
Linköping Studies in Science and Technology

Thesis No. 1248

The Use of Case-Based Reasoning
in a Human-Robot Dialog System

by

Karolina Eliasson

Submitted to Linköping Institute of Technology at Linköping University in partial
fulfilment of the requirements for degree of Licentiate of Engineering

Department of Computer and Information Science
Linköpings universitet

SE-581 83 Linköping, Sweden

Linköping 2006

The Use of Case-Based Reasoning in a
Human-Robot Dialog System

by

Karolina Eliasson

June 2006
ISBN 91–85523–78–X

Linköping Studies in Science and Technology
Thesis No. 1248
ISSN 0280-7971

LiU–Tek–Lic–2006:29

ABSTRACT

As long as there have been computers, one goal has been to be able to communicate
with them using natural language. It has turned out to be very hard to implement a
dialog system that performs as well as a human being in an unrestricted domain, hence
most dialog systems today work in small, restricted domains where the permitted
dialog is fully controlled by the system.

In this thesis we present two dialog systems for communicating with an autonomous
agent:

The first system, the WITAS RDE, focuses on constructing a simple and failsafe dialog
system including a graphical user interface with multimodality features, a dialog
manager, a simulator, and development infrastructures that provides the services that
are needed for the development, demonstration, and validation of the dialog system.
The system has been tested during an actual flight connected to an unmanned aerial
vehicle.

The second system, CEDERIC, is a successor of the dialog manager in the WITAS
RDE. It is equipped with a built-in machine learning algorithm to be able to learn
new phrases and dialogs over time using past experiences, hence the dialog is not
necessarily fully controlled by the system. It also includes a discourse model to be
able to keep track of the dialog history and topics, to resolve references and maintain
subdialogs. CEDERIC has been evaluated through simulation tests and user tests
with good results.

This work has been supported by the Wallenberg Foundation and the Swedish National
Graduate School for Computer Science (CUGS).

Department of Computer and Information Science
Linköpings universitet

SE-581 83 Linköping, Sweden

Acknowledgements

First of all I would like to thank my supervisor Erik Sandewall for giving
me free hands and believing in me. Without your gentle support and open
mind this work would not have been possible.

I would also like to thank all members of the Cognitive Autonomous
Systems Laboratory, both present members and past. I am especially grate-
ful to my dear friends Peter Andersson and of course Malin Alzén and
Susanna Monemar. Life in the laboratory is not the same without you!
Tobias Nurmiranta, thank you for still keeping me company and for the
valuable comments on this thesis.

A special thank you goes to Daniel Bergström who has inspired me
with crazy and creative thoughts and, most important of all, supported me
lovingly in times of low confidence and disbelief. Thank you.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research Challenges . 2
1.3 Research Contributions . 3
1.4 Publications . 5
1.5 Thesis Outline . 5

2 Language and Dialog 7
2.1 The Dream of the Talking Machine 7
2.2 Dialog Manager Foundations 8
2.3 Syntactic Models . 9

2.3.1 Syntactic Parsing . 9
2.3.2 Pattern Matching . 10

2.4 Dialog Models . 11
2.4.1 Dialog Grammars 11
2.4.2 Plan-Based Models of Dialog 11
2.4.3 Learning Dialog Policies 12

2.5 Dialog Histories . 13
2.6 Domain Models . 14
2.7 Dialog with Robots . 14

3 Planning and Learning 17
3.1 Problem Solving versus Planning 17
3.2 Learning . 18

vii

viii CONTENTS

3.3 Case-Based Reasoning . 19
3.3.1 Case-Based Planning 21
3.3.2 Conversational Case-Based Reasoning 22

4 State of the Art 25
4.1 The WITAS-Stanford Dialog System 25

4.1.1 The WITAS UAV System 25
4.1.2 The Dialog System 29

4.2 The SmartKom Project . 31
4.2.1 The Discourse Model 31

4.3 Robotic Dialog Systems . 34
4.3.1 Shakey . 34
4.3.2 KAMRO . 35
4.3.3 Jijo-2 . 36
4.3.4 Godot . 37
4.3.5 Carl . 38

4.4 Planning in Dialog Systems 39
4.4.1 TRIPS . 39

4.5 Case-Based Reasoning and Dialog 40
4.5.1 SiN . 41
4.5.2 The Discourse Goal Stack Model 42
4.5.3 Case-Based Dialog Systems 43

5 Phase I - The WITAS RDE 47
5.1 Background . 47
5.2 The WITAS RDE Architecture 47
5.3 The Autonomous Operator’s Assistant 48

5.3.1 The SGUI . 49
5.3.2 The DOSAR Dialog Manager 53

5.4 Simulations and Test Flights 59

6 The Research Problem for phase II 63
6.1 Ideas Behind the Research Problem 63
6.2 Problem Formulation . 64

CONTENTS ix

7 Phase II - CEDERIC 67
7.1 Introduction to CEDERIC 67
7.2 Design Choices . 70

7.2.1 The CBR Architecture 70
7.2.2 Case-Based Planning 71
7.2.3 Syntactic Model . 72
7.2.4 Dialog Model . 73
7.2.5 Dialog History . 73
7.2.6 Domain Model . 74

7.3 Discourse Model . 74
7.4 The Case Base . 77

7.4.1 Plan Case . 78
7.4.2 Plan Item . 80

7.5 Case-Base Manager . 83
7.5.1 Dialog Handling . 83
7.5.2 Syntactic Categorization of Words 84
7.5.3 Case Retrieval . 86
7.5.4 Case Reuse . 87
7.5.5 Replanning . 91
7.5.6 Case Retention . 94

7.6 Learning from Explanation 96
7.7 An Example . 97

8 Tests and Results 103
8.1 Development Tests . 103
8.2 Simulation Tests . 105

8.2.1 Scenario I . 107
8.2.2 Scenario II . 109
8.2.3 Results . 110

8.3 User Tests . 113
8.3.1 Results . 115

9 Conclusion 117
9.1 Retrospective . 117

9.1.1 Predecessors within WITAS 117
9.1.2 Robot Dialog . 118

x CONTENTS

9.1.3 Case-Based Reasoning and Planning 118
9.2 Main Results . 119
9.3 Future Work . 121

Bibliography 123

Chapter 1

Introduction

1.1 Motivation

Imagine that you are the organizer of a rescue mission in an area where a
gas leak has occurred. The gas is poisonous and you do not want to go too
close to the leak. To your help you have an autonomous unmanned aerial
vehicle (UAV). The UAV is autonomous to that extent that it can perform
missions and help you plan good moves. With your and the UAV’s joint
knowledge, you can search the area for people and trace the leak. You are
using your voice and a headset to communicate with the UAV while you are
busy working in the field yourself. It is not the first time you are operating
it and the dialog system that controls the UAV has adapted to your use of
language, and you hardly have to explain new words to it anymore. The
dialog between you and the UAV runs smoothly and you can concentrate on
the task at hand and do not have to use your mental resources on making
yourself understood. Once in a while however, the UAV misinterpret or
does not understand the phrase you communicate to it. When this happens
the system performs a guess built upon the information from the context,
previous dialogs and the words it understood. It presents the guess to you

1

2 1.2. Research Challenges

and asks you for confirmation. If the guess is correct, you confirm and the
dialog continues, and if it was wrong, you can correct it.

The benefit of a dialog system as the one just described is bigger than
the obvious convenience in that particular scenario. It is very convenient
to be able to control and interact with a system using natural language,
because it is the main way of communication for people. The system is
adapted to the preferred way of communication and the user does not need
to learn an artificial language. If a system can understand a large num-
ber of phrases and dialogs, is able to learn from explanation, can adapt to
its user, and is able to use both information from the context and from
the current phrase at hand for interpreting the meaning of a phrase and
react to it, then it is very adaptable to different tasks. It could be used
for communication with different robots in different situations such as ve-
hicles, kitchen machines and industrial robots, for communication with an
autonomous travel agent via a telephone or for controlling your personal
computer.

The system in the scenario is still far from reality, but it serves as an
inspiration and guideline for further research in the area. This thesis will
present two systems which ai mat taking one step closer to the scenario.

1.2 Research Challenges

One major issue regarding dialog systems is how to specify what input the
system understands and how it should react to it. Writing by hand a big
system that can interpret a large number of phrases is tedious and time
consuming. Further more, it demands a lot of knowledge about the domain,
and case studies may be necessary to cover the whole spectrum of dialogs
that may occur. Even if the system is well written and covers the current
aspects of use, it is still static and can not adapt to a new situation. It is
desirable to build a system that is flexible and adaptive to its environment.

The dialog system should also be able to understand and participate
in a natural dialog. That includes the ability to solve references to items
mentioned earlier in the dialog and to keep track of different subdialogs
within a dialog. It should also understand the main topic and goal of
the dialog to be able to react correctly. In addition to natural language,

Introduction 3

human operators often tend to use gestures, such as pointing on a location
on a map, when this feature is provided. A system that supports this
multimodal communication is desirable, specially when the operator may
want to talk about geographical information.

The following research challenges have been identified:

• The system needs to maintain a dialog history and to recognize the
topic and goal of the dialog.

• The system needs some kind of machine learning technique which
can increase the knowledge according to new experience over time.
Which machine learning technique is best suited and how can it be
integrated in a dialog system?

• To make effective use of the information in the system, it has to be
able to reuse and combine the information in different ways and in
various contexts. How can this best be done?

• Even if a good machine learning technique is implemented in the sys-
tem, it will not be able to handle every possible input. One solution
to this problem is to give the user the possibility to teach the sys-
tem new concepts and dialogs at runtime, adapting the system to the
user’s use of language and the task at hand. How can this be done
in practice?

• How can spoken natural language and other communication acts such
as pointing gestures be integrated to a dialog system?

If these questions can be solved, we are one step closer to a dialog system
that is more useful and more easily implemented and maintained.

1.3 Research Contributions

We have constructed two different dialog systems within the area of com-
munication and control of an unmanned aerial vehicle. The first system
called the WITAS RDE, focuses mainly on the first and the last research
challenge identified in the previous section. It is an attempt to construct a

4 1.3. Research Contributions

dialog system that is not more complicated than needed. The WITAS RDE
is, despite its simplicity, an ambitious project which includes a graphical
user interface with multimodality features, a dialog manager, a simulator
and development infrastructures that provides the services that are needed
for the development, demonstration, and validation of the dialog system.

The second dialog system is called CEDERIC. It is based on the dialog
manager in the WITAS RDE, and focuses mainly on learning and discourse
handling. It addresses all but the last research challenges listed in the pre-
vious section. The research contributions in the system can be summarized
as follows:

• Different machine learning algorithms have been investigated and
Case-Based Reasoning (CBR) has been chosen and integrated into
CEDERIC. CBR works both as a design architecture and as a tool
for adapting the system to new unseen phrases. The result is a dialog
system that is able to deal with phrases that have not been stored be-
forehand in the system. The new knowledge is stored and the system
performance improves over time.

• A discourse model has been integrated into the system, that keeps
track of the dialog history and topics, solves references and maintains
subdialogs.

• Case-Based Planning (CBP) has been investigated and implemented
in CEDERIC, which makes CEDERIC handle dialogs that it has
never seen before. By combining other dialogs using CBP, CEDERIC
can increase its capacity automatically, with no human involved in
the process.

• By specifying dialogs that guide the user through a learning phase
where the system asks questions about an unknown word or a phrase,
the system can learn from explanation and save the new information.
This makes the system adaptable to different person’s use of language
and to the task at hand.

• CEDERIC has been evaluated through several tests and has been
shown to work satisfactorily and to indeed implement the behavior
described in the items above.

Introduction 5

1.4 Publications

Parts of this thesis and predecessor versions of the CEDERIC system have
previously been published as follows:

[26] Karolina Eliasson. An Integrated Discourse Model for a Case-Based
Reasoning Dialogue System. SAIS-SSLS event on Artificial Intelli-
gence and Learning Systems, 2005.

[27] Karolina Eliasson. Integrating a Discourse Model with a Learning
Case-Based Reasoning System. DIALOR-05: the 9th Workshop on
the Semantics and Pragmatics of Dialogue, 2005.

[28] Karolina Eliasson. Towards a Robotic Dialogue System with Learn-
ing and Planning Capabilities. IJCAI Workshop on Knowledge and
Reasoning in Practical Dialogue Systems, 2005.

1.5 Thesis Outline

This thesis can be seen to consist of three parts:
The first part, consisting of chapter 2-4, provides background infor-

mation about dialog systems, machine learning, and planning. Chapter 2
gives an overview of the concepts and techniques in the dialog system area.
It explains the different parts that constitute a dialog manager and some
different techniques for implementing the parts. Chapter 3 describes the
foundations of machine learning and planning, in particular Case-Based
Reasoning and Case-Based Planning. Systems that have served as an in-
spiration within the dialog manager area and the machine learning area
are described in chapter 4. The WITAS UAV system, which includes the
platform and robot that our dialog systems are designed to connect to, is
presented in chapter 4 as well.

The second part describes the work that underlie this thesis. It has been
divided into two separate phases; phase I and phase II. In phase I the author
participated in the group that developed the WITAS RDE dialog system.
The experiences from that system influenced the work with a successor of
the WITAS RDE called CEDERIC, which is based on the WITAS RDE

6 1.5. Thesis Outline

but aims at somewhat different goals. The work with CEDERIC is called
phase II. The WITAS RDE is described in chapter 5. Chapter 6 states
the research problem for phase II and chapter 7 describes CEDERIC and
phase II in detail.

The third and last part, consisting of chapters 8 and 9, presents tests,
results and conclusions. Chapter 8 describes several different tests of CED-
ERIC and states the results in addition to comments about the performance
of the system. Chapter 9 concludes the thesis with a retrospective section
that compares CEDERIC with the systems described in chapter 4, a sec-
tion that states the main results and, a final section that suggests areas of
future work.

Chapter 2

Language and Dialog

2.1 The Dream of the Talking Machine

Ever since the dawn of the computer era, there has been a dream of creating
a machine that is as intelligent as a human being. It was thought that the
most obvious and natural way for the computer to manifest its intelligence
was using natural language, either text or speech. Alan Turing presented
his famous test known as the Turing Test in year 1950 [61]. The intention
of the test is to validate if a machine can pass for being a human being.
If so, the machine has accomplished true intelligence. When the test is
performed, a person is placed behind a computer screen. She can write
questions in natural language on the keyboard and answers appear on the
screen. The conversation goes on for a while and after finishing the person
has to guess if she was talking to a man or a machine. If she was talking to
a machine but guesses a man, the machine is considered intelligent. That
is, intelligence is measured by the performance of the interaction in natural
language. Turing predicted that in year 2000 there would be systems that
could fool the test person. Unfortunately he was wrong and no system has
yet succeeded in the Turing Test.

Historically, two different research directions concerning dialog systems
can be identified. The first one tries to develop a theory of dialog that

7

8 2.2. Dialog Manager Foundations

mimics human dialog as much as possible. Much work is done in coop-
eration with the human natural language community. Several logics have
been proposed as a formal language for dialog modeling and complex use of
dialog including different kinds of references and complex structures have
been given lot of attention [2], [33].

The second direction addresses the implementation of dialog systems
that can participate in a human dialog. These systems have traditionally
been simpler than the dialog theory, and the performed dialog has little in
common with dialog spoken between humans. These systems are typically
database question-answering systems [15] or frame-filling systems [18]. The
dialog in the former consists of the user asking questions to a database and
the latter performs dialog by asking the user for information and filling
in the information gathered in a frame. When all the slots have a value,
the system can search for an item that matches the user’s requests. This
technique has been useful in, for example, travel booking systems [17], [53].

In the middle of the nineties, the speech recognizers and speech gener-
ators became better and dialog systems using spoken language became a
popular research area, both in academia and in industry. This upswing in
the interest of dialog systems has led to better integrated systems where
ideas from the dialog theory have been integrated into actual performing
dialog systems [10].

2.2 Dialog Manager Foundations

A simple and common architecture for a spoken dialog system is shown
in Figure 2.1. The speech recognizer translates from speech to text and
returns the best match in text format. The dialog manager interprets the
meaning of the input and creates a suitable response. The response is
sent to a speech generator which articulates the response to the user. The
speech recognizer and the speech generator are often off-the-shelf prod-
ucts, but in some systems they are integrated with the dialog manager. In
a system where, e.g., the speech recognizer is integrated with the dialog
manager, information about previous utterances and expectations of the
continuation of the dialog, can be used to recognize and interpret the user
utterances. The disadvantage is a more complex dialog manager. This the-

Language and Dialog 9

Speech RecognizerU
S
E
R

Spoken Input Written Input

Written ResponseSpoken Response
Speech Generator

Dialog Manager

Figure 2.1: Architecture of a typical spoken dialog system.

sis is, however, mainly focused on a stand alone dialog manager as shown
in Figure 2.1.

The dialog manager is the engine of the dialog system. It interprets
the meaning or intention of the input from the user. The input can be a
continuation of an earlier input or refer to something mentioned earlier in
the dialog. It is the task of the dialog manager to solve references, unwind
the information behind the input and act on it. An action could be to ask
a clarifying question, to perform a database search and return the result,
or to send a command to the control system of a robot.

2.3 Syntactic Models

When the dialog manager receives the input, it first has to recognize the
words in the input. Without any knowledge about the words in the input,
the system can not interpret the meaning further. There are several meth-
ods for doing this, in particular syntactic parsing [4] and pattern matching.
Combinations of these and integration with the more semantic steps further
on in the work sequence occurs as well [21].

2.3.1 Syntactic Parsing

Parsing is the process of analyzing and recovering the syntactic structure
of a sentence given a grammar. The grammar consists of a lexicon and a
rule set. The lexicon lists all the allowed words and categorizes them into

10 2.3. Syntactic Models

groups such as nouns, verbs etc. Each word in the sentence is looked up in
the lexicon and tagged with the corresponding class. The tagged words are
then grouped together into phrases. A phrase could be, e.g., a noun phrase
or a verb phrase. The rule set indicates which classes of words have to
be present to form a phrase and in which order they should appear in the
sentence. The parser returns a parse tree if the sentence was syntactically
correct according to the grammar. The parse tree can then be used to make
a semantic analysis of the sentence.

Syntactic parsing gives an exact analysis of the syntactic structure which
can be very useful when the system has to distinguish between sentences
that are similar. One drawback is that all sentences which the system
should be able to interpret must be specified in the grammar. It is well
known to be both time consuming and difficult to cover all possible utter-
ances that the user may use when interacting with the system.

2.3.2 Pattern Matching

When pattern matching is used, the input sentence only needs to con-
tain some keywords to be considered a match. The system is equipped
with scripts that contain a sequence or a set of keywords. The sentence is
searched for the keywords and if all keywords are represented and no other
script matches the sentence better the sentence is considered a match and
a response can be generated automatically or information coupled to the
script can be used for further semantic analysis.

This method has some appealing advantages. It is easy to implement
and intuitively understandable. It can deal with a large range of different
input sentences, using one and the same script, hence it is no need to specify
all variants of accepted input on a more linguistic level. Adding new scripts
is easy and no special competence is needed by the software developer.
Unfortunately, it also has some drawbacks. It can not distinguish between
similar sentences with different meanings if the distinguishing word is not a
keyword. It also has problems if references are used that refer to a keyword
mentioned earlier in the dialog. Another drawback is that is does not create
detailed information about the composition of the sentence to be used in
the further steps of the dialog manager.

Language and Dialog 11

2.4 Dialog Models

For a dialog system to be able to participate satisfactorily in a dialog, it
has to be able to recognize and analyze different dialogs. Human dialogs
can be characterized by a sequence of speech acts, where a speech act is a
classification of the utterance. It can for example be a request, a question
or a reply. The dialog model of a dialog system works as a guide and
helps the system to characterize the input from the user and to perform an
appropriate response to the input.

2.4.1 Dialog Grammars

It has been suggested that a dialog can be represented theoretically by a
grammar in the same manner as a sentence can be represented in syntactic
parsing. The foundation of dialog grammars is the notion of adjacency
pairs which is built on the observation of regularities in a natural dialog,
e.g., that a question often is followed by an answer in a well defined dialog.
The question and the answer form an adjacency pair. The rules in a dialog
grammar state which communicative actions can form adjacency pairs and
hence states the sequential and hierarchical constraints on the dialog. An
adjacency pair or a number of adjacency pairs can be grouped together to
model the stage of the dialog so far, e.g., initiating and reacting stages. A
dialog can then be parsed using the grammar and a set of suitable system
responses can be found according to the past dialog.

Dialog grammars are easy to implement and to understand. The method
works well in small systems where the dialog is controlled and restricted.
It is however not suitable in a system where the user may merge several
communicative units into one utterance. Another severe drawback is that
the method does not include a rule for choosing between several possible
responses [23].

2.4.2 Plan-Based Models of Dialog

An essential concept in plan-based models of dialog [11], [29], [36] is the
notion of dialog acts. A dialog act is a speech act that occurs in a dialog
representing the intentional meaning behind an utterance, e.g., requesting,

12 2.4. Dialog Models

suggesting or confirming. An utterance from a speaker is more than just
a sequence of words, it is an action performed by the speaker to achieve
a goal. Several utterances in a dialog may be needed to achieve the goal
and the speaker plans the dialog acts according to the goal. A goal may
be to make the listener perform an action or to update the mental state of
the listener. The listener’s part of the dialog is to uncover the plan with
the corresponding goal and to respond appropriately to it. With this plan-
based approach, dialog acts can be seen as a special case of other actions
and action plans, and planning becomes an important issue. Planning is
a major area of research in the AI field and a lot of work can be found in
the literature. More information about planning can be found in the next
chapter. Other aspects of plan-based models is how the listener is affected
by the speaker’s plan or intentions and how they can carry out the dialog
with joint effort.

The advantage that the dialog can be treated as a special case of action
planning has some not so desirable side effects, namely the necessity of
a distinction between task-related speech acts and those used to control
the dialog, such as clarifications. Another drawback of plan-based models
of dialog is the lack of a theoretical foundation at present. The method is
purely procedural and the definitions of, e.g., plans and goals are vague [23].

2.4.3 Learning Dialog Policies

Modeling dialog by hand, as is necessary in dialog grammars and plan-based
models of dialog, is difficult and demands rigorous tests and feasibility stud-
ies. One approach to overcome these problems is to use machine learning
techniques to learn the best dialog strategy, as described in [40]. The
machine learning technique most often used is Markov Decision Processes
(MDP) and a corresponding reinforcement learning algorithm to estimate
the optimal strategy [3]. When modeling the dialog system as an MDP
problem one has to describe it as a sequential decision process in terms of
its action set, state space and strategy. The action set consists of all the
actions the system can perform, e.g., communication actions or database
lookups. The state space is all states the system can be in. A state in-
cludes the values of all the variables that determine the next action. The
strategy defines, for each state, which is the optimal next action to per-

Language and Dialog 13

form. By using a reinforcement learning algorithm, the strategy, or policy,
that is the most optimal for each state can be learnt from examples and
cost/reward measurements. The learning phase demands a large number
of test dialogs, that can not be directly taken from a corpus because the
system may give a different response to an input than what is specified by
the corpus dialog. This can be solved by using a human test person but the
testing is time consuming for a human to perform. The general solution is
to build a simulated user who can interact with the system during the test
phase.

The problem increases rapidly with the size of the action set, and a big-
ger action set demands a longer learning phase with more complex learning
examples. Therefore, a handcrafted policy is often used when no ambiguity
is present. Learning dialog policies has been shown to be a good method to
find out which strategy to choose when several different dialog acts can be
performed. The problem can, e.g., be to choose between a phrase that asks
for several values at the same time, such as a date, or to ask one restricted
question for every value, such as asking for the day and month separately.
Some work in the field can be found in [32], [40], [58], [62]. Besides scal-
ability problems, the approach also has some drawbacks regarding dialog
phenomena such as references, and it does not provide any guidelines about
what information to include in a state and what possible actions a domain
may have.

2.5 Dialog Histories

A dialog history or discourse model is a model of the contents of the di-
alog up to a given point. It is used mainly to solve references to objects
mentioned in earlier utterances, but could also be useful to keep track of
different ongoing dialogs with different topics. A dialog history can vary
in complexity and level of detail. A simple solution is to save all the ob-
jects mentioned in the dialog on a stack, sometimes called a salience list,
and assume that all references refers to the last mentioned object. A more
sophisticated solution is to save the dialog histories as a tree, where a new
dialog is started when the topic changes. The dialog tree can have several
levels of information, e.g., the dialog level which models the overall topic of

14 2.6. Domain Models

the dialog, the speech act level which models the information in the speech
act and the object level which models the objects mentioned in the dialog
and their attributes [52]. The different levels give information about the
whole dialog, which utterances that are semantically close together because
they handle the same topic and more detailed information about words that
may be referred to later on in the dialog.

2.6 Domain Models

A domain model consists of the domain knowledge of the world that is
described in the system’s input and where the system is required to react
in a proper manner. The knowledge is often used to connect the natural
language to the back end system, e.g., a database or a robotic control
system. There are no well defined general domain models in the dialog
literature, and the domain models in actual systems range from non existing
to full-fledged world models with reasoning capabilities. However, some
general ideas can be seen in various dialog systems. General knowledge
about objects and relations in the world can be modeled using an ontology,
represented in, e.g., XML. Specific knowledge can be stored in the lexicon
of the grammar as in WAXHOLM [21].

2.7 Dialog with Robots

Using natural language for interacting and controlling a moving robot de-
mands some additional considerations regarding the design of the dialog
system. An important aspect is robustness of the system, due to the real
world application of the robot [35]. Another aspect to consider is the dy-
namic environment, which may lead to the necessity of a large number of
different types of dialogs and may require a flexible dialog system that can
deal with rapidly changing dialog topics [37]. A third issue is the adapta-
tion to the ever changing dynamic environment. Some learning strategies
have been implemented in ground robots such as Carl [41] and Jijo-2 [16],
see section 4.3 for a more detailed description of the systems.

A big issue in robotic dialog systems is how to integrate multimodal-

Language and Dialog 15

ity into the systems [37]. Multimodality is the concept of using several
communication medias, such as gestures on a touch screen or selection of
items from a menu in collaboration with natural spoken language. In many
applications, pointing on an item or spot to select it is a very natural way
of communication, and a system that handles speech alone seems too com-
plicated in such situations.

16 2.7. Dialog with Robots

Chapter 3

Planning and Learning

3.1 Problem Solving versus Planning

Problem solving and planning are two related concepts for reasoning in an
agent. By problem solving one often means searching for a solution to a
problem in a search space consisting of situations, using a search algorithm
such as breadth first or A*. Planning can be viewed as a type of problem
solving in which the agent uses beliefs about actions and their consequences
to search for a solution. Problem solving and planning are similar in the
sense that they both start with an initial state and try to find a solution
to some problem. Problem solving can be performed in several different
manners, e.g., a search in the search space from the initial state to the goal
state, possibly using a heuristic function. The path from the initial state to
the goal state is the solution to the problem. Problem solving can also be
performed using reasoning techniques such as logic or rule based systems.
Planning is a special form of search based problem solving. The main idea
is similar where the solution is a plan from the initial state to the goal
state. However, in search based problem solving, the solution is built up
incrementally from the initial state to the goal state, which can be very
resource consuming in large search spaces. In planning, the planner is free
to add actions to the plan wherever they are needed. Several subplans can

17

18 3.2. Learning

be constructed separately and merged at a later time. Another difference
is the representation of states, goals, and actions. In problem solving,
they are considered as ”black boxes”, but in planning, they are defined
by some formal language, where an action usually consists of an action
description, preconditions, and effects. A well known formal language for
planning, which has served as a foundation for several other languages, is
the STRIPS language [30]. An introduction with references to problem
solving and planning can be found in [4].

3.2 Learning

Machine learning techniques enable a program to improve automatically
with experience. We do not yet know how to design computers that learn
as well as people do, but in certain types of areas there exist fairly efficient
learning algorithms. Speech recognition is an example of an area where
machine learning techniques outperform all other approaches that have
been attempted [6].

Most learning algorithms need a training phase during which the sys-
tem is given a number of training examples. Often the training examples
consist of a problem formulation and a solution to the problem. The task
of the learning algorithm is to induce general functions from these specific
training examples. When the learning phase is completed, the general func-
tions obtained are fixed and new problems are evaluated using these func-
tions. No new information can be learnt after the training phase. However,
since the machine learning area is broad and interdisciplinary, and draws
on concepts from many fields, including statistics, artificial intelligence,
philosophy, information theory, biology, cognitive science, computational
complexity, and control theory, the various proposed algorithms differ sig-
nificantly from each other. Well known machine learning algorithms are
decision-tree learning, artificial neural networks, rule-based learning and
bayesian learning. See the textbook Machine Learning by Tom Mitchell [6]
for an introduction to the area.

Planning and Learning 19

3.3 Case-Based Reasoning

Case-Based Reasoning (CBR) is a machine learning method and a prob-
lem solving algorithm used both for standard classification problems and
other learning and problem solving methods where the knowledge base is
increased over time. Using CBR, a system is able to learn from experi-
ence even when the training phase is completed because it uses specific
information instead of general knowledge as usually used in other machine
learning methods. In this way it does not have to construct a set of general
functions from the specific examples, but stores the specific cases as they
are in a case base. The actual learning computations are performed for
every new problem that enters the system. This is called lazy learning, in
contrast to eager learning as used by most other learning algorithms.

The method originates from studies of dynamic memory [1] and is
greatly influenced by cognitive psychology. The main idea is to solve a
new problem by remembering a similar situation and reusing information
from that situation. The information or knowledge gathered is stored in
the case base. Each case in the case base has a problem part and a corre-
sponding solution part.

The CBR cycle described by Agnar Aamodt in [8] and shown in Fig-
ure 3.1 consists of four processes:

• Retrieve the most similar case or cases.

• Reuse the information and knowledge in that case to solve the prob-
lem.

• Revise the proposed solution.

• Retain the parts of this experience likely to be useful for future prob-
lem solving.

A description of a new problem enters the system and constitutes a
new case. The information in the new case is used to retrieve an old
case from the case-base, which is similar to the new case. The retrieved
case is combined with the new case through reuse into a solved case, i.e.
a proposed solution to the new problem. In the revise process the new
solution is tested by evaluation. If it fails, it is repaired, and an opportunity

20 3.3. Case-Based Reasoning

 New Case

 Adapted CaseTested/Repaired
 Case

 Learned Case
 New Case

Retrieved Case

Previous Cases

+

General Knowledge

RETAIN

REVISE

REUSE

RETRIEVE

Figure 3.1: The CBR cycle.

for learning from failure arises. In the retaining process, useful experience
is retained for future reuse, by saving it in the case base.

The two most problematic processes are the retrieve process, where the
most similar or suiting case in the case base is found, and the reuse process,
where the solution in the similar case is combined and adapted to be able
to solve the new problem.

In the retrieve process, the problem description is examined. Some
descriptors may have a higher information gain according to the problem

Planning and Learning 21

than other. The sifting process may need some general knowledge about
the domain in which the system operates. When the descriptors are ranked
according to their importance, the search for a similar match can begin.
Similarity can be based on superficial, syntactical similarities or on deeper,
semantical similarities. Syntactical similarities can often be obtained by a
simple equality function, but semantical similarities demand more sophis-
ticated similarity functions. General knowledge may be used to guide the
search and to assess the degree of similarity. Cases may be retrieved solely
from input features, or also from features inferred from the input.

The reuse process can be performed in several different manners. In
simple classification problems, the solution of the old case can be used
directly as a solution to the new case, because if the cases are considered
similar, they belong to the same class. If the old solution is not directly
applicable, an adaptation process has to be performed. A solution can be
adapted in two different ways:

• reuse the old case solution or

• reuse the old method that was used to construct the solution.

In the first approach, a set of operators have to be defined for the trans-
formation. These operators transform the old solution to a solution that
solves the new problem. One way to organize them is to index them around
the differences between the old and the new case. The latter approach looks
at how the problem was solved in the old case and adapts the method that
constructed the solution. Information about the solution strategy and jus-
tifications for the methods used are parts of the solution of a problem, and
can be adapted by the system.

3.3.1 Case-Based Planning

In Case-Based Planning (CBP) [43], [59], CBR is used as a planning method,
not only as a problem solving method. A case is made up by the following
parts:

• A Problem Part consisting of information about the initial state and
the goal.

22 3.3. Case-Based Reasoning

• A Plan which is a sequence of actions or decisions that solve the
problem.

The similarity function does not only depend on the problem part in this
case, but the plan of the found case should be easy to adapt to the new
problem. When reusing an old plan, the decisions that were made and
stored in the plan are replayed and some decisions can be reused while
the remaining decisions are taken by replaying another case, or by using a
generative planner.

3.3.2 Conversational Case-Based Reasoning

CBR has been used in various domains, and a subarea of CBR called Con-
versational Case-Based Reasoning (CCBR) has arisen [9]. It was the first
widespread commercially successful form of CBR. The CBR methods de-
scribed above rely on the user to provide complete knowledge about a
problem, but this is not always possible in practice. In many domains, the
user does not know all the features of the problem or does not know in
which form she should provide them to the system. CCBR uses written
dialog in natural language to query the user for more information about
the problem. It also uses human-in-the-loop for finding similar cases, by
showing the user a set of similar cases and letting the user choose the best
one.

A case in CCBR consists of the following parts:

• A Problem Part consisting of a partial description of the problem and
a specification, which is a set of <question, answer> pairs.

• A Solution Part which is a sequence of actions responding to the
problem.

The user provides the system with the initial description of the prob-
lem in written natural language. The system uses pattern matching, see
section 2.3, to extract feature values from the input. These features and
values constitute the initial problem. The system compares the initial prob-
lem formulation with the problem part of the cases in the case base and
rank them according to similarity. The solution to the most similar cases

Planning and Learning 23

are displayed in a graphical representation to the user, together with a
selection of questions which ask for values of distinguishing features. The
answers to the questions can be used to further distinguish the cases and to
add information to the problem formulation. The user can choose either to
directly select a solution which ends the interaction sequence, or to answer
one of the questions. If a question is selected and answered, the feature and
the answer are added to the problem formulation, and the system starts
to search for similar cases again. The system loops until the user selects
a solution or until there is only one possible solution. It can also detect if
there is no solution to the particular problem in which case it will inform
the user.

The major difficulties when using CCBR are how to rank the cases by
similarity and how to rank the questions by importance and capability to
distinguish between similar cases.

The dialog in CCBR is in a simple question-answer form. Current
CCBR systems do not provide any support for references or subdialogs.

24 3.3. Case-Based Reasoning

Chapter 4

State of the Art

4.1 The WITAS-Stanford Dialog System

The main goal of the WITAS project [24] is to develop an integrated hard-
ware/software VTOL (Vertical Take-Off and Landing) platform for fully
autonomous missions and its deployment in applications such as traffic
monitoring and surveillance, emergency services assistance, photogramme-
try and surveying. The project is an umbrella for several multi-disciplinary
research areas such as UAV control, robot architectures [25], planning [51],
image processing [50], and dialog systems for support of ground operation
personnel. Several dialog systems have been developed within the project,
each of them with different strengths and weaknesses. The dialog systems
are presented in section 4.1.2, chapter 5 and chapter 7.

4.1.1 The WITAS UAV System

The particular aspect of WITAS that is relevant here is the dialog system.
However we provide an overview of the WITAS UAV system background.

The hardware currently used is a modified Yamaha RMAX radio con-
trolled helicopter, shown in Figure 4.1. It has a total length of 3.6 m and
a maximum take-off weight of 95 kg. A video camera and three embedded

25

26 4.1. The WITAS-Stanford Dialog System

Figure 4.1: The WITAS Yamaha RMAX helicopter.

computers are mounted on the helicopter along with a number of sensors
including a GPS, a compass, and a barometric altitude sensor.

Several different control modes including a high-level interface to the
control system are implemented in the agent architecture [25]. The follow-
ing flight modes has been implemented and tested:

• autonomous take-off and landing via visual navigation

• autonomous hovering

• autonomous dynamic path following

State of the Art 27

• autonomous reactive flight modes for interception and tracking.

A task procedure (TP) is a computational mechanism which implements
a behavior intended to achieve a goal in a limited set of circumstances. A
TP can be called, spawned or terminated by an outside agent or by other
TPs. In our system, a TP can, e.g., call a path planning service or call one
of the flight modes described above.

The architecture contains two information repositories:

The Knowledge Structure Repository. This repository contains high-level
deliberative services such as the task planner and the chronicle recog-
nition packages. It also includes the Dynamic Object Repository
(DOR). The DOR is a database containing moving objects recog-
nized by the vision system.

The Geographic Data Repository. The static geographic data of the en-
vironment is stored in a Geographic Information System (GIS). It
includes a highly accurate terrain model with decimeter precision in
the x, y and z directions and equally accurate models of buildings
and road structures. The GIS is used by the path planner [51] which
is called with two waypoints and optional constraints as parameters
and generates a collision free and smooth path between them.

System tests have been performed in Revinge in southern Sweden, where
an emergency services training school is located. The area consists of build-
ings and roads and is well suited for realistic test mission flights. Several
high-level autonomous flights have been performed such as tracking of a
moving car and autonomous take-off and landing including a flight where
the flight plan was created by the path planner.

Within the WITAS project, several dialog systems with various capabili-
ties have been developed. The first WITAS Dialog System [37], [38], [39], [55],
described in section 4.1.2, was a system for multi-threaded robot dialog us-
ing spoken I/O. The WITAS Robotic Dialog Environment (RDE) [55], [56],
described in chapter 5, is a new implementation using another architecture
and a logic base. CEDERIC is another dialog manager that partly use the
same components as the WITAS RDE. It focuses on integrating machine
learning features into a dialog system.

28 4.1. The WITAS-Stanford Dialog System

Video Link Data Link

WITAS Ground Station Dialog Ground Station Mobile Terminal

Data Link Data Link

Video Link Video Link

WITAS UAV

Figure 4.2: The WITAS system setup.

The various dialog systems have the same connection interface to the
UAV. The UAV communicates with a ground station using three indepen-
dent communication channels. The first one is a simple remote-controlled
channel provided by the manufacturer. The second is a two-directional
data link for downloading various data and uploading commands to the
helicopter. The third is a video link sending a composite video stream
from the onboard camera to the ground personnel. The dialog system con-
sists of a mobile terminal running a user interface, and a dialog ground
station running the dialog manager and a video server. When the operator
issues a command to the helicopter it is sent from the mobile terminal to
the dialog ground station, and further to the UAV ground station where it
is checked by a human supervisor. If it passes the check it is sent to the

State of the Art 29

UAV onboard system for execution. The WITAS system setup is shown in
Figure 4.2.

4.1.2 The Dialog System

The WITAS-Stanford Dialog System [37], [38], [39], [55], was developed by
Lemon and Peters et. al. at Stanford University. It was the first dialog
system created for the WITAS domain within the project. The system
focuses on the following requirements:

• Asynchronicity: events in the dialog scenarios interesting to the dia-
log system can happen at overlapping time periods.

• Mixed task-initiative: both the operator and the system may start a
new dialog thread.

• Open-ended: there are no clear start and end points for the dialog and
subdialogs, nor are there rigid pre-determined goals for interaction.

• Resource-bounded: participant’s actions must be generated in time
enough to be effective dialog contributions.

• Simultaneous: participant can produce and receive actions simulta-
neously.

To meet these challenges, a flexible architecture which can coordinate mul-
tiple asynchronous communication processes, is needed. The dialog system
is made up by several agents, connected using the Open Agent Architec-
ture [42]. The most important agent is the dialog manager. It creates and
updates an Information State corresponding to a notion of dialog context.
Dialog moves performed by the robot or the operator have the effect of
updating information states. An information state consists of the following
structures:

• Dialog move tree: a tree that represents the structure of the dialog
by way of conversational threads, composed of the dialog moves of
both participants, and their relations.

30 4.1. The WITAS-Stanford Dialog System

• Activity tree: a tree that represents hierarchically decomposed tasks
and plans of the robot, and their states.

• System agenda: a list of the planned dialog contributions of the sys-
tem and their priorities.

• Pending list: a list that represents open questions raised in the dialog.

• Salience List: a priority-ordered list of the objects referenced in the
dialog thus far. This list also keeps track of how the reference was
made. It is used for identifying the referents of anaphoric and deictic
expressions and for generation of contextually appropriate referring
expressions.

• Modality Buffer: a buffer that keeps track of the mouse gestures until
they are either bound to deictic expressions in the spoken output or,
if none such exists, are recognized as purely gestural expressions.

• Databases: dynamic objects, planned routes, geographical informa-
tion, and names.

The dialog manager is able to support commands, questions, revisions,
and reports, over a dynamic environment. It performs mixed-initiative,
open-ended dialogs and operates in an asynchronous, real-time, multimodal
fashion. It also performs constraint negotiation and implements interleaved
task planning and execution. A Graphical User Interface which allows
deictic reference such as mouse pointing from the user and displays route
plans, waypoints and locations of vehicles including the robot has been
developed as part of the system.

An evaluation of the system was conducted, measuring task completion
rates for novice users with no training. 55% of novice users where able to
complete their first task successfully, rising to 80% by the fifth task.

The most notable difference between the WITAS-Stanford dialog system
and other dialog systems is the absence of predefined plans or patterns due
to the use of Information States which provides a flexible way to process
the conversation.

State of the Art 31

4.2 The SmartKom Project

SmartKom [7] is a multimodal dialog system combining speech, gesture
and facial expression input and output. The user can operate the system
by using a combination of spoken language, gestures and facial expressions.
The graphical user interface includes an animated life-like character called
Smartakus, who presents the output using graphics of various kind, ges-
tures and speech. The main goal of SmartKom is to support the access to
knowledge-rich services, using spoken language, gesture, and facial expres-
sion in a coordinated and intuitive way. SmartKom defines three different
scenarios where the dialog may be useful:

• SmartKom-Public: The public scenario describes a multimodal com-
munication booth which provides access to information concerning
hotels, restaurants, and entertainment.

• SmartKom-Mobile: The mobile scenario describes a PDA version pro-
viding a navigation system both for car drivers and pedestrians.

• SmartKom-Home: The home scenario describes a service portal that
permits the controlling of, e.g., TV, VCR, telephone and e-mail, and
gives access to various information sources such as TV guides.

One of the long term goals in SmartKom is to develop a reusable mul-
timodal dialog backbone with a generic discourse model.

4.2.1 The Discourse Model

The dialog system in SmartKom does not use a conventional dialog man-
ager as seen in other applications. Instead the dialog manager is split up
into a discourse modeler and an action planner. The system is multimodal
and both speech, gestures and facial expressions are taken into consider-
ation. An input from the user is analyzed separately in various analyzers
depending on modality. Each analyzer provides a hypothesis of the seman-
tic meaning of the input as well as a confidence score. Hypotheses from
the different analyzers are brought together in the modality fusion. The
discourse modeler ranks and selects, based on the scoring from all analy-
sis components, the most probable hypothesis which is then passed on to

32 4.2. The SmartKom Project

the action planner. The action planner handles the input according to the
hypothesis and passes presentation goals on to the presentation manager
and publishes expectations regarding the following user input. The pre-
sentation manager plans the output depending on available and suitable
modalities.

The system uses a rich ontology including processes and objects, which,
e.g., gives a complete description of an action such as browsing a database.

The discourse model in the SmartKom project is responsible for the
following main tasks:

• The enrichment and validation of intention hypotheses, i.e. determin-
ing the user’s intention by validation and enrichment of the intention
hypotheses from the analyzers. The enrichment is performed by using
information from the preceding discourse.

• The resolution of referring expressions, i.e. the user has uttered a
referring expression that is not accompanied by a deictic gesture.

Both tasks need access to a multimodal contextual representation of the
preceding discourse.

The context representation of the discourse model is separated into
three different layers:

• The Modality Layer.

• The Discourse Object Layer.

• The Domain Object Layer.

The Modality Layer consists of objects encapsulating information about
the concrete realization of a referential object depending on the modality
of representation. Corresponding to the three different types of modality,
the modality layer has three different types of objects:

• Linguistic Objects (LOs). For each occurrence of a referring expres-
sion in a generated or interpreted utterance one LO is added.

• Visual Objects (VOs). For each visual presentation of an object that
can be referred to one VO is added.

State of the Art 33

• Gesture Objects (GOs). For each gesture performed either by the
user of the system one GO is added.

Each modality object is linked to a corresponding discourse object.
The Discourse Object Layer is the most central structure in the context

representation. It consists of objects that represent concepts participating
in the communication and that can be referred to by other referring ut-
terances. When the concept is introduced for the first time, a discourse
object (DO) is created. Every DO is unique and if the concept is referred
to, an object in the modality layer is created and linked to the DO. The
discourse object layer can handle composite objects and references to ob-
jects within a composite object. A composite object is called a partition.
A DO that contains a partition is created to model the composite object as
a whole, e.g., a list structure. It has pointers to other DOs that represent
the individual items within the object, in our example the items in the list
structure. In this way, individual objects as well as the composite object as
a whole can be referred to by the user. This structure is useful, e.g., when
the system utters an enumeration of objects and the user chooses one of
them by saying, e.g., the second one.

The Domain Object Layer provides the mapping between a DO and
instances of the domain model. For each user or system intention at least
one domain object exists which describes the intention. This representation
is anchored in the structure of the dialog, which is represented in terms of
turns. A turn starts when a speaker starts to speak and ends when she
stops speaking and another speaker takes the turn by start speaking.

The different turns in a dialog are represented in a global focus stack.
The global focus stack consists of global focus spaces, where each focus
space covers the turns of the dialog participants belonging to the same
topic. In addition, there is a local focus stack responsible for the access to
the discourse objects. A local focus space contains pointers to discourse
objects that are antecedent candidates for later reference. Every global
focus space has a pointer to the corresponding local focus. Several different
dialogs can be active at the same time in the global focus stack.

To group the turns in a dialog together topically, simplified, non-hierarchical
initiative-response units are used. The initiative-response units restrict the
access to possible referents and provide structure to the global focus stack.

34 4.3. Robotic Dialog Systems

The most recently used global focus space is on top of the stack and cur-
rently in focus. If an utterance enters the system and does not fit that focus
space according to the initiative-response units and overall topic of the di-
alog, then other open global focus spaces are examined. If the utterance
matched another focus space, it is moved to the top of the stack. In this
way, several dialogs can be open and ongoing at the same time. A dialog is
considered closed if the focus space only contains closed initiative-response
units, i.e. every utterance has got a corresponding matching response ut-
terance.

4.3 Robotic Dialog Systems

Robotic dialog in general, and some main questions at issue are presented
in section 2.7. Even if dialog systems and robotics are two major areas
in Artificial Intelligence, they have been studied rather independently in
the past. However, some work has been done in the field of robotic dialog
systems over the years. In this section we present some projects and robots,
which have integrated a dialog system with a physical robot. Apart from
the systems presented here, the WITAS-Stanford Dialog System presented
in section 4.1.2 is an interesting example of a robotic dialog system.

The WITAS-Stanford Dialog System, Shakey, and KAMRO are exam-
ples of robots that integrate a dialog system as an interface to the robotic
control system. Jijo-2, Godot, and Carl are examples of robot systems that
integrate some element of learning from explanation using dialog in spoken
natural language.

4.3.1 Shakey

The famous robot Shakey [49], was developed at the Artificial Intelligence
Center at SRI during the years 1966 to 1972. Shakey was an embodied
physical robot with two drive wheels, a video camera, a range finder sensor
and bump sensors. It could perform tasks that required planning, route-
finding, and rearranging of simple objects. Shakey was the first robot that
could claim to reason about its actions. The planner used was an imple-
mentation of the STRIPS language mentioned in section 3.1. Shakey was

State of the Art 35

able to visually interpret its environment, to locate items, navigate around
them, and to understand simple commands given in natural language.

4.3.2 KAMRO

KAMRO [35] is a robot developed within the VITRA project. It is a
two-armed robot-system with sensors for navigation, docking, and manip-
ulation. KAMRO works in the workbench domain where the two arms are
used to grasp and move objects such as shafts, levers, and spacing-pieces.
The main issue of the VITRA project is to bridge the gap between natural
language and vision.

KAMRO does not use natural language only as a command language,
but the robot can participate in a dialog with the user to resolve ambiguities
and misunderstandings. KAMRO uses a dialog system called KANTRA.
The following situations have been identified where natural language can
be useful within the project.

• Task specification: The operator can give commands to the robot at
several different levels of abstraction: from high-level commands like
assemble benchmark, implicit robot operations, e.g., pick side-
plate, to explicit robot operations like grasp.

• Execution monitoring: An autonomous system is able to plan an
execution of a high-level command on its own. It can however be
interesting for the operator to be informed about what the robot is
actually doing.

• Explanation of error recovering: An autonomous system that is able
to detect errors and recover from them may not behave as expected
from the operator’s point of view. The ability to explain how and
why plans have been changed may increase cooperativeness.

• Updating and describing the environment representation: Since the
visual field of an autonomous mobile is restricted, some information
about the physical world may be missing in the robot’s representation
of the world. The operator can aid the robot in maintaining the
world representation by providing additional information in natural

36 4.3. Robotic Dialog Systems

language. The other way around, the operator should also be able to
ask for a verbal description of the scene.

KANTRA is able to perform a dialog in natural language in the above
described situations. Spatial reasoning is used to be able to understand
utterances such as near the spacing-piece.

4.3.3 Jijo-2

Jijo-2 [16] is an office-conversant robot, which serves as a platform for the
research towards socially embedded learning. Socially embedded learning
means that the system learns through a close interaction with its social
environment, including one or several teachers.

The robot used in the project is a mobile robot which autonomously
walks around in an office environment, actively gathers information by
sensing multimodal data and engaging in dialog with people in the office,
and acquires knowledge about the environment with which it ultimately
becomes conversant. The main goal is not for the robot to learn lower level
functions but to learn, e.g., topological and geometric information in the
environment from a teacher in combination with own experiences.

The robot is equipped with various sensors such as ultrasonic sonar,
a microphone, a camera, and a speech synthesizer. The speech signals
recorded by the microphone are transmitted to a host computer via a radio
transmitter. To be able to learn map information, the robot can ask ques-
tions and ask for guidance from a human teacher. A typical conversation
can start with a command from the teacher, where she wants the robot
to go to someone’s office. If Jijo-2 does not know where the office is, the
teacher can give commands such as go straight and guide the robot to
the office. During the learning phase, the robot is building a map over the
traveled area, using a partially observable Markov model. The teacher can
also choose to say the command follow me, which makes the robot follow
the teacher using visual tracking.

Jijo-2 has been tested in a real environment, and after 52 trial runs it
succeeded to create a map consisting of 14 state nodes corresponding to
different specific locations.

State of the Art 37

4.3.4 Godot

Godot [60] is a small, cylindrical robot equipped with 16 sonar, infrared
and collision sensors. It also has two wheel encoders and a camera mounted
on a pan-tilt unit. As for Jijo-2, the main purpose of the project is to in-
vestigate the interface between a navigation system and a spoken dialog
system. The information flows in two directions between the navigation
system and the dialog system. The low-level navigation system supplies
landmark information from the cognitive map used for the interpretation
of the user’s utterances in the dialog system. The high-level dialog system
also influences the navigation system by the way the semantic content of ut-
terances analyzed by the dialog system are used to adjust the probabilities
about the robot’s position in the navigation system.

The dialog considered in the project is of the following nature:

• The human informs the robot about its current position, possibly
in response to a question from the robot after finding out that it is
uncertain of its location.

• The human queries the robot about its current beliefs about its posi-
tion, possibly followed by a correction or confirmation by the human.

• The human instructs the robot to move to a certain position.

Communication is performed in a natural, unrestricted spoken English.
The human should be able to label places such as the kitchen and my
office and these labels are not necessary unique. This not only has an
impact on the design of the cognitive map, but also requires ontological
knowledge and a semantic representation of the dialog which enables the
robot to perform inference. The robot should also be able to understand
utterances that is sensitive to context, hence the semantic formalism is able
to deal with anaphoric and deictic references.

The cognitive map consists of three layers, a geometric layer, a topo-
logical layer, and a semantic layer. The geometric layer is a grid modeled
as a 0-dimensional Markov random field. The topological layer is derived
directly from the geometric layer, by dividing the free space into rooms or
corridors. The semantic layer, labels the different areas in the topological

38 4.3. Robotic Dialog Systems

layer. The construction of the maps is learned using a multi-layer neural
network.

The dialog component uses Discourse Representation Structures (DRS)
to represent the meaning of a dialog between the robot and a human.
DRS is built on a subset of first-order logic, and besides the ability to
model dialog and solve references, logic inference can be used to detect
inconsistencies and rule out interpretations. The dialog system consists of
a collection of agents within the Open Agent Architecture. It consists of a
speech recognizer, a speech synthesizer, a dialog manager, a dialog history
among others.

The system has been tested in a real environment with satisfaction.

4.3.5 Carl

Carl [41] is a robot and a project that aims at integrating communication,
action, reasoning, and learning into an animate, adaptable, and accessible
intelligent robot. By animate one means that the robot should respond
to changing conditions in the environment. It should be adaptable in the
sense that it adapt to different users and different physical environments.
This includes reasoning and decision-making at the task-level, and learning
capabilities. By accessible one means that it should be able to explain its
beliefs, motivations, and intentions, and it should be easy to command and
instruct.

Carl is an 85 cm tall robot with two drive wheels and a caster. It
includes wheel encoders, front and rear bumpers rings, front and rear sonar
rings, IR sensors, an audio I/O card, and a pan-tilt camera. It also carries
a microphone and a speaker.

Carl has a simple dialog system including a speech recognizer, a speech
synthesis, and a semantic parser. The dialog system is used to teach Carl
new information. The user could for example tell Carl that Professor
Doty is in Portugal, and Carl saves the information and can later on
perform a correct answer to the question Where is professor Doty?. The
robot also uses the dialog system to learn characteristics of new objects.
It can for example learn the concept person by asking Is this a per-
son? for every obstacle it encounters. Based on the obtained answer and
visual feedback, Carl feeds the information into a backpropagation neural

State of the Art 39

network.

4.4 Planning in Dialog Systems

Planning in dialog systems has recently gained interest, both in traditional
dialog systems and in case-based approaches. Planning can both be used
as a tool to create systems that can perform more natural dialog and to
create actual planning assistants which help the user with a planning task.
In this section, a collaborative planning assistant called TRIPS is described.
In section 4.5 other systems that integrate case-based reasoning and case-
based planning are described.

4.4.1 TRIPS

TRIPS [11], [12], [29], The Rochester Interactive Planning System, is a
collaborative planning assistant. It is designed to be a general system for
assisting a human manager to construct plans in crisis situations. It is
built on the agent technique where each component is seen as an agent
and communicates by exchanging KQML messages [31]. The components
of TRIPS can be divided into three groups:

• Modality Processing: This includes speech recognition and genera-
tion, graphical displays and gestures, etc. All modalities are treated
uniformly, and their representations are based on treating them as
communicative acts.

• Discourse Management: These components are responsible for man-
aging the ongoing conversation, interpreting user communication in
context, requesting and coordinating specialized reasoners, and se-
lecting what communicative actions to perform in response.

• Specialized Reasoners: These components solve hard problems such
as planning courses of actions, scheduling events, or simulating the
execution of plans.

TRIPS performs a semantic parsing on the utterance from the user.
The parse tree is sent to the Interpretation Manager. The Interpretation

40 4.5. Case-Based Reasoning and Dialog

Manager interprets the utterance and generates updates to the Discourse
Context. The interpretation involves identifying the intended speech act,
the collaborative problem solving act that it furthers, and the system’s
obligations arising from the interaction.

It invokes the Reference Manager to attempt to identify likely referents
for referring expressions. The Reference Manager uses the accumulated
discourse context from previous utterances plus knowledge of the particular
situation in order to identify likely candidates.

The Interpretation Manager then uses the Task Manager to aid in inter-
preting the intended speech and problem solving acts. The Task Manager
supports operations intended to assist in both the recognition of what the
user is doing with respect to the task at hand and the execution of the
problem solving steps intended to further progress on the task at hand.

The Behavioral Agent is responsible for the overall problem solving
behavior of the system. It decides what the system should do according
to both the interpretation of the user’s utterances and actions in terms of
problem solving acts, the persistent goals and obligations of the system,
i.e. to furthering the problem solving task, and exogenous events of which
the Behavioral Agent becomes aware.

The Generation Manager, which performs content planning, receives
problem solving goals requiring generation from the Behavioral Agent and
discourse obligations from the Discourse Context. The task of the Genera-
tion Manager is to synthesize these input resources and produce plans for
the system’s discourse contribution.

TRIPS has been tested in several different domains such as planning an
evacuation of a population on an island, and emergency resource scenarios.

4.5 Case-Based Reasoning and Dialog

Case-based reasoning has been shown to be useful in several different ways
regarding dialog systems. Conversational case-based reasoning (CCBR),
described in section 3.3.2, is a well defined area of research. SiN is an
example of a dialog system that combines CCBR techniques with planning.
The Discourse Goal Stack Model integrates a discourse model with CCBR.

However, dialog and CBR does not only imply CCBR. Systems that use

State of the Art 41

the CBR architecture to implement dialog systems where the dialog is the
main case problem, not only an aid to query the user for more information
about the problem, has been suggested by, e.g., Murao et al.

4.5.1 SiN

Most planners require full domain knowledge to solve a planning prob-
lem. However, in many planning domains, developing a complete domain
theory is infeasible. SiN [9], [44], is a case-based planning algorithm (see
section 3.3.1) that combines conversational case retrieval with generative
planning. SiN integrates the SHOP generative planner [47] with NaCo-
DAE, a conversational case retriever [20]. NaCoDAE works as described
in section 3.3.2. The algorithm is provably correct and does not require
a complete domain theory nor complete information about the initial or
intermediate world-states.

SiN receives as input a set of tasks, a state, and a knowledge base
consisting of an incomplete domain theory and a collection of cases. The
set of tasks is the problem to be solved. Initially the task set consists of
compound tasks that have to be decomposed. For every compound task
in the task set, SHOP tries to decompose it. If that can not be done,
NaCoDAE takes over and tries to find cases that are able to decompose
it. Suiting cases whose preconditions are satisfied, are listed, ordered by
some best-first priority. If several cases are listed, the conversational part
of the system kicks in. The system may need more information to be able
to distinguish between the cases. This information can be obtained from
the user by asking relevant questions. The user may select one of the
displayed questions and answer it. The answer is then used by NaCoDAE
to remove and reorder the cases. If NaCoDAE does not have any cases to
decompose the task or if the user decides not to apply any applicable case,
NaCoDAE will cede control to SHOP. If neither SHOP nor NaCoDAE can
decompose the task, SiN will backtrack, if possible. If the task is one of the
initial problem tasks, backtracking is impossible, and the planning process
interrupts and returns failure.

SiN has been tested in several domains, including the Noncombatant
Evacuation Operations Domain (NEO). NEOs are military operations for
evacuating non-military persons that are in danger to an appropriate safe

42 4.5. Case-Based Reasoning and Dialog

haven. Information about NEOs can be found in NEO doctrines, case stud-
ies, and more general analyses. The absence of a complete domain theory
makes it suitable as a test domain for SiN. The experiments showed that
SiN is capable of allowing the users to guide the planning process towards
their preferences while dynamically capturing world-state conditions.

4.5.2 The Discourse Goal Stack Model

The Discourse Goal Stack Model (DGSM) [19] is a discourse model in-
tegrated in conversational case-based reasoning. It can handle temporal
topic shifts and subdialog. In a CCBR system, subdialog can occur when
the system asks the user questions to be able to select the most suiting
case, or when the user or the system asks clarifying questions.

The model uses text in and text out. It is based on the view of CCBR
as a specialized form of goal-oriented dialog. The goals can, e.g., be to
select appropriate cases, ask questions, etc. DGSM consists of the following
constructions:

• A goal stack that permits all dialog goals to be handled in a uniform
fashion and handles interruptions and subgoals.

• A collection of discourse goal types, i.e. what kind of goal types that
are allowed on the goal stack.

• A forest of augmented transition networks (ATNs) in which nodes are
discourse goals and arcs are speech acts by the user or the system.
Every question type in the CCBR system, and every clarifying ques-
tion type in the system has a corresponding ATN, which describes
the question and answer types allowed to perform a legal dialog.

• A goal handler that is responsible for determining the appropriate
action to take in response to the goal at the top of the stack.

The goal handler is the main loop of DGSM. Depending on the user ut-
terance and the top of the goal stack, it decides what action to perform.
The action could for example be to generate a speech act, or to invoke the
CCBR module. The DGSM CCBR module finds the most discriminating
question amongst the appropriate cases, finds the ATN for that particular

State of the Art 43

question and pushes the first node on the goal stack. The goal handler
generates the speech act and pushes the expectation of an answer to the
question on the goal stack. If the user instead of answering the question
asks a clarifying counter question, the goal handler finds the corresponding
ATN and pushes it on top of the stack. The expectation of an answer to the
original question from the system is now waiting further down in the stack
and the answer generation is in focus. When the user gets the answer to
the clarifying question she may be able to answer the original question that
is now on top of the stack again. When the original question is answered,
the CCBR module can use the answer to select a unique case or to further
minimize the case set by asking other discriminating questions.

DGSM is implemented in RealDialog, a web-based conversational agent
for customer relationship management.

4.5.3 Case-Based Dialog Systems

Case-Based Reasoning has been used not only in CCBR systems but as a
base architecture for dialog systems. Murao et al [45], [46] presents a case-
based dialog system for information retrieval. Dialog examples are retrieved
from human-to-human dialog and from wizard-of-Oz experiments. In a
wizard-of-Oz experiment, the user thinks she is speaking to an intelligent
machine but in reality there is a hidden person behind the answers from
the machine. Such experiments show how a user would interact with an
intelligent machine although no such machine has been constructed yet.
The retrieved dialog corpus is used to construct the system’s case base.

The system consists of the following modules:

The Dialog Example Database is the case base in the CBR system. The
cases consist of a problem part and a solution part. For system input
the problem part is a user utterance and the solution part is a query
which searches a database for the information wanted. For system
output the problem is a database answer to a query and the solution
is an answer in natural language. A system input case is grouped
together with its system output case to model the whole dialog.

The Word Class Database consists of the important words classified se-
mantically. The classifications are based on the dialog corpus.

44 4.5. Case-Based Reasoning and Dialog

The Target Information Database consists of the target information the
user is querying.

The Speech Recognition Module creates a transcription from the user’s
verbal input.

The Query Generation Module extracts the case that is the most similar
to the present input from the Dialog Example Database. Then the
case query is modified to suit the present input.

The Search Module executes the query in the target information database.

The Reply Generation Module extracts the case that is the most similar to
the present search result from the Dialog Example Database. Then
the case reply statement is modified to suit the present situation.

The Speech Synthesizer synthesizes the sound of the reply statement.

Words that characterize the meaning of the utterance are used for the
similarity calculation. Important words are classified using the information
in the Word Class Database. For each problem formulation in an input
case, and the present input, the number of matched non-classified words
and the number of important words belonging to the same word class is
accumulated with the corresponding weight, and the result is treated as
the similarity. The case which marks the highest similarity is selected.

The query for the most similar case is retrieved and adapted according
to the present input. The modification is performed by replacing the key-
words in the query with words in the input utterance if they belong to the
same word class.

The similarity and adaptation of the query result is produced in a similar
manner.

The system has been tested in a domain where the user is driving a car
and queries the system for restaurant information. Interesting attributes
are, e.g., what type of food is served, how popular the restaurant is and
how close it is to the user. The system provided the correct query in about
64% of the cases and the partially correct query in about 88% in these
tests.

State of the Art 45

Other case-based dialog systems presented in the literature are, e.g., a
system for learning to sustain a natural conversation without constraining
the topic [34], and a dialog system that uses not only the utterance but
also facial expressions to express past cases [57].

46 4.5. Case-Based Reasoning and Dialog

Chapter 5

Phase I - The WITAS
RDE

5.1 Background

As mentioned in section 4.1, several dialog systems have been developed
within the WITAS project. The work with the WITAS-Stanford dialog
system presented in section 4.1.2 ended in year 2002, and the Cognitive
Autonomous Systems Laboratory at Linköping University started to de-
velop a new dialog system called The WITAS Robotic Dialog Environment
(RDE) inspired by the WITAS-Stanford Dialog System. The development
of the WITAS RDE is a joint effort between several members of the labora-
tory, and the author of this thesis has taken a major part in the development
of the dialog manager and the test simulator.

5.2 The WITAS RDE Architecture

The WITAS RDE is a big system consisting of a number of loosely coupled
subsystems:

• The Autonomous Operator’s Assistant, AOA, consisting of two parts:

47

48 5.3. The Autonomous Operator’s Assistant

a Speech and Graphical User Interface, SGUI, and the DOSAR dialog
manager.

• A Robotic Agent consisting of the actual physical robot and data from
its sensor and onboard systems or a simulated robot in a simulated
environment [13].

• A Development Infrastructure that provides the services that are
needed for the development, demonstration, and validation of the
dialog system.

5.3 The Autonomous Operator’s Assistant

The AOA is inspired by the WITAS-Stanford Dialog System. It marks the
second phase of the dialog project connected to the WITAS project and
is seen as the next generation dialog system. It differs from the WITAS-
Stanford system mainly due to its advanced multimodal user interface and
logic base. The AOA uses Cognitive Robotics Logic (CRL) [54] to obtain
a representation of action and time. CRL is developed by Erik Sandewall
and has its origin in the book Features and Fluents [5]. Within CRL, time
is a central notion, which is reflected in the dialog system.

Several kinds of actions are represented in a uniform manner, namely:

• Physical actions by the helicopter as a whole (take off, land, fly to X
etc) and by its various components such as its video camera system.

• Speech acts and other communication acts, as performed by both the
operator and the dialog system

• Cognitive acts, such as parsing a sentence, or deciding what to say
next.

There are several reasons for representing these types of actions in a uniform
way, e.g., it reduces the number of concepts that have to be considered
in the system. Another reason is to prepare for dialog where the user
makes combined reference to several types of actions, for example where
were you when I told you to fly to the parking garage?. A third

Phase I - The WITAS RDE 49

reason is the ability to concisely represent the succeed/fail distinction in
the cognitive actions that are involved in the dialog.

A natural way to represent the most common actions in a dialog system
is by the following classification:

• The speech act proper: The period of time where the phrase is actually
uttered.

• The understanding of the phrase: The phase where the phrase is
converted from speech to text by the speech recognizer, the parsing,
identification and screening of semantic content, etc.

• The decision how to react: The phase where the system decides what
would be the most appropriate reaction. It could for example be to
answer a question, to send a command to the helicopter, or to verify
that a command has been correctly understood before it is sent to
the helicopter.

However, despite the similarities between the action types, they are
different in two important aspects: the time scale and the effects of the
actions. The time scale may vary considerably between the actions, from
several seconds for a speech act proper down to a couple of milliseconds
for the decision how to react. The effect of an action depends on the
character of the action. A physical action has effects on the state of the
world. Cognitive actions, on the other hand, can better be thought of as
transformers that convert one symbolic expression (for example, a parse
tree) to another symbolic expression. These kinds of similarities in actions
are not well dealt with in the traditional formalism of action and change,
but the CRL formalism has been extended to cope with such differences.

5.3.1 The SGUI

The front end of the WITAS RDE is the SGUI application. It is a user
interface which provides both facilities for using speech or text. It consists
of an image of the area where the helicopter is flying, serving as a map
for the operator, and a facility to show a video stream from the camera
onboard the helicopter. Figure 5.1 shows SGUI when it is playing a video.

50 5.3. The Autonomous Operator’s Assistant

Figure 5.1: The SGUI showing a video.

The video can be live or an earlier recording saved in the video server. It
is multimodal, which gives the user the possibility of using gestures on the
screen such as points and figures for deictic reference. The gestures can be
performed both on the still image and on a video stream. The domain most
commonly used throughout the WITAS project is the traffic surveillance
scenario, and the following four types of gestures are implemented in the
system:

Phase I - The WITAS RDE 51

• Indicate a particular point in the image, for example for a fly-command.

• Indicate a particular area in the image, for example for a command
to survey the area or to not fly over it.

• Indicate a particular trajectory in the image, for example a segment
of a road that the UAV is to fly along, or patrol back and forth.

• Indicate a particular vehicle or other moving object that is part of
a query or command to the UAV, for example that the UAV should
follow it.

The gesture part of the SGUI interprets the movements of the pen or
the mouse, and attempts to classify the input according to these four cases.
Figure 5.2 shows an example of SGUI where the operator has indicated a
point in the map, at the same time as saying the command Fly here. The
point is indicated with a cross in the map. If the gesture was made on a
video stream, the coordinates of a referenced point must be identified and
transformed to a point in the actual world. If it was a moving object that
was referenced, the position of the object has to be identified. In the case
of live video, this has to be done by a video interpretation in the UAV
itself. However, the image recognition system onboard the helicopter is not
yet able to do such a transformation, hence the test videos are manually
tagged. When testing against a simulated robot in a simulated world, these
parameters can be generated as a by-product of the visualizer.

If the user used speech as a means of communication, SGUI sends the
sound file to a speech recognition system, in this case the Nuance1 system.
Nuance returns one or several conceivable interpretations of the utterance
together with a confidence score for each of them. The confidence score
indicates how confident the speech recognition system is for each of the
interpretations. If the user provided the system with gesture data, it is
interpreted as one of the four types of gestures mentioned above and com-
bined with the suitable language input and sent as a request to the DOSAR
dialog manager for evaluation. Some gestures, such as a gesture showing
three-quarters of a circle, may either designate an area or a trajectory, and

1http://www.nuance.com/

52 5.3. The Autonomous Operator’s Assistant

Figure 5.2: The SGUI after the operator has pointed on the map.

the correct choice can only be interpreted in combination with the accom-
panying phrase. In those cases, SGUI first inspects the phrase in text form
and tries to match it against some common predefined sentences. If the
phrase matches, the corresponding gesture interpretation is provided in the
request. If the SGUI can not solve the interpretation problem directly, it
makes an assumption and provides it together with the phrase as a request
to DOSAR. If the latter should decide that the SGUI’s interpretation of the

Phase I - The WITAS RDE 53

combined speech and gesture was incorrect then it sends a message back
to the SGUI asking it for a new interpretation of the gesture based on the
alternative classification.

SGUI receives output messages from DOSAR, either as a response to
a request or as a response on a message sent from the robotic agent to
DOSAR. The message is in the form of a text message in natural language,
and it is directly sent to a speech generation system which generates and
plays a corresponding sound file. Two speech generation systems have been
used, namely Festival2 and BrightSpeech3.

5.3.2 The DOSAR Dialog Manager

DOSAR is the dialog manager in RDE. It receives messages from SGUI
or the robotic agent written in a KQML like form [31]. DOSAR consists of
the following units:

• A set of consumers that handle the message sending from various
parts of the DOSAR system and also from and to SGUI and the
robot/simulator.

• A parser that transforms the text input into a parse tree. The gram-
mar used in the DOSAR parser is the same as the one used by the
speech recognition system.

• A salience list consisting of the referenced objects ordered by priority.

• A semantic analysis unit that checks the semantics in the parsed
sentence. It uses the salience list to resolve references in the input.

• A speech translation unit that decides how to translate the input to a
request that can be sent to the robot. If the input is a question that
DOSAR can answer directly, an answer in an intermediate form is
constructed. The speech translation unit uses the parse tree and the
semantic information produced in an earlier stage, to find a suitable
set of functions to execute. The functions create the request to the
helicopter or a response message in an intermediate form.

2http://www.cstr.ed.ac.uk/projects/festival/
3http://www.brightspeech.com/

54 5.3. The Autonomous Operator’s Assistant

• A robot translation unit that decides how to translate the response or
output from the robotic control system. A label on the message tells
DOSAR what kind of output it is. It can for example be a response
to a command or an observation. Depending on the label, DOSAR
decides if the information should be forwarded to the operator. In
that case, an output message in an intermediate form is created.

• An output buffer where the messages to be sent to the SGUI are tem-
porarily stored. The messages in the output buffer can be inspected,
several messages can be merged into one message to achieve a more
natural dialog, and messages can be prioritized. When the most suit-
able message to send to the SGUI is chosen, it is transformed from its
intermediate form to an actual output sentence in natural language.

• A memory where each input and output are stored and connected to
each other corresponding to the actual dialog taken place. Observa-
tions from the helicopter that are not reported to the operator are
also stored in the memory.

The main dialog message flow in DOSAR is shown in Figure 5.3. It does
not show the salience list and the memory because they are only containers.

Syntactic parsing, as described in section 2.3.1, is used as the syntactic
model. It produces a parse tree which is used in the semantic analysis unit.
The dialog model used is a simple and implicit form of dialog grammars,
see section 2.4.1, where a request from the operator is identified using the
information in the parse tree. When the request is identified, a match-
ing response is created by the system. If the semantic meaning of the
request can not be uniquely identified, a clarifying question is created and
a structure to catch the answer to the question, including saving discourse
information about the preceding dialog, is triggered. When an operator
input arrives that may be the answer to the question, the structure catches
it and uses the saved discourse information together with the new infor-
mation to resolve the original ambiguous request. An example of several
levels of subdialog is shown in Figure 5.4. It is also an example of the abort
command which immediately discards all actions causing the helicopter to
start hovering.

Phase I - The WITAS RDE 55

DOSAR

Parser

Semantic Analysis
 unit

Speech Translation
 Unit

Output Buffer

Consumer
dispatch table

Robot Translation
 Unit

Robot

Simulator

Robotic Control
 System

Graphical Interface

SGUI

Speech Recognition

Speech Generator

or

Figure 5.3: The main dialog message flow in DOSAR.

The system also handles sequences of commands, grouped together with
the word and, as is also shown in Figure 5.4.

References to objects mentioned earlier in the dialog are resolved using
a salience list. Whenever the system finds an object that may be referred to
later in the dialog, information about it is saved on the salience list. When
a reference is detected, it is assumed that it refers to the latest mentioned
object, which is found on top of the salience list. The dialogs in Figure 5.5
and in Figure 5.6 show examples of this.

56 5.3. The Autonomous Operator’s Assistant

Operator: Fly to the school.
DOSAR: The helicopter has 2 schools to choose between.
DOSAR: Which school do you mean?
Operator: Which schools can I choose from?
DOSAR: You can choose between the green wood school and

the red brick school.
Operator: The red brick one.
DOSAR: The helicopter is about to start flying to the red brick

school.
Operator: Abort.
DOSAR: The helicopter has aborted.
Operator: Fly home and land.
DOSAR: The helicopter is about to start flying home.
DOSAR: The helicopter has completed flying home.
DOSAR: The helicopter is about to start landing.
DOSAR: The helicopter has completed landing.

Figure 5.4: An example dialog demonstrating subdialog and sequences of
commands using and.

The memory plays several different roles in the DOSAR system. It is
used as a history of what has happened during the current and past system
executions and when it happened. Observations that are reported from
the UAV are stored in the memory and can be queried by the operator,
e.g., when did the bus overtake the blue volvo car. The informa-
tion can also be used as a form of information tagging of the recorded
video stream, as demonstrated in the dialog in Figure 5.5. The timestamp
of an event can be obtained from the memory and the video segment show-
ing that actual time slot can be requested from the video server and shown
by SGUI. The memory also contains discourse information about the dialog
that has been performed, see section 2.5 about dialog histories. Requests
and their corresponding responses are connected using the information from
the implicit dialog grammar. The request-response pairs are further con-
nected on a higher level to represent the overall dialog belonging to the

Phase I - The WITAS RDE 57

Operator: Fly to the hospital.
DOSAR: The helicopter is about to start flying to the hospital.
Operator: What is the velocity?
DOSAR: The velocity is 3 meters per second.
Operator: Is the helicopter there yet?
DOSAR: The helicopter is 176 meters from the hospital.
Operator: Rotate the camera forty degrees left.
DOSAR: The helicopter is rotating the camera.
Operator: Does the helicopter see any buildings?
DOSAR: No, the helicopter does not see any buildings.
DOSAR: The helicopter has completed flying to the hospital.
Operator: Ascend fifty meters.
DOSAR: The helicopter is about to start ascending 50 meters.
Operator: What is the altitude?
DOSAR: The altitude is 41 meters.
Operator: Show me the video from when the helicopter flew to

the hospital.
DOSAR: Here it comes.

The video appears in SGUI

Figure 5.5: An example of referencing using the word there and video
playing using the memory.

same topic. This dialog history is used in the output buffer to prioritize
the output messages waiting to be sent to speech synthesis. The messages
are prioritized to stick to the current ongoing dialog about a topic, before
changing to another topic, that is, new outgoing messages that are con-
nected to the last utterance in the memory, have precedence over messages
belonging to other dialogs. If, for example, the operator asks the system a
question while the system creates a status message that tells the operator
that the helicopter has completed a fly manoeuver, the answer to the ques-
tion is given higher priority hence it is formulated and sent to the speech
synthesis before the status message.

58 5.3. The Autonomous Operator’s Assistant

DOSAR contains a world representation of its own, which does not have
to be fully accurate with respect to the actual world, nor to the world rep-
resentation in the robotic agent. The representation is an ontology where
static objects and their attributes such as color or positions are stored.
Examples of objects in the traffic surveillance domain are buildings and
roads. The information in the ontology corresponds to the world knowl-
edge known by the dialog system at a particular time. When a request
includes a reference to, e.g., a hospital, the dialog manager searches the
world representation for a matching item and returns the internal identifier
for the building. An internal identifier is a unique string which serves as the
name of the object. The agent has the same unique identifiers for the in-
formation that it has stored about the object, hence the dialog system can
send a fly-to command where the destination of the fly-command is given
as an internal identifier. The dialog system may also compute a position
near the referred object and send it as the destination if that is preferable.
If the system finds several matching items when looking up the internal
identifier, it has to start a clarifying subdialog with the operator.

The operator can add new instances of objects to the world represen-
tation in DOSAR by explaining what kind of object it is and where it is
located in the world, e.g., there is a container south of the hospi-
tal. DOSAR adds it temporarily to the world representation and when
it gets a visual confirmation of the object from the camera system of the
agent, it is permanently stored in the ontology. Figure 5.6 shows an exam-
ple of a dialog where this is used.

The DOSAR system is provided with a small simulation module which
can perform a fast simulation of a scenario. The information obtained is
used as basic data for answers to estimation related questions such as can
the helicopter fly to X with 0.5 liters of fuel under 3 minutes.
The simulation module is very limited and simple at the time of writing,
and one idea is to integrate the Hazard Simulator described in section 5.4,
and increase the functionality to also include fast simulations of an event.
The fast simulations can be used for reasoning about actions and time and
for planning different actions under certain constraints. This is however
not realized in the dialog.

Apart from understanding dialog where the operator gives commands
and the robot performs them, DOSAR also manages simple planning prob-

Phase I - The WITAS RDE 59

Operator: There is a body south of the church.
Operator: Fly to it.

The helicopter saves the information about the body temporarily
in the world representation, until the information is confirmed.

DOSAR: The helicopter is about to start flying to a body.
Operator: How far is the helicopter from the church?
DOSAR: The helicopter is 141 meters from the church
DOSAR: The helicopter has completed flying to a body.
Operator: Does the helicopter see any body?
DOSAR: Yes, the helicopter sees a body.

The information is stored permanently in the world representation.

Figure 5.6: An example a dialog where the operator presents new informa-
tion to the system.

lems. An example is given in Figure 5.7. In this particular example, the
helicopter needs an ice sensor and a camera, but it can only carry one de-
vice at a time, hence the planner has to plan the best way to perform the
tasks with respect to getting and dropping devices at the home base.

5.4 Simulations and Test Flights

The ultimate test of the AOA is of course to connect it to the actual UAV for
flight control. This is however not always practical due to several reasons.

• It is a safety risk to perform initial tests on the actual helicopter, in
case the system is malfunctioning.

• It is time consuming and impractical to perform actual flight tests
because the UAV is only allowed to fly in restricted areas, where the
UAV and equipment have to be transported.

60 5.4. Simulations and Test Flights

Operator: We shall plan mission two.
DOSAR: Ok, what are the problems and the tasks at this point?
Operator: Check ice on road along Main street.
DOSAR: Ok.
Operator: Check a reported accident at the church.
DOSAR: Ok.
Operator: Schedule the mission.
DOSAR: Ok, I have determined a schedule for this mission.
Operator: Start mission two.
DOSAR: Ok.
DOSAR: The helicopter has arrived to the church.
DOSAR: The helicopter has completed obtaining pictures of

the accident.
DOSAR: The helicopter has completed flying home.
DOSAR: The helicopter has completed unmounting present

payload and mounting the new payload.
DOSAR: The helicopter has completed flying to the Main street.
DOSAR: The helicopter has completed turning on the ice sensor.
DOSAR: The helicopter has completed flying along the Main street.
DOSAR: The helicopter has completed turning off the ice sensor.
DOSAR: Mission two has now been completed.

Figure 5.7: A planning dialog.

• UAV architecture experts and a human pilot that can control the
UAV remotely if necessary, need to participate in the tests.

Some complex dialogs include information about objects and the world
environment that the UAV sensors and systems are not yet able to per-
form. These constructions have to be exclusively tested in a laboratory
environment until the onboard system can provide the dialog system with
the information needed.

Within the WITAS RDE project, a simulator called Hazard [14] has
been developed. The user interface of the simulation is shown in Figure 5.8.
The Hazard simulator includes a simulated UAV situated in a simulated

Phase I - The WITAS RDE 61

Figure 5.8: The Hazard simulator.

environment. The simulated UAV can perform high level actions such as
flying to a building with a certain identity, flying in a certain direction,
tracking a specific car, flying along a specific road, take off, land, ascend
and descend, etc. It reports the results of an action and also reports if
it observes any buildings as it flies. It is able to answer status questions
such as the current altitude, velocity and heading. The simulation of UAV
movements and environment goes only to the level of detail that is required
for the dialog, and does not go down to the level of exact flight dynamics.
The purpose of Hazard is to be able to test both those dialogs that can
be performed using the actual UAV, and those dialogs that for example

62 5.4. Simulations and Test Flights

require complex image processing.
Dialog that can be performed by the UAV can be further tested in

the simulation of the robotic control system used to test the architecture
described in 4.1. This is a lower level of simulation than the one offered
by the Hazard simulator. Both the Hazard simulator and the WITAS
simulator provide an interface which is very similar to the one offered by
the actual WITAS UAV, in order to make it straightforward to use the
AOA during actual flights.

An early version of the AOA was tested during actual flights in late
2003, when the main WITAS DEMO was performed in the presence of
an international evaluation committee. The AOA dialog system, including
the DOSAR dialog manager and the SGUI user interface, was successfully
connected to the WITAS UAV architecture, and high-level voice commands
using natural language have been used to control the onboard camera.
Further development has been performed since then, in particular with
respect to the SGUI.

Chapter 6

The Research Problem for
phase II

6.1 Ideas Behind the Research Problem

Natural language is the preferred means of communication between people,
and well functioning natural language dialog systems relieve the user from
the burden of learning an artificial language to communicate with com-
puters. The keywords are however well functioning, and the dialog system
area has a long way to go before we can create dialog systems that perform
dialog as well as a person. What is needed to improve the dialog systems?

The dialog manager needs a discourse model, as discussed in section 2.5,
to be able to resolve references, manage subdialogs, manage dialog topics
and goals, and to manage topic changes. Without a discourse model, the
dialogs tend to be simple, limited, and strongly structured by the system.

Besides a discourse model, the system needs domain knowledge and
dialog knowledge, as well as methods to make use of the knowledge in-
telligently. The knowledge can be provided to the system explicitly, or
obtained implicitly by the system, using past experience. In the former
case, the knowledge is often written by hand, which is tedious and time
consuming. There is also a risk that some useful information can be omit-

63

64 6.2. Problem Formulation

ted by mistake, or that the type of information needed will change from the
time of writing. In the latter case, the system needs a method to acquire
information automatically and to reuse it.

The work with the WITAS RDE in phase I presented in chapter 5, and
in particular with the DOSAR dialog manager presented in section 5.3.2,
gave inspiration and pointed out some interesting problem areas. Every
new command or dialog needed to be specified by hand in the system, even
if it was similar to other dialog constructions. It would be better if the
system could figure out by itself how to react on new commands, given
the already known information. The system should also make effective use
of the knowledge, and combine it if necessary, to solve new problems in a
flexible manner. With such flexibility, the system could adapt gradually to
an ever changing environment and to changing tasks. The memory in the
DOSAR system was an ad hoc solution with potential. Could it be used
as a knowledge base over the dialog history? That is, both as a discourse
model and as a case base? The idea was promising and definitely worth
more investigations.

6.2 Problem Formulation

The problem we address can be captured concisely in the following ques-
tion:

How can an adaptable, learning, problem solving robotic dialog system be
constructed so that it improves over time and incorporates advanced natural
language features?

This question can be decomposed into the following subquestions:

• How can machine learning be provided in such a system?

• How can problem solving be provided in such a system?

• How should the discourse information be represented?

• How can the system make use of the knowledge to solve prob-
lems it has never seen before?

The Research Problem for phase II 65

• How can the system learn from the user if it can not solve a
problem on its own?

• How can special considerations regarding the physical robot,
such as safety and graceful degradation, be taken care of?

A continuation of these questions is to ask which methods are best for
each of these items, assuming at least one method is available and suitable.
This question is not answered in this thesis, but serves as an inspiration
for further work.

In the following chapter, a system whose design addresses these issues
is presented.

66 6.2. Problem Formulation

Chapter 7

Phase II - CEDERIC

7.1 Introduction to CEDERIC

CEDERIC is an abbreviation for Case-base Enabled Dialog Extension for
Robotic Interaction Control. It is a dialog system designed for dialog with a
physical robot, in particular the WITAS autonomous unmanned aerial ve-
hicle that was described in section 4.1. To recapitulate, the WITAS project
focuses on the development of an airborne computer system that is able
to make rational decisions about the continued operation of the aircraft,
based on various sources of knowledge including pre-stored geographical
knowledge, knowledge obtained from vision sensors, and knowledge com-
municated to it by data link.

CEDERIC is a dialog manager based on the experiences gained from
the work with the WITAS RDE described in chapter 5. It can be used in
place of the DOSAR dialog manager and uses the SGUI user interface and
the Hazard simulator. It can also be used in combination with DOSAR,
where CEDERIC takes over if DOSAR does not find any proper reaction
on an input.

CEDERIC uses CBR, described in section 3.3, both as a problem solving
algorithm and as a machine learning algorithm. The case base consists of
two different sorts of cases:

67

68 7.1. Introduction to CEDERIC

• Plan cases, where the problem part is the user utterance and the
solution part is a plan consisting of a sequence of plan items.

• Plan items, where the problem part can be a subset of the user utter-
ance or computed information that is the result from other previously
executed cases. The solution can be, for example, a computation of
a value, a robotic control command, or a reply in natural language
that is to be sent back to the operator.

An utterance from the operator is matched against the problem part of
the plan cases, and the plan of the most similar case is executed if the case
is similar enough. If it is not similar enough, several different cases can be
combined using CBP, described in section 3.3.1, to solve the problem. The
most similar case is used as a basic case and plans from other cases are
combined with it to solve the problem. If such a combination is found, it is
executed, and the new problem and the corresponding solution are saved
in the case base for further use. The case base will grow over time and
be able to solve more problems, using its new information and experience.
This method allows CEDERIC to use the information in the case base
efficiently, combining different cases to solve a new problem.

CEDERIC consists of a lexicon, a case base, domain knowledge, a dis-
course module and a case-base manager as shown in Figure 7.1.

The lexicon is used to classify the words in the user utterance according
to some predetermined word classes. The classified utterance is matched
against cases in the case base by the case-base manager. The discourse
module is responsible for maintaining a discourse model of the dialog so far
to be able to interpret the operator’s sentences in the right context. The
discourse model helps the system to interpret references which may refer to
sentences earlier in the dialog and to keep track of different ongoing dialogs.
The domain knowledge contains an ontology of the world as the robot knows
it and a categorization of the world items. The purpose is twofold. It serves
as a world representation which gives CEDERIC knowledge about which
buildings there are in the known world, what kind of buildings they are,
where they are located, and their attributes such as color and material.
It also gives CEDERIC fundamental knowledge about categorization, e.g.,
which items can be called buildings in the dialog and which can not.

Phase II - CEDERIC 69

Robot

Simulator

Robotic Control
 System

Case-Base Manager

Lexicon

Case Base

Domain Knowledge

Discourse Model

CEDERIC

Graphical Interface

SGUI

Speech Recognition

Speech Generator

or

Figure 7.1: Architecture of CEDERIC.

The user interface used is the SGUI, which was described in section 5.3.1.
In SGUI the operator can choose to use either speech or text for the input to
the dialog system. The speech recognizer used is the off-the-shelf product
Nuance1 and the speech generator used is one of the off-the-shelf products

1http://www.nuance.com/

70 7.2. Design Choices

Festival2 or BrightSpeech3. When learning a new word using speech recog-
nition, one can choose between having a considerably bigger grammar for
the speech recognition than the dialog manager and only consider learning
in the dialog manager, or provide the new word in text form in the learning
phase and then compile it into the speech recognition grammar if that can
be done at runtime. The system supports both approaches.

Regardless of whether a speech recognizer is used or not, a sentence
from the operator arrives to CEDERIC in plain text format. It is classified,
processed in the CBR engine and CEDERIC returns either a new phrase
in text format to be sent to the speech generator, or a request to the
robotic control system. The interface between the robotic control system
and CEDERIC is identical to the one used by the WITAS RDE, described
in chapter 5. The responses that the robot sends back to CEDERIC are
sent on a different channel than the one the operator uses. This is because
the response should not be classified in any way, but be processed directly
in the CBR engine.

7.2 Design Choices

Several design choices have been taken during the development of CED-
ERIC. The use of CBR and CBP is vital for the system’s functionality and
has been guiding design choices in other areas as well. In this section, the
choice of CBR and CBP is motivated, and some comparisons are made
between the the dialog system theory described in chapter 2 and design
choices made in CEDERIC regarding these areas.

7.2.1 The CBR Architecture

As already mentioned, CBR is used as the main architecture of the system.
It works mainly as a problem solving method to find a suitable response to
an input. However, the capabilities to solve new problems increases as new
cases are stored in the case base as a result of the system’s experiences,
and therefore CBR is also used as a machine learning algorithm.

2http://www.cstr.ed.ac.uk/projects/festival/
3http://www.brightspeech.com/

Phase II - CEDERIC 71

CEDERIC and the WITAS AOA, described in section 5.3, have the
same domain and hence their various types of actions are similar. The list
of actions in CEDERIC is an extension of the AOA action list:

• Physical actions by the helicopter as a whole (take off, land, fly to X
etc) and by its various components such as its video camera system.

• Speech acts, performed by both the operator and the dialog system.

• Cognitive acts, such as fetching information from the domain knowl-
edge or creating action commands.

• State information retrieval from the helicopter, such as altitude, di-
rection, and velocity.

As in the AOA system, the actions in CEDERIC are represented and han-
dled in a uniform manner. However, unlike the AOA system, CEDERIC
uses CBR, where the actions are generally described and handled as cases
in the case base. This provides the dialog system with a simple and mod-
ular design. New functionality is directly added by writing new cases and
storing them in the case base. New domain knowledge similar to exist-
ing knowledge can be added to the system in a simple manner. It can
directly be used by the system without any additional changes to the case
base or the case-base manager, due to the flexible and adaptable nature of
the CBR design. This provides us with the facility of letting the system
incorporate new information into the system automatically, such as new
words or knowledge about the physical world. This knowledge can then be
used directly by the cases in the case base, giving the system mechanisms
for updating its own knowledge and increasing its performance. The new
information can be obtained from dialog with an operator.

7.2.2 Case-Based Planning

The CBR architecture is also suitable for implementing CBP, described
in section 3.3.1. In CEDERIC, CBP is used when no matching case is
found in the case base. The most similar one is used as a starting point
for the planner, which searches the case base for additional cases that can
be combined with the basic case and hence solve the problem. If such a

72 7.2. Design Choices

combination is found, it is executed, and the new problem and the corre-
sponding solution is saved in the case base for further use. This planning
technique is very useful in CEDERIC for solving new, unseen composite
problems by combining several different plans into a composite one.

CBP is also useful for CEDERIC to understand implicit information
and to extend a plan when appropriate. One example is if the opera-
tor tells CEDERIC to fly somewhere but the UAV has not taken off yet.
Then CEDERIC can understand the implicit command to take off and
then perform the fly command. CBP is also a good choice when it comes
to describing the plan and how the system came up with it, because the
problem solving strategy is easy to describe in natural language. To make
the planning more reliable, it is easy for the dialog system to report the
plan and how it was constructed to the operator, and ask for confirmation
before executing it. This is however not yet implemented in CEDERIC.

It has been argued that the CBP technique, where perviously stored
plans are adapted to a new problem, does not add anything considering
time complexity compared to generating new plans from scratch [48]. In
the robotic dialog domain however, low time complexity is not the most
important reason for reusing old plans. When dealing with real world
problems, several factors can affect the result and all factors may not be
included in the problem formulation. Therefore, it is safer to use an already
proven plan as often as possible rather than generating a new one.

7.2.3 Syntactic Model

Syntactic parsing has been tested in CEDERIC, where the resulting parse
tree was compared to the problem formulation in the cases. However, it
turned out that the parsing method was too restricted to be able to use the
whole potential of the CBR architecture, and the similarity measurements
were hard to evaluate. Instead of using the complete parsing method, the
words in a new utterance from the operator are classified using a lexicon,
similar to the syntactic parsing method, but no rule set is applied to the
categorized words, hence no parse tree is produced. The categories in the
lexicon are described as an ontology where semantically similar words are
connected to each other using the notation of classes and inheritance from
the object-oriented approach. The categorizations are matched against the

Phase II - CEDERIC 73

categorized words in the problem formulation using a pattern matching
method.

This design has several advantages. It does not require a predefined or-
der of the words, nor totally complete input utterances as syntactic parsing
does. The interpretation of the utterances is left to the CBR engine to deal
with, which makes the system flexible because it can use its fully poten-
tial as a problem solving and machine learning technique. It is also rather
easy to add new words to the lexicon. The drawbacks are the same as for
the pattern matching method, i.e. the method can not distinguish between
similar sentences with different meanings if the distinguishing word is not a
keyword, and is does not create detailed information about the composition
of the sentence to be used in the further steps of the dialog manager

7.2.4 Dialog Model

The plan-based model of dialog, where the different utterances are seen
as dialog acts to accomplish some goal, was a natural choice to model
dialog because it fits nicely with the CBR and CBP approaches. The
advantage that the dialog can be treated as a special case of action planning
is very important in a robotic dialog system, where different kinds of actions
depend on each other. The purpose of the dialog is often to communicate
information used to perform sequences of physical actions. The plans in
CEDERIC are not pure dialog models, but also contain other kinds of
actions.

CEDERIC also performs some learning of dialog policies, e.g., when
new plans are formulated using CBP. This form of learning does not how-
ever build on the same principles as the Markov method described in sec-
tion 2.4.3.

7.2.5 Dialog History

The design of the dialog history is built on the discourse model for the
SmartKom project, which was described in section 4.2. The dialog history
complements the dialog model with pure dialog information of the past di-
alogs. The SmartKom discourse model includes information used to resolve
references and to keep track of several ongoing dialogs, and is also designed

74 7.3. Discourse Model

to manage multimodality. Apart from that, it is easy to understand, de-
velop and maintain the model, which makes it a good choice to use as a
basic dialog history system.

7.2.6 Domain Model

The domain model as well as the lexicon is written as an ontology using
the Knowledge Machine representation language [22]. Besides the lexicon,
the domain knowledge consists of information about the world in which the
helicopter is situated. The information can be topological such as positions
of buildings and streets, and informational such as names of streets and
types of buildings. The use of ontologies is well suited because it provides
the CBR system with similarity information based on how close two entities
are to each other in the ontology. The use of the Knowledge Machine lan-
guage provides the system with a well defined inference and manipulation
system.

7.3 Discourse Model

The system can manage simple cases of dialog such as a command from
the user that directly produces an answer even without a discourse model,
but a discourse model is necessary in order to handle a more natural and
sophisticated dialog containing references to earlier objects and clarifying
questions (where?, what?, which?, why?).

The following dialog problems are handled in the discourse model:

Anaphoric references. The discourse model should be able to solve refer-
ences to objects that have occurred in an earlier stage of the dialog.

Subdialogs. It should be able to recognize if an utterance is a subdialog to
the present dialog and hence should be interpreted within the limits
of the current discourse, or if it is the start of a new dialog. It should
also recognize a dialog as completed so that the old discourse is no
longer applicable. It should make it possible to return to older non-
completed dialogs that are not in focus at present.

Phase II - CEDERIC 75

Topic management. The discourse model should be able to figure out if
the present is a good moment to mention an observed object or event,
or if that utterance should wait for a better occasion when it does
not disturb the present dialog.

The discourse model we have chosen to implement in CEDERIC is
very similar to the discourse model in SmartKom, which was described in
section 4.2. However, the discourse model in SmartKom is constructed to
manage multimodal input, which CEDERIC does not yet support, hence
the discourse model can be stripped and simplified to suit our needs. The
CEDERIC discourse model uses similar layers as SmartKom, recapitulated
here:

• The Modality Layer.

• The Discourse Object Layer.

• The Domain Object Layer.

In CEDERIC, the Modality Layer is exchanged for a Linguistic Layer that
only handles objects in natural language, and the Domain Object Layer is
renamed the Dialog Object Layer.

Each layer has a corresponding object type with various features. These
are linked to one another in a hierarchical manner and constitute the mean-
ing of the dialog.

The linguistic objects. These objects are members of the Linguistic Layer
and are thus furthest down in the chain of objects. They encapsulate
information about the concrete realization of a referential object, e.g.,
contain information about how the nouns in the dialog where uttered.
They could for example have been references made using the word it
or using a noun and a determinant.

The discourse objects. These objects represent concepts participating in
the communication that can be referred to by other referring utter-
ances. When a concept is introduced for the first time, a discourse ob-
ject that symbolizes the concept is created. A corresponding linguistic
object is also created which models how the concept was referred to

76 7.3. Discourse Model

in that particular utterance. Every discourse object is unique and if
the same concept occurs again in the dialog, a new object in the lin-
guistic layer is created and linked to the discourse object. A discourse
object can also be composite. An enumeration of several objects can
be seen as a discourse object representing the enumeration as such,
and this object contains the enumerated objects as its children. This
gives CEDERIC the opportunity to understand references referring
to the order of the enumerations, e.g., the first one. The discourse
objects have links to the corresponding linguistic objects.

The dialog objects. These objects groups together those sentences and
their information that have the same direct goal. The sentence fly
to the hospital for example, when it is executed, gives a dialog
object that groups the sentences fly to the hospital, ok and I am
at the hospital now together. Dialog objects contain information
about the topic of the dialog and which discourse objects were created
due to the particular utterance.

The global focus space. The various objects in the dialog layer that belong
to the same dialog, including subdialogs, are grouped together in a
top object called the global focus space. It contains information about
the main topic of the dialog, if it is ok to interrupt the dialog and
which dialog objects belong to it. Each global focus space also keeps
track of the discourse object last mentioned, to be able to resolve
references such as it. This is known as the local focus stack. The last
mentioned discourse object is said to be in focus.

To keep track of the current dialog in focus, CEDERIC saves the different
global focus spaces in a stack called the global focus stack. The global focus
space on top of the stack is said to be the one in focus. If the entire plan
belonging to a global focus space has been executed, the global focus space
is marked as closed and removed from the stack. Several dialogs can be
open and ongoing at the same time and are thus members of the stack but
only one dialog can be in focus at the same time.

Figure 7.2 shows an example of what the discourse model looks like
when the utterance Fly to the school has been executed.

Phase II - CEDERIC 77

Topic: fly

Interruption: no

Local Focus Stack:

Dialog Objects:

Global Focus Stack

Dialog Object

Topic: fly

Discourse Objects:

Discourse Object

Noun: school

Linguistic Objects:

Linguistic Object
Noun: school

Article: the

Global Focus Space

Figure 7.2: An example of a discourse model.

7.4 The Case Base

The actual dialogs are saved in the case base. The basic functionality
is hand crafted, but more functionality is added automatically when the
system is used. There are two basic case structures in the case base: plan
cases and plan items.

Both the plan cases and the plan items are written in the Knowledge
Machine (KM) representation language, where each case is an object in the
knowledge system. The use of KM structures the definitions, and the KM

78 7.4. The Case Base

framework facilitates manipulation of the cases.

7.4.1 Plan Case

A plan case contains the plan for solving the problem. It consists of three
parts:

• A Problem Part that describes which problem the case is solving.

• A Discourse Part that describes how the discourse model should be
updated according to the problem.

• A Plan Part containing a plan that solves the problem. The plan
consists of other plan cases or plan items that themselves are cases
in the case base.

The problem part consists of the name of the case, the sequence of
classifications according to the classified words in the problem utterance,
and which actual words were used in this particular problem. The following
is an example of the problem for the fly-to plan:

(a problem with
(name (fly-to-plan))
(words ((:seq fly-command to-word the-word building)))
(fly-command (fly))
(to-word (to))
(the-word (the))
(building (hospital)))

The discourse part holds information about what has previously been
said in the dialog. In the plan cases, the discourse part is usually updated
with a new global focus space, a dialog object, one or several discourse
objects and their corresponding linguistic objects. A new global focus space
is created when a new dialog is started and the plan cases are often executed
as the start of a new dialog. The discourse information corresponds to the
phrase from the operator. The discourse part of the fly-to plan looks like
this:

Phase II - CEDERIC 79

(a discourse with
(discourseobjects
((:seq global-focus-space dialog-object

discourse-object linguistic-object)))
(global-focus-space
((a global-focus-space with
(function
("(lambda ()

(make-global-focus-space
’fly ’fly ’open t))")))))

(dialog-object
((a dialog-object with
(function
("(lambda ()

(make-dialog-object
’fly))")))))

(discourse-object
((a discourse-object with
(op-parameters (hospital))
(function
("(lambda (hospital)

(make-discourse-object
‘((noun ,hospital))))")))))

(linguistic-object
((a linguistic-object with
(op-parameters (the hospital))
(function
("(lambda (the hospital)

(make-linguistic-object
‘((linguistic-word ,hospital)
(article ,the))))"))))))

The first lambda function is evaluated and calls the function make-global-
focus-space. This function is a CEDERIC standard function that is de-
fined in the core system. The arguments describe the topic of the dialog,
what word was used, and the fact that the dialog is open. The dialog ob-

80 7.4. The Case Base

ject saves information about the action of this particular dialog, i.e. fly in
this case. The discourse object and the linguistic object represent the he-
licopter’s requested destination, which in this case is the hospital. They
are represented as a noun to be used as a reference later on in the dialog.
The linguistic object holds the information about the article used when
the word was mentioned and the actual word used when the object was
introduced or referred to.

The plan part of the case describes the plan, and in our fly-to example
it looks like follows:

(a plan with
((:seq find-unique-reference-id get-building-position

in-air-plan fly-to-position stop flyto-result stop)))

The items in the plan are names of other plan cases or plan items to be
executed.

To make it easier to structure the cases written by hand, CEDERIC
supports the use of subplans. A subplan does not necessarily have any
words in its problem part, and the discourse part may be absent. It does
always have a name and a plan part. A subplan may for example be to
check if the UAV is in the air before executing a fly-to command, like the
in-air-plan in the plan for the fly-to command shown above.

7.4.2 Plan Item

Plan items consist of the following parts:

• A Problem Part that describes which preconditions that have to be
met to be able to execute the plan item.

• A Solution Part containing a solution to the problem in some repre-
sentation.

The problem part consists of the name of the plan item, a list of pre-
conditions that have to be met, and a goal. The goal is a description of the
possible result types that are created when the solution part is executed.
The preconditions and the goal are used for planning purposes. To be able
to construct a plan in advance, a description of possible result types is

Phase II - CEDERIC 81

needed, to be used as preconditions for the next plan item in the plan. The
plan item get-reference-id gets a building, e.g., school, and returns the
internal identifier for every known school in the domain knowledge base.
The problem part of get-reference-id looks like this:

(a problem with
(name (get-reference-id))
(precond
((a precond with
(attributes ((:seq building)))
(building (known))

(goal
((a goal with
(attributes ((:seq several-buildings

unique-building
no-building)))

(several-buildings (known))
(unique-building (known))
(no-building (known))))))

It needs a building as a precondition and it returns either several identifiers
that suit the description, a unique identifier, or none at all. Which result
is actually returned from the solution function is of course not known until
execution time, but the planner can take different possible outcomes into
account.

The solution part consists of lists of parameters and a solution function.
The solution function can for example construct a message to be sent to
the helicopter control system, or perform some internal computations. The
solution function returns both the result type, which is one of the possible
types listed in the goal of the problem part, and the actual result value.
The result type is used if additional planning needs to be performed. The
solution part of the get-reference-id plan item looks like this:

(a solution with
(parameters (hospital))
(solution-fn
("(lambda (noun)

82 7.4. The Case Base

(defun get-id (noun)
(km ‘#$(every ,NOUN)))

(let ((ids (get-id noun)))
(cond
((endp ids)
’(((no-building))(no-id)))

((= 1 (length ids))
‘(((unique-building))(unique-id ,(car ids))))

(t ‘(((several-buildings))(several-ids ,ids)))))"
)))

The solution function gets the word hospital or a similar word, finds the in-
ternal id of every such noun and returns them. It also returns no-building,
unique-building, or several-buildings depending in how many match-
ing identifiers were found.

An example of a solution that returns a message to the helicopter control
system is the solution to the plan item fly-to-position:

(a solution with
(computed-parameters (position in-air))
(solution-fn
("(lambda (position in-air)

(let ((request-id (create-request-id)))
‘(((fly-request) ,request-id)
(say-out
(progn
(say-to-operator
(quote (outphrase :content (ok))))

(send-to-agent
(quote
(do!
:content
(fly-to-position ,(car position)

,(cadr position))
:request-identifier ,request-id))))))))"

)))

Phase II - CEDERIC 83

This solution function takes two computed parameters as argument, which
means values that have been computed by other plan items earlier in the
plan. It returns the result type fly-request. It also returns a message
to be evaluated later which sends an ok to be told to the operator and a
fly-to-position command to be sent to the agent. The request identifier
is a unique identifier to be sent to the robotic control system. The control
system sends the same identifier back with every response to that particular
request, so that the dialog system knows which message is a response to
which request.

7.5 Case-Base Manager

The case-base manager is the engine of CEDERIC. It manages different
ongoing dialogs and executes the best fitting plan item. If there are open
and ongoing dialogs, the new input is first seen as a continuation of one of
the open dialogs. If it does not fit as a continuation, it is seen as a start
of a new dialog, and a suiting similar plan case is searched and the plan
is executed. The case-base manager is written in Lisp, which is also the
implementation language for the Knowledge Machine. This makes the code
uniform and easy to follow.

7.5.1 Dialog Handling

When a new sentence arrives from the operator or agent, it could be one
of the following cases:

• The operator or agent continues the current dialog, possibly by the
start of a subdialog.

• The operator or agent returns to an older non-completed dialog that
is not presently in focus.

• The operator starts a new dialog, possibly without ending the recent
dialog properly.

As mentioned in section 7.3, the global focus stack keeps track of the open
global focus spaces. The global focus spaces are linked to the plan cor-
responding to the dialog via a plan agenda. When new input from the

84 7.5. Case-Base Manager

operator enters the system, the case-base manager searches the global fo-
cus stack for open dialogs. If such a dialog is found, the system tries to
execute the first plan item in the plan, using the discourse found in the
global space, i.e., the system believes the input is a continuation of the
dialog in focus. If the input does not match the parameters for the execu-
tion of the plan item, the next open dialog is tried, etc. If the input does
not match any open dialog, the system handles the input as the start of
a new dialog, searches the case base for a suiting case, and creates a new
discourse.

If, on the other hand, there is a message from the robot that does not
match the present discourse in focus, CEDERIC has to take topic man-
agement into consideration. A report of a result of a performed command
shall for example not be mentioned right away if the operator waits for an
answer to a question. CEDERIC decides what to do by investigating the
current content of the global focus space, and checks if it is ok to interrupt
in the present discourse or not. If it is ok to interrupt, the same algorithm
as the one for an utterance from the operator is performed, but if it is not,
the message is put in a queue and is evaluated as soon as it is ok to inter-
rupt, or the present dialog has been closed. Figure 7.3 gives an example of
a dialog with both topic changes and topic management, where the execu-
tion of a message from the robot is delayed until the ongoing subdialog is
closed.

Dialog handling allows dialog topic switches, where the operator may
start a new dialog before ending an old one, or return to an old dialog,
without confusing the system.

7.5.2 Syntactic Categorization of Words

The utterance from the operator enters the system as a sentence in text
format. Each word in the utterance may be categorized using a lexicon.
The lexicon entries are written in the KM language, similar to the case
base. An entry could for example look like follows:

(school has
(instance-of (building))
(attributes ((:seq plural)))

Phase II - CEDERIC 85

Operator: Fly to the school.
CEDERIC: I have two schools to choose between.

Which one do you mean?
Operator: Take off.
CEDERIC: Ok.
Operator: Which can I choose between.

CEDERIC gets a message from the
robot saying that the action take off
has been successfully completed

CEDERIC: You can choose between the one on
Harborroad and the one on Mainstreet.

Operator: Fly to the hospital.
CEDERIC: Ok.
CEDERIC: I have taken off now.
Operator: What is your altitude?
CEDERIC: It is 20 meters.
CEDERIC: I am at the hospital now.

Figure 7.3: An example of dialog topic changes and topic management
between the operator and CEDERIC.

(plural (schools))
(weight (2)))

where school is modeled to be an instance of the category building. It
also has the attribute plural which is set to schools, and a weight which is
set to 2. The weight is used in the similarity function and is an indication of
how important the word is for the comprehension of an utterance. A word
may be ambiguous and belong to several different categories depending on
the semantics of the utterance. In that case, the word is categorized with all
the matching categories and the similarity function decides which meaning
to use. A word that is not present in the lexicon obtains the category
no_category.

86 7.5. Case-Base Manager

7.5.3 Case Retrieval

In the retrieval phase, the utterance is compared to the problem part of each
plan case and a similarity value is computed. The cases are then prioritized
using the similarity value. The similarity value is based on how well each
word in the utterance matches the words in the problem formulation and
the weight of each word according to the lexicon. The case retrieval phase
is only executed if the input utterance is a start of a new dialog, i.e. there
are no old or ongoing dialogs where the utterance fits as a continuation.

To be more specific, the similarity value for each plan case is computed
using the following formula, where wc means the sequence of words in the
problem part of the case and wi means the sequence of words in the input
from the operator:

Similarity = points(wc, wi)− uncovering(wc, wi)

where

points(wc, wi) =
∑

wx∈wc

∑
wy∈wi

class− value(wx, wy)× word− weight(wy)

class− value(wx, wy) =

3 if the words are equal
2 if the words are classification similar
0 otherwise

uncovering(wc, wi) = |length(wc)− length(wi)|
Two words, w1 and w2, are classification similar if either w1 is equal

to the classification of w2, the classification of w1 is equal to w2, or the
classification of w1 is equal to the classification of w2.

When two cases have the same similarity-value they are subprioritized
using the uncovering function which indicates how much the sequences
differ in length. A low value on the uncovering function is prioritized.

When the cases are ranked in order of priority, the case with the highest
priority is chosen unless it does not have lower similarity value than a
threshold. In that case, no similar case was found.

Phase II - CEDERIC 87

The order of the words in the input utterance is respected by searching
for a subsequence matching the input utterance in the case words. If no
similar case is found, the cases are reprioritized in a manner where the order
of the input words does not matter. In this way cases with equal order of
words are selected in the first place, but the system can also understand
phrases where the words are out of order.

The plan of the most similar plan case is retrieved and validated using
the input utterance and the precondition and goal in the problem part of
each plan item. See section 7.4.2 for a description of preconditions and
goals. The categories of the words in the user utterance is used to search
for matching preconditions for the first plan item in the plan. If the pre-
conditions are satisfied, i.e. the words in the precondition are present in
the user utterance, the goal of the plan item is added as another potential
precondition in case items further on in the plan. The whole plan is checked
and if all the preconditions for every plan case is found, the plan can be
executed. On the other hand, if plan faults are found, the plan is sent to a
plan repair unit, which tries to repair the plan using other plan cases. The
plan repair unit is described in detail in section 7.5.5.

7.5.4 Case Reuse

When the input is a beginning of a new dialog and a similar suitable plan
case is found, the discourse part of the plan case is executed. The discourse
part is a function which describes how the discourse should be updated ac-
cording to the new input. When it is a start of a new dialog, the discourse
part creates a new discourse and initializes it with the input information.
An explanation of the discourse part in a plan case can be found in sec-
tion 7.4.1. When the discourse in the plan case is updated, the plan is
executed.

A plan may consist of plan items, plan cases and stop items. Subplans
are modeled as plan cases within a plan. Before execution, the plan case
has to be evaluated and exchanged for the plan of the plan case. Stop
items are special plan items because they do not have a corresponding
case. When the system encounters a stop item, the plan execution stops
and information to the robotic control system or the speech generator can
be delivered.

88 7.5. Case-Base Manager

Choose the first
item in the plan

If plan case, get the
plan and start over

If plan item, get parameter
for the discourse and
solution

Parameters suitable
for the old case

Match parameters with
current information

New parameters
suitable for the
new case

No match, replan
and start over

Execute the
discourse
and solution

Result

Remove first
item from the
plan and
start over

If stop, return the last
computed value

Current information

* Current input

* Previous input belonging
 to the dialog

* Computed values

Figure 7.4: Schematic view of the reuse phase.

Regardless of whether the input is a start of a new dialog, or a continu-
ation of an open dialog, the plan is executed in the same manner, as shown
in Figure 7.4. For each plan item:

• Find values similar to the parameters of the discourse function and
the solution function of the case item.

• Execute the discourse function that updates the discourse according
to the information in the case.

• Execute the solution function that returns the result of the case.

• Save the result and execute the next item in the plan.

Phase II - CEDERIC 89

The parameters of the discourse function and the result function are
listed in the discourse part and the solution part of the plan item, respec-
tively (see section 7.4.2 for examples). Parameters can be of three different
types:

Input Parameters. These are parameters whose values are part of the
latest input or previous input originating from the operator or the
robotic control system. The previous input has to belong to the
current dialog.

Computed Parameters. Results of previously executed solution functions
belonging to plan items in the current dialog are called computed
values, hence computed parameters are parameters which values are
members of the computed values.

Discourse Parameters. This is usually the discourse object currently in
focus.

The input parameters listed in the case are the values of the parameters
that suited that particular case. The new problem may be slightly different
because it is similar and not necessarily identical. To make sure the dis-
course function and the solution function is adapted to the new problem,
other parameter values have to be sent to the functions. Suitable input pa-
rameter values are found using the same classification similarity function
as in the retrieval phase described in the previous section. For example if
the input parameter is red, then green is a valid substitute, because both
of the words are members of the category color.

The computed values are tuples of the form <category value>. The
computed values list the category of the parameter value, and hence the
value can be directly found in the set of computed values by searching
for the identical category. The values for the discourse parameters are
obtained by identifying the discourse structure of the discourse parameter
and retrieving the corresponding discourse structure for the discourse of
the new problem. The discourse parameters are used when the meaning of
an utterance can not be found without information about earlier utterances
in the dialog. An example of such a dialog is given in Figure 7.5, where the
the word one refers to the word school mentioned earlier.

90 7.5. Case-Base Manager

Operator: Fly to the school.
CEDERIC: I have several schools to choose between.

Which one do you mean?
Operator: The red one.
CEDERIC: Ok.
CEDERIC: I am at the school now

Figure 7.5: An example of a subdialog using a clarifying question.

If suitable values for the parameters of the discourse and solution func-
tions can not be obtained, the execution of the plan item has failed and the
plan has to be revised. Replanning in this and other situations is discussed
in the next section. However, if suitable values are found, the discourse
function is executed first, followed by the execution of the solution func-
tion. The discourse function manipulates the discourse model by adding
more information to it. It does not return any value. The solution function
produces a result, on the other hand. The result is made up of two parts,
namely a result type and the actual result. The result type is of the same
type as the preconditions and goals in the problem part of plan items. The
goal lists the possible result types of a particular plan item, and the result
type in the result is the actual result type that was produced by the plan
item for this particular input. The result type is used if the plan fails later
on in the execution, so that replanning is necessary. The actual result is
saved as a computed value and can be used as a computed parameter value
for plan items later on in the plan. It may also be information to be sent
to the operator or the robotic control system. If the system encounters a
stop item in the plan, the execution stops and the last computed value is
examined. If the value is labeled say-out, the value is sent either to the
robotic control system or to the speech generator. The system examines
it further and decides how to handle this particular value. The value can
also be a compound result, consisting of both an utterance to be told to
the operator and a command to be sent to the robot.

Phase II - CEDERIC 91

7.5.5 Replanning

Replanning is used in two different phases in CEDERIC:

• When there is a plan fault in the plan checking process of the most
similar plan case, i.e. when the preconditions of the plan items in the
plan are not met.

• When there is a plan fault in the execution of a plan, i.e. there is no
suitable value for one or more parameters.

The same replanning routine, based on case-based planning methods, is
used in both cases. In CBP, different plans are combined to form a new
plan that can serve as a solution to a new problem. In CEDERIC, two plans
can be combined to form a new plan, where one of the original plans works
as the foundation on which the new plan is constructed. The preconditions
and goals in the plan items are used in the replanning process to make sure
the newly constructed plan is a valid one.

When a plan fault is encountered, the goals of the previous plan items in
the plan, or the result types if it was an execution plan fault, are sent to the
replanning routine together with the rest of the plan, i.e. the plan where the
plan item that caused the fault is the first item. Every plan item in the case
base that can be executed given the current result types or goals is found,
e.g., every valid next action and every plan containing these plan items are
listed. Then the system tries to merge sequences of these repair candidate
plans with the original plan. If a valid merge is found, it is linked to the
already checked or executed part of the plan. If no valid plan is found, the
first item in the original plan is removed and the algorithm tries again to
find new, partly matching plans to be used to repair the original plan. In
this manner, parts of the original plan is switched against parts of another
plan. The newly found plan sequence is then linked back to the original
plan. Given the already checked or executed plan items, the newly created
plan consists of a sequence from the foundation plan, a sequence from
a repair candidate plan, and then again a sequence from the foundation
plan. Figure 7.6 shows a schematic illustration of such an example. This is
very useful when the system realizes that all preconditions that have to be
fulfilled to perform a command from the operator, are not fulfilled. Using

92 7.5. Case-Base Manager

Plan fault

Fetch repair candidate plans

Select best repair plan

Append to construct new plan

Figure 7.6: A schematic view of replanning in CEDERIC.

replanning, CEDERIC can automatically perform some actions to be in
a state that fulfills the preconditions. An example is when the operator
wants the helicopter to perform a fly command, but the helicopter has not
taken off yet. Then CEDERIC can automatically perform a take off and
then execute the operator’s command. In more detail, the original plan for
the utterance Fly to the hospital looks like follows:

(find-unique-reference-id get-building-position in-air-plan
fly-to-position stop flyto-result stop)

where in-air-plan looks like:

(in-air-question stop in-air-answer in-air-result)

Phase II - CEDERIC 93

fly-to-position has in-air as a precondition and also as a computed
parameter, which in-air-plan returns if the UAV has an altitude bigger
than zero. However, if the UAV is on the ground, in-air-plan returns
not-in-air. Hence, when the plan is executed, a plan fault occurs when
the UAV is on the ground, because fly-to-position does not get values
for all the parameters. CEDERIC searches the case base and finds a set of
plan items which can be executed instead of fly-to-position. The plans
where they occur are examined and the plan

(take-off stop take-off-result stop)

is a valid continuation from the current point of execution and it has in-air
as a goal. Hence, the new plan looks like:

(find-unique-reference-id get-building-position in-air-plan
take-off stop take-off-result stop fly-to-position
stop flyto-result stop)

which solves the problem.
The original plan may also be totally replaced by the new plan, where

the already checked or executed plan items are linked to the newly found
plan, which never returns to the original plan again. This is useful when
the system needs to combine the first part of one plan with the last part
of another one to be able to solve a problem.

The revised plan may again obtain a plan fault when executed, and it
is then repaired using the same replanning routine, but the system has to
make sure it does not repair the plan with a solution that has been tested
and failed earlier. To avoid such cycles, the new plan is compared to the
execution history, and the new plan has to be unique in some sense to be
a promising repair plan.

When a replanning sequence has occurred, the discourse in the original
plan case may not suit the new plan. To solve this, the plan cases used to
build the new plan are saved and examined for a suiting discourse part.

The greatest advantage of the replanning routine is the simplicity. It
is easy to understand and to implement, and it works well in small do-
mains. However, it has some major disadvantages. As the case base grows
larger, more candidate plans are found and need to be checked, hence the

94 7.5. Case-Base Manager

replanning procedure turns out to be very time consuming. Better indexes
and pruning facilities may speed up the replanning procedure considerably.
Another disadvantage is the lack of an overall goal of each plan case. The
replanning routine, as described above, may find a plan that is valid with
respect to the preconditions in the plan items, but the overall plan may not
solve the right problem. This disadvantage may be acceptable in a learn-
ing system, where new solutions should be tried and rejected if not good
enough. However, with a more complex structure including plan goals, the
speed and correctness of the replanning routine can be increased.

7.5.6 Case Retention

When a problem is not identical to the problem part of the plan case that
was used for solving it, and the execution of the problem was successful,
the problem and solution are saved as a new case in the case base. The new
cases increase the case base and the new experiences can be used to solve
other problems in the future. A new problem and solution can differ from
the cases used to solve it if one or more of the following has happened:

• One or more of the words in the input are not identical to the words
in the problem part of the plan case. They are only classification
similar.

• One or more of the words in the input are added or deleted from the
words in the plan case, but the plans are identical to each other.

• The plan has been replanned in the plan check phase.

• The plan has been replanned in the plan execution phase.

In the first case, the executed plan is identical to the one in the plan
case, but the problem part of the plan case and the parameters in the plan
items may be different. A new plan case, with a new name and a problem
part that corresponds to the input is created. The plan items in the plan
are checked, and new plan items with new names are created if the input
parameters have to be changed to correspond to the input. Finally, the plan
is updated with the names of the newly created plan items. An example

Phase II - CEDERIC 95

where this occurs is if the case with the problem Fly to the hospital is
used to solve the problem Fly to the school.

In the second case, a new plan case with a unique name is created,
where the problem part corresponds to the words in the input. Since the
plan is equal, no new plan items need to be created. An example of this
case is if the case with the problem Fly to the hospital is used to solve
the problem Fly to hospital.

The last two cases are slightly more complicated. In the third case, the
input and the problem part of the plan case rarely have a high similarity
score because if they had, no replanning would have occurred. A new plan
case is created in the same manner as for the second case, but the new
plan is added to the new plan case as well. If some of the parameters in
the plan items are only classification similar, new plan items are created
and the plan is updated with the names of the new items. An example
is where the cases with the problems Fly to the hospital and What is
the position of the red car is used to solve the problem Fly to the
red car.

In the fourth case, the problem part of the plan case is often identical
or classification similar to the input, but the situation is not identical. If
the problem part was not identical or classification similar, a replanning
sequence would have taken place in the plan check phase and not in the plan
execution phase. Let us look at an example where the system knows about
two schools and one hospital. When the operator says fly to the school,
a case where the problem is fly to the hospital is used. However, the
plan for this case can only be used for uniquely described buildings, and it
will fail when executed with the word school. This plan fault can not be
identified before the execution of the plan is started, because one part of
the plan is to find which building the operator refers to, hence the failure
will only be recognized during execution. A new plan case is created, with
a unique name and the new plan. If the input is identical to the problem
part of the plan case, nothing more is done, but if it is only classification
similar, the problem part of the plan case and new plan items are created
in the same manner as described for the first case above.

The four cases presented above may not only happen in isolation, but
a combination is also possible and can be handled by the system.

96 7.6. Learning from Explanation

Operator: Fly to the supermarket.
CEDERIC: I do not know what a supermarket is.

Is it a building?
Operator: Yes.
CEDERIC: Can you give me a reference object near the

supermarket so I can start by flying to it?
Operator: It is near the red hospital.
CEDERIC: Ok, I will start by flying to the hospital and

then I will ask for more guidance.
CEDERIC: I am at the hospital now.
CEDERIC: In which direction shall I fly to look for the

supermarket and what characteristics does
it have?

Operator: Fly eastwards and look for a blue building.
CEDERIC: I start fly and look for the supermarket.

I will stop when I see it.
CEDERIC: I have found the supermarket now and hover

over it.

Figure 7.7: An example of a teaching situation between the operator and
CEDERIC.

7.6 Learning from Explanation

CEDERIC can ask the operator for guidance if the input contains a word
that can not be syntactically categorized. If no category can be found
for a word, it is labeled with the category no_category. To be able
to catch those no_category utterances, CEDERIC needs to have cases
that match both the sentence where the no_category was found and the
no_category itself. By providing CEDERIC with such cases, it can ask the
operator questions that makes him or her explain how CEDERIC should
react. Assume we have a case where the problem part is built on the
utterance fly to the pizzeria, where the word pizzeria is classified

Phase II - CEDERIC 97

with the no_category classification. When the utterance fly to the su-
permarket, where the word supermarket is unknown and classified with
no_category enters the system, it is similar to the pizzeria plan case and
its plan is executed. Depending on the answers from the operator, the
result can be the dialog in Figure 7.7.

After the execution of this dialog, the lexicon is extended to also contain
the word supermarket which is a building. The newly gained information
such as the color and the category of the supermarket will be saved in the
domain knowledge as well. The next time the operator wants the robot
to fly to the supermarket, the sentence will be fully classified and the case
that matches such a sentence will provide a correct solution.

The dialog shown above where the operator guides the UAV to an un-
known building can be used with any word that the operator wants to use as
an identifier for a particular building. This particular plan case is however
not general enough to handle other types of words which are not buildings.
They can be handled analogously by using other plan cases descibing the
subdialog suitable to teach CEDERIC how to react properly on them.

7.7 An Example

This section gives an example of a small case base and dialogs that can be
understood by the system using this case base. This toy example is much
smaller than the case base used in CEDERIC, in terms of number of plan
cases and plan items, but it illustrates the main features nicely.

Assume the case base contains two plan cases, with the following prob-
lem phrases:

• Fly to the hospital

• What is the position of the car

The first one is called fly-to-plan and the plan for it was given in sec-
tion 7.5.5, but is recapitulated here as well:

(find-unique-reference-id get-building-position in-air-plan
fly-to-position stop flyto-result stop)

98 7.7. An Example

where in-air-plan is a plan case itself, but with no problem phrase, and
its plan looks as follows:

(in-air-question stop in-air-answer in-air-result)

The second one is called where-vehicle and the plan for it looks as follows:

(vehicle-position-question stop vehicle-position-answer
say-position stop)

In addition to these plan cases and plan items, the system has a lexicon
with the following structure:

(hospital has
(instance-of (building))
(attributes ((:seq plural)))
(plural (hospitals))
(weight (2)))

(school has
(instance-of (building))
(attributes ((:seq plural)))
(plural (schools))
(weight (2)))

(car has
(instance-of (vehicle))
(attributes ((:seq plural)))
(plural (cars))
(weight (2)))

(truck has
(instance-of (vehicle))
(attributes ((:seq plural)))
(plural (trucks))
(weight (2)))

(fly has
(instance-of (fly-command))
(weight (2)))

Phase II - CEDERIC 99

(go has
(instance-of (fly-command))
(weight (2)))

accompanied by structures for the words what, to, the, etc.
Given these plan cases, plan items, and the lexicon, which phrases can

be evaluated by the system? First of all, phrases that are identical to
the problem phrases stated above can of course be evaluated. Moreover,
phrases where one word has been exchanged for another word belonging to
the same category, can be evaluated. In this case, the following phrases are
accepted:

• Fly to the school

• Go to the school

• What is the position of the truck

The plan cases also give an opportunity for replanning. The solution
for the phrase Fly to the truck can be obtained by combining parts of
the plans from the plan cases. The similarity function ranks fly-to-plan
as the most similar plan. However, it does not fulfill the requirements of
the preconditions, because the first plan item get-reference-id expects
a building, hence replanning is initiated. The replanning routine starts by
trying to find another plan or subpart of a plan that can provide a building
for the get-reference-id plan item. No such plan or subpart of a plan
is found, hence the replanning routine tries to find a plan or subpart of a
plan that can connect to the next item in the plan, that is get-building-
position. No such plan or subpart of a plan is found either, because
get-building-position needs a reference id of a building. The next plan
item in the plan is a subplan called in-air-plan. This subplan has no
preconditions and can always be executed, hence the replanning routine
checks the plan from in-air-plan and onwards to see if the plan can be
executed. The plan checking fails when it checks the plan item fly-to-
position because it needs a position to fly to. Again the replanning routine
kicks in and searches for a plan or subplan that can provide the plan item
with a position. This time, the plan case where-vehicle is useful. The
subpart

100 7.7. An Example

(vehicle-position-question stop vehicle-position-answer)

of the plan returns a position of a vehicle, which works as a precondition
for the plan item fly-to-position. It needs a vehicle as a precondition,
and this is provided in the original phrase from the operator. Hence, the
plan

(in-air-plan vehicle-position-question stop
vehicle-position-answer fly-to-position stop flyto-result
stop)

is checked and executed. The information about where to fly is stored in the
discourse model, hence the plan item flyto-result, that tells the operator
that the helicopter has completed flying to a particular place, says I am
at the car now, which is perfectly correct. Hence, the system manages
to execute the commands

• Fly to the car

• Fly to the truck

as well. The commands

• What is the position of the school

• What is the position of the hospital

are solved in a similar manner using replanning.
In addition to the phrases already listed, the system also handles phrases

where some of the words have been left out. The phrases

• Fly to hospital/school

• Fly hospital/school

• What is position car/truck

• What position car/truck

Phase II - CEDERIC 101

are evaluated correctly, but phrases such as Fly and Position car are
too ambiguous and lack too much information for the system to make an
interpretation of them.

The phrase Fly truck does not work before the phrase Fly to the
truck has been executed. That is because Fly truck is not considered
similar enough to Fly to the hospital, hence the replanning routine is
not initialized. However, after Fly to the truck has been executed, a
new plan case is stored in the case base, with Fly to the truck as the
problem phrase and the newly planned plan as the plan. This new plan
case is similar enough to Fly truck, and the plan is executed.

With this case base consisting of three plan cases, where one of them
is a subplan, and ten plan items, four different types of commands can be
executed in at least twelve different ways. Notice again, that this was a
mini-example for the purpose of explanation, and that the actual case base
in the CEDERIC system is significantly larger.

102 7.7. An Example

Chapter 8

Tests and Results

8.1 Development Tests

It is important to test the system regularly during the development phase,
to be able to find design faults and bugs related to new implementations.
The test scripts also carry information about the status and the perfor-
mance of the system. As new features and cases are implemented, the test
scripts are modified and new test cases are added to the test suite.

CEDERIC has been tested regularly during the implementation phase.
At most the case base contained 51 handwritten plan cases and 65 hand-
written plan items as the basic case base, and more cases were added au-
tomatically during the execution of the tests. The test suite contains test
cases that test several aspects of the system, namely:

• Cases that are identical to the plan cases in the case base.

• Cases that test the similarity function.

• Cases that test dialog handling.

• Cases that test overall flexibility of the system.

• Cases that test the replanning functionality.

103

104 8.1. Development Tests

The first four types of tests measure the performance of individual cases,
whereas the test results of the replanning functionality depend on the en-
vironment where the test is executed, i.e. the result of a replanning session
depends on the cases in the case base. A replanning case that creates the
optimal solution when executed using one set of cases in the case base may
not create the optimal solution using another case base, due to inference of
other cases in the replanning process. To ensure correct behavior in a re-
planning situation, regardless of the other interfering cases, the test module
for CEDERIC selects the execution order of the test cases randomly with a
few exceptions. The exceptions are those test cases that test learning from
explanation and then test if the newly learnt information is stored correctly
in the system. In such test cases, the order of the evaluation is important
and the learning case has to be executed before the test that checks the
learned information is executed.

The automatic test scripts simulate both the operator and the robot,
using prestored static messages that are sent to CEDERIC, hence CED-
ERIC is the only system in the loop. An example of a test case is shown
in Figure 8.1. The information labeled CBR-OP and CBR-HELI is fed
into CEDERIC from the test routines. The result from CEDERIC is com-
pared to the result in the test, and if equal, the next line of the test case is
evaluated in CEDERIC. If the answers produced from CEDERIC are not
equal to the answers in the test, the test is marked as failed. The reason
for not testing the system together with the graphical user interface and
the simulator or robot is partly because it is convenient to test CEDERIC
separately, and partly because it is impossible to perform automatic testing
with prestored solutions for tests performed in random order. The answer
to status questions such as what is the position/altitude/velocity
depends on the execution history of the robot, and if the execution history
is randomly chosen, static test scripts can not identify a success or failure
of a test case.

Regular testing of the system has turned out to be a very helpful tool
to find both design faults and bugs in the system. Problems with early
versions of the similarity function were easily detected and the function
could be rewritten according to the particular problem. The problems
with the replanning routine described in section 7.5.5, were also efficiently
detected using the test scripts.

Tests and Results 105

(test30
(CBR-OP ’(SHOW ME THE FRONT FACADE OF THE CHURCH))
(CHOOSE-MESSCONS ’(VALUE? :CONTENT (HELPOS)

:REQUEST-IDENTIFIER)
IMESS-CONS-LIST)

(CBR-HELI ’(ANSWER :QUERY (HELPOS) :ANSWER (10 170 19)
:REQUEST-IDENTIFIER))

(CHOOSE-MESSCONS ’(VALUE? :CONTENT (HELALT)
:REQUEST-IDENTIFIER)

IMESS-CONS-LIST)
(CBR-HELI ’(ANSWER :QUERY (HELALT) :ANSWER 10

:REQUEST-IDENTIFIER))
(CHOOSE-MESSCONS
’(DO! :CONTENT (ROTATECAM -90 26)

:REQUEST-IDENTIFIER)
IMESS-CONS-LIST)

(CBR-HELI ’(REPORT :STAGE CONCLUDING-ACTION
:REQUEST-IDENTIFIER))

(ADDSAYLIST ’(OUTPHRASE :CONTENT (IS THIS VIEW OK))))
)

Figure 8.1: An example of a test from the test scripts.

8.2 Simulation Tests

As a complement to the development tests, CEDERIC is also tested to-
gether with the SGUI user interface against the Hazard simulator. Chap-
ter 5 described SGUI, and section 5.4 in particular described the test pro-
cedure and the Hazard simulator. Figure 8.2 and Figure 8.3 show examples
of what the simulator and the SGUI look like when connected to CEDERIC
in a simulation test.

CEDERIC has been tested manually using both spoken language and
written text. The manually performed tests are more realistic than the
automatic development tests and expose the system to spontaneous errors

106 8.2. Simulation Tests

Figure 8.2: The simulator for simulation tests where the camera view is
indicated as a triangle like area.

such as speech recognition and typing errors. This type of testing also tests
the connections between the subsystems.

The simulation tests have been performed both as loosely structured
tests where the operator improvises during the tests, and as more formal
tests where the operator works on the basis of a scenario. The benefit
of improvised tests is the ability to test different dialogs and to provoke
the system with unexpected input. Structured tests using a scenario are
intended to be closer to reality. The scenario presents the operator with a

Tests and Results 107

Figure 8.3: The SGUI in the middle of a simulation test.

specific situation and a task to be performed, and it is up to the operator
and the system to accomplish the task. The following two subsections
will present two different scenarios together with a dialog example and
comments on the result.

8.2.1 Scenario I

The following scenario serves as a starting point for the operator:

108 8.2. Simulation Tests

Operator: Fly church.
CEDERIC: Ok I am starting to fly.
CEDERIC: I am at the church now.

The operator gets the new report.

Operator: Rotate camera ninety degrees right.
CEDERIC: I am moving the camera.
CEDERIC: I have rotated the camera ninety degrees right now.
Operator: Fly to the hospital.
CEDERIC: Ok I am starting to fly.
Operator: Video ten minutes.
CEDERIC: I do not know what you mean with the phrase video

ten minutes.
Operator: Play video ten minutes.
CEDERIC: Here it comes.
CEDERIC: I am at the hospital now.

Figure 8.4: An example of dialog based on a scenario I.

There have been reports about a drunk driver in a red car, last seen close
to the church. Your mission is to use the UAV to search for the car. When
the UAV is near the church, you got new information that the car has been
seen several times near the hospital during the last ten minutes. Direct the
camera towards the nearby hospital and try to get an observation of the
car. Then fly to the hospital and request the video recorded ten minutes
ago. The UAV is in the air near the base at the start of the mission.

The simulation of the world in scenario I is the same as the one shown
in Figure 8.2. The operator has information about the different categories
of the buildings. A tested dialog for the scenario is shown in Figure 8.4.
In this dialog, the CBR similarity function is tested as well as the actions
themselves. The operator starts by saying Fly church instead of Fly to
the church as stored in the case for the action. CEDERIC interprets it

Tests and Results 109

correctly as Fly to the church and executes the command. The next
problem is when the operator tries to request the video. The command
Video ten minutes is not similar enough to Show me the video from
ten minutes ago, as stored in the case base, and CEDERIC can not in-
terpret the utterance. The operator tries again, but now with the phrase
Play video ten minutes. The word play is in the lexicon and has the
same category as show, hence the similarity is enough for CEDERIC to
correctly interpret the phrase. The decision not to interpret the phrase
Video ten minutes as a request to show the video recorded ten minutes
ago seems reasonable, due to the vagueness of the phrase. On the other
hand, to interpret the phrase Play video ten minutes as a video request
seems more reasonable because of the word play that indicates what op-
eration the operator wants to do with the video.

8.2.2 Scenario II

The second scenario looks like follows:

There are reasons to believe that a group of terrorists are located in a
small airfield on the Swedish countryside. Your mission is to use the UAV
to search the area. Let the UAV return to the base if any signs of activity
are detected. The current position of the UAV is on the ground on the home
base.

The corresponding dialog can be found in Figure 8.5. The dialog con-
tains several difficulties that include replanning. The first occurrence is
when the operator commands the UAV to fly to the northern side of the
buildings, even though is is still on the ground and has not taken off yet.
The fly-to-plan plan case checks the altitude of the UAV before it is
executed and if the altitude is too low, CEDERIC has to find a way to
increase the altitude. In this case it is done by performing a take off before
the actual flight is started. When the operator wants to be shown the front
facade of the main building, the UAV does not have a good angle from the
current position, hence it first has to fly to a better position and then turn
the camera to be able to show the front facade.

110 8.2. Simulation Tests

Operator: Your main goal today is to look for people and vehicles.
CEDERIC: Ok I will report every observation of people and vehicles.
Operator: Fly to the northern side of the buildings.
CEDERIC: Ok I am taking off.
CEDERIC: I am starting to fly.
CEDERIC: I am at the northern side.
Operator: Show me the front facade of the main building.
CEDERIC: I am starting to fly.
CEDERIC: Is this view ok?
Operator: Climb ten meters.
CEDERIC: Ok I have ascended ten meters.
Operator: Rotate the camera forty five degrees right.
CEDERIC: I have rotated the camera forty five degrees right.
Operator: Fly to the hangar.
CEDERIC: I am starting to fly.
CEDERIC: I see a red car.
Operator: Hover.
CEDERIC: I am hovering.
Operator: Fly to the base.
CEDERIC: I am starting to fly.
CEDERIC: I am at the base.

Figure 8.5: An example of dialog based on a scenario II.

8.2.3 Results

Both the development tests and the simulation tests have been important
tools to test the functionality of the system. The simulation tests show that
the integration with SGUI and the simulator works correctly and CED-
ERIC behaves as intended. Several aspects of CEDERIC have been tested
in the development tests and the simulation tests, such as the behavior of
the similarity function, the overall flexibility of the system, the replanning
routine, nested dialogs, subdialogs and how well the system copes with

Tests and Results 111

speech recognition errors.
The similarity function has been shown to function to satisfaction.

The design or choice of an optimal similarity function is however a some-
what subjective matter, and the balance between intelligently interpreting
a phrase and over interpreting it is hard. CEDERIC seems rather well
balanced, but if an acceptance dialog where CEDERIC asks for acceptance
for an interpretation is developed, as in I do not quite understand but
do you mean fly to the hospital?, then CEDERIC may be allowed to
over interpret to a larger extent.

The overall flexibility of the system has been tested by implementing
different kinds of dialogs with various structures. It is easy to implement
a command such as fly to the hospital, but do the system and the
similarity function manage other types of commands? The command fly
home to the vicar of the white church was implemented to test this.
The result of the phrase is that CEDERIC finds the building where the vicar
lives and flies there. The flexibility of the problem solving features and the
similarity function were then tested using the phrase fly to the janitor
of the white church, i.e. where the intended building is switched, but
the building mentioned in the phrase is the same. CEDERIC solves the
problem successfully and flies to the janitor’s house.

The replanning routine has some design flaws which were described in
section 7.5.5. The most notable problem is the execution time. It some-
times takes as much as 60 seconds for the system to find a solution to a
replanning problem in a case base with about 60 plan cases, but in rare
cases, it takes up to two minutes. This is not acceptable in a real situa-
tion, but as CEDERIC is a test version and a proof of concept, it should
be acceptable. According to the problem formulation in section 6.2, the
question is how a machine learning and problem solving system that uses
the knowledge available, can be constructed. How it can be best solved is
the next step. It should be possible to rewrite the replanning routine used
in CEDERIC to make it more time effective, but as the case base grows
larger, the problem will remain. An idea is to use better indexes and prun-
ing facilities in addition to plan goals in each plan case which will guide
and inform the search and make it more time efficient.

Besides the time problems, the replanning routine works well and is able
to solve problems both when the plan fault is in the plan checking process

112 8.2. Simulation Tests

and when it is in the execution of a plan. Several different replanning
problems have been tested; some of them were described in the previous
section. Those replanning problems are of the kind where a plan is extended
with an entire plan for another action, such as performing a take off
command before performing a fly command. Examples where a subpart
of a plan has been connected to a subpart of another plan have also been
tested and worked as intended.

Nested dialogs and subdialogs have been tested and work as intended.
The operator can jump back and forth between several ongoing dialogs,
without problems. CEDERIC finds the most suiting ongoing dialog and
reacts properly to the dialog exchange.

CEDERIC has been tested using both speech and text as a means
of communication. When using speech, the phrase interpreted by the
speech recognizer can be far from what the operator actually said. An
example is when the phrase Fly to the red hospital is interpreted as
Watch the eight police cars. This can of course be troublesome for
the dialog manager which is trying to interpret the strange phrase. The
experience from the tests is however that the result from the misinter-
preted phrase is often faulty in some way, and CEDERIC will return an
error message such as I do not know what you mean with the phrase
watch the eight police cars. If the fault is minor, the similarity func-
tion may be able to recover from the error and interpret the utterance cor-
rectly. When using text, typing errors are common. They are often minor
and the meaning of a sentence can easily be interpreted by the similarity
function.

There is a greater risk that the operator uses grammatically incorrect
sentences, leaves some words out, etc, when using text. When the meaning
of the phrase is clear, even with some missing words, CEDERIC often
interprets the phrase correctly, but when a major part of the sentence is
missing, CEDERIC decides not to use the most similar case if it is not
similar enough, and an error message is returned instead.

To sum up, there are some problems, mainly with the replanning rou-
tine, but in general, CEDERIC seems to work correctly and as intended
for most of the tests.

Tests and Results 113

8.3 User Tests

User tests are used for measuring the usability of a dialog system. The
idea is to test how well the system works for an arbitrary user, to gain
information about how a user interacts with the system, and to measure
how easily a user can accomplish a task.

CEDERIC has been tested in user tests, together with the SGUI user
interface and the Hazard simulator. The test persons are people that have
no prior experiences of CEDERIC, but some of them have some experience
of the WITAS RDE, which is similar to CEDERIC. A simple scenario
including five missions and a model of the world where the helicopter is
situated was given to each test person before the test began. The five
missions used in the tests were:

1. Move the helicopter to an altitude of 20 meters. Make sure that the
altitude really is 20 meters above the ground.

2. Move the helicopter to a position above, or close to the hospital.

3. Move the helicopter to a position above, or close to the school labeled
with number 1 (the number can not be used to refer to the object in
a dialog).

4. Make the dialog system play the video recorded ten minutes ago.

5. Move the helicopter to the base and make it land on the ground.

The test persons had no knowledge about which words or phrases to use
when communicating with the system. The dialog between the user and
the system was recorded for each mission and the turns were analyzed.

The first mission turned out to be hard. The ideal dialog is ascend
twenty meters followed by the question what is the altitude. The
problem is the word ascend, which has to be used for the system to recog-
nize the first command. No other words with the same word class were in-
cluded in the lexicon. Phrases such as gain twenty meters, rise twenty
meters and longer phrases such as fly to the altitude of twenty me-
ters occurred in the tests but could not be interpreted by the system. The

114 8.3. User Tests

phrase ascend to twenty meters was recognized as ascend twenty me-
ters, i.e. the system interpreted it as a relative altitude but the operator
intended an absolute altitude. The operator recognized the error and could
figure out the correct command. This is an example of when the system
misinterprets a phrase, but it can be helpful for the operator anyway.

The ideal phrase for mission two is fly to the hospital, which some
test persons used. Other phrases such as fly to a position close to
the hospital occurred as well and was interpreted correctly.

In mission three, two schools were present in the world. The test persons
did not know how to specify the choice of school, but the schools had
different colors in the SGUI and the simulator. The thought behind this
mission was to test how well the subdialog worked. To force a subdialog,
the system did not have a plan for the phrase fly to the red school,
only for the phrase fly to the school which resulted in a subdialog when
there were several schools in the world. The ideal dialog is fly to the
school which results in the reply I have several schools to choose
between, which one do you mean. Then the operator answers the red
one and the helicopter performs the action. Most test persons did follow the
ideal dialog quite well. Instead of fly to the school, the similar phrase
go to the school occurred and instead of the red one, the phrase the
red school was used. These phrases were interpreted correctly and as the
test person intended.

The formulation in mission four was not as leading as the test persons
thought. The ideal phrase to show the video is show me the video from
ten minutes ago. Variants such as play video recorded ten minutes
ago and show me the video you recorded ten minutes ago were used
successfully in the tests.

The last mission could easily be performed since by that time the test
persons had learnt how to make the helicopter fly to a particular named po-
sition. The ideal dialog is fly to the base followed by a land command.
Some test persons tried a compound phrase such as please fly home to
the base and land. This was interpreted as fly to the base and the
land command was not performed. However, the test person noticed this
and could command the helicopter to land with the phrase land please
when the helicopter had reported that it had completed flying to the base.

Tests and Results 115

8.3.1 Results

Mission 1 Mission 2 Mission 3 Mission 4 Mission 5

0

2

4

6

8

10

12

14

16

18

Phrases in total

Interpr. phrases

Correctly interpr. phrases

Exact formulated phrases

Figure 8.6: The result of the user test where the y-axis is the number of
phrases on average per test person.

The dialogs and phrases for each test person and mission have been
analyzed and categorized. Interesting results are:

• How many phrases a test person had to use on average to complete
a mission,

• How many phrases the system could interpret on average for each
mission,

• How many phrases that were interpreted correctly by the system on
average for each mission,

• How many phrases that were uttered exactly as they were stored in
the case base on average for each mission.

The result is given in Figure 8.6.

116 8.3. User Tests

The result for mission 1 stands out because of the large number of
phrases. As discussed in the previous section, this depends on the difficulty
to find the correct word for ascending. There is also a larger gap between
the number of interpreted phrases and the number of correctly interpreted
phrases. This is however not as bad as it may look. Phrases such as ascend
to twenty meters that was interpreted as ascend twenty meters and
make sure that the altitude is twenty meters that was interpreted
as what is the altitude were both wrongly interpreted but they did help
the test person to perform the mission.

The results for the other four missions are rather similar to each other.
Almost every phrase was interpreted correctly, even if it was not uttered
exactly as it was stored in the case base. This indicates that the machine
learning and similarity function were used and worked well. For mission 3
and mission 4, few phrases or no phrase at all was uttered exactly as it was
stored in the case base, but despite this most of the communicated phrases
were interpreted correctly.

The user test was not only a test of CEDERIC, but it also served as a
test of how a user may communicate with the system to solve a problem.
The test persons were not given any information before the test started
how to communicate with the system, besides that he or she was free to
use either spoken or written language. The results for mission 1 were a
clear indication that the choice of wordings in the system disagreed with
the test persons use of language. It would probably have been helpful if
the system gave hints about how to communicate a command based on
weak similarity. The phrase gain twenty meters could for example result
in the answer I do not know exactly what you mean by the phrase
gain twenty meters; the most similar commands I know are ascend
twenty meters and descend twenty meters if that is of any help.
Please try again.

Chapter 9

Conclusion

9.1 Retrospective

As CEDERIC is a dialog system built on a CBR foundation, it combines
several different areas of research, and it is inspired by several mutually dif-
ferent systems. Chapter 4 contained descriptions of some systems that are
similar to CEDERIC in some sense. The present section gives a comparison
between them and CEDERIC and points out advantages and disadvantages
with the systems.

9.1.1 Predecessors within WITAS

The WITAS-Stanford Dialog System (described in section 4.1.2) and the
WITAS RDE (described in chapter 5) are predecessors to CEDERIC, thus
the systems have much in common. They are used in the same domain,
with approximately the same interface to the actual UAV or simulator, and
the dialogs implemented in the systems are rather similar. However, under
the surface, the systems address different goals. CEDERIC focuses on the
integration of machine learning into dialog systems to gain flexibility. The
WITAS-Stanford Dialog System is also implemented with flexibility in fo-
cus, but does not include machine learning. The WITAS RDE uses a logic
base that is partly inherited into CEDERIC. Both the WITAS-Stanford

117

118 9.1. Retrospective

Dialog System and, to a larger extent, the WITAS RDE implement multi-
modality, which is not yet implemented in CEDERIC.

9.1.2 Robot Dialog

The main purpose of CEDERIC is to control a robot, hence the focus of
the dialog is on robot communication. Several other robotic dialog sys-
tems were presented in section 4.3. KAMRO, for example, is an advanced
system including execution monitoring and explanation of error recovery.
Features like these are very useful in a robotic dialog system, and partic-
ularly interesting for an application like CEDERIC. However, it is not yet
implemented, but KAMRO serves as an inspiration for further implemen-
tations. Other systems such as Godot, Jijo-2 and Carl use some sort of
learning such as socially embedded learning, similar to learning from ex-
planation, which is implemented in CEDERIC. Unlike CEDERIC, they do
not use machine learning to increase the dialog functionality.

9.1.3 Case-Based Reasoning and Planning

CEDERIC uses CBP for planning and replanning. Other systems using
both CBP and other planning algorithms were described in section 4.4 and
section 4.5. TRIPS is an interactive planning system that assists the user
to construct effective plans for her work. It is a very interesting approach,
and it would be interesting to implement interactive planning in CEDERIC,
using CBR and CBP techniques. Today, CEDERIC uses planning only for
solving problems without the interaction of a human user. SiN, described
in section 4.5.1, is another system with planning capabilities. SiN also uses
CBR as a problem solving method. However, SiN uses CCBR, which is
a method where the dialog is an aid to gather more information to solve
the problem, not the main feature of the system. SiN does not have a
discourse model, and the dialog is very simple and strict. A step further
is the Discourse Goal Stack Model presented in section 4.5.2. The model
connects CCBR with a discourse model, which is very interesting. However,
the machine learning method is only used as a problem solving technique,
and the dialog does not improve over time, nor does it use the CCBR

Conclusion 119

technique to become better. The discourse model and the CCBR part are
not integrated but are two separate parts of the system.

The most interesting approach, with respect to learning dialog systems,
is the method described in section 4.5.3, by Murao et al. This dialog
system uses CBR to learn new dialogs from an example corpus, similar to
the way CEDERIC learns from dialog in its past experience. The cases are
made up by an input from the user and the solution is a reply. Therefore
a longer dialog is not captured in the case base in the same manner as
CEDERIC does, using the distinction between plan cases and plan items.
In combination with the lack of discourse information, its dialogs become
rather simple and strict, compared to the dialogs in CEDERIC.

9.2 Main Results

CEDERIC is a dialog system implemented as an answer to the question:
How can an adaptable, learning, problem solving robotic dialog system be
constructed so that it improves over time and incorporates advanced natural
language features?
that was asked in section 6.2.

This question was decomposed into six subquestions, which are recapit-
ulated here together with a discussion:

How can machine learning be provided in such a system?
How can problem solving be provided in such a system?
As CEDERIC uses CBR, which is a machine learning method and a prob-
lem solving method, the two first questions can be answered together.
CEDERIC uses CBR both as a machine learning technique and as a prob-
lem solving technique, which makes the basic system more coherent. It
can find the best suiting case to apply when the operator does not utter
a sentence exactly as it is specified in the system, and it can also save the
plan case and use it again at a later time. It can also use a case for solving
a problem where the words used belong to the same category, but are not
identical to the word in the case base. The implementation of CEDERIC
shows that a machine learning method as well as a problem solving method
can be used successfully in a dialog system. In our case the method in both
cases is CBR.

120 9.2. Main Results

How should the discourse information be represented?
CEDERIC is equipped with a rather sophisticated discourse model that is
well integrated into the system, giving it the ability to handle anaphoric
references, subdialogs and topic management. These linguistic features
make the dialog more natural and fluent.

How can the system make use of the knowledge to solve problems
it has never seen before?
With the right prerequisites, CEDERIC can solve problems it has never
seen before, and make qualified guesses about how to treat incomplete in-
formation by making effective use of the knowledge in the system. It is
capable of finding and combining a subset of a case with a subset of an-
other case to solve a new problem. A special case of this planning algorithm
allows for preparing for the execution of a command the operator is asking
for, by executing other necessary commands automatically. Hence CED-
ERIC is an example of how a system can make use of knowledge to solve
problems it has never seen before.

How can the system learn from the user if it can not solve a problem
on its own?
CEDERIC can learn from explanation and take directives from the opera-
tor, by recognizing a learning situation where the operator uses an unknown
word, and execute a case that allows learning from explanation. The infor-
mation is then saved in the system and can be reused later on.

How can special considerations regarding the physical robot, such
as safety and graceful degradation, be taken care of?
When CEDERIC does not find a suiting case to be applied to a user input,
the user is told so and may try to reformulate, hence the system uses some
sort of graceful degradation where it can carry on with different tasks even
if one input fails. However, in a system like CEDERIC, it is desirable to
have a verbal system that explains what it has decided to do, before the
plan is executed. This is particularly important in a machine learning and
problem solving system, where the plan may be faulty or unsuitable. Such
verbal behavior is not implemented in CEDERIC.

To return to the main question stated at the beginning of this section,
has our work with CEDERIC identified a viable solution or approach for
each of the stated subgoals? We think so, because CEDERIC is adaptable,
learning and problem solving to a certain degree, although not comparable

Conclusion 121

to a human being. It improves over time, due to the increasing case base,
and it can perform some advanced dialogs, but it is far from as intelligent
as you and me. However, compared to other dialog systems, it can be
considered intelligent in some sense.

Of course, much is in the eye of the beholder and a matter of interpre-
tation of the question above, as is often the case in artificial intelligence.
As shown above, CEDERIC does fulfill the requirements in the question
and is an adaptable, learning, problem solving robotic dialog system that
improves over time and incorporates advanced natural language features.

9.3 Future Work

CEDERIC has some weaknesses in the replanning routine, as described in
section 7.5.5. A better implementation of the replanning routine is likely
to result in a more robust and faster system. An integration of methods
and ideas from an automatic planner into CEDERIC is an interesting and
challenging task which would probably benefit the system. It is interesting
to investigate how the planning routine may be implemented to be able to
solve problems correctly and efficiently without losing the benefits from a
learning system that tries different methods to solve a problem.

Despite its weaknesses, CEDERIC is flexible and mature enough to
serve as a starting point for further implementations of various dialog fea-
tures. One desirable feature is the ability for the system to explain a plan
in natural language and get feedback from the operator. This can be used
both for execution monitoring, where the operator accepts or rejects an
automatically planned plan, and for interactive planning if a dialog about
the plan occurs. Interactive planning is also interesting to implement in the
planning phase, in order to obtain a usable dialog system in the robotic con-
trol domain. Approaches to interactive planning have been described, e.g.,
in the literature about TRIPS and in the automated planning literature.

The WITAS-Stanford Dialog System and the WITAS RDE both imple-
ment multimodality, i.e., a spoken input from the user is combined with a
mouse gesture on a screen. The WITAS domain is particularly suited for
multimodal input, where the user can point out areas on a map or indicate
which vehicle she is talking about in a video stream. CEDERIC does not

122 9.3. Future Work

support multimodality, but it would be interesting to investigate how it
can be integrated to the system.

The similarity function in CEDERIC checks for equality or classification
similarity, where two entities are classification similar if they belong to the
same class in an ontology. However, classes may be related as well, and
this relation may be taken into consideration in the similarity function. An
investigation of an expansion of the ontology and the similarity function
would be interesting. This includes issues such as how the information
can best be represented in the ontology, and how new information can be
included automatically by the system.

Earlier versions of CEDERIC saved aspects of the discourse model in
the case base for each of the cases, and matched it against the current
discourse situation when facing new cases. Due to lack of generality, this
method was discarded in favor of saving the raw input from the whole
dialog and using it instead. However, the thought of using the structured
discourse is appealing an would be retried if a clean solution to the problem
can be found.

Bibliography

[1] Dynamic Memory: A Theory of Reminding and learning in computers
and People. Cambridge University Press, 1982.

[2] From Discourse to Logic. Kluwer Academic Publishers, 1993.

[3] Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. John Wiley, 1994.

[4] Artificial Intelligence a Modern Approach. Prentis-Hall, 1995.

[5] Features and Fluents: the Representation of Knowledge about Dynamic
Systems. Oxford University Press, 1995.

[6] Machine Learning. McGraw-Hill, 1997.

[7] SmartKom: Foundations of Multimodal Dialogue Systems. Springer
Verlag, 2006.

[8] Agnar Aamodt. Case-based reasoning; Foundational Issues, Method-
ological Variations, and System Approaches. AI Communications,
7(1):39–59, 1994.

[9] David W. Aha, Leonard A. Breslow, and Hector Munoz-Avila. Con-
versational Case-Based Reasoning. Applied Intelligence, 14(1):9–32,
2001.

123

124 BIBLIOGRAPHY

[10] Jan Alexanderson, Elisabeth Maier, and Norbert Reithinger. A Ro-
bust and Efficient Three-Layered Dialogue Component for Speech-to-
Speech Translation System. Technical Report 50, Federal Ministry of
Education, Science, 1994.

[11] J. Allen, D. Byron, M. Dzikovska, G. Ferguson, and L. Galescu. To-
wards Conversational Human-Computer Interaction. AI Magazine,
22(4):27–37, 2001.

[12] James Allen, George Ferguson, and Amanda Stent. An Architecture
for More Realistic Conversational Systems. In IUI ’01: Proceedings of
the 6th International Conference on Intelligent User Interfaces, pages
1–8, 2001.

[13] Peter J. Andersson. Hazard: a Framework Towards Connecting Ar-
tificial Intelligence and Robotics. In IJCAI Workshop on Reasoning,
Representation and Learning in Computer Games, 2005.

[14] Peter J. Andersson. Hazard: A Framework Towards Connecting Artifi-
cial Intelligence and Robotics. In IJCAI Workshop on Representation,
Reasoning and Learning in Computer Games, 2005.

[15] I. Androutsopoulos, G.D. Ritchie, and P. Thanisch. Natural Language
Interfaces to Databases – an Introduction. Journal of Language Engi-
neering, 1(1):29–81, 1995.

[16] Hideki Asoh, Satoru Hayamizu, Isao Hara, Yoichi Motomura, Shotaro
Akaho, and Toshihiro Matsui. Socially Embedded Learning of the
Office-Conversant Mobile Robot Jijo-2. In Proceedings of the Inter-
national Joint Conference on Artificial Intelligence, pages 880–887,
1997.

[17] S. Bennacef, L. Devillers, S. Rosset, and L. Lamel. Dialog in the RAIL-
TEL Telephone-based System. In Proceedings of ICSLP, volume 1,
pages 550–553, 1996.

[18] Eric Bilange. A Task Independent Oral Dialogue Model. In Proceedings
of the Fifth Conference on European Chapter of the Association for
Computational Linguistics, pages 83–88, 1991.

BIBLIOGRAPHY 125

[19] Karl Branting, James Lester, and Bradford Mott. Dialogue Manage-
ment for Conversational Case-Based Reasoning. In Proceedings of the
Seventh European Conference on Case-Based Reasoning, pages 77–90,
2004.

[20] L. Breslow and D. Aha. NaCoDAE: Navy Conversational Decision
Aids Environment. Technical Report AIC-97-018, NCARAI, Wash-
ington, DC, 1997.

[21] Rolf Carlson. The Dialog Component in the Waxholm System. In
Proceedings of Twente Workshop on Language Technology. Dialogue
Management in Natural Language Systems (TWLT 11), 1996.

[22] Peter Clark and Bruce Porter. KM - The Knowledge Machine 2.0:
Users Manual, 2004.

[23] Ronald A. Cole, Joseph Mariani, Hans Uszkoreit, Annie Zaenen, and
Victor Zue. Survey of the State of the Art in Human Language Tech-
nology. Cambridge University Press, 1997.

[24] Patrick Doherty, Gösta Granlund, Krzysztof Kuchinski, Erik Sande-
wall, Klas Nordberg, Erik Skarman, and Johan Wiklund. The WITAS
Unmanned Aerial Vehicle Project. In Proceedings of the 12th European
Conference on Artificial Intelligence, pages 747–755, 2000.

[25] Patrick Doherty, Patrik Haslum, Fredrik Heintz, Torsten Merts,
Tommy Persson, and Björn Wingman. A Distributed Architecture
for Intelligent Unmanned Aerial Vehicle Experimentation. In Proceed-
ings of the 7th International Symposium on Distributed Autonomous
Robotic Systems, 2004.

[26] Karolina Eliasson. An Integrated Discourse Model for a Case-Based
Reasoning Dialogue System. In SAIS-SSL event on Artificial Intelli-
gence and Learning Systems, 2005.

[27] Karolina Eliasson. Integrating a Discourse Model with a Learning
Case-Based Reasoning System. In DIALOR-05: the 9th Workshop on
the Semantics and Pragmatics of Dialogue, 2005.

126 BIBLIOGRAPHY

[28] Karolina Eliasson. Towards a Robotic Dialogue System with Learning
and Planning Capabilities. In IJCAI Workshop on Knowledge and
Reasoning in Practical Dialogue Systems, 2005.

[29] George Ferguson and James F. Allen. TRIPS: An Integrated Intelli-
gent Problem-Solving Assistant. In AAAI ’98/IAAI ’98: Proceedings
of the Fifteenth National Conference on Artificial Intelligence, pages
567–572, 1998.

[30] R.E Fikes and N. J. Nilsson. STRIPS: A New Approach to the Appli-
cation of Theorem Proving to Problem Solving. Artificial Intelligence,
2(3–4):182–208, 1971.

[31] T. Finin, R. Fritzson, D. McKay, and R. McEntire. KQML as an Agent
Communication Language. In Proceedings of the 3rd International
Conference on Information and Knowledge Management (CIKM’94),
pages 456–463, 1994.

[32] Matthew Frampton and Oliver Lemon. Reinforcement Learning of
Dialogue Strategies Using the Users’s Last Dialogue Act. In IJCAI
Workshop on Knowledge and Reasoning in Practical Dialogue Systems,
2005.

[33] Jeroen Groenendijk and Martin Stokhof. On the Semantics of Ques-
tions and the Pragmatics of Answers. In Varities of Formal Semantics,
pages 143–170, 1984.

[34] Nobuo Inui, Toshiaki Ebe, Bipin Indurkhya, and Yashiyuki Kotani. A
Case-Based Natural Language Dialogue System Using Dialogue Act.
In IEEE International Conference on Systems, Man, and Cybernetics,
pages 193–198, 2001.

[35] T. Laengle, T. C. Lueth, G. Herzog, E. Stopp, and G. Kamstrup.
KANTRA – A Natural Language Interface for Intelligent Robots. In-
telligent Autonomous Systems, pages 365–372, 1995.

[36] Lynn Lambert and Sandra Carberry. A Tripartite Plan-Based Model
of Dialogue. In Proceedings of the 29th Annual Meeting on Association
for Computational Linguistics, pages 47–54, 1991.

BIBLIOGRAPHY 127

[37] Oliver Lemon, Anne Bracy, Alexander Gruenstein, and Stanley Pe-
ters. Information States in a Multi-modal Dialogue System for Human-
Robot Conversation. In 5th Workshop on Formal Semantics and Prag-
matics of Dialogue, 2001.

[38] Oliver Lemon, Anne Bracy, Alexander Gruenstein, and Stanley Pe-
ters. The WITAS Multi-Modal Dialogue System. In Proceedings of
EuroSpeech, pages 1559–1562, 2001.

[39] Oliver Lemon, Alexander Gruenstein, and Stanley Peters. Collabo-
rative Activities and Multi-tasking in Dialogue Systems. Traitement
Automatique des Langues (TAL), special issue in dialogue, 43(2):131–
154, 2002.

[40] Ester Levin, Roberto Pieraccini, and Wieland Eckert. A Stochastic
Model of Human-Machine Interaction for Learning Dialog Strategies.
Journal of Artificial Intelligence Research, 8(1):105–133, 2000.

[41] L. Seabra Lopes. Carl: from Situated Activity to Language Level
Interaction and Learning. In Proceedings of IEEE International Con-
ference on Intelligent Robots and Systems, pages 890–896, 2002.

[42] David L. Martin, Adam J. Cheyer, and Douglas B. Moran. The Open
Agent Architecture: A Framework For Building Distributed Software
Systems. Applied Artificial Intelligence, 13(1–2):91–128, 1999.

[43] Hector Munoz-Avila, Ralph Bergmann Manuela Veluso, and Erica
Melis. Case-based Reasoning Applied to Planning Tasks. Case-Based
Reasoning Technology: From Foundations to Applications, pages 169–
199, 1998.

[44] Héctor Muñoz-Avila, David W. Aha, Dana S. Nau, Rosina Weber, Len
Breslow, and Fusun Yaman. SiN: Integrating Case-based Reasoning
with Task Decomposition. In Proceedings of the Seventeenth Inter-
national Joint Conference on Artificial Intelligence, pages 999–1004,
2001.

[45] Hiroya Murao, Nobuo Kawaguchi, Shigeki Matsubara, and Yasuyoshi
Inagaki. Example-based Query Generation for Spontaneous Speech.

128 BIBLIOGRAPHY

IEICE Transactions on Information and Systems, pages 357–364,
2005.

[46] Hiroya Murao, Nobuo Kawaguchi, Shigeki Matsubara, Yukiko Yam-
aguchi, and Yasuyoshi Inagaki. Example-based Spoken Dialogue Sys-
tem using WOZ System Log. In SIGdial Workshop on Discourse and
Dialogue, pages 140–148, 2003.

[47] D. Nau, Y. Cao, A. Lotem, and H. Munoz-Avila. SHOP: Simple Hier-
archical Ordered Planner. In Proceedings of the Sixteenth International
Joint Conference on Artificial Intelligence, pages 968–973, 1999.

[48] Bernhard Nebel and Jana Koehler. Plan Reuse versus Plan Gener-
ation: A Theoretical and Empirical Analysis. Artificial Intelligence,
76(1-2):427–454, 1995.

[49] Nils J. Nilsson. Shakey the Robot. Technical Report 323, AI Center,
SRI International, 1984.

[50] K. Nordberg, P. Doherty, P-E. Forssen, J. Wiklund, and P. Anders-
son. A Flexible Runtime System for Image Processing in a Distributed
Computational Environment for an Unmanned Aerial Vehicle. special
issues of the International Journal of Pattern Recognition and Artifi-
cial Intelligence, 2003.

[51] Per-Olof Petterson and Patrick Doherty. Probabilistic Roadmap Based
Path Planning for Autonomous Unmanned Aerial Vehicles. In ICAPS
Workshop on Connecting Planning and Theory with Practice, 2004.

[52] Norbert Pfleger, Jan Alexandersson, and Tilman Becker. A Robust
and Generic Discourse Model for Multimodal Dialogue. In Work-
shop Notes of the IJCAI-03 Workshop on Knowledge and Reasoning
in Practical Dialogue Systems, 2003.

[53] A. A. Sanderman, J. Sturm, E. A. den Os, L. Boves, and A. H. M.
Cremers. Evaluation of the Dutch Train Timetable Information Sys-
tem developed in the Arise project. In Proceedings of the 4th IEEE
workshop on Interactive Voice Technology for Telecommunications Ap-
plications, pages 91–96, 1998.

BIBLIOGRAPHY 129

[54] Erik Sandewall. Cognitive Robotics Logic and its Metatheory: Fea-
tures and Fluents Revisited. Linköping Electronic Articles in Com-
puter and Information Science, 3, 1998.

[55] Erik Sandewall, Patrick Doherty, Oliver Lemon, and Stanley Peters.
Words at the Right Time: Real-Time Dialogues with the WITAS Un-
manned Aerial Vehicle. In Proceedings of the 26th Annual German
Conference in AI, pages 52–63, 2003.

[56] Erik Sandewall, Hannes Lindblom, and Björn Husberg. Integration of
Live Video in a System for Natural Language Dialog with a Robot. In
DIALOR-05: the 9th Workshop on the Semantics and Pragmatics of
Dialogue, 2005.

[57] Satoko Shiga and Seishi Okamoto. Case-based Natural Language Di-
alogue System using Facial Expressions. In CATALOG-04: the 8th
workshop on the semantics and pragmatics of dialogue, 2004.

[58] Satinder Singh, Diane Litman, Michael Kearns, and Marilyn Walker.
Optimizing Dialogue Management with Reinforcement Learning: Ex-
periments with the NJFun System. Journal of Artificial Intelligence
Research, 16(1):105–133, 2002.

[59] Luca Spalazzi. A Survey on Case-Based Planning. Artificial Intelli-
gence Review, 16(1):3–36, 2001.

[60] Christian Theobalt, Johan Bos, Tim Chapman, Arturo Espinosa-
Romero, Mark Fraser, Gillian Hayes, Ewan Klein, Tetsushi Oka, and
Richard Reeve. Talking to Godot: Dialogue with a Mobile Robot.
In Proceedings of IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 1338–1343, 2002.

[61] Alan Turing. Computing Machinery and Intelligence. Mind,
59(236):433–460, 1950.

[62] Steve Young. Talking to Machines (Statistically Speaking). In Proceed-
ings of the International Conference on Spoken Language Processing,
2002.

130 BIBLIOGRAPHY

Avdelning, Institution
Division, Department

Datum
Date

Spr̊ak
Language

2 Svenska/Swedish

4 Engelska/English

2

Rapporttyp
Report category

4 Licentiatavhandling

2 Examensarbete

2 C-uppsats

2 D-uppsats

2 Övrig rapport

2
URL för elektronisk version

ISBN

ISRN

Serietitel och serienummer
Title of series, numbering

ISSN

Linköping Studies in Science and Technology

Thesis No. 1248

Titel
Title

Författare
Author

Sammanfattning
Abstract

Nyckelord
Keywords

As long as there have been computers, one goal has been to be able
to communicate with them using natural language. It has turned out
to be very hard to implement a dialog system that performs as well as
a human being in an unrestricted domain, hence most dialog systems
today work in small, restricted domains where the permitted dialog is
fully controlled by the system.

In this thesis we present two dialog systems for communicating with
an autonomous agent:

The first system, the WITAS RDE, focuses on constructing a sim-
ple and failsafe dialog system including a graphical user interface with
multimodality features, a dialog manager, a simulator, and develop-
ment infrastructures that provides the services that are needed for the
development, demonstration, and validation of the dialog system. The
system has been tested during an actual flight connected to an un-
manned aerial vehicle.

The second system, CEDERIC, is a successor of the dialog manager
in the WITAS RDE. It is equipped with a built-in machine learning
algorithm to be able to learn new phrases and dialogs over time using
past experiences, hence the dialog is not necessarily fully controlled
by the system. It also includes a discourse model to be able to keep
track of the dialog history and topics, to resolve references and maintain
subdialogs. CEDERIC has been evaluated through simulation tests and
user tests with good results.

AIICS,
Dept. of Computer and Information Science
581 83 LINKÖPING

May 8, 2006

91-85523–78–X

LiU-Tek-Lic–2006:29

0280-7971

http://urn.kb.se/resolve?urn=urn:
nbn:se:liu:diva-6402

May 8, 2006

The Use of Case-Based Reasoning in a Human-Robot Dialog System

Karolina Eliasson

Dialog Manager, Machine Learning, Case-Based Reasoning, Case-
Based Planning, Helicopter, Natural Language

