return false9: end if

\li" | 2008/4/8 | 9:36 | page 63 | #735.5. EXPERIMENTS 63
5.5.1 SetupAll experiments were performed in a so alled simulated dynami modewhih means that the environment evolved during the agent's deliberation,whih is important to simulate in general if the task environment (see Se-tion 1.2) is atually dynami. The deliberation time was determined by thenumber of steps the DynaQ algorithm performs when the planning is per-formed at the abstration levels, and is therefore assumed to be a funtionof the number of steps.A set of 500 randomly generated test task environments were generatedand used in the experiments where the same random seed was used everytime in a given environment. This means that the external agents behavedin the same way every time given a ertain environment number, whihredued the variane in omparison tests [36℄. The agent had aess to allthe parameters of the task environment exept for the atual outomes ofthe random number generators. The step lengths during evaluation werealso di�erent from the models that the agent used during planning.Eah task environment had 1-5 observation targets with a random ob-servation reward between 10 and 50, 1-5 dangers with a Cmax (maximumnegative reward) of 10 per seond, and 1-3 �nish areas with a random rewardbetween 10 and 30. The starting position of the agent were randomized aswell in an area whih is always 400x300 meters.
State Space vs Simulation StepsThe maximum state spae size Smax during disretization optimization issupposed to approximately determine the time it takes to solve the generatedMDP. A larger Smax makes the solution more detailed and probably gives abetter performane, but only if DynaQStepLimited() is allowed to take asuÆiently large number of steps. More steps take more time whih makesthe total performae go down due to the simulated dynamis model whihould yield an optimal on�guration of those two parameters. Figure 5.7shows the result when the number of simulation steps and Smax are varied.It seems like there is a quite large range of Smax and number of simulationsteps that yields aeptable performane, as long as neither of them areset too low. This is a good sign that indiates that detailed parametertuning is not vital for the performane. It is also important to point outthat Smax spei�es the maximum possible number of states that an bedisovered during the planning. In pratie, the number of disovered statesis sometimes muh less, espeially when Smax is very large (see Table 5.1).
Relevance Factor for Observation TargetsSetion 5.4.2 introdued the relevane fator ot for observation targets thatis used to determine the relevane when so alled \one-shot" rewards re-eived from lassifying observation targets are ompared to the ontinuous

\li" | 2008/4/8 | 9:36 | page 64 | #7464 CHAPTER 5. CASE STUDY I

0
50

100
150

200
250

300
350

0

500

1000

1500

2000
−5

0

5

10

15

20

25

Max state size
Simulation steps

T
ot

al
 r

ew
ar

d

Figure 5.7: The result when the number of simulation steps and Smax arevaried.negative reward reeived from being too lose to dangers. One of the exper-iments was to determine an aeptable value for ot empirially. ot was inthat experiment varied between 0 and 5 and the result is shown in Figure5.8. The results indiate that even the ot parameter an have a wide rangeof possible values if just 0 is avoided. This is a quite surprising but positiveresult beause it demonstrates that no detailed tuning of ot is neessary.
Temporal Validity FactorAn abstration is always onsidered invalid after a ertain time Treplan (seeProedure 5.7). Treplan is alulated by �TThoriz;hsn where �T is alledthe temporal validity fator. Figure 5.9 shows the result when �T variesbetween 0 and 0.4. The best result seems to be when �T is set to approxi-mately 0.075 but aeptable results are reeived for values between 0.1 and0.3 as well and the performane seems to gradually drop after that.

\li" | 2008/4/8 | 9:36 | page 65 | #755.5. EXPERIMENTS 65

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
15

16

17

18

19

20

21

22

23

Relevance factor

T
ot

al
 r

ew
ar

d

Figure 5.8: The result when ot is varied.
Abstraction LevelsThere are many ways to test the bene�ts from using more abstration lev-els. One suh method is to inrease the minimum ell size, making there�nements our less frequently. Another way is to simply set a maximumnumber of abstration levels. Figure 5.10 shows the result when the maxi-mum number of abstration levels are varied. The result veri�es that severalabstration levels are bene�ial, even when the dynamis of the environmentpenalizes the extra omputation. The �gure also demonstrates the e�et ofthe uto� ondition whih prevents that more than three abstration levelsare reated.
Architecture SpeedupA simple experiment was performed when the omputational resoures wasdereased 10 times and inreased 100 and 1000 times the original. Theresult is shown in Table 5.1. The reason for the large gap between Smax inthe two experiments was that the number of atually visited states duringthe solution phase was muh lower than 100000. The speedup of 100 givesa rather large step in the result (from approximately 21 to 36).

\li" | 2008/4/8 | 9:36 | page 66 | #7666 CHAPTER 5. CASE STUDY I

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
17

18

19

20

21

22

23

24

25

Temporal validity factor

T
ot

al
 r

ew
ar

d

Figure 5.9: The result when the temporal validity fator �T is varied.
Equal RelevanceIt is interresting to investigate how e�etive the dynami abstration isompared to a �xed abstration. The problem with suh an experimentis that the urse of dimensionality makes the state spae explode whenmany external agents are present. Suppose that the agent represents everyexternal agent with n disrete values in the disretization. If there are Nexternal agents in the environment and the agent represents its own positionwith Np number of disrete values, jSj beomes Np �nN . When N is equal to10 (the highest number of external agents in the tests), by just setting n to 9disrete values (whih ould be used to onstrut a 3x3 grid or use lusters)and Np to 16 (possibly a 4x4 grid) leads to a state spae larger than 55billion. This size of S an atually be dealt with if funtion approximationmethods are used or symmetries of the problem are exploited. In this wayit is possible to onstrut a �xed abstration poliy that an be used topossibly outperform the dynami abstration method. But what if just oneor two external agents are added or removed? With this approah, the statespae will beome totally di�erent and the solution poliy may turn out tobe useless. The point is that if it is possible to know exatly how the statespae will look like (as in bakgammon or hess), it is possible to onstrut

\li" | 2008/4/8 | 9:36 | page 67 | #775.6. COMMENTS 67

1 1.5 2 2.5 3 3.5 4 4.5 5
18.5

19

19.5

20

20.5

21

21.5

Max number of abstraction levels

T
ot

al
 r

ew
ar

d

Figure 5.10: The result when the maximum number of abstration levelsare varied.high quality solutions. In a more exible environment where objets anbe added or removed in a mixed-initiative setting, the dynami abstrationmethod is probably more e�etive, even if only small problems an be solvedat a time.An experiment was performed when the relevane for all features wasset to an equal value. The resulting mean reward for the equal relevanewas only 4.26. When the relevane information was used, the mean rewardreeived was 20.94 instead whih demonstrates the importane (in this taskenvironment) of onstruting the abstrations dynamially with a reasonablerelevane measure.
5.6 CommentsThis hapter has presented an implementation of the DARE method forthe fully observable UAS environment lass. The experiments only makeomparisons between di�erent settings of the parameters in the dynamiabstration, but, by observing the behavior of the agent many deisions itmakes are very reasonable. In some ases, the agent makes greedy deisions

\li" | 2008/4/8 | 9:36 | page 68 | #7868 CHAPTER 5. CASE STUDY ISpeedup Smax Sim. steps Mean reward0.1 50 150 4.891 150 1000 20.94100 1000 20000 36.381000 100000 100000 40.16Table 5.1: Three results when the arhiteture was slowed down 10 timesand sped up 1, 100, and 1000 times the original speed.where it takes an easy way out by �nishing at a nearby �nish area whenthere are still unlassi�ed observation targets in the area that are diÆultto reah due to dangers.The implementation performs well and sales up niely when the numberof objets in the environment lass inreases due to the dynami abstration.It has been demonstrated how all parts of DARE an be implemented inpratie and possibly the most interesting part is the implementation of thedynami abstration whih atually performs an optimization over the statedistribution in the disretizations.It takes some e�ort to implement DARE in a given environment lassand it may be an overkill in this partiular ase. It is expeted that most ofthe bene�ts of DARE will be demonstrated in more omplex environmentlasses where many di�erent types of abstrations and planning model typeshave to interat and it is too time-onsuming to speify beforehand how theagents should view the di�erent parts of the environment in every ase.Figure 4.2 on page 42 illustrates one vision where di�erent planning modeltypes and abstrations an be used at the same time depending on whetherthey are suitable to represent the abstrations suÆiently well.The experiments strongly indiate that the hoie of abstrations shoulddepend on the available omputational resoures when the task environmentis dynami (see e.g. Table 5.1). For planning with a performane measure,this tradeo� between auray and feasibility an atually be tested whenthe experiments take the deliberation time into aount through the modelwith simulated dynamis.Although the fully observable UAS environment lass is dynami, on-tinuous and stohasti, it is atually not of muh use for any realisti missionfor the UAS Teh system, mainly due to the assumtion of full observabilitybut also beause of the simpli�ed movement assumption and that no obsta-les exist. The next hapter will desribe a ase study where some of theideas of DARE are applied to a partially observable extension of the fullyobservable UAS environment lass.

\li" | 2008/4/8 | 9:36 | page 69 | #79

Chapter 6

Case Study IIChapter 5 desribed an implementation of the DARE method whih demon-strated how dynami abstration an be performed in pratie and providenan example of problem generation and abstration monitoring.The environment lass used in that ase study was rather simple. Theassumptions of a fully observable task environment, no obstales and a verysimple movement assumption (kings moves) makes it impossible to use di-retly for a mission for the UAS Teh system. The environment lass anstill be diÆult to handle without a dynami abstration mehanism due tothe urse of dimensionality (if MDPs are used as planning models).Sine one of the goals of the work with the DARE method is to pushdynami abstration tehniques into realisti settings, the next step is toimplement it for a more realisti environment lass, whih is the fous ofthis hapter. This new environment lass still has dangers and observationtargets as in the previous ase study, but now these external agents are onlypartially observable and the environment ontains obstales that must beavoided.In this environment lass (desribed further in Setion 6.1), partial ob-servability means that the agent an not see through the obstales with itsnoisy sensor (a amera in this ase) and not further than a ertain range.Another modi�ation of the environment lass from Chapter 5 is thatthe agent is restrited to move on linear path segments that, in this ase,are returned by a roadmap-based pathplanner [61℄.DDNs are still used to model the task environments, but in this aseobservation variables are used as well and �ltering is neessary to keep trakof the external agents. Partile �lters are used beause of the apparent needto model the multi-modal and nonlinear harateristi of the probabilitydistribution.The DARE method's approah of dynamially generating planning mod-els \on the y" is also followed in this ase study. The main di�erenebetween the method used in Chapter 5 is that the belief state is used to69

\li" | 2008/4/8 | 9:36 | page 70 | #8070 CHAPTER 6. CASE STUDY IIgenerate problems and the type of planning model is di�erent; an adaptedversion of depth-limited lookahead is used instead of reinforement learn-ing. Optimization is still used, but in this ase the result of the optimizationdetermines the possible points that the UAS agent will onsider ying toinstead of the state distribution.All the features in the DARE method are not implemented e.g. dy-nami abstration hierarhies. The implementation uses two �xed levelsat all times; one for the ight manouvers and one for the detailed ameramovement. It is still onsidered as dynami abstration sine the planningmodels are generated depending on the urrent situation.The results presented in this hapter are published in [58℄.
6.1 Task Environment ClassFigure 6.1 shows an instane of the partially observable UAS environmentlass.

�������
�������
�������

�������
�������
�������

����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

������
������
������
������

�����
�����
�����
�����

���
���
���
���

���
���
���
���

�����
�����
�����
�����

�����
�����
�����
����� ��

��
��
��

��
��
��

��
��
��

��
��
��
��

D1

D2

OT

Agent

Obstacles

FA1

FA2

Camera view

Figure 6.1: An instane of the partially observable UAS environment lass.D1 and D2 are dangers and OT is an observation target. The irles aroundthe external agents show the ost radius and the maximum lassi�ationdistane. FA1 and FA2 are �nish areas.In this environment lass, the agent is only allowed to move on linearsegments that are returned from a pathplanner. The pathplanner in thisase is roadmap-based whih is quite similar to one of the planners that areused in the UAS Teh system [61℄ where a probabilisti roadmap planneris used. The main di�erene is that the environment is in this ase two-dimensional and the roadmap is generated deterministially by setting theverties to the surrounding points of the obstales and then onneting everyvisible vertex. Plans are generated by onneting the start and goal vertex

\li" | 2008/4/8 | 9:36 | page 71 | #816.2. TASK ENVIRONMENT MODEL 71to the roadmap and performing A* searh with the straight-line heuristi.Figure 6.2 illustrates an example of a path from A to B generated by thepathplanner.
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����
����

����
����
����
����
����
����

Obstacles

A

B

Path

Figure 6.2: The �gure illustrates a planned path from point A to B, returnedfrom the 2D roadmap-based pathplanner.The UAS agent is equipped with a amera that an be used to trak theexternal agents and lassify the observation targets whih an be viewed asa more detailed sensing ation where more information is extrated from thetarget than its position. It is assumed that it has a maximum range and thatsome kind of geographi information system (GIS) is used to map the imagetraking information to world oordinates. This type of funtionality isimplemented in the UAS Teh system where a Kalman �lter is used to keeptrak of the UAS's pose with the input given from the inertial navigationsystem and GPS [11℄.The rewards that are reeived still depend on the distane to dangersand suessful lassi�ations as in Chapter 5, but in this partially observableenvironment the external agent has to be visible from the agent to modifythe (positive or negative) reward.
6.2 Task Environment ModelFigure 6.3 on page 72 shows a DDN for an instane of the partially observ-able UAS environment lass with one freely moving danger and one roadnetwork bound observation target. Every freely moving external agent issimulated by a DBN similar to the one used in hapter 5 with the help ofa random number generator. The main di�erene is that the freely movingexternal agents try to avoid the obstales in the environment as well, whihis performed with a simple ollision avoidane tehnique that makes theexternal agent slow down when it is about to hit an obstale.The DBNs for road network bound external agents are idential to theDBNs used in the fully observable UAS environment lass.The main di�erene from the fully observable environment lass is thepresene of observation variables that are used to model the noisy sensor of

\li" | 2008/4/8 | 9:36 | page 72 | #8272 CHAPTER 6. CASE STUDY II
Classified

t − 1

Classified

t

Agent

Position

t

Action

Agent

Position
t − 1

Reward

Camera

Direction
t

Obstacles
(static)

Danger
Obs

Road
Network
(static)

Road
Segment

t − 1

RS
Distance

t − 1

Speed

t − 1

Distance
to go

Road
Segment

t

RS
Distance

t

Speed

t

Road Network Bound Observation Target

Speed

t − 1

Position

t − 1

Direction

t − 1

Speed

t

Position

t

Direction

t

Freely Moving Danger

OT
Obs

Figure 6.3: An example of a DDN for a task environment that ontains oneroad network bound observation target and a freely moving danger.the agent. There is one observation variable Oea for eah external agent eawhih has a domain of R
2[NO whereNO indiates that ea was not observedat all. In Figure 6.3, these variables are alled OT Obs and Danger Obsfor larity.Sine partile �lters (see Setion 6.4) are used to represent the belief

\li" | 2008/4/8 | 9:36 | page 73 | #836.2. TASK ENVIRONMENT MODEL 73state, likelihood funtions that are proportional to fObsea(ojX) have to beonstruted for the observation variables where X is the set of state vari-ables that desribes the agent's position, ea's position (see Setion 6.4) andwhether ea is within line of sight and within the amera's view area. Figure6.4 on page 73 illustrates the four di�erent ases that are onsidered in theobservation model.
NO

NO

NO NO

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

��
��
��
��
��

��
��
��
��
��

: Observation

: No observation received

Case 1 Case 2

Or

Case 4

Or

Case 3

Camera View

: Particle position

Figure 6.4: The four di�erent ases in the observation model. Case 1: Anobservation was reieved and the partile is atually within the amera view.Case 2: No observation was reeived even if the partile is visible and withinthe amera view. Case 3: A spurious observation was reeived. Case 4: Noobservation was reeived when the partile either is outside the amera'sview or bloked by an obstale.

\li" | 2008/4/8 | 9:36 | page 74 | #8474 CHAPTER 6. CASE STUDY IICase 1 in Figure 6.4 is handled by a gaussian likelihood funtion Lobs;v(d)with zero mean and a 5 meter standard deviation where d is the distanefrom the observation to the external agent, obs means that an observationwas reeived and v that the external agent atually was visible. Cases 2, 3and 4 are handled by three di�erent onstant likelihoods Lno�obs;v, Lobs;vand Lno�obs;:v to model the possibility of spurious observations.
6.3 SkillsThe available skills in the partially observable UAS environment lass maththe atual Task Proedures that are available in the UAS Teh system muhbetter than in the fully observable one. The agent has skills that an performthe following ations:� Fly path: This skill an y a given linear path with a onstant speedand it stops at the target position. It an be interrupted at any time.� Wait: This skill orresponds to the UAS Teh system's hovering a-tion. A simplifying assumption is that the agent an stop immediatelywithout any delay.� Turn camera: A skill that an turn the amera in any diretion. Itis assumed that the amera an be instantaneously turned from oneangle to another and that the skill an be exeuted in parallel with allthe other skills in the system.� Finish: This skill orresponds to the UAS Teh system's automatilanding ation. The agent must be within a �nish area to be able toexeute that skill.It is also assumed that in parallel, the agent performs automati las-si�ation and traking of the external agents whih ould be onsidered asanother skill that is ontinuously exeuting.
6.4 Belief State and FilteringThe belief state of the agent is represented with a set of partile �lters, onefor eah external agent. It is assumed that the number and types of externalagents are known in advane.The partile �lter uses partiles to represent a probability distributionand the partiles are di�erent depending on what type of external agentit is. A road network bound external agent's partile inludes the urrentroad segment, distane travelled on that segment and the urrent veloity.A freely ying agent instead has the urrent position and veloity (both2-dimensional) in eah partile.

\li" | 2008/4/8 | 9:36 | page 75 | #856.4. BELIEF STATE AND FILTERING 75The sequential importane resampling (SIR) [3℄ algorithm is used toupdate the belief state after eah step. The SIR algorithm is shown inProedure 6.1 and it uses a so alled low variane resampling algorithm(see Proedure 6.2).Every partile �lter for the external agents is updated with a separateall to SIR() to update the agent's full belief state. xk in SIR() is then theset of all state variables in the external agent's DBN (see e.g. Figure 6.3)and xik is the i:th partile in the urrent partile set Xea;k. Obsea;k is theobservation state variable that was observed whih is set to a position orNO (no observation).
Procedure 6.1 SIR(Xea;k�1, Obsea;k)1: for i = 1 to Ns do2: Draw xik � P (Xkjxik�1)3: wik LObsea;k;v2xik(d)4: end for5: t PNsi wik6: for i = 1 to Ns do7: wik wikt8: end for9: Return lowVarianeSample(wk, xk)
Procedure 6.2 lowVarianeSample(wk, xk)1: 1 02: for i 2 to Ns do3: i i�1 +wik4: end for5: i 16: u1 �U[0; N�1s ℄7: for j 1 to Ns do8: while uj > i do9: i i+ 110: end while11: xjk;res xik12: end for13: Return xk;resFigure 6.5 shows an example of a belief state that is represented withpartile �lters in the partially observable UAS environment lass. The truestate is illustrated in Figure 6.1. The agent has loalized the two dangers D1and D2 quite well but is still unertain of where the observation target OTis. The �gure shows the partile �lter's apability of modeling the multi-modal harateristi of the probability distribution that seems to be useful

\li" | 2008/4/8 | 9:36 | page 76 | #8676 CHAPTER 6. CASE STUDY IIin this environment lass.
Agent�������

�������
�������

�������
�������
�������

����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

������
������
������
������

�����
�����
�����
�����

���
���
���
���

���
���
���
���

�����
�����
�����
�����

�����
�����
�����
����� ��

��
��
��

��
��
��

��
��
��

��
��
��
��

Particles for D1 and D2

Particles for OT

FA1

FA2Figure 6.5: An example of a belief state represented with partile �lters.The agent has loalized the two dangers D1 and D2 but not the observationtarget OT.
6.5 DARE ImplementationThis setion desribes the partial implementation of DARE in this environ-ment lass. It is only a partial implementation due to the fat that thenumber of abstration levels does not hange dynamially depending on thesituation. It is always assumed that the movement of the agent an beplanned without taking the detailed amera movement into onsideration.The amera movement is determined after the agent knows what diretion(if any) it should go.The implementation of DARE for this environment lass still makes useof the dynami view of planning models. New planning models that anbe used for depth-limited lookahead, are generated depending on the ur-rent belief state of the agent and implements the generateProblem()proedure in DARE. The depth-limited lookahead implements the solve()proedure in DARE.Setion 6.5.1 presents the problem generation proedure and Setion6.5.2 desribes the details of how the depth-limited lookahead is performed.
6.5.1 Planning Model GenerationThe planning model generation onsists of the following two steps:� Point seletion and� Connetion of the seleted points with a pathplanner

\li" | 2008/4/8 | 9:36 | page 77 | #876.5. DARE IMPLEMENTATION 77
Point SelectionThe �rst step of the planning model generation proedure is to �nd a set ofgood points that the agent should onsider ying to. A good point shouldbe lose to unlassi�ed observation targets and suÆiently far from dangers.The number of points that are seleted, Npg, should not be too many (whihwould make the model too big) or too few. Npg is an important design pa-rameter when the tradeo� between auray and feasibility of the planningmodel is onsidered for a ertain arhiteture (see Setion 6.6).The problem of seleting the set of points is formulated as an iterativeoptimization problem. A utility measure is de�ned for a point given theurrent belief state and this measure is used to ompare di�erent points.One point at a time is seleted and the previously seleted points are usedto modify the utility funtion for inreased diversity of the points (otherwisethe same point an be seleted over and over). The positions of dangers andobservation targets ontribute to the utility but also the distane from theseleted point to the agent and whether the point is within a �nish area ornot matters.The belief state is represented with partile �lters and eah partilein every �lter ontributes to the total utility. This yields some kind ofapproximation of the expeted utility of a seleted point.All the ontributions from dangers, observation targets, �nish areas, dis-tane from the agent and previously seleted points are added and speifythe total expeted utility of seleting that partiular point.The utility ontribution from a danger's partile, Udo, depends on thedistane d from the partile to the agent:(Udo =min(�Cmax + CmaxCR d; 0) if do is visible from the agent0 otherwise (6.1)where CR is the ost radius of the danger.Similarly, the point utility for observation targets also depends on thedistane but one also needs to onsider whether it has been lassi�ed pre-viously or not:Uot = (Rl;ot � Rl;otdot;max d d < dot;max and :lot0 otherwise (6.2)where Rl;ot is the reward for lassifying the target ot, dot;max is themaximum lassi�ation distane and lot the boolean variable that spei�eswhether ot has been lassi�ed previously or not. Notie that observationtargets that have been previously lassi�ed provide nothing to the pointutility, making it possible for the agent to fous on more important externalagents or �nish areas.The utility ontribution Ufa from a �nish area fa is the same as theorresponding �nish reward if the point is within fa and the agent has not

\li" | 2008/4/8 | 9:36 | page 78 | #8878 CHAPTER 6. CASE STUDY IIexeuted the �nish ation yet (whih is only important when Ufa is usedduring the depth-limited lookahead. See Setion 6.5.2).To provide a simple way to reate diversity of the seleted points, thepoint seletion takes the previously seleted points into aount. Thepenalty funtion Up is used for the set of previously seleted points p thatdepends linearly on the distane between the onsidered point with one ex-eption: if the newly seleted point is loated within a �nish area and noother point is, no penalty is given.The distane from the onsidered point to the agent also ontributes tothe point's utility. The ost of travelling in a straight line from the agent tothat point is used as the ost estimate.Figure 6.6 shows an example of the utility funtion used for point sele-tion when the belief state is the one in Figure 6.5.
0

100

200

300

400

500 0

100

200

300

400

−200

−150

−100

−50

0

50

FA 2

FA 1

Caused by the localized D1 and D2Figure 6.6: An instane of the utility funtion for the point seletion opti-mization problem for the belief state shown in �gure 6.5. The plot showsthe utility funtion when the �rst point is seleted. The urrent positionof the agent is always added to the previously seleted points. Notie thenegative utility aused by the loalized dangers.Sine it is rather expensive to estimate the expeted utility of points, aloal searh algorithm (see Setion 2.4) is used to selet the points that arethen used to generate a planning model (see Setion 6.5.1).
Graph GenerationWhen the set of points have been seleted, paths are planned between everyombination of distint point pairs to onstrut a graph. This operation is

\li" | 2008/4/8 | 9:36 | page 79 | #896.5. DARE IMPLEMENTATION 79performed with a roadmap-based 2D pathplanner using A*-searh whih isquite similar to the PRM-based pathplanner that is used in the UAS Tehsystem [61℄. The set of resulting paths determines the �nite set of ationsthat the agent an perform, making it possible to perform lookahead-basedplanning in the partially observable UAS environment lass.The number of paths is redued to lower the branhing fator for thedepth-limited lookahead whih in this ase means that paths that ontributelittle or nothing are removed. This is performed by onsidering all triples ofdistint points. If the length of a path between two points a and b is givenby la;b, then if la;b + lb; < �l � la;, the path from a and is removed fromthe planning model. �l is set to 1.1 in the implementation.Figure 6.7 shows an example of how a dynamially generated planningmodel an look like given the utility funtion in �gure 6.6. Note that someof the paths are going straight through the positions of the dangers, whihseems to be very irrational. The point seletion does not take the path to thepoints into onsideration and therefore these seemingly stupid paths arise.The \stupidity" of those hoies is disovered later during the depth-limitedlookahead beause if the agent simulates suh a path, a large negative rewardwill be reeived.
�������
�������
�������

�������
�������
�������

����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

������
������
������
������

�����
�����
�����
�����

���
���
���
���

���
���
���
���

�����
�����
�����
�����

�����
�����
�����
����� ��

��
��
��

��
��
��

��
��
��

��
��
��
��

Agent

Paths

Selected points

FA1

FA2Figure 6.7: A generated planning model for depth-limited lookahead giventhe point value funtion illustrated in �gure 6.6. The seleted points aredrawn with irles. The road network is hidden for larity.
6.5.2 Solution MethodThe planning in the planning model is done by a depth-limited lookaheadfrom the urrent belief state (whih is represented by the partile �lters).The planning model is not diretly suitable for applying the depth-limitedlookahead idea sine by simply onsidering the movement from one point to

\li" | 2008/4/8 | 9:36 | page 80 | #9080 CHAPTER 6. CASE STUDY IIanother as a primitive ation without modi�ation ignores all the possibleobservations and rewards that are reeived during the exeution.Proedure 6.3 shows the depth-limited lookahead algorithm that is usedin the implementation. It enumerates all ations as normal depth-limitedlookahead does but samples Nobs sequenes of observations and belief statesinstead of enumerating the (in�nite) number of possible observations duringthe exeution of the ation.During lookahead, the amera is assumed to have a 360 degree �eld ofview whih means that the movement of the amera is planned at a laterstage. If the movement of the amera would be onsidered in depthLim-itedLookahead(), the branhing fator would beome too large and thatabstration would not be a good hoie.
Procedure 6.3 depthLimitedLookahead(depth, BSur)1: if depth � d then2: Return hPx2BSur U(x)jBSurj , Waiti3: end if4: BSstart BSur5: bestValue �16: bestAtion Wait7: for all Ations a possible in BSur do8: sum 09: for i 1 to Nobs do10: Filter a sequene of steps starting with BSstart11: Store belief state result BSend and reward r12: hUest; abesti depthLimitedLookahead(depth + 1, BSend)13: sum sum +r + Uest14: end for15: Uest(a) sumNobs16: if Uest(a) > bestValue then17: bestValue Uest(a)18: bestAtion a19: end if20: end for21: Return hbestValue, bestAtioniWhen a movement ation has been seleted by the depth-limited looka-head, the solution in the HSN onsists simply of the bestAction returnedfrom depthLimitedLookahead(). This solution is then re�ned to seletthe amera movement.

\li" | 2008/4/8 | 9:36 | page 81 | #916.5. DARE IMPLEMENTATION 81
6.5.3 Camera MovementThe DARE method use the reateSubproblems() proedure to re�nesolutions. The implementation of reateSubproblems() in the partiallyobservable UAS environment lass is fairly trivial sine it is always the asethat the amera movement is planned when a solution ation is returnedby depthLimitedLookahead(). The re�nement does not have to be �xedlike that. It an be de�ned by generating a new DDN whih representsthe subproblem of performing the spei�ed ation suh as moving towards areated �nish area (like in Setion 5.4.4) but that has not been implemented.The amera movement, given the ation returned from the depth-limitedlookahead, is planned by enumerating a set of possible amera diretionsand seleting the one that maximizes the expeted relevane of the visiblepartiles in the belief state. The relevane Rpdo for a visible danger objetpartile pdo is alulated by Cmax � e��pdo �d whih is the same measure usedin Setion 5.4.2 when the state distribution was determined. The maindi�erenes are that the point to point visibility and the amera's view areaare taken into aount and that it is the expeted relevane that is alulatedwith a ontribution from all partiles.Sine the amera is assumed to be apable of pointing instantaneouslytowards a seleted point, independent of its previous angle, the urrent beliefstate BSur is used diretly to selet the amera angle.
6.5.4 DynabsSolve ImplementationAll the parts of the implementation of DARE's dynabsSolve() proedurehave been presented and are in this setion listed in Proedures 6.4 and6.5. What is missing for a full implementation of DARE is the dynamigeneration of abstration levels. This an be done in many di�erent waysby reating sub HSNs that onsider the �rst step of the solution as a sub-problem. For example, a subproblem to a \y path" ation an view thetarget position as a �nish area and try to �nd a better way to get therethan the previously planned path. On that level of abstration, it mightalso be possible to use more detailed ation desriptions that e.g. onsiderthe veloity of the agent.
Procedure 6.4 dynabsSolve(hsn, TEModel)1: points(hsn) findPoints(TEModel)2: problem(hsn) reateProblem(TEModel, hsn)3: ation(hsn) depthLimitedLookahead(d, BS(TEModel))4: timestamp(hsn) urrentTime()5: planCameraMovement(hsn)6: Update movement skill aording to ation(hsn)

\li" | 2008/4/8 | 9:36 | page 82 | #9282 CHAPTER 6. CASE STUDY II
Procedure 6.5 planCameraMovement(hsn, TEModel)1: bestAngle findBestAngle(BS(TEModel))2: Update amera skill with bestAngle
6.5.5 ReplanningA solution to a planning model is only kept for a ertain time, as in Setion5.4.5 where a timestamp was used to keep trak of when a solution shouldbe onsidered outdated. In the partially observable UAS environment lass,two di�erent temporal horizons are used; one for the movement solution andone for the amera diretion.Sine the amera movement is relatively easy to ompute, that solution isonsidered outdated at every iteration of the replanIfNeessary(). Theagent movement is replanned repeatedly every Tr seond and the defaultsetting for Tr is 2 seonds.
Procedure 6.6 replanMovementIfNeessary(hsn, TEModel)1: if (urrentTime() - timestamp(hsn)) > Treplan then2: set subNode(hsn) to nil3: dynAbsSolve(hsn, TEModel) fReplang4: else5: planCameraMovement(hsn, TEModel)6: end if

6.6 ExperimentsA set of experiments have been performed with the implementation in or-der to show some of the tradeo�s between auray and feasibility whendeliberation time is onsidered.The following parameters were varied in the experiments:� Number of points that are seleted during the planning model gener-ation, Npg� Depth for the depth-limited lookahead, d� Number of sampled observation sequenes for the depth-limited looka-head, Nobs� Replanning period Tr� Number of partiles used for belief state during depth-limited, Npfs� Number of partiles used for belief state during point seletion, Npl� Whether simulated dynami mode is used, SD (see Setion 6.6.1)

\li" | 2008/4/8 | 9:36 | page 83 | #936.6. EXPERIMENTS 83Npg d Nobs Tr Npfs Npl SD Value7 1 8 2.0 5 5 Yes 48.02Table 6.1: The default on�guration.
6.6.1 SetupMost of the experiments were performed in simulated dynami mode whih,as in the fully observable ase, means that the environment is evolving dur-ing the agent's deliberation. The deliberation time is in this ase estimatedby ounting the most frequently and ostly operations that are performedduring point seletion and planning. The two operations that are used fordeliberation time estimation are the utility alulations of a point duringpoint seletion and planning, and the simulation step of the DDN that isused for predition during planning. The time for those operations were�rst measured in the implementation and then assumed to be �xed duringthe experiments (for the purpose of assuring repeatability).
6.6.2 ResultsSine it is not feasible to generate results for every possible on�guration ofthe parameters desribed previously, some on�gurations were tested thatpoint out interesting behavior of the implementation. First a default on-�guration was reated, with some trial and error, whih is shown in Table6.1 together with the resulting value. The value is equal to the mean sumof rewards that are reeived during 500 test runs. The default on�gurationis used as the basis for the experiments when a subset of the parameters arehanged.
Number of ParticlesOne of the experiments was to investigate what happens when the numberof partiles used during the lookahead and point seletion are varied. Sinethe dynamis of the environment is simulated, deliberation time is penal-ized both by the ost of waiting during planning but also with inreasedresponse times in dangerous situations. The question is where the opti-mal (stati) tradeo� between auray and feasibility is (with the Npl andNpfs parameters) given the simulated deliberation penalty. The result ofthe experiment is shown in Figure 6.8 whih demonstrates the importaneof taking the dynamis and available omputational resoures into aount.The best result was obtained when Npfs was set to 2 and Npl to 4 whihwas muh lower than expeted.

\li" | 2008/4/8 | 9:36 | page 84 | #9484 CHAPTER 6. CASE STUDY II

0

5

10

15

20

25 0

5

10

15

20

25
0

10

20

30

40

50

60

Point Selection Particles
Planning Particles

V
al

ue

Figure 6.8: The result when the number of partiles for point seletion andplanning are varied.
Lookahead Depth and ObservationsThe default on�guration uses a lookahead depth of 1, whih is rather ex-treme. But the best results were in fat obtained when this setting was used.Table 6.2 shows the result of an experiment when the lookahead depth andnumber of observation samples are varied simultaneously. The result learlyindiates that a lookahead depth of 1 should be used for this environmentlass when the omputational resoures are taken into aount. The bestlookahead depth also highly depends on the planning model generation,whih in this ase generates models with very long temporal steps.
No Simulated DynamicsSome tests were also performed when the simulated dynamis was disabled.Table 6.3 shows the three di�erent on�gurations that were used togetherwith their orresponding results. The results are learly better than thebest result when simulated dynamis is used (56.88) but as the table shows,the number of points seleted and partiles used are muh higher and itrequires a lot more omputation.
6.7 DiscussionThis hapter has presented a partial implementation of the DAREmethod inmore realisti environment lass than in Chapter 5 whih inludes partially

\li" | 2008/4/8 | 9:36 | page 85 | #956.7. DISCUSSION 85d1 2 3 4Nobs 1 53.58 18.88 -247.2 -25022 53.71 -3.932 -2137 NA3 56.88 -64.09 NA NA4 53.56 NA NA NA5 56.43 NA NA NA6 52.24 NA NA NA7 49.31 NA NA NA8 48.02 NA NA NATable 6.2: The results when the number of observations and lookaheaddepth parameters are varied.Npg d Nobs Tr Npfs Npl SD Value10 1 15 1.0 50 50 No 59.3920 1 15 1.0 50 50 No 62.4620 1 20 1.0 200 200 No 64.30Table 6.3: Three results when no simulated dynamis is used.observability and obstales.The experiments have demonstrated that it is important to take theavailable resoures into aount when reating planningmodels dynamially.All features of DARE have not been implemented. No dynami abstra-tion hierarhies are reated. The author belives that this is probably moreuseful when the environment is more omplex and an e.g. inlude arbitrary3-dimensional building strutures and more omplex models of the externalagents or is part of the real world. Suh environments would require sub-models on di�erent abstration levels and the dynami abstration wouldprobably be more useful than it urrently is for this task environment lass.For omplex environment lasses, dynami abstration should be per-formed during the �ltering as well. It would then be possible to fous onmore relevant objets at the moment but it is also important to be able tobaktrak in the \model spae" if a previously onsidered irrelevant objetsuddenly beomes relevant. The agent an then hange its models depend-ing on this new information but it may also have to update a belief statewhere this new objet is onsidered. This is a good example where a mem-ory of previous perepts and ations an be used to update the urrent beliefstate by \re�ltering" with this new belief state de�nition.

\li" | 2008/4/8 | 9:36 | page 86 | #96

Chapter 7

ConclusionThis thesis has investigated the onsequenes of using a more dynami viewof planningmodels than traditionally proposed within Arti�ial Intelligene.It has been argued that dynami abstration is a suitable tool for planningin more open-ended environments where planning models an be generateddynamially. The use of dynami abstration for planning leads to the prob-lem of monitoring the di�erent abstrations ontinuously and performingmodel reonstrution and replanning when neessary. This methodology isaptured in the DARE method that was presented in Chapter 4.Two partial implementations of DARE have been demonstrated whereplanning models have been generated depending on how important di�erentaspets of the environment have been judged. Chapter 5 presented an im-plementation for a fully observable task environment lass where dynamiabstration hierarhies were implemented and the planning models weregenerated dynamially depending on how important the di�erent featuresin the environment were. Chapter 6 illustrated how some ideas of DAREwere implemented for a more realisti, partially observable task environmentlass.
7.1 Future WorkSome very speialized methods to perform dynami abstration have beenused in this thesis. What steps an be taken to generalize these methods?One possible step is to try to extend the ase studies (espeially the seondone) to make it work in a real roboti system e.g the UAS Teh system.The task environment lass would then be a part of the real world whihintrodues many problems. Future work related to this approah will bedisussed in Setion 7.1.1.Another approah is to investigate what type of high level reasoningis neessary to draw onlusions about what abstrations to use. Suh aninvestigation ould lead to some kind of theory of abstrations whih an be86

\li" | 2008/4/8 | 9:36 | page 87 | #977.1. FUTURE WORK 87used to perform more general dynami abstration methods. This approahwill be disussed in Setion 7.1.2 where the main fous is to develop suh atheory to make it possible to generate task environment models dependingon relevane information given a ertain task and beliefs.
7.1.1 Extentions to the Case StudiesThe seond ase study was the most realisti implementation disussed inthis thesis and was part of the author's intention towards the use of DAREfor real missions with the UAS Teh system.A few things must be improved in order to use that solution. First of all,the implementation must be extended to work in 3D whih means that thepoint seletion and model generation has to work with one more dimension,whih is straightforward in theory but ould be a problem in pratie due tothe inreased omplexity. The path planner that already is used in the UASTeh system ould be used to generate the set of paths needed to formulatethe planning model.The implementation in the seond ase study simply stopped the agentduring the planning model generation and lookahead whih is probably notfeasible during a real mission due to the extra delay introdued when aheliopter system has to perform a breaking manouver before eah deision.A more eÆient solution is to perform the planning model generation andlookahead during ight instead whih means that the model generationshould start with a predition of the future belief state where and whenthe solution will be used. To be sure that this time limit is followed (theunderlying ontrol system demands that the next path segment is sent beforea ertain time), one ould try an idea where the omplexity of the planningproblem is iteratively inreased. Suppose that it starts with a very simpleproblem formulation with just a few points. Planning is performed anda possible deision is ready to use. If there is time left, a more omplexplanning model an be onstruted with more points and possibly morepartiles (one an also reuse the old points).There is also a lot of work ahead with a more realisti sensor model andthe atual detetion and traking of vehiles. Work is already underway tomake it possible to detet vehiles with a ombination of infrared, olor andfeature input.Another extension to the seond ase study is to make it possible tofous the attention of the agent with di�erent number of partiles for therepresentation of external agents. The same kind of searh used in the �rstase study an be used to selet a reasonable distribution of partiles giventhe available time and omputational resoures.A di�erent type of planning method an also be tested in the futurewhere only one target point is onsidered at a time. Suppose that a pointis greedily seleted by the point seletion method and a path to that pointis planned with the path planner. Then that path is simulated a few times

\li" | 2008/4/8 | 9:36 | page 88 | #9888 CHAPTER 7. CONCLUSIONas used in the task planning phase and a set of the rewards and time pointsduring the path are stored or generalized by the examples. Then a newpoint is seleted that takes these rewards and time points into aount anda path is planned where the path planner takes the previously rewards intoaount. This goes on until time runs out. The nie thing about thisapproah is that the path planner gets feedbak from the task planner allthe time. The question is then how the resulting rewards are stored, but asimple instane-based learning method ould be a start.
7.1.2 Dynamic Task Environment ModelsBoth of the ase studies used task environment models in di�erent waysin order to perform task planning. These models were rather �xed at apartiular level of abstration suh as the representations of the externalagents and the road network were �xed. The step size ould be variedwhih makes it possible to take fewer and larger steps.The task environment models determine to a large extent the level ofabstration for the task planning if they are used in this way. It wouldtherefore be interesting to try and generate task environment models withthe help of relevane information given that a ertain task should be exe-uted by an agent in a partiular situation. This is partiularly importantwhen the task environment is part of the real world.In [43℄, Levy et al. automatially generatedmodels that desribe physialdynamial systems depending on what is onsidered relevent given a ertainquery. The generated models are omplex enough to answer the query butalso as \simple as possible" given a developed theory of relevane. Logiprogramming was used to reason about possible models given the query asa goal statement.Could then the same proedure be used to generate task environmentmodels for task planning? Possibly, but there is no strit \query" to answerexept for the following: \how should the environment be modelled in orderto maximize performane?". Levy et al. used model fragments of di�erentdetail level whih was strutured in so alled assumption lasses whihrepresent the partial order of omplexity and detail between the possiblemodel fragments. The same idea an be used to generate task environmentmodels for planning but another method than the one desribed in [43℄ willprobably be used.

\li" | 2008/4/8 | 9:36 | page 89 | #99

Bibliography[1℄ A. Aamodt and E. Plaza. Case-based reasoning: Foundational issues,methodologial variations, and system approahes. Arti�ial Intelli-gene Communiations, 7(1):39{59, 1994.[2℄ J. Aldrih. R. A. Fisher and the making of maximum likelihood 1912-1922. Statistial Siene, 12:162{176, 1997.[3℄ S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial onpartile �lters for on-line non-linear/non-gaussian bayesian traking.IEEE Transations on Signal Proessing, 50(2):174{188, February2002.[4℄ P. Athanasios and P. S. Unnikrishna. Probability, Random Variablesand Stohasti Proesses. Mgraw-Hill Eduation, 2002.[5℄ F. Bahus and R. Petrik. Modeling an agent's inomplete knowledgeduring planning and exeution. In Proeedings of the InternationalConferene on Priniples of Knowledge Representation and Rea-soning, pages 432{443, 1998.[6℄ A. G. Barto and S. Mahadevan. Reent advanes in hierarhial rein-forement learning. Disrete Event Dynami Systems, 13(4):341{379,2003.[7℄ J. O. Berger. Statistial Deision Theory and Bayesian Analysis.Springer Verlag, 1980.[8℄ P. Bertoli, A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. MBP:a model based planner. In IJCAI'01 Workshop on Planning underUnertainty and Inomplete Information, 2001.[9℄ C. M. Bishop. Neural Networks for Pattern Reognition. OxfordUniversity Press In., New York, 1995.[10℄ R. J. Brahman and H. Levesque. Knowledge Representation an Rea-soning. Morgan Kaufmann, 2004.89

\li" | 2008/4/8 | 9:36 | page 90 | #10090 BIBLIOGRAPHY[11℄ G. Conte. Navigation funtionalities for an autonomous uav heliopter.Lientiate Thesis Link�oping Institute of Tehnology at Link�opingUniversity, 2007.[12℄ T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introdution toAlgorithms. MIT Press and MGraw-Hill, 2000.[13℄ T. Dean and K. Kanazawa. A model for reasoning about persisteneand ausation. Arti�ial Intelligene, 93(1-2):1{27, 1989.[14℄ T. Dean and M. Welman. Planning and Control. Morgan Kaufmann,1991.[15℄ T. L. Dean and M. Boddy. An analysis of time-dependent planning.In Proeedings of the Seventh National Conferene on Arti�ialIntelligene, pages 49{54, 1988.[16℄ T. Dietterih. Hierarhial reinforement learning with the MAXQvalue funtion deomposition. In Proeedings of the 15th Interna-tional Conferene on Mahine Learning, 1998.[17℄ P. Doherty. Advaned researh with autonomous unmanned aerial vehi-les. Proeedings on the 9th International Conferene on Priniplesof Knowledge Representation and Reasoning, 2004.[18℄ P. Doherty, P. Haslum, F. Heintz, T. Merz, P. Nyblom, T. Persson, andB. Wingman. A distributed arhiteture for autonomous unmannedaerial vehile experimentation. 7th International Symposium on Dis-tributed Autonomous Roboti Systems (DARS), 2004.[19℄ P. Doherty and F. Heintz. A knowledge proessing middleware frame-work and its relation to the JDL data fusion model. Journal of Intel-ligent and Fuzzy Systems, 17(4), 2006.[20℄ R. Durrett. Probability: Theory and Examples. Duxbury press, 2004.[21℄ K. Erol, J. Hendler, and D. Nau. Semantis for hierarhial task-network planning. Tehnial report, University of Maryland Institutefor Advaned Computer Studies, 1994.[22℄ B. Falkenhainer and K. Forbus. Compositional modeling: Finding theright model for the job. Arti�ial Intelligene, 51:95{143, 1991.[23℄ R. J. Firby. Adaptive Exeution in Complex Dynami Domains.PhD thesis, Yale University, 1989.[24℄ R. Fourer, M. Gay, and W. Kernighan. AMPL: A Modeling Languagefor Mathematial Programming. The Sienti� Press, 1993.

\li" | 2008/4/8 | 9:36 | page 91 | #101BIBLIOGRAPHY 91[25℄ D. Fox, W. Burgard, F. Dellaert, and S. Thrun. Monte arlo loaliza-tion: EÆient position estimation for mobile robots. In AAAI/IAAI,pages 343{349, 1999.[26℄ M. Fox and D. Long. An extension of PDDL for expressing temporalplanning domains. Journal of AI Researh, 20:61{124, 2003.[27℄ M. Freed. Simulating Human Performane in Complex, DynamiEnvironments. PhD thesis, Northwestern University, 1998.[28℄ A. Fukunaga, G. Rabideau, S. Chien, and D. Yan. Towards an applia-tion framework for automated planning and sheduling. In Proeedingsof the IEEE Aerospae Conferene, 1997.[29℄ A. Gerevini and D. Long. Plan onstraints and preferenes in PDDL3.Tehnial report, Department of Eletronis for Automation, Universityof Bresia, Italy, 2005.[30℄ M. Ghallab, A. Howe, C. Knoblok, D. MDermott, A. Ram, M. Veloso,D. Weld, and D. Wilkins. PDDL|the planning domain de�nition lan-guage. Tehnial report, AIPS-98 Planning Committee, 1998.[31℄ M. Ghallab, D. Nau, and P. Traverso. Automated Planning, theoryand pratie. Morgan Kaufmann Publishers, 2004.[32℄ G. Granlund, K. Nordberg, J. Wiklund, P. Doherty, E. Skarman, andE. Sandewall. An intelligent autonomous airraft using ative vision. InProeedings of the UAV 2000 International Tehnial Confereneand Exhibition, 2000.[33℄ J. A. Hartigan. Clustering algorithms. New York: John Wiley, 1975.[34℄ P. Haslum. Predition as a knowledge representation problem: A asestudy in model design. Lientiate Thesis Link�oping Institute ofTehnology at Link�oping University., 2002.[35℄ B. Hengst. Disovering hierarhy in reinforement learning with HEXQ,2002.[36℄ D. S. Johnson. A theoretiian's guide to the experimental analysis ofalgorithms.[37℄ A. Jonsson and A. G. Barto. Automated state abstration for optionsusing the u-tree algorithm. In Advanes in Neural Information Pro-essing Systems, pages 1054{1060, 2000.[38℄ L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and at-ing in partially observable stohasti domains. Arti�ial Intelligene,101:99{134, 1998.

\li" | 2008/4/8 | 9:36 | page 92 | #10292 BIBLIOGRAPHY[39℄ S. Kirkpatrik, C. D. Gelatt, and M. P. Vehi. Optimization by simu-lated annealing. Siene, 220(4598):671{680, 1983.[40℄ C. A. Knoblok. Automatially generating abstrations for planning.Arti�ial Intelligene, 68(2):243{302, 1994.[41℄ P. Laborie and M. Ghallab. Planning with sharable resoure on-straints. In Proeedings of the International Joint Conferene onArti�ial Intelligene, 1995.[42℄ A. H. Land and A. G. Doig. An automati method for solving disreteprogramming problems. Eonometria, 28:497{520, 1960.[43℄ Alon Y. Levy, Yumi Iwasaki, and Rihard Fikes. Automated modelseletion for simulation based on relevane reasoning. Arti�ial Intel-ligene, 96(2):351{394, 1997.[44℄ L. Ljung and T. Glad.Modellbygge oh Simulering. Studentlitteratur,2004.[45℄ S. Mannor, I. Menahe, A. Hoze, and U. Klein. Dynami abstrationin reinforement learning via lustering. In Proeedings of the 21stInternational Conferene on Mahine Learning.[46℄ A. MCallum. Reinforement Learning with Seletive Pereptionand Hidden State. PhD thesis, University of Rohester, 1995.[47℄ A. Meystel. Knowledge based nested hierarhial ontrol. Advanes inAutomation and Robotis, 2:63{152, 1990.[48℄ T. M. Mithell. Mahine Learning. MGraw-Hill, 1997.[49℄ K. Murphy. A survey of POMDP solution tehniques.http://www.s.ubs.a/ murphy/Papers/pomdp.pdf, 2005.[50℄ R. R. Murphy. Introdution to AI Robotis. The MIT Press, 2000.[51℄ N. Musettola. HSTS: Integrating planning and sheduling. InM. Zweben and M. S. Fox, editors, Intelligent Sheduling. MorganKaufmann, 1994.[52℄ K. L. Myers. A proedural knowledge approah to task-level ontrol. InProeedings of the Third International Conferene on AI PlanningSystems, 1996.[53℄ D. Nau, T. C. Au, O. Ilghami O., U. Kuter, J. W. Murdok, D. Wu, andF. Yaman. SHOP2: An HTN planning system. Journal of Arti�ialIntelligene Researh, 20:379{404, 2003.[54℄ N. J. Nilsson. Shakey the robot. Tehnial report, AI Center, SRIInternational, 1984.

\li" | 2008/4/8 | 9:36 | page 93 | #103BIBLIOGRAPHY 93[55℄ J. Noedal and S. J. Wright. Numerial Optimization. Springer Ver-lag, 2006.[56℄ P. Nyblom. A language translator for roboti task proedure spei�a-tions. Master's thesis, Link�oping Univirsity.[57℄ P. Nyblom. Dynami abstration for hierarhial problem solving andexeution in stohasti dynami environments. In Starting AI Re-searher Symposium (STAIRS), 2006.[58℄ P. Nyblom. Dynami problem generation in a UAV domain. In The6th IFAC Symposium on Intelligent Autonomous Vehiles, 2007.[59℄ Objet Management Group (OMG). Common Objet Request BrokerArhiteture: Core Spei�ation, 2004.[60℄ R. Parr. Hierarhial Control and Learning for Markov DeisionProesses. PhD thesis, University of California at Berkley, 1998.[61℄ P. O. Pettersson. Sampling-based path planning for an autonomousheliopter. Lientiate Thesis Link�oping Institute of Tehnology atLink�oping University., 2006.[62℄ M. Puterman. Markov Deision Proesses, Disrete Stohasti Dy-nami Programming. Wiley Inter-siene, 1994.[63℄ S. Russel and P. Norvig. Arti�ial Intelligene, A Modern Approah.Prentie Hall, 2003.[64℄ E. D. Saerdoti. Planning in a hiearhy of abstration spaes. Arti�ialIntelligene, 5:115{135, 1974.[65℄ A. Shrijver. Theory of Linear and Integer Programming. JohnWiley and sons, 1998.[66℄ K. Steinkraus and L. P. Kaelbling. Combining dynami abstrations inlarge mdps, 2004.[67℄ N. Sturtevant and M. Buro. Partial path�nding using map abstrationand re�nement. In Proeedings of the AAAI National Confereneon Arti�ial Intelligene. AAAI, 2005.[68℄ R. S. Sutton. Integrated arhitetures for learning, planning, and reat-ing based on approximating dynami programming. In Proeedings ofthe Seventh International Conferene on Mahine Learning, pages216{224, 1990.[69℄ R. S. Sutton and A. G. Barto. Reinforement Learning An Introdu-tion. The MIT Press, 1998.

\li" | 2008/4/8 | 9:36 | page 94 | #10494 BIBLIOGRAPHY[70℄ R. S. Sutton, D. Preup, and S. P. Singh. Between MDPs and semi-MDPs: A framework for temporal abstration in reinforement learn-ing. Arti�ial Intelligene, 112(1-2):181{211, 1999.[71℄ A. Tate. Projet planning using a hierarhi non-linear planner. Teh-nial report, Department of Arti�ial Intelligene, University, 1975.[72℄ A. Tate, B. Drabble, and J. Dalton. O-plan: a knowledge-based plan-ner and its appliation to logistis. Advaned Planning Tehnology,AAAI Press, 1996.[73℄ G. Theoharous, S. Mahadevan, and L. P. Kaelbling. Spatial and tem-poral abstrations in pomdps applied to robot navigation, 2005.[74℄ S. Thrun, W. Burgard, and D. Fox. Probabilisti Robotis. 2005.[75℄ D. E. Wilkins. Pratial Planning: Extending the Classial AI Plan-ning Paradigm. MorganKaufmann Publishers In., San Franiso, CA,1988.[76℄ D. E. Wilkins and K. L. Myers. A ommon knowledge representa-tion for plan generation and reative exeution. Journal of Logi andComputation, 5(6):731{761, 1995.[77℄ D. E. Wilkins, K. L. Myers, J. D. Lowrane, and L. P. Wesley. Plan-ning and reating in unertain and dynami environments. Journal ofExperimental and Theoretial AI, 7(1):197{227, 1995.

\li" | 2008/4/8 | 9:36 | page 95 | #105
Avdelning, InstitutionDivision, Department DatumDate

Spr̊akLanguage
2 Svenska/Swedish
2 Engelska/English
2

RapporttypReport ategory
2 Lientiatavhandling
2 Examensarbete
2 C-uppsats
2 D-uppsats
2 �Ovrig rapport
2

URL för elektronisk version

ISBN

ISRN

Serietitel och serienummerTitle of series, numbering ISSNLink�oping Studies in Siene and TehnologyThesis No. 1363
TitelTitle
FörfattareAuthor
SammanfattningAbstrat

NyckelordKeywords

It is often bene�ial for an autonomous agent that operates in a omplexenvironment to make use of di�erent types of mathematial models to keeptrak of unobservable parts of the world or to perform predition, planningand other types of reasoning. Sine a model is always a simpli�ation ofsomething else, there always exists a tradeo� between the model's aurayand feasibility when it is used within a ertain appliation due to the limitedavailable omputational resoures. Currently, this tradeo� is to a large extentbalaned by humans for model onstrution in general and for autonomousagents in partiular. This thesis investigates di�erent solutions where suhagents are more responsible for balaning the tradeo� for models themselvesin the ontext of interleaved task planning and plan exeution. The neessaryomponents for an autonomous agent that performs its abstrations and on-struts planning models dynamially during task planning and exeution areinvestigated and a method alled DARE is developed that is a template forhandling the possible situations that an our suh as the rise of unsuitableabstrations and need for dynami onstrution of abstration levels. Imple-mentations of DARE are presented in two ase studies where both a fully andpartially observable stohasti domain are used, motivated by researh withUnmanned Airraft Systems. The ase studies also demonstrate possible waysto perform dynami abstration and problem model onstrution in pratie.

AIICS,Dept. of Computer and Information Siene581 83 Link�oping April 24 2008978-91-7393-905-8LiU-Tek-Li{2008:21 0280{7971

April 24 2008

Dynami Abstration for Interleaved Task Planning and ExeutionPer Nyblom

��

Dynami Abstration, Task Planning, Automati Model Constrution

Department of Computer and Information Science
Linköpings universitet

Linköping Studies in Science and Technology
Faculty of Arts and Sciences - Licentiate Theses

No 17 Vojin Plavsic: Interleaved Processing of Non-Numerical Data Stored on a Cyclic Memory. (Available at:
FOA, Box 1165, S-581 11 Linköping, Sweden. FOA Report B30062E)

No 28 Arne Jönsson, Mikael Patel: An Interactive Flowcharting Technique for Communicating and Realizing Al-
gorithms, 1984.

No 29 Johnny Eckerland: Retargeting of an Incremental Code Generator, 1984.
No 48 Henrik Nordin: On the Use of Typical Cases for Knowledge-Based Consultation and Teaching, 1985.
No 52 Zebo Peng: Steps Towards the Formalization of Designing VLSI Systems, 1985.
No 60 Johan Fagerström: Simulation and Evaluation of Architecture based on Asynchronous Processes, 1985.
No 71 Jalal Maleki: ICONStraint, A Dependency Directed Constraint Maintenance System, 1987.
No 72 Tony Larsson: On the Specification and Verification of VLSI Systems, 1986.
No 73 Ola Strömfors: A Structure Editor for Documents and Programs, 1986.
No 74 Christos Levcopoulos: New Results about the Approximation Behavior of the Greedy Triangulation, 1986.
No 104 Shamsul I. Chowdhury: Statistical Expert Systems - a Special Application Area for Knowledge-Based Com-

puter Methodology, 1987.
No 108 Rober Bilos: Incremental Scanning and Token-Based Editing, 1987.
No 111 Hans Block: SPORT-SORT Sorting Algorithms and Sport Tournaments, 1987.
No 113 Ralph Rönnquist: Network and Lattice Based Approaches to the Representation of Knowledge, 1987.
No 118 Mariam Kamkar, Nahid Shahmehri: Affect-Chaining in Program Flow Analysis Applied to Queries of Pro-

grams, 1987.
No 126 Dan Strömberg: Transfer and Distribution of Application Programs, 1987.
No 127 Kristian Sandahl: Case Studies in Knowledge Acquisition, Migration and User Acceptance of Expert Sys-

tems, 1987.
No 139 Christer Bäckström: Reasoning about Interdependent Actions, 1988.
No 140 Mats Wirén: On Control Strategies and Incrementality in Unification-Based Chart Parsing, 1988.
No 146 Johan Hultman: A Software System for Defining and Controlling Actions in a Mechanical System, 1988.
No 150 Tim Hansen: Diagnosing Faults using Knowledge about Malfunctioning Behavior, 1988.
No 165 Jonas Löwgren: Supporting Design and Management of Expert System User Interfaces, 1989.
No 166 Ola Petersson: On Adaptive Sorting in Sequential and Parallel Models, 1989.
No 174 Yngve Larsson: Dynamic Configuration in a Distributed Environment, 1989.
No 177 Peter Åberg: Design of a Multiple View Presentation and Interaction Manager, 1989.
No 181 Henrik Eriksson: A Study in Domain-Oriented Tool Support for Knowledge Acquisition, 1989.
No 184 Ivan Rankin: The Deep Generation of Text in Expert Critiquing Systems, 1989.
No 187 Simin Nadjm-Tehrani: Contributions to the Declarative Approach to Debugging Prolog Programs, 1989.
No 189 Magnus Merkel: Temporal Information in Natural Language, 1989.
No 196 Ulf Nilsson: A Systematic Approach to Abstract Interpretation of Logic Programs, 1989.
No 197 Staffan Bonnier: Horn Clause Logic with External Procedures: Towards a Theoretical Framework, 1989.
No 203 Christer Hansson: A Prototype System for Logical Reasoning about Time and Action, 1990.
No 212 Björn Fjellborg: An Approach to Extraction of Pipeline Structures for VLSI High-Level Synthesis, 1990.
No 230 Patrick Doherty: A Three-Valued Approach to Non-Monotonic Reasoning, 1990.
No 237 Tomas Sokolnicki: Coaching Partial Plans: An Approach to Knowledge-Based Tutoring, 1990.
No 250 Lars Strömberg: Postmortem Debugging of Distributed Systems, 1990.
No 253 Torbjörn Näslund: SLDFA-Resolution - Computing Answers for Negative Queries, 1990.
No 260 Peter D. Holmes: Using Connectivity Graphs to Support Map-Related Reasoning, 1991.
No 283 Olof Johansson: Improving Implementation of Graphical User Interfaces for Object-Oriented Knowledge-

Bases, 1991.
No 298 Rolf G Larsson: Aktivitetsbaserad kalkylering i ett nytt ekonomisystem, 1991.
No 318 Lena Srömbäck: Studies in Extended Unification-Based Formalism for Linguistic Description: An Algorithm

for Feature Structures with Disjunction and a Proposal for Flexible Systems, 1992.
No 319 Mikael Pettersson: DML-A Language and System for the Generation of Efficient Compilers from Denotatio-

nal Specification, 1992.
No 326 Andreas Kågedal: Logic Programming with External Procedures: an Implementation, 1992.
No 328 Patrick Lambrix: Aspects of Version Management of Composite Objects, 1992.
No 333 Xinli Gu: Testability Analysis and Improvement in High-Level Synthesis Systems, 1992.
No 335 Torbjörn Näslund: On the Role of Evaluations in Iterative Development of Managerial Support Sytems,

1992.
No 348 Ulf Cederling: Industrial Software Development - a Case Study, 1992.
No 352 Magnus Morin: Predictable Cyclic Computations in Autonomous Systems: A Computational Model and Im-

plementation, 1992.
No 371 Mehran Noghabai: Evaluation of Strategic Investments in Information Technology, 1993.
No 378 Mats Larsson: A Transformational Approach to Formal Digital System Design, 1993.
No 380 Johan Ringström: Compiler Generation for Parallel Languages from Denotational Specifications, 1993.
No 381 Michael Jansson: Propagation of Change in an Intelligent Information System, 1993.
No 383 Jonni Harrius: An Architecture and a Knowledge Representation Model for Expert Critiquing Systems, 1993.
No 386 Per Österling: Symbolic Modelling of the Dynamic Environments of Autonomous Agents, 1993.
No 398 Johan Boye: Dependency-based Groudness Analysis of Functional Logic Programs, 1993.

No 402 Lars Degerstedt: Tabulated Resolution for Well Founded Semantics, 1993.
No 406 Anna Moberg: Satellitkontor - en studie av kommunikationsmönster vid arbete på distans, 1993.
No 414 Peter Carlsson: Separation av företagsledning och finansiering - fallstudier av företagsledarutköp ur ett agent-

teoretiskt perspektiv, 1994.
No 417 Camilla Sjöström: Revision och lagreglering - ett historiskt perspektiv, 1994.
No 436 Cecilia Sjöberg: Voices in Design: Argumentation in Participatory Development, 1994.
No 437 Lars Viklund: Contributions to a High-level Programming Environment for a Scientific Computing, 1994.
No 440 Peter Loborg: Error Recovery Support in Manufacturing Control Systems, 1994.
FHS 3/94 Owen Eriksson: Informationssystem med verksamhetskvalitet - utvärdering baserat på ett verksamhetsinrik-

tat och samskapande perspektiv, 1994.
FHS 4/94 Karin Pettersson: Informationssystemstrukturering, ansvarsfördelning och användarinflytande - En kompa-

rativ studie med utgångspunkt i två informationssystemstrategier, 1994.
No 441 Lars Poignant: Informationsteknologi och företagsetablering - Effekter på produktivitet och region, 1994.
No 446 Gustav Fahl: Object Views of Relational Data in Multidatabase Systems, 1994.
No 450 Henrik Nilsson: A Declarative Approach to Debugging for Lazy Functional Languages, 1994.
No 451 Jonas Lind: Creditor - Firm Relations: an Interdisciplinary Analysis, 1994.
No 452 Martin Sköld: Active Rules based on Object Relational Queries - Efficient Change Monitoring Techniques,

1994.
No 455 Pär Carlshamre: A Collaborative Approach to Usability Engineering: Technical Communicators and System

Developers in Usability-Oriented Systems Development, 1994.
FHS 5/94 Stefan Cronholm: Varför CASE-verktyg i systemutveckling? - En motiv- och konsekvensstudie avseende ar-

betssätt och arbetsformer, 1994.
No 462 Mikael Lindvall: A Study of Traceability in Object-Oriented Systems Development, 1994.
No 463 Fredrik Nilsson: Strategi och ekonomisk styrning - En studie av Sandviks förvärv av Bahco Verktyg, 1994.
No 464 Hans Olsén: Collage Induction: Proving Properties of Logic Programs by Program Synthesis, 1994.
No 469 Lars Karlsson: Specification and Synthesis of Plans Using the Features and Fluents Framework, 1995.
No 473 Ulf Söderman: On Conceptual Modelling of Mode Switching Systems, 1995.
No 475 Choong-ho Yi: Reasoning about Concurrent Actions in the Trajectory Semantics, 1995.
No 476 Bo Lagerström: Successiv resultatavräkning av pågående arbeten. - Fallstudier i tre byggföretag, 1995.
No 478 Peter Jonsson: Complexity of State-Variable Planning under Structural Restrictions, 1995.
FHS 7/95 Anders Avdic: Arbetsintegrerad systemutveckling med kalkylkprogram, 1995.
No 482 Eva L Ragnemalm: Towards Student Modelling through Collaborative Dialogue with a Learning Compani-

on, 1995.
No 488 Eva Toller: Contributions to Parallel Multiparadigm Languages: Combining Object-Oriented and Rule-Based

Programming, 1995.
No 489 Erik Stoy: A Petri Net Based Unified Representation for Hardware/Software Co-Design, 1995.
No 497 Johan Herber: Environment Support for Building Structured Mathematical Models, 1995.
No 498 Stefan Svenberg: Structure-Driven Derivation of Inter-Lingual Functor-Argument Trees for Multi-Lingual

Generation, 1995.
No 503 Hee-Cheol Kim: Prediction and Postdiction under Uncertainty, 1995.
FHS 8/95 Dan Fristedt: Metoder i användning - mot förbättring av systemutveckling genom situationell metodkunskap

och metodanalys, 1995.
FHS 9/95 Malin Bergvall: Systemförvaltning i praktiken - en kvalitativ studie avseende centrala begrepp, aktiviteter och

ansvarsroller, 1995.
No 513 Joachim Karlsson: Towards a Strategy for Software Requirements Selection, 1995.
No 517 Jakob Axelsson: Schedulability-Driven Partitioning of Heterogeneous Real-Time Systems, 1995.
No 518 Göran Forslund: Toward Cooperative Advice-Giving Systems: The Expert Systems Experience, 1995.
No 522 Jörgen Andersson: Bilder av småföretagares ekonomistyrning, 1995.
No 538 Staffan Flodin: Efficient Management of Object-Oriented Queries with Late Binding, 1996.
No 545 Vadim Engelson: An Approach to Automatic Construction of Graphical User Interfaces for Applications in

Scientific Computing, 1996.
No 546 Magnus Werner : Multidatabase Integration using Polymorphic Queries and Views, 1996.
FiF-a 1/96 Mikael Lind: Affärsprocessinriktad förändringsanalys - utveckling och tillämpning av synsätt och metod,

1996.
No 549 Jonas Hallberg: High-Level Synthesis under Local Timing Constraints, 1996.
No 550 Kristina Larsen: Förutsättningar och begränsningar för arbete på distans - erfarenheter från fyra svenska fö-

retag. 1996.
No 557 Mikael Johansson: Quality Functions for Requirements Engineering Methods, 1996.
No 558 Patrik Nordling: The Simulation of Rolling Bearing Dynamics on Parallel Computers, 1996.
No 561 Anders Ekman: Exploration of Polygonal Environments, 1996.
No 563 Niclas Andersson: Compilation of Mathematical Models to Parallel Code, 1996.
No 567 Johan Jenvald: Simulation and Data Collection in Battle Training, 1996.
No 575 Niclas Ohlsson: Software Quality Engineering by Early Identification of Fault-Prone Modules, 1996.
No 576 Mikael Ericsson: Commenting Systems as Design Support—A Wizard-of-Oz Study, 1996.
No 587 Jörgen Lindström: Chefers användning av kommunikationsteknik, 1996.
No 589 Esa Falkenroth: Data Management in Control Applications - A Proposal Based on Active Database Systems,

1996.
No 591 Niclas Wahllöf: A Default Extension to Description Logics and its Applications, 1996.
No 595 Annika Larsson: Ekonomisk Styrning och Organisatorisk Passion - ett interaktivt perspektiv, 1997.
No 597 Ling Lin: A Value-based Indexing Technique for Time Sequences, 1997.

No 598 Rego Granlund: C3Fire - A Microworld Supporting Emergency Management Training, 1997.
No 599 Peter Ingels: A Robust Text Processing Technique Applied to Lexical Error Recovery, 1997.
No 607 Per-Arne Persson: Toward a Grounded Theory for Support of Command and Control in Military Coalitions,

1997.
No 609 Jonas S Karlsson: A Scalable Data Structure for a Parallel Data Server, 1997.
FiF-a 4 Carita Åbom: Videomötesteknik i olika affärssituationer - möjligheter och hinder, 1997.
FiF-a 6 Tommy Wedlund: Att skapa en företagsanpassad systemutvecklingsmodell - genom rekonstruktion, värde-

ring och vidareutveckling i T50-bolag inom ABB, 1997.
No 615 Silvia Coradeschi: A Decision-Mechanism for Reactive and Coordinated Agents, 1997.
No 623 Jan Ollinen: Det flexibla kontorets utveckling på Digital - Ett stöd för multiflex? 1997.
No 626 David Byers: Towards Estimating Software Testability Using Static Analysis, 1997.
No 627 Fredrik Eklund: Declarative Error Diagnosis of GAPLog Programs, 1997.
No 629 Gunilla Ivefors: Krigsspel coh Informationsteknik inför en oförutsägbar framtid, 1997.
No 631 Jens-Olof Lindh: Analysing Traffic Safety from a Case-Based Reasoning Perspective, 1997
No 639 Jukka Mäki-Turja:. Smalltalk - a suitable Real-Time Language, 1997.
No 640 Juha Takkinen: CAFE: Towards a Conceptual Model for Information Management in Electronic Mail, 1997.
No 643 Man Lin: Formal Analysis of Reactive Rule-based Programs, 1997.
No 653 Mats Gustafsson: Bringing Role-Based Access Control to Distributed Systems, 1997.
FiF-a 13 Boris Karlsson: Metodanalys för förståelse och utveckling av systemutvecklingsverksamhet. Analys och vär-

dering av systemutvecklingsmodeller och dess användning, 1997.
No 674 Marcus Bjäreland: Two Aspects of Automating Logics of Action and Change - Regression and Tractability,

1998.
No 676 Jan Håkegård: Hiera rchical Test Architecture and Board-Level Test Controller Synthesis, 1998.
No 668 Per-Ove Zetterlund: Normering av svensk redovisning - En studie av tillkomsten av Redovisningsrådets re-

kommendation om koncernredovisning (RR01:91), 1998.
No 675 Jimmy Tjäder: Projektledaren & planen - en studie av projektledning i tre installations- och systemutveck-

lingsprojekt, 1998.
FiF-a 14 Ulf Melin: Informationssystem vid ökad affärs- och processorientering - egenskaper, strategier och utveck-

ling, 1998.
No 695 Tim Heyer: COMPASS: Introduction of Formal Methods in Code Development and Inspection, 1998.
No 700 Patrik Hägglund: Programming Languages for Computer Algebra, 1998.
FiF-a 16 Marie-Therese Christiansson: Inter-organistorisk verksamhetsutveckling - metoder som stöd vid utveckling

av partnerskap och informationssystem, 1998.
No 712 Christina Wennestam: Information om immateriella resurser. Investeringar i forskning och utveckling samt

i personal inom skogsindustrin, 1998.
No 719 Joakim Gustafsson: Extending Temporal Action Logic for Ramification and Concurrency, 1998.
No 723 Henrik André-Jönsson: Indexing time-series data using text indexing methods, 1999.
No 725 Erik Larsson: High-Level Testability Analysis and Enhancement Techniques, 1998.
No 730 Carl-Johan Westin: Informationsförsörjning: en fråga om ansvar - aktiviteter och uppdrag i fem stora svenska

organisationers operativa informationsförsörjning, 1998.
No 731 Åse Jansson: Miljöhänsyn - en del i företags styrning, 1998.
No 733 Thomas Padron-McCarthy: Performance-Polymorphic Declarative Queries, 1998.
No 734 Anders Bäckström: Värdeskapande kreditgivning - Kreditriskhantering ur ett agentteoretiskt perspektiv,

1998.
FiF-a 21 Ulf Seigerroth: Integration av förändringsmetoder - en modell för välgrundad metodintegration, 1999.
FiF-a 22 Fredrik Öberg: Object-Oriented Frameworks - A New Strategy for Case Tool Development, 1998.
No 737 Jonas Mellin: Predictable Event Monitoring, 1998.
No 738 Joakim Eriksson: Specifying and Managing Rules in an Active Real-Time Database System, 1998.
FiF-a 25 Bengt E W Andersson: Samverkande informationssystem mellan aktörer i offentliga åtaganden - En teori om

aktörsarenor i samverkan om utbyte av information, 1998.
No 742 Pawel Pietrzak: Static Incorrectness Diagnosis of CLP (FD), 1999.
No 748 Tobias Ritzau: Real-Time Reference Counting in RT-Java, 1999.
No 751 Anders Ferntoft: Elektronisk affärskommunikation - kontaktkostnader och kontaktprocesser mellan kunder

och leverantörer på producentmarknader,1999.
No 752 Jo Skåmedal: Arbete på distans och arbetsformens påverkan på resor och resmönster, 1999.
No 753 Johan Alvehus: Mötets metaforer. En studie av berättelser om möten, 1999.
No 754 Magnus Lindahl: Bankens villkor i låneavtal vid kreditgivning till högt belånade företagsförvärv: En studie

ur ett agentteoretiskt perspektiv, 2000.
No 766 Martin V. Howard: Designing dynamic visualizations of temporal data, 1999.
No 769 Jesper Andersson: Towards Reactive Software Architectures, 1999.
No 775 Anders Henriksson: Unique kernel diagnosis, 1999.
FiF-a 30 Pär J. Ågerfalk: Pragmatization of Information Systems - A Theoretical and Methodological Outline, 1999.
No 787 Charlotte Björkegren: Learning for the next project - Bearers and barriers in knowledge transfer within an

organisation, 1999.
No 788 Håkan Nilsson: Informationsteknik som drivkraft i granskningsprocessen - En studie av fyra revisionsbyråer,

2000.
No 790 Erik Berglund: Use-Oriented Documentation in Software Development, 1999.
No 791 Klas Gäre: Verksamhetsförändringar i samband med IS-införande, 1999.
No 800 Anders Subotic: Software Quality Inspection, 1999.
No 807 Svein Bergum: Managerial communication in telework, 2000.

No 809 Flavius Gruian: Energy-Aware Design of Digital Systems, 2000.
FiF-a 32 Karin Hedström: Kunskapsanvändning och kunskapsutveckling hos verksamhetskonsulter - Erfarenheter

från ett FOU-samarbete, 2000.
No 808 Linda Askenäs: Affärssystemet - En studie om teknikens aktiva och passiva roll i en organisation, 2000.
No 820 Jean Paul Meynard: Control of industrial robots through high-level task programming, 2000.
No 823 Lars Hult: Publika Gränsytor - ett designexempel, 2000.
No 832 Paul Pop: Scheduling and Communication Synthesis for Distributed Real-Time Systems, 2000.
FiF-a 34 Göran Hultgren: Nätverksinriktad Förändringsanalys - perspektiv och metoder som stöd för förståelse och

utveckling av affärsrelationer och informationssystem, 2000.
No 842 Magnus Kald: The role of management control systems in strategic business units, 2000.
No 844 Mikael Cäker: Vad kostar kunden? Modeller för intern redovisning, 2000.
FiF-a 37 Ewa Braf: Organisationers kunskapsverksamheter - en kritisk studie av ”knowledge management”, 2000.
FiF-a 40 Henrik Lindberg: Webbaserade affärsprocesser - Möjligheter och begränsningar, 2000.
FiF-a 41 Benneth Christiansson: Att komponentbasera informationssystem - Vad säger teori och praktik?, 2000.
No. 854 Ola Pettersson: Deliberation in a Mobile Robot, 2000.
No 863 Dan Lawesson: Towards Behavioral Model Fault Isolation for Object Oriented Control Systems, 2000.
No 881 Johan Moe: Execution Tracing of Large Distributed Systems, 2001.
No 882 Yuxiao Zhao: XML-based Frameworks for Internet Commerce and an Implementation of B2B

e-procurement, 2001.
No 890 Annika Flycht-Eriksson: Domain Knowledge Management inInformation-providing Dialogue systems,

2001.
FiF-a 47 Per-Arne Segerkvist: Webbaserade imaginära organisationers samverkansformer: Informationssystemarki-

tektur och aktörssamverkan som förutsättningar för affärsprocesser, 2001.
No 894 Stefan Svarén: Styrning av investeringar i divisionaliserade företag - Ett koncernperspektiv, 2001.
No 906 Lin Han: Secure and Scalable E-Service Software Delivery, 2001.
No 917 Emma Hansson: Optionsprogram för anställda - en studie av svenska börsföretag, 2001.
No 916 Susanne Odar: IT som stöd för strategiska beslut, en studie av datorimplementerade modeller av verksamhet

som stöd för beslut om anskaffning av JAS 1982, 2002.
FiF-a-49 Stefan Holgersson: IT-system och filtrering av verksamhetskunskap - kvalitetsproblem vid analyser och be-

slutsfattande som bygger på uppgifter hämtade från polisens IT-system, 2001.
FiF-a-51 Per Oscarsson:Informationssäkerhet i verksamheter - begrepp och modeller som stöd för förståelse av infor-

mationssäkerhet och dess hantering, 2001.
No 919 Luis Alejandro Cortes: A Petri Net Based Modeling and Verification Technique for Real-Time Embedded

Systems, 2001.
No 915 Niklas Sandell: Redovisning i skuggan av en bankkris - Värdering av fastigheter. 2001.
No 931 Fredrik Elg: Ett dynamiskt perspektiv på individuella skillnader av heuristisk kompetens, intelligens, mentala

modeller, mål och konfidens i kontroll av mikrovärlden Moro, 2002.
No 933 Peter Aronsson: Automatic Parallelization of Simulation Code from Equation Based Simulation Languages,

2002.
No 938 Bourhane Kadmiry: Fuzzy Control of Unmanned Helicopter, 2002.
No 942 Patrik Haslum: Prediction as a Knowledge Representation Problem: A Case Study in Model Design, 2002.
No 956 Robert Sevenius: On the instruments of governance - A law & economics study of capital instruments in li-

mited liability companies, 2002.
FiF-a 58 Johan Petersson: Lokala elektroniska marknadsplatser - informationssystem för platsbundna affärer, 2002.
No 964 Peter Bunus: Debugging and Structural Analysis of Declarative Equation-Based Languages, 2002.
No 973 Gert Jervan: High-Level Test Generation and Built-In Self-Test Techniques for Digital Systems, 2002.
No 958 Fredrika Berglund: Management Control and Strategy - a Case Study of Pharmaceutical Drug Development,

2002.
FiF-a 61 Fredrik Karlsson: Meta-Method for Method Configuration - A Rational Unified Process Case, 2002.
No 985 Sorin Manolache: Schedulability Analysis of Real-Time Systems with Stochastic Task Execution Times,

2002.
No 982 Diana Szentiványi: Performance and Availability Trade-offs in Fault-Tolerant Middleware, 2002.
No 989 Iakov Nakhimovski: Modeling and Simulation of Contacting Flexible Bodies in Multibody Systems, 2002.
No 990 Levon Saldamli: PDEModelica - Towards a High-Level Language for Modeling with Partial Differential

Equations, 2002.
No 991 Almut Herzog: Secure Execution Environment for Java Electronic Services, 2002.
No 999 Jon Edvardsson: Contributions to Program- and Specification-based Test Data Generation, 2002
No 1000 Anders Arpteg: Adaptive Semi-structured Information Extraction, 2002.
No 1001 Andrzej Bednarski: A Dynamic Programming Approach to Optimal Retargetable Code Generation for

Irregular Architectures, 2002.
No 988 Mattias Arvola: Good to use! : Use quality of multi-user applications in the home, 2003.
FiF-a 62 Lennart Ljung: Utveckling av en projektivitetsmodell - om organisationers förmåga att tillämpa

projektarbetsformen, 2003.
No 1003 Pernilla Qvarfordt: User experience of spoken feedback in multimodal interaction, 2003.
No 1005 Alexander Siemers: Visualization of Dynamic Multibody Simulation With Special Reference to Contacts,

2003.
No 1008 Jens Gustavsson: Towards Unanticipated Runtime Software Evolution, 2003.
No 1010 Calin Curescu: Adaptive QoS-aware Resource Allocation for Wireless Networks, 2003.
No 1015 Anna Andersson: Management Information Systems in Process-oriented Healthcare Organisations, 2003.
No 1018 Björn Johansson: Feedforward Control in Dynamic Situations, 2003.
No 1022 Traian Pop: Scheduling and Optimisation of Heterogeneous Time/Event-Triggered Distributed Embedded

Systems, 2003.
FiF-a 65 Britt-Marie Johansson: Kundkommunikation på distans - en studie om kommunikationsmediets betydelse i

affärstransaktioner, 2003.

No 1024 Aleksandra Tešanovic: Towards Aspectual Component-Based Real-Time System Development, 2003.
No 1034 Arja Vainio-Larsson: Designing for Use in a Future Context - Five Case Studies in Retrospect, 2003.
No 1033 Peter Nilsson: Svenska bankers redovisningsval vid reservering för befarade kreditförluster - En studie vid

införandet av nya redovisningsregler, 2003.
FiF-a 69 Fredrik Ericsson: Information Technology for Learning and Acquiring of Work Knowledge, 2003.
No 1049 Marcus Comstedt: Towards Fine-Grained Binary Composition through Link Time Weaving, 2003.
No 1052 Åsa Hedenskog: Increasing the Automation of Radio Network Control, 2003.
No 1054 Claudiu Duma: Security and Efficiency Tradeoffs in Multicast Group Key Management, 2003.
FiF-a 71 Emma Eliason: Effektanalys av IT-systems handlingsutrymme, 2003.
No 1055 Carl Cederberg: Experiments in Indirect Fault Injection with Open Source and Industrial Software, 2003.
No 1058 Daniel Karlsson: Towards Formal Verification in a Component-based Reuse Methodology, 2003.
FiF-a 73 Anders Hjalmarsson: Att etablera och vidmakthålla förbättringsverksamhet - behovet av koordination och

interaktion vid förändring av systemutvecklingsverksamheter, 2004.
No 1079 Pontus Johansson: Design and Development of Recommender Dialogue Systems, 2004.
No 1084 Charlotte Stoltz: Calling for Call Centres - A Study of Call Centre Locations in a Swedish Rural Region,

2004.
FiF-a 74 Björn Johansson: Deciding on Using Application Service Provision in SMEs, 2004.
No 1094 Genevieve Gorrell: Language Modelling and Error Handling in Spoken Dialogue Systems, 2004.
No 1095 Ulf Johansson: Rule Extraction - the Key to Accurate and Comprehensible Data Mining Models, 2004.
No 1099 Sonia Sangari: Computational Models of Some Communicative Head Movements, 2004.
No 1110 Hans Nässla: Intra-Family Information Flow and Prospects for Communication Systems, 2004.
No 1116 Henrik Sällberg: On the value of customer loyalty programs - A study of point programs and switching costs,

2004.
FiF-a 77 Ulf Larsson: Designarbete i dialog - karaktärisering av interaktionen mellan användare och utvecklare i en

systemutvecklingsprocess, 2004.
No 1126 Andreas Borg: Contribution to Management and Validation of Non-Functional Requirements, 2004.
No 1127 Per-Ola Kristensson: Large Vocabulary Shorthand Writing on Stylus Keyboard, 2004.
No 1132 Pär-Anders Albinsson: Interacting with Command and Control Systems: Tools for Operators and Designers,

2004.
No 1130 Ioan Chisalita: Safety-Oriented Communication in Mobile Networks for Vehicles, 2004.
No 1138 Thomas Gustafsson: Maintaining Data Consistency im Embedded Databases for Vehicular Systems, 2004.
No 1149 Vaida Jakoniené: A Study in Integrating Multiple Biological Data Sources, 2005.
No 1156 Abdil Rashid Mohamed: High-Level Techniques for Built-In Self-Test Resources Optimization, 2005.
No 1162 Adrian Pop: Contributions to Meta-Modeling Tools and Methods, 2005.
No 1165 Fidel Vascós Palacios: On the information exchange between physicians and social insurance officers in the

sick leave process: an Activity Theoretical perspective, 2005.
FiF-a 84 Jenny Lagsten: Verksamhetsutvecklande utvärdering i informationssystemprojekt, 2005.
No 1166 Emma Larsdotter Nilsson: Modeling, Simulation, and Visualization of Metabolic Pathways Using Modelica,

2005.
No 1167 Christina Keller: Virtual Learning Environments in higher education. A study of students’ acceptance of edu-

cational technology, 2005.
No 1168 Cécile Åberg: Integration of organizational workflows and the Semantic Web, 2005.
FiF-a 85 Anders Forsman: Standardisering som grund för informationssamverkan och IT-tjänster - En fallstudie

baserad på trafikinformationstjänsten RDS-TMC, 2005.
No 1171 Yu-Hsing Huang: A systemic traffic accident model, 2005.
FiF-a 86 Jan Olausson: Att modellera uppdrag - grunder för förståelse av processinriktade informationssystem i trans-

aktionsintensiva verksamheter, 2005.
No 1172 Petter Ahlström: Affärsstrategier för seniorbostadsmarknaden, 2005.
No 1183 Mathias Cöster: Beyond IT and Productivity - How Digitization Transformed the Graphic Industry, 2005.
No 1184 Åsa Horzella: Beyond IT and Productivity - Effects of Digitized Information Flows in Grocery Distribution,

2005.
No 1185 Maria Kollberg: Beyond IT and Productivity - Effects of Digitized Information Flows in the Logging

Industry, 2005.
No 1190 David Dinka: Role and Identity - Experience of technology in professional settings, 2005.
No 1191 Andreas Hansson: Increasing the Storage Capacity of Recursive Auto-associative Memory by Segmenting

Data, 2005.
No 1192 Nicklas Bergfeldt: Towards Detached Communication for Robot Cooperation, 2005.
No 1194 Dennis Maciuszek: Towards Dependable Virtual Companions for Later Life, 2005.
No 1204 Beatrice Alenljung: Decision-making in the Requirements Engineering Process: A Human-centered

Approach, 2005
No 1206 Anders Larsson: System-on-Chip Test Scheduling and Test Infrastructure Design, 2005.
No 1207 John Wilander: Policy and Implementation Assurance for Software Security, 2005.
No 1209 Andreas Käll: Översättningar av en managementmodell - En studie av införandet av Balanced Scorecard i ett

landsting, 2005.
No 1225 He Tan: Aligning and Merging Biomedical Ontologies, 2006.
No 1228 Artur Wilk: Descriptive Types for XML Query Language Xcerpt, 2006.
No 1229 Per Olof Pettersson: Sampling-based Path Planning for an Autonomous Helicopter, 2006.
No 1231 Kalle Burbeck: Adaptive Real-time Anomaly Detection for Safeguarding Critical Networks, 2006.
No 1233 Daniela Mihailescu: Implementation Methodology in Action: A Study of an Enterprise Systems Implemen-

tation Methodology, 2006.
No 1244 Jörgen Skågeby: Public and Non-public gifting on the Internet, 2006.
No 1248 Karolina Eliasson: The Use of Case-Based Reasoning in a Human-Robot Dialog System, 2006.
No 1263 Misook Park-Westman: Managing Competence Development Programs in a Cross-Cultural Organisation-

What are the Barriers and Enablers, 2006.
FiF-a 90 Amra Halilovic: Ett praktikperspektiv på hantering av mjukvarukomponenter, 2006.
No 1272 Raquel Flodström: A Framework for the Strategic Management of Information Technology, 2006.

No 1277 Viacheslav Izosimov: Scheduling and Optimization of Fault-Tolerant Embedded Systems, 2006.
No 1283 Håkan Hasewinkel: A Blueprint for Using Commercial Games off the Shelf in Defence Training, Education

and Research Simulations, 2006.
FiF-a 91 Hanna Broberg: Verksamhetsanpassade IT-stöd - Designteori och metod, 2006.
No 1286 Robert Kaminski: Towards an XML Document Restructuring Framework, 2006
No 1293 Jiri Trnka: Prerequisites for data sharing in emergency management, 2007.
No 1302 Björn Hägglund: A Framework for Designing Constraint Stores, 2007.
No 1303 Daniel Andreasson: Slack-Time Aware Dynamic Routing Schemes for On-Chip Networks, 2007.
No 1305 Magnus Ingmarsson: Modelling User Tasks and Intentions for Service Discovery in Ubiquitous Computing,

2007.
No 1306 Gustaf Svedjemo: Ontology as Conceptual Schema when Modelling Historical Maps for Database Storage,

2007.
No 1307 Gianpaolo Conte: Navigation Functionalities for an Autonomous UAV Helicopter, 2007.
No 1309 Ola Leifler: User-Centric Critiquing in Command and Control: The DKExpert and ComPlan Approaches,

2007.
No 1312 Henrik Svensson: Embodied simulation as off-line representation, 2007.
No 1313 Zhiyuan He: System-on-Chip Test Scheduling with Defect-Probability and Temperature Considerations,

2007.
No 1317 Jonas Elmqvist: Components, Safety Interfaces and Compositional Analysis, 2007.
No 1320 Håkan Sundblad: Question Classification in Question Answering Systems, 2007.
No 1323 Magnus Lundqvist: Information Demand and Use: Improving Information Flow within Small-scale Business

Contexts, 2007.
No 1329 Martin Magnusson: Deductive Planning and Composite Actions in Temporal Action Logic, 2007.
No 1331 Mikael Asplund: Restoring Consistency after Network Partitions, 2007.
No 1332 Martin Fransson: Towards Individualized Drug Dosage - General Methods and Case Studies, 2007.
No 1333 Karin Camara: A Visual Query Language Served by a Multi-sensor Environment, 2007.
No 1337 David Broman: Safety, Security, and Semantic Aspects of Equation-Based Object-Oriented Languages and

Environments, 2007.
No 1339 Mikhail Chalabine: Invasive Interactive Parallelization, 2007.
No 1351 Susanna Nilsson: A Holistic Approach to Usability Evaluations of Mixed Reality Systems, 2008.
No 1353 Shanai Ardi: A Model and Implementation of a Security Plug-in for the Software Life Cycle, 2008.
No 1356 Erik Kuiper: Mobility and Routing in a Delay-tolerant Network of Unmanned Aerial Vehicles, 2008.
No 1359 Jana Rambusch: Situated Play, 2008.
No 1363 Per Nyblom: Dynamic Abstraction for Interleaved Task Planning and Execution, 2008.

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 1
 same as current

 1
 1
 1
 562
 409

 CurrentAVDoc

 SameAsCur
 AfterCur

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 107 to page 111
 Trim: fix size 6.496 x 9.449 inches / 165.0 x 240.0 mm
 Shift: move down by 8.50 points
 Normalise (advanced option): 'original'

 32

 D:20071123131926
 680.3150
 S5
 Blank
 467.7165

 Tall
 1
 0
 No
 503
 356
 Fixed
 Down
 8.5039
 0.0000

 Both
 107
 SubDoc
 111

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 106
 112
 110
 5

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 5 to page 104
 Trim: fix size 6.496 x 9.449 inches / 165.0 x 240.0 mm
 Shift: move down by 8.50 points
 Normalise (advanced option): 'original'

 32

 D:20071123131926
 680.3150
 S5
 Blank
 467.7165

 Tall
 1
 0
 No
 503
 356
 Fixed
 Down
 8.5039
 0.0000

 Both
 5
 SubDoc
 104

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 4
 112
 103
 100

 1

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset -27.93, 668.10 Width 512.29 Height 36.65 points
 Origin: bottom left

 1
 0
 BL

 Both
 117
 AllDoc
 137

 CurrentAVDoc

 -27.9274 668.0967 512.2932 36.6547

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 4
 112
 111
 112

 1

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset -48.87, -16.12 Width 54.98 Height 714.77 points
 Mask co-ordinates: Horizontal, vertical offset 459.93, -17.87 Width 43.64 Height 714.77 points
 Origin: bottom left

 1
 0
 BL

 Both
 117
 AllDoc
 137

 CurrentAVDoc

 -48.8729 -16.1245 54.9821 714.7668 459.9293 -17.8699 43.6365 714.7668

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 8
 112
 111
 112

 1

 HistoryList_V1
 qi2base

