Linképing Studies in Science and Technology

Thesis No. 1363

Dynamic Abstraction for Interleaved
Task Planning and Execution

by

Per Nyblom

Submitted to Linkdping Institute of Technology at Link&ping University in partial
fulfilment of the requirements for degree of Licentiate of Engineering

Department of Computer and Information Science
Link6ping universitet
SE-581 83 Linkoping, Sweden

Linkoping 2008

Dynamic Abstraction for Interleaved Task
Planning and Execution
by

Per Nyblom

April 2008
ISBN 978-91-7393-905-8
Linképing Studies in Science and Technology
Thesis No. 1363
ISSN 0280-7971
LiU-Tek-Lic—2008:21

ABSTRACT

It is often beneficial for an autonomous agent that operates in a complex environment to
make use of different types of mathematical models to keep track of unobservable parts
of the world or to perform prediction, planning and other types of reasoning. Since a
model is always a simplification of something else, there always exists a tradeoff between
the model’s accuracy and feasibility when it is used within a certain application due
to the limited available computational resources. Currently, this tradeoff is to a large
extent balanced by humans for model construction in general and for autonomous agents
in particular. This thesis investigates different solutions where such agents are more
responsible for balancing the tradeoff for models themselves in the context of interleaved
task planning and plan execution. The necessary components for an autonomous agent
that performs its abstractions and constructs planning models dynamically during task
planning and execution are investigated and a method called DARE is developed that is a
template for handling the possible situations that can occur such as the rise of unsuitable
abstractions and need for dynamic construction of abstraction levels. Implementations
of DARE are presented in two case studies where both a fully and partially observable
stochastic domain are used, motivated by research with Unmanned Aircraft Systems.
The case studies also demonstrate possible ways to perform dynamic abstraction and
problem model construction in practice.

This work has been supported by the Swedish Aeronautics Research Council (NFFP/-
54208), the Swedish National Graduate School in Computer Science (CUGS), the
Swedish Research Council (50405001) and the Wallenberg Foundation (WITAS Project).

Department of Computer and Information Science
Link6ping universitet
SE-581 83 Linkoping, Sweden

Acknowledgements

I would like to thank my advisor Patrick Doherty who has given me more or
less free hands to investigate this fascinating field of Artificial Intelligence.
It has truly been some of the most interesting years of my life and I apologize
for always picking subjects that you are less familiar with.

During my time at the Artificial Intelligence and Integrated Computer
Systems division (AIICS), I have received valuable input from many people.
Special thanks to Martin Magnusson, Fredrik Heintz, Per-Magnus Olsson,
David Landén, Piotr Rudol and Gianpaolo Conte for commenting drafts of
this thesis and related papers at various (perhaps dynamically generated)
levels of abstraction.

Thanks to Martin Magnusson for providing the fire for many interesting
and sometimes endless discussions which really make me grow as a person.
Also thanks to Patrik Haslum for your endless wisdom and for supporting
me during my early development. Thanks to Fredrik Heintz for your sense
of detail and perfection and Jonas Kvarnstrom for your incredible problem
solving capabilities (and will to share them). Thanks to Tommy Person and
Bjorn Wingman for your help with all the implementation issues and your
insights into the UAS Tech system.

Finally, I thank my parents Kurt and Gunilla, my girlfriend Anna and
my daughter Anneli for love and support.

Contents

1 Introduction 1
1.1 Modelsand Tradeoffs. 1
1.2 Task Environments and Models 2
1.3 The UAS Tech System 4
1.4 Abstractions Lo 5
1.5 Planning Model Types 7
1.6 Constructing Planning Models 9
1.7 Focus of Attention L. 9
1.8 Dynamic Abstraction.o 10
1.9 Dynamic Abstraction for Planning and Execution. 11

191 Example. e 11
192 DARE e 13
1.10 Related Work 13
1.11 Contributionso o 14
1.12 Qutline 15

2 Preliminaries 16

2.1 Probability Theory 17
2.1.1 Basic Assumptions 17
2.1.2 Stochastic Variables 17
2.1.3 Distributions and Density Functions 18
2.1.4 Joint Distributions 18
2.1.5 Conditional Distributions 18
216 BayesRule 20
2.1.7 Expectation 20

2.2 Bayesian Networks 20
2.2.1 Definition oo 21
2.2.2 Hybrid Models 21
2.2.3 Inference L. 22
2.2.4 Implicit Models 22
2.2.5 Model Estimation 22

2.3 Dynamic Bayesian Networks 23

2.4 Optimization oo 24

2.5 Execution Systems oL 25

vii

viii

CONTENTS

3 Dynamic Decision Networks

Example
Local Reward, Global Utility
Solution Techniques
Special Case: Markov Decision Processes

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4
4.5
4.6
4.7

4.8

2.5.1 Modular Task Architecture
2.5.2 Other Architectures
2.5.3 Definition of Skills

3.4.1 Policy

3.4.2 Solutions and Solver Methods
3.4.3 Value Iteration
3.4.4 Reinforcement Learning
3.4.5 RL with Model Building

DARE Method
Tasks and Beliefs
Overview of DARE
Execution Assumptions

Refinement Assumptions
Hierarchical Solution Nodes
Subscription VS Poll
The Method
471 Main.
4.7.2 DynabsSolve
4.7.3 CreateSubProblems
4.7.4 ReplanlfNecessary

Discussion

5 Case Study I

5.1 Task Environment Class

5.2 Task Environment Model
5.2.1 Danger Rewards

5.2.2 Observation Target Rewards
Skills L
DARE Implementation
5.4.1 Problem Models
5.4.2 Dynamic Abstraction
5.4.3 Solution Method
5.4.4 Subproblem Generation
5.4.5 Replanning Conditions
Experiments.

5.3
5.4

5.5

5.6

5.5.1 Setup

Comments.

CONTENTS ix
6 Case Study II 69
6.1 Task Environment Class 70
6.2 Task Environment Model 71
6.3 Skills. 74
6.4 Belief State and Filtering 74
6.5 DARE Implementation. 76
6.5.1 Planning Model Generation 76

6.5.2 Solution Method 79

6.5.3 Camera Movement 81

6.5.4 DYNABSSOLVE Implementation 81

6.5.56 Replanning 82

6.6 Experiments. L. 82
6.6.1 Setup 83

6.6.2 Results 83

6.7 DISCUSSIOI v v v v e e e e e 84

7 Conclusion 86
7.1 PFuture Work 86
7.1.1 Extentions to the Case Studies 87

7.1.2 Dynamic Task Environment Models 88

Chapter 1

Introduction

It is difficult to overestimate the importance of mathematical models in our
modern society because of their common use in e.g. natural sciences and
engineering diciplines for many different purposes. Many types of mod-
els exists today that can be used for a variety of tasks such as predicting
weather, simulating vehicle dynamics, monitoring nuclear power reactors
and verifying computer programs.

Models have also been used within the area of Artificial Intelligence (AI)
to develop autonomous agents. It is widely considered that such agents
should have models of their environments (and themselves) to make it pos-
sible to operate more successfully. The models can for example be used to
keep track of the unobservable parts of the world, perform prediction [34],
task planning [31] and other types of reasoning [10].

1.1 Models and Tradeoffs

One common trait for mathematical models used in practical applications
is that it is not always beneficial (or even possible) to model every aspect of
a system of study down to the smallest detail to get as accurate as possible.
The problem is that there is always a tradeoff between accuracy and fea-
stbility of a model that should be used for a certain application on a given
architecture. There might be a demand for timely response of a system that
prohibits long deliberation time which in turn can make a highly detailed,
but computationally demanding model inappropriate for use in that par-
ticular domain. Although the computational resources that can be made
available for different applications have been increasing exponentially since
the dawn of electronic computers, there will always be a limit when a par-
ticular system is being developed and deployed. This means that one will
always have to trade a model’s accuracy for feasibility to get a reasonable
performance in any future system, which is a fact that is often mentioned
in the literature about practical mathematical modelling [44] [24].

2 CHAPTER 1. INTRODUCTION

1.2 Task Environments and Models

When a model is to be constructed for an autonomous agent, it is important
to consider the task environment [63] in which the agent will operate. The
complexity of the task environment can give significant hints about the
different types of models that can be used for whatever the purpose of the
model is.

A task environment, which can be either real or simulated, specifies:

e what the agent can do to the environment with its actuators,
e what information it can receive from its sensors,
e how the environment works and what it contains, and

e what is considered “good or bad” with the help of a performance
measure

A task environment for an autonomous ground robot can e.g. specify
that the actuators consist of a propulsion system and possibly a manipulator
arm. Such agents are also typically equipped with sensors such as laser range
scanners, cameras and sometimes collision sensors. The environment may
consist of tables, chairs, walls, stairs etc., and its performance measure may
be defined in terms of power consumption and the time to complete an
assigned task (such as delivering a package).

A model that an agent uses should be closely connected to the task envi-
ronment that the agent operates within. For example, if a model is going to
be used for predicting the state of an autonomous agent’s task environment
depending on what actions it performs, it better include specifications of
how the actuators, sensors and the surrondings work in order to be useful.
Such a task environment model can not be too detailed due to the tradeoff
between accuracy and feasibility.

A task environment or a model thereof can be classified according to
some commonly used dimensions [63] which to a large extent determine
how difficult it is to handle.

e Fully Observable or Partially Observable: If the agent’s sensors
can give access to all the relevant information in the environment
it is called a fully observable task environment; otherwise the task
environment is called partially observable.

e Deterministic or Stochastic: If the next state is completely deter-
mined by the current state and the action executed by the agent the
task environment is called deterministic. If there are several possible
outcomes of an action it is called a stochastic environment. The term
non-deterministic is often used when outcomes do not have proba-
bilities associated with them.

1.2. TASK ENVIRONMENTS AND MODELS 3

e Episodic or Sequential: In an episodic environment, the agent’s
current decision does not influence the performance of any future
episode. All environments considered in this thesis will be sequen-
tial which means that the agent’s current decision might influence the
performance of the agent in future states.

e Static or Dynamic: A task environment which may change while
the agent deliberates is called a dynamic environment; otherwise it is
called statuc.

e Discrete or Continuous: A continuous environment contains el-
ements that are more accurately described with continuous models
involving real values instead of an enumerable set of values. Task
environments that do not have any continuous elements are called
discrete.

e Single Agent or Multiagent: A task environment where other ex-
ternal agents, besides the main agent itself, try to reach goals or max-
imize their utilities are called multiagent. If the external agents are
better described without decision capabilities, or if no external agents
exist, the environment can be considered single agent.

In this thesis, these dimensions are used to classify the intrinsic prop-
erties of a task environment. They are not assumptions that e.g. a designer
of an agent can make. On the other hand, a designer can make assumptions
that are reflected in the agent’s task environment models that it is supposed
to use. Constructed models that represent parts of a task environment must
often be a simplification of the real thing and the different dimensions are
then used to classify the model construction assumptions that are not al-
ready a property of the task environment. This will be discussed more in
Section 1.4.

It is assumed that task environment models can be stmulated. This
means that different actions can be tested with the model which may result
in one or several possible outcomes depending on whether the model is
deterministic or not. Stochastic models can be simulated by pseudo random
number generators.

A task environment class or environment class is a set of task envi-
ronments with similar properties. An agent is often designed to operate in
instances of a particular task environment class where e.g. the environment
can contain a different number of objects and agents but most of the other
properties or assumptions stay the same. In this thesis, the task environ-
ment instances in a particular environment class are assumed to have the
same classification according to the previously mentioned dimensions and
that the actuators and sensors are similarly modelled. Within a particular
environment class, the types of the objects in the environment also stay the
same but the number and initial conditions may vary in task environment
instances associated with the class.

4 CHAPTER 1. INTRODUCTION

The next topic of this introduction will describe an example of a complex
task environment class that has motivated much of the work with this thesis.

1.3 The UAS Tech System

This thesis is very much inspired by the UAS Tech’s Unmanned Aircraft
System (UAS), which currently consist of two autonomous Yamaha RMAX
helicopters equipped with sophisticated software and control systems that
have been developed in the past decade [17]. Many examples in this thesis
and the case studies have this platform in mind due to the huge variety of
tasks that can potentially be performed with such a system.

A task environment in this environment class (see Section 1.2) can con-
sist of a varity of elements. A training area for rescue workers in Revinge
(southern Sweden) is often used as a test flight area and that area con-
tains (or can be modified to contain) buildings, different types of obstacles,
roads, vehicles, landing spots, safety operators, ground stations where hu-
man operators can monitor the UASs, injured humans (simulated by Phd
students) and in the future also fires, smoke sources and boxes that can be
transported.

Depending on the task that is supposed to be performed by the system,
the performance measure (see Section 1.2) is different. If the task is to take
a set of pictures of a selected number of building structures, the perfor-
mance measure could include the time it takes to perform the mission, the
quality of the pictures and whether all the requested building structures
were photographed. In the case of another standard mission where a UAS
is looking for victims in a catastrophe area (or the like) the performance
measure could include the number of injured people detected, number of
false positives and the time taken to perform the mission.

The actuators of a UAS, for the purposes of this thesis, are considered
to be the signals that control the helicopter’s rotors, camera (IR and color)
pan/tilt unit, wireless network and General Packet Radio Service (GPRS)
communication. The communication through the wireless network is per-
formed with the help of the Common Object Request Broker Architecture
(CORBA) [59]. An actuator planned to be used in the future is an elec-
tromagnet attached via a winch system to the UAS which can be used to
transport objects such as medical supplies.

On a UAS Tech unmanned helicopter, numerous sensors are mounted
including a Global Positioning System (GPS), Inertial Measurement Unit
(IMU) and altimeter for pose estimation, color and infrared cameras. The
wireless network and the GPRS connection are also considered sensors.

One of the UAS Tech’s unmanned helicopters is pictured in figure 1.1.
Its computational capabilities are distributed among three onboard comput-
ers where each of them is used for image processing [32], flight and camera
controller [11] and deliberative functionality such as path planning [61], ge-
ographic information system and the deliberative/reactive execution system

1.4. ABSTRACTIONS 5

[18], respectively.

Figure 1.1: One of the UAS Tech’s unmanned helicopters.

In order to perform complex tasks in complicated task environments
(such as with the UAS Tech system), it is necessary to structure the exe-
cution of tasks and the representation of the environment in a suitable way
with the help of different types of models. Since the UAS Tech system is sit-
uated in the real world, the task environments in this environment class are
the most difficult ones according to the dimensions listed in Section 1.2. On
the other hand, the models that the system uses of the task environments
are always a simplification. Assumptions like full observability, determinism
and single agent are common, quite accurate and useful in certain types of
missions.

1.4 Abstractions

In this thesis, the following definition of an abstraction is used:

Definition 1.1
An abstraction is a simplification of the physical world or a stmplifi-
cation of a model.

An abstraction is a process that removes details and should expose the
most essential features of the entity that it is applied to. This thesis is

6 CHAPTER 1. INTRODUCTION

primarily concerned with abstractions of task environments which are more
agent-centered and include definitions of performance measures.

Definition 1.2
A task environment abstraction is a stmplification of a task environ-
ment or a stmplification of a task environment model.

Task environment abstractions are the only abstractions that will be
discussed in the rest of this thesis. Whenever an abstraction is mentioned,
it is meant to refer to a task environment abstraction. Figure 1.2 illustrates
how abstractions can be used to construct models from task environments
or models thereof.

In order to reason about complex task environments, abstractions are
often used to construct simplified models with. This is especially the case
when the task environment is part of the physical world where no exact
model exists. But even task environments that are extremly open-ended
can be reasoned about by performing abstractions that are reasonably valid
under many circumstances.

The UAS Tech system’s different task environments are very complex
and require abstractions. For example, the roadmap-based path planning
module [61] uses a polygon representation of the environment to construct
collision-free path segments that a UAS can fly. The polygons are just
simplifications of the environment but the resulting paths are still very
reliable. Another example where abstractions are used is in the control
system whose design assumes that the helicopter system is linear, which
is never the case for robotic systems, but it is still possible to control the
helicopter reliably with standard techniques from control theory.

Abstractions for higher level reasoning about task environments can also
be performed which could result in facts like “landed”, “at position p”,
“object o is visible from p”. These facts can then be used to support task
planning and execution monitoring. If a UAS e.g. performs vehicle tracking,
event descriptions such as “vehicle v turns left at intersection i” might be
useful to summarize a situation or send high level information to other
agents. In these cases, the abstraction performs a discretization of parts of
the continuous task environment and summarizes the infinitely many states
of the environment into a countable number of discrete ones.

It is also possible to perform abstractions on models to construct even
more simplified models (See the upper part of Figure 1.2) that can e.g.
be used for computing heuristic functions to guide problem solvers. The
simplified problem model can often be solved much faster (depending on
the abstraction) than the original model, and this technique is frequently
used to solve classical planning models (See Section 1.5) and integer linear
programming [65] (ILP) problems.

An abstraction that transforms a task environment into another, sim-
plified task environment model can be analysed with the same type of di-
mensions (fully/partially observable etc) as real task environments. The
resulting model type might be incapable of expressing stochastic and/or

1.5. PLANNING MODEL TYPES 7

partially observable phenomena when in fact the real task environment has
these properties. These dimensions are only a rough categorization of ab-
stractions, but they they tend to be very important for deciding the type
of the resulting model.

The thesis focuses on abstractions and the resulting models used for task
planning where there exists a rich set of model types that have different
capabilities of expressing properties of task environments.

Simplified
Task Environment
Model

[T Task Environment Abstraction

Task Environment
Model

[T Task Environment Abstraction

Task Environment

Figure 1.2: An task environment abstraction is a simplification of a task
environment or a task environment model.

1.5 Planning Model Types

Task planning is a common way for autonomous agents to figure out what
to do to reach a certain goal or to maximize its utility. When task planning
is used for execution in real world environments, it is necessary to perform
some kind of abstraction to construct a suitable task environment model that
can be solved with search or optimization algorithms where the solution is
a description of what should be done next. Many different types of such
planning models exist that can be classified according to the dimensions
mentioned in Section 1.2.

Definition 1.3
A planning model is a task environment model that models the per-
formance measure and sequential nature of a task environment

Definition 1.4
A planning model type is a set of models of a task environment class

8 CHAPTER 1. INTRODUCTION

The term problem model or simply problem is in this thesis used to
denote models that can have solutions but are not neccesarily sequential
in nature and/or includes a performance measure. A planning model is
therefore considered to be a specialized problem model.

The so called classical planning model type makes the strongest as-
sumptions according to the dimensions of task environments. The Planning
Domain Definition Language (PDDL) [30] is often used to specify planning
models in a succinct way with the help of a logical formalism. Many different
versions exist with various levels of expressivity [26] [29].

One extension of PDDL makes it possible to express so called Markov
Decision Processes (MDPs) [38] [62]. MDPs can express uncertainties in
action outcomes and exogenous events with probability distributions and
use rewards to express the planning agent’s performance measure. MDPs
are currently one of the most commonly used models for planning under
uncertainty.

MDPs make the assumption that the environment is fully observable,
which is often not an accurate abstraction; it is sometimes necessary to
model that an autonomous agent equipped with a camera is unable to see
through walls. An extension to the MDP model is the Partially Observable
MDP (POMDP) [38] which can model partially observable environments
at the expense of increased complexity of solving the specified problems.
Approximative solution methods are often used to make it possible to scale
up beyond systems containing just a few states [49].

Other types of planning models exist such as conditional planning mod-
els which often assume that the world is non-deterministic and sometimes
also partially observable. The solution to such models are conditional plans
that can contain if-then-else constructs and while loops [8] [5].

Another type of planning model type is based on constraints which can
be used to represent both plans and goals. This type of planning model is
often considered very flexible because parts of a plan can be provided by
a user which can be elaborated by the planning system. Such a planner
can also be used in a mixed-initiative framework where different users add
constraints [41] [51] [28]. Constraint-based planners are often very expres-
sive but often good heuristics must be manually constructed to solve large
problems and the assumption is often that the task environment is fully
observable and deterministic.

In this thesis, a highly expressive graphical model called Dynamic Deci-
sion Network (DDN) [14] will be used to represent planning models (see
Chapter 3) which can be used to express POMDPs with factored state
spaces. A so called hybrid DDN can in addition to POMDPs include a
mix of discrete and continuous elements, which is very useful when trying
to model complex task environments. DDNs will also be used as simulation
and evaluation models. It is not possible to solve DDNs exactly so one must
rely on approximative solution algorithms and/or use them to construct
simplified but solvable planning models.

1.6. CONSTRUCTING PLANNING MODELS 9

By looking back at the properties of task environments, one can see that
Hybrid DDNs make very few assumptions that limit the expressivity of a
task environment. In the case studies (see Chapter 5 and 6), the environ-
ment will also be considered to be dynamic as well which means that the
deliberation time of the agent will be taken into account. The only as-
sumption that will be left untouched is the assumption of a single agent.
Several external agents will be modelled but they will not be assumed to be
goal-reaching or utility-maximizing.

1.6 Constructing Planning Models

When a planning model (see Section 1.5) is to be constructed for an au-
tonomous agent, it is important to take the properties of the task environ-
ment into consideration when the model is supposed to be used for guiding
the agent’s execution.

The available computational resources must also be taken into account
so that it does not take too long to provide a solution. Planning is in general
much harder than other tasks such as prediction or state estimation because
it is necessary to predict many different state trajectories that are caused
by the agent’s actions. This means either that the used models must be
kept on a high level of abstraction for handling longer temporal horizons !
or kept rather small to make it feasible.

There is often also a huge number of possible ways to represent actions
and sensors in different types of planning models and the most detailed and
accurate action or sensor description is not neccesarily the best.

The most common way to construct a model for task planning is that
a human user first decides what types of abstractions to perform and why,
and then specifies how the actuators, sensors, environment and performance
measure will be abstracted and used in the resulting model. This process
is considered rather difficult because the resulting model should be both
as general as possible to avoid the construction of several planning mod-
els, while at the same time take the available computational resources and
the requirements for a timely response into consideration. The resulting
planning model often becomes a rather coarse view of how the environment
works and many times also the only view for planning on that level of
abstraction.

1.7 Focus of Attention

Due to the manual abstraction process and construction of planning models,
agents that are supposed to use these models for planning their execution
are typically not provided with any “focus of attention” mechanism where

IThere is a difference in both temporal and spatial horizons between a model that uses
concepts such as “fly to point p” and another that uses “descend 0.3 meters” instead.

10 CHAPTER 1. INTRODUCTION

they can choose or construct the models themselves that are most appro-
priate for the situation and task at hand. Such a capability would be very
useful in complex task environments where it is not possible to use detailed
models for everything that can be relevant all the time. However, the agent
must still be able to construct or select more detailed models of its task en-
vironment when necessary, such as in situations where “something” in the
task environment does not behave as in the “normal” case and that more
detailed reasoning is required to resolve the problem.

How can agents then be given the ability to focus their attention during
planning and execution? In this thesis, agents are given this ability through
the use of dynamic planning models which are constructed depending on
what effect they will have on the performance during execution. This means
that the accuracy of the model (which is often used to evaluate models in
general) is allowed to decrease if the performance of the agent increases
which makes the model less accurate but also more feasible.

Dynamically changing planning models can be viewed as an instance of
the more general problem of selecting or generating any simplifying model
with some notion of suitability of models that depends on that model type’s
particular purpose. This problem will be described next.

1.8 Dynamic Abstraction

The term dynamic abstraction refers to the capability of a system to dy-
namically change its simplifications of its task environment or models thereof
depending on the current circumstances. Since any system with limited
computational resources that needs to operate in and model a complex task
environment would have to perform abstractions, the capability of dynam-
ically changing the currently performed abstractions would provide both a
more flexible and capable system. A system that can perform dynamic ab-
straction can choose how its environment should be modelled for the purpose
of e.g. knowledge representation [10], prediction, explanation and planning.

For knowledge representation, dynamic abstraction will enable an agent
to represent knowledge at many different levels of abstraction and select
suitable versions of knowledge to reason with depending on the situation.
Humans are believed to be particulary good at this task and seem capable
of dynamically changing their view of an environment and constructing and
reasoning with abstract concepts.

An agent’s prediction and explanation mechanisms could also be im-
proved by using dynamic abstraction since the agent could then dynami-
cally select what variables to take into consideration to get as good result
as possible, depending on its own available computational resources. In
general, more complex models for prediction and explanation make it more
computationally intensive and the important tradeoff between accuracy and
feasibility must be balanced at all times.

1.9. DYNAMIC ABSTRACTION FOR PLANNING AND EXECUTION1

Dynamic abstraction for task planning, which is the focus of this thesis,
will be discussed in more detail in Section 1.9.

The general task of dynamically constructing models for a particular
task is not easy. It is not clear how to combine different types of models
into one that makes sense and how the resulting models can be evaluated
in order to improve the abstraction process. Compositional or component-
based modelling techniques [22] seem to make things easier, but the task is
far from trivial in the general case. Under limited circumstances though, it is
at least currently possible to perform dynamic abstraction for task planning
in combination with plan execution, where it is possible to directly evaluate
the performance of an agent that uses a certain planning model. More
information about the state of the art in dynamic abstraction can be found
in Section 1.10.

1.9 Dynamic Abstraction for Planning and
Execution

The main topic of this thesis is how dynamic abstraction can be used for
planning in the context of execution. The connection to execution is im-
portant because feedback from the execution should influence the dynamic
abstraction procedure.

Many years of research within task planning have produced many dif-
ferent types of planning models and solution methods. The method used in
this thesis is to try to reuse these results.

1.9.1 Example

Imagine an agent that operates in a complex task environment and is able
to perform dynamic abstraction in order to construct simplified planning
models that captures the most important aspects of its environment. It is
assumed that the models can be solved with a suitable solution method.
Suppose that the generated planning models are instances of MDPs (See
Section 1.5 and Chapter 3) and that the agent is able to reason about its
computational resources in order to keep the models on a suitable level of
abstraction that enables the solution method to provide a solution within
a reasonable time. An example of how the actual generation of MDPs can
be performed with e.g. continuous task environment models is discussed in
Chapter 5.

The agent then solves the planning model in order to use the solution
during execution. For MDPs, the solution is a so called policy which map
all possible discernible states to an action that should be executed in the
corresponding state. But the states and actions have been dynamically
constructed by an abstraction technique so we have to discuss further what
could possibly happen when the agent should execute the solution.

12 CHAPTER 1. INTRODUCTION

First of all, unexpected or simply ignored events in the agent’s envi-
ronment might cause the problem model used during the solution phase to
become invalid or unsuitable after a while. The agent might for example
discover that an object, previously assumed to be a stationary obstacle, is in
fact a vehicle that it is supposed to inspect. The agent may have to change
its way to perform abstractions and replan if (or perhaps more accurately,
when) this happens. It would be beneficial for the agent that discovered the
vehicle if it is capable of changing its way to view its environment by taking
the speed and direction of the vehicle into consideration in order to predict
where it is going. One may then argue that the agent should have used
that view from the very beginning, but then one also must consider that
the agent both has limited sensor capabilities and computational resources.
It is therefore just not feasible for the agent to represent everything in the
most detailed manner just because something might turn out to be more
complicated than previously perceived. Remember that the agent has made
a decision about its abstractions and thereby focused its attention on the
parts of the environment that it considered to be most important. It has
made an effort to make a good tradeoff between accuracy and feasibility of
the planning model.

Another problem is that it might turn out that a solution to the MDP
might be on such a high level of abstraction that the agent is incapable of
executing it. This depends of course on how complex the agent’s available
behaviors or skills (see Section 2.5.3) are but the agent is assumed not to
have skills for everything because then it would not need to plan at all.
Our UAS uses an execution system where parameterized reactive skills such
as “Fly to a point p”, “Take off” or “Turn camera towards point p” exist
but more complicated missions like “Deliver a set of packages to a set of
destinations” does not have a direct match to such a skill and task planning
techniques are used instead. Complicated missions need to be planned down
to the level where skills are available to carry out the solution. The point
is that an abstract solution might need to be refined somehow, which is
a common and natural technique used within Hierarchical Task Network
(HTN) planning [21] and Hierarchical Reinforcement Learning [6]. For an
MDP policy, each planned action might expand into a subproblem? of its
own which can also be constructed with the agent’s dynamic abstraction
capabilities. These resulting subproblems, which could be MDPs or other
planning model types need to be solved as well. The refinement should
stop when there are skills available that can reliably enough execute at least
parts of a solution.

The refinement of solutions in this manner creates an abstraction hier-
archy which the agent needs to keep track of and check if they are still valid
and suitable during execution. If higher level problem models suddenly be-
come too inaccurate due to ignored, simplified or changing conditions, there

2The term problem is used here because it might be the case that an episodic model
is used.

1.10. RELATED WORK 13

is a risk that the lower level solutions might be invalid or irrelevant.

1.9.2 DARE

All these consequences of using dynamic planning models have been stud-
ied in this thesis where a method called DARE (stands for Dynamic
Abstraction-driven Replanning and Execution) has been developed that
tries to handle these problems (see Chapter 4). DARE is a very abstract
method and needs to be instantiated with a particular task environment
class before it can be used. Chapter 5 presents an instantiation of the DARE
method where MDPs are used as the planning model type and subproblems
are constructed dynamically and solved until a sufficiently detailed level of
abstraction is reached. In Chapter 6 DDNs are constructed instead which
makes it possible to represent partial observability.

1.10 Related Work

The general idea that abstractions are necessery for decision-making is cer-
tainly not a new one. The development of HTN-planning [71] [64] was
largely driven by the need for planning with more abstract plan operators
first, forming an abstract plan, and then refining the solution and back-
tracking if necessary. The SIPE planning system [75] was one of the first
domain-independent HTN-planners which was described in great detail. In
the book that describes SIPE [75], there was a discussion about stopping
the refinement of task networks and only constructing plans at a certain
level of abstraction. This idea was implemented in CYPRESS [77] where
the so called Act language [76] was used to describe both planning and task
execution refinement in the same language. Planning was only performed
down to a certain level and then the task refinement kicked in with the help
of the PRS [52] execution system.

Other domain-independent HTN planning systems such as O-Plan [72]
and SHOP2 [53] have been developed for real-world applications and the
current situation is that when a planning system is used for solving large
and real-world like task planning models that require reasoning on several
levels of abstraction, HTN-planners with added capabilities of dealing with
many different types of constraints are often used.

Automatic abstraction has also been developed for so called STRIPS or
classical planning [31] domains. A system called ALPINE [40] was used to
automatically generate abstraction hierarchies given a domain description.

Most of the work within dynamic abstraction for stochastic task environ-
ments has been done within the area of hierarchical reinforcement learning
(HRL) [6] which can be viewed as a generalization effort for HTN-planning
in stochastic environments. The main idea is to use abstract MDPs that
can use sub MDPs almost like primitive actions. There are many ways

14 CHAPTER 1. INTRODUCTION

to actually do this but the three most cited HRL systems are the Options
framework [70], MAXQ [16] and Hierachical Abstract Machines (HAM) [60].

Jonsson and Barto [37] used a modified version of the U-Tree algorithm
[46] to automatically find state abstractions in the Options framework. A
U-Tree is a form of decision tree which keeps track of the state abstraction
by using a statistical test to select when distinctions between different states
should be made.

Hengst [35] has developed an algorithm called HEXQ which learns sub-
task structures by separating state variables that change at different rates.

Mannor et al. [45] use clustering techniques to perform dynamic ab-
straction by looking at the state transition history which is converted to a
graph where the clustering takes place. The clusters are then used to learn
policies that move between the different clusters which can then be used as
abstract actions.

Steinkraus and Kaelbling [66] use a structure very similar to the HSN-
structure (see Section 4.5), where different abstractions are performed on
the way down to the most detailed abstraction.

Another piece of work that is very much related to this thesis is [43]
where the authors try to dynamically generate models depending on the
questions asked about a certain system. They express preferred models
with a theory of abstractions about model fragments.

Some work with hierarchical POMDPs has been done as well ([73]
contains a small survey) but not to automatically select abstractions for
POMDPs at different levels. Kaelbling et al. [73] use reinforcement learn-
ing methods to learn abstract policies over macro actions and demonstrate
many benefits of using abstract states in POMDPs.

Sturtevant and Buro [67] uses abstractions in the context of path plan-
ning and path execution where the original path planning model is trans-
formed into a hierarchy of models on different levels of abstraction. The
abstraction is performed by looking for cliques in the planning graph or
tiles.

1.11 Contributions

Although the idea of dynamic abstraction has been used within hierarchical
reinforcement learning, it has never been approached from a more general
point of view where different types of planning models are combined and
selected or generated depending on the current situation and task. The
DARE method tries to find a way to do this in a more general framework
and uses the connection to skills that are supposed to execute the solution.
Figure 4.2 on page 42 illustrates a vision where many different types of
planning models are combined and updated dynamically.

Another contribution is the idea and implementation of using the task
environment’s performance measure to focus the attention when the plan-
ning models are constructed. In Chapter 5, this is done with the use of

1.12. OUTLINE 15

relevance functions. Chapter 6 uses a measure of the expected utility of
points to build planning models.

The two case studies contribute to the area of dynamic abstraction by
demonstrating that (parts of) the abstraction process can be formulated as
solutions to optimization problems.

The results presented in the case studies have been published in [57] and
[58].

1.12 Outline

The rest of the thesis is organized as follows: Chapter 2 briefly provides
preliminary information about probability theory, Dynamic Bayesian Net-
works (DBNs) and local optimization techniques. Chapter 3 describes a
general graphical model called Dynamic Decision Networks (DDN) which
can be used to model stochastic and partially observable planning models.
DDNs are used to simulate the task environments used in the case studies.
The same chapter also describes MDPs as a special case of DDNs where all
variables are discrete and observable.

Chapter 4 describes the DARE method which tries to pinpoint the nec-
essary capabilities of a planning and execution agent that uses dynamically
generated planning models and needs to keep track of the corresponding
abstractions’ validity.

Chapter 5 presents the first implementation of DARE where the task
environment class is fully observable. The planning is performed on several
levels of abstraction and the planning models (MDPs) are dynamically gen-
erated according to the currently best considered abstraction. Chapter 6
contains a description of the second case study where planning models are
dynamically created in a partially observable task environment class. In this
implementation the levels of abstraction are fixed but the planning models
are still generated dynamically depending on the agent’s current belief state.

Finally, Chapter 7 contains some conclusions and descriptions of future
work.

Chapter 2

Preliminaries

Since this thesis is concerned with how suitable planning models can be
generated depending on the current circumstances, it is useful to know about
some of the tools to construct models that are used in the case studies in
Chapter 5 and 6.

Probability theory is often used to model uncertainty. In this thesis,
probability theory is used to specify task environment models and is also
the basis of filtering algorithms in partially observable environment classes.
A brief introduction to the relevant concepts in probability theory will there-
fore be given in Section 2.1.

The graphical model called Bayesian Networks (BNs) will be used to
succinctly specify probability distributions and illustrate dependencies be-
tween variables in the stochastic planning models used in the case studies.
The temporal version of BNs, Dynamic Bayesian Networks (DBNs), can be
used to describe stochastic processes and is the basis for the Dynamic Deci-
sion Networks (DDNs) [14] that will be described in more detail in Chapter
3. BNs and DBNs are described in Section 2.2 and 2.3.

The introductory chapter contained a description of the tradeoff between
accuracy and feasibility of a certain model. When tradeoffs are performed
by computers, they are often formulated as an optimization problem and
solved with some of the available techniques. This is also the case in this the-
sis and a brief introduction to optimization problems and relevant solution
techniques is provided in Section 2.4.

A solution to a planning model should be something that can be executed
by an execution system, and since this thesis discusses the important connec-
tion between planning and execution, an introduction to reactive execution
systems in general and the Modular Task Architecture (MTA) (described
in [56]) in particular is given in Section 2.5. MTA is used in the UAS Tech
software architecture to structure the execution and it uses the Common
Object Request Broker Architecture (CORBA) [59] for communication.

16

2.1. PROBABILITY THEORY 17

2.1 Probability Theory

The concept of variation is often a central part of many applications. Vari-
ation in this context means that the outcome of some event such as tossing
a coin or using a sensor, varies even if the initial conditions are perceived
to be the same.

The cause of the variation can be discussed and it might be the case
that the phenomenon of study is actually deterministic if all the variables
are taken into account. The problem is that it is not always possible to
get access to all the variables that determine an outcome (the environment
might be partially observable) and therefore it is necessary to deal with
variation, whether the world is deterministic or not.

Probability theory is one way of representing variation and it is used in
many practical situations such as representing measure error and building
stochastic models such as MDPs (see Chapter 3) used for task planning.

2.1.1 Basic Assumptions

The basic assumption of probability theory is that there exists a universe
of outcomes U and each event E C U (given some basic assumptions about
E such as it must be a o-algebra [20]) is given a number between 0 and 1,
called the probability P(E) of the event E. The probability function P is
constrained by the following fundamental axioms of probability:

e For any set E C U, P(E) >0
e PU)=1

e Any countable sequence of pairwise disjoint events [E;, E», ...] satisfies:
P(BiUE,U..) =5 P(E)

2.1.2 Stochastic Variables

Stochastic variables are often used to specify events which can be denoted
by expressions such as “Altyas > 10.2” ! whose denotation defines the
event where the UAS’s altitude is above 10.2 meters. The stochastic vari-
able Altyas is in this case used to represent the altitude. Events, such as
the one just mentioned, can be given probabilities as long as they follow
the fundamental axioms of probability. Altyas is an example of a stochas-
tic variable with a continuous domain (the altitude). Domains can also be
discrete sets such as {rsi,rss,7s3}, which in this case represents three dif-
ferent road segments in a road network. The expression “RS¢,» = 7s3” can

1A more theoretical and complete treatment of probability theory (see [20]) define
stochastic variables in a different way, but for the purpose of this thesis, thinking about
stochastic variables as something that can be used to form expressions that denote events
are sufficient

18 CHAPTER 2. PRELIMINARIES

then represent the event that a certain car is travelling on the road segment
denoted by rs,.

Simple expressions such as “Altyas > 10.2” can be used to form com-
bined events with logical operations like “Altyas > 10.2 A Altyas < 20”
which denotes the intersection of the events denoted by “Altyas > 10.2”
and “Altyas < 20", whose intended meaning is that the UAS’s altitude is
between 10.2 and 20 meters.

2.1.3 Distributions and Density Functions

A discrete stochastic variable X has a so called probability distribution
associated with it, which defines the probability P(X = d) for all the ele-
ments d € Dx in that variable’s domain Dx 2. A probability distribution
for RScqr might be (0.1,0.7,0.2) which means that P(RS., = 7s1) = 0.1,
P(RScqr = 7s2) = 0.7 and P(RScer = 7s3) = 0.2. The sum of all probabil-
ities in the distribution must be equal to 1, according to the fundamental
axioms of probability. For a continuous stochastic variable, it is not possi-
ble to enumerate all possible events and one has to associate a probability
density function fx with the variable X instead. Figure 2.1 illustrates an
example of such a density function for the Altyas stochastic variable. The
integral of a probability density function fx, ffooo fx(z)dz , must be equal
to 1.

2.1.4 Joint Distributions

Events that involve more than one stochastic variable can be specified with
expressions such as “RSrpyuck = 751 A RScqer = rs3” where the stochastic
variable RSty ck represents the possible road segments for a truck and has
the same domain as RS¢,-. The probability distribution for both of the two
stochastic variables must be defined for every combination of values such as
P(RSTruck = 7s1ARScar =781) = 0.1, P(RSTruck = r$2ARScqer = 751) =
0.12 and so on. The complete specification of all the stochastic variables’
probability distributions and density functions is called the joint probability
distribution. If discrete and continuous stochastic variables are mixed in the
same model, the probability density functions for all the continuous variables
must be defined for all combinations of values for the discrete variables in
the general case.

2.1.5 Conditional Distributions

The conditional probability P(E|E>) given two events F; and Fj is defined
as:

2The probability function P is in this way also used for expressions involving stochastic
variables and the intended meaning is the probability of the denoted event.

2.1. PROBABILITY THEORY 19

Probability Density Function for the UAV's altitude
0.2 T T T T

0.18F

0.08 -

0.06 -

0.041

0.02

0 I I L
0 5 10 15 20 25

Altitude

Figure 2.1: An example of a probability density function associated with
the Altyas stochastic variable.

P(E4, E»)
P(B,)
and is often used to model partially observable events or state transition
distributions in e.g. MDPs.

The conditional probability distribution P(X|Y) for the two discrete
stochastic variables X and Y is defined as:

P(B1|BE2) = (2.1)

P(X,Y)
PX|Y)= —=—= 2.2
(X1 = 5 (22)
Equation 2.2 should be interpreted as the set of equations:
P(X=z,NY =y,
P(X = .’131'|Y = y]') = (]) (23)

P(Y =vy;)
for all combinations of the stochastic variables’ domain elements z; and
Y;-
Similarily, the conditional density function fxy for two continuous
stochastic variables X and Y is defined as:

fX,Y(:r:y)

fr(y) 24)

fxy(zly) =

20 CHAPTER 2. PRELIMINARIES

where fx y is the joint probability density function for X and Y and fy
is the (marginalized) probability density function for ¥ which is equal to

%, fxy(z,y)dz.

2.1.6 Bayes Rule

Bayes Rule is useful when one needs to calculate the probability P(E;|E;)
in terms of P(E;|E;), P(E;) and P(E;):

P(E;|E:)P(E;)
P(Ej)

Bayes rule is used extensively in probabilistic expert systems because
it is often the case that it is difficult and/or inappropriate to estimate or
measure the conditional probability in a certain “direction” but not the
other way around. In Chapter 6, Equation 2.5 will be used to calculate the
probability of a state given noisy sensor data.

Bayes rule can be extended to hold for distributions and density func-
tions similar to Equation 2.2 and 2.4.

P(B:|E;) = (2:5)

2.1.7 Expectation

For stochastic variables that have a domain of a subset of the integers or
reals, it is possible to define the expected value given the corresponding
distribution or density function. The expectation of a discrete stochastic
variable X is defined as follows:

E(X)=) aP(a) (2.6)
zeDx
The corresponding expression for continuous stochastic variables in-
volves an integral instead of a sum:

[e.e]
E(X) :/ zfx(z)dz (2.7)
—o0

The expectation is often denoted myx and generalizes to vectors of
stochastic variables X as well.

2.2 Bayesian Networks

One of the major problems with probabilistic models is that the number of
probabilities that must be specified for the joint distribution grows expo-
nentially with the number of variables in the general case.

There are often more succinct ways of implicitly describing a probability
distribution by only specifying conditional distributions between the vari-
ables in the model. A graphical model called Bayestan Networks provides

2.2. BAYESIAN NETWORKS 21

this functionality and has been credited with the extensive use of probabilis-
tic techniques in AI applications because of the resulting increased efficiency
of probabilistic reasoning for larger models.

2.2.1 Definition

A Bayesian network is a Directed Acyclic Graph (DAG) where each node
represents a stochastic variable. Arcs between nodes should as closely as
possible represent “direct” causal influences between variables. Figure 2.2
illustrates a typical Bayesian Network.

| Py_1lalx1)=01 !
' P(y_1la_1,x 2)=0.03]
| P(y_1]a_2,x_1)=0.02;
I
I
I

I
P(y_k | a_m, x_n) = 0.02,
I

Figure 2.2: A typical Bayesian Network. Parts of the conditional distribu-
tion for the stochastic variable Y, given its parents values, is also shown.

Instead of specifying the full joint distribution for a set of stochastic
variables, one only needs to specify the conditional probability distributions
or densities of variables given their parents.

The main assumption for a Bayesian Network with discrete variables
X1, ..., X is that the full joint distribution P(X;, Xa, ..., Xn) can be calcu-
lated by:

N
P(X1,Xa,.., Xn) = | [P(Xi|Parents(X;)) (2.8)

=1
where Parents(X;) is the set of parent nodes of X;. Figure 2.2 illus-
trates parts of one of these conditional probabilities P(Y'|X, A) which is a
lot easier to specify than the full joint distribution P(A4, B, X,Y, Z) for all

combinations of the variables’ domains.

2.2.2 Hybrid Models

So called Hybrid Bayesian Networks can include both discrete and continu-
ous stochastic variables. A continuous variable with discrete and continuous

22 CHAPTER 2. PRELIMINARIES

parents must then have several conditional density functions for each com-
bination of discrete values that may depend on the values of the continuous
parents as well. A discrete variable with continuous and discrete parents
must in the general case have several density functions defined. Hybrid BNs
will be used to define parts of the task environment models used in the case
studies (Chapter 5 and 6).

2.2.3 Inference

BNs can be used for many different purposes. One of the most basic capabili-
ties is to calculate a conditional probability P(E;|E;). Events described with
stochastic variables are commonly used to formulate such queries where it
is often the case that a set of discrete variables Y are already known and
another set of discrete variables Z are unknown. The probability distribu-
tion P(X|Y,Z) of the query variable X is then calculated by the inference
procedure applied to the BN.

In this thesis, inference in Bayesian Networks is performed in a special-
ized context of filtering where the probability distribution over the current
state is estimated when a system is described with a so called Dynamic
Bayesian Network (see Section 2.3 and 6.4 for more information about this
particular form of inference).

2.2.4 Implicit Models

All the examples given so far have used either a tabular or explicit prob-
ability density representation of the probability distributions. This is not
always possible or even necessary. Suppose that one would like to repre-
sent the probability distribution of the values of a laser scan sensor given
the sensor’s pose and a map of the surroundings. An explicit probability
density representation of the sensor values given all possible poses is not
possible to store due to the continuous stochastic variables. It is possible to
calculate one such density given that the pose is known, by using raycast-
ing or similar techniques in the map, which is an example of an implicit
representation of a density function widely used in practice [74], e.g. when a
mobile robot performs Monte Carlo Localization (MCL) [25] with a particle
filter (which is an approximative inference method that does not need an
explicit density representation).

Implicit densitiy functions will be used in the case studies e.g. when
visibility conditions are used. Such conditions are very cumbersome to rep-
resent explicitly but relatively easy to calculate with raycasting techniques.

2.2.5 Model Estimation

A conditional distribution can be estimated by a suitable statistical tech-
nique such as general function approximation (if no particular type of dis-

2.3. DYNAMIC BAYESIAN NETWORKS 23

tribution is assumed) or parameterized models like Gaussian distributions
or mixture models. Maximum Likelihood (ML) (see [2]) parameter estima-
tion is a common method which is used in Chapter 5 to estimate transition
distributions in MDPs.

2.3 Dynamic Bayesian Networks

Bayesian Networks are a great tool for modelling situations where temporal
aspects are not taken into consideration. It is often the case that one would
like to model stochastic systems that evolve over time as well, and then an
extension to Bayesian Networks can be made to create Dynamic Bayesian
Networks (DBNs) [13].

DBNs can be used to model stationary stochastic processes which makes
the so called Markov assumption. Temporal stochastic models that make
this assumption assume that any state can only depend on a finite history
of stochastic variables. In a first order Markov model the current state
can only depend on the previous one, which is often the case for DBNs. A
first order Markov model can represent any finite order Markov model by
introducing extra stochastic variables.

Figure 2.3 shows the typical structure of a DBN model. The basic idea
is to use a set of stochastic variables for each time step and define the
conditional probabilities of the variable set at time ¢ given the variable set
at time £ — 1. The Markov assumption makes it possible to define a DBN
with only two sets of variables, one set of prior distributions for time step
0 and a set of conditional distributions for each stochastic variable.

Variable 1
t

Variable 2
t

Variable N
t

Variable 1
t-1

Variable 2
t-1

Variable N
t=1

Figure 2.3: A typical Dynamic Bayesian Network.

Given that a DBN can represent a probability distribution over time,
it can be used by an autonomous agent to perform the following types of

24 CHAPTER 2. PRELIMINARIES

reasoning over time:

e The probability distribution over the agent’s current state space can
be updated with filtering. This is a very useful operation when the
task environment is partially observable.

e Future distributions can be estimated with prediction. This operation
is useful when the agent performs planning.

e The set of previous state distributions can often be better estimated
when more information is received which is called smoothing and
sometimes hindsight. Smoothing is especially useful if any type of
machine learning [48] is used to update the distributions in the DBN.

Filtering is used to compute the posterior probability distribution
P(Xty1|Y1:¢4+1) where X¢11 and Yi..41 represents all unobserved variables
at time ¢ + 1 and the sequence of observed variable sets (Y1,Ya, ..., Yi11)
respectively.

The filtering computation can be described with the following equation:

P(Yii1|Xet1) Dg, P(Xea|e) P(24[Y1)
P(Yit1|Y1:t)

P(Xt11]Y1441) = (2.9)

where P(Y:11|X¢41) often is called the observation model which treats
the stochastic variables Y:;1 as observations of the hidden variables Xy 1.
P(Xty1|X:) is often called the transition model.

The corresponding equation for performing prediction k& + 1 steps into
the future with a DBN is the following:

P(Xiphia|Yet) = Y P(Xeqri|oesn) P(@esk| Vi) (2.10)

Ttttk

A special case of DBN is the Markov chain where only one discrete
stochastic variable with finite domain is allowed. It is possible to model any
discrete DBN with a single discrete variable, but it is often much easier to
use several variables since the domain can often be described more succinctly
with that approach. Markov Decision Processes (MDPs) (see Section 3.4)
use Markov chains to model a stochastic system that is fully observable.

2.4 Optimization

Many planning model types make it possible to specify some kind of cost
or utility of a solution to the problem. There are sometimes many different
ways to solve a specific planning model but some solutions might be better
than others due to different circumstances. There might for example exist
many different paths for a UAS to fly from one point to another but some

2.5. EXECUTION SYSTEMS 25

paths might be better than others due to the length of the path or other
criteria. When there are several possible solutions available to a model
and the solutions can be compared in terms of cost or other measurements,
the model is called an optimization problem. In this thesis, optimization
problems are used for other tasks than planning and a solution to such a
problem will typically not be a plan or an action but instead a decision
about abstraction parameters.

One possible definition of an optimization problem is that there exists
a set of variables V' where each variable has a domain Dy that can be
any type of set. Let D be the crossproduct of all the variables’ domains
Dy, X Dy, X ... X D"-‘IV\' The objective function U : D — R is then used to
compare different solutions.

The form of D and U specifies the possible solution methods that can
be used. When the set of variables all have discrete domains, a common
method is Branch and Bound [42] or some local search method such as
hillclimbing and simulated annealing [39]. For pure continuous domains
and linear utility functions, Linear Programming [65] can be used. Other
optimization algorithms make use of the gradient and hessian of U to guide
the search towards a global or local maximum [55].

In this thesis, different types of local search are used to perform opti-
mization as a method to select abstractions. Local search methods make
use of a so called neighbourhood function N : D — 2P which defines the
possible successors when the local search method is exploring a certain state
deD.

N can be used in different ways to perform the search. In hillclimbing
search, all the states in the neighbourhood are examined and the one with
the best utility is selected and set as the new current state. The neighbour-
hood function can also be sampled, as in simulated annealing, where the
current state is set to the sampled state with a certain probability that de-
pends on the utility and the so called cooling schedule which makes choices
that are worse, less probable with time.

2.5 Execution Systems

There are many possible ways to structure execution in an autonomous agent
that may have to operate in dynamic task environments with both action
and sensor uncertainty. Researchers within the area of AI robotics [50]
have been dealing with these isssues and different paradigms for structuring
execution have evolved. The evolution started with Shakey [54] and the so
called hierarchical paradigm, which is often very computationally expensive
and makes use of task environment models, and continued with the reactive
paradigm with behaviors with only simple memoryless modules. The hybrid
deliberative reactive paradigm is now more commonly used which tries to
combine the use of models with behaviors.

26 CHAPTER 2. PRELIMINARIES

2.5.1 Modular Task Architecture

The UAS Tech system uses the Modular Task Architecture (MTA) (see [56]
for a description) to structure much of the execution and is classified as
a hybrid deliberative reactive architecture. MTA makes use of the Com-
mon Object Request Broker Architecture (CORBA) [59] for communica-
tion. The parameterized behavioral components are called Task Procedures
(TPs). TPs have a standardized way to be initialized, terminated and so
on and can call any CORBA service. In the UAS Tech system, a path plan-
ner, a geographic information system and knowledge processing middleware
DyKnow [19] are all accessed as CORBA services. Before any action can be
executed, a TP instance (TPI) must be created by a request to a TP library
service.

TPs have a behavioral component that specifies the execution. Currently
the implementation of the behavioral component is based on state machines
and the TPs are allowed to have local and service reference variables.

A TPI can create other TPIs as well and structures of TPIs can be
constructed. Figure 2.4 illustrates a set of TPIs that is used in a part of a
mission where a set of building structures are supposed to be investigated.
In the UAS Tech system, the set of TPIs are changing all the time. The
set of instances during takeoff or landing is different from the ones shown
in Figure 2.4.

Task Procedure Instances

i
|

|
| Photogrametry ‘\CORBA Services
B
I
I

| ‘ Geographic Information Servic%

|
|
/

}’ DoAtPoints
TR
}’ CameraContron }’ NavToPoint \‘
(k\/4 Helicopter Controller Ser\/ic%
{ Fly3D }

Figure 2.4: Task Procedure instances for the part of a mission where a set
of building structures are investigated. The figure also shows the services
that the TPIs are using.

2.5.2 Other Architectures

Many execution system architectures have been developed which have many
similarities with MTA due to the use of some notion of task or task instance

2.5. EXECUTION SYSTEMS 27

that can be used to perform execution. The Reactive Action Package (RAP)
[23] system uses hierarchically structured “packages” that can perform sim-
ple tasks in different ways depending on the situation. The packages can
start up other packages to perform subtasks and the concurrently executing
tasks are managed with the RAP memory and a mechanism for synchro-
nization. The Procedural Reasoning System (PRS) [52] with successors
(e.g. Apex [27]) builds on similar ideas. PRS uses a simple database with
facts that can be filled in by sensors and task executing behaviors.

2.5.3 Definition of Skills

Since there are a lot of similarities between different execution system ar-
chitectures such as MTA, RAP and PRS, the collective term Sk:ll will be
used to refer to any primitive task executing piece e.g. TPIs, RAPS and so
on:

Definition 2.1

A skill s a reactive computational mechanism that achieves a certain
objective in a limited set of circumstances with the follounng capabili-
ties:

e [t can have an internal state and/or use a shared database.

e [t can send messages to other skills either through an event system
or a database.

e [t 1s possible to control and monitor it from the “outside” and
terminate it safely on demand, even if it is not finished with its
objective.

These capabilities of skills are used to keep the DARE method (see Chap-
ter 4) as general as possible and not specialize it too much towards use of
MTA. MTA, RAP and PRS are all capable of defining skills that have these
properties.

Chapter 3

Dynamic Decision
Networks

The previous chapter described the Dynamic Bayesian Networks (DBNs)
that can be used to model any discrete time stochastic process that satisfies
the Markov assumption. DBNs can be extended to specify planning models
and are then called Dynamic Decision Networks [14] (DDNs) which are
based on Decision theory [7]. Decision theory is a very general method for
decision-making under uncertainty.

The main idea is to add action and reward nodes to the basic DBN to
make it possible for an agent to control the process and determine the utility
of possible outcomes.

This chapter also describes the Markov Decision Process (MDP) [62],
which can be viewed as a special case of DDN. Partially Observable MDPs
(POMDPs) [38] are also a special case of DDNs but are not presented in
this chapter because none of the specialized POMDP solution techniques
are used in this thesis.

3.1 Example

Figure 3.2 shows an example DDN which describes the problem of delivering
a box to a target position on the ground. The box is attached to a winch
on a UAS (see Figure 3.1). It is a standard (but often difficult) task of
mathematical model building to create a model of this system using the laws
of physics combined with parameter estimation techniques and possibly a
collision detection/handling system to predict the movement of the box if
it touches or falls on the ground.

In order to control the system, it is useful to define a performance mea-
sure model. DDNs try to solve this modelling problem by defining a con-
tinuous reward variable R; that specifies the immediate reward when the

28

3.1. EXAMPLE 29

system goes from one state to another (¢ — 1 to t). The main objective is
to maximize the total reward, Z?:tzo Ry, from the current state X;, with a
finite horizon T', but many variants exists such as maximizing the average
reward or using a discount factor with an infinite horizon (see Section 3.2).
The reward variable can in this example e.g. depend on whether the box
is “damaged” by colliding too fast with the ground and the behavior of the
UAS (if it is too close to the ground or makes some unwanted manouver)
etc. Goals, such as “the box should stand on the ground and be detached
from the winch”, can be specified with a large reward when the box is close
enough to the target position with zero velocity while at the same time
being detached.

Target position

Figure 3.1: A UAS with a winch, trying to deliver a box.

Figure 3.2 only specifies the relationship between different classes of
random variables and the contents of e.g. UAS State is not specified. Many
different versions are possible such as using discrete domains for all variables,
which makes it possible to directly model the problem with a POMDP, or
try to model most of the relationships with linear Gaussian distributions to
make it possible to use feasible filtering and prediction techniques.

The reward variable can be used to specify the desired behavior of the
system. It is necessary to make a tradeoff between the UAS’s and the box’s
safety which raises important questions such as: How bad is it to crash
compared to a destroyed box? What is best, a solution that takes one hour
that succeeds flawlessly with probability 0.99 or a solution that takes five
minutes and succeeds with probability 0.957

30 CHAPTER 3. DYNAMIC DECISION NETWORKS

‘ Actions ; ! Static

Reward

Box State
t

Observations

Observed Observed
UAS State Box State
t t

Figure 3.2: A DDN that describes the sequential decision problem of deliv-
ering a box.

3.2 Local Reward, Global Utility

The local reward variable in DDNs can be used to specify a global utility
function U of all states. This utility function typically depends on the sum
of the rewards. With U given with fully observable state variables, an agent
that tries to maximize its utility can simply perform a one-step application
of the P(X;|X:_1, A:), where A; is the set of action variables, to maximize
the ezpected utility (EU) by selecting the action a that satisfies:

argz%azZU(x;)P(mﬂXt_l,a) (3.1)
1

This is a very general principle of decision-making under uncertainty
and central in the area of Decision Theory (DT) [7].

When the state is only partially observable, the utility function typically
depends on probability distributions over states instead which makes the
problem of both representing U and finding a solution much more complex.

The global utility of a state can be used when the decision horizon T
is finite. When the horizon is infinite, the most common method to make
it possible to compare infinite sequences of rewards is to assign a so called
discount factor v € [0..1). The discount factor makes sure that all state
utilities are finite and it is then possible to compare state trajectories.

3.3. SOLUTION TECHNIQUES 31

3.3 Solution Techniques

A hybrid DDN is generally not possible to solve, with any reasonable defi-
nition of solution, due to the simple fact that it can be used to specify any
non-linear continuous stochastic Markov model which includes POMDPs
and many optimal control problems as special cases.

A common approximate solution method is to discretize the action nodes
(if they do not already have discrete domains) and perform depth-limited
lookahead from the current state or (approximated) belief state. It is com-
mon that the global utility for the state at the maximum depth is estimated
by a heuristic function. It is also common to use iterative deepening depth-
first lookahead to make sure that some kind of solution is ready as quickly
as possible. The requirements of this type of incomplete search is that the
agent must perform the lookahead before every decision is made, which can
be computationally intensive, especially if the filtering is expensive.

In Chapter 6, depth-limited lookahead is used in combination with par-
ticle filters to make an agent decide what to do when the environment is
represented with a Hybrid DDN.

3.4 Special Case: Markov Decision Processes

A special case of DDNs is the Markov Decision Process (MDP) [62]. In this
model, all random variables are observable, which means that no filtering
is necessary. All variables, except the reward variable, are also assumed to
have discrete domains.

To be able to use the common notation for MDPs, a random variable .S
is defined which has a domain of the cross product of all random variables’
domains. An action variable A is defined in the same way for all action
variables present in the DDN model. Figure 3.3 illustrates the resulting
DDN when the action and state space have been created.

0
O’

Figure 3.3: A DDN that represents an MDP.

The so called transition distribution P(s'|s,a) defines the probability
of ending up in a state s’ € S after executing an action a € Ain s € S.

32 CHAPTER 3. DYNAMIC DECISION NETWORKS

The reward density function fgr(r|s,a) similarly defines the distribution
of the reward r received in the same context. R(s,a) is used to denote the
expectation of the reward density function when a is executed in state s.

3.4.1 Policy

The assumption of sum of rewards together with the Markov property, makes
it possible to define a solution to an MDP as a mapping from the current
state to an action [62]. Such a mapping is called a policy. It is possible to
compute the value V™ of a policy 7 for all states s € S through the following
recursive formula:

VT(s) =) _ P(s|s,m(s))V"(s') + R(s, 7(s)) (3.2)

where s and s’ are equivalent to S;_; and S; respectively. The value
is guaranteed to be finite due to the discount factor v € [0,1) and when
R(s,a) is bounded.

3.4.2 Solutions and Solver Methods

Value functions define a partial ordering over policies. A policy = is strictly
better than another policy 7' if V™(s) > V™ (s) for all states s € S. There
is always at least one such policy 7* that is strictly better than or as good
as all other policies. Such policies are called solutions to the MPD.

The value function V* for all optimal policies satisfies the following Bell-
man equation for all states s € S:

V*(s) = maaxZ'yP(s'|s, a)V*(s') + R(s,a) (3.3)

If the optimal value V* is known, without any reference to a specific
policy, an optimal policy can be extracted from V* through the following
formula:

T*(s) = argmaaxz P(s'|s,a)V*(s') + R(s,a) (3.4)

s/

3.4.3 Value Iteration

The Bellman equation can be used to develop an iterative solution algorithm
that updates a better and better estimate of the value function V. One
such method is called the Value Iteration algorithm [62] and is shown in
Procedure 3.1. It uses the so called Bellman update rule to iteratively
update the value function until the optimality criterium is reached. The
optimality criterium is defined by € which means that the resulting policy

3.4. SPECIAL CASE: MARKOV DECISION PROCESSES 33

7 has a value V™ that may be up to € less than the optimal policy’s value
VT

Procedure 3.1 VALUE ITERATION(7)

Initialize V' arbitrarily, e.g. V(s) =0 foralls € S
repeat
for all s € S do
v+ V(s)
V(s) < max, ., P(s'|s,a)yV(s') + R(s,a)
0 «+ max (4, |v — V(s)|)
end for
until § < e(1 —7)/2v
mi(s) « argmax, y ., P(s'|s,a)yV(s') + R(s, a)
Return 7}

3.4.4 Reinforcement Learning

The Value Iteration method described in Section 3.4.3 is quite efficient in
its pure form but has some very high requirements. Both the transition
distribution P(s’|s, a) and the expectation of the reward distribution R(s, a)
must be known in advance, which can sometimes be difficult to calculate in
some domains.

There exists a set of MDP solution methods that does not directly re-
quire a transition and reward model of the environment. These methods go
under the name Reinforcement Learning (RL) [69] and they are capable
of learning solution policies through interaction with an environment or a
simulation of it, which is often much easier to construct than specifying the
model directly [69].

Q-Functions

Without a model of the transition distribution, it is not possible to extract
an optimal policy 7* through Equation 3.4. RL methods often use a so
called @-function instead which is a mapping from both action and state
to a value. The Q-value Q™ (s, a) represents the expected value if the action
a is executed in state s and then the policy 7 is followed.

Q-Learning

A simple variant of Reinforcement Learning is the Q-Learning algorithm
which updates the Q-function after it has executed an action a in a state s
and received the reward r in the following manner:

Q(s,a) + Q(s,a) + an(r + 7 max Q(s',a") — Q(s,a)) (3.5)

34 CHAPTER 3. DYNAMIC DECISION NETWORKS

The ay parameter is commonly set to:

1
(1 + visitsy(s,a))

(3.6)

where visitsy(s, a) is the total number of times the action a has previ-
ously been executed in the state s.

The updated Q-function is guaranteed to converge to the correct value
if, in the limit, all actions are executed an infinite number of times. This
criteria can be satisfied by using suitable exploration functions that some-
times select (according to the current Q-function estimation) non-optimal
actions. One such exploration function uses an e-greedy policy which selects
a random action with probability e.

The Q-learning method described here is the most simple one possible
since it uses a tabular representation of the Q-function. It is also very slow,
especially when many sequential actions are required to receive a reward.
If the model of the environment is known in advance, the Q-function can
be represented and learned with function approximation techniques such as
Neural Networks [9].

The full Q-learning algorithm is shown in Procedure 3.2.

Procedure 3.2 Q-LEARNING(7)

Initialize Q(s, a) arbitrarily, e.g. Q(s,a) =0for all s, a
repeat
s + The current (initial) state
repeat
a <+ An action derived from @ (e.g., e-gready)
Execute a and observe r and s’
Q(s,a) + Q(s,a) + an(r + ymaxy Q(s',a') — Q(s,a))
s+ s
until s is a terminal state
until Termination condition
Return @

3.4.5 RL with Model Building

It is possible to combine the RL technique of learning a policy through in-
teraction with the environment and the efficient methods for solving MDPs
given a model. The trick is to learn a model of the environment simul-
taneously and use that to update the Q-function with. A straightforward
method is to update all Q-values with a Q-function version of Value iter-
ation after every interaction but that is a very computationally expensive
method and more efficient methods exist.

3.4. SPECIAL CASE: MARKOV DECISION PROCESSES 35

Model Building

Since the environment is assumed to be fully observable, a Maximum Like-
lihood (ML) [2] estimation of the model can be applied. The transition
function describes a multinomial probability distribution which can be ML
estimated by keeping track of the number of times the transitions have oc-
cured.

Procedure 3.3 describes the details of how the model is learned given the
executed current action a, previous state s’, current state s and received
reward r. Ny(s,a,s’) and N.(s,a) contain the counters that are needed
to update the transition distribution P(s'|s,a) and the expected reward
R(s,a,s") (which needs to include the resulting state s’ in order to perform
the Bellman update for Q-functions).

Procedure 3.3 UPDATEMODEL(q, s, s', 7)
Nd(sv a, sl) — Nd(sa a, Sl) +1
Nc(s,a) < N¢(s,a) +1
Rsum(s,a,s') + Rsum(s,a,s') +r

/ Rsum(s,a,s’)
R(s,a,s") + Nas)

I Na(s,a,s')
P(s'|s,a) « AED)

DynaQ Algorithm

The Dyna@ Algorithm [68] is a simple but effective reinforcement learning
algorithm that can be used together with UPDATEMODEL(). DynaQ uses
both the update from Q-learning and the learned model to update the Q-
function. The Q-function update with the model is performed with the
Bellman update adapted for Q-functions:

Qls,a) = 3 o' P(s'ls,a)(R(s,0,5) + ymaxQ(s',a)) (37)

which requires that R(s',a, s) keeps track of the resulting state as well.

The Bellman update is performed N times with a randomly previously
visited state s, and action a,. The DynaQ algorithm is shown in Procedure
3.4, which is a version of DynaQ that can return the Q-function when some
termination condition is met. In Chapter 5, the DynaQ algorithm is used
to perform planning and the termination condition is then that a certain
number of simulation steps has been performed.

36 CHAPTER 3. DYNAMIC DECISION NETWORKS

Procedure 3.4 DyNAQ(7)
Initialize @
Set Ny(s,a,s') =0, Nc(s,a) =0, Rsym(s,a,s') =0 for all s, a, s
repeat
s + Current state
a + An action derived from @ (e.g., e-gready)
Execute action a. Observe resulting state s’ and the reward r
Q(s,a) « Q(s,a) + an(r + ymaxy Q(s',a') — Q(s,a))
UpDATEMODEL(a, s, ', 1)
for 2 <+ 1to N do
Sy < A random, previouosly visited state
a, < A random, previouosly taken action in s
Q(sryar) < > . P(s'|sr,ar)(R(s, ar, s7) + ymaxy Q(s',a’))
end for
until Termination condition
Return @

Chapter 4

The DARE Method

An agent that operates in a dynamically and rapidly changing world must
be able to continually augment its models at different levels of abstractions
relative to the task at hand. In the introductory chapter it was mentioned
that if an agent’s problem models are allowed to vary during its opera-
tion depending on the current focus of attention (see Section 1.7) and the
tradeoff between accuracy and feasibility, there are some important conse-
quences that need to be taken care of. A generated or selected model can
be too coarse for executing the corresponding solution with the available
skills. Planning must therefore be performed on several dynamically cre-
ated abstraction levels which means that the agent needs to continuously
monitor the validity of the abstractions used. Replanning becomes an im-
portant instrument when abstractions become invalid or when unsuspected
or unmodelled events occur. Due to the dynamic abstraction levels, a more
flexible subproblem generation is needed than those currently present for
fixed abstraction levels [47] [75] [6].

The purpose of this chapter is to describe a method ! called DARE
(Dynamic Abstraction-driven Replanning and Execution) which is de-
signed to take the implications of dynamically generated problem models
and abstraction levels into consideration. The DARE method is a tem-
plate that needs to be filled with environment class-specific subproblem
generation procedures, abstraction validity monitoring and problem solving
techniques. For example, in Chapter 5, MDPs are generated and solved
on several levels of abstraction with the help of task environment models
and reinforcement learning. A primitive action in an abstract MDP’s pol-
icy expands into a more detailed MDP which is how the implementation of
DARE’s subproblem generation procedure works for that environment class.

1t is called a method and not an algorithm because it is not detailed enough in order
to analyse it from a viewpoint of running time etc. which is the convention used in [12]

37

38 CHAPTER 4. THE DARE METHOD

4.1 Tasks and Beliefs

One of the main ideas of DARE is that the abstractions used by the agent
are strongly influenced by its current tasks and beliefs:

e Tasks: A task describes an objective-reaching activity that denotes
several possible sets of partially ordered skills. The denotation can
either be direct or indirect through the use of other tasks. A task
can often be performed in many different ways depending on the sit-
uation. The current tasks of an agent should strongly influence its
abstractions. For example, if the agent is about to lift an object with
its actuators, it should focus its attention on that object and other
things that are relevant during such a task. The abstraction should
filter out irrelevant details.

e Beliefs: An agent’s beliefs are considered to be the set of models that
the agent uses to represent its environment and itself with. Maps,
logical knowledge bases and probability distributions are all examples
of what are considered to be beliefs. An agent’s current beliefs in
combination with feedback from the environment should be used to
determine what abstractions to use. For example, when more and
more information becomes available about an agent’s environment,
the level of uncertainty decreases and the planning horizon can be
increased and perhaps more simplified models can be used instead.

4.2 Overview of DARE

Figure 4.1 shows a rough sketch of how DARE works. The solid arrows
specify the method’s logic and the dotted ones specify information flow.
The different parts of the method are summarized in the following list:

e Find suitable problem models in current context: The first
step of DARE is to find a suitable model that can be used to perform
or support planning. This step performs the dynamic abstraction
with the help of the current beliefs and tasks. The current tasks of
the agent are specified in an HSN structure which is described fur-
ther in Section 4.5. The result of this step is a problem model (such
as an MDP or a classical planning problem). Chapter 5 and 6 de-
scribe how this problem generation can be performed in both fully
and partially observable task environments using optimization tech-
niques. The information about the selected abstractions is stored in
the HSN structure for later use.

e Solve problem: The problem model is then solved with a suitable
solution technique and the solution is stored in the HSN structure. For
example, if the problem model can and will be solved with a classical
planner, the resulting sequential plan is stored in the HSN structure.

4.3. EXECUTION ASSUMPTIONS 39

e Refine solution?: A decision has to be made whether the solution is
concrete enough to be executed or if it must be refined first. It might
be the case that a part of the solution is “travel to Stockholm” which
might be refined into “go to car, enter car, drive towards intersection
1, turn left at intersection 1, ... ,exit car”. Then a subset of this
sequential plan can be refined further until it is decided that some
action can be executed.

e Specify subproblems: If further refinement is necessary, subprob-
lems must be specified. For example, if a sequential plan should be
refined, the agent can choose to refine a subset of all actions. MDP
policies can be refined in many ways such as refining all state-action
pairs into a separate subproblem etc. When this decision is taken,
the HSN structure is updated and DARE tries to find a suitable prob-
lem model (or models) for this particular refinement. This process is
repeated until a concrete enough action turns up.

e Models invalid or refinement needed on some level?: Every ab-
straction must be closely monitored so that the assumptions are valid
enough to trust the model. When an invalid abstraction is detected,
DARE tries to find new problem models that are more accurate in the
current situation.

e Update skills: The skills (see Section 2.5.3) that are currently exe-
cuting must also be updated to reflect changes to the solutions stored
in the HSN structure.

4.3 Execution Assumptions

Section 2.5 briefly described some of the available architectures for au-
tonomous agents, primarily used for robotic applications. The collective
term skills was used to describe the behavior-generating parts of the ar-
chitecture which represents e.g. the Task Procedure Instances in MTA and
Reactive Action Packages in RAPS.

In this chapter it is assumed that skills can execute in parallel with the
DARE method and that it is possible to change the current executing skills
dynamically, which is the case for the most common execution systems.

4.4 Refinement Assumptions

DARE heavily depends on the assumption that it is beneficial to partly
refine a solution in order to construct new problem models that are more
detailed or specialized to solve that particular part. This seems to be a
very natural approach to problem solving and it has been used extensively

40 CHAPTER 4. THE DARE METHOD

L

Find suitable problem models ey
in current context "L | HSN structure |

: i i | v
BN = T

Lo T i i .
Solve problems 4 g S

Refine solution?

Yes

Specify subproblems

Figure 4.1: A rough sketch of how the (poll-based) DARE method works to
control the currently (in parallel) executing skills in the system.

in HTN-planning systems like SIPE [75] and O-Plan [72] for many practial
applications. It is also used within Hierarchical Reinforcement Learning [6]
where extended versions of MDPs are used in hierarchies where a certain
MDP can have primitive actions that actually execute a whole sub-MDP,
which in a way generalizes HTN planning to stochastic environments.

All the existing systems that use task refinement use it in a very well-
structured and well-understood way. Complexity results for HTN-planning
have been investigated in [21] and it is now e.g. possible to compare the
expressivity of HTN-planners with classical planners. Refinement has been
viewed as an efficient method for humans to provide heuristics to a task
environment. But for this to work, one has to know the exact workings of the
environment, what predicates to use and how operators work. Refinement
is almost always performed down to the most detailed level which is not
possible in more open-ended and dynamic task environments.

Using dynamic abstraction while performing refinement makes things a
lot more complicated. The task environment model is allowed to change and
problems may be generated dynamically. Refinement in this context is not as
crisply defined as with HTN-planners or hierarchical reinforcement learning
methods. A simple example is when a classical planner is used to generate
a solution to a dynamically generated problem. The steps in the solution
might be refined in many different ways depending on the situation, making
the solution process more flexible but also less defined in the general case
due to the multitude of alternatives. One or several steps might be expanded
into any suitable planning model (such as MDPs, POMDPs or even another

4.5. HIERARCHICAL SOLUTION NODES 41

classical planning problem) and it is therefore much more difficult to define
the relationship between the abstraction levels than in currently existing
task refinement systems.

Nevertheless, it is at least possible to measure the impact of a certain
task refinement method if an agent with limited computational resources
uses the method in an environment with a well-defined performance element
that takes the deliberation time into account (as will be demonstrated in
Chapter 5 and 6).

4.5 Hierarchical Solution Nodes

One of the implications of using dynamic abstraction for problem solving
is the need to keep track of the abstractions and the resulting models to
make sure that they are still useful. For example, if one of the assumptions
is that an object in the environment is static, that assumption should be-
come invalid when strong evidence to the contrary arrives. In the DARE
method, the so called Hierarchical Solution Nodes (HSNs) keep track of the
assumptions currently made and the conditions that can invalidate them.

Assumptions are typically made when problem models are constructed
in a certain situation. Consider a UAS that is given the task of searching
an area for certain objects such as fires, injured people, or certain vehicles.
It must make assumptions about the environment in order to cope with the
situation and task. The sensor input that the UAS can use to detect fires
or bodies might for example come from a CCD camera, laser and an IR
camera. It must be decided what the sensor input means and how it should
be related to the UAS’s current task. A possible abstraction is that bodies
in the environment are represented with a position vector and the fires with
some kind of area representation format e.g. polygons or special values in a
grid.

The abstractions and the resulting problem models are used for the
UAS'’s decision making and are therefore of utmost importance. It is im-
portant that the abstractions remain reasonably valid in order to make the
problem models trustworthy. The abstractions must therefore be continu-
ously checked or monitored and if some abstraction is considered invalid,
the abstraction must be changed and the problem model that relies on it
may have to change as well.

A HSN is used to store all this necessary information and can therefore
be considered as a data structure that keeps track of abstractions, monitors,
problem models and solutions.

A HSN is supposed to be used to generate or modify a set of skills that
can be used to carry out solutions to a problem. Depending on the type
of solution, level of detail in the abstractions and what types of skills that
are available, it might also be necessary to store or generate information in
the HSN that describes how sensor data should be obtained to guide the
behavior.

42 CHAPTER 4. THE DARE METHOD

As mentioned earlier, a problem specification that is generated through
dynamic abstraction might be at a very high abstraction level and needs
to be refined further before any available skill can execute some subset of
the solution. A HSN can therefore contain a pointer to another HSN that
represents a more refined solution to parts of the problem in its parent HSN.
The set of HSNs and the parent-child relationships between them forms a
HSN structure which represents the abstraction levels currently present in
an autonomous agent.

Figure 4.2 illustrates a possible HSN structure where a set of abstractions
and problem models are used at the same time with different assumptions
about how the environment works.

abstraction

Soft constraints Abstraction monitoring information

problem model

Root HSN

problem model

, al=A1

, t1=10

L t2=t1+20
| investigate—area(al, t1)
[

Abstraction monitoring information

sub HSN

abstraction

Solution
(a plan)

HSN 1

problem model

Classical planning
problem model

TurnCameraTowards(camera2, area:
TakePhoto(uavl, area2)

I
I
I
|
R |
solution ! Fly(pos12, pos7)
I
I
I
I
I
I

LN

sub HSN b
. problem mode}—Y— __________________________,
Real-time search HSN 2 : Solution :
problem model \: : |
solution) (an action) |

i

i

i

Figure 4.2: An HSN structure that combines different abstractions and prob-
lem models.

The soft constraints planning model, illustrated in Figure 4.2 as the
root HSN’s problem model, defines the overall mission which in this case is
to monitor a certain area while at the same time try to fulfill all sorts of
constraints that can typically be used in constraint-based planners such as
HSTS [51] and ASPEN [28]. A solution to the planning model at this level
is a set of possible variable bindings that determines what the agent should
do next. Suppose that the solution is to investigate the areas Al, A3, and
A2 in that order and then fly back to base to refuel.

Parts of that high-level solution are then refined according to the re-
finement assumption. Suppose that the action “investigate area A1” is the

4.6. SUBSCRIPTION VS POLL 43

only action that is refined in this example. In this case, DARE constructs
a classical planning model which takes the high level action into consider-
ation but also adds additional details and other objectives that the higher
abstraction did not consider.

In this thesis, it will be assumed that the model construction mechanism
is capable of creating a reasonable model which can either guarantee the
existence of a solution or fail and inform the “higher” abstraction level that
the refinement was impossible to perform. This is not an issue for the case
studies in Chapter 5 and 6 where the model type (MDPs and Depth-limited
lookahead models) make it easy to always guarantee that a solution exists.

4.6 Subscription VS Poll

The DARE method can be implemented in different ways. Figure 4.1 de-
scribes a version where the abstractions are continuously monitored in the
“Models invalid or refinement necessary on some level?” test. This means
that the method is polil-based; the conditions are checked by the main thread
in the method which makes it conceptually easy to understand and imple-
ment in simple environments.

It is also possible to create a subscription-based version of DARE where
the conditions are checked by monitors that run in parallel with the main
thread (or even in another process or on another computer). The main
thread then sets up the monitors for the different abstractions that should
be checked and the agent can then react to invalidated abstractions when
they occur.

In the UAS Tech system, CORBA [59] is used as a communication mid-
dleware and the different software components are distributed on several
computers. In such a distributed system, it might be more natural to imple-
ment the subscription-based DARE method instead due to the advantages
of using event-based communication in such a context. It is therfore very
likely that an implementation of DARE in the UAS Tech system will be
subscription-based. However, it is much easier to present and understand
single-threaded methods and the two partial implementations of DARE are
both poll-based which supports repeatability of the experiments (see Chap-
ters 5 and 6).

4.7 The Method

In this section, the poll-based version of the DARE method will be described
in more detail.

44 CHAPTER 4. THE DARE METHOD

4.7.1 Main

Procedure 4.1 shows the entry point of the poll-based DARE method which
takes a set of beliefs (see Section 4.1) Bel as input. Bel represents all
available information that is currently accessible to the agent. This set
is allowed to change dynamically depending on e.g. changing conditions
and different focus of attention. A skill might for example need specific
knowledge that is calculated elsewhere.

Procedure 4.1 DARE(Bel)

: rootHSN < new Hierarchical Solution Node
: DYNABSSOLVE(rootHSN, Bel)

: while not FINISHED(Bel) do
REPLANIFNECCESSARY (rootHSN, Bel)

: end while

DARE initially constructs the Root HSN, which represents the highest
abstraction and decision level in the system. No skills are assumed to be
executing in the system at this moment. It then calls the DYNABSSOLVE()
procedure (see Section 4.7.2) to generate the first HSN structure that de-
pends on the current beliefs Bel and starts up the skills that will execute the
initial solutions to the problems. Figure 4.2 illustrates an example of what
a resulting HSN structure might look like after calling DYNABSSOLVE().

The next task is to actively monitor the abstractions and problem models
to see whether they need to be changed. This task is performed in a loop
2 that is executed until the agent considers that it is finished. Whether the
loop finishes or not by the agent’s initiative depends on the application.
Some tasks naturally have a well-defined end such as when a UAS is sent
out to take a set of pictures of a building structure and return to base, land
autonomously and turn off the engine. Other tasks are more continuous in
nature such as flying a patrol route while refueling when necessary. In that
case, a human operator might trigger the finished condition.

Inside the loop, DARE calls the REPLANIFNECCESSARY () procedure (see
Section 4.7.4) which continuously checks that the current abstractions are
valid and performs replanning (by calling DYNABSSOLVE()) if this is neces-
sary.

4.7.2 DynabsSolve

The DYNABSSOLVE() procedure (listed in Procedure 4.2) can be considered
the central part of DARE since it performs (or coordinates) the following
important tasks:

2In the subscription-based version of the method, the loop is simply replaced with a
wait for input signals from the monitors.

4.7. THE METHOD 45

Procedure 4.2 DYNABSSOLVE (hsn, Bel)

O B W N =

: abstraction(hsn) < FINDABSTRACTION(Bel)

: problem(hsn) + GENERATEPROBLEM(abstraction(hsn), Bel)
: solution(hsn) < SOLVE(problem (hsn), Bel)

: MODIFYSKILLS(hsn, Bel)

: CREATESUBPROBLEMS(hsn, Bel)

e Selection of a suitable abstraction: An abstraction is selected

or generated by a call to FINDABSTRACTION() which e.g. answers
questions such as: Should the vehicle v be viewed as a stationary
3-dimensional object or perhaps as a point with position and veloc-
ity? Should the environment be considered stochastic or determinis-
tic? The best decision should be the one that gives the best perfor-
mance of the task given the available algorithms and computational
resources.

e Generation of a problem model: The abstraction is then used to

generate a problem model which should depend on the chosen abstrac-
tions. DARE performs this step with a call to GENERATEPROBLEM().
If e.g. the abstractions determine that the environment should be
considered deterministic, it might be possible to generate a classical
planning model etc.

e Solving the problem: The SOLVE() procedure is then used to solve

the generated problem model with a suitable solution algorithm.

e Modifying the skills: The skills executing in the system may have

to be modified according to the solution. This part is performed with
a call to MODIFYSKILLS().

e Creating subproblems: If it is considered necessary to refine the

solution, CREATESUBPROBLEMS() creates subproblems and adds a sub
HSN to the current HSN (see Section 4.7.3).

In Chapters 5 and 6, concrete implementations of DYNABSSOLVE() will

be presented both where the generated problem is an MDP and a partially
observable DDN.

4.7.3 CreateSubProblems

The main assumption within DARE is that a solution at one level can be
refined into subproblems that can either be solved with a solution method
or executed directly with some parameterized skill. It was argued in Section
4.4 that this is a good thing to do.

The task refinement in DARE is performed with the CREATESUBPROB-

LEMS() procedure (see Procedure 4.3. In that procedure, there is a call to

46 CHAPTER 4. THE DARE METHOD

cuTOFFTEST() which checks whether any more refinement of the current
solution should be performed. This can depend on many things but should
ultimately be tuned by the expected performance that it yields if used.

Procedure 4.3 CREATESUBPROBLEMS(hsn, Bel)

if cuToFrFTEST(hsn, Bel) then
subNode(hsn) « nil

else
subNode(hsn) + CREATESUBHSN (hsn, Bel)
DYNABSSOLVE(subNode(hsn))

end if

AN R

A quite general cutoff criteria might be that there exists skills that re-
liably can execute the solution at the current abstraction level and more
refinements would not yield a better performance (due to the extra compu-
tational cost to call DYNABSSOLVE() once more).

4.7.4 ReplanlfNecessary

The poll-based DARE method calls REPLANIFNECESSARY() continuously to
check that the current abstractions are reasonable and to update the HSN
structure and modify the currently running skills if necessary.

Procedure 4.4 REPLANIFNECESSARY (hsn, Bel)
1: if hsn == nil then
2: return {No replanning necessary}
3: end if
4: if ABSTRACTIONINVALID(hsn, Bel) then
5: subNode(hsn) + nil
6
7
8
9

DYNABSSOLVE(hsn, Bel) {Replan}
: else

if KEEPSUBHSN (hsn, Bel) then
: REPLANIFNECESSARY (subNode(hsn), Bel)
10: else

11: CREATESUBPROBLEMS(hsn, Bel)
12: end if
13: end if

The HSN structure is then traversed from the root and down and the
abstractions are checked for validity and other criteria such as if a partial
solution should be extended. The abstraction validity check is performed
with a call to ABSTRACTIONINVALID() and DYNABSSOLVE() is called if a
new abstraction is considered necessary.

Examples of reasons for changing abstractions can be that something
should be viewed in a different way depending on new information. An

4.8. DISCUSSION 47

object can for example become totally irrelevant for performing a certain
task. Examples of this are given in Chapter 5 and 6 where an observation
target is considered irrelevent after it has been classified and will not be
considered when the problem models are constructed. Abstractions may
also have to change when an action that was previously considered deter-
ministic turns out to be unreliable for some reason (perhaps a mechanical
error). The available processing power for the decision process may also
change for different reasons and then other types of abstractions are more
suitable. Other practical decisions such as sampling or generation rate of
data may also have to be modified dynamically depending on the avail-
able computational resources and the requirements of the current problem
models.

Even if the abstractions are valid in the current HSN, it may still be
the case that the sub HSN must be replaced or modified which is checked
with a call to KEEPSUBHSN(). An example of such a situation is when only
parts of the solution have been refined in the sub HSN and it is necessary
to refine some more, possibly due to the agent’s execution.

If the sub HSN is kept, REPLANIFNECESSARY() is called recursively and
applied to that HSN.

4.8 Discussion

This chapter described the poll-based DARE method which is a template
for performing planning and execution with dynamic abstractions.

The method is very abstract and many things have to be instantiated be-
fore it can be used. In this thesis, two instantiations have been constructed
which demonstrate all parts of the method.

DARE is very useful in dynamic task environments where it is not pos-
sible to represent the different parts of the world completely at all times
both during execution and planning and when it is beneficial to change
representation when necessary to adapt to changing conditions. However,
for well-specified task environment models which do not include any funda-
mental surprises, it is always possible to construct better specialized agents
that can outperform DARE. The strengths of DARE lies in its potential of
handling surprises that are not part of any fixed task environment model.
A task environment that is part of the real world can make any agent with
a fixed model fail miserably because of its inability to reason about detailed
parts of its environment. An agent driven by a sophisticated DARE imple-
mentation should be able to test different ways of viewing its environment
and thereby become much more robust. This would probably require a
large effort where a formal language for describing abstractions and model
constructions would help, which is a topic for future work (see Section 7.1).

The presented version of DARE can be further improved. Generated
solutions are currently thrown away if an abstraction is considered invalid

48 CHAPTER 4. THE DARE METHOD

which can be very wasteful. It should be possible to reuse previously gener-
ated solutions with some kind of case based reasoning [1] or other machine
learning methods.

Chapter 5

Case Study I

The poll-based DARE method, that was presented in the previous chapter,
is very abstract and a lot of environment class-dependent work is needed
to implement it. The reason for this abstract presentation is that the core
principles of DARE can be applied to a large class of task environments and
problem models that benefit from dynamic abstraction to focus the attention
on the most important parts during the decision making. In this chapter, a
concrete implementation of the method is presented that has been adapted
to a continuous, stochastic and fully observable environment class inspired
by the UAS Tech system. The environment class contains a utility-based
agent that receives rewards when it classifies dynamic observation targets
or reaches a certain target area. At the same time it tries to avoid dangers
that inflict negative rewards if the agent is too close to them.

In this environment class, MDPs (see Section 3.4) are used as the plan-
ning model at every abstraction level and solved with reinforcement learning
together with task environment models that are possible to simulate. The
task environment models are implemented with fully observable DDNs (see
Chapter 3).

Parts of the results in this chapter have been published in [57].

5.1 Task Environment Class

The instances of the task environment class contains a single agent that
operates in a sequential, stochastic, continuous and fully observable 2D en-
vironment (see Figure 5.1) which can contain any number of the following
elements:

e [Finish areas which are rectangular areas where the agent can safely
finish its current task or subtask. Each area is associated with a reward
that can be used to specify several competing target locations.

49

50 CHAPTER 5. CASE STUDY I

e Road networks which are undirected graphs where the edges are line
segments that can be traversed by different types of external agents

(see next item).

e EHzternal agents which are objects that can either move freely (assum-
ing that it is a point with a certain mass and maximum acceleration) in
the environment or bound to a road network. The external agents can
either be dangers or observation targets. Dangers should be avoided
by the agent and they are associated with a certain negative reward
that the agent receives when it comes too close to it. The agent can
try to classify an observation target, if it is close enough, and if it is
successfull it receives a positive reward.

Road network “\--"Maximum classification distance for O

-+~ Cost radius

A = Agent D1 = Road network bound danger
F = Finish area D2 = Freely moving danger
OT = Road network bound observation target

Figure 5.1: An instance of the fully observable UAS environment class. The
cost radius is described in Section 5.2.1

The UAS agent can perform one of the following actions:

e Move in eight possible directions (also called “kings moves”) with a
certain speed (10 m/s in the implementation).

e Wait at the current position.
e Fimish at area which means that the UAS agent moves towards a

finish area and finishes when it is reached. There is one such action
for every existing finish area.

e Try to classify an observation target by moving towards it and contin-
uously perform the classification. This action models a more detailed
sensor action which the agent can use to extract more information
about a target than its position.

This task environment class will be called the fully observable UAS
environment class.

5.2. TASK ENVIRONMENT MODEL 51

5.2 Task Environment Model

The task environment models are implemented by fully observable DDNs
whose structure is shown in Figure 5.2. The external agents are assumed to
be independent of each other. A DDN can be used for simulation with the
help of a random number generator where the probability distributions are
sampled. Such a task environment model for simulation and evaluation of
the agent is supposed to have a fixed time step length dt. When a DDN is
used by the agent during the planning phase, dt is determined dynamically
(see Section 5.4.2). An agent receives a reward of -1 for each action it
executes during one second which means e.g. that moving 100 meters gives
a total reward of -10 if no dangers are around (see Section 5.2.1).

Agent
position
t-1

Agent
position
t

External
agent

variables

v

External \
agent

variables
t-1

Road
Network
(static)

Figure 5.2: The general structure of the fully observable DDN that imple-
ments the task environment model.

Figure 5.3 shows the relationship between the state variables in a freely
moving external agent. The speed and direction is assumed to change ran-
domly according to the Gaussian distributions N (0, 04t ver) and N (0, 0at dir)
where o4; . (* € {dir,vel}) depends on the time step length used. It is as-
sumed that the standard deviation is equal to oy, for a dt equal to one
second. In order to make the same standard deviation for N steps of length
1/N seconds, o4t « is set to 01,*\/a~

The road network bound agents (see Figure 5.4) are modelled implicitly

52 CHAPTER 5. CASE STUDY I

Speed Speed

—
=

i

Position

-

Direction

Figure 5.3: The DBN for a freely moving external agent.

by first generating a random length increase depending on the current ve-
locity. The road network is then used to determine where the agent goes
by using a uniform distribution at junctions. The distribution for the cur-
rent road segment and segment length is implicitly determined (see Section
2.2.4) by a program that follows the current road segment to a junction
and then samples the next way to go until the same distance has been cov-
ered as in the “distance to go” variable. This is possible since the solution
method used (reinforcement learning) does not need an explicit distribution
or density function.

5.2.1 Danger Rewards

Ideally, the (negative) reward received from a danger do during the time
tnow — dt to thow can be calculated as follows:

Cma:z

tnow
Ry = / min(_omaz + —|pa(T) - pdo(T)|a O)dT (5'1)
tnow—dt Cr

where pa(7) and pao(7) are the functions that describe the movement
of the agent and the danger. Cg is the cost radius which determines the
distance from the danger where the reward is zero. Cp,q; is the highest
negative reward that can be received per second. dt is quite small and
an approximation of Ry, is used in the implementation by the following
formula:

C’ITLU.CE
Cr
Here, dpin 1s the minimum distance between the danger and the agent

during [tnow — dt,tnow| Which makes the approximation a pessimistic one
(from the agent’s point of view).

Rio = dt - min(—Chmaz + dmin, 0) (5.2)

5.3. SKILLS 53

Road
Network
(static)

Distance
to go

RS
Distance

t-1

Distance
t

Figure 5.4: The DBN for a road network bound observation target.

5.2.2 Observation Target Rewards

For every observation target in the task environment, the DDN includes
a boolean variable cl,; which specifies if ot has been classified. The prob-
ability P(clot,1|d) of classifying ot from a distance d during one second is
specified with a so called Continuous-time Markov Process [4] with only
two possible states and with the intensity A4 of going from “not classified” to
“classified”. The intensity decreases linearly from a maximum value Aot maz
to zero at the maximum classification distance do¢,maz and beyond. Every
instantiation of a DDN with a time step of dt uses a probability distri-
bution P(clot,qt|d) (see Equation 5.3) which determines the probability of
classifying ot if the classification action is performed for a duration of dt.

P(cly; = true|d,dt) = 1 — e % (5.3)

If the classification succeeds, the agent receives a reward R o: that is
independent of the distance to the observation target.

5.3 Skills

There are four different parameterized skills available which can be used to
execute the actions described in Section 5.1. Only one skill at a time can
be executed, which makes it very easy to implement the MODIFYSKILLS()

54 CHAPTER 5. CASE STUDY I

procedure which is called from DYNABSSOLVE() in DARE (see Section 4.7.2).
In DYNABSSOLVE(), the MODIFYSKILLS() procedure is executed every time
a solution has been found, making it possible to structure and coordinate
skills that operate with different abstraction levels. This is not necessary
for the implementation described in this chapter where there can only be
exactly one skill executing at all time, which is the one that corresponds to
the solution at the “lowest” abstraction level.

The basic movement skills simply make the agent move in one of eight
possible directions (kings move directions) until the skill is terminated by
MODIFYSKILLS(). The Finish at area skill moves the agent towards the
closest point in a finish area and finishes the execution when the agent
is within that area. The Try classify skill moves the agent towards an
observation target and tries to classify it at the same time. The probability
of success is specified in Section 5.2.2.

5.4 DARE Implementation

This section will describe in detail how the different parts of the DARE
method are implemented for the fully observable UAS environment class.
There are several questions that need to be answered when DARE is im-
plemented such as what type of problem models to use and how they are
generated and solved.

5.4.1 Problem Models

The task environment model presented in Section 5.2 has continuous state
variables which means that it is difficult to use directly for planning. Two
common methods will be considered in this thesis to perform planning
in such environment classes: Depth-limited lookahead and Reinforcement
Learning (RL). Depth-limited lookahead will be explored in Chapter 6 and
RL is used in this case because of the fully observable state variables and the
opportunity to demonstrate a simple but fully working dynamic abstraction
method (see Section 5.4.2).

As mentioned in Section 3.4.4, RL methods assume that the environ-
ment can be represented with an MDP but it is not neccessary to provide
detailed transition and reward distributions in advance. In the fully ob-
servable UAS environment class, a task environment model in the form of a
DDN is available to the agent but this has a continuous state space which
can not directly be used without either some function approximation of the
Q-function and/or discretization of the state space. Function approximation
is avoided in this case to make it possible to study the dynamic abstraction
method in isolation.

5.4. DARE IMPLEMENTATION 55

5.4.2 Dynamic Abstraction

The main idea of dynamic abstraction is to dynamically generate models
in a way that suits the current circumstances in the best possible way (see
Section 1.8). The abstractions chosen should also depend on the available
computational power.

In this implementation of DARE, much of the abstraction is already de-
cided. MDPs are used to represent the planning models which means that
the environment is considered to be stochastic but fully observable. In a
more flexible and capable dynamic abstraction “module”, this type of rea-
soning should be performed automatically. This is currently considered as
future work and is further discussed in Section 7.1. The dynamic abstrac-
tion in this implementation will be concerned with how the state space S
should look like when the MDP is solved and how the mapping from the
task environment model’s state variables to .S is done.

The most common method when creating a state space is to use a fixed
discretization. This implementation will however change the discretization
depending on what parts of the environment are considered most relevant
at the moment. A danger that is very close to the agent should for example
be considered more relevant than a danger that is very far away and the
individual possible negative rewards that they can inflict should be taken
into consideration.

The main idea of the dynamic construction of S is then to focus more
on the more relevant objects and state variables in the environment class
by giving them a greater number of possible discrete values. At the same
time, |S| is limited by a constant, giving the less relevant objects and state
variables fewer possible discrete values.

Relevance

The number of possible discrete values for an external agent is determined by
defining an optimization problem over possible discretizations. The utility
of a discretization is specified to depend on the so called relevance of the
different external agents. The relevance of an external agent decreases with
distance d and also depends on the cost radius Cirae,d0 for dangers and
maximum classification distance R o+ for observation targets.

The relevance function for dangers do is defined as follows:

Reldo(d) = Cmaz,doeiado.d (54)

where aq, is set to a value that makes Rels, equal to 10 percent of its
maximum value at the cost radius. By using the exponential function, dan-
gers will never be totally irrelevant. Other functions are of course possible
but this seems to work well in the fully observable UAS environment class.
The relevance function Rel,; for observation targets is similar to Relg,
except that Ry ot is used instead of Cpraz,d0 and an extra factor . (see

56 CHAPTER 5. CASE STUDY I

Section 5.5.1) is multiplied with Rel,; which makes it possible to adjust
the relevance when the continuous negative reward received from dangers is
compared with the “one shot” reward received when an observation target
is classified.

The relevance function for observation targets ot is then defined as:

Relot(d) = ’YotRcl,ote_aOt.d (55)

where a,; is (similarly to ag4,) set to a value that makes Rel,; take the
value of 0.1 - R, ot at the maximum observation distance.

The state variables of the agent itself must also be represented in S. It is
simply assumed that the relevance Relxy for the agent’s position variable (X
and Y coordinate) is the same as the sum of the external agents’ relevances.
This means roughly that the agent should represent its own state variables
in S as much as its environment’s.

Discretization Optimization

The relevance functions are then used to define the utility of a discretization
Ugisc using the following formula:

Reli _
Udisc = E (1 + |S|) 1 (56)
i€EOTUDOU{X,Y} '

where S; is the number of discrete values that are assigned to the object
or state variable 2z, OT is the set of observation targets, DO is the set
of dangers and {X,Y} is the agent’s position variables. This particular
formula was chosen because it seems to distribute the number of discrete
values in a reasonable way in the sense that the increase of Uy;s. decrease for
higher number of values. Other possible utility functions include variants
and combinations of the sigmoid and the tangent function.

A maximum state space size Sy.qz 1s used to limit the size of S, because it
is then possible to partly control the time that is necessary to provide a rea-
sonably good policy. The total state space size is calculated by multiplying
all the state contributions S;.

A reasonable state distribution for a discretization is found in the current
implementation by performing Hillclimbing search (see Section 2.4), maxi-
mizing the utility distribution Uy;s. from the initial state where all objects
and features have only one state each.

Clustering

When the optimization is done, the discretization must also define the map-
ping from state variables to the different states. The agent’s position vari-
ables are mapped to a standard grid with a width and height determined by
the state distribution. The mapping for the external agent’s state variables
are determined dynamically with k-means clustering [33]. The k-means

5.4. DARE IMPLEMENTATION 57

clustering algorithm is shown in Procedure 5.1 where K is set to the value
received from the state distribution and I is the set of instances.

Procedure 5.1 KMEANCLUSTER(I, K)

1: Centroids < K number of random instances from I

2: repeat

3 for all : € I do

4 Calculate each 2’s closest centroid 7.

5: end for

6 for all ¢ € Centroids do

7 Calculate the center of ¢ given its assigned instances I,
8 Assign a new centroid cpeq that is closest to the center of ¢
9 end for

10: until All centroids stay the same

11: Return Centroids

The set of instances I are generated by sampling the task environment
model from the current state N, runs with N, samples in each run. The
so called temporal horizon Thoriz,ddan of the DDN defines how far ahead
in time the task environment simulation and instance generation will be
performed. The temporal horizon for a DDN with width w and height A
is v;lmax(w, h) where v, is the agent’s speed. The number of runs N; is
always set to 10 and the number of samples at each run N, is always 100
which gives a total of 1000 instances for each external agent.

The temporal horizon together with the standard grid determines the
dt parameter that is used to construct a fixed time step DDN. The time
step dt is set to ygmin(wy, hy) where wy and hy is the width and height of
a standard grid cell and 74 is a constant factor that determines how long
dt should be relative to the grid cell size. <4 was set to 0.1 during the
experiments (see Section 5.5).

Figure 5.5 illustrates a typical result after the discretization optimization
and clustering.

5.4.3 Solution Method

The discretization, determined by the dynamic abstraction method de-
scribed in Section 5.4.2, can then be used for planning. Since the tran-
sition and reward distributions for the given discretization is unknown and
difficult to calculate exactly from the DDN, the DynaQ (see Section 3.4.5)
reinforcement learning method is used to solve the induced MDP. DynaQ is
therefore used for both implementing the GENERATEPROBLEM() (transition
and reward distribution) and the SOLVE() procedures in DARE.

In the implementation, the e-greedy exploration function (see Section
3.4.4) is used with € set to 0.1 and the number of planning steps performed

58 CHAPTER 5. CASE STUDY I

Road network...|

|
o ! //
Agent position---1.......1. I=a / D2~<>
! D2’s current position

! ’ i
A o B CAS
b1 /A BTN
Az =L "'D2 centroids

) T ==

D1’s current position | LA B

D1 centroids
Standard grid (4x4)

Figure 5.5: An example discretization after discretization optimization and
clustering. The total state spaceis 16-3-2+1 = 97 where the standard grid
contributes with 16, D1 with 3, D2 with 2 and the finish area with 1 possible
discrete values. D1 is a road network bound danger that is moving to the
right and D2 is a freely moving danger that moves towards south-west.

in DynaQ is set to 5. The step length time is determined by the width of
the cells in the standard grid with respect to the agents speed.

DynaQ was originally designed to be used for continuous interaction
with an environment and not to get a solution within a certain time. It
can easily be turned into an anytime algorithm [15] by letting it run for a
certain amount of time or number of execution steps. The question is then:
How long should it run before the Q-function can be used for execution?
The question is central and important for the use of dynamic abstraction
for problem solving because the time used for problem solving is important
when the tradeoff between feasibility and accuracy of the planning model
is determined. Section 5.5 presents some experiments where this tradeoff
is specified when the dynamics of the environment, S, execution speed and
number of simulation steps that DynaQ performs are taken into account.

Procedure 5.2 shows the implementation of DYNABSSOLVE() in the fully
observable UAS environment class. FINDDISCDIST() implements the dis-
cretization optimization described in Section 5.4.2. GENERATEINSTANCES()
performs the collection of instances to the KMEANCLUSTER() algorithm that
returns the set of centroids for all external agents. DYNAQSTEPLIMITED()
is an implementation of DynaQ where the number of simulation steps is
limited which determines the termination condition in DynaQ (Procedure
3.4 on page 36). One of the experiments in Section 5.5 determines the op-
timal balance between state space size and number of simulation steps for
the implementation.

The dynamic abstraction and solution method has now been defined
when a certain task environment model is given to the agent. For task
environment models with many external agents the discretization becomes

5.4. DARE IMPLEMENTATION 59

Procedure 5.2 DYNABSSOLVE(hsn, V)

1: discDist(hsn) « rINDDIScDisT(V)

2: for all External agents ea do

3: I + GENERATEINSTANCES(TEModel(hsn), V)

4: clusters(ea, hsn) + KMEANCLUSTER(I, discDist(ea, hsn))
5: end for
6
7
8
9

: solution(hsn) + DYNAQSTEPLIMITED (hsn)

: timeStamp(hsn) - CURRENTTIME()

: CREATESUBPROBLEMS(hsn)

: if subNode(hsn) = nil then
10: Set the current skill according to solution(hsn)
11: end if

very coarse and the solution steps can take a long time to execute. The
refinement assumption (see Section 4.4) states that it might be beneficial
to refine such coarse solution steps into subproblems with the CREATESUB-
ProBLEMS() Procedure in DARE. This procedure is described in the next
section.

5.4.4 Subproblem Generation

The implementation of DARE’s CREATESUBPROBLEMS() for the fully ob-
servable UAS environment class creates subproblems by generating new
DDNs that are determined by taking the solution policy into considera-
tion. If the solution e.g. has a Move East action specified for the current
state, the sub DDN for that subproblem is created with an added finish
area to the east of the agent. Figure 5.6 illustrates the different types of
submodels that can be constructed. The idea is to use that submodel to
generate a more detailed solution for moving the agent to the east, ignoring
the other parts of the environment at the moment. The relation between the
solution on one abstraction level and the refined solution is then specified
with dynamically generated task environment models.

With this implementation of CREATESUBPROBLEMS() it is possible, in
theory, to refine solutions indefinitely which is not acceptable. The cuT-
OFFTEST() in DARE is in this case used to stop the refinement when the
solution is considered detailed enough. In this fully observable UAS envi-
ronment class, the cutoff is made when the sub DDN’s width or height is
smaller than a certain threshold (50 meters in this case) or when the DDN
does not contain any external agents.

There is also a question of how much of the solution to refine. At one
extreme, every state/action pair in the policy can be refined, leading to
|S||A| number of refinements. A more likely situation is that only a strict
subset of the solution is refined due to demands of a reasonable response
time. The current implementation only refines the current state and the

60 CHAPTER 5. CASE STUDY I

Move NorthEast Move East Try classify

D F D ot D

- = . B . wait

A

Original grid cell width T
Created finish areas

A = Agent, D = Danger, OT = Observation target, F = Finish area

Figure 5.6: Examples of sub DDNs that can be created for some of the
agent’s actions. The new DDN’s width is determined by the size of the
standard grid cells and the type of action that the DDN represents. New
finish areas are constructed in the generated DDN that represents the sub-
problem’s goal. Notice that the agent is allowed to finish before it has
classified the observation target, which means that the Try Classify sub-
problem models the possibility of “giving up” if it is considered to be too
dangerous (costly). The sub DDNs for Move NorthWest, Move West etc.
are created in similar ways.

solution policy’s action in that state.

The implementation of CREATESUBPROBLEMS() for the fully observable
UAS environment class is shown in Procedure 5.3 where CREATESUBHSN()
constructs a DDN according to the current solution policy.

Procedure 5.3 CREATESUBPROBLEMS(hsn, V)

if not cuToFFTEST(hsn, V) then
subNode(hsn) + CREATESUBHSN (hsn, V)
DYNABSSOLVE(subNode(hsn))

end if

5.4.5 Replanning Conditions

After DYNABSSOLVE() has generated an initial solution in the poll-based
DARE method, a loop is entered (see Procedure 4.1 on page 44) where the
REPLANIFNECESSARY() is called to continuously check if any replanning
needs to be performed due to unsuitable abstractions or other conditions.
The call to ABSTRACTIONINVALID() is made to check if the currently
used abstractions are invalid and need to be replaced with a call to DYN-
ABSSOLVE(). The implementation of ABSTRACTIONINVALID() for the fully

5.5. EXPERIMENTS 61

Procedure 5.4 cuTorFTEST(hsn, V)

1: if No of external agents in the (not yet created)
TEModel(subNode(hsn)) = 0 then

Return true
else if The width or heigth of TEModel(subNode(hsn)) < 50 meters
then

Return true
else

Return false
end if

Procedure 5.5 CREATESUBHSN (hsn, V)
1: Create a new HSN newHSN
2: TEModel(newHSN) <« The task environment model that corresponds
to the action in solution(hsn)
3: Return newHSN

observable UAS environment class is shown in Procedure 5.7 which per-
forms the optimization of the state distribution and checks if it differs too
much from the current one. The constant DD,,,, determines how much
the normalized state distributions can differ before the abstraction is con-
sidered invalid. The HSN structure also keeps track of the time when the
abstractions first was used. An abstraction is also considered invalid if it
has been used more than a fraction a4 of the temporal horizon for the task.

If the abstraction is considered OK, the KEEPSUBHSN() procedure is
called to check if the current sub HSN should be kept or not. In the imple-
mentation, if the agent executes a solution to a subproblem that leads to a
goal or subgoal, a new subproblem must be generated and solved with a call
to CREATESUBPROBLEMS(). A new subproblem can also be generated if a
state change occurs and the solution policy specifies that a different action
should be executed than the one used to generate the subproblem. If for
example an external agent makes the state change and the best action is
considered to be Move South instead of Move East, a new subproblem is
created that corresponds to the Move South action and DYNABSSOLVE() is
called with the corresponding sub DDN.

5.5 Experiments
A set of experiments have been performed with the implementation to test

the viability of this type of dynamic abstraction method when used in the
fully observable UAS environment class.

62 CHAPTER 5. CASE STUDY I

Procedure 5.6 REPLANIFNECESSARY (hsn, V)
1: if hsn == nil then
2: return {No replanning necessary}
3: end if
4: if ABSTRACTIONINVALID(hsn, V) then
5: set subNode(hsn) to nil
6
7
8
9

DYNABSSOLVE(hsn, V) {Replan}
: else
if KEEPSUBHSN (hsn, V) then
REPLANIFNECESSARY (subNode(hsn), V)

10: else

11: CREATESUBPROBLEMS(hsn, V)
12: end if

13: end if

Procedure 5.7 ABSTRACTIONINVALID(hsn, V)

1: if (CURRENTTIME() - timestamp(hsn)) > Trepian then
2: Return true

3: end if

4: diff + | stateDist(hsn) - FINDDISCD1sT(hsn) |

5: if diff /|diff| > DD;,e, then
6:
7
8
9

Return true
: else
: Return false
: end if

5.5. EXPERIMENTS 63

5.5.1 Setup

All experiments were performed in a so called simulated dynamic mode
which means that the environment evolved during the agent’s deliberation,
which is important to simulate in general if the task environment (see Sec-
tion 1.2) is actually dynamic. The deliberation time was determined by the
number of steps the DynaQ algorithm performs when the planning is per-
formed at the abstraction levels, and is therefore assumed to be a function
of the number of steps.

A set of 500 randomly generated test task environments were generated
and used in the experiments where the same random seed was used every
time in a given environment. This means that the external agents behaved
in the same way every time given a certain environment number, which
reduced the variance in comparison tests [36]. The agent had access to all
the parameters of the task environment except for the actual outcomes of
the random number generators. The step lengths during evaluation were
also different from the models that the agent used during planning.

Each task environment had 1-5 observation targets with a random ob-
servation reward between 10 and 50, 1-5 dangers with a Cpep (maximum
negative reward) of 10 per second, and 1-3 finish areas with a random reward
between 10 and 30. The starting position of the agent were randomized as
well in an area which is always 400x300 meters.

State Space vs Simulation Steps

The maximum state space size Sy, during discretization optimization is
supposed to approximately determine the time it takes to solve the generated
MDP. A larger Syq. makes the solution more detailed and probably gives a
better performance, but only if DYNAQSTEPLIMITED() is allowed to take a
sufficiently large number of steps. More steps take more time which makes
the total performace go down due to the simulated dynamics model which
could yield an optimal configuration of those two parameters. Figure 5.7
shows the result when the number of simulation steps and Sy, are varied.
It seems like there is a quite large range of Sy, and number of simulation
steps that yields acceptable performance, as long as neither of them are
set too low. This is a good sign that indicates that detailed parameter
tuning is not vital for the performance. It is also important to point out
that Sp.. specifies the mazimum possible number of states that can be
discovered during the planning. In practice, the number of discovered states
is sometimes much less, especially when ;4 is very large (see Table 5.1).

Relevance Factor for Observation Targets

Section 5.4.2 introduced the relevance factor v, for observation targets that
is used to determine the relevance when so called “one-shot” rewards re-
ceived from classifying observation targets are compared to the continuous

64 CHAPTER 5. CASE STUDY I

50

Simulation steps 0 o Max state si
ax state size

Figure 5.7: The result when the number of simulation steps and S, are
varied.

negative reward received from being too close to dangers. One of the exper-
iments was to determine an acceptable value for v,; empirically. v,: was in
that experiment varied between 0 and 5 and the result is shown in Figure
5.8. The results indicate that even the -y,; parameter can have a wide range
of possible values if just 0 is avoided. This is a quite surprising but positive
result because it demonstrates that no detailed tuning of +,; is necessary.

Temporal Validity Factor

An abstraction is always considered invalid after a certain time Trepian (s€€
Procedure 5.7). Trepian is calculated by arThoriz,nsn Where ar is called
the temporal validity factor. Figure 5.9 shows the result when ar varies
between 0 and 0.4. The best result seems to be when ar is set to approxi-
mately 0.075 but acceptable results are received for values between 0.1 and
0.3 as well and the performance seems to gradually drop after that.

5.5. EXPERIMENTS 65

Total reward

Il
0 0.5 1 15 2 25 3 35 4 4.5 5
Relevance factor

15 I I I I

Figure 5.8: The result when v, is varied.

Abstraction Levels

There are many ways to test the benefits from using more abstraction lev-
els. One such method is to increase the minimum cell size, making the
refinements occur less frequently. Another way is to simply set a maximum
number of abstraction levels. Figure 5.10 shows the result when the maxi-
mum number of abstraction levels are varied. The result verifies that several
abstraction levels are beneficial, even when the dynamics of the environment
penalizes the extra computation. The figure also demonstrates the effect of
the cutoff condition which prevents that more than three abstraction levels
are created.

Architecture Speedup

A simple experiment was performed when the computational resources was
decreased 10 times and increased 100 and 1000 times the original. The
result is shown in Table 5.1. The reason for the large gap between S, in
the two experiments was that the number of actually visited states during
the solution phase was much lower than 100000. The speedup of 100 gives
a rather large step in the result (from approximately 21 to 36).

66 CHAPTER 5. CASE STUDY I

25

Total reward

Il
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Temporal validity factor

17 I I I

Figure 5.9: The result when the temporal validity factor ar is varied.

Equal Relevance

It is interresting to investigate how effective the dynamic abstraction is
compared to a fixed abstraction. The problem with such an experiment
is that the curse of dimensionality makes the state space explode when
many external agents are present. Suppose that the agent represents every
external agent with n discrete values in the discretization. If there are N
external agents in the environment and the agent represents its own position
with N, number of discrete values, |S| becomes N, -n". When N is equal to
10 (the highest number of external agents in the tests), by just setting n to 9
discrete values (which could be used to construct a 3x3 grid or use clusters)
and N, to 16 (possibly a 4x4 grid) leads to a state space larger than 55
billion. This size of S can actually be dealt with if function approximation
methods are used or symmetries of the problem are exploited. In this way
it is possible to construct a fixed abstraction policy that can be used to
possibly outperform the dynamic abstraction method. But what if just one
or two external agents are added or removed? With this approach, the state
space will become totally different and the solution policy may turn out to
be useless. The point is that if it is possible to know exactly how the state
space will look like (as in backgammon or chess), it is possible to construct

5.6. COMMENTS 67

21

20.5

20

Total reward

19.5

19

185 L L L L L L L
1 15 2 25 3 3.5 4 4.5 5

Max number of abstraction levels

Figure 5.10: The result when the maximum number of abstraction levels
are varied.

high quality solutions. In a more flexible environment where objects can
be added or removed in a mixed-initiative setting, the dynamic abstraction
method is probably more effective, even if only small problems can be solved
at a time.

An experiment was performed when the relevance for all features was
set to an equal value. The resulting mean reward for the equal relevance
was only 4.26. When the relevance information was used, the mean reward
received was 20.94 instead which demonstrates the importance (in this task
environment) of constructing the abstractions dynamically with a reasonable
relevance measure.

5.6 Comments

This chapter has presented an implementation of the DARE method for
the fully observable UAS environment class. The experiments only make
comparisons between different settings of the parameters in the dynamic
abstraction, but, by observing the behavior of the agent many decisions it
makes are very reasonable. In some cases, the agent makes greedy decisions

68 CHAPTER 5. CASE STUDY I

Speedup Spez Sim. steps Mean reward

0.1 50 150 4.89

1 150 1000 20.94
100 1000 20000 36.38
1000 100000 100000 40.16

Table 5.1: Three results when the architecture was slowed down 10 times
and sped up 1, 100, and 1000 times the original speed.

where it takes an easy way out by finishing at a nearby finish area when
there are still unclassified observation targets in the area that are difficult
to reach due to dangers.

The implementation performs well and scales up nicely when the number
of objects in the environment class increases due to the dynamic abstraction.
It has been demonstrated how all parts of DARE can be implemented in
practice and possibly the most interesting part is the implementation of the
dynamic abstraction which actually performs an optimization over the state
distribution in the discretizations.

It takes some effort to implement DARE in a given environment class
and it may be an overkill in this particular case. It is expected that most of
the benefits of DARE will be demonstrated in more complex environment
classes where many different types of abstractions and planning model types
have to interact and it is too time-consuming to specify beforehand how the
agents should view the different parts of the environment in every case.
Figure 4.2 on page 42 illustrates one vision where different planning model
types and abstractions can be used at the same time depending on whether
they are suitable to represent the abstractions sufficiently well.

The experiments strongly indicate that the choice of abstractions should
depend on the available computational resources when the task environment
is dynamic (see e.g. Table 5.1). For planning with a performance measure,
this tradeoff between accuracy and feasibility can actually be tested when
the experiments take the deliberation time into account through the model
with simulated dynamics.

Although the fully observable UAS environment class is dynamic, con-
tinuous and stochastic, it is actually not of much use for any realistic mission
for the UAS Tech system, mainly due to the assumtion of full observability
but also because of the simplified movement assumption and that no obsta-
cles exist. The next chapter will describe a case study where some of the
ideas of DARE are applied to a partially observable extension of the fully
observable UAS environment class.

Chapter 6

Case Study 11

Chapter 5 described an implementation of the DARE method which demon-
strated how dynamic abstraction can be performed in practice and providen
an example of problem generation and abstraction monitoring.

The environment class used in that case study was rather simple. The
assumptions of a fully observable task environment, no obstacles and a very
simple movement assumption (kings moves) makes it impossible to use di-
rectly for a mission for the UAS Tech system. The environment class can
still be difficult to handle without a dynamic abstraction mechanism due to
the curse of dimensionality (if MDPs are used as planning models).

Since one of the goals of the work with the DARE method is to push
dynamic abstraction techniques into realistic settings, the next step is to
implement it for a more realistic environment class, which is the focus of
this chapter. This new environment class still has dangers and observation
targets as in the previous case study, but now these external agents are only
partially observable and the environment contains obstacles that must be
avoided.

In this environment class (described further in Section 6.1), partial ob-
servability means that the agent can not see through the obstacles with its
noisy sensor (a camera in this case) and not further than a certain range.

Another modification of the environment class from Chapter 5 is that
the agent is restricted to move on linear path segments that, in this case,
are returned by a roadmap-based pathplanner [61].

DDNs are still used to model the task environments, but in this case
observation variables are used as well and filtering is necessary to keep track
of the external agents. Particle filters are used because of the apparent need
to model the multi-modal and nonlinear characteristic of the probability
distribution.

The DARE method’s approach of dynamically generating planning mod-
els “on the fly” is also followed in this case study. The main difference
between the method used in Chapter 5 is that the belief state is used to

69

70 CHAPTER 6. CASE STUDY II

generate problems and the type of planning model is different; an adapted
version of depth-limited lookahead is used instead of reinforcement learn-
ing. Optimization is still used, but in this case the result of the optimization
determines the possible points that the UAS agent will consider flying to
instead of the state distribution.

All the features in the DARE method are not implemented e.g. dy-
namic abstraction hierarchies. The implementation uses two fixed levels
at all times; one for the flight manouvers and one for the detailed camera
movement. It is still considered as dynamic abstraction since the planning
models are generated depending on the current situation.

The results presented in this chapter are published in [58].

6.1 Task Environment Class

Figure 6.1 shows an instance of the partially observable UAS environment
class.

T T AT e
R S FAT o005
e AN

Agent

Camera view

e
15058
HI,
L

i
5%
35
%

YA

KA,

&
2o

"’

e
5%
el

R,
55
LA

[
&2
&

FEEETT
SRR P2
KA

Obstacles

Figure 6.1: An instance of the partially observable UAS environment class.
D1 and D2 are dangers and OT is an observation target. The circles around
the external agents show the cost radius and the maximum classification
distance. FA1 and FA2 are finish areas.

In this environment class, the agent is only allowed to move on linear
segments that are returned from a pathplanner. The pathplanner in this
case is roadmap-based which is quite similar to one of the planners that are
used in the UAS Tech system [61] where a probabilistic roadmap planner
is used. The main difference is that the environment is in this case two-
dimensional and the roadmap is generated deterministically by setting the
vertices to the surrounding points of the obstacles and then connecting every
visible vertex. Plans are generated by connecting the start and goal vertex

6.2. TASK ENVIRONMENT MODEL 71

to the roadmap and performing A* search with the straight-line heuristic.
Figure 6.2 illustrates an example of a path from A to B generated by the
pathplanner.

Loy S
KRR
S
S
S0
L]

i
I
5055

X

:::0

gz::
S,

beserele:
B35
S,

for
TS
[625
505

Ko
o

«2:

Obstacles

Figure 6.2: The figure illustrates a planned path from point A to B, returned
from the 2D roadmap-based pathplanner.

The UAS agent is equipped with a camera that can be used to track the
external agents and classify the observation targets which can be viewed as
a more detailed sensing action where more information is extracted from the
target than its position. It is assumed that it has a maximum range and that
some kind of geographic information system (GIS) is used to map the image
tracking information to world coordinates. This type of functionality is
implemented in the UAS Tech system where a Kalman filter is used to keep
track of the UAS’s pose with the input given from the inertial navigation
system and GPS [11].

The rewards that are received still depend on the distance to dangers
and successful classifications as in Chapter 5, but in this partially observable
environment the external agent has to be visible from the agent to modify
the (positive or negative) reward.

6.2 Task Environment Model

Figure 6.3 on page 72 shows a DDN for an instance of the partially observ-
able UAS environment class with one freely moving danger and one road
network bound observation target. Every freely moving external agent is
simulated by a DBN similar to the one used in chapter 5 with the help of
a random number generator. The main difference is that the freely moving
external agents try to avoid the obstacles in the environment as well, which
is performed with a simple collision avoidance technique that makes the
external agent slow down when it is about to hit an obstacle.

The DBNs for road network bound external agents are identical to the
DBNs used in the fully observable UAS environment class.

The main difference from the fully observable environment class is the
presence of observation variables that are used to model the noisy sensor of

72 CHAPTER 6. CASE STUDY II

Agent
Position
t-1

Agent
Position

Classified Classified

Reward

Obstacles
(static)

-~ v
S
@
@
= a
(%]
-~ 9 -
@
@
=3

Danger
L ______ Obs
: Road Network Bound Observation Targef
|
: Road
| Network
: (static)
|
|
|
|
| Road Road
: Segment Segment]
| t-1 t
|
| Distance
: to go y
! RS RS
: Distance Distance
|
|
|
|
|
|
|
|
|
|
|

Figure 6.3: An example of a DDN for a task environment that contains one
road network bound observation target and a freely moving danger.

the agent. There is one observation variable O,, for each external agent ea
which has a domain of RZUNQO where NO indicates that ea was not observed
at all. In Figure 6.3, these variables are called OT Obs and Danger QObs
for clarity.

Since particle filters (see Section 6.4) are used to represent the belief

6.2. TASK ENVIRONMENT MODEL 73

state, likelihood functions that are proportional to fops,, (0| X) have to be
constructed for the observation variables where X is the set of state vari-
ables that describes the agent’s position, ea’s position (see Section 6.4) and
whether ea is within line of sight and within the camera’s view area. Figure
6.4 on page 73 illustrates the four different cases that are considered in the
observation model.

@ : Particle position
O : Observation Camera View
: No observation received

Case 2

T F

Figure 6.4: The four different cases in the observation model. Case 1: An
observation was recieved and the particle is actually within the camera view.
Case 2: No observation was received even if the particle is visible and within
the camera view. Case 3: A spurious observation was received. Case 4: No
observation was received when the particle either is outside the camera’s
view or blocked by an obstacle.

74 CHAPTER 6. CASE STUDY II

Case 1 in Figure 6.4 is handled by a gaussian likelihood function Logs, o (d)
with zero mean and a 5 meter standard deviation where d is the distance
from the observation to the external agent, obs means that an observation
was received and v that the external agent actually was visible. Cases 2, 3
and 4 are handled by three different constant likelihoods Lyo—ops,u, Lobs,v
and Lpo—ops,—v to model the possibility of spurious observations.

6.3 Skills

The available skills in the partially observable UAS environment class match
the actual Task Procedures that are available in the UAS Tech system much
better than in the fully observable one. The agent has skills that can perform
the following actions:

e Fly path: This skill can fly a given linear path with a constant speed
and it stops at the target position. It can be interrupted at any time.

e Wait: This skill corresponds to the UAS Tech system’s hovering ac-
tion. A simplifying assumption is that the agent can stop immediately
without any delay.

e Turn camera: A skill that can turn the camera in any direction. It
is assumed that the camera can be instantaneously turned from one
angle to another and that the skill can be executed in parallel with all
the other skills in the system.

e Finish: This skill corresponds to the UAS Tech system’s automatic
landing action. The agent must be within a finish area to be able to
execute that skill.

It is also assumed that in parallel, the agent performs automatic clas-
sification and tracking of the external agents which could be considered as
another skill that is continuously executing.

6.4 Belief State and Filtering

The belief state of the agent is represented with a set of particle filters, one
for each external agent. It is assumed that the number and types of external
agents are known in advance.

The particle filter uses particles to represent a probability distribution
and the particles are different depending on what type of external agent
it is. A road network bound external agent’s particle includes the current
road segment, distance travelled on that segment and the current velocity.
A freely flying agent instead has the current position and velocity (both
2-dimensional) in each particle.

6.4. BELIEF STATE AND FILTERING 75

The sequential importance resampling (SIR) [3] algorithm is used to
update the belief state after each step. The SIR algorithm is shown in
Procedure 6.1 and it uses a so called low variance resampling algorithm
(see Procedure 6.2).

Every particle filter for the external agents is updated with a separate
call to SIR() to update the agent’s full belief state. z in SIR() is then the
set of all state variables in the external agent’s DBN (see e.g. Figure 6.3)
and :B}c is the i:th particle in the current particle set Xeq 5. Obseq i is the
observation state variable that was observed which is set to a position or
NO (no observation).

Procedure 6.1 SIR(Xeq k-1, ObSea k)
: fori:li_:oNsdo _
Draw zj, ~ P(Xg|z},_;)

1
Wy, — LObsea,k,vemic (d)
: end for

1
2
3
4
5. T+ vas w}c
6
7
8
9

: fori=1to N, do
w
i

wh
: end for
: Return LOWVARIANCESAMPLE(wg, Tk)

Procedure 6.2 LOWVARIANCESAMPLE(wg, Tk)
c1 0
for 2 + 2 to N do

C; < Ci—1 + w}c
end for
11
U ~ U[O, Ns_l]
for j + 1to N, do

while u; > ¢; do

1 1+1

end while
‘Ti:,res — x;c
: end for
: Return zg res

© ® 3T e e

el el
w N = O

Figure 6.5 shows an example of a belief state that is represented with
particle filters in the partially observable UAS environment class. The true
state is illustrated in Figure 6.1. The agent has localized the two dangers D1
and D2 quite well but is still uncertain of where the observation target OT
is. The figure shows the particle filter’s capability of modeling the multi-
modal characteristic of the probability distribution that seems to be useful

76 CHAPTER 6. CASE STUDY II

in this environment class.

T e
I
A’A"’Q?’?Q’é"‘.&%ﬁ-‘. s

Particles for%

T,

KRH]
5]
a!

bededs

Figure 6.5: An example of a belief state represented with particle filters.
The agent has localized the two dangers D1 and D2 but not the observation
target OT.

6.5 DARE Implementation

This section describes the partial implementation of DARE in this environ-
ment class. It is only a partial implementation due to the fact that the
number of abstraction levels does not change dynamically depending on the
situation. It is always assumed that the movement of the agent can be
planned without taking the detailed camera movement into consideration.
The camera movement is determined after the agent knows what direction
(if any) it should go.

The implementation of DARE for this environment class still makes use
of the dynamic view of planning models. New planning models that can
be used for depth-limited lookahead, are generated depending on the cur-
rent belief state of the agent and implements the GENERATEPROBLEM()
procedure in DARE. The depth-limited lookahead implements the SOLVE()
procedure in DARE.

Section 6.5.1 presents the problem generation procedure and Section
6.5.2 describes the details of how the depth-limited lookahead is performed.

6.5.1 Planning Model Generation
The planning model generation consists of the following two steps:
e Point selection and

e Connection of the selected points with a pathplanner

6.5. DARE IMPLEMENTATION 7

Point Selection

The first step of the planning model generation procedure is to find a set of
good points that the agent should consider flying to. A good point should
be close to unclassified observation targets and sufficiently far from dangers.
The number of points that are selected, N,4, should not be too many (which
would make the model too big) or too few. Ny, is an important design pa-
rameter when the tradeoff between accuracy and feasibility of the planning
model is considered for a certain architecture (see Section 6.6).

The problem of selecting the set of points is formulated as an iterative
optimization problem. A utility measure is defined for a point given the
current belief state and this measure is used to compare different points.
One point at a time is selected and the previously selected points are used
to modify the utility function for increased diversity of the points (otherwise
the same point can be selected over and over). The positions of dangers and
observation targets contribute to the utility but also the distance from the
selected point to the agent and whether the point is within a finish area or
not matters.

The belief state is represented with particle filters and each particle
in every filter contributes to the total utility. This yields some kind of
approximation of the ezpected utility of a selected point.

All the contributions from dangers, observation targets, finish areas, dis-
tance from the agent and previously selected points are added and specify
the total expected utility of selecting that particular point.

The utility contribution from a danger’s particle, Uy,, depends on the
distance d from the particle to the agent:

R

{Udo = min(—Chmaz + Cg” d,0) if do is visible from the agent 6.1)

0 otherwise

where Cg is the cost radius of the danger.

Similarly, the point utility for observation targets also depends on the
distance but one also needs to consider whether it has been classified pre-
viously or not:

= dot,maa:

Rc ot — Flel,or d d< do maz d- lo
Uss = { hot tmag AE 1ot (6.2)

0 otherwise

where R ot is the reward for classifying the target of, dot,maesz is the
maximum classification distance and cl,; the boolean variable that specifies
whether ot has been classified previously or not. Notice that observation
targets that have been previously classified provide nothing to the point
utility, making it possible for the agent to focus on more important external
agents or finish areas.

The utility contribution Uf, from a finish area fa is the same as the
corresponding finish reward if the point is within fa and the agent has not

78 CHAPTER 6. CASE STUDY II

executed the finish action yet (which is only important when Uy, is used
during the depth-limited lookahead. See Section 6.5.2).

To provide a simple way to create diversity of the selected points, the
point selection takes the previously selected points into account. The
penalty function Uy, is used for the set of previously selected points p that
depends linearly on the distance between the considered point with one ex-
ception: if the newly selected point is located within a finish area and no
other point is, no penalty is given.

The distance from the considered point to the agent also contributes to
the point’s utility. The cost of travelling in a straight line from the agent to
that point is used as the cost estimate.

Figure 6.6 shows an example of the utility function used for point selec-
tion when the belief state is the one in Figure 6.5.

FA1

500 o Caused by the localized D1 and D2

Figure 6.6: An instance of the utility function for the point selection opti-
mization problem for the belief state shown in figure 6.5. The plot shows
the utility function when the first point is selected. The current position
of the agent is always added to the previously selected points. Notice the
negative utility caused by the localized dangers.

Since it is rather expensive to estimate the expected utility of points, a
local search algorithm (see Section 2.4) is used to select the points that are
then used to generate a planning model (see Section 6.5.1).

Graph Generation

When the set of points have been selected, paths are planned between every
combination of distinct point pairs to construct a graph. This operation is

6.5. DARE IMPLEMENTATION 79

performed with a roadmap-based 2D pathplanner using A*-search which is
quite similar to the PRM-based pathplanner that is used in the UAS Tech
system [61]. The set of resulting paths determines the finite set of actions
that the agent can perform, making it possible to perform lookahead-based
planning in the partially observable UAS environment class.

The number of paths is reduced to lower the branching factor for the
depth-limited lookahead which in this case means that paths that contribute
little or nothing are removed. This is performed by considering all triples of
distinct points. If the length of a path between two points a and b is given
by lap, thenif Iy p + lpc < a; - 15, the path from a and c is removed from
the planning model. «; is set to 1.1 in the implementation.

Figure 6.7 shows an example of how a dynamically generated planning
model can look like given the utility function in figure 6.6. Note that some
of the paths are going straight through the positions of the dangers, which
seems to be very irrational. The point selection does not take the path to the
points into consideration and therefore these seemingly stupid paths arise.
The “stupidity” of those choices is discovered later during the depth-limited
lookahead because if the agent simulates such a path, a large negative reward
will be received.

FE
RS0 S0505ed
otetetelatetedi

RERRIIIIT
LR
Begedeeline ool

EANaN

Figure 6.7: A generated planning model for depth-limited lookahead given
the point value function illustrated in figure 6.6. The selected points are
drawn with circles. The road network is hidden for clarity.

6.5.2 Solution Method

The planning in the planning model is done by a depth-limited lookahead
from the current belief state (which is represented by the particle filters).
The planning model is not directly suitable for applying the depth-limited
lookahead idea since by simply considering the movement from one point to

80 CHAPTER 6. CASE STUDY II

another as a primitive action without modification ignores all the possible
observations and rewards that are received during the execution.

Procedure 6.3 shows the depth-limited lookahead algorithm that is used
in the implementation. It enumerates all actions as normal depth-limited
lookahead does but samples N,ps sequences of observations and belief states
instead of enumerating the (infinite) number of possible observations during
the execution of the action.

During lookahead, the camera is assumed to have a 360 degree field of
view which means that the movement of the camera is planned at a later
stage. If the movement of the camera would be considered in DEPTHLIM-
ITEDLOOKAHEAD(), the branching factor would become too large and that
abstraction would not be a good choice.

Procedure 6.3 DEPTHLIMITEDLOOKAHEAD(depth, BScyr)
1: if depth > d then

2: Return <%, Wait)
3: end if

4: BSstart — BScur

5: bestValue + —o0
6
7
8
9

: bestAction + Wait
: for all Actions a possible in BS.,, do

sum < 0
for 2 + 1 to Nyps do
10: Filter a sequence of steps starting with B.Ssiqrt
11: Store belief state result BSe,.q and reward r
12: (Uest, @pest) + DEPTHLIMITEDLOOKAHEAD(depth + 1, BSen4)
13: sum < sum +7 + Uest

14: end for
15 Uest(a) < o
16: if Uest(a) > bestValue then

17: bestValue « Uest(a)
18: bestAction + a

19: end if

20: end for

21: Return (bestValue, bestAction)

When a movement action has been selected by the depth-limited looka-
head, the solution in the HSN consists simply of the best Action returned
from DEPTHLIMITEDLOOKAHEAD(). This solution is then refined to select
the camera movement.

6.5. DARE IMPLEMENTATION 81

6.5.3 Camera Movement

The DARE method use the CREATESUBPROBLEMS() procedure to refine
solutions. The implementation of CREATESUBPROBLEMS() in the partially
observable UAS environment class is fairly trivial since it is always the case
that the camera movement is planned when a solution action is returned
by DEPTHLIMITEDLOOKAHEAD(). The refinement does not have to be fixed
like that. It can be defined by generating a new DDN which represents
the subproblem of performing the specified action such as moving towards a
created finish area (like in Section 5.4.4) but that has not been implemented.

The camera movement, given the action returned from the depth-limited
lookahead, is planned by enumerating a set of possible camera directions
and selecting the one that maximizes the ezpected relevance of the visible
particles in the belief state. The relevance R, for a visible danger object
particle pg, is calculated by Cirez - € 2?ao ¢ which is the same measure used
in Section 5.4.2 when the state distribution was determined. The main
differences are that the point to point visibility and the camera’s view area
are taken into account and that it is the expected relevance that is calculated
with a contribution from all particles.

Since the camera is assumed to be capable of pointing instantaneously
towards a selected point, independent of its previous angle, the current belief
state BS.y, is used directly to select the camera angle.

6.5.4 DynabsSolve Implementation

All the parts of the implementation of DARE’s DYNABSSOLVE() procedure
have been presented and are in this section listed in Procedures 6.4 and
6.5. What is missing for a full implementation of DARE is the dynamic
generation of abstraction levels. This can be done in many different ways
by creating sub HSNs that consider the first step of the solution as a sub-
problem. For example, a subproblem to a “fly path” action can view the
target position as a finish area and try to find a better way to get there
than the previously planned path. On that level of abstraction, it might
also be possible to use more detailed action descriptions that e.g. consider
the velocity of the agent.

Procedure 6.4 DYNABSSOLVE(hsn, TEModel)

points(hsn) < FINDPOINTS(TEModel)

problem(hsn) <+ CREATEPROBLEM(TEModel, hsn)
action(hsn) «+ DEPTHLIMITEDLOOKAHEAD(d, BS(TEModel))
timestamp(hsn) <~ CURRENTTIME()
PLANCAMERAMOVEMENT(hsn)

Update movement skill according to action(hsn)

A A

82 CHAPTER 6. CASE STUDY II

Procedure 6.5 PLANCAMERAMOVEMENT (hsn, TEModel)

1: bestAngle «+ FINDBESTANGLE(BS(TEModel))
2: Update camera skill with bestAngle

6.5.5 Replanning

A solution to a planning model is only kept for a certain time, as in Section
5.4.5 where a timestamp was used to keep track of when a solution should
be considered outdated. In the partially observable UAS environment class,
two different temporal horizons are used; one for the movement solution and
one for the camera direction.

Since the camera movement is relatively easy to compute, that solution is
considered outdated at every iteration of the REPLANIFNECESSARY(). The
agent movement is replanned repeatedly every T, second and the default
setting for T, is 2 seconds.

Procedure 6.6 REPLANMOVEMENTIFNECESSARY (hsn, TEModel)

if (CURRENTTIME() - timestamp(hsn)) > Trepian then
set subNode(hsn) to nil
DYNABSSOLVE(hsn, TEModel) {Replan}

else
PLANCAMERAMOVEMENT(hsn, TEModel)

end if

A A

6.6 Experiments

A set of experiments have been performed with the implementation in or-
der to show some of the tradeoffs between accuracy and feasibility when
deliberation time is considered.

The following parameters were varied in the experiments:

e Number of points that are selected during the planning model gener-
ation, Npg

e Depth for the depth-limited lookahead, d

e Number of sampled observation sequences for the depth-limited looka-
head, Nops

e Replanning period T
e Number of particles used for belief state during depth-limited, Np¢,
e Number of particles used for belief state during point selection, Ny,

e Whether simulated dynamic mode is used, SD (see Section 6.6.1)

6.6. EXPERIMENTS 83

Npg d Nobs TT prs Npl SD Value

7 1 8 2.0 5 5 Yes 48.02
Table 6.1: The default configuration.

6.6.1 Setup

Most of the experiments were performed in simulated dynamic mode which,
as in the fully observable case, means that the environment is evolving dur-
ing the agent’s deliberation. The deliberation time is in this case estimated
by counting the most frequently and costly operations that are performed
during point selection and planning. The two operations that are used for
deliberation time estimation are the utility calculations of a point during
point selection and planning, and the simulation step of the DDN that is
used for prediction during planning. The time for those operations were
first measured in the implementation and then assumed to be fixed during
the experiments (for the purpose of assuring repeatability).

6.6.2 Results

Since it is not feasible to generate results for every possible configuration of
the parameters described previously, some configurations were tested that
point out interesting behavior of the implementation. First a default con-
figuration was created, with some trial and error, which is shown in Table
6.1 together with the resulting value. The value is equal to the mean sum
of rewards that are received during 500 test runs. The default configuration
is used as the basis for the experiments when a subset of the parameters are
changed.

Number of Particles

One of the experiments was to investigate what happens when the number
of particles used during the lookahead and point selection are varied. Since
the dynamics of the environment is simulated, deliberation time is penal-
ized both by the cost of waiting during planning but also with increased
response times in dangerous situations. The question is where the opti-
mal (static) tradeoff between accuracy and feasibility is (with the Nj; and
Ny, parameters) given the simulated deliberation penalty. The result of
the experiment is shown in Figure 6.8 which demonstrates the importance
of taking the dynamics and available computational resources into account.
The best result was obtained when N,¢s was set to 2 and Nj; to 4 which
was much lower than expected.

84 CHAPTER 6. CASE STUDY II

10

Point Selection Particles
Planning Particles

Figure 6.8: The result when the number of particles for point selection and
planning are varied.

Lookahead Depth and Observations

The default configuration uses a lookahead depth of 1, which is rather ex-
treme. But the best results were in fact obtained when this setting was used.
Table 6.2 shows the result of an experiment when the lookahead depth and
number of observation samples are varied simultaneously. The result clearly
indicates that a lookahead depth of 1 should be used for this environment
class when the computational resources are taken into account. The best
lookahead depth also highly depends on the planning model generation,
which in this case generates models with very long temporal steps.

No Simulated Dynamics

Some tests were also performed when the simulated dynamics was disabled.
Table 6.3 shows the three different configurations that were used together
with their corresponding results. The results are clearly better than the
best result when simulated dynamics is used (56.88) but as the table shows,
the number of points selected and particles used are much higher and it
requires a lot more computation.

6.7 Discussion

This chapter has presented a partial implementation of the DARE method in
more realistic environment class than in Chapter 5 which includes partially

6.7. DISCUSSION 85

d
1 2 3 4
1 5358 18.88 -247.2 -2502
2 "5371 -3.932 -2137 NA
3 "56.88 -64.09 NA NA
N, 4 5356 NA NA NA
°%s 5 T56.43 NA NA NA
6 5224 NA NA NA
7 "49.31 NA NA NA
8 “48.02 NA NA NA

Table 6.2: The results when the number of observations and lookahead
depth parameters are varied.

Npg d Nobs TT prs Npl SD Value

10 1 15 1.0 50 50 No 59.39
20 1 15 1.0 50 50 No 62.46
20 1 20 1.0 200 200 No 64.30

Table 6.3: Three results when no simulated dynamics is used.

observability and obstacles.

The experiments have demonstrated that it is important to take the
available resources into account when creating planning models dynamically.

All features of DARE have not been implemented. No dynamic abstrac-
tion hierarchies are created. The author belives that this is probably more
useful when the environment is more complex and can e.g. include arbitrary
3-dimensional building structures and more complex models of the external
agents or is part of the real world. Such environments would require sub-
models on different abstraction levels and the dynamic abstraction would
probably be more useful than it currently is for this task environment class.

For complex environment classes, dynamic abstraction should be per-
formed during the filtering as well. It would then be possible to focus on
more relevant objects at the moment but it is also important to be able to
backtrack in the “model space” if a previously considered irrelevant object
suddenly becomes relevant. The agent can then change its models depend-
ing on this new information but it may also have to update a belief state
where this new object is considered. This is a good example where a mem-
ory of previous percepts and actions can be used to update the current belief
state by “refiltering” with this new belief state definition.

Chapter 7

Conclusion

This thesis has investigated the consequences of using a more dynamic view
of planning models than traditionally proposed within Artificial Intelligence.
It has been argued that dynamic abstraction is a suitable tool for planning
in more open-ended environments where planning models can be generated
dynamically. The use of dynamic abstraction for planning leads to the prob-
lem of monitoring the different abstractions continuously and performing
model reconstruction and replanning when necessary. This methodology is
captured in the DARE method that was presented in Chapter 4.

Two partial implementations of DARE have been demonstrated where
planning models have been generated depending on how important different
aspects of the environment have been judged. Chapter 5 presented an im-
plementation for a fully observable task environment class where dynamic
abstraction hierarchies were implemented and the planning models were
generated dynamically depending on how important the different features
in the environment were. Chapter 6 illustrated how some ideas of DARE
were implemented for a more realistic, partially observable task environment
class.

7.1 Future Work

Some very specialized methods to perform dynamic abstraction have been
used in this thesis. What steps can be taken to generalize these methods?
One possible step is to try to extend the case studies (especially the second
one) to make it work in a real robotic system e.g the UAS Tech system.
The task environment class would then be a part of the real world which
introduces many problems. Future work related to this approach will be
discussed in Section 7.1.1.

Another approach is to investigate what type of high level reasoning
is necessary to draw conclusions about what abstractions to use. Such an
investigation could lead to some kind of theory of abstractions which can be

86

7.1. FUTURE WORK 87

used to perform more general dynamic abstraction methods. This approach
will be discussed in Section 7.1.2 where the main focus is to develop such a
theory to make it possible to generate task environment models depending
on relevance information given a certain task and beliefs.

7.1.1 Extentions to the Case Studies

The second case study was the most realistic implementation discussed in
this thesis and was part of the author’s intention towards the use of DARE
for real missions with the UAS Tech system.

A few things must be improved in order to use that solution. First of all,
the implementation must be extended to work in 3D which means that the
point selection and model generation has to work with one more dimension,
which is straightforward in theory but could be a problem in practice due to
the increased complexity. The path planner that already is used in the UAS
Tech system could be used to generate the set of paths needed to formulate
the planning model.

The implementation in the second case study simply stopped the agent
during the planning model generation and lookahead which is probably not
feasible during a real mission due to the extra delay introduced when a
helicopter system has to perform a breaking manouver before each decision.
A more efficient solution is to perform the planning model generation and
lookahead during flight instead which means that the model generation
should start with a prediction of the future belief state where and when
the solution will be used. To be sure that this time limit is followed (the
underlying control system demands that the next path segment is sent before
a certain time), one could try an idea where the complexity of the planning
problem is iteratively increased. Suppose that it starts with a very simple
problem formulation with just a few points. Planning is performed and
a possible decision is ready to use. If there is time left, a more complex
planning model can be constructed with more points and possibly more
particles (one can also reuse the old points).

There is also a lot of work ahead with a more realistic sensor model and
the actual detection and tracking of vehicles. Work is already underway to
make it possible to detect vehicles with a combination of infrared, color and
feature input.

Another extension to the second case study is to make it possible to
focus the attention of the agent with different number of particles for the
representation of external agents. The same kind of search used in the first
case study can be used to select a reasonable distribution of particles given
the available time and computational resources.

A different type of planning method can also be tested in the future
where only one target point is considered at a time. Suppose that a point
is greedily selected by the point selection method and a path to that point
is planned with the path planner. Then that path is simulated a few times

88 CHAPTER 7. CONCLUSION

as used in the task planning phase and a set of the rewards and time points
during the path are stored or generalized by the examples. Then a new
point is selected that takes these rewards and time points into account and
a path is planned where the path planner takes the previously rewards into
account. This goes on until time runs out. The nice thing about this
approach is that the path planner gets feedback from the task planner all
the time. The question is then how the resulting rewards are stored, but a
simple instance-based learning method could be a start.

7.1.2 Dynamic Task Environment Models

Both of the case studies used task environment models in different ways
in order to perform task planning. These models were rather fixed at a
particular level of abstraction such as the representations of the external
agents and the road network were fixed. The step size could be varied
which makes it possible to take fewer and larger steps.

The task environment models determine to a large extent the level of
abstraction for the task planning if they are used in this way. It would
therefore be interesting to try and generate task environment models with
the help of relevance information given that a certain task should be exe-
cuted by an agent in a particular situation. This is particularly important
when the task environment is part of the real world.

In [43], Levy et al. automatically generated models that describe physical
dynamical systems depending on what is considered relevent given a certain
query. The generated models are complex enough to answer the query but
also as “simple as possible” given a developed theory of relevance. Logic
programming was used to reason about possible models given the query as
a goal statement.

Could then the same procedure be used to generate task environment
models for task planning? Possibly, but there is no strict “query” to answer
except for the following: “how should the environment be modelled in order
to maximize performance?”. Levy et al. used model fragments of different
detail level which was structured in so called assumption classes which
represent the partial order of complexity and detail between the possible
model fragments. The same idea can be used to generate task environment
models for planning but another method than the one described in [43] will
probably be used.

Bibliography

[1]

[2]

[3]

[10]

A. Aamodt and E. Plaza. Case-based reasoning: Foundational issues,
methodological variations, and system approaches. Artificial Intelli-
gence Communications, 7(1):39-59, 1994.

J. Aldrich. R. A. Fisher and the making of maximum likelihood 1912-
1922. Statistical Science, 12:162-176, 1997.

S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on
particle filters for on-line non-linear/non-gaussian bayesian tracking.
IEEE Transactions on Signal Processing, 50(2):174-188, February
2002.

P. Athanasios and P. S. Unnikrishna. Probability, Random Variables
and Stochastic Processes. Mcgraw-Hill Education, 2002.

F. Bacchus and R. Petrick. Modeling an agent’s incomplete knowledge
during planning and execution. In Proceedings of the International
Conference on Principles of Knowledge Representation and Rea-
soning, pages 432—-443, 1998.

A. G. Barto and S. Mahadevan. Recent advances in hierarchical rein-
forcement learning. Discrete Event Dynamaic Systems, 13(4):341-379,
2003.

J. O. Berger. Statistical Decision Theory and Bayesian Analysis.
Springer Verlag, 1980.

P. Bertoli, A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. MBP:
a model based planner. In IJCAI’01 Workshop on Planning under
Uncertainty and Incomplete Information, 2001.

C. M. Bishop. Neural Networks for Pattern Recognition. Oxford
University Press Inc., New York, 1995.

R. J. Brachman and H. Levesque. Knowledge Representation an Rea-
soning. Morgan Kaufmann, 2004.

89

90

BIBLIOGRAPHY

[11]

[12]

[13]

[14]

[18]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

G. Conte. Navigation functionalities for an autonomous uav helicopter.
Licentiate Thesis Linkoping Institute of Technology at Linkoping
Unwversity, 2007.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to
Algorithms. MIT Press and McGraw-Hill, 2000.

T. Dean and K. Kanazawa. A model for reasoning about persistence
and causation. Artificial Intelligence, 93(1-2):1-27, 1989.

T. Dean and M. Welman. Planning and Control. Morgan Kaufmann,
1991.

T. L. Dean and M. Boddy. An analysis of time-dependent planning.
In Proceedings of the Seventh National Conference on Artificial
Intelligence, pages 49-54, 1988.

T. Dietterich. Hierarchical reinforcement learning with the MAXQ
value function decomposition. In Proceedings of the 15th Interna-
tional Conference on Machine Learning, 1998.

P. Doherty. Advanced research with autonomous unmanned aerial vehi-
cles. Proceedings on the 9th International Conference on Principles
of Knowledge Representation and Reasoning, 2004.

P. Doherty, P. Haslum, F. Heintz, T. Merz, P. Nyblom, T. Persson, and
B. Wingman. A distributed architecture for autonomous unmanned
aerial vehicle experimentation. 7th International Symposium on Dis-
tributed Autonomous Robotic Systems (DARS), 2004.

P. Doherty and F. Heintz. A knowledge processing middleware frame-
work and its relation to the JDL data fusion model. Journal of Intel-
ligent and Fuzzy Systems, 17(4), 2006.

R. Durrett. Probability: Theory and Ezamples. Duxbury press, 2004.

K. Erol, J. Hendler, and D. Nau. Semantics for hierarchical task-
network planning. Technical report, University of Maryland Institute
for Advanced Computer Studies, 1994.

B. Falkenhainer and K. Forbus. Compositional modeling: Finding the
right model for the job. Artificial Intelligence, 51:95-143, 1991.

R. J. Firby. Adaptive Ezecution in Complex Dynamic Domains.
PhD thesis, Yale University, 1989.

R. Fourer, M. Gay, and W. Kernighan. AMPL: A Modeling Language
for Mathematical Programming. The Scientific Press, 1993.

BIBLIOGRAPHY 91

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]
[34]

[35]

[36]

[37]

[38]

D. Fox, W. Burgard, F. Dellaert, and S. Thrun. Monte carlo localiza-
tion: Efficient position estimation for mobile robots. In AAAI/IAAIL
pages 343-349, 1999.

M. Fox and D. Long. An extension of PDDL for expressing temporal
planning domains. Journal of AI Research, 20:61-124, 2003.

M. Freed. Simulating Human Performance in Complezx, Dynamic
Enwvironments. PhD thesis, Northwestern University, 1998.

A. Fukunaga, G. Rabideau, S. Chien, and D. Yan. Towards an applica-
tion framework for automated planning and scheduling. In Proceedings
of the IEEF Aerospace Conference, 1997.

A. Gerevini and D. Long. Plan constraints and preferences in PDDL3.
Technical report, Department of Electronics for Automation, University
of Brescia, Italy, 2005.

M. Ghallab, A. Howe, C. Knoblock, D. McDermott, A. Ram, M. Veloso,
D. Weld, and D. Wilkins. PDDL—the planning domain definition lan-
guage. Technical report, AIPS-98 Planning Committee, 1998.

M. Ghallab, D. Nau, and P. Traverso. Automated Planning, theory
and practice. Morgan Kaufmann Publishers, 2004.

G. Granlund, K. Nordberg, J. Wiklund, P. Doherty, E. Skarman, and
E. Sandewall. An intelligent autonomous aircraft using active vision. In
Proceedings of the UAV 2000 International Technical Conference
and Ezhibition, 2000.

J. A. Hartigan. Clustering algorithms. New York: John Wiley, 1975.

P. Haslum. Prediction as a knowledge representation problem: A case
study in model design. Licentiate Thesis Linkoping Institute of
Technology at Linkoping Unwversity., 2002.

B. Hengst. Discovering hierarchy in reinforcement learning with HEXQ),
2002.

D. S. Johnson. A theoretician’s guide to the experimental analysis of
algorithms.

A. Jonsson and A. G. Barto. Automated state abstraction for options
using the u-tree algorithm. In Advances in Neural Information Pro-
cessing Systems, pages 1054-1060, 2000.

L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and act-
ing in partially observable stochastic domains. Artificial Intelligence,
101:99-134, 1998.

92

BIBLIOGRAPHY

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]
[49]

[50]
[51]

[52]

[53]

[54]

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simu-
lated annealing. Science, 220(4598):671-680, 1983.

C. A. Knoblock. Automatically generating abstractions for planning.
Artificral Intelligence, 68(2):243-302, 1994.

P. Laborie and M. Ghallab. Planning with sharable resource con-
straints. In Proceedings of the International Joint Conference on
Artificial Intelligence, 1995.

A. H. Land and A. G. Doig. An automatic method for solving discrete
programming problems. FEconometrica, 28:497-520, 1960.

Alon Y. Levy, Yumi [wasaki, and Richard Fikes. Automated model
selection for simulation based on relevance reasoning. Artifictal Intel-
ligence, 96(2):351-394, 1997.

L. Ljung and T. Glad. Modellbygge och Simulering. Studentlitteratur,
2004.

S. Mannor, I. Menache, A. Hoze, and U. Klein. Dynamic abstraction
in reinforcement learning via clustering. In Proceedings of the 21st
International Conference on Machine Learning.

A. McCallum. Rewnforcement Learning with Selective Perception
and Hidden State. PhD thesis, University of Rochester, 1995.

A. Meystel. Knowledge based nested hierarchical control. Advances in
Automation and Robotics, 2:63-152, 1990.

T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.

K. Murphy. A survey of POMDP solution techniques.
http://www.cs.ubs.ca/ murphy/Papers/pomdp.pdf, 2005.

R. R. Murphy. Introduction to AI Robotics. The MIT Press, 2000.

N. Muscettola. HSTS: Integrating planning and scheduling. In
M. Zweben and M. S. Fox, editors, Intelligent Scheduling. Morgan
Kaufmann, 1994.

K. L. Myers. A procedural knowledge approach to task-level control. In
Proceedings of the Third International Conference on Al Planning
Systems, 1996.

D. Nau, T. C. Au, O. Ilghami O., U. Kuter, J. W. Murdock, D. Wu, and
F. Yaman. SHOP2: An HTN planning system. Journal of Artificial
Intelligence Research, 20:379-404, 2003.

N. J. Nilsson. Shakey the robot. Technical report, Al Center, SRI
International, 1984.

BIBLIOGRAPHY 93

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

J. Nocedal and S. J. Wright. Numerical Optimization. Springer Ver-
lag, 2006.

P. Nyblom. A language translator for robotic task procedure specifica-
tions. Master’s thesis, Linkoping Univirsity.

P. Nyblom. Dynamic abstraction for hierarchical problem solving and
execution in stochastic dynamic environments. In Starting AI Re-
searcher Symposium (STAIRS), 2006.

P. Nyblom. Dynamic problem generation in a UAV domain. In The
6th IFAC Symposium on Intelligent Autonomous Vehicles, 2007.

Object Management Group (OMG). Common Object Request Broker
Architecture: Core Specification, 2004.

R. Parr. Hierarchical Control and Learning for Markov Decision
Processes. PhD thesis, University of California at Berkley, 1998.

P. O. Pettersson. Sampling-based path planning for an autonomous
helicopter. Licentiate Thesis Linkoping Institute of Technology at
Linképing University., 20086.

M. Puterman. Markov Decision Processes, Discrete Stochastic Dy-
namic Programming. Wiley Inter-science, 1994.

S. Russel and P. Norvig. Artificial Intelligence, A Modern Approach.
Prentice Hall, 2003.

E. D. Sacerdoti. Planning in a hiearchy of abstraction spaces. Artificial
Intelligence, 5:115-135, 1974.

A. Schrijver. Theory of Linear and Integer Programming. John
Wiley and sons, 1998.

K. Steinkraus and L. P. Kaelbling. Combining dynamic abstractions in
large mdps, 2004.

N. Sturtevant and M. Buro. Partial pathfinding using map abstraction
and refinement. In Proceedings of the AAAI National Conference
on Artifictal Intelligence. AAAI, 2005.

R. S. Sutton. Integrated architectures for learning, planning, and react-
ing based on approximating dynamic programming. In Proceedings of
the Seventh International Conference on Machine Learning, pages
216-224, 1990.

R. S. Sutton and A. G. Barto. Reinforcement Learning An Introduc-
tton. The MIT Press, 1998.

94

BIBLIOGRAPHY

[70]

[71]

[72]

[73]

[74]
[78]

[76]

[77]

R. S. Sutton, D. Precup, and S. P. Singh. Between MDPs and semi-
MDPs: A framework for temporal abstraction in reinforcement learn-
ing. Artificial Intelligence, 112(1-2):181-211, 1999.

A. Tate. Project planning using a hierarchic non-linear planner. Tech-
nical report, Department of Artificial Intelligence, University, 1975.

A. Tate, B. Drabble, and J. Dalton. O-plan: a knowledge-based plan-
ner and its application to logistics. Advanced Planning Technology,
AAAI Press, 1996.

G. Theocharous, S. Mahadevan, and L. P. Kaelbling. Spatial and tem-
poral abstractions in pomdps applied to robot navigation, 2005.

S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. 2005.

D. E. Wilkins. Practical Planning: Extending the Classical AI Plan-
ning Paradigm. Morgan Kaufmann Publishers Inc., San Francisco, CA,
1988.

D. E. Wilkins and K. L. Myers. A common knowledge representa-
tion for plan generation and reactive execution. Journal of Logic and
Computation, 5(6):731-761, 1995.

D. E. Wilkins, K. L. Myers, J. D. Lowrance, and L. P. Wesley. Plan-
ning and reacting in uncertain and dynamic environments. Journal of
Ezperimental and Theoretical Al 7(1):197-227, 1995.

Avdelning, Institution
Division, Department

Datum
Date

' ¢ AIICS, o .
45 Dept. of Computer and Information Science April 24 2008
Linkopings u\niversitet 581 83 Linkdping
Sprak Rapporttyp ISBN
Language Report category 978-91-7393-905-8
O Svenska/Swedish ™ Licentiatavhandling ISRN

® Engelska/English

Examensarbete

C-uppsats

O

O

0O D-uppsats
O évrig rapport
O

URL f6r elektronisk version

LiU-Tek-Lic—2008:21

Serietitel och serienummer ISSN
Title of series, numbering 0280-7971

Linkdping Studies in Science and Technology

Thesis No. 1363

Titel
Title

Dynamic Abstraction for Interleaved Task Planning and Execution

Forfattare
Author

Per Nyblom

Sammanfattning
Abstract

It is often beneficial for an autonomous agent that operates in a complex
environment to make use of different types of mathematical models to keep
track of unobservable parts of the world or to perform prediction, planning
and other types of reasoning. Since a model is always a simplification of
something else, there always exists a tradeoff between the model’s accuracy
and feasibility when it is used within a certain application due to the limited
available computational resources. Currently, this tradeoff is to a large extent
balanced by humans for model construction in general and for autonomous
agents in particular. This thesis investigates different solutions where such
agents are more responsible for balancing the tradeoff for models themselves
in the context of interleaved task planning and plan execution. The necessary
components for an autonomous agent that performs its abstractions and con-
structs planning models dynamically during task planning and execution are
investigated and a method called DARE is developed that is a template for
handling the possible situations that can occur such as the rise of unsuitable
abstractions and need for dynamic construction of abstraction levels. Imple-
mentations of DARE are presented in two case studies where both a fully and
partially observable stochastic domain are used, motivated by research with
Unmanned Aircraft Systems. The case studies also demonstrate possible ways
to perform dynamic abstraction and problem model construction in practice.

Nyckelord
Keywords Dynamic Abstraction, Task Planning, Automatic Model Construction

No 17

No 28

No 29
No 48
No 52
No 60
No 71
No 72
No 73
No 74
No 104

No 108
No 111
No 113
No 118

No 126
No 127

No 139
No 140
No 146
No 150
No 165
No 166
No 174
No 177
No 181
No 184
No 187
No 189
No 196
No 197
No 203
No 212
No 230
No 237
No 250
No 253
No 260
No 283

No 298
No 318

No 326
No 328
No 333
No 335

No 348
No 352

No 371
No 378
No 380
No 381
No 383
No 386
No 398

Department of Computer and Information Science
Linko6pings universitet

Linkoping Studies in Science and Technology
Faculty of Arts and Sciences - Licentiate Theses

Vojin Plavsic: Interleaved Processing of Non-Numerical Data Stored on a Cyclic Memory. (Available at:
FOA, Box 1165, S-581 11 Linkdping, Sweden. FOA Report B30062E)

Arne Jonsson, Mikael Patel: An Interactive Flowcharting Technique for Communicating and Realizing Al-
gorithms, 1984.

Johnny Eckerland: Retargeting of an Incremental Code Generator, 1984.

Henrik Nordin: On the Use of Typical Cases for Knowledge-Based Consultation and Teaching, 1985.

Zebo Peng: Steps Towards the Formalization of Designing VLSI Systems, 1985.

Johan Fagerstrom: Simulation and Evaluation of Architecture based on Asynchronous Processes, 1985.
Jalal Maleki: ICONStraint, A Dependency Directed Constraint Maintenance System, 1987.

Tony Larsson: On the Specification and Verification of VLSI Systems, 1986.

Ola Stromfors: A Structure Editor for Documents and Programs, 1986.

Christos Levcopoulos: New Results about the Approximation Behavior of the Greedy Triangulation, 1986.
Shamsul I. Chowdhury: Statistical Expert Systems - a Special Application Area for Knowledge-Based Com-
puter Methodology, 1987.

Rober Bilos: Incremental Scanning and Token-Based Editing, 1987.

Hans Block: SPORT-SORT Sorting Algorithms and Sport Tournaments, 1987.

Ralph Ronnquist: Network and Lattice Based Approaches to the Representation of Knowledge, 1987.
Mariam Kamkar, Nahid Shahmehri: Affect-Chaining in Program Flow Analysis Applied to Queries of Pro-
grams, 1987.

Dan Stromberg: Transfer and Distribution of Application Programs, 1987.

Kristian Sandahl: Case Studies in Knowledge Acquisition, Migration and User Acceptance of Expert Sys-
tems, 1987.

Christer Biickstrom: Reasoning about Interdependent Actions, 1988.

Mats Wirén: On Control Strategies and Incrementality in Unification-Based Chart Parsing, 1988.

Johan Hultman: A Software System for Defining and Controlling Actions in a Mechanical System, 1988.
Tim Hansen: Diagnosing Faults using Knowledge about Malfunctioning Behavior, 1988.

Jonas Lowgren: Supporting Design and Management of Expert System User Interfaces, 1989.

Ola Petersson: On Adaptive Sorting in Sequential and Parallel Models, 1989.

Yngve Larsson: Dynamic Configuration in a Distributed Environment, 1989.

Peter Aberg: Design of a Multiple View Presentation and Interaction Manager, 1989.

Henrik Eriksson: A Study in Domain-Oriented Tool Support for Knowledge Acquisition, 1989.

Ivan Rankin: The Deep Generation of Text in Expert Critiquing Systems, 1989.

Simin Nadjm-Tehrani: Contributions to the Declarative Approach to Debugging Prolog Programs, 1989.
Magnus Merkel: Temporal Information in Natural Language, 1989.

UIf Nilsson: A Systematic Approach to Abstract Interpretation of Logic Programs, 1989.

Staffan Bonnier: Horn Clause Logic with External Procedures: Towards a Theoretical Framework, 1989.
Christer Hansson: A Prototype System for Logical Reasoning about Time and Action, 1990.

Bjorn Fjellborg: An Approach to Extraction of Pipeline Structures for VLSI High-Level Synthesis, 1990.
Patrick Doherty: A Three-Valued Approach to Non-Monotonic Reasoning, 1990.

Tomas Sokolnicki: Coaching Partial Plans: An Approach to Knowledge-Based Tutoring, 1990.

Lars Stromberg: Postmortem Debugging of Distributed Systems, 1990.

Torbjorn Néslund: SLDFA-Resolution - Computing Answers for Negative Queries, 1990.

Peter D. Holmes: Using Connectivity Graphs to Support Map-Related Reasoning, 1991.

Olof Johansson: Improving Implementation of Graphical User Interfaces for Object-Oriented Knowledge-
Bases, 1991.

Rolf G Larsson: Aktivitetsbaserad kalkylering i ett nytt ekonomisystem, 1991.

Lena Srombiéck: Studies in Extended Unification-Based Formalism for Linguistic Description: An Algorithm
for Feature Structures with Disjunction and a Proposal for Flexible Systems, 1992.

Mikael Pettersson: DML-A Language and System for the Generation of Efficient Compilers from Denotatio-
nal Specification, 1992.

Andreas Kagedal: Logic Programming with External Procedures: an Implementation, 1992.

Patrick Lambrix: Aspects of Version Management of Composite Objects, 1992.

Xinli Gu: Testability Analysis and Improvement in High-Level Synthesis Systems, 1992.

Torbjorn Néslund: On the Role of Evaluations in Iterative Development of Managerial Support Sytems,
1992.

Ulf Cederling: Industrial Software Development - a Case Study, 1992.

Magnus Morin: Predictable Cyclic Computations in Autonomous Systems: A Computational Model and Im-
plementation, 1992.

Mehran Noghabai: Evaluation of Strategic Investments in Information Technology, 1993.

Mats Larsson: A Transformational Approach to Formal Digital System Design, 1993.

Johan Ringstrom: Compiler Generation for Parallel Languages from Denotational Specifications, 1993.
Michael Jansson: Propagation of Change in an Intelligent Information System, 1993.

Jonni Harrius: An Architecture and a Knowledge Representation Model for Expert Critiquing Systems, 1993.
Per Osterling: Symbolic Modelling of the Dynamic Environments of Autonomous Agents, 1993.

Johan Boye: Dependency-based Groudness Analysis of Functional Logic Programs, 1993.

No 402
No 406
No 414

No 417
No 436
No 437
No 440
FHS 3/94

FHS 4/94

No 441
No 446
No 450
No 451
No 452

No 455

FHS 5/94

No 462
No 463
No 464
No 469
No 473
No 475
No 476
No 478
FHS 7/95
No 482

No 488

No 489
No 497
No 498

No 503
FHS 8/95

FHS 9/95

No 513
No 517
No 518
No 522
No 538
No 545

No 546
FiF-a 1/96

No 549
No 550

No 557
No 558
No 561
No 563
No 567
No 575
No 576
No 587
No 589

No 591
No 595
No 597

Lars Degerstedt: Tabulated Resolution for Well Founded Semantics, 1993.

Anna Moberg: Satellitkontor - en studie av kommunikationsmonster vid arbete pa distans, 1993.

Peter Carlsson: Separation av foretagsledning och finansiering - fallstudier av foretagsledarutkdp ur ett agent-
teoretiskt perspektiv, 1994.

Camilla Sjostrom: Revision och lagreglering - ett historiskt perspektiv, 1994.

Cecilia Sjoberg: Voices in Design: Argumentation in Participatory Development, 1994.

Lars Viklund: Contributions to a High-level Programming Environment for a Scientific Computing, 1994.
Peter Loborg: Error Recovery Support in Manufacturing Control Systems, 1994.

Owen Eriksson: Informationssystem med verksamhetskvalitet - utvirdering baserat pa ett verksamhetsinrik-
tat och samskapande perspektiv, 1994.

Karin Pettersson: Informationssystemstrukturering, ansvarsfordelning och anvéndarinflytande - En kompa-
rativ studie med utgangspunkt i tva informationssystemstrategier, 1994.

Lars Poignant: Informationsteknologi och foretagsetablering - Effekter pa produktivitet och region, 1994.
Gustav Fahl: Object Views of Relational Data in Multidatabase Systems, 1994.

Henrik Nilsson: A Declarative Approach to Debugging for Lazy Functional Languages, 1994.

Jonas Lind: Creditor - Firm Relations: an Interdisciplinary Analysis, 1994.

Martin Skold: Active Rules based on Object Relational Queries - Efficient Change Monitoring Techniques,
1994.

Pir Carlshamre: A Collaborative Approach to Usability Engineering: Technical Communicators and System
Developers in Usability-Oriented Systems Development, 1994.

Stefan Cronholm: Varfor CASE-verktyg i systemutveckling? - En motiv- och konsekvensstudie avseende ar-
betssiitt och arbetsformer, 1994.

Mikael Lindvall: A Study of Traceability in Object-Oriented Systems Development, 1994.

Fredrik Nilsson: Strategi och ekonomisk styrning - En studie av Sandviks forvirv av Bahco Verktyg, 1994.
Hans Olsén: Collage Induction: Proving Properties of Logic Programs by Program Synthesis, 1994.

Lars Karlsson: Specification and Synthesis of Plans Using the Features and Fluents Framework, 1995.

Ulf Soderman: On Conceptual Modelling of Mode Switching Systems, 1995.

Choong-ho Yi: Reasoning about Concurrent Actions in the Trajectory Semantics, 1995.

Bo Lagerstrom: Successiv resultatavrikning av pagaende arbeten. - Fallstudier i tre byggforetag, 1995.
Peter Jonsson: Complexity of State-Variable Planning under Structural Restrictions, 1995.

Anders Avdic: Arbetsintegrerad systemutveckling med kalkylkprogram, 1995.

Eva L Ragnemalm: Towards Student Modelling through Collaborative Dialogue with a Learning Compani-
on, 1995.

Eva Toller: Contributions to Paralle]l Multiparadigm Languages: Combining Object-Oriented and Rule-Based
Programming, 1995.

Erik Stoy: A Petri Net Based Unified Representation for Hardware/Software Co-Design, 1995.

Johan Herber: Environment Support for Building Structured Mathematical Models, 1995.

Stefan Svenberg: Structure-Driven Derivation of Inter-Lingual Functor-Argument Trees for Multi-Lingual
Generation, 1995.

Hee-Cheol Kim: Prediction and Postdiction under Uncertainty, 1995.

Dan Fristedt: Metoder i anvdndning - mot forbéttring av systemutveckling genom situationell metodkunskap
och metodanalys, 1995.

Malin Bergvall: Systemforvaltning i praktiken - en kvalitativ studie avseende centrala begrepp, aktiviteter och
ansvarsroller, 1995.

Joachim Karlsson: Towards a Strategy for Software Requirements Selection, 1995.

Jakob Axelsson: Schedulability-Driven Partitioning of Heterogeneous Real-Time Systems, 1995.

Goran Forslund: Toward Cooperative Advice-Giving Systems: The Expert Systems Experience, 1995.
Jorgen Andersson: Bilder av sméforetagares ekonomistyrning, 1995.

Staffan Flodin: Efficient Management of Object-Oriented Queries with Late Binding, 1996.

Vadim Engelson: An Approach to Automatic Construction of Graphical User Interfaces for Applications in
Scientific Computing, 1996.

Magnus Werner : Multidatabase Integration using Polymorphic Queries and Views, 1996.

Mikael Lind: Affirsprocessinriktad fordndringsanalys - utveckling och tillimpning av synsitt och metod,
1996.

Jonas Hallberg: High-Level Synthesis under Local Timing Constraints, 1996.

Kristina Larsen: Forutsittningar och begrinsningar for arbete pé distans - erfarenheter fran fyra svenska fo-
retag. 1996.

Mikael Johansson: Quality Functions for Requirements Engineering Methods, 1996.

Patrik Nordling: The Simulation of Rolling Bearing Dynamics on Parallel Computers, 1996.

Anders Ekman: Exploration of Polygonal Environments, 1996.

Niclas Andersson: Compilation of Mathematical Models to Parallel Code, 1996.

Johan Jenvald: Simulation and Data Collection in Battle Training, 1996.

Niclas Ohlsson: Software Quality Engineering by Early Identification of Fault-Prone Modules, 1996.
Mikael Ericsson: Commenting Systems as Design Support—A Wizard-of-Oz Study, 1996.

Jorgen Lindstrom: Chefers anvidndning av kommunikationsteknik, 1996.

Esa Falkenroth: Data Management in Control Applications - A Proposal Based on Active Database Systems,
1996.

Niclas Wahllof: A Default Extension to Description Logics and its Applications, 1996.

Annika Larsson: Ekonomisk Styrning och Organisatorisk Passion - ett interaktivt perspektiv, 1997.

Ling Lin: A Value-based Indexing Technique for Time Sequences, 1997.

No 598
No 599
No 607

No 609
FiF-a 4
FiF-a 6

No 615
No 623
No 626
No 627
No 629
No 631
No 639
No 640
No 643
No 653
FiF-a 13

No 674

No 676
No 668

No 675

FiF-a 14

No 695
No 700
FiF-a 16

No 712

No 719
No 723
No 725
No 730

No 731
No 733
No 734

FiF-a 21
FiF-a 22
No 737
No 738
FiF-a 25

No 742
No 748
No 751

No 752
No 753
No 754

No 766
No 769
No 775
FiF-a 30
No 787

No 788

No 790
No 791
No 800
No 807

Rego Granlund: C3Fire - A Microworld Supporting Emergency Management Training, 1997.

Peter Ingels: A Robust Text Processing Technique Applied to Lexical Error Recovery, 1997.

Per-Arne Persson: Toward a Grounded Theory for Support of Command and Control in Military Coalitions,
1997.

Jonas S Karlsson: A Scalable Data Structure for a Parallel Data Server, 1997.

Carita Abom: Videométesteknik i olika affdrssituationer - mojligheter och hinder, 1997.

Tommy Wedlund: Att skapa en foretagsanpassad systemutvecklingsmodell - genom rekonstruktion, virde-
ring och vidareutveckling i T50-bolag inom ABB, 1997.

Silvia Coradeschi: A Decision-Mechanism for Reactive and Coordinated Agents, 1997.

Jan Ollinen: Det flexibla kontorets utveckling pa Digital - Ett stod f6r multiflex? 1997.

David Byers: Towards Estimating Software Testability Using Static Analysis, 1997.

Fredrik Eklund: Declarative Error Diagnosis of GAPLog Programs, 1997.

Gunilla Ivefors: Krigsspel coh Informationsteknik infor en of6rutsdgbar framtid, 1997.

Jens-Olof Lindh: Analysing Traffic Safety from a Case-Based Reasoning Perspective, 1997

Jukka Miiki-Turja:. Smalltalk - a suitable Real-Time Language, 1997.

Juha Takkinen: CAFE: Towards a Conceptual Model for Information Management in Electronic Mail, 1997.
Man Lin: Formal Analysis of Reactive Rule-based Programs, 1997.

Mats Gustafsson: Bringing Role-Based Access Control to Distributed Systems, 1997.

Boris Karlsson: Metodanalys for forstéelse och utveckling av systemutvecklingsverksamhet. Analys och vir-
dering av systemutvecklingsmodeller och dess anvéndning, 1997.

Marcus Bjireland: Two Aspects of Automating Logics of Action and Change - Regression and Tractability,
1998.

Jan Hakegard: Hiera rchical Test Architecture and Board-Level Test Controller Synthesis, 1998.

Per-Ove Zetterlund: Normering av svensk redovisning - En studie av tillkomsten av Redovisningsradets re-
kommendation om koncernredovisning (RR01:91), 1998.

Jimmy Tjider: Projektledaren & planen - en studie av projektledning i tre installations- och systemutveck-
lingsprojekt, 1998.

Ulf Melin: Informationssystem vid 6kad affirs- och processorientering - egenskaper, strategier och utveck-
ling, 1998.

Tim Heyer: COMPASS: Introduction of Formal Methods in Code Development and Inspection, 1998.
Patrik Higglund: Programming Languages for Computer Algebra, 1998.

Marie-Therese Christiansson: Inter-organistorisk verksamhetsutveckling - metoder som stdd vid utveckling
av partnerskap och informationssystem, 1998.

Christina Wennestam: Information om immateriella resurser. Investeringar i forskning och utveckling samt
i personal inom skogsindustrin, 1998.

Joakim Gustafsson: Extending Temporal Action Logic for Ramification and Concurrency, 1998.

Henrik André-Jonsson: Indexing time-series data using text indexing methods, 1999.

Erik Larsson: High-Level Testability Analysis and Enhancement Techniques, 1998.

Carl-Johan Westin: Informationsforsorjning: en fraga om ansvar - aktiviteter och uppdrag i fem stora svenska
organisationers operativa informationsforsorjning, 1998.

Ase Jansson: Miljohinsyn - en del i foretags styrning, 1998.

Thomas Padron-McCarthy: Performance-Polymorphic Declarative Queries, 1998.

Anders Béckstrom: Virdeskapande kreditgivning - Kreditriskhantering ur ett agentteoretiskt perspektiv,
1998.

Ulf Seigerroth: Integration av fordndringsmetoder - en modell for vilgrundad metodintegration, 1999.
Fredrik Oberg: Object-Oriented Frameworks - A New Strategy for Case Tool Development, 1998.

Jonas Mellin: Predictable Event Monitoring, 1998.

Joakim Eriksson: Specifying and Managing Rules in an Active Real-Time Database System, 1998.

Bengt E W Andersson: Samverkande informationssystem mellan aktorer i offentliga ataganden - En teori om
aktorsarenor i samverkan om utbyte av information, 1998.

Pawel Pietrzak: Static Incorrectness Diagnosis of CLP (FD), 1999.

Tobias Ritzau: Real-Time Reference Counting in RT-Java, 1999.

Anders Ferntoft: Elektronisk affirskommunikation - kontaktkostnader och kontaktprocesser mellan kunder
och leverantorer pa producentmarknader,1999.

Jo Skamedal: Arbete pé distans och arbetsformens paverkan pa resor och resménster, 1999.

Johan Alvehus: Motets metaforer. En studie av berittelser om moten, 1999.

Magnus Lindahl: Bankens villkor i ldneavtal vid kreditgivning till hogt belanade foretagsforvirv: En studie
ur ett agentteoretiskt perspektiv, 2000.

Martin V. Howard: Designing dynamic visualizations of temporal data, 1999.

Jesper Andersson: Towards Reactive Software Architectures, 1999.

Anders Henriksson: Unique kernel diagnosis, 1999.

Pir J. Agerfalk: Pragmatization of Information Systems - A Theoretical and Methodological Outline, 1999.
Charlotte Bjorkegren: Learning for the next project - Bearers and barriers in knowledge transfer within an
organisation, 1999.

Hakan Nilsson: Informationsteknik som drivkraft i granskningsprocessen - En studie av fyra revisionsbyréer,
2000.

Erik Berglund: Use-Oriented Documentation in Software Development, 1999.

Klas Gére: Verksamhetsfordndringar i samband med IS-inférande, 1999.

Anders Subetic: Software Quality Inspection, 1999.

Svein Bergum: Managerial communication in telework, 2000.

No 809
FiF-a 32

No 808
No 820
No 823
No 832
FiF-a 34

No 842
No 844
FiF-a 37
FiF-a 40
FiF-a 41
No. 854
No 863
No 881
No 882

No 890
FiF-a 47

No 894
No 906
No 917
No 916

FiF-a-49
FiF-a-51
No 919

No 915
No 931

No 933

No 938
No 942
No 956

FiF-a 58
No 964
No 973
No 958

FiF-a 61
No 985

No 982
No 989
No 990

No 991
No 999
No 1000
No 1001

No 988
FiF-a 62

No 1003
No 1005

No 1008
No 1010
No 1015
No 1018
No 1022

FiF-a 65

Flavius Gruian: Energy-Aware Design of Digital Systems, 2000.

Karin Hedstrom: Kunskapsanvindning och kunskapsutveckling hos verksamhetskonsulter - Erfarenheter
fran ett FOU-samarbete, 2000.

Linda Askenis: Affirssystemet - En studie om teknikens aktiva och passiva roll i en organisation, 2000.
Jean Paul Meynard: Control of industrial robots through high-level task programming, 2000.

Lars Hult: Publika Grinsytor - ett designexempel, 2000.

Paul Pop: Scheduling and Communication Synthesis for Distributed Real-Time Systems, 2000.

Goran Hultgren: Nitverksinriktad Forindringsanalys - perspektiv och metoder som stod for forstéelse och
utveckling av affirsrelationer och informationssystem, 2000.

Magnus Kald: The role of management control systems in strategic business units, 2000.

Mikael Ciker: Vad kostar kunden? Modeller for intern redovisning, 2000.

Ewa Braf: Organisationers kunskapsverksamheter - en kritisk studie av "knowledge management”, 2000.
Henrik Lindberg: Webbaserade affirsprocesser - Mojligheter och begriansningar, 2000.

Benneth Christiansson: Att komponentbasera informationssystem - Vad siger teori och praktik?, 2000.
Ola Pettersson: Deliberation in a Mobile Robot, 2000.

Dan Lawesson: Towards Behavioral Model Fault Isolation for Object Oriented Control Systems, 2000.
Johan Moe: Execution Tracing of Large Distributed Systems, 2001.

Yuxiao Zhao: XML-based Frameworks for Internet Commerce and an Implementation of B2B
e-procurement, 2001.

Annika Flycht-Eriksson: Domain Knowledge Management inInformation-providing Dialogue systems,
2001.

Per-Arne Segerkvist: Webbaserade imaginéra organisationers samverkansformer: Informationssystemarki-
tektur och aktorssamverkan som forutsittningar for affarsprocesser, 2001.

Stefan Svarén: Styrning av investeringar i divisionaliserade foretag - Ett koncernperspektiv, 2001.

Lin Han: Secure and Scalable E-Service Software Delivery, 2001.

Emma Hansson: Optionsprogram for anstillda - en studie av svenska borsforetag, 2001.

Susanne Odar: IT som stod for strategiska beslut, en studie av datorimplementerade modeller av verksamhet
som stod for beslut om anskaffning av JAS 1982, 2002.

Stefan Holgersson: IT-system och filtrering av verksamhetskunskap - kvalitetsproblem vid analyser och be-
slutsfattande som bygger pé uppgifter himtade fran polisens IT-system, 2001.

Per Oscarsson:Informationssikerhet i verksamheter - begrepp och modeller som stod for forstaelse av infor-
mationssékerhet och dess hantering, 2001.

Luis Alejandro Cortes: A Petri Net Based Modeling and Verification Technique for Real-Time Embedded
Systems, 2001.

Niklas Sandell: Redovisning i skuggan av en bankkris - Virdering av fastigheter. 2001.

Fredrik Elg: Ett dynamiskt perspektiv pa individuella skillnader av heuristisk kompetens, intelligens, mentala
modeller, mél och konfidens i kontroll av mikrovirlden Moro, 2002.

Peter Aronsson: Automatic Parallelization of Simulation Code from Equation Based Simulation Languages,
2002.

Bourhane Kadmiry: Fuzzy Control of Unmanned Helicopter, 2002.

Patrik Haslum: Prediction as a Knowledge Representation Problem: A Case Study in Model Design, 2002.
Robert Sevenius: On the instruments of governance - A law & economics study of capital instruments in li-
mited liability companies, 2002.

Johan Petersson: Lokala elektroniska marknadsplatser - informationssystem for platsbundna afférer, 2002.
Peter Bunus: Debugging and Structural Analysis of Declarative Equation-Based Languages, 2002.

Gert Jervan: High-Level Test Generation and Built-In Self-Test Techniques for Digital Systems, 2002.
Fredrika Berglund: Management Control and Strategy - a Case Study of Pharmaceutical Drug Development,
2002.

Fredrik Karlsson: Meta-Method for Method Configuration - A Rational Unified Process Case, 2002.

Sorin Manolache: Schedulability Analysis of Real-Time Systems with Stochastic Task Execution Times,
2002.

Diana Szentivanyi: Performance and Availability Trade-offs in Fault-Tolerant Middleware, 2002.

Iakov Nakhimovski: Modeling and Simulation of Contacting Flexible Bodies in Multibody Systems, 2002.
Levon Saldamli: PDEModelica - Towards a High-Level Language for Modeling with Partial Differential
Equations, 2002.

Almut Herzog: Secure Execution Environment for Java Electronic Services, 2002.

Jon Edvardsson: Contributions to Program- and Specification-based Test Data Generation, 2002

Anders Arpteg: Adaptive Semi-structured Information Extraction, 2002.

Andrzej Bednarski: A Dynamic Programming Approach to Optimal Retargetable Code Generation for
Irregular Architectures, 2002.

Mattias Arvola: Good to use! : Use quality of multi-user applications in the home, 2003.

Lennart Ljung: Utveckling av en projektivitetsmodell - om organisationers formaga att tillimpa
projektarbetsformen, 2003.

Pernilla Qvarfordt: User experience of spoken feedback in multimodal interaction, 2003.

Alexander Siemers: Visualization of Dynamic Multibody Simulation With Special Reference to Contacts,
2003.

Jens Gustavsson: Towards Unanticipated Runtime Software Evolution, 2003.

Calin Curescu: Adaptive QoS-aware Resource Allocation for Wireless Networks, 2003.

Anna Andersson: Management Information Systems in Process-oriented Healthcare Organisations, 2003.
Bjorn Johansson: Feedforward Control in Dynamic Situations, 2003.

Traian Pop: Scheduling and Optimisation of Heterogeneous Time/Event-Triggered Distributed Embedded
Systems, 2003.

Britt-Marie Johansson: Kundkommunikation pé distans - en studie om kommunikationsmediets betydelse i
affirstransaktioner, 2003.

No 1024
No 1034
No 1033

FiF-a 69
No 1049
No 1052
No 1054
FiF-a 71
No 1055
No 1058
FiF-a 73

No 1079
No 1084

FiF-a 74
No 1094
No 1095
No 1099
No 1110
No 1116

FiF-a 77

No 1126
No 1127
No 1132

No 1130
No 1138
No 1149
No 1156
No 1162
No 1165

FiF-a 84
No 1166

No 1167

No 1168
FiF-a 85

No 1171
FiF-a 86

No 1172
No 1183
No 1184

No 1185

No 1190
No 1191

No 1192
No 1194
No 1204

No 1206
No 1207
No 1209

No 1225
No 1228
No 1229
No 1231
No 1233

No 1244
No 1248
No 1263

FiF-a 90
No 1272

Aleksandra TeSanovic: Towards Aspectual Component-Based Real-Time System Development, 2003.
Arja Vainio-Larsson: Designing for Use in a Future Context - Five Case Studies in Retrospect, 2003.
Peter Nilsson: Svenska bankers redovisningsval vid reservering for befarade kreditforluster - En studie vid
inférandet av nya redovisningsregler, 2003.
Fredrik Ericsson: Information Technology for Learning and Acquiring of Work Knowledge, 2003.
Marcus Comstedt: Towards Fine-Grained Binary Composition through Link Time Weaving, 2003.

sa Hedenskog: Increasing the Automation of Radio Network Control, 2003.
Claudiu Duma: Security and Efficiency Tradeoffs in Multicast Group Key Management, 2003.
Emma Eliason: Effektanalys av IT-systems handlingsutrymme, 2003.
Carl Cederberg: Experiments in Indirect Fault Injection with Open Source and Industrial Software, 2003.
Daniel Karlsson: Towards Formal Verification in a Component-based Reuse Methodology, 2003.
Anders Hjalmarsson: Att etablera och vidmakthélla forbéttringsverksamhet - behovet av koordination och
interaktion vid foréndring av systemutvecklingsverksamheter, 2004.
Pontus Johansson: Design and Development of Recommender Dialogue Systems, 2004.
Charlotte Stoltz: Calling for Call Centres - A Study of Call Centre Locations in a Swedish Rural Region,
2004.
Bjorn Johansson: Deciding on Using Application Service Provision in SMEs, 2004.
Genevieve Gorrell: Language Modelling and Error Handling in Spoken Dialogue Systems, 2004.
Ulf Johansson: Rule Extraction - the Key to Accurate and Comprehensible Data Mining Models, 2004.
Sonia Sangari: Computational Models of Some Communicative Head Movements, 2004.
Hans Nissla: Intra-Family Information Flow and Prospects for Communication Systems, 2004.
Henrik Séllberg: On the value of customer loyalty programs - A study of point programs and switching costs,
2004.
Ulf Larsson: Designarbete i dialog - karaktirisering av interaktionen mellan anvindare och utvecklare i en
systemutvecklingsprocess, 2004.
Andreas Borg: Contribution to Management and Validation of Non-Functional Requirements, 2004.
Per-Ola Kristensson: Large Vocabulary Shorthand Writing on Stylus Keyboard, 2004.
Pir-Anders Albinsson: Interacting with Command and Control Systems: Tools for Operators and Designers,
2004.
Ioan Chisalita: Safety-Oriented Communication in Mobile Networks for Vehicles, 2004.
Thomas Gustafsson: Maintaining Data Consistency im Embedded Databases for Vehicular Systems, 2004.
Vaida Jakoniené: A Study in Integrating Multiple Biological Data Sources, 2005.
Abdil Rashid Mohamed: High-Level Techniques for Built-In Self-Test Resources Optimization, 2005.
Adrian Pop: Contributions to Meta-Modeling Tools and Methods, 2005.
Fidel Vascés Palacios: On the information exchange between physicians and social insurance officers in the
sick leave process: an Activity Theoretical perspective, 2005.
Jenny Lagsten: Verksamhetsutvecklande utvirdering i informationssystemprojekt, 2005.
Emma Larsdotter Nilsson: Modeling, Simulation, and Visualization of Metabolic Pathways Using Modelica,
2005.
Christina Keller: Virtual Learning Environments in higher education. A study of students’ acceptance of edu-
cational technology, 2005.
Cécile Aberg: Integration of organizational workflows and the Semantic Web, 2005.
Anders Forsman: Standardisering som grund for informationssamverkan och IT-tjinster - En fallstudie
baserad pa trafikinformationstjansten RDS-TMC, 2005.
Yu-Hsing Huang: A systemic traffic accident model, 2005.
Jan Olausson: Att modellera uppdrag - grunder for forstéelse av processinriktade informationssystem i trans-
aktionsintensiva verksamheter, 2005.
Petter Ahlstrom: Affirsstrategier for seniorbostadsmarknaden, 2005.
Mathias Coster: Beyond IT and Productivity - How Digitization Transformed the Graphic Industry, 2005.
Asa Horzella: Beyond IT and Productivity - Effects of Digitized Information Flows in Grocery Distribution,
2005.
Maria Kollberg: Beyond IT and Productivity - Effects of Digitized Information Flows in the Logging
Industry, 2005.
David Dinka: Role and Identity - Experience of technology in professional settings, 2005.
Andreas Hansson: Increasing the Storage Capacity of Recursive Auto-associative Memory by Segmenting
Data, 2005.
Nicklas Bergfeldt: Towards Detached Communication for Robot Cooperation, 2005.
Dennis Maciuszek: Towards Dependable Virtual Companions for Later Life, 2005.
Beatrice Alenljung: Decision-making in the Requirements Engineering Process: A Human-centered
Approach, 2005
Anders Larsson: System-on-Chip Test Scheduling and Test Infrastructure Design, 2005.
John Wilander: Policy and Implementation Assurance for Software Security, 2005.
Andreas Kill: Oversittningar av en managementmodell - En studie av inforandet av Balanced Scorecard i ett
landsting, 2005.
He Tan: Aligning and Merging Biomedical Ontologies, 2006.
Artur Wilk: Descriptive Types for XML Query Language Xcerpt, 2006.
Per Olof Pettersson: Sampling-based Path Planning for an Autonomous Helicopter, 2006.
Kalle Burbeck: Adaptive Real-time Anomaly Detection for Safeguarding Critical Networks, 2006.
Daniela Mihailescu: Implementation Methodology in Action: A Study of an Enterprise Systems Implemen-
tation Methodology, 2006.
Jorgen Skageby: Public and Non-public gifting on the Internet, 2006.
Karolina Eliasson: The Use of Case-Based Reasoning in a Human-Robot Dialog System, 2006.
Misook Park-Westman: Managing Competence Development Programs in a Cross-Cultural Organisation-
What are the Barriers and Enablers, 2006.
Amra Halilovic: Ett praktikperspektiv pa hantering av mjukvarukomponenter, 2006.
Raquel Flodstrom: A Framework for the Strategic Management of Information Technology, 2006.

No 1277
No 1283

FiF-a 91
No 1286
No 1293
No 1302
No 1303
No 1305

No 1306

No 1307
No 1309

No 1312
No 1313

No 1317
No 1320
No 1323

No 1329
No 1331
No 1332
No 1333
No 1337

No 1339
No 1351
No 1353
No 1356
No 1359
No 1363

Viacheslav Izosimov: Scheduling and Optimization of Fault-Tolerant Embedded Systems, 2006.

Hakan Hasewinkel: A Blueprint for Using Commercial Games off the Shelf in Defence Training, Education
and Research Simulations, 2006.

Hanna Broberg: Verksamhetsanpassade IT-stod - Designteori och metod, 2006.

Robert Kaminski: Towards an XML Document Restructuring Framework, 2006

Jiri Trnka: Prerequisites for data sharing in emergency management, 2007.

Bjorn Hégglund: A Framework for Designing Constraint Stores, 2007.

Daniel Andreasson: Slack-Time Aware Dynamic Routing Schemes for On-Chip Networks, 2007.

Magnus Ingmarsson: Modelling User Tasks and Intentions for Service Discovery in Ubiquitous Computing,
2007.

Gustaf Svedjemo: Ontology as Conceptual Schema when Modelling Historical Maps for Database Storage,
2007.

Gianpaolo Conte: Navigation Functionalities for an Autonomous UAV Helicopter, 2007.

Ola Leifler: User-Centric Critiquing in Command and Control: The DKExpert and ComPlan Approaches,
2007.

Henrik Svensson: Embodied simulation as off-line representation, 2007.

Zhiyuan He: System-on-Chip Test Scheduling with Defect-Probability and Temperature Considerations,
2007.

Jonas Elmgqvist: Components, Safety Interfaces and Compositional Analysis, 2007.

Hakan Sundblad: Question Classification in Question Answering Systems, 2007.

Magnus Lundqvist: Information Demand and Use: Improving Information Flow within Small-scale Business
Contexts, 2007.

Martin Magnusson: Deductive Planning and Composite Actions in Temporal Action Logic, 2007.

Mikael Asplund: Restoring Consistency after Network Partitions, 2007.

Martin Fransson: Towards Individualized Drug Dosage - General Methods and Case Studies, 2007.

Karin Camara: A Visual Query Language Served by a Multi-sensor Environment, 2007.

David Broman: Safety, Security, and Semantic Aspects of Equation-Based Object-Oriented Languages and
Environments, 2007.

Mikhail Chalabine: Invasive Interactive Parallelization, 2007.

Susanna Nilsson: A Holistic Approach to Usability Evaluations of Mixed Reality Systems, 2008.

Shanai Ardi: A Model and Implementation of a Security Plug-in for the Software Life Cycle, 2008.

Erik Kuiper: Mobility and Routing in a Delay-tolerant Network of Unmanned Aerial Vehicles, 2008.

Jana Rambusch: Situated Play, 2008.

Per Nyblom: Dynamic Abstraction for Interleaved Task Planning and Execution, 2008.

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 1
 same as current

 1
 1
 1
 562
 409

 CurrentAVDoc

 SameAsCur
 AfterCur

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 107 to page 111
 Trim: fix size 6.496 x 9.449 inches / 165.0 x 240.0 mm
 Shift: move down by 8.50 points
 Normalise (advanced option): 'original'

 32

 D:20071123131926
 680.3150
 S5
 Blank
 467.7165

 Tall
 1
 0
 No
 503
 356
 Fixed
 Down
 8.5039
 0.0000

 Both
 107
 SubDoc
 111

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 106
 112
 110
 5

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 5 to page 104
 Trim: fix size 6.496 x 9.449 inches / 165.0 x 240.0 mm
 Shift: move down by 8.50 points
 Normalise (advanced option): 'original'

 32

 D:20071123131926
 680.3150
 S5
 Blank
 467.7165

 Tall
 1
 0
 No
 503
 356
 Fixed
 Down
 8.5039
 0.0000

 Both
 5
 SubDoc
 104

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 4
 112
 103
 100

 1

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset -27.93, 668.10 Width 512.29 Height 36.65 points
 Origin: bottom left

 1
 0
 BL

 Both
 117
 AllDoc
 137

 CurrentAVDoc

 -27.9274 668.0967 512.2932 36.6547

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 4
 112
 111
 112

 1

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset -48.87, -16.12 Width 54.98 Height 714.77 points
 Mask co-ordinates: Horizontal, vertical offset 459.93, -17.87 Width 43.64 Height 714.77 points
 Origin: bottom left

 1
 0
 BL

 Both
 117
 AllDoc
 137

 CurrentAVDoc

 -48.8729 -16.1245 54.9821 714.7668 459.9293 -17.8699 43.6365 714.7668

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 8
 112
 111
 112

 1

 HistoryList_V1
 qi2base

