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ABSTRACT

This thesis was written during the WITAS UAV Project where one of the goals has

been the development of a software/hardware architecture for an unmanned autonomous
helicopter, in addition to autonomous functionalities required for complex mission sce-

narios. The algorithms developed here have been tested on an unmanned helicopter

platform developed by Yamaha Motor Company called the RMAX.
The character of the thesis is primarily experimental and it should be viewed as

developing navigational functionality to support autonomous flight during complex real-

world mission scenarios. This task is multidisciplinary since it requires competence in
aeronautics, computer science and electronics.

The focus of the thesis has been on the development of a control method to enable
the helicopter to follow 3D paths. Additionally, a helicopter simulation tool has been

developed in order to test the control system before flight-tests. The thesis also presents

an implementation and experimental evaluation of a sensor fusion technique based on a
Kalman filter applied to a vision based autonomous landing problem. Extensive exper-

imental flight-test results are presented.

The work in this thesis is supported in part by grants from the Wallenberg Founda-

tion, the SSF MOVIII strategic center and an NFFP04-031 ”Autonomous flight control
and decision making capabilities for Mini-UAVs” project grant.

Department of Computer and Information Science
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Preface

”To fly is my religion.”
Richard Bach
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a Licentiate degree at the Artificial Intelligence and Integrated Computer
System (AIICS) division at Linköping University. The focus of the thesis
has been on development of navigation functionalities for an unmanned
helicopter. A flight control mode which enables an unmanned helicopter
to follow 3D paths has been developed (Paper I, Paper II). Additionally,
a sensor fusion technique has been applied to a vision based autonomous
landing problem (Paper III).

The original refereed and published papers upon which this thesis is
based are included as an appendix to this thesis:

Paper I G. Conte, S. Duranti, T. Merz. Dynamic 3D Path Following
for an Autonomous Helicopter. Proc. of the IFAC Symposium on
Intelligent Autonomous Vehicles, 2004.

Paper II M. Wzorek, G. Conte, P. Rudol, T. Merz, S. Duranti, P. Do-
herty. From Motion Planning to Control - A Navigation Framework
for an Autonomous Unmanned Aerial Vehicle. 21th Bristol UAV Sys-
tems Conference, 2006.

Paper III T. Merz, S. Duranti, and G. Conte. Autonomous landing of
an unmanned aerial helicopter based on vision and inertial sensing.
Proc. of the 9th International Symposium on Experimental Robotics,
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Chapter 1

Introduction

An Unmanned Aerial Vehicle (UAV) is an aerial vehicle without a hu-
man pilot on board. It can be autonomous, semi-autonomous or radio-
controlled. In the past, the use of UAVs have been mostly related to mili-
tary applications in order to perform the so-called Dirty, Dull and Danger-
ous (D3) missions such as reconnaissance, surveillance and location acqui-
sition of enemy targets. Recently, interest for UAV systems has grown in
the direction of civil applications as a consequence of the cost reduction of
this technology.

Aircraft navigation can be accomplished by safely solving four tasks:
decision making, obstacle perception, aircraft state estimation (estimation
of position, velocity and attitude) and aircraft control. In the earlier days
of aeronautic history, the on-board pilot had to solve these tasks by using
his own skills. Nowadays the situation is quite different since a high level
of automation is present in modern military and civil aircrafts. In order
to replace the pilot completely a number of problems have to be solved.
For example, it is difficult to replace the skills of a pilot in perceiving and
avoiding obstacles. This is one of the reasons why the introduction of UAVs
in non-segregated airspace still represents a challenge.

The work presented in this thesis was initiated as part of the WITAS
UAV Project [17, 2], where the main goal was to develop technologies
and functionalities necessary for the successful deployment of a fully au-
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tonomous Vertical Take Off and Landing (VTOL) UAV. The typical op-
erational environment for this research has been urban areas where an
autonomous helicopter can be deployed for missions such as traffic moni-
toring, photogrammetry, surveillance, etc.

Many universities [26, 28, 1, 19, 10, 27, 29] have been and continue to
do research with autonomous helicopter systems. Most of the research has
focused on low-level control of such systems with less emphasis on high-
autonomy as in the WITAS UAV Project.

To accomplish complex autonomous missions, high-level functionalities
such as mission planning and real world scene understanding have to be
integrated with low-level functionalities such as motion control, sensing
and control mode coordination. Details and discussions relative to the
WITAS UAV software architecture can be found in [3, 15].

This thesis focuses on two aspects of the navigation task: flight control
and state estimation. The main results of this thesis have been published
in Paper I and Paper II (see Appendix) which are related to flight control
issues, and Paper III (see Appendix) related to sensor fusion and state esti-
mation applied to the problem of a vision based autonomous landing. The
algorithms presented are implemented and tested on a UAV helicopter and
currently in use in the context of a number of autonomous UAV missions.

The thesis also presents a simulation tool developed for control system
validation. The simulator is based on system identification work described
in [4]. The helicopter simulator has been an invaluable tool for development
of flight control modes. It is implemented in the C-language and coupled to
the complete software architecture. Simulation tests can be done in real-
time and with actual helicopter hardware-in-the-loop. A complete flight
mission can be tested in the field with the helicopter hardware in-the-loop
before the actual flight test.

The first contribution of this thesis (Paper I) is the development of a
Path Following Control Mode (PFCM). This control mode enables the UAV
helicopter to follow 3D geometric paths. A basic functionality required for
a UAV is the ability to fly from a starting location to a goal location. As
stated before, in order to achieve this task safely the helicopter must per-
ceive and than avoid eventual obstacles on its way. Additionally, it must
stay within the allowed flight control envelope. The UAV developed during
the WITAS UAV Project has the capability of using a priori knowledge
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of the environment in order to avoid static obstacles. An on-board path
planner uses this knowledge to generate collision-free paths. Details of the
path planning methods used are in [18]. The PFCM presented in this the-
sis, together with the path execution mechanism, gives the right balance
between safety and flexibility and can also be used for dynamic path plan-
ning. Recently some experiments have been made to exploit the possibility
of avoiding no-fly-zones which are added dynamically from a ground con-
trol station or other sources during flight. These experiments are intended
to provide more dynamic path planning. Details of these experiments are
available in [30]. A natural extension of this feature is the replacement of
the manual selection of no-fly-zones with an automatic selection. Provided
the UAV has the capability to detect obstacles in the environment, these
can be treated as no-fly-zones and avoided by using the existing dynamic
path planning capability.

Paper II contains an extended description of the WITAS UAV naviga-
tion framework and it shows how the PFCM is integrated in the software
architecture and used in complex missions.

The second contribution of the thesis is the integration of a Kalman
Filter (KF) into the control system architecture. The KF is used to fuse
the information coming from different sensors available on-board the UAV
in order to estimate the helicopter state. The estimated state is used by the
control system to control the helicopter. The reason why several sensors
are fused together is because each sensor has different properties which
should be taken advantage of. In this thesis the KF is used for fusing
inertial sensors (INS) and a vision sensor for the vision based autonomous
landing problem described in Paper III. The same KF is implemented on
the UAV helicopter for fusing GPS together with inertial sensors. The reuse
of software for different applications is highly desirable in such a complex
system such as an autonomous UAV.

Vision based autonomous landing is a challenging problem. Landing is
the most dangerous phase of a flight, so the state estimation of a UAV must
be accurate and continuous in time. The autonomous landing problem is
solved by using high accuracy position data from a vision system which uses
a single camera and inertial data taken from an Inertial Measurement Unit
(IMU). What makes this application special is the fact that the GPS is not
used at all during autonomous landing. This makes the UAV independent
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of external position signals.
The UAV platform used for the experimentation is an RMAX unmanned

helicopter manufactured by Yamaha Motor Company. The hardware and
software necessary for autonomous flight have been developed during the
WITAS UAV Project using off -the-shelf hardware components.

Flight missions are performed in a training area of approximately one
square kilometer in the south of Sweden, called Revinge (Fig.1.1). The area
is used mainly for fire fighter training and includes a number of building
structures and road network. An accurate 3D model of the area is available
on board the helicopter in a GIS (Geographic Information System), which
is used for mission planning purposes.

Figure 1.1: Orthophoto of the flight-test area in Revinge (south of Sweden).
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Chapter 2

Overview

This chapter presents an overview of the UAV architecture developed dur-
ing the WITAS UAV Project. The components which have been developed
and are part of this thesis will be considered in this context.

A description of the UAV helicopter platform used for the experimental
tests will also be presented. Details of the platform which are relevant to
this thesis will also be considered in order to gain a better understanding
of the components developed.

2.1 UAV software architecture

The software architecture developed during the WITAS UAV Project is a
complex distributed architecture for high level autonomous missions. The
architecture enables the UAV to perform so-called push button mission.
This is intended to mean that a UAV is capable of planning and executing
a mission from take-off to landing with limited, or no human intervention.
An example of such a mission demonstrated in an actual flight experiment
is a photogrammetry scenario. In such a scenario a UAV helicopter is
given the task of taking pictures of each of the facades of a selected set
of buildings input by a ground operator. The details of this mission are
described in Paper II. To accomplish this kind of mission, an architecture
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which integrates many different functionalities is required.
Fig. 2.1 provides a schematic of the software architecture that has been

developed. The modules focused on in this thesis have been emphasized
in the schematic. The boxes emphasized with bold lines and text have
been developed and made operational and will be described in detail in
this thesis.

Figure 2.1: UAV software architecture schematic. The modules emphasized
using bold lines are the focus of this thesis.

The software architecture has been implemented using three computers
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which will be described shortly.

• The deliberative/reactive system (DRC) executes a number of high
level functionalities of a deliberative nature such as path planner,
execution monitoring, GIS, etc.

• The image processing system (IPC) executes image processing func-
tions and handles everything which is related to the video camera
(frame grabbing, camera pan/tilt control, etc.).

• The primary flight control system (PFC) executes the control modes
(hovering, path following, take-off, landing, etc.), the sensor fusion
functions (INS/GPS, INS/camera) and handles communication with
the helicopter platform and with the other sensors (GPS, pressure
sensor, etc.).

The PFC executes predominantly hard real-time tasks such as the flight
control modes or the sensor fusion algorithms. This part of the system uses
a Real-Time Application Interface (RTAI) [14] which provides industrial-
grade real-time operating system functionality. RTAI is a hard real-time
extension to a standard Linux kernel (Debian) and has been developed at
the Department of Aerospace Engineering of Politecnico di Milano. The
DRC has reduced timing requirements. This part of the system uses the
Common Object Request Broker Architecture (CORBA) as its distribu-
tion backbone. Currently an open source implementation of CORBA 2.6
called TAO/ACE [11] is in use. More details about the complete software
architecture can be found in Paper III and in [3, 15].

As can be observed from the boxes emphasized in Fig. 2.1, this thesis
deals with a number of functionalities which are contained in the PFC
system. A brief introduction as to what these functionalities actually do
will now be described.

The simulator mentioned in the introduction implements the helicopter
dynamics. Moreover it emulates the helicopter sensor outputs so that dur-
ing the simulation the complete software architecture can be tested in a
closed loop. The simulator can also run on the on board hardware so that
during the simulation it is possible to see the helicopter actuators moving
as they would in actual flight. Such simulation using hardware-in-the-loop
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provides a powerful way to quickly test the correct functioning of all the
components on the field, including the interface to the helicopter.

The path following control mode (PFCM) enables the helicopter to
follow a 3D path. It receives a geometric description of a path via a number
of parameters from the path planner. From these parameters it generates
a continuous description of the path, then it adds velocity and acceleration
constraints in order to calculate the inputs to be sent to the helicopter. An
algorithm which generates the proper control inputs at each control cycle
has been developed. The PFCM also generates a number of events and
other outputs which are necessary for monitoring purposes in flight.

The two sensor fusion algorithms implemented are based on a Kalman
filter and produce estimates of the helicopter state in terms of position, ve-
locity and attitude. They are used to fuse the inertial sensors with the GPS,
and the inertial sensors with the video camera during autonomous landing.
Since they are based on the same dynamic model, only the results of the
integration between inertial sensors and video camera will be presented. It
will be shown how the integration of the video camera with inertial sen-
sors can effectively improve the robustness of the helicopter state estimate
compared to a solution obtained from image processing alone.

2.2 The UAV helicopter platform

The Yamaha RMAX helicopter used for the experimentation (Fig. 2.2) has
a total length of 3.6 m (including main rotor). It is powered by a 21 hp
two-stroke engine and has a maximum takeoff weight of 95 kg.

The RMAX rotor head is equipped with a Bell-Hiller stabilizer bar
(see Fig.2.3). The effect of the Bell-Hiller mechanism is to reduce the
response of the helicopter to wind gusts. Moreover, the stabilizer bar is
used to generate a control augmentation to the main rotor cyclic input.
The Bell-Hiller mechanism is very common in small-scale helicopters but
quite uncommon in full-scale helicopters. The reason for this is that a
small-scale helicopter experiences less rotor-induced damping compared to
full-scale helicopters. Consequently, it is more difficult to control for a
human pilot. It should be pointed out though that an electronic control
system can stabilize a small-scale helicopter without a stabilizer bar quite
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Figure 2.2: The RMAX helicopter.

efficiently. For this reason the trend for small-scale autonomous helicopters
is to remove the stabilizer bar and let the digital control system stabilize the
helicopter. The advantage in this case is reduced mechanical complexity in
the system.

Figure 2.3: The RMAX rotor head with Bell-Hiller mechanism.
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The RMAX helicopter has a built-in attitude sensor called YAS (Yamaha
Attitude Sensor) composed of three accelerometers and three rate gyros.
The output of the YAS are acceleration and angular rate on the three he-
licopter body axes (see section 3.3 for a definition of body axis). The YAS
also computes the helicopter attitude angles. Acceleration and angular
rate from the YAS will be used as inertial measurement data for the sensor
fusion process which will be described in chapter 5.

The RMAX also has a built-in digital attitude control system called
YACS (Yamaha Attitude Control System). The YACS stabilizes the heli-
copter attitude dynamics and the vertical channel dynamics. The YACS is
used in all the helicopter control modes as an attitude stabilization system.

The hardware platform developed during the WITAS UAV Project is
integrated with the Yamaha platform as shown in Fig. 2.4. It is based on
three PC104 embedded computers.

 

DRC 
- 1.4 GHz P-M 
- 1GB RAM 
- 512 MB flash 

IPC 
- 700 MHz PIII 
- 256MB RAM 
- 512 MB flash 

Yamaha RMAX 
(YAS, YACS) 

ethernet
switch 

PFC 
- 700 MHz PIII 
- 256MB RAM 
- 512 MB flash 

sensor 
suite 

sensor
suite 

RS232C 
Ethernet 
Other media 

Figure 2.4: On-board hardware schematic.



2.2. THE UAV HELICOPTER PLATFORM 11

The PFC is implemented on a 700Mhz Pentium III and includes a wire-
less Ethernet bridge, a GPS receiver and a barometric altitude sensor. An
earlier version of the system included a compass as a heading sensor source.
The compass has been removed from the latest version since the Kalman
filter which fuses the inertial sensors and GPS provides sufficiently stable
heading information. The PFC communicates with the helicopter through
a serial line RS232C, where the inertial sensor data from the YAS is passed
to the PFC. The PFC can also send control inputs to the YACS for he-
licopter control. The IPC runs on a second PC104 embedded computer
(PIII 700MHz), and includes a color CCD camera mounted on a pan/tilt
unit, a video transmitter and a video recorder (miniDV). The DRC system
runs on the third PC104 embedded computer (Pentium-M 1.4GHz) and
executes all high-end autonomous functionality. Network communication
between computers is physically realized with serial line RS232C and Eth-
ernet. Ethernet is mainly used for CORBA applications, remote login and
file transfer, while serial lines are used for hard real-time networking.
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Chapter 3

Simulation

3.1 Introduction

This chapter describes the simulation tool which has been used to develop
and test the control system for the RMAX helicopter. It is used to test the
helicopter missions both in the lab and on the field. The RMAX helicopter
simulator is implemented in the C language and allows testing of all the
control modes developed. Many flight-test hours have been avoided due
to the possibility of running, in simulation, the exact code of the control
system which is executed on the on-board computer during the actual flight-
test.

In order to develop and test the helicopter control system a mathe-
matical model which represents the dynamic behavior of the helicopter
is required. The simulator described in this section is specialized for the
Yamaha RMAX helicopter in the sense that the model includes the dy-
namics of the bare platform in addition to the Yamaha Attitude Control
System (YACS).

The YACS system stabilizes the pitch and roll angles of the helicopter,
the yaw rate and the vertical velocity. The reason why the YACS has been
used was to speed up the control development process and to shift the
focus toward development of functionalities such as the PFCM presented
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in chapter 4. All of the currently developed flight modes use the YACS as an
inner control loop which stabilizes the high frequency helicopter dynamics.
Experimental tests have shown that the YACS decouples the helicopter
dynamics so that the pitch, roll, yaw and vertical channels can be treated
separately in the control system design. In other words the channels do
not influence each other.

3.2 Hardware-in-the-loop simulation

Two versions of the simulator have been developed. A non real-time version
exists which is used to develop the control modes, where the purpose of
the simulation in this case is the tuning and testing of the internal logic
of the control modes. A real-time version also exists which is used to
test the complete UAV architecture, where simulations are performed with
the helicopter hardware-in-the-loop. The latter is used to test a complete
helicopter mission and can be used on the flight-test field as a last minute
verification for the correct functioning of hardware and software. Both
simulators use the same dynamic model which will be presented in this
chapter.

The helicopter dynamics function is located in the PFC system and it
is called every 20ms when the system is in simulation mode. Fig. 3.1 shows
the hardware/software components involved in the real flight-test and in
the simulation test. The components and connections represented with a
dashed line are not active during the respective test modalities.

The diagram shows which components can be tested in simulation. Ob-
serve that in simulation the helicopter servos are connected and can move,
but there is no feedback from the servo position to the simulator. The fact
that their movement can be visually checked is used as a final check that
the system is operating appropriately.

The YACS control system is also part of the loop, but since it is built
into the helicopter, it cannot be fed with simulated sensor outputs, so it
still takes the input from the YAS sensor which, obviously, does not deliver
any measurement from the helicopter. This is not problematic because the
simulator does not have the purpose of testing the correct functioning of
the YACS.
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Figure 3.1: Figure a) depicts the hardware/software architecture in flight-
test configuration. Figure b) depicts the architecture during the hardware-
in-the-loop simulation.
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Currently, the video camera is not used in the simulation loop but
the system can still control the camera pan/tilt. A virtual environment
(Fig. 3.2), reproducing the flight-test area described in the introduction
(Fig.1.1), is used for visualization purposes. Theoretically the image pro-
cessing functions could be fed with synthetic images in order to feedback
from the virtual environment, this is a topic for future work.

Figure 3.2: Virtual environment used for flight mission simulation.
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3.3 Reference frames

This section provides an overview of the different reference frames used in
this thesis.

The Earth frame (Fig. 3.3) has its origin at the center of mass of the
Earth and axes which are fixed with respect to the Earth. Its Xe axis
points toward the mean meridian of Greenwich, the Ze axis is parallel to
the mean spin axis of the Earth, and the Ye axis completes a right-handed
orthogonal frame.

The navigation frame (Fig. 3.3) is a local geodetic frame which has
its origin coinciding with that of the sensor frame and axes with the Xn

axis pointing toward the geodetic north, the Zn axis orthogonal to the ref-
erence ellipsoid pointing down, and the Yn axis completing a right-handed
orthogonal frame.

Figure 3.3: Earth and navigation frames.

The body frame (Fig. 3.4) is an orthogonal axis set which has its origin
coinciding with the center of gravity of the helicopter, the Xb axis pointing
forward to the nose, the y-axis orthogonal to the Yb axis and pointing to
the right side of the helicopter body, and the Zb axis pointing down so that
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it’s a right-handed orthogonal frame. Since the RMAX inertial sensors are
quite close to the helicopter’s center of gravity it is possible to consider the
navigation frame and the body frame as having the same origin point.

Figure 3.4: Body frame.

In order to transform a vector from the body frame to the navigation
frame a rotation matrix has to be applied:

Cn
b =

 cosθcosψ −cosφsinψ+sinφsinθcosψ sinφsinψ+cosφsinθcosψ
cosθsinψ cosφcosψ+sinφsinθsinψ −sinφcosψ+cosφsinθsinψ
−sinθ sinφcosθ cosφcosθ

(3.1)

where φ, θ and ψ are the Euler angles roll, pitch and heading. Since
the rotation matrix is orthogonal, the transformation from the navigation
frame to the body frame is given by:

Cb
n=(Cn

b )T (3.2)

The transformation matrix 3.1 and 3.2 will be used later in the thesis.
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3.4 The augmented RMAX dynamic model

The RMAX helicopter model presented in this thesis includes the bare he-
licopter dynamics and the YACS control system dynamics. The code of the
YACS is strictly Yamaha proprietary so the approach used to build the rel-
ative mathematical model has been that of black-box model identification.
With the use of this technique, it is possible to estimate the mathematical
model of an unknown system (the only hypothesis about the system is that
it has a linear behavior) just by observing its behavior. This is achieved in
practice by sending an input signal to the system and measuring its output.
Once the input and output signals are known there are several methods to
identify the mathematical structure of the system.

The YACS model identification is not part of this thesis and details
can be found in [4]. In the following section the transfer functions of the
augmented attitude dynamics will be given. These transfer functions will
be used to build the augmented RMAX helicopter dynamic model used in
the simulator.

3.4.1 Augmented helicopter attitude dynamics

As previously stated the YACS and helicopter attitude dynamics have been
identified through black-box model identification.

The equations 3.3 represent the four input/output transfer functions in
the Laplace domain:

∆Φ =
2.3(s2 + 3.87s+ 53.3)

(s2 + 6.29s+ 16.2)(s2 + 8.97s+ 168)
∆AIL

∆Θ =
0.5(s2 + 9.76s+ 75.5)

(s2 + 3s+ 5.55)(s2 + 2.06s+ 123.5)
∆ELE (3.3)

∆R =
9.7(s+ 12.25)

(s+ 4.17)(s2 + 3.5s+ 213.4)
∆RUD

∆AZ =
0.0828s(s+ 3.37)

(s+ 0.95)(s2 + 13.1s+ 214.1)
∆THR

where ∆Φ and ∆Θ are the roll and pitch angle increments (deg), ∆R
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the body yaw angular rate increment (deg/sec) and ∆AZ the acceleration
increment (g) along the Zb body axis. ∆AIL, ∆ELE, ∆RUD and ∆THR
are the control input increments taken relative to a trimmed flight condi-
tion. The control inputs are in YACS unit and range from -500 and +500.

These transfer functions describe not only the dynamic behavior of the
YACS but also the dynamics of the helicopter (rotor and body) and the
dynamics of the actuators.

Since the chain composed by the YACS, actuators and helicopter is
quite complex it is important to remember that the estimated model has
only picked up a simple reflection of the system behavior. The identification
was done near the hovering condition so it is improper to use the model
for different flight conditions. In spite of this, simulations up to ∼10 m/s
have shown good agreement with the experimental flight-test results.

3.4.2 Helicopter equations of motion

The aircraft equations of motion can be expressed in the body reference
frame with three sets of first order differential equations [7]. The first set
represents the translational dynamics along the three body axes:

X = m(u̇+ qw − rv) +mgsinθ

Y = m(v̇ + ru− pw)−mgcosθsinφ (3.4)
Z = m(ẇ + pv − qu)−mgcosθcosφ

where X, Y , Z represent the resultants of all the aerodynamic forces; u,
v, w the body velocity components; p, q, r the body angular rates; m and
g the mass and the gravity acceleration; φ and θ the pitch and roll angles.

The second set of equations represents the aircraft rotational dynamics:

L = Ixṗ− (Iy − Iz)qr
M = Iy q̇ − (Iz − Ix)rp (3.5)
N = Iz ṙ − (Ix − Iy)pq

where L, M , N represent the moments generated by the aerodynamic
forces acting on the helicopter; Ix, Iy, Iz the inertia moments of the heli-
copter.
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The third set of equations represents the relation between the body
angular rates and the Euler angles:

φ̇ = p+ qsinφtanθ + rcosφtanθ

θ̇ = qcosφ− rsinφ (3.6)
ψ̇ = qsinφsecθ + rcosφsecθ

These three sets of nonlinear equations are valid for a generic aircraft.
The transfer functions in 3.3 can be used now in the motion equations.
From the Laplace domain of the transfer functions, it is possible to pass
to the time domain. This means that from the first three equations in 3.3
we derive φ(t), θ(t) and r(t) which can be used in 3.6 in order to find the
other parameters p(t), q(t), ψ(t).

The equations in 3.5 will not be used in the model because the dynam-
ics represented by these equations is contained in the first three transfer
functions in 3.3. The motion equations in 3.4 can be rewritten as follows:

u̇ = Fx − qw + rv − gsinθ

v̇ = Fy − ru+ pw + gcosθsinφ (3.7)
ẇ = Fz − pv + qu+ gcosθcosφ

where Fx, Fy, Fz are the forces per unit of mass. In this set of equations
some of the nonlinear terms are small and can be neglected for our flight
envelope, although for simulation purposes, it does not hurt to leave them
there. Later when the model will be used for control purposes the necessary
simplifications will be made.

The tail rotor force is included in Fy and it is balanced by a certain
amount of roll angle. In fact every helicopter with a tail rotor must fly
with a few degrees of roll angle in order to compensate for the tail rotor
force which is directed sideway. For the RMAX helicopter the roll angle
is 4.5 deg in hovering condition with no wind. The yaw dynamics in our
case is represented by the third transfer function in 3.3. For this reason
we do not have to model the force explicitly. By doing that we find in our
model a zero degree roll angle in hovering condition which does not affect
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substantially the dynamics of our simulator. Of course a small coupling
effect between the lateral helicopter motion and yaw channel is neglected
during a fast yaw maneuver due to the consistent increase of the tail rotor
force.

The equations in 3.7 are than rewritten in find form as follows:

u̇ = Xuu− qw + rv − gsinθ

v̇ = Yvv − ru+ pw + gcosθsinφ (3.8)
ẇ = Zww + T − pv + qu+ gcosθcosφ

where Xu, Yv and Zw are the aerodynamic derivatives (accounting for
the aerodynamic drag). The value used for the aerodynamic derivatives are
Xu = −0.025, Yv = −0.1 and Zw = −0.6. These values have been chosen
using an empirical best fit criteria using flight-test data.

The main rotor thrust T is given by:

T = −g −∆aZ (3.9)

where ∆aZ is given by the fourth transfer function in 3.3.
Comparing the equations in 3.8 with other works in the literature as for

example in [16] it can be noticed that the rotor flapping terms are missing
(the rotor flapping represents the possibility of the helicopter rotor disk to
tilt relatively to the helicopter fuselage). On the other hand the flapping
dynamics is contained in the transfer functions in 3.3. It was not possible
to model the rotor flapping explicitly in the equations 3.8 because it is not
observable from the black-box model identification approach used. The
fact that the flapping terms are not included in equations 3.8 does not have
strong consequences on the low frequency dynamics. On the other hand the
high frequency helicopter dynamics is not captured correctly. Therefore the
helicopter model derived here cannot be used for high bandwidth control
system design. The model anyway is good enough for position and velocity
control loop design. In [20] the mathematical formulation for rotor flapping
can be found.
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3.5 Simulation results

The validation of the RMAX helicopter model can be found in [4]. In this
section, the validation of the simulation procedure with the control system
in the loop will be described. The results of two simulation tests of the
PFCM, which will also be described later in the thesis, will be provided.
The PFCM is a control function that enables the helicopter to follow 3D
path segments. The path segments will be given to the PFCM which is in
a closed loop with the simulator. The simulation results will be compared
to the same PFCM implemented on the helicopter platform. This is not a
validation of the simulator since the control function is in the loop. What
is interesting is the analysis of the differences of the closed loop behavior
between the flight-test and the simulation. The helicopter is commanded
to fly a segment path starting from a hovering condition until reaching a
target speed. The path also presents a curvature change. The same control
function has been used for the two tests. In Fig. 3.5 and Fig. 3.6 the
simulation (dashed line) and flight-test (continuous line) are overlapped on
the same graph. The upper-left plot of Fig. 3.5 represents the helicopter
path seen from above. The difference in position between the simulation
and flight-test is very small, below one meter and cannot be seen in detail
from the plot. In the same diagram the velocity components and the total
velocity are plotted. This shows that the simulated velocity and the real
velocity are quite close. In this test the helicopter was accelerated to 5 m/s
forward speed. In Fig. 3.6 the results for the pitch and roll inputs and the
attitude angles are presented. The pitch and roll inputs present a steady
state error compared to the simulation while the pitch and roll angles are
in good agreement.

In Fig. 3.7 and Fig. 3.8 the same path segment is tested but the he-
licopter accelerates until 10 m/s is reached. The simulated position and
velocity are still in good agreement with the flight-test experiment while
the pitch and roll angles are worse. This is due to the fact that the aero-
dynamics of the rotor is not modeled. Taking into account such effects is
necessary for flight conditions far from hovering. It is interesting to notice
that the simulation can predict quite accurately the saturation of the roll
input (Fig. 3.8) at around 845 sec. This could be a sign that the helicopter
is flying too fast for the current path curvature, and an adjustment in the
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PFCM in the generation of the velocity reference might be required. This
kind of problem can be analyzed very efficiently with the simulator tool
developed.

Figure 3.5: Results 1st flight. Comparison between flight-test position
and velocity data (solid) with simulation data (dash-dot). The helicopter
accelerates to 5 m/s target velocity.
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Figure 3.6: Results 1st flight. Comparison between flight-test helicopter
inputs and attitude data (solid) with simulation data (dash-dot). The
helicopter accelerates to 5 m/s target velocity.



26 CHAPTER 3. SIMULATION

Figure 3.7: Results 2nd flight. Comparison between flight-test position
and velocity data (solid) with simulation data (dash-dot). The helicopter
accelerates to 10 m/s target velocity.
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Figure 3.8: Results 2nd flight. Comparison between flight-test helicopter
inputs and attitude data (solid) with simulation data (dash-dot). The
helicopter accelerates to 10 m/s target velocity.
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3.6 Conclusion

In this chapter the simulation tool used to test and develop the UAV soft-
ware architecture including the control system has been described. The
simulator has been a useful tool for the development of the control modes.
The hardware-in-the-loop version of the simulator is a useful tool to test
a complete mission on the field. In addition, the fact that the helicopter
servos are in the simulation loop provides a rapid verification that the right
signals arrive from the control system. This verification is used for a final
decision on the field in order to proceed or not with a flight-test.
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Chapter 4

Path Following Control
Mode

4.1 Introduction

The PFCM described in this chapter and presented in Paper I, has been
designed to navigate an autonomous helicopter in an area cluttered with
obstacles, such as an urban environment. In this thesis, the path plan-
ning problem is not addressed although it is in [18]. It is assumed that a
path planning functionality generates a collision-free path. Then the task
which will be solved here is to find a suitable guidance and control law
which enables the helicopter to follow the path robustly. The path planner
calculates the geometry of the path that the helicopter has to follow. A
geometric path segment, represented by a set of parameters, is then input
to the PFCM.

Before starting with the description of the PFCM, some basic terminol-
ogy will be provided.

The guidance is the process of directing the movements of an aero-
nautical vehicle with particular reference to the selection of a flight path.
The term of guidance or trajectory generation in this thesis addresses the
problem of generating the desired reference position and velocity for the
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helicopter at each control cycle.
The outer control is a feedback loop which takes as inputs the reference

position and velocity generated by the trajectory generator and calculates
the output for an inner control loop.

The inner control is a feedback loop which stabilizes the helicopter
attitude and the vertical dynamics. As mentioned previously, the inner
control loop used here has been developed by Yamaha Motor Company
and is part of the YACS.

Several methods have been proposed to solve the problem of generation
and execution of a state-space trajectory for an autonomous helicopter [6,
9]. In general this is a hard problem, especially when the trajectory is time
dependent. The solution adopted here is to separate the problem into two
parts: first to find a collision-free path in the space domain [18] and than
to add a velocity profile later. In this way the position of the helicopter is
not time dependent which means that it is not required for the helicopter
to be in a certain point at a specific time. A convenient approach for such a
problem is the path following method. By using the path following method
the helicopter is forced to fly close to the geometric path with a specified
forward speed. In other words, the path is always prioritized and this is
a requirement for robots that for example have to follow roads and avoid
collisions with buildings. The method developed for PFCM is weakly model
dependent and computationally efficient.

The path following method has also been analyzed in [24, 22]. The
guidance law derived there presents singularity when the cross-track error
is equal to the curvature radius of the path so that it has a restriction on the
allowable cross-track error. The singularity arises because the guidance law
is obtained by using the Serret-Frenet formulas for curves in the plane [24].

The approach used in this thesis does not use the Serret-Frenet formulas
but a different guidance algorithm similar to the one described in [5] which
is also known as virtual leader. In this case the motion of the control point
on the desired path is governed by a differential equation containing error
feedback which gives great robustness to the guidance method. The control
point (Fig. 4.1) is basically a point lying on the path where the helicopter
ideally should be.

The guidance algorithm developed uses information from the model
in 3.8 described in section 3.4.2 in order to improve the path tracking
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Figure 4.1: Control point on the reference path.

error while maintaining a reasonable flight speed. The experimental results
presented show the validity of the control approach.

Fig. 4.2 represents the different components of the control system, from
the path planner to the inner loop that directly sends the control inputs to
the helicopter actuators. The PFCM described in this thesis includes the
trajectory generator and the outer control loop.

4.2 Trajectory generator

In this section, a description of the guidance algorithm developed for the
PFCM is provided. The trajectory generator function takes as input a set of
parameters describing the geometric path calculated by the path planner
and calculates the reference position, velocity and heading for the inner
control loop. First the analytic expression of the 3D path is calculated,
then a feedback algorithm calculates the control point on the path. Finally
the reference input for the outer loop is calculated using the kinematic
helicopter model described in chapter 3.
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Figure 4.2: The PFCM includes two modules: trajectory generator and
outer loop.

4.2.1 Calculation of the path geometry

The path planner generates 3D geometric paths described by a sequence of
segments. Each segment is passed from the high-level part of the software
architecture, where the path planner is located, to the low-level part where
the control modes including the PFCM are implemented.

The path segment is generated in the navigation frame with the origin
fixed at the initial point of the path. We will use the superscript n to
indicate a vector in the navigation frame. Each segment is described by
a parameterized 3D cubic curve represented by the following equation in
vectorial form:

P n(s) = As3 +Bs2 +Cs+D (4.1)

where A,B,C and D are 3D vectors calculated from the boundary
conditions of the segment with s as the segment parameter.
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Fig. 4.3 depicts a path segment with the relative boundary conditions.
The segment is defined by the starting point coordinates P (0), the end
point coordinates P (1) and two vectors which represent the direction of
the segment tangent at the starting point P ′(0) and at the end point P ′(1)
so that the 3D path segment is defined by 12 parameters. The path plan-
ner [18] calculates the 12 parameters ensuring the continuity of the path
and of the first order derivative at the segment joints.

Figure 4.3: Boundary conditions for a path segment.

Actually by imposing only these boundary conditions (continuity of the
path and continuity of the first order derivative at the segment joints) the
segment has two degrees of freedom undefined which are represented by
the magnitude of the tangent vectors P ′(0) and P ′(1).

The magnitude of the tangent vector affects the curvature of the path.
If the continuity of the second order derivative at the joints (e.g. the
curvature) is imposed then all the 12 parameters would be found and in
this case the path would be a cubic spline [21]. The two degrees of freedom
are chosen by the path planner in order to satisfy other conditions which
will not be mentioned here. For more details the reader is referred to [18].
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The path generated in this way can have discontinuity of the second order
derivative at the segment joints. This can lead to a small path tracking
error especially at high speed.

The 12 parameters are passed as input arguments to the PFCM which
then generates the reference geometric segment used for control purposes.
The generation of the path segment in the PFCM is done using the matrix
formulation in 4.2 with the boundary condition vector explicitly written on
the right hand side. The parameter s ranges from s = 0 which corresponds
to the starting point P (0) to s = 1 which corresponds to the end point
P (1) of the same segment. When the helicopter enters the next segment
the parameter is reset to zero.

P n(s) =
[
s3 s2 s 1

] 
2 −2 1 1
−3 3 −2−1
0 0 1 0
1 0 0 0



P (0)
P (1)
P ′(0)
P ′(1)

 (4.2)

For control purposes the tangent and the curvature need to be calcu-
lated. The path tangent T n is:

T n(s) =
[

3s2 2s 1 0
] 

2 −2 1 1
−3 3 −2−1
0 0 1 0
1 0 0 0



P (0)
P (1)
P ′(0)
P ′(1)

 (4.3)

The path curvature Kn is:

Qn(s) =
[

6s 2 0 0
] 

2 −2 1 1
−3 3 −2−1
0 0 1 0
1 0 0 0



P (0)
P (1)
P ′(0)
P ′(1)


Kn(s)=

T n(s)×Qn(s)× T n(s)
|T n(s)|4

(4.4)

In the guidance law the curvature radius which is Rn = 1/Kn will be
used. Since T n and Rn are expressed in the navigation frame, in order to
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be used in the guidance law, they have to be transformed into the body
frame using the rotation matrix Cb

n defined in section 3.3.
At this point the geometric parameters (tangent and curvature) of the

path segment are known. Now these parameters can be used in the guidance
law provided that the path segment parameter s is known. The method as
to how to find s will be discussed in the next section.

4.2.2 Feedback method

When the dynamic model of the helicopter is known, it is in principle
possible to calculate beforehand at what point in the path the helicopter
should be at a certain time. By doing this the path segment would be time
dependent. In this way at each control cycle the path parameters (position,
velocity and attitude) would be known and they could be used directly for
control purposes. Then the helicopter could be accelerated or slowed down
if it is behind or ahead of the actual control point (which is the point of
the path where the helicopter should be at the relative time).

The generation of a time dependent trajectory is usually a complex
problem. An additional complication is that the trajectory has to satisfy
obstacle constraints (to find a collision free path in a cluttered environ-
ment [18]).

The alternative approach used here is the following. Instead of acceler-
ating or slowing down the helicopter, the control point will be accelerated
or slowed down using a feedback method. In this way the path is not time
dependent anymore and so the problem of generating a collision free path
can be treated separately from the helicopter dynamics. Of course the path
generated must be smooth enough to be flown with a reasonable velocity
and this has to be taken into account at the path planning level. The fact
that the helicopter kinematic and dynamic constraints are not taken into
account at the path planning level might lead to a path which forces the
helicopter to abrupt brake due to fast curvature change. This problem can
be attenuated using some simple rules in the calculation of the segment
boundary conditions [18].

The algorithm implemented in this thesis finds the control point by
searching for the closest point of the path to the helicopter position. The
problem could be solved geometrically simply by computing an orthogonal
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projection from the helicopter position to the path. The problem which
arises in doing this is that there could be multiple solutions. For this reason
a method has been adopted which finds the control point incrementally and
searches for the orthogonality condition only locally.

The reference point on the nominal path is found by satisfying the
geometric condition that the scalar product between the tangent vector
and the error vector has to be zero:

E • T = 0 (4.5)

where the error vector E is the helicopter distance from the candidate
control point. The control point error feedback is calculated as follows:

ef = E • T /|T | (4.6)

that is the magnitude of the error vector projected on the tangent T .
The vector E is calculated as follows:

E = pcp,n−1 − pheli (4.7)

where pcp,n−1 is the control point position at the previous control cycle
and pheli is the actual helicopter position. The control point is updated
using the differential relation:

dp = p′ · ds (4.8)

Equation 4.8 is applied in the discretized form:

sn = sn−1 +
ef

|dpcp

ds |n−1

(4.9)

where sn is the new value of the parameter. Equations 4.6 and 4.9
can also be used iteratively in order to find a more accurate control point
position. In this application, it was not necessary. Once the new value of
s is known, all the path parameters can be calculated.
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4.2.3 Outer loop reference inputs

In this section, the method used to calculate the reference input or set-point
for the outer control loop will be described in detail. Before proceeding, a
description as to how the PFCM takes into account some of the helicopter
kinematic constraints will be provided.

PFCM kinematic constraints

The model in 3.8 will be used to derive the guidance law which enables the
helicopter to follow a 3D path.

The sin and cos can be linearized around θ = 0 and φ = 0 since in our
flight condition, the pitch and roll angles are between the interval ∼ ±20
deg. This means that we can approximate the sin of the angle to the angle
itself (in radians) and the cos of the angle to 1. By doing this from the
first and second equation of 3.6 it is possible to calculate the body angular
rate p and q:

q = θ̇ + rφ (4.10)
p = φ̇− rθ

where the product between two or more angles has been neglected be-
cause it is small compared to the other terms. Using the same considera-
tions and substituting 4.10 it is possible to rewrite the system in 3.8 in the
following form:

u̇ = Xuu− (θ̇ + rφ)w + rv − gθ

v̇ = Yvv − ru+ (φ̇− rθ)w + gφ (4.11)
ẇ = Zww + T − (φ̇− rθ)v + (θ̇ + rφ)u+ g

At this point we can add the condition that the helicopter has to fly with
the fuselage aligned to the path (in general this condition is not necessary
for a helicopter, it has been adopted here to simplify the calculation). The
constraints which describe this flight condition (under the assumption of
relatively small pitch and roll angles) are:
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r =
u

Rb
y

θ̇ =
u

Rb
z

(4.12)

v = v̇ = 0
w = ẇ = 0

where Rb
y and Rb

z are the components of the curvature radius along the
body axes Yb and Zb, respectively.

The equations in 4.11 can finally be rewritten as:

r =
u

Rb
y

θ =
Xuu− u̇

g

φ =
u2

gRb
y

(4.13)

T = − u2

Rb
z

− u4

g(Rb
y)2

− g

In the right hand side of 4.13 we have the four inputs that can be given
as a reference signal to an inner control loop (like the YACS) which controls
the yaw rate r, the attitude angles φ, θ and the rotor thrust T . These inputs
only depend on the desired velocity and acceleration u and u̇ and the path
curvature Rb

y and Rb
z.

If the geometry of the path, which is represented by Rb
y and Rb

z, is
then assigned, in principle it is possible to assign a desired velocity and
acceleration u and u̇ and calculate the four inputs for the inner loop. The
problem is that these inputs cannot be assigned arbitrarily because they
have to satisfy the constraints of the dynamic system composed by the
helicopter plus the inner loop.

A solution of 4.13 which does not involve the dynamic constraints is
represented by a stationary turn on the horizontal plane with constant
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radius (picture (a) of Fig. 4.4). The solution for this flight condition is given
by 4.13 where Rb

z = ∞, u̇ = 0 and Rb
y = constant. This condition is called

trimmed flight because the first derivative of the flight parameters are zero
(φ̇ = θ̇ = ṙ = Ṫ = u̇ = 0). For this flight condition it is straightforward to
calculate the maximum flight speed allowed. Since the maximum values of
r, φ, θ and T are limited for safety reasons, the maximum path velocity u
can be calculated from the system 4.13:

u1 = |Rb
yrmax|

u2 = |gθmax

Xu
|

u3 =
√
|φmaxgRb

y| (4.14)

u4 = (| − g(Tmax + g)(Rb
y)2|) 1

4

The minimum of these four velocities can be taken as the maximum
speed for the path:

umax = min(u1, u2, u3, u4) (4.15)

The path generated by the path planner is represented by a cubic poly-
nomial. The curvature radius in general is not constant for such a path,
which means that the helicopter never flies in trimmed conditions but it
flies instead in maneuvered flight conditions.

Let’s now examine a maneuver in the vertical plane (Rb
y = ∞, Rb

z =
constant). From the second equation in 4.12 and the second equation
in 4.13 we can observe that there is no constant velocity solution (u̇ = 0)
which satisfies both. This means that when the helicopter climbs, it loses
velocity.

To make the PFCM more flexible in the sense of allowing vertical climb-
ing and descending at a constant speed, we have to remove the constraint
θ̇ = u/Rb

z and w = ẇ = 0. In other words the fuselage will not be aligned
to the path during a maneuver in the vertical plane as it is shown in Fig. 4.4
(c). The helicopter instead will follow the path as it is shown in Fig. 4.4
(b).
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Figure 4.4: Representation of the several ways in which the helicopter can
follow a 3D path.
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Calculation of the outer loop inputs

We can finally address the problem of generating the reference inputs for
the outer control loop. The inputs will be calculated in the form of control
errors (difference between the current helicopter state and the desired one)
as follows.

1. Calculation of the position error vector δp.

The position error vector is the difference between the control point
position pn

cp and the helicopter position given by the INS/GPS system
pn

heli. In order to be used in the outer loop control equations the
vector must be rotated from the navigation frame to the body frame
using the rotation matrix Cb

n:

δpb = Cb
n(pn

cp − pn
heli)

As explained in section 4.2.2, the control point position is calculated
using feedback from the helicopter position. The method does not
search for the control point along the whole path segment but it
remembers the value of the parameter s (e.g. the previous control
point) from the previous control cycle and starts the search from
there. By doing this, the search is very fast since the new control
point will not be far from the previous one (the control function is
called with a frequency of 50Hz). At the beginning of each segment,
the parameter value is set to zero.

Once the new value of s is found, the position error vector δpb can
be calculated together with the local path tangent T and curvature
K.

2. Calculation of the velocity error vector δv.

The velocity error vector is the difference between the target velocity
vtarg and the helicopter velocity given by the INS/GPS system vn

heli.
The target velocity is obviously tangent to the geometric path. The
direction of the tangent vector is given by:
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τn =
T n

|T |
(4.16)

In order to be used in the control equations in 4.24, the velocity error
vector must be expressed in the body frame in the same way as the
position error vector:

δvb = Cb
n(vtarg · τn − vn

heli) (4.17)

The calculation of vtarg (desired helicopter velocity along the path)
must take into account the helicopter kinematic constraints, the lim-
itation due to the maximum allowable vertical velocity and the par-
ticular phase of the flight path that is acceleration, cruising and
braking.

Let us call vtarg1 the velocity calculated according to the acceleration,
cruising and braking condition, vtarg2 the velocity calculated accord-
ing to the helicopter kinematic constraints and vtarg3 the velocity
according to the vertical speed limitation. These three velocities will
be calculated in the following part of this section and the minimum
value among the three will be used as vtarg. This procedure is re-
peated at each control cycle and in this way the velocity profile for
the path is shaped.

The calculation of vtarg1 is done considering the acceleration, cruising
and braking conditions. The calculation scheme can be represented
by the state-machine in Fig. 4.5.

The constant acceleration phase is activated only at the beginning
of the first segment of the path and it ends when vacc=vcruise or
vacc=vbrake. vcruise is set by the path planner while the calculation
of vbrake will be explained below. During the acceleration phase vacc

is increased at a constant rate of 1.2 m/s2. The cruising phase is
active when the braking and the acceleration phases are off. The
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Figure 4.5: State-machine representing the calculation of the velocity
vtarg1.
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braking condition is activated when the following condition becomes
true:

vbrake < vcruise (4.18)

with

vbrake =
√
|(2 · lend ·Acc+ v2

end)| (4.19)

where lend is the distance, calculated along the path segment, that
the helicopter has to fly to reach the end of the segment and Acc is
the desired acceleration during the braking phase (its value is set to
1.2 m/s). vend is the desired velocity at the end of each path segment
and it is assigned by the path planner. The condition 4.18 means that
the helicopter must start to brake when the distance to the end of
the segment is equal to the distance necessary to bring the helicopter
from the velocity vcruise to vend with the desired acceleration. If vend

is greater than vcruise the helicopter increases the velocity instead.
The method used for the calculation of lend is explained in Paper I.

The calculation of vtarg2 takes into account the kinematic constraints
described by the equations in 4.14. For safety reasons the flight enve-
lope has been limited to: rmax = 40 rad/sec maximum yaw rate, φmax

= 15 deg maximum roll angle, θmax = 15 deg maximum pitch angle
and for the vertical acceleration a load factor of Nzmax = Tmax/g =
1.1. The value of Nzmax has been chosen using the fact that Nzmax

= 1.1 means increasing the helicopter weight 10 percent. The max-
imum takeoff weight of the RMAX is 94kg and the RMAX weight
used in this experimental test is around 80kg, so a load factor of 1.1
ensures enough safety. The second equation in 4.14 represents the
forward velocity u2 achievable with the maximum pitch angle. It is
not considered as a constraint here since the cruise velocity assigned
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by the path planner will always be smaller than u2. umax is calculated
using 4.15. Finally we can calculate vtarg2 as:

vtarg2 =
umax

τ b
x

(4.20)

where τ b
x is the projection of the vector in 4.16 on the helicopter Xb

body axis.

Fig. 4.6 shows the three velocities u1, u3 and u4, depending on the
path curvature radius, calculated from equations in 4.14 using the
limitation rmax, φmax and Nzmax. The most limiting velocity is
u3, which means the maximum roll angle φmax is the most limiting
factor for the maximum velocity umax. The situation can change
if the takeoff weight is more than 80kg, in this case Nzmax could
become the limiting factor.

Figure 4.6: Velocity constraint due to the maximum yaw rate, roll angle
and load factor.

It is important to mention that the velocity umax is calculated using
equation 4.14 which is derived from a trimmed flight condition. As
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previously mentioned, using a path described by a cubic polynomial,
the curvature changes continuously and the helicopter almost never
flies in trimmed conditions. The resulting umax might not always be
consistent with the attitude dynamics θ̇ and φ̇. The faster the speed,
the more the attitude dynamics is relevant.

The velocity vtarg3 is calculated as follows. The vertical velocity
must be limited during a descending path because of the vortex ring
which can build up around the main rotor in this flight condition.
In this case, the helicopter descends into rotor down-wash and enters
what is commonly called the vortex ring state (VRS). This situation
can cause loss of helicopter control and might be difficult to recover.
For this reason a limitation on the descending velocity component is
necessary. The flow state diagram of Fig. 4.7 shows the combination
of horizontal and vertical speed where VRS occurs. This diagram was
developed at the Aviation Safety School, Monterey CA, in the late
1980s for use by mishap investigators in their analysis of several of
these events. In this thesis, this diagram has been used as a guideline
in choosing the right combination of vertical and horizontal speed in
order to avoid a VRS situation. More details on VRS phenomenon
can be found in [20].

The flow state diagram axes are parametrized with the hovering in-
duced velocity which is calculated in feet/minutes as follows:

Vi = 60

√
DL

2ρ
(4.21)

where DL is the rotor disk loading (lbs/ft2) and ρ the air density
(SLUGS

ft3 ). This diagram will be used to calculate a safe vertical speed.

For the RMAX helicopter, the induced hovering velocity calculated
using 4.21 and converted in m/s results in Vi=6.37 m/s. The value has
been calculated using the air density at sea level ρ = 0.002377SLUGS

ft3 ,
RMAX weight of 80 kg and rotor diameter R=3.115 m. From the
diagram, the vertical speed when the light turbulence first occurs is
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Figure 4.7: Flow states in descending forward flight.
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around w1=0.5Vi=3.18 m/s. It can also be observed that for a descent
angle smaller than 30 deg the VRS area is avoided completely.

The maximum vertical velocity profile chosen for the RMAX is shown
in Fig. 4.8 (dashed line) where for safety reasons w1 has been reduced
to 1.5 m/s for a descent angle γ greater than 30 deg, while for γ
smaller then 30 deg the descending velocity has been limited to w2 =
3 m/s.

Figure 4.8: Maximum descent velocity used in the PFCM for the RMAX
helicopter.

The calculation of vtarg3 is then:

γ = atan(
τn
z

τn
x

)

wMAXdescent = 1.5 90◦ > γ ≥ 30◦

wMAXdescent = 3 30◦ > γ > 0◦ (4.22)

vtarg3 =
wMAXdescent

τn
z
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Finally, the helicopter velocity profile is given by:

vtarg = min(vtarg1, vtarg2, vtarg3)

3. Calculation of the heading error δψ.

The heading error is given by:

δψ = atan2(Tn
y , T

n
x )− ψheli

where ψheli is the helicopter heading given by the INS/GPS system.

4. Calculation of the feed forward control terms rff , φff .

The terms rff and φff are calculated from the first and third equa-
tions in 4.13 where the component of the curvature radius Rb

y is cal-
culated as follows:

Kb = Cn
bK

n

Rb
y =

1
Kb

y

(4.23)

The feed forward terms will be used in the outer control loop to
enhance the tracking precision.

4.3 Outer loop control equations

The PFCM control equations implemented on the RMAX are the following:
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Y AWyacs = rff +Ky
1 δψ

PITCHyacs = Kp
1 δpx +Kp

2 δvx +Kp
3

d

dt
δvx +Kp

4

∫
δvxdt

ROLLyacs = φff +Kr
1δpy +Kr

2δvy (4.24)

THRyacs = Kt
1δpz +Kt

2δvz +Kt
3

∫
δvzdt

where the K’s are the control gains, rff and φff are the feed-forward control
terms resulting from the model in 4.13. The other two terms θff and Tff

relative to the pitch and throttle channels have not been implemented.
These channels are controlled by the feedback loop only. δψ is the heading
error, δp is the position error vector (difference between the control point
and helicopter position), δv is the velocity error vector (difference between
target velocity and helicopter velocity).

Adding the feed forward control terms, especially on the roll channel,
results in a great improvement in the tracking capability of the control sys-
tem compared to a PID feedback loop only. Results of the control approach
are shown in the next section.

4.4 Experimental results

This section presents experimental results of the PFCM implemented on the
RMAX helicopter. In Fig. 4.9, a 3D path is flown starting from an altitude
of 40 meters and finishing at 10 meters. The path describes a descending
spiral and the velocity vcruise given by the path planner was set to 10 m/s.
In Fig. 4.10, the velocity profile of the path is represented and it can be
observed that as soon as the helicopter reaches 10 m/s it slows down in
order to make the turn with the compatible velocity. This was an early
test, where the roll angle limitation was quite strict (around 8 deg). This
explains the consistent decreasing velocity. In addition, the acceleration
phase was missing. In fact, the commanded target velocity, represented by
the dashed line, starts at 10 m/s. This resulted in an abrupt pitch input at
the beginning of the flight. Results of several trials of the same path flown
with different wind conditions are shown in Paper I.



4.4. EXPERIMENTAL RESULTS 51

−10
0

10
20

30
40

50

−100

−90

−80

−70
−60

−50

−40

−30

−20

−10
0

0

10

20

30

40

50

60

East [m]

North [m]

U
p 

[m
]

Flight Test
Target

A 

B 

Figure 4.9: Target and actual 3D helicopter path.
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Although the PFCM just described has exhibited a satisfactory perfor-
mance in terms of robustness, the tracking capabilities in case of maneu-
vered flight (when path curvature change rapidly) were not satisfactory.
For this reason, the possibility to improve the tracking performance was
investigated in the case of maneuvered flight without a major redesign of
the control system.

The lateral control has been modified by adding an extra control loop on
the roll channel besides the YACS control system. The new lateral control
loop is depicted in Fig. 4.11 b). From the diagram one can compare the
difference between the previous control scheme, Fig. 4.11 a), and the new
one Fig. 4.11 b).

Figure 4.11: a)Previous lateral control. b)Modified lateral control loop
using a lead compensator.

The inner compensator that was added provides a phase lead compen-
sation with an integral action and has the following structure:
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C(s) = K(α
1 + s

1 + αs
) +KI

1
s

(4.25)

The phase lead compensation increases the bandwidth and, hence, makes
the closed loop system faster, but it also increases the resonance frequency
with the danger of undesired amplification of system noise. The control
system has been tuned in simulation but a second tuning iteration was
needed on the field due to the presence of damped oscillations on the roll
channel.

An experimental comparison between the modified control system and
the previous one is shown in Fig. 4.12. The target velocity in both cases
was set to 10 m/s. Fig. 4.13 depicts the target velocity and the actual
helicopter velocity relative to the path on the right side of Fig. 4.12. The
diagram on the right side in Fig. 4.12 depicts the path flown with the basic
PFCM controller (Fig. 4.11 a). One can observe that in the dynamic part
of the path, where the curvature changes rapidly, the controller is slow.
This results in a relevant tracking error.

The diagram on the left in Fig. 4.12 depicts a test of the same path
flown with the modified roll control loop (Fig. 4.11 b). The new lateral
control scheme improves the tracking capability in the presence of fast
curvature change. The helicopter can follow the dynamic part of the path
with considerably lower tracking error.

4.5 Conclusions

The PFCM developed here has been integrated in the helicopter software
architecture and it is currently used in a number of flight missions carried
out in an urban area used for flight-tests. The goal has been the devel-
opment of a reliable and flexible flight mode which could be integrated
robustly with a path planner. Safety mechanisms have been built-in the
PFCM in order to handle communication failures with the path planner
(this can happen since the path planner is implemented on a separate com-
puter). More details on this topic can be found in Paper I. Moreover, since
the path planner was developed before the PFCM, a number of constraints
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Figure 4.12: Comparison of path tracking performances using two different
roll control strategy. On the right side is depicted the flight-test of the
modified roll control loop with the lead compensator added. On the left
the same test is done using the old roll control configuration. The flight-
tests were performed at 36 km/h velocity for both paths.
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Figure 4.13: Target velocity and actual helicopter velocity.

have been inherited and have shaped the development of the PFCM. For
example, the fact that a geometric segment was precomputed and given
to the control system without taking into account the dynamic constraints
of the helicopter, has led to the development of the feedback algorithm to
update the control point on the reference path.
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Chapter 5

Sensor fusion for vision
based landing

This chapter describes the sensor fusion approach applied to a vision based
landing capability described in Paper III.

The vision based autonomous landing mode developed during the WITAS
Project has been tested on the RMAX helicopter. It allows the helicopter
to successfully complete a landing maneuver autonomously from an alti-
tude of about 20 meters using only a single camera and inertial sensors
(GPS is not used). An artificial landing pattern has been designed and it
is placed on the ground during the landing maneuver. An on-board video
camera, mounted on a pan-tilt mechanism, locks on the pattern while an
image processing algorithm computes the relative position of the on-board
camera and the pattern. This position is then used in the sensor fusion
filter described in this chapter in order to provide reliable helicopter state
for the autonomous landing. During the landing phase a pan-tilt controller
tracks the pattern keeping it in the middle of the image. This feature in-
creases the robustness of the landing approach described here, minimizing
the possibility of loosing the pattern from the camera view due to acciden-
tal, abrupt helicopter movements.

Vision based autonomous landing is a complex problem and it requires
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competences in several disciplines such as image processing, sensor fusion
and control. Paper III describes the approach and solution to the complete
problem. This chapter focuses on the sensor fusion problem involved in the
vision based autonomous landing mode. Details of the image processing
and control strategy are not described here. The reader interested in the
details of these problems should read Paper III in the appendix of this
thesis.

The motivations for the development of a vision based landing mode are
of two categories: scientific and technical. The scientific motivation is that a
helicopter which does not rely on external sources of information (like GPS)
contributes to the scientific goal of a self-sufficient autonomous system.
The technical motivation is that GPS technology is generally not robust
while operating close to obstacles. For example, in an urban environment
the GPS signal can be obscured by buildings or corrupted by multi path
reflections or nearby radio frequency transmitters. The landing approach
proposed in Paper III is completely independent of a GPS, so it can be
used for landing the helicopter in proximity of obstacles found in urban
environments.

In order to stabilize and control a UAV helicopter, an accurate and
reliable state estimation is required. The standard strategy to solve this
problem is to use several sensors with different characteristics, such as
inertial sensors and GPS, and fuse them together using a Kalman filter.
The integration between inertial sensors and GPS is a common practice
and an extensive literature on this topic is available. Several approaches to
this problem can be found in [13, 25, 23].

The method used here to fuse vision data with inertial sensors is similar
to that used for GPS and inertial sensor integration with a number of
differences in the implementation. The great experience gained in many
successful experimental landings with our RMAX platform provides strong
confirmation that the same sensor integration technique used for GPS and
inertial sensors can be used when the GPS is replaced with a suitable image
processing system. The vision based landing problem for an unmanned
helicopter has been addressed by other research groups, some related work
on this problem can be found in Paper III.

As already mentioned, the landing problem is solved by using a single
camera mounted on a pan-tilt unit and an inertial measurement unit (IMU)
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composed of three accelerometers and three gyros. An artificial pattern is
placed on the ground and it is used by the image processing system to
calculate the pose of the helicopter. A picture of the pattern is shown in
Fig. 5.1.

Figure 5.1: Pattern used for the vision based autonomous landing.

Vision and inertial sensors are combined together because of their com-
plementarity. Vision provides drift-free position data, while inertial sensors
provide position, velocity and attitude information at higher frequency but
affected by drift. In fact position, velocity and attitude angles derived from
inertial data alone experience unbounded error growth in time.

Depending on the price of the sensor, the drift of the inertial sensor can
be more or less large. A very expensive inertial navigation unit allows an
airplane to navigate for minutes or even hours without large drift. Usually
military and civilian aircrafts or military submarines are equipped with
such sensors. Small UAVs like the RMAX cannot be equipped with such
accurate sensors. The reason is that the high costs of these sensors would
make the platform too expensive. A second reason is that a small UAV has
limited payload capacity and accurate sensors are usually quite heavy to
be carried on-board a small UAV. This is the reason why for small UAVs it
is common practice to fuse together several relatively cheap sensors which
have different characteristics. Fig. 5.2 shows a classification of inertial
sensor performance. The data is taken from [23].

On the other hand, a vision based landing approach which relies only
on a vision system data suffers of several problems. The vision system is
sensitive to illumination conditions such as sun reflection or shadows which
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Figure 5.2: Inertial sensor performance classification. The data are taken
from [23].

can partially cover the pattern. In these situations the vision system is
blind and does not deliver any position data. A clever landing control
is to choose the best approach in order to avoid these situations using
the knowledge of the sun position as explained in Paper III, but this is
not always compatible with the wind direction which is also a factor when
determining the landing approach. Also the pattern view can be lost before
touching down when the helicopter is very close to the pattern. In fact, it
is hard for the camera pan-tilt control to track the pattern in this situation.
Therefore in case the vision system does not deliver position information
for a short time, the dead-reckoning capability of the filter can still deliver
useful information to continue the landing maneuver. This capability will
be shown in the experimental results.

By fusing inertial and vision data together using the Kalman filter tech-
nique, it is possible to obtain a reliable high frequency and drift-free heli-
copter state estimation. Sensor integration also allows low latency velocity
estimation which is essential for stable helicopter control. Nevertheless the
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filter provides more accurate attitude angles information than the one given
by vision only as will be shown by the experimental results.

5.1 Filter architecture

The filter developed is composed of two main functions: the INS mecha-
nization function and the Kalman filter function. The INS mechanization
function performs the time integration of the inertial sensors while the
Kalman filter function estimates the errors of the INS mechanization. The
errors estimated by the Kalman filter are then used to correct the final
solution and are fed back into the mechanization process. The feedback
architecture is shown in Paper III.

5.1.1 Filter initialization

The filter turns on automatically as soon as the first valid data from the
vision system is available, then the first step is the calculation of the heading
of the helicopter relative to the pattern. The heading is given directly by
the vision system but a median filter over two seconds period is applied
on the raw vision heading. The results from the median filter are taken as
initial heading for the filter initialization. The assumption is that during
the two seconds after the filter has turned on, the helicopter does not make
any large yaw maneuver. Otherwise the median value might differ too
much from the initial heading. The raw vision heading is not used directly
in order to avoid the risk of initializing the filter with an outlier. The
initialization of the heading is done carefully because the convergence of
the filter to the correct heading is very slow when the helicopter is near a
hovering condition, which is true in the case of a landing maneuver.

Once the heading is available, the filter can be initialized. The raw
relative position coming from the vision system is taken as initial position.
The vertical and horizontal velocities are initialized to zero since the landing
approach starts from a hovering condition. Even if the initial position and
velocity have a relatively small error, the filter converges very fast to the
right value since the covariance of the vision measurement is quite low. The
initial pitch and roll angles are taken directly from the Yamaha Attitude
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Sensor (YAS). The YAS sensor has been introduced in section 2.2. These
angles are only used to initialize the filter and are not used again during
the landing. In this way the filter initialization does not rely on GPS at all
and so the vision based positioning system is completely independent from
it.

After the filter has been initialized the system waits ten seconds to
make sure that all the filter parameters have converged before the land-
ing procedure can begin. If the vision capability is lost during this time,
the initialization procedure starts again from scratch. During the land-
ing procedure, consistency checks are made in order to detect and reject
measurement outliers from the vision system. In Paper III, details of the
monitoring scheme implemented are given.

5.1.2 INS mechanization

The INS mechanization function implements and solves the navigation dif-
ferential equations given in 5.1.

ṙn = vn

v̇n = Cn
bf

b−(2ωn
ie+ω

n
en)×vn+gn (5.1)

Ċ
n

b = Cn
b (Ωb

ib −Ωb
in)

where rn is the position , vn the velocity and Cn
b the direction cosine

matrix of the attitude angles calculated relative to a local navigation frame.
In addition f b and Ωb

ib are the accelerometer and gyro outputs, gn is the
gravity vector and ωn

ie the Earth rotation rate.
The calculation of the attitude angles is made using a quaternion rep-

resentation because the linearity of the differential equations allows for
an efficient implementation [8]. Details of the implementation of the INS
mechanization can be found in [23].

5.1.3 Kalman filter

The Kalman filter implementation utilizes a 12-state linear INS error model
of which nine navigation error states (latitude, longitude and altitude error;
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north, east and down velocity error; roll, pitch and heading error), and
three accelerometer biases modeled as first order Markov processes. The
Kalman filter algorithm estimates the errors of the INS mechanization by
fusing the estimate of these errors provided by an internal linear model and
the measurements from the vision system. The theory behind the Kalman
filter can be found in [12].

The linear model used for the INS errors is represented by the system
of differential equations in 5.2:

δṙ = −ωen×δr+δv
δv̇ = −(ωie+ ωin)×δv−ψ×f+δa (5.2)
ψ̇ = −ωin ×ψ
δȧ = −βδa

where δr is the position error, δv is the velocity error and δψ is the
attitude error. δa represents the three accelerometer biases. In addition
ωen is the rotation rate vector of the navigation reference system relative
to the Earth reference system, ωin is the rotation rate vector of the nav-
igation reference system relative to the inertial reference system and ωie

is the rotation rate vector of the Earth reference system relative to the
inertial reference system. The update of the filter is performed when a
new measurement from the image processing system is available. The raw
measurement delivered by the image processing is the 3D helicopter posi-
tion relative to the pattern. The image processing measurement covariance
used in the filter is scheduled with the distance to the pattern. The relation
between the uncertainty of the vision measurement and the distance to the
pattern is found in Paper III.

The Kalman filter is implemented in discretized form and the recursive
implementation of the discretized Kalman filter equations can be found
easily in the literature. A detailed implementation of a nine state Kalman
filter can be found in [23].
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5.2 Experimental results

The results presented in this section show the benefits resulting from the
sensor fusion technique used in the vision based landing system.

The 12-state Kalman filter has been implemented in the C-language
in the software architecture and runs at 50Hz. The measurement update
from the vision system is 20Hz. When a new measurement from the vision
system is available, the filter performs an update step. The accelerometers
and gyros data are sampled at 50Hz although their output is at higher
frequency. In Fig. 5.3 the available sensor characteristics are listed.

Figure 5.3: Available characteristics of the sensors involved in the sensor
fusion techniques used in the vision based landing system.

The sensors used to validate the filter results are a GPS system (cen-
timeter accuracy) and the Yamaha Attitude System (YAS) for the attitude
angles (around 2 deg accuracy).

The plots from Fig. 5.4 to Fig. 5.9 show flight-test data from an au-
tonomous vision based landing. In this particular test, the landing proce-
dure starts around 910 sec and finishes with the touch-down around 965
sec.

Figure 5.4 shows the comparison between the filter and the raw vision
measurements.

Figures 5.5, 5.6 and 5.7 show the velocity components calculated by the
filter compared with the GPS velocity. The upper plots of the 3 figures
show an attempt at deriving the velocity from the raw vision position. The
resulting velocity is quite noisy at the beginning of the landing due to the
large distance from the pattern (around 15 meters). As is shown in Paper
III, the errors of the vision system are larger when the pattern is far from the
helicopter. From the plots, it can be observed that as soon as the helicopter
approaches the pattern the velocity derived from the vision position is less
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Figure 5.4: Comparison between vision and filtered position data during
autonomous landing.
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noisy. Early attempts have been made in applying a low-pass filter to this
velocity to remove the noise but the increased delay made the tuning of the
control system more difficult. The velocity data provided by the Kalman
filter has low latency as can be observed from the comparison with the GPS
velocity. This is due to the fact that the Kalman filter takes advantage of
the high frequency and low latency information from the accelerometers.
The use of low latency velocity information allows for stable control during
the landing approach.

Figure 5.5: Comparison between velocity derived from raw vision position,
sensor fusion and GPS for the North component.

Figures 5.8 and 5.9, show a comparison between the attitude angles
provided by the vision system alone (see Paper III for details as to how the
vision system calculates the attitude angles), the attitude angles calculated
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Figure 5.6: Comparison between velocity derived from raw vision position,
sensor fusion and GPS for the East component.
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Figure 5.7: Comparison between velocity derived from raw vision position,
sensor fusion and GPS for the vertical component.
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by the Kalman filter described in this chapter and the attitude given by
the YAS (attitude sensor built-in the RMAX helicopter). The attitude
calculated by the vision system alone suffers from bias errors and noise
when compared to the YAS data. The reason for the bias is the mounting
error in angle between the camera platform and the helicopter body. In
fact the camera is mounted on a suspended platform mounted on springs
in order to damp helicopter vibrations and this produces alignment error.
The angles given by the filter do not suffer from this problem and are in
good agreement with the YAS measurements.

Figure 5.8: Comparison between roll angle calculated by the vision system,
sensor fusion and YAS.

Fig. 5.10 shows an altitude plot from a different landing test. One can
observe that when the helicopter was about 0.6 meters above the ground the
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Figure 5.9: Comparison between pitch angle calculated by the vision sys-
tem, sensor fusion and YAS.
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vision system stopped delivering valid data because the pattern disappeared
accidentally out of the camera’s field of view. The filter continued to deliver
position information using its dead-reckoning capability until the landing
was terminated safely. This shows how sensor fusion techniques, enhance
the overall robustness of the landing procedure.
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Figure 5.10: Altitude plot of an autonomous landing completed with the
vision lost before touch down.

5.3 Conclusion

In this chapter, the benefit of integrating inertial sensors with a vision
system as part of a vision based autonomous landing system for an au-
tonomous helicopter have been shown. The sensor fusion algorithm is based
on a Kalman filter where the inertial sensor errors are estimated using po-
sition observation from a single camera vision system. The major benefits
in fusing inertial sensor with vision system can be summarized as resulting
in a higher frequency state estimation, lower latency velocity estimation,
more accurate attitude angle estimation and the possibility of surviving
temporary black-out in the vision system.
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A.1 Paper I

DYNAMIC 3D PATH FOLLOWING FOR AN

AUTONOMOUS HELICOPTER

Gianpaolo Conte, 1 Simone Duranti, 1

Torsten Merz 1

Department of Computer and Information Science,
Linköping University, SE-58183 Linköping, Sweden

Abstract: A hybrid control system for dynamic path following for an autonomous
helicopter is described. The hierarchically structured system combines continuous
control law execution with event-driven state machines. Trajectories are defined
by a sequence of 3D path segments and velocity profiles, where each path segment
is described as a parametric curve. The method can be used in combination with a
path planner for flying collision-free in a known environment. Experimental flight
test results are shown.

Keywords: aerospace engineering, architectures, autonomous vehicles, finite state
machines, helicopter control, splines, trajectories

1. INTRODUCTION

This work is part of the WITAS Unmanned
Aerial Vehicle (UAV) Project (Doherty, 2004),
a long-term basic research project with the goal
of developing information technology systems for
UAVs and core functionalities necessary for the
execution of complex missions. The main objec-
tive is the development of an integrated hard-
ware/software UAV for fully autonomous missions
in an urban environment. A research prototype
has been developed using a Yamaha RMAX heli-
copter as a flying platform. A number of interest-
ing missions have been successfully demonstrated
in a small uninhabited urban area in the south
of Sweden called Revinge, which is used as an
emergency services training area.

In order to navigate in an area cluttered by
obstacles, such as an urban environment, path
planning, path following (PF) and path switching
mechanisms are needed. Several methods have

1 Supported by the Wallenberg Foundation, Sweden

been proposed to solve this type of navigation
problem (Egerstedt et al., 1999; Frazzoli, 2001).

Our major achievements in this paper are the
development and flight-testing of an algorithm to
follow a 3D path with a given velocity profile and
a switching mechanism to enable the integration
with a path planner in the deliberative part of the
UAV architecture (Pettersson and Doherty, 2004).
The method developed for PF is weakly model de-
pendent and computationally efficient. The strat-
egy used to follow a desired path is a velocity
control tangent to the path and a position control
orthogonal to it: the helicopter has to fly close
to the geometric path with a specified forward
speed. This approach is better known as dynamic
PF. In the trajectory tracking problem the system
is designed to follow a trajectory in the state-
space domain where the state is parameterized
in time: the path is not prioritized. In PF meth-
ods the path is always prioritized and this is a
requirement for robots that for example have to
follow roads and avoid collisions with buildings. A
theoretical approach to dynamical PF is given in
(Sarkar et al., 1994). The path we want to follow
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is a three-dimensional parameterized space curve.
The motion of the reference point on the curve
is governed by a differential equation containing
error feedback. Similar methods have also been
investigated in (Egerstedt et al., 2001).

In (Harbick et al., 2001) a technique for follow-
ing planar spline trajectories using a behavior-
based control architecture is implemented and
tested in flight. The method developed in this
paper differs from (Harbick et al., 2001) in that
it allows dynamic modification of the trajectory
during execution and provides a mechanism that
coordinates and monitors the processes to achieve
proper control. Furthermore, our implementation
allows 3D path tracking and information about
the curvature of the path is fed forward in the
control loops for enhanced tracking accuracy dur-
ing manouvred flight at higher speeds.

2. SYSTEM OVERVIEW

The WITAS UAV system consists of a slightly
modified Yamaha RMAX helicopter and the
WITAS on-board system (Fig. 1). In this paper we
focus on system components which are relevant for
dynamic 3D path following. Our aerial robot has
many more skills. A description of the full hard-
and software system can be found in (Doherty et
al., 2004; Merz, 2004).

Fig. 1. The WITAS helicopter

The helicopter has a total length of 3.6 m (incl.
main rotor), a max. take-off weight of 95 kg, and
is powered by a 21 hp two-stroke engine. Yamaha
equipped the remote-controlled RMAX with an
attitude sensor (YAS) and an attitude control sys-
tem (YACS). For the experiments described here
the following components of the WITAS on-board
system were used: an integrated INS/GPS with
DGPS correction, a barometric altitude sensor, a
PC104 embedded computer (700 MHz Pentium
PIII), and a wireless Ethernet bridge.

The PC104 computer reads all sensors, runs the
control software, and sends commands to the
YACS. Sensor measurements and control outputs
are logged in this computer and sent simulta-
neously to a ground station for on-line analysis.

Different control modes and task procedures can
be selected by a ground operator during flight.

Paths are decomposed into path segments, which
are requested by the dynamic path following con-
troller during execution. This method is chosen,
as it allows to model almost any space curve and
makes path modification easy. If a segment is not
available in time, the system switches into a safety
mode.

The structure of the hybrid control system for
dynamic path following is shown in Fig. 2. Each
block represents a functional unit. All functional
units can be executed concurrently and asyn-
chronously. At the highest level a task procedure
provides control with path segment data. A task
procedure is a computational mechanism that
achieves a certain behavior of the WITAS UAV
system (Doherty et al., 2004). It is coupled to
a state machine which coordinates data transfer,
reports errors to the task procedure, and switches
control modes. It uses statements derived from
sensor measurements as conditions for state tran-
sitions. A set-point generator computes a number
of set-points from path segment data and sensor
measurements and passes it to an outer loop con-
trol. The inner loop is the Yamaha Attitude Con-
trol System (YACS) that stabilizes the attitude
angles, the yaw and the vertical dynamics.

task procedure

outer loop control
(control laws)

state analysis

set−point generation

state machine

helicopter

inner loop control

Fig. 2. Structure of the hybrid control system

3. TASK PROCEDURE AND STATE
MACHINE

The interaction between task procedures and low
level control is handled by an event-driven state
machine (hybrid control). In the system consid-
ered here, a hierarchical concurrent state machine
is implemented (HCSM). It is represented as a
set of state transition diagrams similar to Harel’s
statecharts (Harel, 1987).
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Fig. 3. State machine for dynamic path following

In the following, the state machine for dynamic
path following is explained. The state transition
diagram 2 is shown in Fig. 3. For a path with
one segment (end velocity ve ≤ 0), the segment
parameters SegData are passed to the set-point
generator and the dynamic path following con-
troller is started. A segment is defined by start
and end points, start and end directions, target
velocity, and end velocity. In the case of several
segments (end velocity ve > 0), the state machine
passes the segment parameters, starts the same
controller and sends a RequestSeg event to the task
procedure. The next segment has to be provided
before the helicopter reaches a point from where
it is impossible to stop at the end point of the
current segment (Close becomes true). This is a
safety mechanism which prevents the helicopter
from leaving the current path in case no new seg-
ment is available. In this case, or if the helicopter
is not able to slow down to the desired velocity
at the end point, a SegError event is sent and a
braking controller is started which will brake the
helicopter with maximum deceleration. When the
helicopter passes the end point of a path segment
(Arrived becomes true) a Passed event is sent to
the task procedure. The state machine exits, when
the helicopter hovers.

Fig. 4 shows an example of a state machine for a
path with two segments 3. The upper part models
a task procedure (user state machine) and the
lower part a flight mode switching mechanism.
Both machines run concurrently. When the au-
tonomous mode is engaged (AutoSwitch becomes
true) the hovering controller is started. As soon
as the helicopter hovers stably, the first segment
is flown. The hovering controller is started again
when the helicopter arrives at the final waypoint.

2 Pulse is an event sent periodically, Init triggers a tran-

sition from an entry state (circular node) when condition

holds, Exit is sent to the superstate when entering an exit

state (square node).
3 Rectangular boxes within state nodes denote nested

state machines. Superstate transitions are executed prior

to substate transitions.
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Fig. 4. Example of a state machine for a path with
two segments

In the real system, the state machine for mode
switching handles more flight modes and is sepa-
rated from the user state machine (Merz, 2004).

4. SET-POINT GENERATION

The PF algorithm provides the set-points for
the outer loop control. The inputs are provided
by the event handler and the position sensor
(INS/DGPS).

The analytical description of the 3D path is a
cubic spline that has second-order continuity (C2)
at the joints, this is a requirement which avoids
discontinuity in the helicopter’s acceleration. A
global reference frame is associated with each
segment where the X-axis points north, the Y-
axis points east and the Z-axis points down. The
analytical form of the curve is:

P = As3 + Bs2 + Cs+ D (1)

where A, B, C and D are 3D vectors defined
by the boundary conditions and s is the linear
coordinate of the curve.

For each value of s the path generator provides
the path parameters: position, tangent and cur-
vature. The curvature is used to compute the
centripetal acceleration needed to follow the path
(feed-forward term in the lateral control law),
while the tangent T is used to align the helicopter
body to the path. The curvature K is a 3D vector
and is calculated in the global frame as follows:

K = T × Q × T /|T |4 (2)

T = 3As2 + 2Bs+ C (3)

Q = 6 As+ 2B (4)

where Q is the second order derivative.
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The reference point on the nominal path is found
by satisfying the geometric condition that the
scalar product between the tangent vector and the
error vector has to be zero:

E • T = 0 (5)

where the error vector E is the helicopter distance
from the candidate control point. The control
point error feedback is then calculated as follows:

ef = E • T /|T | (6)

that is the magnitude of the error vector projected
on the tangent T . The control point is updated
using the differential relation:

dP = P ′ · ds (7)

Equation 7 is applied in the discretized form:

s(n) = s(n− 1) +
ef

|dP

ds
(n− 1)|

(8)

where s(n) is the new value of the parameter.
Once the new value of s is known, all the path
parameters can be calculated.

The PF algorithm receives as inputs the target
velocity vt and the final velocity ve that the he-
licopter must have at the end of the segment.
The path planner assigns the target velocity which
is related to the mission specification only. This
means that the path planner doesn’t have to take
into account any dynamic limitation of the he-
licopter itself. The control law tries to keep the
target velocity, but when it is not compatible with
the local curvature of the path and the helicopter
performance limitations, the algorithm provides
an automatic limit on velocity. Velocity limita-
tions can be activated for two reasons: due to the
turn bank or the yaw rate limit of the helicopter.
In order to make a coordinated turn at constant
altitude, the flight mechanics provides the relation
between the velocity, the roll angle and the curva-
ture radius of the turn. Mechanical limits exist on
the maximum achievable swash plate angles, and
furthermore the helicopter envelope has currently
been opened up to φmax±8 deg for the roll angle
(relative to the hovering bank angle that is about
4.5 deg), and ωmax±26 deg/sec for the yaw rate.
Under the described limitations, it is possible to
calculate the maximum speed:

Vmax1 =
√

Rgφmax (9)

Vmax2 = ω2

maxR (10)

where R is the local curvature radius and g is the
gravity acceleration. The target speed assigned to
the path is compared with these two limits and
the lower speed is taken as target.

The braking algorithm continually checks the dis-
tance between the helicopter and the end point of
the path. If the required acceleration to reach the

final target velocity exceeds a given value (cur-
rently set to 1 m/s2), the current target velocity
is limited in order to maintain a constant deceler-
ation. In order to know the distance between the
helicopter and the end of the path, an estimate
of the final arc length of the curve has to be
calculated. The arc length of the spline between
the control point and the end point of the path is:

lend =

∫ Send

S

√

[x′(s)]
2

+ [y′(s)]
2

+ [z′(s)]
2
ds

(11)
If an analytical solution of the integral cannot be
found, a numerical method is used (rectangular
integration with for example 20 integration steps).

To gain computational time, the increments of the
flown path ln are subtracted from ltot (total length
of the path, i.e. lend at first iteration) to get a good
estimate of lend at each control cycle:

ln =

√

√

√

√

√

[xn − xn−1]
2

+

[yn − yn−1]
2

+

[zn − zn−1]
2

(12)

A path segment is considered finished when lend

is small enough. It should be emphasized that lend

is the arc length between the control point on
the curve and the end point of the path and not
between the helicopter and the end of the path.
This makes the system more robust with regard
to position error of the helicopter on the path.

5. CONTROL LAWS

The outer loop control (velocity and position
control) provides inputs for the YACS in order
to follow the path with the desired velocity. The
inner loop deals with the coupling dynamics of
the helicopter, so that the outer loop can handle
the four degrees of freedom as decoupled (i.e.
yaw rate, vertical velocity, pitch and roll angles).
The position and velocity error and centripetal
acceleration vectors are computed in the global
frame and then transformed into control inputs
after rotation in the helicopter’s body frame. The
acceleration vector is used as feed forward input
in the control law to improve the tracking in
the presence of path curvature. As regards the
acceleration vector, only the component in the
horizontal plane orthogonal to the path is used.
PD and PI compensators are used respectively
for position and velocity control. The algorithm
described in the previous section makes sure that
the position error vector is orthogonal to the
path and the velocity error vector is tangent to
the path. Given that the two error vectors are
orthogonal the velocity control doesn’t interfere
with the position control. The control equations
for the four channels are the following:
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θC =KpxδX +Kdx
˙δX +KpvxδVX +

+KivxδVXsum +KfxAX

∆φC =KpyδY +Kdy
˙δY +KpvyδVY +

+KivyδVY sum +KfyAY

VZC =KpzδZ +Kdz
˙δZ +KpvzδVZ +

+KivzδVZsum +KfzAZ

ωC =Kpwδψ (13)

where the subscripted K’s are control gains, the
δ′s are control errors, the pedices sum indicate
the integral terms and the A’s the components
of the centripetal acceleration vector. θC is the
target pitch angle, ∆φC is the desired roll angle
relative to the hovering roll angle, ωC is the target
yaw rate and VZC is the target vertical velocity.

6. EXPERIMENTAL RESULTS

The PF mode has been tested first in simulation
and then in flight. The flight dynamics mathe-
matical model of the augmented RMAX has been
developed within the WITAS project and imple-
mented in C. Simulations are done using hardware
in the loop.
Only results from the flights are reported in the
following.
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Fig. 5 and 6 show a 3D segment and the velocity
profile during one of the flight-tests. The heli-
copter hovers at point A at 40 meters altitude,

starts the descending spiral, brakes and hovers
at point B at 10 meters altitude. The maximum
speed for the flight was set to 10 m/s, and the con-
troller limited the target speed according to the
local curvature and the braking algorithm. The
maximum vertical speed component was around
3 m/s.
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Fig. 7 and 8 show a trajectory consisting of 3
path segments at constant altitude. The mission
starts with autonomous hovering in point A, then
the helicopter flies the first path segment with
maximum speed of 8 m/s; at point B the first
segment is finished and a path switching leads the
helicopter to the second segment with a maximum
speed of 3 m/s; in point C the switch to the third
path segment with maximum speed of 8 m/s takes
place. Finally the helicopter brakes and hovers in
point D where the mission ends. The wind was
blowing constantly at 5 m/s. The tracking error
depends on the angle between the path and the
wind direction. In this case the maximum error is
about 3 meters.

Table 1 shows the results of several paths flown
with different wind conditions and different veloc-
ities. The table reports three flight sessions (sepa-
rated by horizontal lines) flown on three different
days so as to cover three different wind conditions.
In order to give more generality to the results,
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Path Av Err Max Err St Dev Speed Wind

[-] [m] [m] [m] [m/s] [m/s]

HR 1.2 3.4 0.7 10 4

HL 1.9 4.1 1.3 10 4

DR 1.5 2.8 0.7 10 4

DL 1.8 3.5 1.1 10 4

CR 1.7 3.3 0.7 10 4

CL 1.9 4.1 1.3 10 4

HR 1.1 2.7 0.8 10 2

HL 0.8 2.2 0.6 10 2

DL 0.9 1.8 0.5 10 2

SLN 0.3 0.8 0.2 3 ≈ 0

SLN 0.5 1.4 0.3 3 ≈ 0

SLN 0.5 1.9 0.5 3 ≈ 0

SLN 0.6 1.4 0.3 3 ≈ 0

SLN 0.4 1.3 0.3 3 ≈ 0

HR = Horizontal Right HL = Horizontal Left

DR = Descending Right DL = Descending Left

CR = Climbing Right CL = Climbing Left

SLN = Straight Line

Table 1. Experimental data

representative paths of typical flight manoeuvres
have been chosen. In the HR path the helicopter
describes a complete turn in the horizontal plane
turning right, in the DR path the helicopter makes
the same turn while it is descending from 40 to 10
meters and in the CR path the helicopter turns
while climbing from 10 to 40 meters. The same
flights are repeated turning left instead. Fig. 5 for
example is a DL path.

The first column of the table shows the kind
of path flown, the second, third and fourth col-
umn are the average error, maximum error and
standard deviation error, and the fifth and sixth
column are the maximum ground speed reached
and the average wind speed. The error is the
distance of the helicopter to the reference path
and is calculated using the INS/GPS signal, which
is also used as control signal during flight (an
independent source would have been a better ref-
erence for the purpose of this statistics). Because
of the occurence of sudden jumps of the INS/GPS
position signal, the maximum errors shown in the
table are not always imputable to control errors;
to evaluate the performance of the PF, the average
error gives more reliable information.

To summarize the results of the table, the first
session gives the worst results because of the
wind, moreover the right turn gave better results
than the left one because the wind was blowing
from the side. In the second session the overall
performance increases because of less wind. In the
third session several straight lines of 170 meters at
low speed were flown, during the test the wind was
negligible.

7. CONCLUSIONS AND FUTURE WORK

The results of the experimentation show a sat-
isfactory tracking behavior. The position control

error is well within the accuracy of the avail-
able position measurement. The algorithm has
also been successfully tested in relatively severe
weather conditions, with wind levels up to 15 m/s.
In the presence of the strongest wind levels, the al-
gorithm could be improved in order to reduce the
lateral error; an integrative compensator could be
added for this purpose but the tuning would not
be straight forward in presence of high curvature.
The PF mode is now implemented in the software
architecture of the WITAS helicopter and is being
used as a core functionality in complex mission
tasks.
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ABSTRACT
The use of Unmanned Aerial Vehicles (UAVs) which can operate autonomously in dynamic and complex
operational environments is becoming increasingly more common. While the application domains in which they
are currently used are still predominantly military in nature, in the future we can expect widespread usage in the
civil and commercial sectors. In order to insert such vehicles into commercial airspace, it is inherently important
that these vehicles can generate collision-free motion plans and also be able to modify such plans during their
execution in order to deal with contingencies which arise during the course of operation. In this paper, we
present a fully deployed autonomous unmanned aerial vehicle, based on a Yamaha RMAX helicopter, which
is capable of navigation in urban environments. We describe a motion planning framework which integrates
two sample-based motion planning techniques, Probabilistic Roadmaps and Rapidly Exploring Random Trees
together with a path following controller that is used during path execution. Integrating deliberative services, such
as planners, seamlessly with control components in autonomous architectures is currently one of the major open
problems in robotics research. We show how the integration between the motion planning framework and the
control kernel is done in our system.

Additionally, we incorporate a dynamic path reconfigurability scheme. It offers a surprisingly efficient method
for dynamic replanning of a motion plan based on unforeseen contingencies which may arise during the execution
of a plan. Those contingencies can be inserted via ground operator/UAV interaction to dynamically change UAV
flight paths on the fly. The system has been verified through simulation and in actual flight. We present empirical
results of the performance of the framework and the path following controller.
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1 Introduction

Navigating in environments cluttered with obstacles in
the vicinity of building structures requires path planning
algorithms which deliver collision-free paths, accurate
controllers able to execute such paths even in the
presence of inhospitable weather conditions (e.g. wind
gusts) and a reliable mechanism that coordinates the
two.

This paper describes an approach to combining path
planning techniques with a path execution mechanism
(including a robust 3D path following control mode)
in a distributed software architecture used in a fully
deployed rotor-based Unmanned Aerial Vehicle (UAV).
Details of many of the software components used in
the distributed architecture are provided. An emphasis
is placed on the components responsible for path
execution. The approach allows for interaction of a path
planning algorithm with a path following control mode
and copes with their different timing characteristics
and distributed communication. It also includes a
safety mechanism which is necessary for operating
UAVs in urban environments. For the experiments
we present in this paper, we assume a predominantly
static environment which is described by a 3D model.
An onboard geographic information system (GIS) is
used to supply information about building structures,
vegetation, etc. Certain types of dynamic changes in
the environment are handled by the use of no-fly zones
or pop-up zones which can be added or removed on the
fly during the course of a mission.

Our hardware/software framework incorporates
software distribution technologies for a number
of reasons. Firstly, existing commercial off-the-shelf
(COTS) hardware suitable enough for airborne systems,
does not yet have sufficient computational power and
storage space to encompass all the necessary software
components needed to achieve sophisticated mission
scenarios autonomously. Additionally, in order to
use third-party software without compromising flight
safety, it is necessary to separate software components
that can crash the operating system from software that
is crucial for the UAV flight operation. Another reason
for using a distributed solution is to take advantage
of additional resources which may be found on the
Internet.

One of the long term goals which has guided our
research is the idea of push-button missions where the
ground operator supplies mission tasks to a UAV at
a very high-level of abstraction and the UAV system
does most of the work ranging from planning to actual

execution of the mission.

The Autonomous UAV Technologies Laboratory 1 at
Linköping University, Sweden, has been developing
fully autonomous rotor-based UAV systems in the mini-
and micro-UAV class. Our current system design is the
result of an evolutionary process based on many years
of developing, testing and maintaining sophisticated
UAV systems. In particular, we have used the Yamaha
RMAX helicopter platform and developed a number of
micro air vehicles from scratch.

Much effort has also gone into the development
of useful ground control station interfaces which
encourage the idea of push-button missions, letting
the system itself plan and execute complex missions
with as little effort as possible required from the
ground operator other than stating mission goals at a
high-level of abstraction and monitoring the execution
of the ensuing mission. The mission scenarios we
use are generic in nature and may be instantiated
relative to different applications. For example, the
functionality required for the monitoring/surveillance
mission described below can be modified slightly and
used in mission scenarios such as power line inspection.

An example of such a push-button mission that
has been used as an application scenario in our
research is a combined monitoring/surveillance and
photogrammetry mission out in the field in an urban
area with the goal of investigating facades of building
structures and gathering both video sequences and
photographs of building facades. For this experiment,
we have used a Yamaha RMAX helicopter system as a
platform. Let us assume the operational environment
is in an urban area with a complex configuration
of building and road structures. A number of
these physical structures are of interest since one has
previously observed suspicious behavior and suspects
the possibility of terrorist activity. The goal of the
mission is to investigate a number of these buildings and
acquire video and photos from each of the building’s
facades. It is assumed the UAV has a 3D model of
the area and a GIS with building and road structure
information on-line.

The ground operator would simply mark building
structures of interest on a map display and press a button
to generate a complete multi-segment mission that flies
to each building, moves to waypoints to view each
facade, positions the camera accordingly and begins
to relay video and/or photographs. The motion plans
generated are also guaranteed to be collision-free from

1www.ida.liu.se/˜patdo/auttek/

21th Bristol UAV Systems Conference — April 2006



84 APPENDIX A.

From Motion Planning to Control - A Navigation Framework for an Autonomous Unmanned Aerial Vehicle

static obstacles. If the ground operator is satisfied with
the generated mission, he or she simply clicks a confirm
button and the mission begins. During the mission, the
ground operator has the possibility of suspending the
mission to take a closer look at interesting facades of
buildings, perhaps taking a closer look into windows or
openings and then continuing the mission. This mission
has been successfully executed robustly and repeatedly
from take-off to landing using the RMAX. The plan
generation and execution mechanism described in this
paper is an integral part of such a complex mission.

1.1 Related Work

Many universities (20; 22; 1; 19; 9; 21; 23) have been
and continue to do research with autonomous helicopter
systems. Most of the research has focussed on
low-level control of such systems with less emphasis on
high-autonomy as in our case. The research area itself
is highly multidisciplinary and requires competences in
many areas such as control system design, computer
science, artificial intelligence, avionics and electronics.
We briefly mention a number of interesting university
research projects representative of the type of research
being pursued.

The Autonomous Helicopter Project at Carnegie Mellon
University has done a great deal of research on
helicopter modeling (16) and helicopter control
(2), developing and testing robust flight control for
full-envelope flight.

The School of Aerospace Engineering at Georgia Tech
has developed an adaptive control system using neural
networks (10) and has demonstrated the ability for
high speed flight and operation with aggressive flight
maneuvers using the Yamaha RMAX helicopter.

The motion planning problem for helicopters has been
investigated by (6). Here the problem of the operation
of an autonomous vehicle in a dynamic environment
has been an issue of research and a method to reduce
the computational complexity of the problem has been
proposed based on the quantization of the system
dynamics leading to a control architecture based on a
hybrid automaton. The proposed approach has been
tested in simulation.

1.2 Paper Outline

The paper is structured as follows. In section 2, we
describe the hardware architecture developed and used

on a Yamaha RMAX helicopter and on-board hardware
components. In section 3, we describe the distributed
CORBA-based software architecture and a number of
software modules used in an integrated manner with the
robotic system. Much of this work was completed in
the WITAS 2 UAV project. In section 4, we describe
the planning techniques used in the UAV system. In
section 5, the path following control mode is described
in detail and in section 6 we descibe the path execution
mechanism. Dynamic path replanning capability is
described in section 7 and experimental results of
two example missions are presented in section 8. In
section 9, we conclude and discuss future work.

2 The Hardware Platform

Figure 1: The WITAS RMAX Helicopter in an urban
environment

The WITAS UAV platform (4) is a slightly modified
Yamaha RMAX helicopter (Fig. 1). It has a total length
of 3.6 m (including main rotor) and is powered by
a 21 hp two-stroke engine with a maximum takeoff
weight of 95 kg. The helicopter has a built-in
attitude sensor (YAS) and an attitude control system
(YACS). The hardware platform developed during the
WITAS UAV project is integrated with the Yamaha
platform as shown in Fig. 2. It contains three PC104
embedded computers. The primary flight control
(PFC) system runs on a PIII (700Mhz), and includes a
wireless Ethernet bridge, a GPS receiver, and several
additional sensors including a barometric altitude
sensor. The PFC is connected to the YAS and YACS,
an image processing computer and a computer for
deliberative capabilities. The image processing (IPC)

2WITAS is an acronym for the Wallenberg Information
Technology and Autonomous Systems Lab which hosted a long term
UAV research project (1997-2004).
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system runs on the second PC104 embedded computer
(PIII 700MHz), and includes a color CCD camera
mounted on a pan/tilt unit, a video transmitter and
a recorder (miniDV). The deliberative/reactive (DRC)
system runs on the third PC104 embedded computer
(Pentium-M 1.4GHz) and executes all high-end
autonomous functionality. Network communication
between computers is physically realized with serial
line RS232C and Ethernet. Ethernet is mainly used for
CORBA applications (see below), remote login and file
transfer, while serial lines are used for hard real-time
networking.

 

DRC 
- 1.4 GHz P-M 
- 1GB RAM 
- 512 MB flash 

IPC 
- 700 MHz PIII 
- 256MB RAM 
- 512 MB flash 

Yamaha RMAX 
(YAS, YACS) 

ethernet
switch 

PFC 
- 700 MHz PIII 
- 256MB RAM 
- 512 MB flash 

sensor 
suite 

sensor
suite 

RS232C 
Ethernet 
Other media 

Figure 2: On-board hardware schematic

3 The Software Architecture

A hybrid deliberative/reactive software architecture has
been developed for the UAV. Conceptually, it is a
layered, hierarchical system with deliberative, reactive
and control components, although the system can easily
support both vertical and horizontal data and control
flow. Fig. 3 presents the functional layer structure of
the architecture and emphasizes its reactive-concentric
nature. Fig. 4 depicts the navigation subsystem and
main software components. With respect to timing
characteristics, the architecture can be divided into two
layers: (a) the hard real-time part, which mostly deals
with hardware and control laws (also referred to as
the Control Kernel) and (b) the non real-time part,
which includes deliberative services of the system (also
referred to as the High-level system) 3. All three

3Note that distinction between the Control Kernel and the
High-level system is done based mainly on the timing characterisitcs
and it does not exclude, for example, placing some deliberative

Figure 3: Funcional structure of the architecture

computers in our UAV platform (i.e. PFC, IPC and
DRC) have both hard and soft real-time components
but the processor time is assigned to them in different
proportions. On one extreme, the PFC runs mostly
hard real-time tasks with only minimum user space
applications (e.g. SSH daemon for remote login). On
the other extreme, the DRC uses the real-time part
only for device drivers and real-time communication.
The majority of processor time is spent on running
the deliberative services. Among others, the most
important ones from the perspective of this paper are the
Path Planner, the Task Procedure Execution Module and
the Helicopter Server which encapsulates the Control
Kernel (CK) of the UAV system.

The CK is a distributed real-time runtime environment
and is used for accessing the hardware, implementing
continuous control laws, and control mode switching.
Moreover, the CK coordinates the real-time
communication between all three on-board computers
as well as between CKs of other robotic systems. In
our case, we perform multi-platform missions with
two identical RMAX helicopter platforms developed
in the WITAS UAV project. The CK is implemented
using C language. This part of the system uses the
Real-Time Application Interface (RTAI) (13) which
provides industrial-grade real-time operating system
functionality. RTAI is a hard real-time extension to a
standard Linux kernel (Debian in our case) and has
been developed at the Department of the Aerospace
Engineering of Politecnico di Milano.

The real-time performance is achieved by inserting

services (e.g. prediction) in the Control Kernel.
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Figure 4: Navigation subsystem and main software
components

a module into the Linux kernel space. Since the
module takes full control over the processor it is
necessary to suspend it in order to let the user space
applications run. The standard Linux distribution is a
task with lower priority, it runs preemptively and can
be interrupted at any time. For that reason a locking
mechanism is used when both user- and kernel-space
processes communicate though shared memory. It is
also important to mention that the CK is self-contained
and only the part running on the PFC computer is
necessary for maintaining flight capabilities. Such
separation enhances safety of the operation of the
UAV platform which is especially important in urban
environments.

The Control Kernel has a hybrid flavor. Its components
contain continuous control laws and mode switching is
realized using event-driven hierarchical concurrent state
machines (HCSMs). They can be represented as state
transition diagrams similar to those of statecharts (8).
In our system, tables describing transitions derived from
such diagrams are passed to the system in the form of
text files and are interpreted by a HCSM Interpreter at
run-time in each of the on-board computers. Thanks to
its compact and efficient implementation, the interpreter
runs in the real-time part of the system as a task with
high execution rate. It allows coordinating all functional

units of the control system from the lowest level
hardware components (e.g. device drivers) through
control laws (e.g. hovering, path following) and
communication to the interface used by the Helicopter
Server.

The use of HCSMs also allows implementing complex
behaviors consisting of other lower level ones. For
instance, landing mode includes control laws steering
the helicopter and coordinates camera system/image
processing functionalities. When the landing behavior
is activated, the CK takes care of searching for a
pre-defined pattern with the camera system, feeding
the Kalman filter with image processing results which
fuses them with the helicopter’s inertial measurements.
The CK sends appropriate feedback when the landing
procedure is finished or it has been aborted. For details
see (15).

For achieving best performance, a single
non-preemptive real-time task is used which follows a
predefined static schedule to run all functional units.
Similarly, the real-time communication physically
realized using serial lines is statically scheduled with
respect to packet sizes and rates of sending. For a
detailed description see (14).

The high-level part of the system has reduced timing
requirements and is responsible for coordinating the
execution of reactive Task Procedures (TPs). This
part of the system uses Common Object Request
Broker Architecture (CORBA) as its distribution
backbone. A TP is a high-level procedural execution
component which provides a computational mechanism
for achieving different robotic behaviors by using
both deliberative and control components in a highly
distributed and concurrent manner. The control and
sensing components of the system are accessible for
TPs through the Helicopter Server which in turn uses
an interface provided by the Control Kernel. A TP
can initiate one of the autonomous control flight modes
available in the UAV (i.e. take off, vision-based landing,
hovering, dynamic path following (see section 5) or
reactive flight modes for interception and tracking).
Additionally, TPs can control the payload of the
UAV platform which currently consists of the video
camera mounted on a pan-tilt unit. TPs receive
data delivered by the PFC and IPC computers i.e.
helicopter state and camera system state (including
image processing results), respectively. The Helicopter
Server on one side uses CORBA to be accessible by TPs
or other components of the system, on the other side it
communicates through shared memory with the HCSM
based interface running in the real-time part of the DRC
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software.

The software architecture described is used to achieve
missions which require deliberative services such as
path planners and control laws such as path following
described in detail in sections 4 and 5, respectively.
Details of the interaction between the TPs, path
planners and the Control Kernel are presented in section
6.

4 The Path Planning Algorithms

In this section, we provide a brief overview of the
sample-based path planning techniques used in our
framework. More detailed descriptions of the two path
planners can be found in (18; 17).

The problem of finding optimal paths between two
configurations in a high-dimensional configuration
space such as a helicopter is intractable in general.
Sample-based approaches such as probabilistic
roadmaps (PRM) or rapidly exploring random trees
(RRT) often make the path planning problem solvable
in practice by sacrificing completeness and optimality.

4.1 Probabilistic Roadmaps

The standard probabilistic roadmap (PRM) algorithm
(11) works in two phases, one off-line and the
other on-line. In the off-line phase a roadmap is
generated using a 3D world model. Configurations
are randomly generated and checked for collisions
with the model. A local path planner is then used
to connect collision-free configurations taking into
account kinematic and dynamic constraints of the
helicopter. Paths between two configurations are also
checked for collisions. In the on-line or querying
phase, initial and goal configurations are provided and
an attempt is made to connect each configuration to
the previously generated roadmap using the local path
planner. A graph search algorithm such as A∗ is
then used to find a path from the initial to the goal
configuration in the augmented roadmap.

Fig. 5 provides a schema of the PRM path planner
used in the WITAS UAV system. The planner uses an
OBBTree-algorithm (7) for collision checking and an
A∗ algorithm for graph search. Here one can optimize
for shortest path, minimal fuel usage, etc. The following
extensions have been made with respect to the standard
version of the PRM algorithm in order to adapt the
approach to our UAV platform.

Figure 5: PRM path plan generation

• Multi-level roadmap planning

The standard probabilistic roadmap algorithm is
formulated for fully controllable systems only.
This assumption is true for a helicopter flying at
low speed with the capability to stop and hover
at each waypoint. However, when the speed
is increased the helicopter is no longer able to
negotiate turns of a smaller radius, which imposes
demands on the planner similar to non-holonomic
constraints for car-like robots. In this case, linear
paths are first used to connect configurations in
the graph and at a later stage these are replaced
with cubic curves when possible. These are
required for smooth high speed flight. If it is
not possible to replace a linear path segment
with a cubic curve then the helicopter has to
slow down and switch to hovering mode at the
connecting waypoint before continuing. From
our experience, this rarely happens.

• Runtime constraint handling

Our motion planner has been extended to deal
with different types of constraints at runtime not
available during roadmap construction. Such
constraints can be introduced at the time of
a query for a path plan. Some examples
of runtime constraints currently implemented
include maximum and minimum altitude, adding
forbidden regions (no-fly zones) and placing
limits on the ascent-/descent-rate. Such
constraints are dealt with during the A∗ search
phase.

The mean planning time in the current implementation
(for our operational environments) is below 1000 ms
and the use of runtime constraints do not noticeably
influence the mean.
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4.2 Rapidly Exploring Random Trees

The use of rapidly exploring random trees (RRT)
provides an efficient motion planning algorithm that
constructs a roadmap online rather than offline. The
algorithm (12) generates two trees rooted in the start
and end configurations by exploring the configuration
space randomly in both directions. While the trees are
being generated, an attempt is made at specific intervals
to connect them to create one roadmap. After the
roadmap is created, the remaining steps in the algorithm
are the same as with PRMs. In comparison with the
PRM planner, the mean planning time with RRT is also
below 1000 ms, but in this case, the success rate is
much lower and the generated plans are not optimal
which may sometimes cause anomalous detours (17).

Results of the path planning algorithms are used by
the path following controller described in the following
section.

5 Path Following Control Mode

In this section, we provide a detailed description of a
path following control mode (Fig. 6, the bottom part of
Fig. 4) which executes paths provided by the planner
introduced in section 4. As described in section 3,
the HCSM-based Control Kernel coordinates execution
of different control modes available in the UAV system,
including the path following control mode.

In the classical approach to the trajectory following
problem, a trajectory is generated directly taking into
account the dynamic constraints of the system. In
our approach, however, we split the problem into two
parts. First, the path planner generates a geometrical
description of a path and the dynamic constraints are
handled later by the path following mode by generating
an appropriate velocity profile. In order to navigate
safely in urban environments, the path following mode
has been designed to minimize the tracking error during
a path execution. Because paths generated by the
planner are collision-free (relative to the static obstacles
present in the model), staying closer to the geometric
path assures safer navigation in the environment.

A path is composed of one or more segments (each
described by a 3D cubic curve) which are passed
sequentially to the control mode. The mode is
implemented as a function which takes as input
the segment geometry, the desired cruise and final
velocities. It is called by the Control Kernel with

HCSM
Interpreter

Trajectory
generator

Path controller
(Outer control loop)

Inner control loop 
(YACS)

Helicopter platform

Path Following
Control Mode

Figure 6: Interaction between the Path Following
Control Mode and other components of the Control
Kernel

a frequency of 50Hz and its output consists of four
control signals (pitch, roll, yaw and the vertical
channel). Additionally, the function returns a set of
status flags which are used by the HCSM in control to
generate appropriate events, i.e. path segment switching
mechanism and safety braking procedure.

When the helicopter reaches the end point of the current
segment, the controlling HCSM is informed and an
Arrived event is generated. The next call to the path
following function is made using parameters describing
the next segment to be flown. The process continues
until all segments of the path are executed.

The safety braking procedure is activated in case the
next segment is not provided by the High-level system
(e.g. due to communication failure) in a specific time.
This time point is calculated as the minimum distance
necessary to stop the helicopter at the end of the current
segment without overshooting.

The path tracking error is also available to the
controlling HCSM and it can be used to take appropriate
actions in case it becomes too large to guarantee safe
operation. Such a situation can arise if the wind is too
strong for the platform to keep it on the desired path.

The path following control mode is conceptually
divided into two parts: (a) the Trajectory Generator
(TG) which calculates the reference trajectory used by
(b) the Path Controller (PC) to calculate the control
signals. We consider each part in the next two
subsections.
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5.1 Trajectory Generator

A trajectory represents the evolution of a dynamic
system in the state-space domain, where the state
variables are parameterized in time. In our approach
the generated reference trajectory (based on the planner
output) depends not on the time but on the position of
the helicopter relative to the path. In order to calculate
the reference trajectory, a control point on the path
which is the closest to the helicopter position must be
found. Once this is done, the trajectory parameters
can be calculated and used by the path controller
(described in the next subsection) as set-points. A
feedback method is used to find the control point,
similar approach is used in (5).

The reference trajectory in this work is a vector
represented by 9 components: x(s), y(s) and z(s)
represent the respective East, North positions and
altitude of the helicopter relative to an initial point;
vx(s), vy(s) and vz(s) the North, East and vertical
velocity components; φ(s), θ(s) and ψ(s) the roll,
pitch and yaw angles; s is the path segment parameter.
Details of the calculation of the parameter s through
feedback can be found in (3).

The geometric path is composed of several segments
represented by a 3D cubic polynomial. The motivation
for using this type of curve is given in (17). A
3D geometric segment is represented by the following
equation in a vector form:

P (s) = As3 + Bs2 + Cs+ D

where A, B, C and D are 3D vectors defined by the
boundary conditions calculated by the path planner and
passed to the control mode, s=[0,1] is the parameter of
the curve and P = [x, y, z]. 0nce the parameter s is
found the position coordinates x, y, z can be calculated.

In order to achieve the necessary tracking performance,
the path curvature is fed forward in the roll control law.
The target roll angle value is calculated according to the
following formula:

φ(s) =
V 2

Rxy(s)g

where V is the helicopter speed, g is the gravity
acceleration and Rxy(s) is the local curvature radius
of the path projected on the horizontal plane. The
curvature radius of the path is a 3D vector and it is
calculated analytically as explained in (3).

The same approach could be applied in order to
calculate the target pitch angle θ(s). However, for

the helicopter flight envelope we are interested in, the
dynamics of the path curvature in the vertical direction
is not very fast. Therefore, the feed forward term is not
used for the pitch channel.

The yaw angle ψ(s) is calculated from the tangent
vector of the path. The tangent is projected on the
horizontal (East-North) plane and used as reference
signal for the yaw control.

The target path velocity (Vtar(s)) is derived from
two input parameters: the cruise velocity Vc (desired
velocity for the segment) and the final velocity Vf

(velocity that the helicopter must have at the end of
the segment). Both velocities are given by the path
planners.

The calculation of Vtar(s) along the path segment is
divided into three phases: acceleration, cruise and
braking. The acceleration phase is active only during
execution of the first segment of the path. During this
phase the velocity increases with a constant rate until
the cruise velocity Vc is reached. Note that in this case
Vtar depends on time rather than on the path parameter
(s) since it is not important at which position of the path
the acceleration phase is terminated.

The braking phase is active when the following
condition is satisfied: the remaining path length dend(s)
is equal to the distance required to brake the helicopter
from Vc to Vf for given deceleration abrake:

dend(s) =
|V 2

c − V 2
f |

2abrake

The target velocity in the braking phase is a function of
dend(s):

Vtar(s) =
√
|2dend(s)abrake + V 2

f |

This guarantees achieving the desired velocity at the
end of the path segment. In case Vf > Vc, the
helicopter accelerates in order to reach Vf at the end
of the path segment. The path planner assures the
continuity of the velocity profile between segments. In
order to make a coordinated turn a consistency check
must be done with respect to the generated Vtar(s).
For such a maneuver, the helicopter must compensate
the centripetal acceleration with a certain amount of
roll angle. Because of safety reasons the maximum
roll angle (φmax) and maximum yaw rate (ωmax) are
specified. Therefore, the maximum velocity during a
turn maneuver is also restricted. The two velocity limits
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Figure 7: Comparison of path tracking performances using two different roll controller. The flight-test where
performed at 36 km/h constant velocity for both paths.

are calculated as follows:

Vmax1(s) =
√
Rxy(s)gφmax

Vmax2(s) = ω2
maxRxy(s)

The minimum between Vmax1(s), Vmax2(s) and
Vtar(s) is taken as target velocity by the path controller
described in the next subsection. Thus, the calculated
velocity is compatible with the curvature radius of the
path.

5.2 Path Controller

Usually the control system for a helicopter consists of
an inner loop, which is responsible for stabilizing the
attitude, and the outer loop, which controls the position
and velocity.

In our system we use the Yamaha Attitude Control
System (YACS) provided with the RMAX helicopter
for the attitude control. For the outer loop we use four
decoupled PID controllers. Their outputs are used as
input to the YACS system. In (3) the control approach
for the RMAX has been described and experimental
results provided.

In this section, we present results of a modified
controller, which uses an additional feedback loop on

the roll channel. Several experiments were done closing
the roll angle loop around the YACS in order to test if it
is feasible to improve path tracking precision without a
complete redesign of the attitude controller.

The modified controller has been flight-tested on the
RMAX helicopter at a constant velocity of 36km/h
on a path with changing curvature. Such a path
is typically used to navigate in areas with obstacles.
The results are shown in Fig. 7 where the same path
was tested both with the roll loop closed around the
YACS, and without. Note, that at the beginning of
the path when the dynamic response of the controller
is more important because of the changing curvature,
the control with additional feedback loop over the
roll channel performs much better than the other one.
The error for the closed loop controller in this part
is below 1 meter, while for the other is around 6
meters. The results obtained during flight-tests show
that the loop on the roll channel reduces the path
tracking error, what makes the controller more suitable
for obstacle-cluttered environments.

The following section describes interaction between the
path following control mode with a Task Procedure
responsible for executing a planned path.
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6 Path Execution Mechanism

The key element of the framework is the path execution
mechanism. It allows for seemless integration of hard
real-time componets (e.g. the path following controller)
with inherently non real-time deliberative services (e.g.
the path planners).

The execution of the path provided by the path planner
is divided into two parts, namely the Task Procedure
and the Path Following controller. The standard
path execution scheme in our architecture for static
operational environments is depicted in Fig. 8 (key
functional componets involved in navigation are drawn
in black). A UAV mission is specified via a Task
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Figure 8: Path execution mechanism

Procedure in the reactive layer of our architecture,
(perhaps after calling a task-based planner). For the
purpose of this paper, a TP can be viewed as an
augmented state machine.

For the case of flying to a waypoint, an instance of a
navigation TP is created. First it calls the path planner
service (step 1) with the following parameters: initial
position, goal position, desired velocity and additional
constraints.

If successful, the path planner (step 2) generates a
segmented path which is represented as a set of cubic

polynomial curves. Each segment is defined by start
and end points, start and end directions, target velocity
and end velocity. The TP sends the first segment (step
3) of the path via the control system interface and waits
for the Request Segment event. It is generated by the
HCSM responsible for the path execution as soon as the
path following (PF) controller output is fed with a path
segment.

When a Request Segment event arrives (step 4) the
TP sends the next segment data to the HCSM which
coordinates the path execution. This procedure
is repeated (step 3-4) until the last segment is
executed. However, because the high-level system is
not implemented in hard real-time it may happen that
the next segment does not arrive at the Control Kernel
on time. In this case, the controller has a timeout limit
after which it goes into safety braking mode in order
to stop and hover at the end of the current segment.
The timeout is determined by a velocity profile, current
position and current velocity.
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Figure 9: Execution timeline for trajectory consisting of
2 segments

Fig. 9 depicts a timeline plot of the execution of a
trajectory (2 segments). At time t0, a TP sends the
first segment of the path to the PF controller and waits
for a Request segment event which arrives immediately
(t1) after the helicopter starts to fly (tstart1). Typical
time values for receiving a Request segment event (t1 −
t0) are well below 200ms. Time to1 is the timeout
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for the first segment which means that the TP has a
∆t1timeout time window to send the next segment to
the PF controller before it initiates a safety braking
procedure. If the segment is sent after to1, the helicopter
will start braking. In the current implementation,
segments are not allowed to be sent after a timeout.
This will be changed in a future implementation. In
practice, the ∆t1timeout time window is large enough
to replan the path using the standard path planner. The
updated segments are then sent to the PF controller
transparently.

The described path execution mechanism allows for
dynamic replacement of path segments if necessary.
The following section describes the process of dynamic
path replanning.
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Figure 10: The dynamic path replanning automaton

7 Dynamic Replanning of the Path

The design of the path execution mechanism provides
a method for feeding path segments to the PF
controller iteratively. This is a particularly interesting
part of the design because it gives the deliberative
or decision-making layer of the architecture the
opportunity to anticipate problems at longer temporal
horizons and then to modify one or more segments
in the original mission path plan based on any
contingencies it discovers.

There are several services that are used during the path
replanning stage. They are called when changes in
the environment are detected and an update event is
generated in the system. The augmented state machine
associated with the TP used for the dynamic replanning
of a path is depicted in Fig. 10. The TP takes a start and
an end point and a target velocity as input. The TP then
calls a path planning service (Plan state) which returns
an initial path.

If the helicopter is not aligned with the direction of
the flight, a command to align is sent to the controller
(Align state).The TP then sends the first segment of the
generated path to the PF controller (Send segment state)
and calls the Prediction service to estimate a timeout
for the current segment (Estimate timeout state). Based
on the segment timeout and system latency, a condition
is calculated for sending the next segment. If there is
no change in the environment the TP waits (Wait state)
until a timeout condition is true and then sends the next
segment to the PF controller.

In case new information about newly added or deleted
forbidden regions (no-fly zone updated) arrives, the TP
checks if the current path is in collision with the updated
world model (Check Collision state). If a collision is
detected in one or more segments the TP calls a Strategy
Selector service (Strategy Selection state) to determine
which replanning strategy is the most appropriate to
use at the time. The Strategy Selector service uses the
Prediction service for path timings estimation (Times
Estimation state) to get estimated timeouts, total travel
times etc. It also uses the Strategy Library service
(Strategy Library state) to get available replanning
strategies that will be used to replan when calling the
path planner (Replan state). The TP terminates when
the last segment is sent.

All time estimations that have to do with paths or parts
of paths are handled by the Prediction service. It uses
the velocity profile of a vehicle and path parameters
to calculate timeouts, total times, and combinations of
those. For instance, in the case of flying a two-segment
trajectory (see execution timeline in Fig. 9) it can
estimate timeouts (∆t1timeout, ∆t2timeout), total travel
times (∆t1total, ∆t2total) as well as a combined timeout
for the first and the second segment (to2-t1).

When part of a path is not valid anymore, the path
planner service can be called in order to repair an
existing plan or to create a new one. There are many
strategies that can be used at that step which can
give different results depending on the situation. The
Strategy Library stores different replanning strategies
including information about the replanning algorithm to
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be used, the estimated execution time and the priority.
Example strategies are shown in Fig. 11.
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Figure 11: Examples of replanning strategies.

Strategy 1

Replanning is done from the next waypoint (start point
of the next segment) to the final end point. This
implies longer planning times and eventual replacement
of collision-free segments that could be reused. The
distance to the obstacle in this case is usually large so
the generated path should be smoother and can possibly
result in a shorter flight time.

Strategy 2

Segments up to the colliding one are left intact and
replanning is done from the last collision-free waypoint
to the final end point. In this case, planning times are
cut down and some parts of the old plan will be reused.
But since the distance to the obstacle is shorter than in
the previous case, it might be necessary for the vehicle
to slow down at the joint point of two plans, this can
result in a longer flight time.

Strategy 3

Replanning is done only for colliding segments. The
helicopter will stay as close to the initial path as
possible.

Strategy 4

There can be many other strategies that take into
account additional information that can make the result
of the replanning better from a global perspective. An
example is a strategy that allows new pass waypoints
that should be included in the repaired plan.

Note that each of these strategies progressively re-uses
more of the plan that was originally generated, thus
cutting down on planning times but maybe producing
less optimal plans. The decision as to which strategy
to use is made by the Strategy Selector service. In
the current implementation of the framework it uses

a simple algoritm for chosing strategies based on
user-predefined priorities.

More details on dynamic replanning are presented in
(24). One example of using the dynamic replanning
technique is presented in the following section.

8 Experimental results

In this section, we provide a description of two
generic missions, instances of which were flown at
the Swedish Rescue Services Agency facilities in
Revinge in southern Sweden. The site, which is
usually used by firefighters and other emergency rescue
forces for training purposes, consists of a number
of building structures, a road network and different
types of terrain and vegetation (trees, bushes, etc.).
A 3D map of the area is provided by an onboard
geographical information system (GIS) which is used
by the path planner service to generate collision-free
paths according to the framework described in the
previous sections.

Figure 12: Mission 1. White solid arrow designates take
off and landing position. White dotted arrow points
to the target building. Gray polygonal area marks the
no-fly zone created above the ground station vehicle.
Solid line represents the actual flight path.

In the first mission, the UAV took off autonomously
and hovered. It then flew towards a building previously
designated by the ground operator. Upon arrival at the
building, it gathered video footage of all the facades. It
then flew back to home base and landed autonomously.
The operator’s task was to select a building of interest
using a ground station user interface. The information
was sent to the UAV and the mission plan was generated
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Figure 13: Mission 1. Images captured during the mission. Clockwise, starting from the upper left corner of the
figure: the North, West, South and Top view of the building.

on-board. As the helicopter was reaching successive
hovering positions in front of each facade and over the
building roof, the camera was controlled autonomously
to keep the object of interest in the center of the image.
This kind of mission was performed several times
with different buildings chosen as observation targets.
The logged flight-test data of one of the missions is
plotted on the map in Fig. 12. Fig. 13 presents several
frames taken from video footage from the mission
demonstrations.

The second mission demonstrates the use of the
dynamic replanning capability of the framework. The
flight started with autonomous take off, and the
helicopter began executing the planned path towards the
designated waypoints. After arriving at the first one,
the direction of flight changed to south and the ground
operator added a no-fly zone intersecting the flight path.

The information was sent to the helicopter and the
on-board system activated the replanning mechanism.
A new path was planned, and the flight continued
avoiding the no-fly zone. After the helicopter arrived at
the last waypoint, it was commanded to return to home
base and land. Fig. 14 shows the logged flight-test data
superimposed on the map of the area.

9 Conclusions and Future Work

A distributed hardware/software architecture has been
described which includes a framework for integrating
path planning techniques, a path following control
mode, and a path execution mechanism which allow
for UAV operation in obstacle-cluttered environments
in addition to dynamic replanning of flight paths. The
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Figure 14: Mission 2. White solid arrow designates take
off and landing position. Solid line represents the actual
flight path executed counter-clockwise. Gray polygonal
area marks the no-fly zone added during the flight by the
ground operator. Black dotted line shows invalidated
part of the path.

path planning algorithms are based on the use of
sample-based probabilistic techniques which sacrifice
completeness in plan generation for tractability. Details
of the path following controller are provided in addition
to experimental results using the framework. These
results show that the controller keeps the UAV within
one meter of the desired path during flights with a
velocity of 10 m/s.

The proposed method for 3D trajectory execution views
flight paths as sequences of segments where each
segment is incrementally fed to the path following
controller. This scheme supports dynamic replanning
and replacement of flight path segments (e.g. because of
adding no-fly zones). It also enhances the safety of UAV
operations. The self-contained PFC computer’s role is
to request subsequent segments as a mission flight path
is being flown. In cases where the new segments do
not arrive on time, the PFC automatically switches to
a hover control mode. This approach would help to
avoid situations where a longer path which is passed to
the controller becomes unacceptable as time progresses,
but due to communication failure with the rest of the
system, is not made aware of the problem. This could
lead to potentially catastrophic situations.

The systems and techniques described here have been
implemented and fully tested on our WITAS UAV
systems. The framework proposed allows for the
seamless coexistence of the hard real-time Control
Kernel and the soft real-time high-level deliberative

system by taking advantage of timing and other
characteristics of both.

The Control Kernel is in charge of flight mode
switching of the hybrid control system and coordinating
the real-time communication among other things. It
uses HCSMs to do this. The control kernel is
easily extendible and allows for the implementation
of additional functionality requiring a rigorous timing
regime.

The use of CORBA provides a straightforward means of
transparently distributing deliberative services such as
task- and motion planners across different processors in
a single platform, onto other airborne platforms or onto
different ground control stations. Task procedures are
used in the implementation of reactive behaviors which
provide the software and conceptual glue between the
lower control layer and the upper deliberative layer in
the architecture. Because CORBA is being used, both
reactive behaviors and deliberative functionalities can
be implemented in many different languages as long as
they have supporting IDL mappings.

Future work includes extending two of the services
used in the dynamic replanning technique, namely, the
Strategy Selector and the Strategy Library services.
On the hardware side, inclusion of additional sensors
necessary for perceiving the environment reactively are
planned. In order to enhance the autonomy of the
platform, the need for a 3D elevation map requirement
must be loosened. This can be achieved by adding
sensors enabling mapping and obstacle avoidance in
unknown and dynamic environments. A new and
enhanced version of the Control Kernel is also under
evaluation. Among other features, it introduces data
flow support into the state machine concept.
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Helicopter based on Vision and Inertial
Sensing
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Abstract. In this paper, we propose an autonomous precision landing method for
an unmanned helicopter based on an on-board visual navigation system consisting
of a single pan-tilting camera, off-the-shelf computer hardware and inertial sensors.
Compared to existing methods, the system doesn’t depend on additional sensors (in
particular not on GPS), offers a wide envelope of starting points for the autonomous
approach, and is robust to different weather conditions. Helicopter position and
attitude is estimated from images of a specially designed landing pad. We provide
results from both simulations and flight tests, showing the performance of the vision
system and the overall quality of the landing.

1 Introduction

Many autonomous landing systems for Unmanned Aerial Vehicles (UAVs)
are based on GPS and a dedicated close range sensor for accurate altitude
measurement (radar altimeter, sonar, infrared or theodolites). However, in
urban environments buildings and other obstacles disturb the GPS signal
and can even cause loss of signal (multi-path effects, EM noise due to ac-
tive emitters). Once the GPS signal is lost, the dead reckoning capability of
affordable on-board inertial navigation systems does not allow precision navi-
gation for more than few seconds, before diverging. Hence the need of a robust
observation of the position: a vision system is self-contained, not jammable,
and provides in the proposed implementation a position measurement one
order of magnitude more accurate than standard GPS (cm accuracy or bet-
ter). Estimating velocity from vision is difficult due to limited image frame
rate and sensor resolution. In the proposed method velocity is estimated ac-
curately and robustly by fusing vision position with the measurements of
inertial sensors that usually belong to the standard instrumentation of an
UAV for stabilization. The problem is to develop: (a) a vision system with a
sufficient operating range to allow robust pose estimation from a reasonable
distance at a sufficient rate with low latency using a landing pad of mini-
mal size; (b) a method to fuse these data with inertial measurements; (c) a
suitable flight controller. In an autonomous landing system all components
have to match each other. For instance, for calculating vision estimates a
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Fig. 1. The WITAS helicopter descend-
ing to the landing pad.

Fig. 2. Landing pad with reference pat-
tern seen from the on-board camera.

proper trade-off between accuracy, range, latency, and rate has to be found
optimizing the overall performance of the system.

Our method requires a special landing pad (Fig. 2). As unmanned heli-
copters usually operate from a designated home base this is not a real con-
straint. A precise and fast pan/tilt camera is used to extend the range of
the vision system and decouple the helicopter attitude from the vision field.
We developed a single camera solution, as multi-camera systems make the
system more complex and expensive and don’t offer significant advantages
when using known landmarks. For the experimentation we used a helicopter
platform (Fig. 1) which had been developed in the WITAS project [2,1].

Vision-based control of small size autonomous helicopters is an active
area of research. A good overview of the state-of-the-art can be found in
[7]. Our contribution to the landing problem consists of: (a) many demon-
strated landings with a system only based on images from a single camera
and inertial data using off-the-shelf computer hardware; (b) a wide envelope
of starting points for the autonomous approach; (c) robustness to different
weather conditions (wind, ambient light); (d) a quantitative evaluation of the
vision system and the landing performance.

2 Vision System

The vision system consists of a camera mounted on a pan/tilt unit (PTU),
a computer for image processing, and a landing pad (a foldable plate) with
a reference pattern on its surface. In this section, we explain the design of
the reference pattern, describe the image formation, and present the image
processing algorithm.

The reference pattern is designed to fulfill the following criteria: fast recog-
nition, accurate pose estimation for close and distant range, minimum size,
and minimal asymmetry. We have chosen black circles on white background
as they are fast to detect and provide accurate image features (Fig. 2). From
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the projection of three circles lying on the corner points of an equilateral
triangle the pose of an object is uniquely determined, assuming all intrin-
sic camera parameters are known. Circles are projected as ellipses, described
by the center point ue, the semi-major axis la, the semi-minor axis lb, and
the semi-major axis angle θe The pose of the landing pad with respect to
the camera coordinate system is estimated by minimizing the reprojection
error of the extracted center points and semi-axes of the three ellipses. We
use five circle triplets of different size (radius 2 to 32 cm, distance 8 to 128
cm) with common center point to achieve a wide range of possible camera
positions. Each triplet is uniquely determined by a combination of differently
sized inner circles.

A point px̃ in the landing pad frame is projected on the image plane as
follows:

ũ = P px̃ =

αu 0 u0 0
0 αv v0 0
0 0 1 0

 (
c
pR

ctp
0T

3 1

)
px̃ ũ ∈ P2 px̃ ∈ P3 (1)

The extrinsic camera parameters are given by the three Euler angles of the
rotation matrix c

pR and the three components of the translation vector ctp. We
use a camera model with the following intrinsic parameters: ”focal lengths”
αu and αv in pixels, principal point (u0, v0), and four lens distortion coef-
ficients . All intrinsic parameters are calibrated using Bouguet’s calibration
toolbox [3]. A conic in P2 is the locus of all points ũ satisfying the homoge-
neous quadratic equation ũTC ũ = 0. The transformation of a circle Cp on
the landing pad into an ellipse Ci in the image plane is given by[4]:

Ci = (H−1)TCpH
−1 (2)

The homography matrix H is the projection matrix P without third column
(z = 0). We calculate the ellipse center and axes from Ci and represent the
parameters in a common feature vector c.

Fig. 3 shows a data flow diagram of the vision system. Round-edged boxes
represent image processing functions, sharp-edged boxes indicate independent
processes, and dashed lines show trigger connections. Closed contours are
extracted from gray-level images using a fast contour following algorithm
with two parameters: edge strength and binarization threshold. The latter
is calculated from the intensity distribution of the reference pattern. In the
contour list we search for the three biggest ellipses belonging to a circle
triplet. Ellipse parameters are estimated by minimizing the algebraic distance
of undistorted contour points to the conic using SVD [4,6]. After having
found three ellipses, the corresponding contours are resampled with sub-pixel
accuracy. A coarse pose is estimated based on the ratio of semi-major axes
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Fig. 3. Dataflow in the vision system.

and circle radii. The estimation is optimized by minimizing the reprojection
error:

min
a

12∑
i=1

(
di − ci mod 4

σi mod 4

)2 d = (ue1, ve1, la1, lb1, · · · , ue3, ve3, la3, lb3)
σ = (σc, σc, σl, σl)
c =

(
ûe(a), v̂e(a), l̂a(a), l̂b(a)

) (3)

This function is non-linear and minimized iteratively using the fast-converging
Levenberg-Marquardt method [6]. It’s initialized with the pose parameters
from the first estimate. The uncertainties of the ellipse centers σc and axes σl

are known from separate noise measurements. Finally, the pose parameters
are converted to helicopter position and attitude using angles from the PTU
and known frame offsets and rotations. The PTU control runs in parallel to
the image processing using pixel coordinates of the pattern center as input,
aiming at centering the landing pad in the frame as soon as it’s localized.

Two methods for analyzing image intensities are implemented. The first
estimates the background intensity of the reference pattern based on the as-
sumption being the brightest surface in the image. When the landing pad is
detected, the second method is applied. It computes the background inten-
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Fig. 4. The filter architecture.

sity and the binarization threshold based on the intensity distribution of the
pattern. The exposure controller controls the camera shutter time and iris
aiming at keeping the background intensity in a certain range.

3 Sensor Fusion

The position and attitude estimates provided by the vision system can not
be fed directly into the controller due to their intrinsic lack of robustness:
the field of view can be temporarily occluded (for example by the landing
gear), the illumination conditions can change dramatically just by moving
few meters (sun reflections, shades, etc.). On the other hand, vision readings
are very accurate, when available.

Hence, a navigation filter based on a Kalman filter (KF) has been devel-
oped, fusing highly accurate 3D position estimates from the vision system
with inertial data provided by the on-board accelerometers and angular rate
gyros. Besides filtering out a large part of the noise and outliers, the filters
provides a satisfying dead reckoning capability, sufficient to complete the
landing even when the vision system is ”blind”1, see Fig. 8.

The implementation of the KF is done using the error state space or
indirect formulation with feedback mechanization (Fig. 4). The states of
the filter are the estimated inertial navigation system (INS) errors. The three
observations are given by the difference between the INS position and the
position from the vision system (lateral, longitudinal and vertical position
relative to the pattern). The advantage of the indirect formulation versus
the direct formulation (position, velocity and attitude are among the state

1 During the last 50 cm before touch down the vision system is often ”blind” due
to two factors: (a) the shade of the helicopter covers part of the pattern at touch
down, and (b) when the distance of the camera to the pattern is very small it is
very hard for the controller of the pan/tilt unit to keep the pattern in the picture.
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variables in the filter) lies in the fact that the INS errors have much slower
dynamics than the navigation variables and are very well described by linear
equations. In this particular application we have to deal with black-out cam-
era periods in the order of seconds. The indirect KF is quite robust in this
respect, in fact an effective indirect filter can be developed with a sample pe-
riods of the order of half a minute [5]. The estimated errors are fed back into
the mechanization algorithm to avoid unbounded growth of the INS errors.

The inertial measuring unit (IMU) used in this application is integrated in
the Yamaha Attitude Sensor (YAS) and it is composed of three accelerometers
and three rate gyros. The output rate is 200 Hz for the gyros and 66 Hz for the
accelerometers. The filter runs at 50 Hz and the inertial sensors are sampled
at the same frequency. Both gyro and accelerometer outputs are prefiltered
at 25 Hz to take into account the information available between the filter
samples.

The filtered IMU outputs are used in the INS mechanization step to cal-
culate the position, velocity and attitude by solving the inertial navigation
equations (4) where rn and vn are the position and velocity vectors, Cn

b is
the direction cosine matrix of the attitude angles. f b and Ωb

ib are the ac-
celerometers and gyros outputs, gn is the gravity vector and ωn

ie the Earth
rotation rate.

ṙn=vn

v̇n=Cn
bf

b−(2ωn
ie+ω

n
en)×vn+gn (4)

Ċ
n

b =Cn
b (Ωb

ib −Ω
b
in)

δṙ=−ωen×δr+δv
δv̇=−(ωie+ ωin)×δv−ψ×f+δa (5)
ψ̇ = −ωin ×ψ
δȧ = −βδa

Several filter configurations have been tested, the final implementation is
a 12-state KF with 9 navigation error states and 3 accelerometer biases. The
dynamic model of the KF is based on the error dynamics equations (5) where
δr, δv and ψ are the position, velocity and attitude error vectors and δa are
the accelerometer biases.

In Fig. 4 the filter architecture is shown. The black-out time (Tbo) is the
time elapsed since the last valid update. When a new update from the vision
system is available, it is first compared with the predicted position and if the
difference (∆P ) is smaller than the maximum allowed tolerance (∆max) it is
passed to the KF as a new observation. This consistency check is active only
if Tbo < Tlim1 because the uncertainty of the system increases each time the
update is not made. The KF prediction equations are applied at each time
step. When there is a black-out from the vision system the uncertainty of
the INS error system represented by its covariance grows unbounded until
it’s not possible to believe in it anymore. Tlim1 is the maximum black-out
time after that the new vision update is passed directly to the filter. The
covariance update equation reduces the covariance of the error system and
the decrease is large when the covariance of the measurement is small. The
covariance of the vision system measurement is quite small, this means that
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immediately after the update the uncertainty of the INS error system is low
and the consistency check can be activated again. Of course, it can happen
that the first update after the black-out is an outlier and in this case it can’t
be detected. For stability reasons the landing is aborted after a maximum
black-out time Tlim2 and the filter is reinitialized.

4 Flight Controls

The requirements set on the flight control system during landing are the
following:

1. The landing mode should be engaged from any point where the landing
pad is visible, that means approximately within a 20 m radius hemisphere,
centered on the pattern.

2. Once the landing mode is engaged, the helicopter state should be compat-
ible with the proper functionality of the vision system, until touchdown,
this means that during the approach phase the following should be con-
sidered : (a) the helicopter’s position and attitude should not be such
as to cause physical occlusion of the visual field; this may happen due
to the landing gear skids or the mechanical limitations of the pan/tilt
unit; (b) the regions where the accuracy of the vision system is worst
should be avoided, if possible; (c) the helicopter velocity and angular
rates should not saturate the pan/tilt unit capability for compensation:
too high angular rates of the visual beam may result in blurred images;
(d) the position of the dominant light source (sun) should be considered,
to avoid full reflections.

3. The wind direction has to be taken into account: tailwind landings should
be avoided.

4. The control system should be dimensioned for wind levels up to 10 m/s.
5. The engine should be shut down autonomously, once touch-down is de-

tected. The detection should be timely, since early detections cause high
touch down loads and late detections can cause ground resonance.

6. The vertical velocity at touch down should be of the same order of mag-
nitude as a proper manual landing.

In the following, the landing procedure is described. Fig. 5 shows the
sequence of control modes and the triggering conditions. As soon as the navi-
gation filter provides state estimates, the helicopter turns towards the pattern
to guarantee occlusion-free view of the pattern and flies to a point located
5 meters on the vertical of the desired touch down point (PTD). Once the
helicopter is on top of PTD, the heading is changed for landing, taking into
consideration the illumination conditions (sun from the side is optimal) and
the wind conditions (optimum with head-wind). The final descent is con-
ducted at a constant sink rate of 20 cm/s. At 8 cm from the ground, the
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Fig. 5. Mode sequence leading to touch down. Note that all transitions are one-
directional: once a mode is exited it can not be re-entered.

throttle command is ramped down, inducing loss of lift and touch down.

The control laws of the helicopter consist of an inner loop (pitch, roll and
yaw angle control, and vertical velocity control) and an outer loop (position
and velocity control). The inner loop consists of the Yamaha Attitude Control
System (YACS), the properties of which have been identified with a dedicated
system identification session. The control equations of the outer loop can be
summarized as following:

θC = KpxδX +KpvxδVX +KivxδVXsum

∆φC = KpyδY +KpvyδVY +KivyδVY sum

VZC = KivzδVZsum +Kpvz(VZtarget − VZ) (6)
VZtarget = limit(0.75δZ, VZmin, VZmax)

ωC = limit(Kpwδψ,−26 deg/s, 26 deg/s)

where the subscripted K are control gains, the δ are control errors, the
subscript sum indicates the integral terms, θC is the commanded pitch angle,
∆φC is the commanded roll angle variation, ωC is the commanded yaw rate
and VZC is the commanded vertical velocity2.

5 Experimental Results

The helicopter used for experimentation is a slightly modified Yamaha RMAX
(Fig. 1). It has a total length of 3.6 m (incl. main rotor) and a take-off weight
2 During the descent and touch down phases, the gains of the velocity terms (Kpvx

and Kpvx) are increased by one fifth and the integral terms in the horizontal
control are activated, for faster and more precise position control.
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Fig. 6. RMS error in horizontal (left) and vertical position (right) from simulation.

of 95 kg, including 30 kg available for payload. The vision navigation system
consists of two PC104 stacks with PIII 700 MHz processors, the inertial
sensors of the YAS, and a single standard CCD camera with approx. 45
degrees horizontal angle of view which is mounted on an off-the-shelf pan/tilt
unit (PTU). One of the two computers is dedicated to sensor management
and low level control of the helicopter, the other one for image processing and
control of the camera and the PTU. The two computers communicate over a
RS232C serial link. They are built inside a shock and vibration isolated box,
which also includes a precision GPS, a barometric altitude sensor, a compass,
a video recorder, a video transmitter, and a wireless Ethernet bridge. The
PTU is mechanically limited to 111 degrees tilt and ±180 degrees pan, the
max. angular rate is 300 degrees/s and the resolution 0.051 degrees. It is
mounted on a vibration isolating platform on the underside of the helicopter
body.

We estimated the RMS error of the vision system in position and atti-
tude depending on the relative position to the pattern in leveled flight. For
each position 1000 samples were generated using a feature noise model that
included noise from image formation, digitization, and segmentation. We de-
veloped a method to analyze noise in ellipse center position and semi-axis
length. Errors introduced by the transformation from the camera frame into
the body frame were not considered in simulation. Fig. 6 shows the RMS er-
rors (1σ) in horizontal and vertical position. The error doesn’t change much
in the simulated envelope (a 20 m radius hemisphere, with a ”blind” sector
from azimuth 0 to 15 degrees) due to different triplet sizes and sub-pixel
feature extraction. For pitch and roll the error behaves similar to the hori-
zontal error, with a maximum RMS value of ≈1 degree, the error in heading
is negligible.

The actual accuracy of the vision system was evaluated through an in-
flight comparison with a navigation solution based on the YAS and a precision
RTK GPS which supplied horizontal/vertical position with 10 mm/15 mm
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Fig. 7. Position and heading estimates
from the vision system vs. estimates
based on YAS and precision RTK GPS
observations.
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Fig. 9. Time histories and control modes
during autonomous landing. The dashed
lines show readings from a standard
INS/DGPS unit.

uncertainty (1σ). We found good agreement between measured and simulated
errors. Fig. 7 shows timeplots for distance, altitude, and pitch angle at typical
starting points for autonomous landing. Position and attitude estimates were
provided with an average rate of 20 Hz (using 384×288 pixels images) and
an average latency of 110 ms (including delays from capturing PAL signals).

Some tens of autonomous landings were conducted from different rela-
tive positions to the landing pad within the specified envelope, on grass and
snow fields, with different wind and illumination conditions. A sample of the
results is available in Fig. 10 . The vertical velocity at touch down ranged
between 18 and 35 cm/s, this corresponds to load factors of about 1.4 g on
grass fields. The horizontal velocity at touch down was in the order of mag-
nitude of 15 cm/s. The average touch down point precision was about 42
cm (13 % of rotor diameter). Thanks to the pan/tilt camera and a robust
controller, considerable wind levels can be handled. Successful landings have
been performed with wind levels on ground up to 30 km/h (2 min average),
with gusts of 45 km/h.
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Fig. 10. Flight test results from several autonomous landings.
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