
Linköping Studies in Science and Technology

Thesis No. 1229

Sampling-based Path Planning
for an Autonomous Helicopter

by

Per Olof Pettersson

Submitted to Linköping Institute of Technology at Linköping University in partial
fulfilment of the requirements for degree of Licentiate of Engineering

Department of Computer and Information Science
Linköping universitet

SE-581 83 Linköping, Sweden

Linköping 2006

Sampling-based Path Planning

for an Autonomous Helicopter

by

Per Olof Pettersson

February 2006
ISBN 91–85497–15–0

Linköping Studies in Science and Technology
Thesis No. 1229
ISSN 0280–7971

LiU–Tek–Lic–2006:10

ABSTRACT

Many of the applications that have been proposed for future small unmanned aerial vehicles
(UAVs) are at low altitude in areas with many obstacles. A vital component for successful navi-
gation in such environments is a path planner that can find collision free paths for the UAV.

Two popular path planning algorithms are the probabilistic roadmap algorithm (PRM) and the
rapidly-exploring random tree algorithm (RRT). Adaptations of these algorithms to an unmanned
autonomous helicopter are presented in this thesis, together with a number of extensions for
handling constraints at different stages of the planning process.

The result of this work is twofold:

First, the described planners and extensions have been implemented and integrated into the soft-
ware architecture of a UAV. A number of flight tests with these algorithms have been performed
on a physical helicopter and the results from some of them are presented in this thesis.

Second, an empirical study has been conducted, comparing the performance of the different al-
gorithms and extensions in this planning domain. It is shown that with the environment known
in advance, the PRM algorithm generally performs better than the RRT algorithm due to its
precompiled roadmaps, but that the latter is also usable as long as the environment is not too
complex. The study also shows that simple geometric constraints can be added in the runtime
phase of the PRM algorithm, without a big impact on performance. It is also shown that post-
poning the motion constraints to the runtime phase can improve the performance of the planner
in some cases.

This work has been supported by the Wallenberg Foundation and COMPAS NFFP nr-539.

Department of Computer and Information Science
Linköping universitet

SE-581 83 Linköping, Sweden

Acknowledgments

The work presented in this thesis would not be possible without the help
and support from several people at AIICS, the Artificial Intelligence and
Integrated Computer Systems Division, at the Computer and Information
Science Department at Linköping University.

First I would like to thank my supervisor Patrick Doherty who has
given me the opportunity to work with such an interesting project as the
WITAS-project.

Building a working UAV requires a considerable collaborative effort
and the flight tests would not have been possible without all the work
put in by Patrik Haslum, Per Nyblom, Tommy Persson, Björn Wingman,
Gianpaolo Conte, Simone Duranti, Torsten Merz, and Erik Skarman. My
thanks to all of you.

I would also like to thank David Landén, Patrik Haslum, Jonas Kvarn-
ström, Martin Magnusson, Per Nyblom, Björn Wingman, and Mariusz
Wzorek, who have given of their time to go through and comment on
thesis drafts at various levels of completion.

This work is funded in part by grants from the Wallenberg Foundation
and COMPAS NFFP nr-539.

Contents

1 Introduction 1

1.1 Contributions . 2
1.2 The WITAS UAV Project 3

1.3 Publications . 3
1.4 Outline of the thesis . 4

I 7

2 The Path Planning Problem 9

2.1 Basic Concepts . 9
2.1.1 Work Space . 9

2.1.2 Configurations . 10
2.1.3 State . 11
2.1.4 Path Description . 11

2.2 Constraints . 12

2.2.1 Obstacle Constraints 12
2.2.2 Motion Constraints 13

2.3 Path Planning . 14

2.4 Completeness, Optimality and Complexity 15

3 Early Path Planning Algorithms 17

3.1 Classical Roadmap Algorithms 18
3.2 Cell Decomposition . 19
3.3 Potential fields . 20

vii

viii CONTENTS

4 Sampling-based Path Planning Algorithms 23

4.1 Probabilistic Roadmaps . 24

4.1.1 The Probabilistic Roadmap Algorithm 24

4.1.2 Improved Roadmap Construction 28

Sampling near obstacles 28

Focus on Difficult Areas 30

Visibility-based PRMs 31

4.1.3 Lazy PRM . 32

4.1.4 Theoretical Results 32

4.2 Rapidly Exploring Random Trees 35

4.2.1 Constructing RRTs 35

4.2.2 Using RRTs for Path Planning 38

4.2.3 Theoretical Results 38

4.2.4 Optimization of paths 40

4.2.5 Probabilistic Roadmaps of Trees 41

4.3 Kinematic constraints . 41

4.3.1 Kinematic Path Planning with PRM 42

4.3.2 Customizable PRM 42

4.3.3 Multi-Level Handling of Nonholonomic Constraints . 43

4.4 Dynamic Constraints . 44

4.4.1 RRTs for Kinodynamic Motion Planning 45

4.4.2 Application to Autonomous Helicopters 46

4.4.3 Other Applications 46

4.5 Time and Change . 47

4.5.1 Moving obstacles . 47

4.5.2 Roadmap Updates 48

II 51

5 Path Planning Framework 53

5.1 Path Planner Overview . 54

5.2 Motion Constraints . 56

5.2.1 State Space Roadmap 56

5.2.2 Multi-level Path Planning 57

CONTENTS ix

5.2.3 Related Work . 60
5.3 Runtime Constraints . 61

5.3.1 PRM Planner with Runtime Constraints 62
5.3.2 Implemented Runtime Constraints 62

5.3.3 Repairing Broken Roadmap Connectivity 63
5.3.4 Related Work . 64

5.4 Post Processing the Plan . 65

6 Obstacle Constraints 67

6.1 The Environment and Helicopter Model 68
6.2 The Collision Checker . 69

6.2.1 OBBs . 69
6.2.2 Building the OBB tree 70
6.2.3 Intersection with OBB Trees 71

6.3 Runtime Constraints . 71

7 System Integration 73

7.1 System Architecture . 74
7.2 Local Path Planning and Control 76

7.2.1 Curve Description 76
7.2.2 Trajectory-Following Controller 77
7.2.3 Proportional Navigation 79

7.3 Plan Execution . 80

III 85

8 Flight Tests with the Helicopter 87

8.1 Interactive Camera Positioning 87

8.2 Use of Runtime Constraints 89
8.3 Photogrammetry . 90

9 Comparisons between Path Planning Algorithms 93

9.1 Method . 93
9.1.1 World models . 93
9.1.2 Implementations . 95

x CONTENTS

PRM: Roadmap Generation 95
PRM: Runtime Planner 96
RRT planner . 96
Collision Checker . 96

9.1.3 Test Setup . 97
9.2 Comparisons between PRM and RRT 98

9.2.1 Completeness . 98
9.2.2 Planning Time . 100
9.2.3 Path Length . 104
9.2.4 Discussion . 106

9.3 PRM with Runtime Constraints 108
9.3.1 Timing Tests . 108
9.3.2 Repairing Broken Roadmap Connectivity 109

9.4 Approaches for Handling Motion Constraints 110
9.4.1 Roadmap Size . 110
9.4.2 Planning Time . 112
9.4.3 Remaining Sharp Corners 114
9.4.4 Discussion . 114

10 Conclusions 117

10.1 Integration with the Helicopter Platform 117
10.2 Changing Constraints . 118
10.3 Mission Planning . 120

Chapter 1

Introduction

The area of unmanned aerial vehicles (UAVs) is developing rapidly, and
the technology has now reached a level where it is feasible to deploy UAVs
for real world missions. Along with the continuing improvements of con-
trol systems that have made UAVs possible, much of the hardware has also
been subject to a process of miniaturization. This opens up the possibility
of small and cheap UAVs that can be used for many applications where
normal aircraft are too large and expensive. Many of these future applica-
tions of smaller UAVs are at low altitude in environments with obstacles,
e.g., in urban areas or even indoors. This development has led to a need
for efficient algorithms for solving path planning queries in environments
with obstacles.

Also for UAVs flying at higher altitude, path planning can have an im-
portant role. Military reconnaissance missions using UAVs often involve
flight between a series of manually specified waypoints in order to gain
intelligence from one or more interesting sites in an area. With a com-
petent path planner available, these types of missions can be declared in
a more high-level language, by specifying points of interest together with
constraints on what flight paths the UAV may take, e.g., to avoid areas
close to air defense or preference for flight at low altitude in order to avoid
detection.

The last decade has also shown much progress in the path planning field
and modern path planners have now been applied to a wide range of robots.

1

2 Introduction

Much of this success comes from the introduction of good heuristic plan-
ners based on random sampling of the robot’s configuration space. Two
such algorithms are the probabilistic roadmap algorithm (PRM) and the
rapidly-exploring random tree algorithm (RRT). This thesis describes how
these algorithms can be adapted for use with an autonomous helicopter. A
comparison of different algorithms is provided, both in quantitative terms
of performance and in more qualitative aspects such as how a planner can
be integrated into the software system of a UAV and the flexibility of the
planner when used for real world applications.

1.1 Contributions

The main goal of this work has been to develop a path planner suitable
for an autonomous helicopter. As the work has progressed this has lead to
extensions of existing sampling-based path planning algorithms and given
insights in how a path planner can be integrated in a practical robotic
system. The main points described in the thesis are:

• Adaptations of sampling-based path planning algorithms for inte-
gration with the helicopter platform. This includes integration both
with other parts of the high-level software architecture and with the
low-level control system. Some aspects of how an autonomous heli-
copter system with automated path planning capabilities can be used
in practice have also been considered.

• A study of how different types of constraints can be integrated at var-
ious stages throughout the planning process. This is an important
issue since constraints vary in cost of evaluation and at what time
point in the planning process they become known, i.e., some con-
straints are known in advance before the helicopter even has started
while others may not be known or are left undetermined until just
before the planning query is made.

• An empirical comparison of the PRM and RRT algorithms and the
effects of handling constraints at different stages during the planning

1.2 The WITAS UAV Project 3

process. The comparison includes various measures on efficiency, e.g.,
planning times, path lengths and success rates.

1.2 The WITAS UAV Project

The research presented in this report has been conducted within the
WITAS UAV project. WITAS (the Wallenberg Information Technology
and Autonomous Systems Laboratory; pronounced vee-tas) was a long-
term research project, which focused on the development of information
technology for unmanned aerial vehicles, and its combination with low-level
control and hardware platforms [14, 15]. The long-term goal of the project
has been the development of a fully autonomous unmanned helicopter that
can be used in applications involving photogrammetry, surveillance, mon-
itoring of traffic and emergency services assistance. The project encom-
passes a variety of core functionalities and techniques such as prediction,
planning, modeling scenes and events on the ground, use of those models
for autonomous decisions, active vision, the design of deliberative/reactive
architectures, geographical information systems (GIS), simulation tools,
multi-modal ground operator interfaces to the UAV and much more. Fig-
ure 1.1 shows a picture of the Yamaha RMAX helicopter platform used in
the project.

The main body of research has been pursued at AIICS, the Artificial
Intelligence and Integrated Computer Systems Division, at the Department
of Computer and Information Science, Linköping University. The image
processing research was done in cooperation with the Vision Laboratory at
the Department of Electrical Engineering, also at Linköping University. In
addition, there was cooperation with a number of other different research
groups both within Sweden and internationally.

1.3 Publications

Parts of this thesis have previously been published:

[44] Per Olof Pettersson and Patrick Doherty. Probabilistic roadmap
based path planning for an autonomous unmanned aerial vehicle.

4 Introduction

Figure 1.1: The Yamaha RMAX helicopter.

ICAPS-04 Workshop on Connecting Planning Theory with Practice,
2004. http://www.ida.liu.se/~peope/peope-patdo-icaps04.

pdf

[45] Per Olof Pettersson and Patrick Doherty. Probabilistic roadmap
based path planning for an autonomous unmanned helicopter.
SAIS-SSLS 2005 Event, 2005. http://www.ida.liu.se/~peope/

SAIS05PetterssonP.pdf

[46] Per Olof Pettersson and Patrick Doherty. Probabilistic roadmap
based path planning for an autonomous unmanned helicopter. Jour-
nal of Intelligent & Fuzzy Systems: Computational Intelligence in
Northern Europe, 2006. accepted for publication.

1.4 Outline of the thesis

The thesis has three major parts:

The first part, consisting of chapter 2–4, provides background material
on path planning. The basic definition of path planning and a number of

1.4 Outline of the thesis 5

related concepts that are needed later are given in chapter 2. An overview
of some early path planning algorithms is presented in chapter 3, which is
followed in chapter 4 by a description of sampling-based path planning al-
gorithms. This chapter contains descriptions of the probabilistic roadmap
algorithm (PRM) and rapidly-exploring random trees (RRT) together with
extensions and adaptations for different types of robotic systems.

The second part of the thesis describes the implemented path planning
framework and how it has been integrated with the autonomous helicopter
platform. This part begins in chapter 5 with a description of the frame-
work and the extensions that have been made to standard algorithms.
In chapter 6, the implementations of the different planning constraints
are presented, most importantly the collision avoidance constraint. The
integration with the helicopter and the WITAS software architecture is
described in chapter 7, with some examples of how the different software
components operate together during path planning scenarios.

The algorithms described in the second part of the thesis have been
implemented and the results from experiments made with them can be
found in the third part of the thesis. In chapter 8, some of the flight tests
with the helicopter are described, and in chapter 9, a series of tests mea-
suring the efficiency of the different planners and extensions are presented.
Chapter 9 also includes discussions on the results and how they can guide
the choice of path planning algorithms for different applications.

The final chapter contains the conclusions of the work presented earlier
in the thesis and some topics that may be of interest for future research.

6 Introduction

Part I

7

Chapter 2

The Path Planning Problem

This chapter provides definitions for basic path planning concepts, and
puts them into the context of an autonomous helicopter and the planning
framework developed in chapter 5. The terminology follows, with a few
exceptions especially noted below, standard practice for path planning and
mechanics [20, 35, 37].

In the first two sections, concepts are presented for describing the mo-
tion of a robot and the constraints that limit this motion. These definitions
are used in section 2.3 for defining the path planning problem. The last
section is a brief review of some complexity results from the path planning
literature. It also describes a weaker completeness property called proba-
bilistic completeness, which applies to many sampling-based path planning
algorithms.

2.1 Basic Concepts

2.1.1 Work Space

The work space, W, is the physical space in which the robot is moving.
It is usually modeled as R

3, but can also be restricted to R
2 for robots

moving in a single plane, e.g., ground robots in a one-floor building.

9

10 The Path Planning Problem

2.1.2 Configurations

The configuration, q, of a robot is a set of parameters that uniquely defines
the location of all points of the robot in W. For a robot with n configura-
tion parameters, or degrees of freedom, the parameters describe a point in
an n-dimensional vector space or manifold. The vector space or manifold
of configurations for a robot is called the configuration space, C, of that
robot. For robots consisting of a single body that is only translating and
not rotating, C =W.

The helicopter, that has served as the main test platform in the
WITAS-project, is viewed as a rigid body in three-dimensional space. A
full configuration of the helicopter therefore consists of a three-dimensional
position vector and the following three angles describing its orientation, or
attitude:

pitch the angle between the longitudinal body axis of the helicopter and
the horizon.

roll the rotation around the longitudinal body axis of the helicopter.

yaw the angle between north and the direction of the helicopter body in
the horizontal plane.

These angles are left unspecified by the path planner used for the heli-
copter. For the pitch and roll angles, this is because they are used by the
low-level control system on the helicopter to achieve the requested accel-
eration vector for the helicopter. The yaw angle is only weakly related to
the position control of the helicopter and can be chosen more freely. It was
decided to let this angle also be unspecified by the path planner in order
to use it for possible mission-specific needs. This can be used for pointing
the helicopter in a direction suitable for certain sensors, e.g., a camera that
cannot be moved freely in relation to the helicopter body.

With the orientation left undetermined, the helicopter configurations
used for path planning consists of a vector in R

3 describing the position:

qheli = (px, py, pz)
T (2.1)

2.1 Basic Concepts 11

where px, py and pz are the three position coordinates indicating the dis-
tance in meters from a reference point to the east, north and up respec-
tively. Thus, this is an example where C =W.

2.1.3 State

For robotic systems in motion, not only the configuration, but also the ve-
locity of the robot is of interest. If the configuration of a robot is described
by a vector q = (q0, . . . , qn), the state, x, is defined as the configuration,
q, together with its time-derivatives, q̇:

x = 〈q, q̇〉 (2.2)

q̇ = (q̇1, . . . , q̇n)T (2.3)

If C is an n-dimensional vector space, the states form a 2n-dimensional
vector space, X , that is called the state space of the robot.

The state used for describing the motion of the helicopter consists of
its position together with its velocity.

2.1.4 Path Description

A path, τ , is a continuous parameterized curve in the configuration space
of the robot:

τ : [0, 1]→ C (2.4)

If the path is differentiable and is traversed with a speed, v, the state of
the robot can be calculated as:

x(t) =

〈

τ(t), v
τ̇(t)

|τ̇ (t)|

〉

(2.5)

Thus, the path fully describes the state of the robot at a point along the
path except for the magnitude of the derivative, i.e., the speed of the robot.

Three-dimensional cubic C1-splines are used in the path planning
framework to describe flight paths for the helicopter, i.e., a path is de-
scribed by a sequence of n cubic polynomials

τi(s) = ai0 + ai1s + ai2s
2 + ai3s

3 1 ≤ i ≤ n (2.6)

12 The Path Planning Problem

each parameterized on the interval [0, 1] and continuously differentiable at
knot points:

τi(1) = τi+1(0) 1 ≤ i ≤ n− 1 (2.7)

τ̇i(1) = τ̇i+1(0) 1 ≤ i ≤ n− 1 (2.8)

2.2 Constraints

The solution to the path planning problem has to satisfy various constraints
that are due to properties of the robot or external factors, e.g., obstacles
in the environment or given by the operator. We will differentiate between
two classes of constraints: obstacle constraints that describe which config-
urations the robot can visit and motion constraints that describe how the
robot can move through C.

2.2.1 Obstacle Constraints

One fundamental requirement on a path planning solution is that the robot
must never intersect an obstacle. The set of configurations of the robot
for which no such intersection occurs is called the free configuration space,
Cf , of the robot, and path planning can be defined as finding a path that
lies completely in Cf .

One of the advantages of sampling-based path planners is that they in
general do not need an explicit representation of Cf , which can be very
expensive to construct for many problems of practical interest. Instead,
these algorithms probe Cf by testing if randomly sampled configurations
are in collision with any obstacles. Thus, they only require a collision-
checking algorithm that can determine if a certain configuration is collision
free or not. An obstacle constraint, γ, can therefore be represented by a
unary predicate on C:

γ ⊆ C (2.9)

We also need to evaluate obstacle constraints on paths, τ , which is defined
in the following manner:

γ(τ) = ∀s ∈ [0, 1] : γ(τ(s)) (2.10)

2.2 Constraints 13

Naturally, the infinite number of points along a path makes it impossible
in practice to directly test for collision in this manner. This problem can
be resolved either by testing a subset of the points, which is the approach
taken in most of the algorithms described in chapter 4, or using a collision
checker that can test complete path segments, as is described in chapter 6.

The most important obstacle constraint is the no-collision constraint
that forbids the helicopter to be in contact with physical obstacles. How-
ever, for practical applications, at least in the UAV domain, it is not un-
common to also have other constraints defined in the same manner, e.g.
there may be no-fly zones or limits on the altitude. These constraints can
be handled together with the no-collision constraint, but due to differences
in complexity of the constraints and at what time they become known to
the path planner, it can be useful to treat different constraints separately.
This enables the path planner to work on different sets of constraints as
they become available to the planner. How this can be done is described
in section 5.3.

2.2.2 Motion Constraints

Not all constraints that are relevant for path planning can be formulated
as obstacle constraints. For many robots, there are further constraints on
the shape of the paths that the robot can follow, e.g., a car-like robot can
only travel backwards and forwards and not sideways, even if the space to
the side of the robot is in Cf .

Motion constraints, or differential constraints, differ from obstacle con-
straints in that they depend on derivatives of configurations. They can
be classified according to the degree of the derivatives, and for motion
planning the following two classes are of special interest:

Kinematic constraints are constraints where only first-order derivatives
of the configuration parameters are allowed. Constraints of this type
are used in motion planning to describe the valid directions of mo-
tion at different configurations, e.g., a car-like robot can only move
forwards and backwards (if slipping is not considered).

Kinematic constraints on mechanical systems can be described with

14 The Path Planning Problem

equations of the form:
g(q, q̇) = 0 (2.11)

where q is a configuration and g is a real-valued function. For motion
planning, the following parameterized form is often preferred:

q̇ = f(q, u) (2.12)

Here a control-input parameter, u, has been added, which makes it
possible to simulate the system through numerical integration.

Dynamic constraints are constraints where second-order derivatives are
also permissible. This class of constraints includes bounds on accel-
eration of the robot or its parts.

Dynamic constraints on mechanical systems can be described with
equations of the form:

g(q, q̇, q̈) = 0 (2.13)

but also in this case, the parametric form is preferred:

q̈ = f(q̇, q, u) (2.14)

Kinematic and dynamic constraints are examples of nonholonomic con-
straints. A holonomic constraint is a constraint that can be written using
the following form:

f(q) = 0 (2.15)

where f : C 7→ R [20]. If it is not possible to reduce the equation to
the above form, the constraint is nonholonomic. As noted in [37], the term
nonholonomic has sometimes been used in a more narrow sense in the path
planning field as a synonym for kinematic constraints, especially in early
work on car-like robots.

2.3 Path Planning

Motion planning is a general term for the problem of finding a plan for
moving a robot from one configuration or state to another. Strict defini-
tions of the problem vary depending on the nature of particular problems.

2.4 Completeness, Optimality and Complexity 15

Motion planning without differential constraints is commonly referred
to as path planning, which is defined as the problem of finding a path, τ ,
from an initial configuration, q0, to a goal configuration, qg, satisfying the
obstacle constraint γ:

τ(0) = q0 (2.16)

τ(1) = qg (2.17)

γ(τ) (2.18)

This problem is also referred to as the basic motion-planning problem in
[35]. It is not uncommon to also include problems with kinematic con-
straints in this class.

Another important class of problems is kinodynamic motion planning,
i.e., motion planning under kinematic and dynamic constraints. These
problems are often described in terms of a parametric state-transition func-
tion, and the problem involves finding a control input signal, u, parame-
terized over time, such that the system reaches the goal-state if starting at
the initial state. With this approach, the solution describes the evolution
of the system over time as a time-parameterized path through the state
space of the system.

In this thesis, we will focus on finding a geometric path through the
configuration space, but unlike the basic path planning problem defined
above, we will also consider dynamic constraints in order to create paths
that are well suited for the helicopter. With this approach, the path plan-
ning process and the plan execution are more loosely coupled, and the
flight along the path can be performed at different speeds, and to some
extent different attitudes of the helicopter.

2.4 Completeness, Optimality and Complexity

Planning an optimal path in an environment with obstacles is an in-
tractable problem in all but the simplest cases. Even a seemingly simple
problem, e.g., finding the optimal path for a point-like robot in three-
dimensional space with polyhedral obstacles, is NP-hard [10]. If we want
to avoid sharp corners by limiting the maximum curvature of the path,

16 The Path Planning Problem

the path planning problem is NP-hard in the number of obstacle vertices,
already in two dimensions [47]. These problems correspond to planning a
path for a free flying helicopter with piecewise linear paths and planning
for a car-like robot with limited turning capabilities.

However, by relaxing the requirements on completeness and optimality,
it is possible to develop path planning algorithms that give satisfactory so-
lutions to many problem instances. Two examples of such algorithms that
will be presented in chapter 4 are based on probabilistic roadmaps and
rapidly exploring random trees. These algorithms have a weaker com-
pleteness property called probabilistic completeness [24, 34]. An algorithm
is said to be probabilistically complete if the probability of finding a so-
lution converges to one, given a sufficient running time. However, these
properties are mainly of theoretical interest, since the high complexity of
the path planning problem makes complete planners unfeasible for most
practical problem instances.

Chapter 3

Early Path Planning

Algorithms

In this and the next chapter, an overview is given of the major approaches
for solving path planning problems. We will begin in this chapter with a
short survey of early path planning techniques before we continue with
modern sampling-based planners in the next chapter. This chapter is
largely based on Latombe’s book on motion planning [35], but references
are also given to some of the original work.

Latombe differentiates between four major approaches to motion plan-
ning: roadmaps, exact cell decompositions, approximate cell decompo-
sitions, and potential fields. Classical roadmap and cell decomposition
planners are both deterministic and complete, unlike the sampling-based
planners described in the next chapter. In practice, they are only applica-
ble to problems of low dimensions, which is not surprising given the high
complexity of the path planning problem.

Potential field planners differ from the above planners in that they are
heuristic planners that use artificial potentials to guide a gradient descent
search through Cf . Although they are incomplete, they have been a pop-
ular choice since they are efficient for many practical problems, also in
high-dimensional configuration spaces.

In this chapter, we will first go through classical roadmap and cell

17

18 Early Path Planning Algorithms

decomposition algorithms before we continue with potential field planners.

3.1 Classical Roadmap Algorithms

Roadmap algorithms generate a graph, called a roadmap, that represents
the connectivity of the free configuration space of the robot. The roadmap
is constructed in a way that makes it easy to connect the start and goal
configurations to it, and when this has been done, graph search algorithms
can be used for finding a path. There exist several different methods for
constructing the roadmap, some of which are described in this section.

The visibility-graph algorithm is mainly applicable to two-dimensional
models with polygonal obstacles. For such an environment, the roadmap
can be constructed from the obstacle vertices, which are used as nodes in
the roadmap. Edges are added between nodes that can see each other, i.e.,
two nodes are connected if there is a straight-line path between them that
does not intersect any obstacle. If the graph is searched with an optimal
graph-search algorithm, e.g., A*, the solution will be the shortest path
possible in the model.

The visibility-graph algorithm extends also to three dimensions with
polyhedral obstacles. However, the solution will no longer be optimal, since
the optimal path may grace edges of the obstacles rather than corners in
this case, e.g, the optimal path between the centers of two faces of a cube
does not pass any corner of the cube.

Another basic roadmap construction algorithm is the retraction algo-
rithm. Unlike the visibility-graph method, which produces paths in con-
tact with obstacles, the retraction method finds paths that maximize the
clearance to obstacles. With the retraction method, the Voronoi diagram
derived from the obstacle vertices and edges is used as roadmap. A Voronoi
diagram consists of points that have more than one nearest point in the
obstacle region. For polygonal obstacles the Voronoi diagram is made up
of straight lines between pairs of vertices or edges and of parabolic arcs
between pairs with one vertex and one edge. The Voronoi diagram can be
constructed in O(n log n) time [33].

The visibility-graph and retraction algorithms are mainly of interest

3.2 Cell Decomposition 19

for path planning in two dimensions, even if there are some extensions for
higher dimensional configuration spaces.

A more general algorithm is due to Canny [11]. Canny’s roadmap
algorithm is applicable to path planning problems of any dimension, and
for any type of obstacle that can be described as semi-algebraic sets, i.e.,
sets whose boundaries can be described with polynomial relations.

For an n-dimensional problem, Canny’s roadmap algorithm uses a hy-
per plane of dimension n− 1 that sweeps through the configuration space
along a coordinate-axis, ei. At each point along this axis, the boundary
of Cf gives rise to an n− 1-dimensional silhouette within the hyper plane.
The algorithm keeps track of the extreme point of this silhouette along a
different coordinate-axis, ej , i 6= j. As the plane is moving, these extreme
points trace curves that become edges in the roadmap. At critical points,
where the set of extreme points changes, the algorithm is called recursively
in the (n − 1)-dimensional hyper plane in order to connect the different
sub-graphs that are constructed from the curves traced by the extreme
points.

3.2 Cell Decomposition

Cell decomposition methods are path planning algorithms based on the
idea of dividing Cf into smaller regions in a way that makes it easy to find
paths between any two points within each cell. Cell decomposition methods
can be further divided into exact and approximate methods, where the
former creates a partitioning of Cf , while the latter only give approximate
representations of Cf , using cells of regular shapes.

In two dimensions with polygonal obstacles, a simple and efficient
method for exact cell decomposition is vertical decomposition. This al-
gorithm constructs the cells and a cell connectivity graph, by moving a
sweep line along one coordinate axis and keeping track of the cells and
edges currently intersected by that line. The cells are triangular or trape-
zoidal and bounded by two obstacle edges and one or two edges parallel
with the sweep line. When a new obstacle vertex is reached, the current
set of cells is updated by removing any cell touching that vertex. One,

20 Early Path Planning Algorithms

two, or no new cells are added in front of the sweep line, depending on the
orientation of the edges extending from the vertex. These new cells are
also added to the connectivity graph and connected to the cells that were
removed. With suitable representations for active cells and edges during
the sweep, this construction can be performed in O(n log n) time.

When the cell decomposition has been made, path planning queries can
be resolved by locating the cells containing the start and goal points and
performing a graph search in the connectivity graph.

Approximate cell decomposition differs from exact cell decomposition
in that it divides the configuration space into regular regions of some shape,
normally rectangles. These regions are labeled as either empty, if they
are collision free, full, if they lie completely inside obstacles, or mixed
otherwise. The construction of the cells is done recursively, and a tree
of cells is built. In two dimensions each rectangle is divided along both
dimensions which gives four sub-rectangles, and the tree will be a quad
tree. In three dimensions a similar construction gives rise to an oct tree.

To find a solution to a path planning query, the cells containing the
start and goal points are first located. The connectivity graph of these
cells are then searched for a path containing only empty or mixed cells.
If there are mixed cells in the path, these are decomposed further, and a
new graph search is performed. This process is repeated until a path only
consisting of empty cells is found.

3.3 Potential fields

The use of potential fields for path planning was introduced by Khatib,
who described such an algorithm for use with a robotic arm [32].

Potential field planners use a potential defined over Cf , which is used for
guiding the robot towards the goal, while avoiding obstacles. The potential
field is calculated as the sum of an attractive potential that guides the
robot towards the goal and a repulsive potential that steers it away from
obstacles. For the attractive potential, the square of the distance to the
goal can be used. The repulsive potential should tend to infinity when the
robot approaches an obstacle, but be zero when the robot is far from any

3.3 Potential fields 21

obstacle.
To plan a path for a robot, a gradient descent search is performed, by

taking the gradient of the potential field and applying that as a force on the
robot. This process can be performed in advance for a known environment
by simulating the robot’s motion, or it can be performed online. Online
planning can also be done in unknown environments since the potential
field method only uses local information about obstacles.

The use of only local information to determine the direction of motion
has a disadvantage in that the robot can get stuck in local minima. Several
different solutions to this problem have been devised (some of which are
described in Latombe’s book [35]). One of the most significant is the
Randomized Path Planner (RPP) by Barraquand and Latombe [3]. This
planner alternates between greedy search on a grid in the potential field and
random walks. The greedy search is performed until the algorithm detects
that it has reached a local minimum with all neighbors having a higher
potential. It then switches to random walk for a number of iterations,
before again performing a greedy search. This process is repeated until
the goal is reached.

22 Early Path Planning Algorithms

Chapter 4

Sampling-based Path

Planning Algorithms

Sampling-based path planners have been successfully applied to a wide
variety of robotic systems and represent today the standard method for
solving path planning problems. They differ from classical algorithms in
that they do not process an explicit geometric description of Cf . Instead
they sample robot configurations randomly from Cf and attempt to con-
nect these by means of a robot-specific local path planner. Since the al-
gorithms can be adapted to many different robots by simply plugging in a
suitable local planner, they are much more generic than most classical path
planning algorithms. This path planning approach also provides a better
separation between the planning algorithm and the representation of the
environment since the only interaction with the model of Cf is through
testing configurations and paths for collisions.

There are both multiple-query and single-query variants of sampling-
based path planning algorithms. Planners of the first type use precompiled
data structures to quickly solve multiple queries in the same environment,
while planners of the second type are optimized to directly solve a single
query. The most popular algorithms from these two categories are the
probabilistic roadmap algorithm (PRM) and the rapidly-exploring ran-
dom tree algorithm (RRT) respectively. These two algorithms will first be

23

24 Sampling-based Path Planning Algorithms

described for holonomic robots, together with some extensions and theo-
retical results. After that, methods for handling kinematic and dynamic
constraints are presented. The last section is devoted to extensions for
handling time and change in path planning.

4.1 Probabilistic Roadmaps

The introduction of the probabilistic roadmap algorithm (PRM) [29] repre-
sents an important milestone in the path planning field. It made it possible
to solve challenging problems for robots in high dimensional configuration
spaces that were far beyond the capabilities of earlier path planning algo-
rithms.

In this section, the basic PRM algorithm will be presented first, after
which some of the numerous extensions for improving roadmap coverage
and the efficiency of the algorithm are described. In the final subsection
some theoretical results are presented.

4.1.1 The Probabilistic Roadmap Algorithm

The PRM algorithm is a two-stage algorithm as illustrated in figure 4.1.
First, a graph is constructed representing the free configuration space, Cf ,
of the robot. This graph is then used for quickly solving path planning
queries with conventional graph-search algorithms.

The roadmap construction algorithm, shown in algorithm 4.1.1, starts
by picking n random configurations in Cf that become the nodes of the
graph. An example is shown in figure 4.2(a) where a number of random
points have been placed around two obstacles. The next step is to connect
the configurations with a local path planner, PL, suitable for the particular
robot. The local path planner is a simple deterministic planner that pro-
duces paths that match the motion capabilities of the robot but ignores the
obstacles. In figure 4.2(b), the points are connected with a local planner
that produces straight lines. The paths generated by the local planner are
checked for collisions, and only the paths that are collision free (continuous
lines in the figure) are added as edges to the graph.

4.1 Probabilistic Roadmaps 25

World model

��

Roadmap construction

Offline
Online

Start and goal
positions

// Graph search

��

Finished path

Roadmap

��

Figure 4.1: The stages of PRM planning, with an offline roadmap con-
struction phase and the online graph-search.

•

•

•

•
•

(a) Adding five random points.

•

•

•

•
•

oooooooooooo
11

11
11

11
1

((
((
((

((

lllllllllllllllllleeeee

��
��
��
��
�

(b) Connect nodes if possible (contin-
uous lines), but not nodes where a
connection would intersect an obstacle
(dotted lines).

Figure 4.2: Construction of the roadmap.

26 Sampling-based Path Planning Algorithms

Algorithm 4.1.1 The algorithm for constructing a roadmap in the config-
uration space, C, of the robot, under the no-collision constraint, γc, using
the local path planner, PL.

ConnectNode(q, γc, PL, 〈N,E〉)
1 Nq ← {n | n ∈ N, d(q, n) < r} /* Nodes within distance r */
2 for n ∈ Nq in order of increasing d(q, n) do

3 τ ← PL(q, n) /* Local Path */
4 if γc(τ) then

5 E ← E ∪ {〈q, n〉}
6 end if

7 end for

MakeRoadmap(C, γc, PL)
1 N ← ∅ /* Set of Nodes */
2 E ← ∅ /* Set of Edges */
3 for i = 0 to n do

4 repeat

5 pick q randomly from C
6 until γc(q)
7 N ← N ∪ {q}
8 end for

9 for q ∈ N do

10 ConnectNode(q, γc, PL, 〈N,E〉)
11 end for

4.1 Probabilistic Roadmaps 27

Algorithm 4.1.2 Plans a path between q0 and qg, satisfying the no-
collision constraint, γc, by using the roadmap graph, G, and the local
path planner, PL.

PRM Query(q0, qg, γc, PL, G)
1 ConnectNode(q0, γc, PL, G)
2 ConnectNode(qg, γc, PL, G)
3 return A*-search (q0, qg, G)

•

•oooooooooooo

•
11

11
11

11
1

•

((
((
((

((•

lllllllllllllllllleeeee

��
��
��
��
�⊙

⊙

DD
DD

DD
DD

oooo ??????????

'''''''''

(a) To solve the planning prob-
lem, the start and goal points
are added to the graph.

•

•oooooooooooo

oooooooooooo

oooooooooooo

oooooooooooo

oooooooooooo

•
11

11
11

11
1

•

((
((
((

((•

lllllllllllllllllleeeee

��
��
��
��
�⊙

⊙

DD
DD

DD
DD

DD
DD

DD
DD

DD
DD

DD
DD

DD
DD

DD
DD

DD
DD

DD
DD

oooo ??????????

??????????

??????????

??????????

??????????

'''''''''

(b) The resulting graph can
then be used for solving the
planning problem with standard
graph-search algorithms.

Figure 4.3: Online planning using the precompiled roadmap.

The second stage of the algorithm is performed online, when the robot
needs to move between two configurations, and is shown in algorithm 4.1.2.
The start and goal configurations are added to the graph in the same man-
ner as when the graph was built, by trying to connect them to nodes already
in the graph using the local path planner (figure 4.3(a)). If this succeeds,
the planning problem can be solved with standard graph search algorithm,
e.g. A*, as is shown in figure 4.3(b), and the planner returns a series of
waypoints in Cf . The waypoints specifies a unique path that can be re-
trieved by connecting them with the local path planner. Since the local
path planner is deterministic, the same path segments are generated as dur-
ing the roadmap construction phase. If the environment hasn’t changed,

28 Sampling-based Path Planning Algorithms

the path generated in this manner is guaranteed to be collision free since
each segment was checked during the roadmap construction phase.

If a connection attempt or the graph search fails, the planner reports
that no plan was found. For difficult environments, more elaborate schemes
for connecting the nodes can be used. A random walk or random bounce-
walk1 can be initiated from the start- or goal-configuration in hope of
finding a path that leaves the problematic area where the configuration is
located [29, 41, 42].

After a path has been found, it is usually subjected to a smoothing
procedure, to eliminate the unnecessary jaggedness of the path that often
occurs as a result of the probabilistic nature of the algorithm.

4.1.2 Improved Roadmap Construction

Due to the uniform sampling scheme of the standard PRM algorithm, the
same number of nodes and edges are tried in open regions in Cf as in
more complex regions. Since the chance of finding collision free nodes and
edges is smaller in these more complicated regions, fewer nodes and edges
are added there, where they are needed the most. In order to bias the
roadmap construction towards more difficult regions and thereby produce
better roadmaps, with fewer nodes, many different roadmap construction
schemes have been devised. Some of the more important ideas will be
described in the following subsections.

Sampling near obstacles

Difficult regions generally lie close to obstacles, and from this observation
it is natural to seek sampling schemes that place nodes in close proximity
of obstacles.

In [42], where a planner is described for car-like robots in a two-
dimensional polygonal environment, an extra node is added outside each
edge and vertex of the obstacles. At these nodes, the robot is oriented

1Random bounce-walk is a variant of random walk where the walk starts in a random
direction and then changes direction upon hitting obstacles until a certain distance has
been traveled or a maximum number of iterations have been performed.

4.1 Probabilistic Roadmaps 29

perpendicular to the normal of the obstacle vertex or edge. A number of
tests shows that this form of geometric node adding gives a large boost in
efficiency for environments with rooms and corridors, as long as not too
many narrow passages are present.

However, relying on an explicit representation of Cf is generally
avoided, since such a representation can be very expensive to construct. In
[2], this is accomplished by iterating over the obstacles and placing nodes
at the intersections between the obstacle surface and rays extending from
a central point of the obstacle. The distance to the surface is found with
a binary search, by testing at what distances the point is in collision with
the obstacle.

Another way of focusing the node distribution to the obstacle bound-
aries is called Gaussian Sampling [8]. This method is inspired by the image
processing operation Gaussian blur, and the idea is to use the blurred im-
age of the obstacles as a sample distribution for a PRM planner. The
Gaussian blur distribution is achieved implicitly, without any processing
of the configuration space besides collision checking, by the following sam-
pling method: Nodes are sampled pair-wise, by first picking a random con-
figuration in C and then picking a nearby configuration from a Gaussian
distribution centered at the first configuration. If one of the two configura-
tions is collision free while the other is not, the collision free configuration
is added to the roadmap. Due to the requirement that the robot intersects
an obstacle in one of the configurations, no nodes will be placed far from
obstacles.

This idea was taken one step further in [22], where it was observed
that even if sampling close to obstacles does indeed improve the ability
of the PRM planner to find narrow passages, it is often the case that
large parts of the boundary surfaces of the obstacles are uninteresting for
finding solutions to path planning problems. Instead, a sampling scheme
is proposed where short line segments are randomly generated. If the two
end points intersect with obstacles, but the middle point is collision free,
the middle point is added to the roadmap. The idea behind this sampling
scheme is that when the middle point is collision free and the two end
points are not, it is likely that the middle point is between two obstacles.
Since the line segments span over the free configuration space from two

30 Sampling-based Path Planning Algorithms

points within obstacles, this method is called the bridge test. Some nodes
are also required in more open areas of the configuration space, so some
additional configurations are sampled uniformly, just as with the standard
algorithm.

Another method for finding paths through narrow passages is presented
in [23]. The idea here is to first build a roadmap for a dilated free space,
where some degree of penetration of the robot into obstacles is allowed.
This has the effect of widening narrow passages, which increases the chance
of connecting different parts of the free space. To arrive at a roadmap
that correctly represents the free space, the nodes and edges that intersect
obstacles are pushed into the true free space of the robot. For nodes, this
is done by testing a number of random configurations in a circular ring
around the node and moving the node to the location of a collision free
node if any such node is found. After the nodes have been relocated, each
edge is tested to see if it is collision free. For edges that are not collision
free, an attempt to reconnect the end-points is done by building a small
roadmap with nodes sampled in a local, rectangular region between the
two nodes.

Focus on Difficult Areas

Focusing the sampling distribution on difficult areas can also be done by
using information gained through the roadmap construction itself. The
roadmap is generated to help find plans, and as a side effect of its con-
struction, it also provides information on which parts of the configuration
space that are difficult with respect to path planning.

In [29, 30], the learning phase is divided into a number of stages. First,
nodes are sampled with a uniform random distribution as in the basic
PRM algorithm. In the second stage, the sampling is instead focused on
improving the connectivity of the roadmap by placing samples in difficult
areas. This is done by assigning a weight to each node from the first
stage that describes how difficult the area is around the node. In [29], this
weight is calculated as the failure ratio for connection attempts involving
the node in question, while in [30] it is the inverse of the degree of the node.
Other alternatives are also presented in these papers. The sampling in the

4.1 Probabilistic Roadmaps 31

second stage is performed by selecting a node in the roadmap randomly,
with a probability proportional to the weight of the node, and then picking
a new random configuration in its neighborhood. The expansion is made
by performing a random bounce walk from the new configuration. After
a certain number of iterations of random walk, connection attempts are
made from the new configuration to the roadmap as in the first stage.

To further increase the chance of connecting separate components, an
additional, third stage is added in [30] where several attempts are made
to connect nearby nodes from each pair of components by calling a single-
query-planner.

Visibility-based PRMs

The algorithms in the two previous sections focus the search to difficult
areas by biasing the sampling to such areas. In the visibility-based PRM
algorithm [36, 50, 51], a good roadmap is instead sought for by avoiding
to add redundant nodes in regions already covered by other nodes. To
accomplish this, two types of nodes in the graph are distinguished: guards
and connections. Guards are nodes that are intended to cover as much as
possible of Cf , while connection nodes, as the name suggests, connect the
guards together. A central idea used in this algorithm is the visibility of a
guard, which is the part of Cf that is reachable from the guard using the
local path planner.

As with the basic algorithm, the visibility-based roadmap is con-
structed by repeatedly picking random configurations for the robot. For
each new configuration, a check is made to see if any guards already present
can be reached from the new configuration by using the local planner.
There are three possible cases depending on how many guards that are
seen:

i) No guard is reachable from the new configuration. The configuration
is added to the set of guards.

ii) At least two guards that are not yet graph connected are reachable
from the new configuration. In this case, the newly generated configu-
ration is connected to the guards and added to the set of connections.

32 Sampling-based Path Planning Algorithms

iii) Only one guard, or guards belonging to a single connected component,
can be reached. Since this configuration already lies in the visibility
domain of some guard and it does not improve the connectivity of the
graph, it is discarded.

This sampling scheme gives a roadmap where two guards will never see
each other directly, but can be connected to each other by connection
nodes located in their common visibility area.

4.1.3 Lazy PRM

In most practical applications of the PRM algorithm, the most computa-
tionally expensive operation is the collision checking of configurations and
paths. For single-query applications, only a small subset of the edges is
normally visited during graph search, which makes many of the calls to the
collision checker unnecessary. This observation has led to a variant of the
probabilistic roadmap algorithm called lazy probabilistic roadmaps, where
the collision checking is postponed until the query phase [6, 7].

During the roadmap construction phase of the lazy variant, edges are
added between all pairs of nodes, or pairs of nodes that are within a certain
distance from each other, without considering collisions. A planning-query
is resolved by a standard graph search, and the segments of the resulting
path are checked for collision. If all segments of the path are collision
free, the path is a solution, otherwise the offending segments are removed
from the roadmap, and a new graph search is made. These operations are
done repeatedly until a collision free path is found, or the graph search
fails, which means that no solution could be found. The advantage of this
method is that only a subset of the edges in the roadmap has to be checked
for collision, which reduces the combined time for roadmap construction
and graph search.

4.1.4 Theoretical Results

The probabilistic roadmap algorithm proved already from the start to be a
very successful algorithm for practical applications. Efforts have also been

4.1 Probabilistic Roadmaps 33

made to investigate the theoretical aspects of the algorithm, and how its
performance depends on properties of the free configuration space, Cf .

Two such properties for describing Cf are ǫ-goodness [31] and (ǫ, α, β)-
expansiveness [25]. ǫ-goodness describes the degree of isolation of a point
in Cf , by setting a lower limit on the visibility region, V, of the points in
Cf . A point, p ∈ Cf , is said to be ǫ-good if

µ(V(p)) ≥ ǫµ(Cf) (4.1)

where µ is a volume measure for C. This formula means that all points in
an ǫ-good configuration space must be reachable from at least an ǫ fraction
of Cf . The free space, Cf , is said to be ǫ-good if all points, p ∈ Cf , are
ǫ-good.

A first step towards a proof of probabilistic completeness for the PRM
algorithm was taken in [31]. Here it was shown that given a sufficient
number of nodes in the graph, the start and goal configuration can be
added to the graph with a high probability. The minimum number of
nodes required to achieve a connection probability of 1− β, was shown to
be

n =
c

ǫ

(

ln
1

ǫ
+ ln

4

β

)

(4.2)

where c is a constant large enough so that (1−x)(c/x)(ln 1/x+ln4/β) ≤ xβ/f .
Being able to connect the start and goal configurations to the roadmap

is not sufficient to guarantee a solution. The roadmap must also correctly
describe the connectivity of the free space, i.e., if it is possible to find a
path between two nodes, they must be in the same roadmap component. In
[25], the notion of (ǫ, α, β)-expansiveness was introduced for describing the
degree of connectivity that exists between subsets of connected components
of Cf . For a subset, S, of a connected component, F ⊆ Cf , the lookout set
is defined as

lookoutβ(S) = {q ∈ S | µ(V(q)− S) ≥ βµ(F − S)} (4.3)

where β ∈ (0, 1], i.e., the lookout set is the part of a subset that can
see a reasonably large part of the rest of the connected component. An
(ǫ, α, β)-expansive free configuration space is an ǫ-good free configuration

34 Sampling-based Path Planning Algorithms

space where all connected subsets, S, of a connected component in Cf , has
a lookout-set that sees a sufficient portion of the rest of the component,
i.e.,

µ(lookoutβ(S)) ≥ αµ(S) (4.4)

For free spaces that are (ǫ, α, β)-expansive it is shown in [25] that with
2⌈8 ln(8/ǫαγ)/ǫα + 3/β⌉ + 2 nodes in the roadmap, the probability is at
least 1− γ that there is only one roadmap component for each connected
component of the free space.

This result, together with the result on the probability of connecting the
start and goal configuration to the roadmap, proves that the probabilistic
roadmap algorithm is probabilistically complete.

For practical applications, the above results are hard to apply directly,
since the parameters are hard to calculate in any but the simplest free
spaces. In [28], an alternative analysis is done, where the minimal path-
clearance is instead used as a parameter for describing the complexity
of the free-space from a planning perspective. The proof is built on the
observation that if there is a path of length L between two configurations
with clearance R, it is possible to place 2L/R balls along the path so that
any point in two neighboring balls can be connected with a collision free
straight-line path. If N nodes are sampled uniformly for the roadmap, the
probability of not having any of them fall within a specific ball is

(

1−
πRd

2d

)N

(4.5)

where d is the dimension of C. Given that there are 2R/L balls along the
path, the probability that there is a ball without a node is less than

2L

R

(

1−
πRd

2d

)N

(4.6)

which is also an upper bound of the failure probability for the PRM algo-
rithm.

A collection of all the above results, by the same authors, can be found
in [24].

4.2 Rapidly Exploring Random Trees 35

•
ooooooo

?????????
ooooooo

��
��
��
��
��

qnear

•
q

gggggggggggg
•qnew
gggggggggg

'
d

'gggggggggg

Figure 4.4: The expansion step of the RRT algorithm. A configuration, q,
is picked randomly from Cf and an extension of length d is made towards
it from the closest node already in the tree, qnear. If the path from qnear to
qnew is collision free, qnew is added to the tree.

4.2 Rapidly Exploring Random Trees

It is possible to use the PRM planner as a single-query path planner by
performing both the roadmap construction and the graph search in the
query phase. However, if the start and goal configurations for the robot
are known, this information can be used to explore Cf more efficiently. The
rapidly-exploring random tree algorithm (RRT) is a simple, yet efficient
algorithm, for building search trees that quickly explores Cf . This makes
it a suitable basis for an efficient single-query path planner [34, 38, 39].

4.2.1 Constructing RRTs

The BuildRRT-algorithm (algorithm 4.2.1) repeatedly expands a tree, T ,
from an initial configuration, qinit. The expansion step (illustrated in fig-
ure 4.4) is performed by picking a random point, q, in the environment
that serves as a direction for the expansion, and locating the point already
in the tree that is closest to q. This point, qnear, is used as the base for
the expansion and a small step of length d is taken in the direction of q to
a new point qnew. If the local planner is able to find a path from qnear to
qnew and that path is collision-free, qnew is added to the tree as a child to
qnear.

The RRT expansion gives a good sparse coverage of an area as can be

36 Sampling-based Path Planning Algorithms

Algorithm 4.2.1 Builds an RRT from qinit.

NewState(qnear, q)
1 if |q − qnear| ≤ d then

2 return q
3 else

4 return d
|qnew−qnear|(qnew − qnear)

5 end if

Extend(T, q)
1 qnear ← closest-node(T, q)
2 qnew ← NewState(qnear, q)
3 if γc(PL(qnear, qnew)) then

4 T. add-child(qnew, qnear)
5 end if

BuildRRT(qinit)
1 T ← {qinit}
2 for i = 0 to n do

3 pick q randomly from C
4 Extend(T, q)
5 end for

4.2 Rapidly Exploring Random Trees 37

(a) RRT (b) Voronoi diagram

Figure 4.5: An example of an RRT in an empty environment with 200
nodes and the corresponding Voronoi-diagram after 50 expansions.

38 Sampling-based Path Planning Algorithms

seen in figure 4.5(a). This is due to the method for choosing the node in
the tree from which the next extension is made. In figure 4.5(b), a Voronoi
diagram is shown for the first 50 nodes in the tree. Since the choice is done
by finding the node closest to a random configuration, the probability of
selecting a specific node is proportional to the size of the corresponding
region in the Voronoi diagram. As can readily be seen in the diagram, this
steers the algorithm to mainly expand from the outmost nodes, with large
Voronoi regions, during the early stages of the tree construction.

4.2.2 Using RRTs for Path Planning

The RRT-Connect planner (algorithm 4.2.2; [34]) is a bidirectional planner
that extends two RRTs from the initial configuration, q0, and the goal
configuration, qg. The algorithm alternates between extending the two
trees, and for each new node added to a tree, an attempt is made to also
connect the node to the other tree. This connection attempt is made by
extending from the node repeatedly until the nearest node in the other
tree is reached or the extension fails.

A number of variations of the algorithm are also suggested in [34],
e.g., the Connect-call can be replaced by a call to Extend which gives a
somewhat simpler planner, or the planner can be made greedier by using
Connect rather than Extend in all places.

4.2.3 Theoretical Results

Like the PRM algorithm, the RRT algorithm is probabilistically complete.
This property is in fact more natural for RRTs since it is achieved solely
by letting the RRT expansion continue until a solution is found. For the
PRM algorithm, probabilistic completeness is only achieved by repeatedly
expanding the roadmap when a runtime planning query fails, which negates
the advantage of having a precompiled roadmap generated offline.

In [34], it is shown that if Cf is an open connected component of C,
the vertex distribution of an RRT converges to the random distribution
used for building the RRT (which is usually uniform over the configuration
space). The proof is constructed in two steps. First, it is shown that if

4.2 Rapidly Exploring Random Trees 39

Algorithm 4.2.2 — Builds two trees from the initial configuration qinit

and the goal configuration qgoal and continuously attempts to connect
them.
Connect(T, q)
1 qnear ← closest-node(T, q)
2 qnew ← NewState(qnear, q)
3 while γc(PL(qnear, qnew)) do

4 T. add-child(qnear, qnew)
5 if qnear = qnew then return

6 qnear ← qnew

7 qnew ← NewState(qnear, q)
8 end while

RRTConnectPlanner(qinit, qgoal)
1 Ta ← {qinit}
2 Tb ← {qgoal}
3 for i = 0 to n do

4 q ← random free configuration
5 if Extend(Ta, q) succeeds then

6 if Connect(Tb, q) reaches q then

7 return make-path(Ta.branch-of(q), reverse(Tb.branch-of(q)))
8 end if

9 end if

10 swap(Ta, Tb)
11 end for

40 Sampling-based Path Planning Algorithms

an RRT is built in an open convex connected component, the RRT expan-
sion will come arbitrarily close to any configuration in that component,
given a sufficient number of iterations. This result is combined with the
observation that for a connected component, there is a path connecting
any two nodes, and this path can be covered with a finite number of open
balls, which can be used to show that the RRT will cover also non-convex
components. This result forms the basis of the probabilistic completeness
proof, since any free configuration not lying on the boundary of an obstacle
is in the center of a collision free ǫ-ball, and since the RRT is dense in Cf ,
if the sampling distribution is, some vertex of the RRT will eventually fall
in that ǫ-ball.

4.2.4 Optimization of paths

The selection of the tree node from which the extension will be made in
BuildRRT is based on which node is closest to the randomly picked point
in Cf , according to some metric. This is a greedy heuristic that gives a
rapid exploration of the configuration space as noted above. However, the
paths that are found by the RRT planner are often not near the optimal
solution.

The greediness of the algorithm can be reduced by also taking into
account the path cost from the initial configuration to the nodes in the
tree, similarly to how optimality is achieved for A*. This approach is
briefly discussed in [9] where the following formula defines a heuristic cost
for selecting what node to expand from.

c = β length(path(qinit, qnear)) + distance(qnear, q) (4.7)

The gain-factor, β, controls to what degree the path length influences the
choice of node for expansion. For β = 0, the choice is made in the same
manner as in the ordinary algorithm, but when β is increased a greater
weight is placed on avoiding sub-optimal paths. However, when β reaches
1 (which in some sense is analogous to A*), all expansions will be from qinit

since any other node would mean a detour. An appropriate choice of β is
highly domain-dependent. In a case of repeated replanning, the authors of

4.3 Kinematic constraints 41

[9] suggests a scheme where β initially is set to 0, and then continuously
adjusted in the interval [0, 0.65] depending on the success of the planner.

4.2.5 Probabilistic Roadmaps of Trees

In [1], a combination of the PRM and RRT algorithms, called probabilis-
tic roadmaps of trees (PRT), was introduced. It combines the superior
coverage of the RRT algorithm with some of the advantages of the PRM
algorithm, e.g., a roadmap that can be reused for multiple queries and a
greater degree of robustness. Like the PRM algorithm, the PRT algorithm
generates a roadmap in a precompilation phase, but instead of trying to
connect each node to its closest neighbors directly with a local path plan-
ner, a tree is constructed at each randomly sampled point. This tree can
be an RRT or some other form of tree suitable for path planning.

The roadmap construction of the PRT algorithm proceeds in the follow-
ing steps: First, a number of points in the configuration space are sampled
randomly, and from each of them a tree is built. From these trees, a set
of candidate edges are formed by taking the pairs of trees that lie closest
together, and a number of randomly chosen pairs of trees. To add a can-
didate edge to the roadmap, nearby vertices in the two trees are tested for
connection, or if that fails, a bidirectional path planning attempt is made.
If this connection succeeds, an edge is added between the two trees. In [1],
only edges that contribute to increasing the connectivity of the roadmap
are added. A comparison in [1], showed better results for the PRT planner
than both PRM and RRT planners on several hard problems.

4.3 Kinematic constraints

Up to this point, only holonomic robots have been considered. For many
practical applications, the robots are subjected to various nonholonomic
constraints. In this section some work related to kinematic constraints is
presented, mainly studies of path planning for car-like robots. All these
studies are done in a PRM setting, but similar techniques could also be
applied with an RRT planner.

42 Sampling-based Path Planning Algorithms

4.3.1 Kinematic Path Planning with PRM

The PRM algorithm can be used directly for path planning under kine-
matic constraints if it is equipped with a suitable local path planner.
Svestka and Overmars introduced such a planner for general car-like robots
and forward-moving cars, with a local path planner that produces paths
by a combination of circular paths of minimum turn radius and straight
lines [42].

Some care has to be taken for robots with an asymmetric local path
planner, e.g., forward-moving cars, since the existence of a path in one
direction does not necessarily imply that there exists a path in the other
direction. Thus, it is necessary to use a directed graph for describing the
roadmap.

To reduce the size of the roadmap, an acyclic graph was used with this
planner. Such a graph can be generated in a simple and efficient manner
for the general car (that can go both backwards and forward) since an
undirected graph can be used in that case. For a forward-moving car,
where a directed graph is required, it is nontrivial to retain an acyclic
graph, but it can be achieved in terms of forward and backwards reachable
sets [42].

4.3.2 Customizable PRM

The PRM algorithm spends a large amount of work to build a roadmap
that can be used for answering multiple path planning queries for a certain
robot in a given environment. This makes the planner rigid and slow in
adapting to various changes to the planning problem, since information
about both the environment and the robot mechanics is encoded into the
roadmap.

A more flexible approach to PRM planning for car-like robots with re-
gards to kinematic constraints was taken by Song and Amato [52]. Instead
of building a roadmap for a specific car, an approximate roadmap is built,
with only partial collision checking of edges. The idea is that this roadmap
gives an approximate description of the environment that can be refined
in the runtime phase for cars with a particular minimum turn radius.

4.3 Kinematic constraints 43

The approximate roadmap of customizable PRM (C-PRM) is con-
structed in two steps:

1. A straight-line control roadmap is built, disregarding nonholonomic
constraints, and with only midpoints of edges checked for collision.

2. The midpoints of the edges are used as nodes in the approximate
roadmap, and an attempt is made to connect each node with the
midpoints of the neighboring edges of the control roadmap. The
connections are made with paths consisting of a straight-line segment
and a circle arc of maximal radius, and the radius is recorded on the
edge. No collision checking is done for these edges.

Planning for a car with a minimum turn radius, r, is done by first removing
all edges with turn radius smaller than r. The planning is then performed
similarly to the LazyPRM algorithm since full collision checking of the
roadmap edges were not performed during roadmap construction.

4.3.3 Multi-Level Handling of Nonholonomic Constraints

For robotic systems subject to many nonholonomic constraints, it may be
unfeasible to find a solution by direct application of the PRM algorithm.
Such problems are treated in [49], where an algorithm called multi-level
path planning is described. With this algorithm a simplified problem,
P0, with only holonomic and possibly some nonholonomic constraints, is
solved first. The remaining nonholonomic constraints are added one at a
time to form P1, P2 and so forth, until all nonholonomic constraints are
handled. For each Pi, the solution to the previous problem, Pi−1, is used
as a starting point that is refined so that the ith nonholonomic constraint
is also satisfied.

For the refinement of a solution to satisfy additional constraints, two
methods are proposed in [49]: the Pick and Link-method (PL) and the
Tube Probabilistic Path Planner (Tube-PPP).

Using the PL method to transform a Pi solution into a Pi+1 solution is
done by first checking if the solution to Pi already satisfies all constraints
of Pi+1. If that is the case, we are done. If some constraint is not satisfied,

44 Sampling-based Path Planning Algorithms

the PL-algorithm divides the local path into two shorter paths and tries to
solve these with the extra constraints added. This operation is repeated
until a solution that satisfies all constraints of Pi+1 is found for each sub-
path. The PL method will always find a solution if the local path planner
fulfills what is referred to as the topological property in [48, 49]. The
topological property states that for any ǫ, there is a η, such that for any q
in a η-ball around a configuration q0, there is a path from q0 to q contained
in a ǫ-ball around q0. This means that the robot can move between any
two nearby configurations without moving far from them, e.g., a car can
move to a point close to the side by moving a short path forward and
then backwards while turning appropriately. A thorough treatise of the
topological property and its consequences for nonholonomic path planning
is given in [48].

The other method for path refinement presented in [49] is Tube-PPP,
which is a variation on the standard PRM algorithm, where the randomly
generated configurations are picked from a tube around the solution to the
Pi-problem. Tube-PPP generally finds paths faster and of higher quality
than PL, but is only probabilistically complete, whereas PL is complete.

4.4 Dynamic Constraints

For real world applications, the magnitude of actuator forces are normally
limited, and the planner needs to produce plans that stay within these
bounds. To achieve this, plans are generally formulated so that they de-
scribe the development of the complete system state over time, in the form
of a time-parameterized path through the state space. This stands in con-
trast to planning under holonomic and kinematic constraints, where the
plan can be represented as a path through the configuration space of the
robot.

Most of the work on dynamic motion planning with sampling-based al-
gorithms has been done with RRTs. The necessary adaptations for hand-
ling dynamic planning in this framework is described in the first subsec-
tion. After that, applications to both simulated and physical robots are
described.

4.4 Dynamic Constraints 45

4.4.1 RRTs for Kinodynamic Motion Planning

RRTs are well suited for motion planning under dynamic constraints, and
were first introduced in a kinodynamic setting [38]. The RRT algorithm
from section 4.2 uses a local path planner for connecting configurations
just like the PRM algorithm, but connecting two arbitrary states in this
manner is a difficult problem in itself for many dynamic systems. The
advantage of tree-based planners, e.g., RRT planners, over roadmap-based
planners is that they can be modified so that they do not require a local
path planner that solves this problem. Instead, the tree can be built from
the initial state by integrating the system dynamics under different control
inputs.

This is done in the RRT algorithm by replacing the call to NewState
in algorithm 4.2.1 and 4.2.2 with a NewState function that integrates the
system dynamics under an applied control input. This function selects an
appropriate control input in order to take the robot closer to the random
state. If no such function is available, the planner can test different control
inputs randomly and select the one that leads to the state closest to the
new random state and add that to the tree.

The bidirectional RRT-Connect planner described in section 4.2.2 can
be adapted to kinodynamic planning by using the above mentioned change
[39, 40]. For the tree grown from the goal state, the expansion is done
through integrating the system dynamics in reverse. However, there is a
complication in that the two trees cannot be directly connected if there is
no local planner available. In [39, 40], the two trees are grown until one
node from each tree falls within a small distance, ǫ, from each other, and
the remaining discontinuity is left for the controller to handle.

If such a discontinuity is not acceptable a number of solutions to this
problem are proposed in [40], e.g., one or both of the trajectories can
be slightly perturbed or classical shooting techniques can be applied. A
detailed description of a method for connection through perturbations can
be found in [18].

A proof of probabilistic completeness for the RRT-Connect planner for
kinodynamic planning is given in [40].

46 Sampling-based Path Planning Algorithms

4.4.2 Application to Autonomous Helicopters

In [16, 17, 19] a hybrid controller is described that is designed for aggressive
maneuvering of an autonomous helicopter. The controller is based on a
finite automaton, which is called the maneuver automaton. This automa-
ton consists of states representing trim trajectories, which are trajectories
with constant control inputs, and state transitions describing finite-time
maneuvers for switching between different trim trajectories. The maneuver
automaton provides a near-optimal controller for bringing the helicopter
to an equilibrium point from any state of the system in obstacle-free envi-
ronments.

For planning in the presence of obstacles, an algorithm similar to the
RRT algorithm is used. First, an attempt is made to connect the initial
state directly to the goal state using the maneuver automaton. If this is
not successful, the segments of the path up to the first offending segment
serve as an initial planning tree. Additional primary nodes are sampled
from the set of equilibrium points, and the tree is extended to them with
the hybrid automaton.

Since the primary nodes are equilibrium points, paths that go through
these points are often far from optimal. To remedy this, additional sec-
ondary nodes are added to the tree. Each secondary node is placed at
a random location along a trajectory segment and a connection attempt
is made to the endpoint of the following segment, thereby bypassing an
intermediary equilibrium point.

4.4.3 Other Applications

There are many examples of applications of RRTs for kinodynamic plan-
ning in the literature. In [39], a number of kinodynamic motion planning
problems are presented, including translating and rotating bodies in both
two and three dimensions, with bounded acceleration. In the small-scale
environment (15-20 obstacles) in which the experiments were performed,
the RRT-planner managed to solve the problem with a computation time
ranging from seconds to minutes.

More realistic examples can be found in [12], where motion planning
for a simulated car is presented. Unlike the path planning examples in

4.5 Time and Change 47

section 4.3, a much more realistic model of the car dynamics is used here
including slipping and skidding. This paper also presents an application of
RRTs for planning the reentry flight path in a simulation with a prototype
model of a reusable launch vehicle, NASA X33.

4.5 Time and Change

So far, we have discussed path and motion planning in static environments.
Changes in the environment can be analyzed on two different time scales
depending on how fast the changes occur. For rapidly changing environ-
ments, time has to be explicitly handled by the planner, something that
may not be necessary for slower changing environments where the execu-
tion time of a plan is short compared to the speed of change. However,
even for slowly changing environments, changes in the environment must
be considered if the planner keeps data structures that represent the envi-
ronment, e.g., roadmaps.

In this section, the explicit representation of time for moving obsta-
cles will be considered first, before some methods for keeping roadmaps
updated in changing environments.

4.5.1 Moving obstacles

If the trajectories of moving obstacles are known in advance, it is straight-
forward to extend sampling-based motion planning algorithms to also in-
clude moving obstacles (see, e.g., [35, 37]). This can be done by planning
the path in the space-time: Cf ×T , where T is a time interval in which the
plan will be contained. Stationary obstacles are represented as cylinders
in Cf ×T with a base of the shape that the obstacles have in Cf . For mov-
ing obstacles, the cylinders are slanted in the direction of motion. Sample
based planners can be used in roughly the same way as in the timeless
case, by sampling in C×T and testing connections against the space-time
obstacles, but naturally paths are only possible forward in time. Since
kinodynamic planners generally already incorporate time, they are often
capable of handling moving obstacles of this type. This is the case with
the application to autonomous helicopters described in section 4.4.2

48 Sampling-based Path Planning Algorithms

4.5.2 Roadmap Updates

Planning in a changing environments with multiple-query algorithms, e.g.,
the PRM algorithm, involves a further complication since trajectories for
the moving obstacles need to be known already when the roadmap is built.
This is an unrealistic assumption for most real-world applications, where
these obstacles may be detected first at query time. One solution is to use
single-query algorithms, but for many path planning problems, the robot
operates in a largely static environment with only a few non-stationary
objects that the robot must avoid. In such cases, it can be of great benefit
to have a precompiled roadmap for the static environment, so the online
algorithm only needs to process moving obstacles. However, this requires a
method for keeping the roadmap up to date in the changing environment.

In [26], a planner is described that generates a roadmap that only
considers static obstacles. In the query phase, new obstacles may have
appeared that invalidate some of the edges in the roadmap. Thus, it is
necessary to check that the solution is still collision free. If it is not, the
roadmap is partitioned into three components: nodes reachable from the
start configuration, nodes reachable from the goal configuration, and nodes
reachable from neither of the query nodes. An attempt is then made to find
connections between these three components. This is done by first locating
the nodes in the unreachable and goal component that are closest to the
start configuration, and try to connect them to their closest neighbors in
the start component. The nodes closest to the goal node in the start and
unreachable component are likewise tried for connections with nodes in the
goal component. If no direct connection is found, connection attempts are
also made with an RRT-Connect planner.

Another method is described in [27]. Here the roadmap is compli-
mented with a grid covering the same area of the workspace, and for each
grid cell, a list is kept of all nodes and edges overlapping that cell. This
makes it possible to invalidate regions of the roadmap quickly, as obsta-
cles move through the workspace. When an obstacle enters a grid cell, all
nodes and edges in that cell are temporarily invalidated until the object
has left the cell. During a search in the query phase, only nodes and edges
that are still valid are used.

4.5 Time and Change 49

If the possible locations of non-stationary obstacles are known during
the roadmap construction it is possible to build a roadmap that guarantees
a solution regardless of where the obstacles are located runtime if such a
solution exist. An algorithm that does this is presented in [4]. This algo-
rithm is similar to PRM algorithms for acyclic graphs in that it tracks the
connectivity between the components of the graph. Since the connectivity
varies as the obstacles are moved, connectivity is no longer a simple binary
relation. Instead, the connectivity between the components of the roadmap
is described with the set of obstacle positions for which two components
are connected.

The algorithms in [4, 26, 27] are built on the assumption that the ob-
stacles are stationary during plan execution. In another algorithm de-
scribed in [5], obstacles moving along known trajectories can be handled.
This algorithm also starts with a roadmap built for the stationary obsta-
cles and the search through the roadmap is performed with an A*-like
search algorithm. Since only the static obstacles are respected during the
roadmap construction, collisions with moving obstacles are still possible
when traversing an edge in the roadmap. When a moving obstacle passes
through an edge, it gives rise to obstacle regions on the surface traced by
the edge in the space-time. In order to find a fully collision free path, a grid
search is performed on this surface, for each edge that is reached during
the search. This search is performed intertwined with searches on other
edges in the order specified by the A*-heuristic. A number of simulated
experiments using this algorithm are described for both mobile robots in
corridors and articulated robots in a 3D workspace. The algorithm can
also be used for planning paths for multiple robots, by planning a path for
one robot at a time.

50 Sampling-based Path Planning Algorithms

Part II

51

Chapter 5

Path Planning Framework

In order to test how different path planning algorithms can be used for
practical applications with an autonomous helicopter, a path planning
framework has been developed. Within this framework, both PRM and
RRT based planners have been implemented. The basic algorithms for
these two planners were described in section 4.1 and 4.2, and in this chap-
ter, a number of extensions of the algorithms are described in the context
of the path planning framework. The most important extensions are re-
lated to more flexible ways of handling different types of path planning
constraints, and it will be shown how constraints can be applied at various
stages of the planning process.

This chapter begins with an overview of the path planning process.
After that a discussion follows on how motion constraints and obstacle
constraints can be applied at different stages during the planning process.
The last section describes how the path resulting from the PRM and RRT
algorithms can be improved by various smoothing procedures.

The path planning algorithms described in this chapter require a local
path planner that closely matches the maneuvering capabilities of the real
helicopter and a collision checker that can check that these paths are not in
collision with the environment. The implementation of the collision checker
and other obstacle constraints are described in the next chapter, while the
different local path planners that have been used with the helicopter are
described in chapter 7. That chapter also describes the integration of the

53

54 Path Planning Framework

World model OBB-tree construction

Roadmap construction

Offline

Online

Start and goal positions

A∗ search

Runtime constraints

Smoothing &
curve replacement

Finished path

OBB tree

Roadmap

Path

Figure 5.1: The main stages of path planning-process for the PRM planner.

path planner module with the helicopter system.

5.1 Path Planner Overview

The overall planning process is similar for the two planners, but for clarity
of presentation, they are described separately in this section. The ex-
tensions described later in this chapter were first developed for the PRM
planner which therefore will be described first, followed by an account of
how they affect the RRT planner.

The main stages of the path planning process for the PRM planner are
shown in figure 5.1. Before the roadmap is constructed, the environment
is preprocessed with the OBBTree algorithm to enable efficient collision
checking (described in the next chapter). The roadmap is constructed
using the MakeRoadmap algorithm (algorithm 4.1.1), with the collision
constraint implemented by the OBB-tree.

For the motion constraints of the helicopter, two different approaches
are implemented as described in section 5.2. In the first approach, the
roadmap is generated with local paths directly suitable for the helicopter,

5.1 Path Planner Overview 55

World model OBB-tree construction

Offline

Online

Start and goal positions

RRT planning

Runtime constraints

Smoothing &
curve replacement

Finished path

OBB tree

Path

Figure 5.2: The main stages of path planning-process for the RRT planner.

while in the second approach, the motion constraints are postponed to a
later stage and straight-line paths are used for connecting the nodes.

In the runtime phase, the start and goal configurations are connected
to the graph and a solution path is found through graph search as with
the standard PRMQuery algorithm (algorithm 4.1.2). Unlike the standard
PRM algorithm, this implementation makes it possible to add further con-
straints in the runtime phase. This extension is described in section 5.3.

As a last step, the path is subjected to a series of post processing
steps for improving the quality of the plan. If the motion constraints were
disregarded during the roadmap construction, the plan is also transformed
into a piecewise cubic curve at this stage.

The RRT planner is an implementation of the RRT-Connect planner
(algorithm 4.2.2) and constructs two RRTs from the start and goal config-
urations. The path planning process is similar to that of the PRM planner
and is shown in figure 5.2. The main difference is that the trees are con-
structed in the runtime phase, instead of in the offline phase as is the case
with the roadmap graph of the PRM algorithm. This means that for the
RRT planner, there is no need to distinguish obstacle constraints that can
be evaluated offline from those that need to be evaluated during runtime.
For motion constraints, both of the approaches that were described above
can be used.

Even if the RRT planner operates fully in the runtime phase, the OBB-

56 Path Planning Framework

Tree algorithm requires a significant amount of time to preprocess larger
geometric models. For a truly flexible planner, the OBBTree algorithm has
to be replaced with an incremental collision checker that is able to respond
quickly to changes in the environment.

5.2 Motion Constraints

The basic PRM and RRT algorithms only consider obstacle constraints,
while kinematic constraints can be handled with a suitable local path plan-
ner. In this section, we will look at two different ways of handling dynamic
constraints with the PRM and RRT algorithm.

5.2.1 State Space Roadmap

The most straightforward way of handling dynamic constraints in the PRM
and RRT algorithms is to complement the configurations with their deriva-
tives and record the complete state at each node in the graph. This enables
the local path planner to adapt the path between two nodes to their asso-
ciated derivatives, which is necessary to respect the dynamic constraints
at boundary points between adjacent edges in the solution path.

The drawback of this approach is that the dimensionality of the space
in which the roadmap is situated is doubled. In the implemented planner,
only the direction of flight is recorded at each node and a fixed magnitude
is used for the derivative vectors. Even so, the three dimensional position
and the direction of flight vector result in an increase from three to five
dimensions.

In addition to an increased number of dimensions, this method also
requires a directed graph for a roadmap, since the path between two nodes
is different depending on if the helicopter flies from the first node to the
second or in the other direction. Extending the basic PRM algorithm to
handle directed graphs is straightforward, and only involves testing the
local path in both directions and adding edges for the directions in which
the paths satisfy the no-collision constraints. This is done by duplicating
line 3–6 in ConnectNode (algorithm 4.1.1), with q and n reversed.

5.2 Motion Constraints 57

5.2.2 Multi-level Path Planning

An alternative approach to nonholonomic planning is to postpone the
nonholonomic constraints to the runtime phase. Sekhavat, Svestka, Lau-
mond and Overmars developed a path planner for a car-like robot pulling
a number of trailers that follows this approach, which was described in
section 4.3.3 [49]. With their multi-level planner, the problem is first
solved with only the nonholonomic constraint that arises from the car
itself. The solution to this relaxed problem is then refined by adding the
non-holonomic constraints for the trailers one at a time. For locally con-
trollable robots, it is always possible to transform the solution so that
the non-holonomic constraints are also respected as long as there exists
a non-zero margin between the obstacles and the solution to the relaxed
problem.

Path planning for a helicopter is somewhat different than for locally
controllable robots, but a similar approach can still be used. Since heli-
copters are free-flying robots that can follow any path, the output from
a holonomic path planner can be used directly, e.g., the PRM algorithm
can be used with a straight-line local path planner to produce piecewise
linear paths. However, if the dynamics are completely ignored, the paths
produced by the path planner will be of low quality, since the curvature
determines the speed at which the helicopter can traverse it. A piecewise
linear path requires the helicopter to stop and hover at each waypoint along
the path in order to change direction of flight. Even if the piecewise linear
path is unsuitable, it can serve as a good starting point for finding paths
for the helicopter. In order to better respect the dynamic constraints of
the helicopter during flight at higher speeds, the sharp corners must be
eliminated. With the multi-level approach for helicopters, described be-
low, this is done by replacing the straight-line path segments with Bézier
curves.

The replacement procedure is shown in algorithm 5.2.1, and an example
of how the path is transformed for the helicopter is shown in figure 5.3.
Figure 5.3(a) shows a piecewise linear path that could be the result of
a graph search. In the first step, the configurations along the path are
replaced with state descriptions. This replacement is made by associating a

58 Path Planning Framework

Algorithm 5.2.1 Path Augmentation Algorithm

CalculateDirections(〈p0, . . . , pn〉)
1 dp0 = p1−p0

|p1−p0|
2 for i = 1 to n−1 do

3 dpi = pi+1−pi−1

|pi+1−pi−1|
4 end for

5 dpn = pn−pn−1

|pn−pn−1|

AlignDirectionsToLinear(〈p0, . . . , pn〉, 〈π0, . . . , πn〉)
1 for i = 1 to n−1 do

2 if linear(πi−1) ∧ cubic(πi) then

3 dpi = pi−pi−1

|pi−pi−1|
4 else if cubic(πi−1)∧linear(πi) then

5 dpi = pi+1−pi

|pi+1−pi|
6 end if

7 end for

ReplaceCurves(〈p0, . . . , pn〉, 〈dp0, . . . , dpn〉, γc)
1 for i = 0 to n−1 do

2 π = Pcubic(〈pi, dpi〉, 〈pi+1, dpi+1〉)
3 if γc(π) then

4 πi = π
5 end if

6 end for

AugmentPath(〈p0, . . . pn〉, γc)
1 CalculateDirections(〈p0, . . . pn〉)
2 ReplaceCurves(〈p0, . . . , pn〉, 〈dp0, . . . , dpn〉, γc)
3 AlignDirectionsToLinear(〈p0, . . . pn〉)
4 ReplaceCurves(〈p0, . . . , pn〉, 〈dp0, . . . , dpn〉, γc)

5.2 Motion Constraints 59

• •

⊙ ⊙

??
??

??
?

��
��

��
�

OOO
OOO oooooo

(a) Linear path.

• •.
. .

⊙ ⊙

OOO
OOO oooooo

(b) Primary attempt of path
transformation.

• •

⊙ ⊙

(c) Secondary attempt of path
transformation.

Figure 5.3: Transformation from linear path segments to cubic path seg-
ments required for smooth flight.

60 Path Planning Framework

direction of flight vector to each node that is parallel with a line connecting
the two neighbor nodes (shown as a short line on the intermediary nodes).
For each segment, an attempt is made to replace the straight lines with
a cubic curve matching these vectors (figure 5.3(b)). For segments where
this is not possible, e.g., the middle segment in figure 5.3(b), the linear
path will remain, but an additional attempt to achieve smooth transitions
is made by trying to align the neighboring curves to the straight-line path
(figure 5.3(c)). If this step also fails, a sharp corner is left in the final path,
and the helicopter must stop and hover at this point in order to realign for
the next segment. In practice, this happens infrequently as we will see in
section 9.4, and normally only in cramped environments.

5.2.3 Related Work

Planning in the robot’s state space is the standard method for motion
planning under dynamic constraints and is used in all of the planners de-
scribed in section 4.4 [12, 16–19, 38–40]. Here, a slightly different approach
has been taken. No exact description of how the robot state is evolving
over time is derived. Instead, a geometric path is planned in W, taking
dynamic constraints into account to make it efficiently traversable by the
helicopter. This detachment of the path planner from the low-level control
system has both advantages and disadvantages compared to planning the
robot’s motions directly.

From a system design point of view, it provides a better separation of
concern. The path planner is designed with a simpler model of the robot,
and a higher-level, intermediary layer of the control system executes the
appropriate control signals for following the path from the planner; this
control system architecture is discussed in more detail in chapter 7. The
main drawback is that the full capabilities of the robot may not be utilized.
To achieve that, a tighter coupling between the planner and the control
system of the robot is needed. Such an integrated motion planner and
control system approach has been developed by Frazzoli with a maneuver
automaton that closely models the capabilities of an autonomous helicopter
[16, 17, 19].

Another difference compared to the above-mentioned planners is that

5.3 Runtime Constraints 61

they all are based on RRTs. However, unlike most of those applications, an
important goal with this work has been to implement a planner that works
well in large-scale realistic environments. As we will see in section 9.4 such
environments may require some preprocessing to enable the planner to
find paths quickly and reliably, which is why the PRM algorithm is also
interesting for this type of applications.

To reduce the size of the roadmap for these large environments, the
multi-level technique was borrowed from the work on kinematic path plan-
ners for car-like robots [49]. The requirements on a planner for a point
robot with dynamic constraints are similar to planners for car-like robots,
since the path curvature is constrained in both cases. Thus the multi-
level technique can be useful also for planning paths for a helicopter, and
makes it possible to achieve smooth flight paths also from a roadmap with
straight-line edges.

5.3 Runtime Constraints

During the construction of the roadmap, each edge is checked for collision.
In many applications there are other types of constraints on the plan, e.g.,
the operator may want to specify a maximal flight altitude for the heli-
copter or areas that the helicopter is forbidden to enter. Such geometric
constraints can be handled in the same manner as the no-collision con-
straint, γc, by replacing it with the conjunction of γc and the additional
constraints.

With the standard PRM algorithm, all constraints added in this way
must be known in advance, before the roadmap is constructed, leading
to an inflexible planner. However for practical applications, conditions
are often changing and the path planner must be able to adapt rapidly
to these changes. In this section, an extension to the PRM algorithm is
presented that allows additional constraints to be specified in the runtime
phase. With this extension, it is possible for the operator to influence the
path planner with new constraints in the runtime phase while still profiting
from the work invested in the roadmap construction.

62 Path Planning Framework

Algorithm 5.3.1 The PRMQuery-algorithm with runtime-constraints.

ExpandUnderConstraints(n,G,Γr)
1 return {n′ | n′ ∈ Expand(n,G),∀γ ∈ Γr : γ(n′)}

PRMQuery(q0, qg,Γo,Γr, PL, G)
1 ConnectNode(q0,

∧

(Γo ∪ Γr), PL, G)
2 ConnectNode(qg,

∧

(Γo ∪ Γr), PL, G)
3 ExpandNodeFn← λ(n,G) : ExpandUnderConstraints(n,G,Γr)
4 return A*-search (q0, qg, G,ExpandNodeFn)

5.3.1 PRM Planner with Runtime Constraints

The set of planning constraints are divided into offline constraints, Γo, that
are known in advance, and runtime constraints, Γr, that are not known
until the query phase. A roadmap is generated for the offline constraints in
the same way as with the standard PRM algorithm (with

∧

Γo replacing
γc in algorithm 4.1.1).

The PRMQuery algorithm (algorithm 4.1.2) has to be altered in two
places for handling new constraints in the query phase; the altered version
is shown in algorithm 5.3.1. The start and goal configurations, q0 and
qg, are added as before, but the connections are checked against both the
offline constraints and the runtime constraints.

The second modification to the algorithm concerns the graph search.
The edges in the graph are already known to satisfy the constraints in
Γo, but may violate constraints in Γr. To guarantee that the returned
path satisfies all constraints, each edge is checked against the runtime
constraints during node expansion, and only nodes reached through edges
satisfying all the constraints in Γr are added to the search queue.

5.3.2 Implemented Runtime Constraints

The runtime constraints must be computed quickly and therefore simple
constraints are most suitable for use in this manner. Here follows some
examples of constraints that have been implemented and tested with the

5.3 Runtime Constraints 63

path planner; similar types of constraints can easily be plugged into the
planner:

Min and max altitude limit the altitude of the helicopter.

No-fly zones are horizontal polygons covering an area, over which the
helicopter is not allowed to fly.

Generic obstacles include any 3D-object consisting of polygons.

Even if the first two types of constraints can also be represented by
the more general third type, it is still useful to treat them separately since
they represent common types of constraints that the user may want to
place on the planner. This makes it easier for the user to specify them
and can also improve the performance since more efficient special-purpose
algorithms can be used. The implementations of the different constraints
are described in chapter 6.

5.3.3 Repairing Broken Roadmap Connectivity

The introduction of further constraints in the query phase may break the
connectivity of the roadmap. To alleviate this problem, an optional RRT
connection step was added to the path planner similarly to [26]. If the
graph search fails, the graph is partitioned into two smaller graphs, con-
taining the reached and unreached nodes respectively, and one node is
selected from each partition. From the set of reached nodes, the node, n1,
closest to the goal node is picked, and from the set of unreached nodes,
the node, n2, closest to n1 is picked. An attempt is then made to con-
nect these two nodes with the RRT-Connect planner. If this connection
attempt is successful, the intermediary nodes in the solution are added to
the roadmap and a new graph-search is attempted. This process continues
until a path is found between the start and goal configuration, or the RRT
connection attempt fails.

A side effect of this algorithm is an improved ability to connect the start
and goal configuration to the roadmap. If a direct connection cannot be
found between the start configuration and the roadmap, the graph search

64 Path Planning Framework

will fail instantly and an RRT connection is attempted, which significantly
improves the chance of finding a connection. The same situation occurs
if the goal configuration cannot be directly connected. In this case, the
search fails to find the goal, and an attempt is made to connect the closest
node in the roadmap to the goal configuration with the RRT planner.

5.3.4 Related Work

The basic PRM algorithm requires all constraints to be known at roadmap
compilation time. During recent years some effort has been invested in
combining precompiled roadmaps for a static environment with online
planning for moving obstacles. A number of such planners were described
in section 4.5 and the work on runtime constraints described above is an-
other example.

The RRT-reconnection step was first implemented in a planner by Jail-
let and Siméon [26]. That planner uses an acyclic roadmap, which makes
a reconnection strategy vital, since any lost edge due to new obstacles
breaks the connectivity of the roadmap. This stands in contrast to the
PRM planner that has been used with the WITAS helicopter, where dense
cyclic roadmaps have been used. This makes a reconnection step much
less important since new runtime constraints rarely affect enough edges to
break the roadmap connectivity. A study of the usefulness of the RRT-
reconnection step in this setting is given in section 9.3.2. However, the
main motivation for using dense roadmaps is that they lead to better plans,
which is something that also is shown in chapter 9.

Another difference between the planners is that Jaillet and Siméon’s
planner uses lazy collision checking like the LazyPRM algorithm, while the
runtime constraints described above are checked during the graph search.
Lazy collision checking is advantageous when collision checking is expensive
since a minimal number of checks are performed. If the constraints are
cheap to check, e.g., simple no-fly zones or altitude limits, the graph search
may be the most expensive part of the online planning process, and in such
cases checking the constraints during the search can improve performance.

5.4 Post Processing the Plan 65

n

n'

m

(a) Alignment halfway.

n

m, n'

(b) Full alignment.

Figure 5.4: Alignment of nodes.

5.4 Post Processing the Plan

The random nature and limited density of the sampled nodes make the
PRM and RRT algorithms produce paths that are often jagged and irreg-
ular with occasional detours. In order to improve the quality of the paths,
a smoothing step is usually added to these planners [29, 41].

For the implemented path planner the following smoothing steps are
performed:

Alignment For each node along the path, two attempts are made to
move it to a point that straightens out the path. The new locations
that are tested for the nodes are illustrated in figure 5.4. For both
attempts, the point, m, in the middle between the two neighbors is
located. In the first pass (figure 5.4(a)), an attempt is made to move
the node, n, halfway to m, and in the second pass (figure 5.4(b)), an
attempt is made to move it all the way to m.

Node Elimination For each node along the path, an attempt is made to
eliminate the node by connecting the two adjacent nodes directly. If
the connection satisfies all constraints, the middle node is eliminated.

For the multi-level planner, the curve replacement step described in sec-
tion 5.2.2, is performed between the alignment and the elimination step.

66 Path Planning Framework

Chapter 6

Obstacle Constraints

With the PRM and RRT algorithms, a local path planner is used for finding
paths between nearby nodes in the graph or tree. This planner takes care
of the intrinsic motion constraints of the robot and generates paths that
the robot can follow, but before they can be added as edges to the graph
or tree, they must be checked so that they also satisfy external constraints,
e.g., that the paths are collision free. In this chapter, we will look at how
these tests are performed for a number of constraints that are relevant for
the helicopter path planning problem.

The most important of the external constraints to consider is the col-
lision avoidance constraint. This constraint is extremely important for a
helicopter path planner since any contact between the helicopter and an
obstacle would likely lead to a crash. The environment in which the heli-
copter is operating can also be very complex with many irregular obstacles,
and it is therefore necessary to have an efficient algorithm for testing if a
path is collision free.

We will begin this chapter with a description of the environment that
needs to be handled by the collision checker, before we move on to a descrip-
tion of the OBBTree algorithm, which has served as the collision checker in
the path planner implementation. After describing the collision-checking
algorithm, the chapter ends with an account of the different runtime con-
straints that have been used with the planner.

67

68 Obstacle Constraints

6.1 The Environment and Helicopter Model

In order to avoid collisions with obstacles, the path planner needs an ac-
curate description of the environment. The main flight-test area that has
been used in the WITAS project is a training area for rescue workers
in Revinge in southern Sweden. The training area is used for practicing
different types of rescue operations and contains a road network, several
building structures, and a number of accident sites. This makes it very
well suited for more advanced flight tests where operations over traffic and
in urban areas are simulated.

Simulation of the helicopter and the environment has played an im-
portant role in the WITAS project, and for these purposes, a detailed 3D
model of the Revinge flight test area has been constructed. This model
has also been used as input to the path planner. The model consists of
205 different objects, mostly buildings and trees, but also masts, lamp-
posts, fences etc., and elevation data for the ground with 1 m resolution.
Together, these objects consists of almost 140 000 polygons.

The collision checker described in this chapter does not require knowl-
edge of the individual objects, but instead treats the 3D model as an
unordered set of polygons. The only exception is the elevation data that is
handled separately. Currently, the path planner operates under the simpli-
fying assumption that the model of the environment is known in advance.

The fuselage of the helicopter is approximately 2 m long, and the rotor
is approximately 3 m in diameter. The reference point of the helicopter
is centered near the rotor axis, which means no point of the helicopter is
more than 2 m away from that point. This distance will be called the
radius of the helicopter.

For safety resons, an extra margin may be enforced between the heli-
copter and any obstacle in the environment. The size of this margin must
be adjusted for the sensor capabilities and control precision of the robot,
and is currently set to 6 m for the RMAX helicopter. Since the helicopter
is small in comparison with the obstacles in the environment and the safety
margin, it can be modeled as a point object instead of a more complex 3D
model. We will see later in this chapter that this approximation greatly
simplifies the collision-checking algorithm. To maintain the safety margin

6.2 The Collision Checker 69

when the helicopter is represented as a point, the margin is extended with
the helicopter radius.

6.2 The Collision Checker

The collision-checking algorithm used in the path planning framework is
based on the OBBTree algorithm [21]. The OBBTree algorithm constructs
a tree of oriented bounding boxes (OBBs) around the obstacles in the en-
vironment by including all polygons in the root box and then recursively
dividing the polygons into smaller and smaller boxes. This makes it pos-
sible to efficiently determine if a collision has occurred. In this section we
will first look at how the individual OBBs are constructed and tested for
collision before we turn to trees of OBBs.

6.2.1 OBBs

Choosing the alignment for OBBs is not trivial. One method is to apply
principal component analysis1 (PCA) to the vertices of the polygons to de-
termine the axes of largest and smallest variation [21]. The OBB is aligned
along these two axes together with a third axis chosen perpendicular to
them and follows the main directions for most types of objects.

The OBBs are represented with the six planes that bound the box.
These are found by iterating over the vertices of the polygons and project-
ing them onto the three axes. The bounding planes for one of these axes
are constructed so that they are perpendicular to the axis and are located
at the most extreme of the projected points along the corresponding axis.

To check if the helicopter intersects with an OBB, the OBB is enlarged
with the safety margin plus the maximal radius of the helicopter. If the
position of the helicopter falls on the inside of all six bounding planes, the
position is considered a collision point for the helicopter.

In addition to test if individual points are collision free, the PRM and
RRT algorithms also require the collision checker to test if a collision will

1PCA is done by finding the eigenvectors of the covariance matrix for a set of vectors.
The eigenvectors corresponding to the largest and smallest eigenvalues give the direction
of largest and smallest variation of the vectors.

70 Obstacle Constraints

occur if the helicopter flies along a path, τ . Since the helicopter is repre-
sented by a single point, it is enough to check if the path itself intersects
any of the enlarged OBBs. This is done by locating the points where
τ(s) intersects the bounding planes of the OBB. If any of these intersec-
tion points lie within the corresponding side of the OBB, the curve must
intersect the OBB.

The curve describing the motion of the helicopter is given as a third
degree polynomial with vector coefficients:

τ(s) = a0 + a1s + a2s
2 + a3s

3 (6.1)

To find where the curve intersects the plane coinciding with one of the
faces of the OBB, the polynomial is first projected on the normal of that
plane, n̂, which gives a scalar polynomial of the form:

a0 + a1s + a2s
2 + a3s

3, ai = ai · n̂ (6.2)

Letting d be the orthogonal distance from the plane to the origin (with
sign corresponding to the direction of n̂), the values of s for which τ(s)
intersects the plane is given by

a0 + a1s + a2s
2 + a3s

3 = d (6.3)

This equation is solved analytically, and the solutions where s ∈ [0, 1] are
inserted into equation 6.1, which results in 0–3 points on this plane. These
points are compared to the planes corresponding to the four neighboring
faces of the OBB. If any point lies within the space confined by these
planes, the curve intersects this face of the OBB and hence the OBB itself.
If they all lie outside these planes, the curve does not intersect this side,
and if all the sides are collision free and the path starts outside the OBB,
the OBB is collision free.

6.2.2 Building the OBB tree

The OBBTree algorithm builds the tree by first constructing an OBB that
contains all polygons in the model of the environment. This OBB is asso-
ciated with the root node of the OBB tree.

6.3 Runtime Constraints 71

The polygons in the OBB are then divided into two groups in order to
create two sub nodes. This division is done by finding the middle point of
the longest axis of the root OBB and forming a division plane at that point
perpendicular to the axis. The polygons are divided into the two groups
depending on which side their centers fall. A new OBB is then generated
for each of the two subsets of polygons, and these OBBs are added to the
OBB tree as children to the root OBB. The process of dividing the OBBs
into smaller and smaller sub-boxes is carried on until the level of individual
polygons is reached.

A separate OBB tree is generated for the ground data while the rest
of the obstacles are represented by another tree. The tree constructed for
the ground data is limited to a depth of 10, in order to reduce the size of
the OBB tree. This gives a sufficient resolution for environments where
the ground is flat, e.g., the flight-test area, but may be adjusted for other
environments with different requirements.

6.2.3 Intersection with OBB Trees

Intersection tests with an OBB tree are done in the same way for both
points and paths. The only difference is in the intersection test with indi-
vidual OBBs.

When a point or path has to be checked for a collision, the algorithm
looks for collisions recursively down the OBB tree. It starts by checking
the OBB corresponding to the top node of the tree for a collision. If this
check reports that there is no collision, there can be no intersection of the
model by the point or path since the whole model is contained in this OBB.
If there is a collision, the two subtrees have to be checked. This process
continues recursively down to the leaves of the OBB tree. If a collision
is reported for any of the leaves, the point or path is considered to be in
collision with the OBB tree.

6.3 Runtime Constraints

A number of runtime constraints were briefly introduced in section 5.3.2.
For each constraint an implementation is required for testing constraint

72 Obstacle Constraints

satisfaction for both configurations, q, and paths, τ . These tests are im-
plemented in the following way:

Min and max altitude: Configurations satisfy the constraint if qz is
above or below the min or max altitude respectively. Paths are tested
by seeing if any s, for which τ intersects the plane at the specified
altitude, is in the interval [0, 1], and that the start point does not
violate the constraint.

No-fly zones: The satisfaction test for configurations involves checking
if the helicopter position, projected in the xy-plane, is within the
polygon. This is done by extending a horizontal ray from the point
in the x direction and counting the number of edges that the ray
intersects. If this number is odd, the point is within the no-fly zone.

Paths are tested similarly to the path test for OBBs. For each plane
bounding the no-fly zone, the intersections of τ is solved analytically.
If any solution, s, where s ∈ [0, 1], falls between the neighboring
bounding planes, the constraint is violated.

Generic obstacles: Collision checking for generic obstacles is done by
using OBB trees in the same manner as for collision checking with
the environment. This means that an OBB tree must be generated
for the obstacle, which makes this method usable only for moderately
complex objects, if a fast response is required.

Chapter 7

System Integration

An important goal of this research has been to investigate how a sampling-
based path planner can be used with a real physical helicopter. For this
reason, the path planning algorithms developed within the framework of
chapter 5 have been packaged in a path planning module and been in-
tegrated into the onboard system of the helicopter used in the WITAS
project. These planners share the same public interface and interact with
the rest of the system in the same manner, so the following description is
equally valid for all the variations of the PRM and RRT algorithms that
were described in chapter 5.

This chapter starts with an overview of the WITAS system architecture
and the different software components that are used in conjunction with
the path planning module. A more detailed description of the architecture
can be found in [15]. One of the most important part of the system that
directly affects the path planner is the controller used for moving between
different points. Two control modes that have been used together with
the planner are therefore described in the second section of this chapter.
The last section gives examples of how the different parts of the system
operate together to perform two tasks where the path planner is involved
as an important component.

73

74 System Integration

DRC Deliberative Services

Task Procedures

IPC � � PFC Helicopter Control

Figure 7.1: System architecture.

7.1 System Architecture

The physical platform is a Yamaha RMAX helicopter with a total length
of 3.6 m and a maximum take-off weight of 95 kg. It is designed for easy
operation by radio control, and is equipped with an attitude sensor system,
YAS, and an attitude control system, YACS, which have also been used in
developing autonomous flight modes. To provide all the required data for
autonomous operation, the hardware has been complemented with an ar-
ray of sensors, including a GPS, a pressure sensor, a compass and a video
camera. The helicopter also carries a box on the side containing three
PC104 computers on which all software required for autonomous opera-
tion runs. The three computers are each equipped with Intel Pentium III
processors running at 700 MHz and 256 MB of memory, and are connected
to each other with an Ethernet network. The software resides on 512 MB
compact flash media on the computers.

The different software components of the system are distributed on
the three computers according to the diagram in figure 7.1. The central
components in the system that initiate all actions of the helicopter are the
task procedures, TPs, that run on the Deliberative Reactive Computer
(DRC). TPs are responsible for executing particular behaviors of the he-
licopter, such as monitoring an area, following a vehicle or just flying to

7.1 System Architecture 75

a point. The behaviors described by the TPs can be of various degrees of
complexity where higher-level TPs call TPs with simpler behaviors. TPs
are reactive software components based on finite state machines, but with
the added capability of running arbitrary functions on state transitions or
in response to events.

For intelligent behavior, TPs make use of deliberative services, which
are programs with procedures for reasoning or that encode different forms
of knowledge. The path planner module is an example of such a deliber-
ative service, and is responsible for finding a path connecting two given
points, while the actual flight along the path is managed by a TP.

The helicopter controller runs on the primary flight computer, PFC.
This computer uses the RTAI1 real-time operating system to satisfy the
hard real-time requirements of the control routines. The PFC is essential
for maintaining stable flight of the helicopter and contains all the required
software to keep the helicopter airborne. This can be contrasted with the
DRC, where non-vital processes that add intelligence to the system are
running in soft real time. The PFC also handles the direct communication
with the helicopter platform and the various sensors.

The third computer is the Image Processing Computer, which is con-
cerned with the vision capabilities of the helicopter. It is also responsible
for controlling the camera platform.

The different components on the DRC are independent processes that
communicate through CORBA2. This makes it easy to run the system
in many configurations, and new components can easily be added to the
system in a natural way. This software infrastructure also allows for a
wide variety of programming languages to be used within the system, and
makes it possible to choose the programming language that is most well
suited for a particular task.

1Real-Time Application Interface, www.rtai.org
2Common Object Request Broker Architecture, www.omg.org

76 System Integration

7.2 Local Path Planning and Control

The control system used on the WITAS platform is a hybrid control system
[13]. It has a number of different control laws used for the different flight
modes of the helicopter and uses hierarchical concurrent state machines,
HCSMs, for mode switching between them.

The flight modes that are of primary concern for path planning are
the modes for flying along specified curves. During the WITAS project
two different control modes have been developed and used in conjunction
with the path planner: the proportional navigation controller, PN, which
was designed for dynamically locking on a stationary or moving point and
the trajectory following controller, TF, that was designed for following a
pre-specified curve and is the control mode that is currently used. Before
these control modes are described, we will describe the curves that are
used with both these controllers.

7.2.1 Curve Description

The PRM and RRT planners are adapted to specific robots by using a
robot-specific local path planner. The local path planner connects two
helicopter states with a path segment that has to match the curve form
corresponding to some control mode of the robot. On the helicopter the
trajectory-following control mode, TF, is used for following paths in the
form of a cubic polynomial in three dimensions.

The choice of cubic curves for path representation was originally mo-
tivated by the proportional navigation controller, PN, which is described
later in this chapter. The PN controller traces a curve that closely ap-
proximates a cubic polynomial when tracking a stationary target. Due to
a number of good characteristics of this curve type, e.g., flexibility, pos-
sibility of obtaining C2-continuity at end-points and analytical solvability
(which is used for collision checking), it remained when the switch to the
TF controller was made. The curve is described by the equation

τ(s) = a0 + a1s + a2s
2 + a3s

3 (7.1)

parameterized on the interval s = [0, 1]. Given two helicopter states, x0 =
(q0, q̇0) and xg = (qg, q̇g), the local path planner must construct a path of

7.2 Local Path Planning and Control 77

this form. Since τ has to match x0 and xg at its end points, we have

τ(0) = q0 τ̇(0) = cq̇0 (7.2)

τ(1) = qg τ̇(1) = cq̇g (7.3)

for some constant c. The constant, c, is currently chosen so that the mag-
nitudes of τ̇(0) and τ̇(1) are equal to the distance between the start and
end-point of the curve segment. This gives well-behaved curves that the
controller is able to follow. In the future, the magnitude could be used
for better adapting the curve for a certain flight speed. From the end-
points and the corresponding derivatives it is easy to derive the following
expressions for calculating the coefficients of τ .

a0 = τ(0) (7.4)

a1 = τ̇(0) (7.5)

a2 = 3(τ(1) − τ(0)) − 2τ̇ (0)− τ̇(1) (7.6)

a3 = 2(τ(0) − τ(1)) + τ̇ (0) + τ̇(1) (7.7)

7.2.2 Trajectory-Following Controller

The trajectory-following controller, TF, was developed by Conte, Merz and
Duranti [13] for flying paths generated by the path planner. A path pro-
duced by the PRM and RRT planners consists of a series of path segments,
where each segment is a parameterized curve produced by the local path
planner. These segments are fed to the controller, one at a time, during
the execution of the plan.

When the controller initiates flight along a new path segment, it calcu-
lates the curve, τ , from the endpoints and their derivatives in the manner
described in the previous section. This results in the same curve that
was earlier generated by the local path planner during the PRM or RRT
planning process and it is therefore guaranteed to be collision free.

The different control channels of a helicopter are not independent, so an
input on one channel affects the dynamics in several dimensions. To deal
with this issue, the TF controller is divided into two layers. An inner loop
is used for decoupling the control channels of the helicopter and provides a

78 System Integration

•
A

?
1↓ 88

+
2↑ &

2↓
#

∗

•
B

• C

Figure 7.2: Illustration of segment switching when flying along a multi-
segmented path.

simpler interface with independent control channels, while the outer loop
determines the proper accelerations for these channels in order to track the
path. The tracking of the path is performed by a position controller that
operates in the plane orthogonal to the path, and the progress along the
path is controlled by a velocity controller that has the helicopter flying at
the requested speed where possible. For sections of the path with too large
curvature for tracking at the requested speed, the controller automatically
reduces the speed to stay within the acceleration limits of the helicopter.

That the different constraints are satisfied is only guaranteed as long as
the helicopter stays within segments it has received from the path planner.
Therefore, it is crucial that the next path segment is available when the
helicopter approaches the end-point of a segment. For this reason, the con-
troller requests a new segment when it approaches the point after which it
is impossible to stop within the current segment. The interaction with the
controller is illustrated in figure 7.2. The calling TP initiates flight along
the path by sending the AB segment to the controller at 1↓. The point
after which the helicopter will not be able to stop before B is marked with
∗ in the figure. When the helicopter approaches this point, the controller
sends a request for a new path segment to the TP at 2↑, and the TP re-
sponds by sending down the next segment, BC, at 2↓. If no new segment
is available at ∗, the controller will initiate an emergency break at that
point, and stop before leaving the AB segment. This interaction between
the controller and the calling TP is repeated for each segment of the path.
When the last segment is sent to the controller, it will be marked with an
end velocity, vend = 0, which indicates that the controller will stop at the

7.2 Local Path Planning and Control 79

endpoint and go into hover mode instead of requesting further segments.

7.2.3 Proportional Navigation

Originally, the path planner was designed to be used in conjunction with
a proportional-navigation controller, PN. The PN controller was primarily
designed for intercepting moving targets and being able to switch targets
rapidly. When used with the path planner, the PN controller is given
the waypoints along the path one at a time. The flight along the path is
initiated by having the helicopter fly towards the first waypoint and when
that waypoint is reached, the controller is commanded to switch to the
next one.

The curves traveled with the PN controller have been shown to be
approximately of the form of a cubic polynomial curve3. However, this ap-
proximation is only valid when the angle between the direction of flight and
the direction to the next node is small. Thus, the local path planner cor-
responding to this controller is limited to connect paths to waypoints that
are within a 45◦ angle from the current direction of flight. In section 9.4,
we will see that this limitation has different effects on the two methods
for handling motion constraints that were described in section 5.2. While
the PRM algorithm with nodes in the state space suffers from a reduced
efficiency, the multi-level path planning algorithm is hardly affected by this
restriction.

A more serious problem with using this controller for flight along paths
from the path planner is that it is very sensitive to perturbations, e.g.,
from wind. This is not very surprising since the PN controller is designed
to fly towards a point, rather than following a specified curve. If the
helicopter drifts during flight, the PN controller will make no effort to
return to any particular flight path, but instead finds a new best trajectory
from the current point. This behavior is problematic when flying in an
environment with obstacles since only the path received from the path
planner is guaranteed to be collision free. It can also be compared with

3The curve form differs from the one in section 7.2.1 in that parameterization is linear
along a vector from the start to the goal point, and that it is only 2-dimensional in the
horizontal plane; the altitude control is handled separately.

80 System Integration

the operation of the TF controller, which actively attempts to stay on the
specified path.

A more thorough discussion of the use of the path planner in conjunc-
tion with the PN controller is given in [43].

7.3 Plan Execution

We have now looked at all the different components involved in flight with
the path planner, and we will turn to how they interact to make the heli-
copter move from one location to another. In figure 7.3, we see the com-
ponents used for flying to a point and how the information flows between
them. The process is initiated by a call to the NavToPoint TP, which calls
the path planner with the current position and the goal position, together
with any additional constraints. The path planner produces a path, which
is sent to the Fly3D TP. Fly3D handles the flight along the path by send-
ing the path segments to the controller in the manner that was described
in section 7.2.2. It is also responsible for handling hover points in the path
that may occur when using multi-level nonholonomic constraint handling.
This includes sending an appropriate yaw command at the end of the first
path segment after having achieved stable hover, and initiating flight along
the next segment when the yaw motion is completed.

As a more complex example, we will consider the following task: We
have an area with a number of buildings, and we would like to have a
picture of each of the facades of the buildings. This type of scenario has
several realistic applications. The pictures could for instance be used as
textures for creating a 3D model of an environment for use in a virtual
reality system. In such a scenario, the use of a UAV could be required to
get good camera angles for difficult parts of the building that is perhaps
not reachable without flying, e.g. roofs. Another similar application could
be visual safety inspections of structures such as bridges or large factory
plants, where many areas can be hard to reach on foot.

The different components of the system involved in this type of mission
are shown in figure 7.4. In this case, the execution is initiated in the
Photogrammetry TP, which is responsible for taking a picture of each

7.3 Plan Execution 81

Deliberative
Services

Path Planner

Task
Procedures

NavToPoint

Fly3D

Control
System
Interface

Helicopter
Control

Plan

��

Endpoints
Constraints

LL

Plan

��

Plan
Segments

��

��
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

���
�

�
�

�� _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ��

��
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

���
�
�
�
�
�
�
�
�

�

�
�
�
�
�
�
�
�
�

�
�� _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ��

��
_ _ _ _ _ _ _ _ _ _ _ _ _ _

���

�

�

�
�� _ _ _ _ _ _ _ _ _ _ _ _ _ _ ��

Figure 7.3: The major system components for flight to a point.

82 System Integration

Deliberative
Services

Path Planner GIS

Task
Procedures

DoAtPoints
Photo-

grammetry

Fly3D LookAt

Control
System
Interface

Helicopter
Control

Camera
Control

yes/no

11

Potential
Viewpoints

pp

Plan

��

Points
Constraints

LL

View-
points

��

Building
Names

LL

Pointsoo

Plan

��

Points

$$JJJJJJJJJJJJJJJJJJJJJJJJJJJJ

Plan
Segments

��

Camera
Commands

��

��
_ _

���
�

�
�

�� _ ��

��
_ _

���
�
�
�
�
�
�
�
�
�

�

�
�
�
�
�
�
�
�
�
�

�
�� _ ��

��
_ _

���

�

�

�
�� _ ��

Figure 7.4: The major system components for photographing buildings

7.3 Plan Execution 83

facade on a number of buildings. To perform this task it uses the onboard
GIS service to locate appropriate camera viewpoints for each facade. The
viewpoints are found by testing points in a conical search pattern, starting
with the optimal viewpoint in front of the facade, and continuing outwards
with points of different distance, elevation, and azimuth from the center of
the facade. For each point a visibility test is performed by the GIS service
to ensure that the complete facade is visible. The helicopter must also be
able to reach the position, which is determined by a query to the path
planner. The path planner resolves the query by checking that the point
does not fall within the safety margin around obstacles or violate any other
path planning constraint. The first point that satisfies both the visibility
requirement and all path planner constraints, is used for taking a picture
of the facade.

The flight between the points is managed by the DoAtPoints TP, which
is a general TP for performing a task on a set of locations. In this case,
DoAtPoints is called upon for flying to each viewpoint and taking a pic-
ture of the corresponding facade. The points are reordered in an optimal
sequence by the path planner, and a plan is generated from the sequence of
points. Each sub-path between two viewpoints is executed with the Fly3D
TP in the same manner as in the previous example. At each viewpoint,
DoAtPoints starts an instance of the LookAt TP, which points the camera
to the facade corresponding to the current viewpoint. When the LookAt
TP reports that the camera has locked on the requested point and a pic-
ture has been captured, DoAtPoints can continue with the flight to the
next viewpoint.

84 System Integration

Part III

85

Chapter 8

Flight Tests with the

Helicopter

An important goal of this thesis has been to show how a path planner
can be developed for practical use with an autonomous helicopter. The
integration of the path planning framework developed in chapter 5 with
the WITAS UAV platform was described in the previous chapter. In this
chapter, an account is given of some of the flight tests that have been
performed successfully with the PRM planner. The examples are chosen to
illuminate the different capabilities of the planner and how a path planner
can be used onboard an autonomous helicopter for real world missions.

8.1 Interactive Camera Positioning

A robot equipped with a path planner can be used for operation at dif-
ferent levels of autonomy. In this first mission, we will see how the path
planner can be used in an interactive UAV system, where the operator
is mainly interested in getting images from a number of locations. For
such applications, the paths taken by the helicopter are of minor interest
to the operator, whose main interest is positioning the helicopter at good
viewpoints. With a path planner integrated in the system, the operator is
freed from the tedious task of specifying each intermediary waypoint in or-

87

88 Flight Tests with the Helicopter

Figure 8.1: An interactive mission visiting a number of locations in the
flight-test area in Revinge. The planned paths are white and the logged
data from the flight is black.

der to produce safe paths for the helicopter between the points of interest.
Instead, the operator only needs to point to the appropriate location on a
map, and the UAV can find suitable paths by itself. This greatly improves
the ease of use of the UAV system for these types of missions.

Figure 8.1 depicts a series of paths from such an interactive mission.
Both the planned paths (white) and the logged data from the flight (black)
are shown. The UAV starts from home base and flies to building 1, where
it is instructed to point the camera at the opening of a garage located in
the building. After having captured a video sequence of the garage, the
ground operator decides to continue the flight to a junk yard to gather
additional data. Before returning to home base, the operator commands
the UAV to fly to a point on the other side of a nearby building. In all these
cases, the helicopter dynamically finds a collision-free flight path, which is
shown to the operator while the helicopter is hovering autonomously. The
helicopter then waits for an acknowledgement from the operator, before it
initiates the flight along the path.

8.2 Use of Runtime Constraints 89

(a) Without no-fly zone (b) With no-fly zone (black rect-
angle)

Figure 8.2: Autonomous flight between two points where the path planner
first suggests a path over a building, which the operator then explicitly
forbids by introducing a no-fly zone (black rectangle). The plans are shown
in white overlapping the logged flight paths in black.

8.2 Use of Runtime Constraints

Runtime constraints were introduced in section 5.3 as a way of improving
the flexibility of the PRM planner. A flight test that demonstrates this
capability is shown in figure 8.2, where an additional constraint is imposed
with the helicopter already flying. In this flight test, the helicopter is asked
to fly from a point in the upper right of figure 8.2(a), down behind a house
in the middle of the picture. The plan (white) is displayed to the operator,
and after approval, the helicopter flies over the house to the goal position
(logged flight-path shown in black). The operator might disapprove of the
path above the house for various reasons, and can in such cases mark a no-
fly zone covering the building (figure 8.2(b)). The no-fly zone is handled
by excluding edges that violate this constraint during the graph search in
the way described in section 5.3. The resulting flight path is shown in
figure 8.2(b).

90 Flight Tests with the Helicopter

Figure 8.3: Autonomous survey mission to two buildings, which are pho-
tographed from each side.

This functionality has also proved useful in practice during the flight
tests with the helicopter. One example of this is that we for safety reasons
want to avoid having the helicopter flying over the truck containing the
ground station. This can be accomplished by putting a no-fly zone over
the truck.

8.3 Photogrammetry

A third flight test that has been performed with the helicopter is a mission
where the helicopter captures a series of images of each facade from a
number of buildings.

In contrast to the two previous flight tests, this mission is performed
fully autonomously by the helicopter, without human intervention after the
initiation of the flight. The planned path (white) and the path flown by the
helicopter (black) are shown in figure 8.3. The helicopter again starts from
a hover over the home base and a number of buildings are selected by the
operator. For each of the facades of the selected buildings, the GIS service
finds suitable positions and camera angles for taking the pictures, and the
path planner generates a path that visits all of the viewpoints. The plan is

8.3 Photogrammetry 91

displayed for the operator, and after confirmation, the plan is executed by
the helicopter. The helicopter flies from viewpoint to viewpoint, stopping
at each one of them, and takes a picture when the helicopter and camera
is aligned properly.

92 Flight Tests with the Helicopter

Chapter 9

Comparisons between Path

Planning Algorithms

This chapter contains a series of empirical investigations of the perfor-
mance of the PRM and RRT algorithms together with the extensions and
adaptations of the algorithms that were presented in chapter 5. The eval-
uation focuses on performance issues such as completeness, speed and the
length of planned paths.

First, the methodology that has been used for the tests is presented,
and then a comparison follows on how the PRM and RRT algorithms
perform according to various measures. The next two sections discuss the
impact of runtime constraints and the efficiency of the two methods for
handling motion constraints that were described in chapter 5.

9.1 Method

9.1.1 World models

As described in section 6.1, the main flight-test area used in the WITAS
project is a training area for rescue workers in Revinge. From the 3D
model representing this area, two different test environments have been
derived in order to investigate how the planning algorithms perform under

93

94 Comparisons between Path Planning Algorithms

Figure 9.1: The primary flight test area in Revinge.

different conditions.

The first of the environments consists of the eastern part of the training
field, and is the location of all the flight tests done in Revinge. This area is
relatively open, and a number of buildings, trees, masts, and lampposts are
the major obstacles (see figure 9.1). This test environment will be referred
to as the open area.

This first area consists mostly of open areas, and is therefore less chal-
lenging for modern path planning algorithms. Many applications of future
UAVs will be performed in complex environments such as urban areas with
many large buildings and other obstacles. This makes it interesting to see
how the planners perform under such circumstances. For these tests, such
an environment was emulated by a geometric scaling of the western part
of the Revinge training facilities. This area contains a large number of
low, one-story buildings separated by narrow roads. The buildings (to-
gether with other objects) were scaled 20 times vertically to produce the
city-like environment shown in figure 9.2. This environment will be called
the cityscape. For this environment the normal 8 meter1 padding of the
obstacles was reduced to 4 meters in order to make it possible to find paths
between buildings. This has an effect similar to a uniform scaling of the
environment by two, which was done to produce an interesting environ-

1The padding consists of a 6 meter safety margin and the 2 meter radius of the
helicopter as explained in chapter 6.1.

9.1 Method 95

Figure 9.2: The scaled houses forming the cityscape environment.

ment where good planners can find paths between buildings while worse
planners cannot.

9.1.2 Implementations

The performance of the different path planning algorithms is influenced
by many aspects of the particular implementations. For that reason, an
account of some of the choices made in the implementations is given in
this section, together with some arguments for ruling out certain sources
of error in the comparison. However, large parts of the implementation
of the different planners are identical and the results are mostly based on
relative performance. Thus implementational details have only a minor
influence on most of the results in the following sections.

PRM: Roadmap Generation

The roadmap-construction algorithm (algorithm 4.1.1) is implemented in
Java and is adapted for a directed graph, as described in section 5.2.1, for
use with the local planner of the helicopter.

The nodes are generated randomly with a uniform distribution within
the areas described above. Each added node is connected to the 30 first
other nodes found that are within 50 m and to which a connection can

96 Comparisons between Path Planning Algorithms

be made. The roadmap graph is represented as a list2 of nodes and a list
of edges, where each node keeps a list of out-bound edges, and each edge
holds a start and end node.

PRM: Runtime Planner

The PRM runtime planner is also implemented in Java. The graph search
is performed with the A* algorithm and is implemented with the heap data
structure from the XXL-library3.

RRT planner

The RRT planner is implemented in Scheme and is compiled to Java byte
code with Kawa4. Only the higher levels of the algorithm are implemented
in Scheme while the lower-level data types e.g. vectors etc. and the col-
lision checker are the same Java implementations that are used with the
PRM planner. The choice of programming language has only a small in-
fluence on the time measurements since most of the time is spent doing
collision checking. Profiling of the program shows that the time spent in
collision checking for the RRT algorithm is around 70–75%. For other
measurements the choice of programming language has no influence what-
soever.

For the tests with the RRT planner, the expansion step was set to
d = 30 m, and the search was terminated after 500 iterations.

Collision Checker

The collision checker used for the tests is a Java implementation of the
OBBTree algorithm described in section 6.2.

2All Java lists are of the type java.util.ArrayList
3http://www.xxl-library.de
4http://www.gnu.org/software/kawa

9.1 Method 97

9.1.3 Test Setup

All tests, except where explicitly noted, were made by generating 500
collision-free points in each of the two environments. These points were
used directly for the coverage measure, and used pair-wise for the other
tests of the planners, giving 250 test instances for success rate, planning
time, and path length measurements. The same points were used for all
different planner variations in each environment.

Each test case is specified by a number of parameters:

Planner The type of planner: PRM or RRT.

Model The environment in which the tests were run: open area or
cityscape.

Controller The type of controller for which the plan is generated: ei-
ther the trajectory-following controller, TF, or the proportional-
navigation controller, PN. The TF controller has been used in all
of the following tests, except where explicitly noted.

Motion constraint approach The method for handling motion con-
straints: either the state-space approach or the multi-level approach.
The state-space approach has been used in all of the following tests,
except where explicitly noted.

Nodes The number of nodes in the roadmap for a PRM planner.

For each of the test cases the following measurements were made:

Success Rate The percentage of pairs of points for which the planner
succeeded in finding a solution.

Planning Time The time for planning in the online phase. This was
measured taking the value of the system time before and after the
call to the planner. To equalize for the effect of the garbage collector,
the Java virtual machine was started with an incremental garbage
collector.

98 Comparisons between Path Planning Algorithms

Path Length The path length was measured numerically by approximat-
ing each curve segment of the path by 10 linear segments. This mea-
surement was taken after applying the smoothing operations and
curve replacements.

Roadmap Creation Time The time to create the roadmap.

Roadmap Coverage The percentage of the configuration space that is
directly reachable from the roadmap by one application of the local
planner. The coverage was measured by taking 500 free points and
count the percentage of these that can be connected to the roadmap.

When comparing the planning time and path lengths for different plan-
ners, only plans where all planners in the specific comparison succeeded
are included. This is done to remove the effect of different success rates
for different planners in cases where the planners perform differently for
success and failure. The failure behavior is analyzed separately.

All the tests were done on a PC with an AMD Athlon XP 1800 pro-
cessor and 512 MB of memory, running Linux.

9.2 Comparisons between PRM and RRT

This section compares the performance of the PRM planner with different
roadmap sizes and the RRT planner. In all these tests the local planner
corresponding to the TF controller is used and the motion constraints are
handled with the state-space approach. The choice of local planner and
the method for handling motion constraints have little importance for the
comparisons in this section and are discussed separately in section 9.4.

9.2.1 Completeness

In table 9.1, we see that the success rate of the PRM planner gradually
increases when the number of nodes goes up, before it saturates at a high
level. In the open area, already a small roadmap provides enough coverage
for successful planning with the PRM planner. The RRT planner also
performs well with a 100% success rate.

9.2 Comparisons between PRM and RRT 99

planner nodes open area cityscape edges in cityscape

PRM 100 25% 17% 241
PRM 250 93% 71% 1808
PRM 500 100% 83% 6674
PRM 1000 100% 84% 26435
PRM 2000 100% 87% 76898
PRM 3000 100% 88% 130091
RRT - 100% 52% -

Table 9.1: Comparison of the success rates of a PRM based planner with
some different size of roadmaps and an RRT planner in the different test
environments.

In the cityscape, the performance is worse, but the PRM planner still
performs well given a sufficiently large roadmap. The fact that the PRM
planner does not come closer to 100% is surprising, given that the cover-
age of the roadmap was measured to 98.0% for the 3000-node roadmap.
This can be attributed to small isolated regions of the environment where
collision-free nodes can be located that are unreachable or very hard to
reach from other parts of the environment. Such nodes contribute to the
coverage since they can be connected to nodes sampled in these regions,
but the planner still fails to find plans to these regions since they are not
connected to the rest of the roadmap. In an environment of this difficulty,
the RRT planner is too weak for practical use with a success rate of only
52%.

One further interesting point can be surmised from the table. Com-
paring the number of nodes used by the RRT planner with the different
roadmaps used with the PRM planner, we see that the RRT planner, using
a cut-off value of 500, performs much worse than the PRM planner with
a 500-node roadmap. However, the tree constructed by the RRT planner
only uses a maximum of 500 edges which falls somewhere between the 100
and 250 node roadmaps, and closer to the 100 node roadmap. This in-
dicates that the RRT planner makes good use of the knowledge of start
and goal point when constructing the trees, and that it does have a more
efficient method for covering the environment.

100 Comparisons between Path Planning Algorithms

planner nodes roadmap-time (s) online-time (ms)

PRM 100 1.00 *
PRM 250 6.50 52
PRM 500 21.89 108
PRM 1000 75.64 193
PRM 2000 249.96 407
PRM 3000 532.28 601
RRT - - 660

Table 9.2: Comparison of the mean planning time in the cityscape for the
PRM and RRT planners, and the time for constructing the roadmaps for
the PRM planner. Only planners with more than a 50 % success-rate are
included in the comparison on planning times, and only plans where all
these planners succeeded are included in the numbers above. Planners that
failed in more than half the cases are marked with * above.

9.2.2 Planning Time

The mean planning times in the cityscape are shown in table 9.2. As can
be seen, the PRM planner is faster than the RRT planner, especially with
smaller roadmaps, but even for the large 3000-node roadmap, the difference
is significant. However, it is important to remember that the RRT planner
operates without the use of a precompiled roadmap, which explains the
longer planning times, but also makes the RRT planner more flexible in
use. It is possible to compile the roadmap for the PRM planner in the
online phase and get the same flexibility as the RRT planner. However,
for such a planner we see that the roadmap construction time together
with the online planning time is much longer than the planning time for
the RRT planner, if we want to ensure the same success rate (more than
250 nodes according to table 9.1).

The variance of the planning times is also of interest, and is shown in
figure 9.3. The difference between the collected distributions of the PRM
planner and the wider distribution of the RRT planner is striking, with
the RRT planner often being faster than the PRM planners, even if the
mean planning time was shown to be longer above. The reason for this

9.2 Comparisons between PRM and RRT 101

P
la

n
n
in

g
ti
m

e
(m

s)

PRM
500

PRM
1000

PRM
2000

PRM
3000

RRT

10000

1000

100

10

1

Figure 9.3: Comparison of the planning times in the cityscape environment
for the PRM planner with various roadmap sizes and an RRT planner.
Only planning times for plans where all planners succeeded are included.

discrepancy is of course the poor worst-case performance, which is more
than ten times slower than the PRM planner with a 500-node roadmap.

In the open area, the situation is quite different as can be seen in
figure 9.4. Here the RRT planner performs much better and is comparable
in planning time to the PRM planner with a 250-node roadmap. Even
though the variance of the RRT planner is still larger5 than for the PRM
planner, it is much more acceptable in this, simpler environment.

For a better view of the planning time distributions for the PRM and
RRT planners, histograms over the distributions are shown in figure 9.5
and 9.6. Comparing the cases where the planners succeed (full outline),
we see some differences between the planners. The RRT planner is very
fast in many instances; many of the plans in the leftmost box are actually
done under 100 ms which cannot be seen in the diagram due to the low
resolution, but for other cases the RRT planner may need several seconds
to find a plan. The PRM planner, on the other hand, has a more collected
distribution.

5The variance downwards for the PRM planners, towards shorter times cannot be
considered a drawback.

102 Comparisons between Path Planning Algorithms

P
la

n
n
in

g
ti
m

e
(m

s)

PRM
250

PRM
500

PRM
1000

PRM
2000

PRM
3000

RRT

10000

1000

100

10

1

Figure 9.4: Comparison of planning times for the PRM planner with var-
ious roadmaps and a RRT planner in the open area. Only planning times
for plans where all planners succeeded are included.

Planning time (ms)

S
u
ce

ss
fu

l
p
la

n
s

300250200150100500

40
35
30
25
20
15
10
5
0

Figure 9.5: Histogram showing the number of successful plans (of totally
250 plans) taking different amounts of planning time for the PRM planner
with a 500-node roadmap in the cityscape. The solid-line boxes show
successful plans, while the dashed-line boxes show failed plans.

9.2 Comparisons between PRM and RRT 103

Planning time (ms)

S
u
ce

ss
fu

l
p
la

n
s

1000080006000400020000

90
80
70
60
50
40
30
20
10
0

Figure 9.6: Histogram showing the number of successful plans (of totally
250 plans) taking different amounts of planning time for the RRT planner
in the cityscape. The solid-line boxes show successful plans, while the
dashed-line boxes show failed plans.

Looking at the cases where the planners fail (dashed lines in diagram 9.5
and 9.6) an interesting pattern emerges. While the PRM planner’s failure
distribution follows the distribution of the successful plans, it takes much
more time for the RRT planner to report a failure. This is due to the
difference in the basic layout of the algorithms. The PRM algorithm can
fail both in the initial connection of the starting point to the roadmap,
and when trying to connect nodes reached during graph search to the
goal configuration. The RRT planner on the other hand fails only if it is
unable to connect the two trees, something that only happens when the
maximum number of iterations is reached and the search is terminated.
The maximum planning time before failure for the RRT algorithm can be
brought down by decreasing the cut-off value. However, there is a trade-off
between low maximum planning time and high success rate, since a lower
cut-off value means that the planner will fail also in some cases where a
plan could be found with a higher cut-off value.

104 Comparisons between Path Planning Algorithms

Nodes

P
at

h
le

n
gt

h
(m

)

300025002000150010005000

380

360

340

320

300

280

260

Figure 9.7: The mean length of the solution paths from the PRM planner
with different roadmaps in the cityscape (after smoothing).

A

B

C

√
12+0.452≈1.1

mmmmmmmmmmmmmmmmm

0.45

QQQQQQQQQQQQQQQQQ

1

Figure 9.8: The path from A to B to C is approximately 10% longer than
the straight line path directly from A to C.

9.2.3 Path Length

Figure 9.7 shows how the mean length of the solution paths from the
PRM planner depends on the roadmap size. As can be seen the mean
path length decreases as the number of nodes in the roadmap goes up.
A decrease from around 290 m for the 500 node roadmap to 265 m for
the 3000 node roadmap may not seem significant, but unlike the planning
time, where 10% extra time would hardly be noticed by the operator, a
10% longer path implies a large detour as can be seen in the simplified
example in figure 9.8. The difference is of course even larger for the 250-
node roadmap. This indicates that it is often useful to increase the density
of the roadmap, to achieve higher quality solutions, even if the success rate

9.2 Comparisons between PRM and RRT 105

Path length – PRM (m)

P
at

h
le

n
gt

h
–

R
R
T

(m
)

8007006005004003002001000

900
800
700
600
500
400
300
200
100

0

Figure 9.9: A scatter plot relating path lengths for an RRT planner against
a PRM planner with 2000 nodes in the cityscape.

does not increase further.

The mean path length for the RRT planner at the same set of problems
is 313 m, which is worse than the PRM planner in all cases except for the
small 250-nodes roadmap. This is especially true in comparison to the
PRM planner with large roadmaps with 2000 or 3000 nodes. The main
reason for the difference is not so much that the RRT planner is consistently
worse than the PRM planner, but rather that it is occasionally much worse.
This can be seen more easily in the scatter plot in figure 9.9 where the
path lengths from the RRT planner are related to the path lengths from
the PRM planner with a 2000 node roadmap. This diagram shows that
the two planners produce paths of approximately the same lengths in most
instances, and it is just in a small number of cases that the RRT planner
performs worse. However, the differences for these few, longer plans are
very large, from around 50 % up to 100 % of the length of the corresponding
paths from the PRM planner. As was the case with the planning time, we
again see that even if the RRT planner often shows good performance, it
is less consistent.

Also in the open area, an increased number of nodes in the roadmap
results in shorter path lengths which is shown in figure 9.10. Just as with

106 Comparisons between Path Planning Algorithms

Nodes

P
at

h
le

n
gt

h
(m

)

300025002000150010005000

235
230
225
220
215
210
205
200
195

Figure 9.10: The mean length of the solution paths from the PRM planner
with different roadmaps in the open area (after smoothing).

the planning time, the RRT planner performs relatively better in the open
area, with a mean path length of 212 m, which is better than the smaller
roadmaps and just slightly worse than the larger ones.

Looking at figure 9.11, we see that the problem of occasional bad plans
remains in this environment, but that it occurs with less frequency.

9.2.4 Discussion

The choice between the PRM and RRT algorithms is largely determined
by the complexity of the environment and to what degree the environment
and other constraints are known in advance. The PRM algorithm per-
forms better than the RRT algorithm in most situations if equipped with
a suitable precompiled roadmap. Thus the preparatory phase, where the
roadmap is generated, does pay off if the environment is known in advance.
However, the difference between the algorithms is not that large in all cases
so other factors may also be of importance.

For the open area, both the PRM and the RRT planners perform well,
and even if the PRM planner is slightly better, the RRT planner can proba-
bly be considered good enough for practical use in this type of environment.

9.2 Comparisons between PRM and RRT 107

Path length – PRM (m)

P
at

h
le

n
gt

h
–

R
R
T

(m
)

7006005004003002001000

900
800
700
600
500
400
300
200
100

0

Figure 9.11: A scatter plot relating path lengths for an RRT planner
against a PRM planner with 2000 nodes in the open area.

The RRT planner might therefore be the better choice since it does not
require any precompiled data structures, which gives it a higher degree
of flexibility. The only problematic thing with the RRT planner in this
environment is that it occasionally generates bad plans. For some types
of robots, execution time is not so critical and it is not a problem if the
robot takes a small detour from time to time, but for UAVs, it is generally
unacceptable since flight time is often expensive. It may be possible to
reduce this problem by tuning the RRT algorithm, e.g., by making more
than one call to the planner and taking the best solution.

In the more complex cityscape, the RRT planner fails to find a plan in
many cases, while the PRM planner performs well with sufficiently large
roadmaps. In this type of environment, some type of precompiled data
structures may be necessary to solve the problem efficiently and the PRM
planner would probably be a better choice.

If the planner needs to operate under real-time constraints, it is impor-
tant that the planning time is predictable. In the comparison on planning
times in section 9.2.2, we saw that the PRM planner has a more collected
distribution of planning times, which is an advantage under such con-
straints. The RRT planner, on the other hand, has a somewhat unstable

108 Comparisons between Path Planning Algorithms

Without constraint With constraint Increase

Unaffected plans 216 ms 240 ms 11 %
Affected plans 275 ms 369 ms 34 %

Table 9.3: Planning times with and without runtime constraints.

performance. In many cases it finds relatively good plans in a short time,
but from time to time, the planner takes much longer to find a plan, if it
finds one at all. The most natural adaption of the RRT planner for use
in a real-time system is to limit the tree-expansion in time rather than in
number of iterations. This would lead to occasional failures but the same
is true for any heuristic algorithm, including the PRM algorithm. Thus,
there must always exist a backup plan that can be used if no plan is found,
e.g., an escape trajectory that brings the UAV to a safe state.

9.3 PRM with Runtime Constraints

The addition of runtime constraints to the PRM planner was made in order
to increase the flexibility of the planner for real world applications. For
this extension to be useful in practice, it is necessary that the addition
of runtime constraints does not produce a large overhead on the runtime
planning process. In this section we will investigate the magnitude of
this overhead. We will also see to what extent it is possible to repair the
roadmap if the runtime constraints break the roadmap connectivity.

9.3.1 Timing Tests

In order to investigate the overhead involved in testing constraints in the
runtime phase of the PRM planner, a test was made with a no-fly zone
covering a 100 m× 100 m area in the middle of the open area. A roadmap
with 500 nodes was used and the test was made with the TF controller.
The results of the tests were divided into two categories depending on
if the plans were affected by the no-fly zone or not and the results are
shown in table 9.3. We see that the addition of the no-fly zone gives a
negligible increase in planning cost for plans outside the area occupied

9.3 PRM with Runtime Constraints 109

Nodes
250 2000

Zones
2 77→ 95 96→ 96

10 79→ 96 97→ 97
50 11→ 37 41→ 50

Table 9.4: The improved success rate with RRT reconnection, with differ-
ent number of no-fly zones and roadmaps of different sizes. The numbers
to the left of the arrows indicate the success rate for the standard PRM
algorithm, while the number to the right is the success rate with RRT
reconnection.

by the no-fly zone. For plans that are affected by the no-fly zone, the
difference in planning time remains small. This shows that this method of
adding runtime constraints to the PRM algorithm is viable for increasing
the flexibility of the planner in cases where the extra constraints can be
evaluated quickly.

9.3.2 Repairing Broken Roadmap Connectivity

Adding constraints to a path planning problem may break the connectiv-
ity of the roadmap. To handle this, an optional reconnection attempt was
introduced in section 5.3.3 for the query phase of the PRM planner. This
extra procedure is called in the case of failure of the graph search and
attempts to connect the disconnected graph components with the RRT-
Connect planner.

The improvement induced by this RRT-connection step was tested by
adding randomly located no-fly zones in the open area. The no-fly zones
were constructed by picking a random location, p, within the flight-test
area and sampling three random vertices within a 100 m × 100 m square
centered at p. Each set of three vertices was then used to form a triangular
no-fly zone. The test was performed with 2, 10 and 50 no-fly zones and
roadmaps of 250 and 2000 nodes, and the PRM planner was tested with
and without the RRT-connection step on 100 pairs of configurations.

The results of the tests are shown in table 9.4, where the number of

110 Comparisons between Path Planning Algorithms

successes with the standard PRM algorithm is shown to the left of the
arrow, and the number of successes with the additional RRT-connection
step is shown to the right.

The table shows that for large roadmaps, a small number of no-fly
zones have no effect on the connectivity of the roadmap and the RRT-
connection step is never needed. For small, sparse roadmaps, on the other
hand, the extra RRT-connection attempt is very helpful, and we get almost
the same success rate as with the large 2000 node roadmap. However, it
should be noted that a large roadmap is also preferable for improving the
path quality, as was shown earlier in this chapter.

For difficult problems, the connectivity starts to break down also for
the larger roadmap, and the RRT-connection attempt has a positive effect.
The planner performs significantly better with the larger roadmap also in
this case, which indicates that the remaining parts of the larger roadmap
are still of good use.

9.4 Approaches for Handling Motion Constraints

In chapter 5, two ways were described for handling nonholonomic motion
constraints within the PRM method: the state-space approach and the
multi-level approach. In this section, it is shown that the multi-level ap-
proach is more efficient under certain circumstances, specifically when used
with the more restricted proportional navigation controller (PN).

We will focus on the success rate and the planning time for which
there are significant differences; the lengths of the plans are approximately
the same for the two methods. The main drawback of the multi-level
approach when used with an autonomous helicopter is that sharp corners
may remain in the final path, where the helicopter must stop into hover
before it continues in the direction of the following segment. In the last
subsection, we will look at how often this happens.

9.4.1 Roadmap Size

With the multi-level approach, straight-line edges are used throughout the
planning process, except for the final smoothing and curve replacement

9.4 Approaches for Handling Motion Constraints 111

Multi-level
TF
PN

Number of nodes

S
u
cc

es
s

ra
te

100001000100

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

Figure 9.12: Success rate for roadmaps of different size in the cityscape.
The graph is similar for the open area.

step. This means that the success rate of the planner is independent of
the curve form of the final path. The success rate with the straight-line
roadmap of the multi-level approach is shown in figure 9.12 together with
the success rate for roadmaps constructed for the TF and PN controllers.
As can be seen in the diagram, a much larger number of nodes is required to
achieve a good success rate when the curves for the PN controller is used
in the roadmap. This is a result of the lower probability of connecting
two random nodes under the restrictions of this controller. The roadmaps
with the general cubic curves used for the TF controller and the roadmaps
with linear paths both reach an acceptable performance at approximately
500 nodes.

Due to the increased difficulty of connecting nodes with the PN curve,
the corresponding roadmaps have fewer edges for a certain number of nodes
compared to the other two types of curves. Thus, the number of nodes is
not a good measure for roadmap size when comparing PN roadmaps with
roadmaps generated with the other two curve types. Instead, the mea-
sure must incorporate the memory usage for both nodes and edges. Each
node contains the three position coordinates for the helicopter configura-
tion which requires 12 bytes if floats are used. For roadmaps in the state

112 Comparisons between Path Planning Algorithms

Multi-level
TF
PN

Success rate

R
oa

d
m

ap
si

ze
(k

B
)

10.80.60.40.20

1000

100

10

1

Figure 9.13: Roadmap size required to reach a certain success rate in the
cityscape. Each point represent the size and success rate for a roadmap
with a certain number of nodes.

space, an additional 12 bytes are required giving the node a total size of
24 bytes. Outgoing edges from a node can be represented as a sequence
of pointers to their destinations, which requires 4 bytes per edge. The
real implementation of the graph data structure requires more memory
due to software abstractions, but this measure can still serve as a reason-
able approximation for the relative memory consumptions of the different
roadmaps. The sizes of the roadmaps required to reach a certain success
rate for the different local path planners is depicted in figure 9.13. We see
here that the roadmap with local paths matching the PN controller will
take approximately twice as much memory as the other two roadmaps.

9.4.2 Planning Time

The planning times for the two approaches also differ significantly when
generating paths for the PN controller. In figure 9.14, we see that the
state-space approach requires a planning time that is around thrice that
of the multi-level algorithm, to achieve the same success-rate. With the
TF controller, the situation is quite different, as can be seen in figure 9.15.
Here the difference between the state-space and the multi-level method is

9.4 Approaches for Handling Motion Constraints 113

Multi-level
State-space

Success rate

P
la

n
n
in

g
ti
m

e
(m

s)

0.90.850.80.75

1000
900
800
700
600
500
400
300
200

Figure 9.14: Illustration of the required planning time for achieving a cer-
tain success rate with the PN controller and the two methods for handling
motion constraints. Each point represents the size and success rate for
a roadmap with a certain number of nodes. The results are from the
cityscape environment.

Multi-level
State-space

Success rate

P
la

n
n
in

g
ti
m

e
(m

s)

0.90.850.80.750.7

800

700

600

500

400

300

200

100

Figure 9.15: Planning times required for different success rates for the TF
controller in the cityscape environment.

114 Comparisons between Path Planning Algorithms

Model Curve 0 1 2 >2

open area PN 96.4 % 2.0 % 1.6 % 0.0 %
open area TF 96.4 % 2.4 % 1.2 % 0.0 %
cityscape PN 75.2 % 5.2 % 7.2 % 0.4 %
cityscape TF 77.2 % 2.8 % 7.2 % 0.8 %

Table 9.5: Occurrences of sharp corners in the final plan with the multi-
level approach to nonholonomic constraints.

smaller, but the state-space method is still significantly slower when high
success rates are required.

9.4.3 Remaining Sharp Corners

The main drawback of the multi-level method is that the transformation
from a piecewise linear to a piecewise cubic path is not always completely
successful. If the transformation fails for two neighbouring edges, a sharp
corner remains in the path where the helicopter needs to stop and hover,
something that is clearly inefficient. In table 9.5 the percentages of paths
containing such sharp corners are presented. We see that in the open area,
which has been used for flight tests, corners are rare, and occur in less than
5 % of the paths.

In the cityscape, the sharp corners occur more frequently, which is to
be expected due the more complex environment with many more obstacles
that the helicopter must negotiate. However, for flight in such cramped
spaces, occasionally stopping and turning to new flight directions because
of nearby obstacles is more acceptable.

9.4.4 Discussion

Delaying the nonholonomic motion constraints until the runtime phase
makes it easier to connect nodes during roadmap construction. This makes
it possible to achieve good performance with smaller roadmaps also for the
more restricted PN controller. The TF controller is more powerful, which
makes the difference smaller between the state-space and multi-level ap-

9.4 Approaches for Handling Motion Constraints 115

proach for that controller. Thus, the multi-level approach is mostly inter-
esting for difficult planning problems, where a weaker local path planner
is used.

Besides increased efficiency, the curve-replacement method could also
be used to achieve a higher degree of flexibility in the runtime phase,
similarly to how runtime obstacle constraints are used. Since the curve re-
placement occurs at runtime, more information is available for determining
the curve form. This means that, e.g., requested velocity can be taken into
account for optimizing the curves.

There are however some disadvantages with delaying the motion con-
straints to the runtime phase. The time to perform the replacement could
be a problem if curve generation or collision checking is very expensive.
As we saw above, this is not a problem in this domain. Another problem
is that the curve replacement is not always successful. For some classes
of robots, e.g., locally controllable robots, the replacement is always pos-
sible, while for others, e.g., the helicopter, a small number of replacement
failures may be acceptable. However, for other types of robots, e.g., fixed-
wing airplanes, the transformation to a path that can be flown cannot be
guaranteed in general, and any replacement failure means that the path
is not traversable. One solution to this problem is to continue the graph
search for alternative routes if the curve replacement fails.

116 Comparisons between Path Planning Algorithms

Chapter 10

Conclusions

In this thesis, it has been shown how modern path planning algorithms
based on random sampling of the configuration space can be used with an
autonomous helicopter. In this concluding chapter a summary is given on
the major points that have been discussed. In each of these sections, some
interesting topics for future research are also presented.

In the first section the integration with the helicopter is discussed. The
following section contains a discussion on how constraints can be handled
at different stages of the planning process. The last section is on mission
planning, a topic that falls somewhat outside the scope of this thesis, but
nevertheless is an interesting direction for future research related to path
planning.

10.1 Integration with the Helicopter Platform

One of the major goals of this thesis work has been to investigate the
integration of a sampling-based path planner in a physical autonomous
helicopter. This involves many practical issues such as integration into the
system architecture and adaptations of the algorithms to the particular
helicopter platform and control system. The solutions to these issues were
presented in chapter 7.

Most important of these issues has been to make the path planner

117

118 Conclusions

produce paths that the helicopter can follow at a reasonable speed. To
achieve this goal, it is vital that the flight paths have a low degree of
curvature and contain no sharp corners where the helicopter has to stop.
Two methods to accomplish this were presented in section 5.2: building
the roadmap in the state space and using a multi-level approach. We
saw in section 9.4 that the multi-level approach is the more efficient one
when a weak local path planner is used and occasional stops are acceptable.
With the current, more versatile trajectory-following controller (TF), both
methods have comparable performance.

The PRM-based planner that was developed using these methods has
been tested on the WITAS UAV on numerous occasions, and three suc-
cessfully performed experiments are described in chapter 8.

The current implementation of the path planner has proved to pro-
duce paths of acceptable quality for the types of missions that have been
performed so far with the helicopter. However, there are a number of weak-
nesses with respect to optimization of the paths that should be addressed
in future work. The most important issues to address are improvements of
the local path planner for producing curves that are closer to optimal and
performing the graph search with other cost functions than path length,
e.g., flight time or fuel consumption.

10.2 Changing Constraints

The practical flight tests have shown the importance of a flexible path
planner that can adapt to the requirements of specific missions. With
single-query planners, e.g., RRT planners, such a flexibility is a natural
consequence of that the problem does not need to be specified until the
runtime phase. For PRM planners, the situation is more problematic due
to the reliance on precompiled roadmaps, which led to the development of
the runtime constraints capability described in section 5.3. A flight test
demonstrating the use of runtime constraints was described in section 8.2,
where the operator added a no-fly zone around a building at runtime.
Adding such a no-fly zone was shown to give only a small runtime overhead
in section 9.3.

10.2 Changing Constraints 119

Pruning edges from the graph during search solves only a part of the
problem with additional runtime constraints. Even if a certain roadmap
is appropriate for path planning in a specific environment, additional run-
time constraints may increase the difficulty of the problem and the original
roadmap connectivity may be broken. In order to extend the roadmap
in such cases, an RRT extension step was added to the PRM planner
in section 5.3.3. This addition was shown to produce a significant im-
provement in success rate for planning with difficult runtime constraints
in section 9.3.2.

Expanding the roadmap by using RRTs is also of great use when ob-
stacles disappear and new passages may be formed. If the removal of an
obstacle creates a passage between two parts of the configuration space
with disconnected roadmap components, the RRT-connection step can be
used to expand the roadmap so that a path can be found between those
two components.

At this point only a basic version of the RRT expansion is implemented,
which attempts to connect two roadmap components by extending trees
from two selected nodes. A more sophisticated algorithm, which also would
take plan quality into account, could be formulated by first performing a
bidirectional A* search from the start and goal configurations, and us-
ing these search trees as the initial trees for the RRT algorithm. Such a
strategy blends well with the A*-like optimization of the RRT algorithm
described in section 4.2.4, and could perhaps be developed to find better
plans even in cases where a solution is found in the original roadmap.

Taken together, the runtime constraints and the RRT expansion can
be used as the basis for an incremental PRM algorithm. Such an algo-
rithm would start by constructing a possibly sparse or even disconnected
roadmap for the environment. For failing queries, the roadmap could be
extended by application of the RRT algorithm. Such an algorithm would
be robust to changes in the environment since new obstacles invalidate
parts of the roadmap and the roadmap can grow in areas where obstacles
have been removed. In a very static environment, such an algorithm would
reduce to the standard PRM algorithm since solutions to the queries would
normally be found by the graph search. In an extremely dynamic environ-
ment, on the other hand, it would instead be similar to the RRT algorithm

120 Conclusions

since moving obstacles would invalidate large parts of the roadmap.

10.3 Mission Planning

The building photography flight, described in section 8.3, is an example of a
typical mission for a UAV. To perform this mission, the UAV needs to find
appropriate viewpoints for each facade of the buildings, order the points
to minimize path length, and plan a path connecting the points. Each of
these steps is performed fully automatically for any set of buildings, based
on information from the GIS-service and the planning capabilities of the
path planner. However, the overall mission strategy containing these steps
is currently setup manually in order to achieve the goal of having a picture
of each facade. It would of course be of great benefit to have a planner that
is able to set up these types of missions automatically for such goals, and
below an outline is given of how this could possibly be done by extending
the capabilities of sampling-based path planners.

The building photography mission is typical for a UAV mission in that
it is primarily concerned with observations, which requires moving the UAV
appropriately for successful operation of its sensors. This type of problem
puts less emphasis on ordering constraints than what is common in many
classical planning domains, where the agent performs actions that directly
affect the world. A major challenge in planning for UAVs is instead the
continuous domains that often include complex constraints over real-valued
variables, e.g., obstacles and visibility requirements.

To some degree, this type of problem is what path planners are specif-
ically designed to solve. However, path planning, as defined in chapter 2,
is not sufficient for finding complete mission plans, since the only concern
is to find a path from one point to another in the robot’s configuration
space. This kind of problem instead requires other types of actions, e.g.,
pointing the camera and taking pictures, or switching between different
flight modes such as landing, take-off, or hover.

One interesting line of research would be to extend path planners to
handle actions of the type normally used with classical planning. The con-
figuration space of the robot could be extended by adding further discrete

10.3 Mission Planning 121

or continuous state variables, e.g., a binary state-variable describing if the
UAV has got a picture of a certain building. As was described in sec-
tion 7.3, the viewpoints in the building photography mission were found
by sampling points in front of each facade. This is similar to the path
planning process itself in sampling-based path planners and gives some
indications that for these types of problems, methods similar to the PRM
and RRT algorithm may be suitable also as components in higher-level
planners. They would then be used for finding trajectories through a hy-
brid continuous/discrete state-space with both geometric dimensions of
the configuration space for the robot and discrete dimensions describing
discrete events, e.g., taking a picture. By planning in continuous domains,
problems such as covering an area with a video sequence would also have
natural formulations.

122 Conclusions

Bibliography

[1] Mert Akinc, Kostas E. Bekris, Brian Y. Chen, Andrew M. Ladd,
Erion Plakue, and Lydia E. Kavraki. Probabilistic roadmaps of trees
for parallel computation of multiple query roadmaps. In Proceedings
of Eleventh International Symposium on Robotics Research, October
2003. http://www.cs.rice.edu/~aladd/pubdir/conference/

isrr2003paper.pdf, accessed: November 19, 2003.

[2] N. Amato and Y. Wu. A randomized roadmap method for path and
manipulation planning. In Proc. IEEE Int. Conf. on Robotics and
Automation, pages 113–120, 1996.
http://citeseer.ist.psu.edu/amato96randomized.html.

[3] Jérôme Barraquand, Bruno Langlois, and Jean-Claude Latombe.
Robot motion planning with many degrees of freedom and dynamic
constraints. In The fifth international symposium on Robotics
research, pages 435–444, Cambridge, MA, USA, 1990. MIT Press.

[4] Jur P. van den Berg and Dennis Nieuwenhuisen and Léonard Jaillet
and Mark H. Overmars. Creating robust roadmaps for motion
planning in changing environments. In Proc. IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems - IROS’05, 2005.
http://www.cs.uu.nl/people/berg/IROS2005-1.pdf, accessed:
Friday, August 5, 2005.

[5] Jur P. van den Berg and Mark H. Overmars. Roadmap-based
motion planning in dynamic environments. IEEE Transactions on

123

124 BIBLIOGRAPHY

Robotics, 2005. http://www.cs.uu.nl/people/berg/ITRO.pdf,
accessed: Friday, August 5, 2005.

[6] R. Bohlin and L. E. Kavraki. Path planning using lazy prm. In
Proceedings of the IEEE International Conference on Robotics and
Automation, pages 521–528. IEEE Press, San Fransisco, CA, April
2000. http://www.cs.rice.edu/CS/Robotics/papers/
bohlin2000lazy-prm-icra.pdf, accessed: November 24, 2003.

[7] R. Bohlin and L. E. Kavraki. A randomized algorithm for robot
path planning based on lazy evaluation. In P. Pardalos,
S. Rajasekaran, and J. Rolim, editors, Handbook on Randomized
Computing, pages 221–249. Kluwer Academic Publishers, 2001.
http://www.cs.rice.edu/CS/Robotics/papers/

bohlin2001lazy-evaluation.pdf, accessed: November 24, 2003.

[8] Valérie Boor, Mark H. Overmars, and A. Frank van der Stappen.
Gaussian sampling for probabilistic roadmap planners.
http://citeseer.ist.psu.edu/boor01gaussian.html.

[9] James Bruce and Manuela Veloso. Real-time randomized path
planning for robot navigation. In Proceedings of IROS-2002, October
2002. http://www.cs.cmu.edu/~mmv/papers/02iros-rrt.pdf,
accessed: November 19, 2003.

[10] J. Canny and J.H. Reif. New lower bound techniques for robot
motion planning problems. In 28th Annual IEEE Symposium on
Foundations of Computer Science, 1987.

[11] John F. Canny. The complexity of robot motion planning. MIT
Press, Cambridge, MA, USA, 1988.

[12] P. Cheng, Z. Shen, and S. M. LaValle. Using randomization to find
and optimize feasible trajectory for nonlinear systems. In In Proc.
Annual Allerton Conference on Communications, Control,
Computing, pages 926–935, 2000.
http://msl.cs.uiuc.edu/rrt/papers/CheSheLav00.ps.gz,
accessed: November 19, 2003.

BIBLIOGRAPHY 125

[13] Gianpaolo Conte, Simone Duranti, and Torsten Merz. Dynamic 3d
path following for an autonomous helicopter. In Proceeding of the
5th IFAC Symposium on Intelligent Autonomous Vehicles, 2004.

[14] Patrick Doherty, Gösta Granlund, Krzystof Kuchcinski, Erik
Sandewall, Klas Nordberg, Erik Skarman, and Johan Wiklund. The
witas unmanned aerial vehicle project. In W.Horn, editor,
Proceedings of the 14th European Conference on Artificial
Intelligence. IOS Press, Amsterdam, 2000.

[15] Patrick Doherty, Patrik Haslum, Fredrik Heintz, Torsten Merz, Per
Nyblom, Tommy Persson, and Björn Wingman. A distributed
architecture for autonomous unmanned aerial vehicle
experimentation. In Proceedings of the 7th International Symposium
on Distributed Autonomous Robotic Systems, 2004.

[16] M. A. Dahleh E. Frazzoli and E. Feron. Robust hybrid control for
autonomous vehicles motion planning. Technical Report 2000-4056,
AIAA, 1999. http://gewurtz.lids.mit.edu/papers/FDF99.pdf,
accessed: June 10, 2004.

[17] M. A. Dahleh E. Frazzoli and E. Feron. Real-time motion planning
for agile autonomous vehicles. In AIAA Conf. on Guidance,
Navigation and Control, 2000.
http://gewurtz.mit.edu/papers/FDF00.pdf, accessed: April 23,
2003.

[18] Etienne Ferré Florent Lamiraux and Erwan Vallée. Kinodynamic
motion planning: Connecting exploration trees using trajectory
optimization methods, 2004.

[19] E. Frazzoli. Robust hybrid control for autonomous vehicle motion
planning. PhD thesis, MIT, 2001.
http://gewurtz.lids.mit.edu/papers/F01.pdf, accessed: June
10, 2004.

[20] H. Goldstein. Classical Mechanics. Addison–Wesley, Reading, MA,
U.S.A., 2nd edition, 1980.

126 BIBLIOGRAPHY

[21] S. Gottschalk, M. C. Lin, and D. Manocha. Obbtree: A hierarchical
structure for rapid interference detection. Technical Report
TR96-013, Department of Computer Science, University of N.
Carolina, Chapel Hill, 1996. URL: ftp://ftp.cs.unc.edu/pub/
users/manocha/PAPERS/COLLISION/obb.ps.gz accessed
11/05/2001.

[22] D. Hsu, T. Jiang, J. Reif, and Z. Sun. The bridge test for sampling
narrow passages with probabilistic roadmap planners. In Proceedings
of IEEE International Conference on Robotics & Automation, 2003.
http://citeseer.ist.psu.edu/hsu03bridge.html.

[23] D. Hsu, L. Kavraki, J. Latombe, R. Motwani, and S. Sorkin. On
finding narrow passages with probabilistic roadmap planners, 1998.
http://citeseer.ist.psu.edu/hsu98finding.html.

[24] D. Hsu, L. Kavraki, J.-C. Latombe, and R. Motwani. Capturing the
connectivity of high-dimensional geometric spaces by parallelizable
random sampling techniques. In P. M. Pardalos and S. Rajasekaran,
editors, Advances in Randomized Parallel Computing, pages
159–182. Kluwer Academic Publisher, Boston, 1999.

[25] David Hsu, Jean-Claude Latombe, and Rajeev Motwani. Path
planning in expansive configuration spaces. International Journal of
Computational Geometry and Applications, 9(4/5):495–, 1999.
http://citeseer.ist.psu.edu/hsu97path.html.

[26] L. Jaillet and T. Siméon. A prm-based motion planner for
dynamically changing environments. In Proc. of the IEEE Int. Conf.
on Int. Robots and Systems, 2004. http://www.laas.fr/
~ljaillet/Papers/iros04-dynamic-planner.pdf, accessed:
Friday, August 5, 2005.

[27] M. Kallmann and M. Matarić. Motion planning using dynamic
roadmaps. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 2004. http://www.ict.usc.edu/

BIBLIOGRAPHY 127

~kallmann/publications/kallmann_icra_04.pdf, accessed:
Friday, August 5, 2005.

[28] L. Kavraki, M. Kolountzakis, and J. Latombe. Analysis of
probabilistic roadmaps for path planning, 1996. http:
//citeseer.ist.psu.edu/article/kavraki98analysis.html.

[29] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars.
Probabilistic roadmaps for path planning in high dimensional
configuration spaces. IEEE Transactions on Robotics and
Automation, 12(4):566–580, 1996. http://www.cs.rice.edu/CS/
Robotics/papers/kavraki1996prm-high-dim-conf.pdf, accessed:
November 21, 2003.

[30] Lydia Kavraki and Jean-Claude Latombe. Randomized
preprocessing of configuration space for fast path planning. In
Proceedings of the International Conference on Robotics and
Automation, pages 2138–2139, 1994. http://www.cs.rice.edu/CS/
Robotics/papers/kavraki1994rand-preproc-fast.pdf, accessed:
January 23, 2004.

[31] Lydia E. Kavraki, Jean-Claude Latombe, Rajeev Motwani, and
Prabhakar Raghavan. Randomized query processing in robot path
planning. In ACM Symp. on Theory of Computing, pages 353–362,
1995.
http://citeseer.ist.psu.edu/kavraki96randomized.html.

[32] O Khatib. Real-time obstacle avoidance for manipulators and mobile
robots. Int. J. Rob. Res., 5(1):90–98, 1986.
http://ai.stanford.edu/groups/manips/publications.html.

[33] D.g. Kirkpatrick. Efficient computation of continuous skeletons. In
Proceedings of the 20th Symposium on Foundations of Computer
Science, pages 18–27, 1979.

[34] J. J. Kuffner and S. M. LaValle. RRT-Connect: An efficient
approach to single-query path planning. In IEEE Int’l Conf. on

128 BIBLIOGRAPHY

Robotics and Automation, pages 995–1001, 2000.
http://msl.cs.uiuc.edu/rrt/papers/KufLav00.ps.gz, accessed:
November 12, 2003.

[35] Jean-Claude Latombe. Robot Motion Planning. Kluwer Academic
Publishers, Norwell, MA, USA, 1991.

[36] J.-P. Laumond and T. Siméon. Notes on visibility roadmaps and
path planning. Workshop on Algorithmic Foundations of Robotics,
2000. http://www.laas.fr/~nic/Papers/wafr00.ps.gz, accessed:
January 23, 2004.

[37] S. M. LaValle. Planning Algorithms. Cambridge University Press
(also available at http://msl.cs.uiuc.edu/planning/). To be
published in 2006.

[38] S. M. LaValle. Rapidly-exploring random trees: A new tool for path
planning. Technical Report 98-11, Computer Science Dept., Iowa
State University, Oct. 1998.
http://msl.cs.uiuc.edu/rrt/papers/Lav98c.ps.gz, accessed:
November 12, 2003.

[39] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning.
In IEEE Int’l Conf. on Robotics and Automation, pages 473–479,
1999. http://msl.cs.uiuc.edu/rrt/papers/LavKuf99.ps.gz,
accessed: October 15, 2004.

[40] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning.
International Journal of Robotics Research, (20(5)):378–400, May
2001.
http://msl.cs.uiuc.edu/~lavalle/papers/LavKuf01b.ps.gz,
accessed: August 5, 2004.

[41] Mark H. Overmars and Petr Švestka. A paradigm for probabilistic
path planning. Technical report, Department of Computer Science,
Utrecht University, 1996. http://archive.cs.uu.nl/pub/RUU/CS/

techreps/CS-1995/1995-22.pdf, accessed: January 23, 2004.

BIBLIOGRAPHY 129

[42] M. H. Overmars P. Svestka. Motion planning for car-like robots
using a probabilistic learning approach. Technical Report
UU-CS-1994-33, Computer Science Department, Utrecht University,
1994. http://archive.cs.uu.nl/pub/RUU/CS/techreps/CS-1994/

1994-33.ps.gz, accessed: December 10, 2003.

[43] Per Olof Pettersson. Helicopter path planning using probabilistic
roadmaps. Master’s thesis, Linköpings universitet, January 2003.
http://www.ida.liu.se/~peope/exjobb-y.pdf, accessed:
November 24, 2003.

[44] Per Olof Pettersson and Patrick Doherty. Probabilistic roadmap
based path planning for an autonomous unmanned aerial vehicle.
ICAPS-04 Workshop on Connecting Planning Theory with Practice,
2004.
http://www.ida.liu.se/~peope/peope-patdo-icaps04.pdf,
accessed: February 16, 2005.

[45] Per Olof Pettersson and Patrick Doherty. Probabilistic roadmap
based path planning for an autonomous unmanned helicopter.
SAIS-SSLS 2005 Event, 2005.
http://www.ida.liu.se/~peope/SAIS05PetterssonP.pdf,
accessed: February 24, 2005.

[46] Per Olof Pettersson and Patrick Doherty. Probabilistic roadmap
based path planning for an autonomous unmanned helicopter.
Journal of Intelligent & Fuzzy Systems: Computational Intelligence
in Northern Europe, 2006. accepted for publication.

[47] J.H. Reif and H. Wang. The complexity of the two dimensional
curvature-constrained shortest-path problem. In Third International
Workshop on Algorithmic Foundations of Robotics (WAFR98),
pages 49–57. A. K. Peters Ltd, Houston, Texas, June 1998. http:
//www.cs.duke.edu/~reif/paper/hongyan/curve/curve.pdf,
accessed: September 2, 2004.

[48] S. Sekhavat and J.-P. Laumond. Topological property for
collision-free nonholonomic motion planning: the case of sinusoidal

130 BIBLIOGRAPHY

inputs for chained form systems. In IEEE Trans. Robotics and
Automation, volume 14(5), pages 671–680, October 1998.
http://www.inrialpes.fr/sharp/people/sekhavat/PUBLI/

sekhavat:laumond:ieeetra:98.ps, accessed: December 11, 2003.

[49] S. Sekhavat, J-P. Laumond P. Svestka, and M. H. Overmars.
Multi-level path planning for nonholonomic robots using
semi-holonomic subsystems. The international journal of robotics
research, 17:840–857, 1996. http://archive.cs.uu.nl/pub/RUU/
CS/techreps/CS-1996/1996-08.pdf, accessed: November 24, 2003.

[50] T. Siméon, J. P. Laumond, and C. Nissoux. Visibility based
probabilistic roadmaps. IEEE Int. Conf. on Int. Robots and
Systems, 1999. http://www.laas.fr/~nic/Papers/iros99.ps.gz,
accessed: January 23, 2004.

[51] T. Siméon, J. P. Laumond, and C. Nissoux. Visibility-based
probabilistic roadmaps for motion planning. Journal of Advanced
Robotics, 14(6):477–494, 2000.
http://www.laas.fr/~nic/Papers/advrob00.ps.gz, accessed:
January 23, 2004.

[52] Guang Song and Nancy M. Amato. Randomized motion planning
for car-like robots with c-prm. In Proc. IEEE Int. Conf. Intel. Rob.
Syst. (IROS), pages 37–42, Nov 2001. http://parasol-www.cs.
tamu.edu/groups/amatogroup/research/carlike/, accessed:
Sunday, July 31, 2005.

Avdelning, Institution

Division, Department
Datum

Date

Spr̊ak

Language

� Svenska/Swedish

� Engelska/English

�

Rapporttyp

Report category

� Licentiatavhandling

� Examensarbete

� C-uppsats

� D-uppsats

� Övrig rapport

�

URL för elektronisk version

ISBN

ISRN

Serietitel och serienummer

Title of series, numbering
ISSN

Linköping Studies in Science and Technology

Thesis No. 1229

Titel

Title

Författare

Author

Sammanfattning

Abstract

Nyckelord

Keywords

Many of the applications that have been proposed for future small unmanned
aerial vehicles (UAVs) are at low altitude in areas with many obstacles. A vital
component for successful navigation in such environments is a path planner
that can find collision free paths for the UAV.

Two popular path planning algorithms are the probabilistic roadmap algo-
rithm (PRM) and the rapidly-exploring random tree algorithm (RRT). Adap-
tations of these algorithms to an unmanned autonomous helicopter are pre-
sented in this thesis, together with a number of extensions for handling con-
straints at different stages of the planning process.

The result of this work is twofold:
First, the described planners and extensions have been implemented and

integrated into the software architecture of a UAV. A number of flight tests
with these algorithms have been performed on a physical helicopter and the
results from some of them are presented in this thesis.

Second, an empirical study has been conducted, comparing the performance
of the different algorithms and extensions in this planning domain. It is shown
that with the environment known in advance, the PRM algorithm generally
performs better than the RRT algorithm due to its precompiled roadmaps, but
that the latter is also usable as long as the environment is not too complex.
The study also shows that simple geometric constraints can be added in the
runtime phase of the PRM algorithm, without a big impact on performance.
It is also shown that postponing the motion constraints to the runtime phase
can improve the performance of the planner in some cases.

AIICS,
Dept. of Computer and Information Science
581 83 Linköping

December 29, 2005

91–85497–15–0

LiU-Tek-Lic–2006:10

0280–7971

http://urn.kb.se/resolve?urn=urn:
nbn:se:liu:diva-5270

Sampling-based Path Planning for an Autonomous Helicopter

Per Olof Pettersson

×
×

Path Planning, Motion Planning, Helicopters, Probabilistic Roadmaps,
Rapidly-exploring Random Trees

No 17

No 28

No 29
No 48
No 52
No 60
No 71
No 72
No 73
No 74
No 104

No 108
No 111
No 113
No 118

No 126
No 127

No 139
No 140
No 146
No 150
No 165
No 166
No 174
No 177
No 181
No 184
No 187
No 189
No 196
No 197
No 203
No 212
No 230
No 237
No 250
No 253
No 260
No 283

No 298
No 318

No 319

No 326
No 328
No 333
No 335

No 348
No 352

No 371
No 378
No 380
No 381
No 383
No 386
No 398
Department of Computer and Information Science
Linköpings universitet

Linköping Studies in Science and Technology
Faculty of Arts and Sciences - Licentiate Theses

Vojin Plavsic: Interleaved Processing of Non-Numerical Data Stored on a Cyclic Memory. (Available at:
FOA, Box 1165, S-581 11 Linköping, Sweden. FOA Report B30062E)
Arne Jönsson, Mikael Patel: An Interactive Flowcharting Technique for Communicating and Realizing Al-
gorithms, 1984.
Johnny Eckerland: Retargeting of an Incremental Code Generator, 1984.
Henrik Nordin: On the Use of Typical Cases for Knowledge-Based Consultation and Teaching, 1985.
Zebo Peng: Steps Towards the Formalization of Designing VLSI Systems, 1985.
Johan Fagerström: Simulation and Evaluation of Architecture based on Asynchronous Processes, 1985.
Jalal Maleki: ICONStraint, A Dependency Directed Constraint Maintenance System, 1987.
Tony Larsson: On the Specification and Verification of VLSI Systems, 1986.
Ola Strömfors: A Structure Editor for Documents and Programs, 1986.
Christos Levcopoulos: New Results about the Approximation Behavior of the Greedy Triangulation, 1986.
Shamsul I. Chowdhury: Statistical Expert Systems - a Special Application Area for Knowledge-Based Com-
puter Methodology, 1987.
Rober Bilos: Incremental Scanning and Token-Based Editing, 1987.
Hans Block: SPORT-SORT Sorting Algorithms and Sport Tournaments, 1987.
Ralph Rönnquist: Network and Lattice Based Approaches to the Representation of Knowledge, 1987.
Mariam Kamkar, Nahid Shahmehri: Affect-Chaining in Program Flow Analysis Applied to Queries of Pro-
grams, 1987.
Dan Strömberg: Transfer and Distribution of Application Programs, 1987.
Kristian Sandahl: Case Studies in Knowledge Acquisition, Migration and User Acceptance of Expert Sys-
tems, 1987.
Christer Bäckström: Reasoning about Interdependent Actions, 1988.
Mats Wirén: On Control Strategies and Incrementality in Unification-Based Chart Parsing, 1988.
Johan Hultman: A Software System for Defining and Controlling Actions in a Mechanical System, 1988.
Tim Hansen: Diagnosing Faults using Knowledge about Malfunctioning Behavior, 1988.
Jonas Löwgren: Supporting Design and Management of Expert System User Interfaces, 1989.
Ola Petersson: On Adaptive Sorting in Sequential and Parallel Models, 1989.
Yngve Larsson: Dynamic Configuration in a Distributed Environment, 1989.
Peter Åberg: Design of a Multiple View Presentation and Interaction Manager, 1989.
Henrik Eriksson: A Study in Domain-Oriented Tool Support for Knowledge Acquisition, 1989.
Ivan Rankin: The Deep Generation of Text in Expert Critiquing Systems, 1989.
Simin Nadjm-Tehrani: Contributions to the Declarative Approach to Debugging Prolog Programs, 1989.
Magnus Merkel: Temporal Information in Natural Language, 1989.
Ulf Nilsson: A Systematic Approach to Abstract Interpretation of Logic Programs, 1989.
Staffan Bonnier: Horn Clause Logic with External Procedures: Towards a Theoretical Framework, 1989.
Christer Hansson: A Prototype System for Logical Reasoning about Time and Action, 1990.
Björn Fjellborg: An Approach to Extraction of Pipeline Structures for VLSI High-Level Synthesis, 1990.
Patrick Doherty: A Three-Valued Approach to Non-Monotonic Reasoning, 1990.
Tomas Sokolnicki: Coaching Partial Plans: An Approach to Knowledge-Based Tutoring, 1990.
Lars Strömberg: Postmortem Debugging of Distributed Systems, 1990.
Torbjörn Näslund: SLDFA-Resolution - Computing Answers for Negative Queries, 1990.
Peter D. Holmes: Using Connectivity Graphs to Support Map-Related Reasoning, 1991.
Olof Johansson: Improving Implementation of Graphical User Interfaces for Object-Oriented Knowledge-
Bases, 1991.
Rolf G Larsson: Aktivitetsbaserad kalkylering i ett nytt ekonomisystem, 1991.
Lena Srömbäck: Studies in Extended Unification-Based Formalism for Linguistic Description: An Algo-
rithm for Feature Structures with Disjunction and a Proposal for Flexible Systems, 1992.
Mikael Pettersson: DML-A Language and System for the Generation of Efficient Compilers from Denota-
tional Specification, 1992.
Andreas Kågedal: Logic Programming with External Procedures: an Implementation, 1992.
Patrick Lambrix: Aspects of Version Management of Composite Objects, 1992.
Xinli Gu: Testability Analysis and Improvement in High-Level Synthesis Systems, 1992.
Torbjörn Näslund: On the Role of Evaluations in Iterative Development of Managerial Support Sytems,
1992.
Ulf Cederling: Industrial Software Development - a Case Study, 1992.
Magnus Morin: Predictable Cyclic Computations in Autonomous Systems: A Computational Model and Im-
plementation, 1992.
Mehran Noghabai: Evaluation of Strategic Investments in Information Technology, 1993.
Mats Larsson: A Transformational Approach to Formal Digital System Design, 1993.
Johan Ringström: Compiler Generation for Parallel Languages from Denotational Specifications, 1993.
Michael Jansson: Propagation of Change in an Intelligent Information System, 1993.
Jonni Harrius: An Architecture and a Knowledge Representation Model for Expert Critiquing Systems, 1993.

Per Österling: Symbolic Modelling of the Dynamic Environments of Autonomous Agents, 1993.
Johan Boye: Dependency-based Groudness Analysis of Functional Logic Programs, 1993.

No 402
No 406
No 414

No 417
No 436
No 437
No 440
FHS 3/94

FHS 4/94

No 441
No 446
No 450
No 451
No 452

No 455

FHS 5/94

No 462
No 463
No 464
No 469
No 473
No 475
No 476
No 478
FHS 7/95
No 482

No 488

No 489
No 497
No 498

No 503
FHS 8/95

FHS 9/95

No 513
No 517
No 518
No 522
No 538
No 545

No 546
FiF-a 1/9

No 549
No 550

No 557
No 558
No 561
No 563
No 567
No 575
No 576
No 587
No 589

No 591
No 595
No 597
Lars Degerstedt: Tabulated Resolution for Well Founded Semantics, 1993.
Anna Moberg: Satellitkontor - en studie av kommunikationsmönster vid arbete på distans, 1993.
Peter Carlsson: Separation av företagsledning och finansiering - fallstudier av företagsledarutköp ur ett agent-
teoretiskt perspektiv, 1994.
Camilla Sjöström: Revision och lagreglering - ett historiskt perspektiv, 1994.
Cecilia Sjöberg: Voices in Design: Argumentation in Participatory Development, 1994.
Lars Viklund: Contributions to a High-level Programming Environment for a Scientific Computing, 1994.
Peter Loborg: Error Recovery Support in Manufacturing Control Systems, 1994.
Owen Eriksson: Informationssystem med verksamhetskvalitet - utvärdering baserat på ett verksamhetsinrik-
tat och samskapande perspektiv, 1994.
Karin Pettersson: Informationssystemstrukturering, ansvarsfördelning och användarinflytande - En kompa-
rativ studie med utgångspunkt i två informationssystemstrategier, 1994.
Lars Poignant: Informationsteknologi och företagsetablering - Effekter på produktivitet och region, 1994.
Gustav Fahl: Object Views of Relational Data in Multidatabase Systems, 1994.
Henrik Nilsson: A Declarative Approach to Debugging for Lazy Functional Languages, 1994.
Jonas Lind: Creditor - Firm Relations: an Interdisciplinary Analysis, 1994.
Martin Sköld: Active Rules based on Object Relational Queries - Efficient Change Monitoring Techniques,
1994.
Pär Carlshamre: A Collaborative Approach to Usability Engineering: Technical Communicators and System
Developers in Usability-Oriented Systems Development, 1994.
Stefan Cronholm: Varför CASE-verktyg i systemutveckling? - En motiv- och konsekvensstudie avseende ar-
betssätt och arbetsformer, 1994.
Mikael Lindvall: A Study of Traceability in Object-Oriented Systems Development, 1994.
Fredrik Nilsson: Strategi och ekonomisk styrning - En studie av Sandviks förvärv av Bahco Verktyg, 1994.
Hans Olsén: Collage Induction: Proving Properties of Logic Programs by Program Synthesis, 1994.
Lars Karlsson: Specification and Synthesis of Plans Using the Features and Fluents Framework, 1995.
Ulf Söderman: On Conceptual Modelling of Mode Switching Systems, 1995.
Choong-ho Yi: Reasoning about Concurrent Actions in the Trajectory Semantics, 1995.
Bo Lagerström: Successiv resultatavräkning av pågående arbeten. - Fallstudier i tre byggföretag, 1995.
Peter Jonsson: Complexity of State-Variable Planning under Structural Restrictions, 1995.
Anders Avdic: Arbetsintegrerad systemutveckling med kalkylkprogram, 1995.
Eva L Ragnemalm: Towards Student Modelling through Collaborative Dialogue with a Learning Compani-
on, 1995.
Eva Toller: Contributions to Parallel Multiparadigm Languages: Combining Object-Oriented and Rule-Based
Programming, 1995.
Erik Stoy: A Petri Net Based Unified Representation for Hardware/Software Co-Design, 1995.
Johan Herber: Environment Support for Building Structured Mathematical Models, 1995.
Stefan Svenberg: Structure-Driven Derivation of Inter-Lingual Functor-Argument Trees for Multi-Lingual
Generation, 1995.
Hee-Cheol Kim: Prediction and Postdiction under Uncertainty, 1995.
Dan Fristedt: Metoder i användning - mot förbättring av systemutveckling genom situationell metodkunskap
och metodanalys, 1995.
Malin Bergvall: Systemförvaltning i praktiken - en kvalitativ studie avseende centrala begrepp, aktiviteter och
ansvarsroller, 1995.
Joachim Karlsson: Towards a Strategy for Software Requirements Selection, 1995.
Jakob Axelsson: Schedulability-Driven Partitioning of Heterogeneous Real-Time Systems, 1995.
Göran Forslund: Toward Cooperative Advice-Giving Systems: The Expert Systems Experience, 1995.
Jörgen Andersson: Bilder av småföretagares ekonomistyrning, 1995.
Staffan Flodin: Efficient Management of Object-Oriented Queries with Late Binding, 1996.
Vadim Engelson: An Approach to Automatic Construction of Graphical User Interfaces for Applications in
Scientific Computing, 1996.
Magnus Werner : Multidatabase Integration using Polymorphic Queries and Views, 1996.

6 Mikael Lind: Affärsprocessinriktad förändringsanalys - utveckling och tillämpning av synsätt och metod,
1996.
Jonas Hallberg: High-Level Synthesis under Local Timing Constraints, 1996.
Kristina Larsen: Förutsättningar och begränsningar för arbete på distans - erfarenheter från fyra svenska före-
tag. 1996.
Mikael Johansson: Quality Functions for Requirements Engineering Methods, 1996.
Patrik Nordling: The Simulation of Rolling Bearing Dynamics on Parallel Computers, 1996.
Anders Ekman: Exploration of Polygonal Environments, 1996.
Niclas Andersson: Compilation of Mathematical Models to Parallel Code, 1996.
Johan Jenvald: Simulation and Data Collection in Battle Training, 1996.
Niclas Ohlsson: Software Quality Engineering by Early Identification of Fault-Prone Modules, 1996.
Mikael Ericsson: Commenting Systems as Design Support—A Wizard-of-Oz Study, 1996.
Jörgen Lindström: Chefers användning av kommunikationsteknik, 1996.
Esa Falkenroth: Data Management in Control Applications - A Proposal Based on Active Database Systems,
1996.
Niclas Wahllöf: A Default Extension to Description Logics and its Applications, 1996.
Annika Larsson: Ekonomisk Styrning och Organisatorisk Passion - ett interaktivt perspektiv, 1997.

Ling Lin: A Value-based Indexing Technique for Time Sequences, 1997.

No 598
No 599
No 607

No 609
FiF-a 4
FiF-a 6

No 615
No 623
No 626
No 627
No 629
No 631
No 639
No 640
No 643
No 653
FiF-a 13

No 674

No 676
No 668

No 675

FiF-a 14

No 695
No 700
FiF-a 16

No 712

No 719
No 723
No 725
No 730

No 731
No 733
No 734

FiF-a 21
FiF-a 22
No 737
No 738
FiF-a 25

No 742
No 748
No 751

No 752
No 753
No 754

No 766
No 769
No 775
FiF-a 30
No 787

No 788

No 790
No 791
No 800
No 807
Rego Granlund: C3Fire - A Microworld Supporting Emergency Management Training, 1997.
Peter Ingels: A Robust Text Processing Technique Applied to Lexical Error Recovery, 1997.
Per-Arne Persson: Toward a Grounded Theory for Support of Command and Control in Military Coalitions,
1997.
Jonas S Karlsson: A Scalable Data Structure for a Parallel Data Server, 1997.
Carita Åbom: Videomötesteknik i olika affärssituationer - möjligheter och hinder, 1997.
Tommy Wedlund: Att skapa en företagsanpassad systemutvecklingsmodell - genom rekonstruktion, värde-
ring och vidareutveckling i T50-bolag inom ABB, 1997.
Silvia Coradeschi: A Decision-Mechanism for Reactive and Coordinated Agents, 1997.
Jan Ollinen: Det flexibla kontorets utveckling på Digital - Ett stöd för multiflex? 1997.
David Byers: Towards Estimating Software Testability Using Static Analysis, 1997.
Fredrik Eklund: Declarative Error Diagnosis of GAPLog Programs, 1997.
Gunilla Ivefors: Krigsspel coh Informationsteknik inför en oförutsägbar framtid, 1997.
Jens-Olof Lindh: Analysing Traffic Safety from a Case-Based Reasoning Perspective, 1997
Jukka Mäki-Turja:. Smalltalk - a suitable Real-Time Language, 1997.
Juha Takkinen: CAFE: Towards a Conceptual Model for Information Management in Electronic Mail, 1997.
Man Lin: Formal Analysis of Reactive Rule-based Programs, 1997.
Mats Gustafsson: Bringing Role-Based Access Control to Distributed Systems, 1997.
Boris Karlsson: Metodanalys för förståelse och utveckling av systemutvecklingsverksamhet. Analys och vär-
dering av systemutvecklingsmodeller och dess användning, 1997.
Marcus Bjäreland: Two Aspects of Automating Logics of Action and Change - Regression and Tractability,
1998.
Jan Håkegård: Hiera rchical Test Architecture and Board-Level Test Controller Synthesis, 1998.
Per-Ove Zetterlund: Normering av svensk redovisning - En studie av tillkomsten av Redovisningsrådets re-
kommendation om koncernredovisning (RR01:91), 1998.
Jimmy Tjäder: Projektledaren & planen - en studie av projektledning i tre installations- och systemutveck-
lingsprojekt, 1998.
Ulf Melin: Informationssystem vid ökad affärs- och processorientering - egenskaper, strategier och utveck-
ling, 1998.
Tim Heyer: COMPASS: Introduction of Formal Methods in Code Development and Inspection, 1998.
Patrik Hägglund: Programming Languages for Computer Algebra, 1998.
Marie-Therese Christiansson: Inter-organistorisk verksamhetsutveckling - metoder som stöd vid utveckling
av partnerskap och informationssystem, 1998.
Christina Wennestam: Information om immateriella resurser. Investeringar i forskning och utveckling samt
i personal inom skogsindustrin, 1998.
Joakim Gustafsson: Extending Temporal Action Logic for Ramification and Concurrency, 1998.
Henrik André-Jönsson: Indexing time-series data using text indexing methods, 1999.
Erik Larsson: High-Level Testability Analysis and Enhancement Techniques, 1998.
Carl-Johan Westin: Informationsförsörjning: en fråga om ansvar - aktiviteter och uppdrag i fem stora svens-
ka organisationers operativa informationsförsörjning, 1998.
Åse Jansson: Miljöhänsyn - en del i företags styrning, 1998.
Thomas Padron-McCarthy: Performance-Polymorphic Declarative Queries, 1998.
Anders Bäckström: Värdeskapande kreditgivning - Kreditriskhantering ur ett agentteoretiskt perspektiv,
1998.
Ulf Seigerroth: Integration av förändringsmetoder - en modell för välgrundad metodintegration, 1999.
Fredrik Öberg: Object-Oriented Frameworks - A New Strategy for Case Tool Development, 1998.
Jonas Mellin: Predictable Event Monitoring, 1998.
Joakim Eriksson: Specifying and Managing Rules in an Active Real-Time Database System, 1998.
Bengt E W Andersson: Samverkande informationssystem mellan aktörer i offentliga åtaganden - En teori om
aktörsarenor i samverkan om utbyte av information, 1998.
Pawel Pietrzak: Static Incorrectness Diagnosis of CLP (FD), 1999.
Tobias Ritzau: Real-Time Reference Counting in RT-Java, 1999.
Anders Ferntoft: Elektronisk affärskommunikation - kontaktkostnader och kontaktprocesser mellan kunder
och leverantörer på producentmarknader,1999.
Jo Skåmedal: Arbete på distans och arbetsformens påverkan på resor och resmönster, 1999.
Johan Alvehus: Mötets metaforer. En studie av berättelser om möten, 1999.
Magnus Lindahl: Bankens villkor i låneavtal vid kreditgivning till högt belånade företagsförvärv: En studie
ur ett agentteoretiskt perspektiv, 2000.
Martin V. Howard: Designing dynamic visualizations of temporal data, 1999.
Jesper Andersson: Towards Reactive Software Architectures, 1999.
Anders Henriksson: Unique kernel diagnosis, 1999.
Pär J. Ågerfalk: Pragmatization of Information Systems - A Theoretical and Methodological Outline, 1999.
Charlotte Björkegren: Learning for the next project - Bearers and barriers in knowledge transfer within an
organisation, 1999.
Håkan Nilsson: Informationsteknik som drivkraft i granskningsprocessen - En studie av fyra revisionsbyråer,
2000.
Erik Berglund: Use-Oriented Documentation in Software Development, 1999.
Klas Gäre: Verksamhetsförändringar i samband med IS-införande, 1999.
Anders Subotic: Software Quality Inspection, 1999.

Svein Bergum: Managerial communication in telework, 2000.

No 809
FiF-a 32

No 808
No 820
No 823
No 832
FiF-a 34

No 842
No 844
FiF-a 37
FiF-a 40
FiF-a 41
No. 854
No 863
No 881
No 882

No 890

Fif-a 47
No 894
No 906
No 917
No 916

Fif-a-49

Fif-a-51

No 919

No 915
No 931

No 933

No 938
No 942
No 956

FiF-a 58
No 964
No 973
No 958

Fif-a 61
No 985

No 982
No 989
No 990

No 991
No 999
No 1000
No 1001

No 988
FiF-a 62

No 1003
No 1005

No 1008
No 1010
No 1015
No 1018
No 1022

FiF-a 65

No 1024
Flavius Gruian: Energy-Aware Design of Digital Systems, 2000.
Karin Hedström: Kunskapsanvändning och kunskapsutveckling hos verksamhetskonsulter - Erfarenheter
från ett FOU-samarbete, 2000.
Linda Askenäs: Affärssystemet - En studie om teknikens aktiva och passiva roll i en organisation, 2000.
Jean Paul Meynard: Control of industrial robots through high-level task programming, 2000.
Lars Hult: Publika Gränsytor - ett designexempel, 2000.
Paul Pop: Scheduling and Communication Synthesis for Distributed Real-Time Systems, 2000.
Göran Hultgren: Nätverksinriktad Förändringsanalys - perspektiv och metoder som stöd för förståelse och
utveckling av affärsrelationer och informationssystem, 2000.
Magnus Kald: The role of management control systems in strategic business units, 2000.
Mikael Cäker: Vad kostar kunden? Modeller för intern redovisning, 2000.
Ewa Braf: Organisationers kunskapsverksamheter - en kritisk studie av ”knowledge management”, 2000.
Henrik Lindberg: Webbaserade affärsprocesser - Möjligheter och begränsningar, 2000.
Benneth Christiansson: Att komponentbasera informationssystem - Vad säger teori och praktik?, 2000.
Ola Pettersson: Deliberation in a Mobile Robot, 2000.
Dan Lawesson: Towards Behavioral Model Fault Isolation for Object Oriented Control Systems, 2000.
Johan Moe: Execution Tracing of Large Distributed Systems, 2001.
Yuxiao Zhao: XML-based Frameworks for Internet Commerce and an Implementation of B2B
e-procurement, 2001.
Annika Flycht-Eriksson: Domain Knowledge Management inInformation-providing Dialogue systems,
2001.
Per-Arne Segerkvist: Webbaserade imaginära organisationers samverkansformer, 2001.
Stefan Svarén: Styrning av investeringar i divisionaliserade företag - Ett koncernperspektiv, 2001.
Lin Han: Secure and Scalable E-Service Software Delivery, 2001.
Emma Hansson: Optionsprogram för anställda - en studie av svenska börsföretag, 2001.
Susanne Odar: IT som stöd för strategiska beslut, en studie av datorimplementerade modeller av verksamhet
som stöd för beslut om anskaffning av JAS 1982, 2002.
Stefan Holgersson: IT-system och filtrering av verksamhetskunskap - kvalitetsproblem vid analyser och be-
slutsfattande som bygger på uppgifter hämtade från polisens IT-system, 2001.
Per Oscarsson:Informationssäkerhet i verksamheter - begrepp och modeller som stöd för förståelse av infor-
mationssäkerhet och dess hantering, 2001.
Luis Alejandro Cortes: A Petri Net Based Modeling and Verification Technique for Real-Time Embedded
Systems, 2001.
Niklas Sandell: Redovisning i skuggan av en bankkris - Värdering av fastigheter. 2001.
Fredrik Elg: Ett dynamiskt perspektiv på individuella skillnader av heuristisk kompetens, intelligens, mentala
modeller, mål och konfidens i kontroll av mikrovärlden Moro, 2002.
Peter Aronsson: Automatic Parallelization of Simulation Code from Equation Based Simulation Languages,
2002.
Bourhane Kadmiry: Fuzzy Control of Unmanned Helicopter, 2002.
Patrik Haslum: Prediction as a Knowledge Representation Problem: A Case Study in Model Design, 2002.
Robert Sevenius: On the instruments of governance - A law & economics study of capital instruments in li-
mited liability companies, 2002.
Johan Petersson: Lokala elektroniska marknadsplatser - informationssystem för platsbundna affärer, 2002.
Peter Bunus: Debugging and Structural Analysis of Declarative Equation-Based Languages, 2002.
Gert Jervan: High-Level Test Generation and Built-In Self-Test Techniques for Digital Systems, 2002.
Fredrika Berglund: Management Control and Strategy - a Case Study of Pharmaceutical Drug Development,
2002.
Fredrik Karlsson: Meta-Method for Method Configuration - A Rational Unified Process Case, 2002.
Sorin Manolache: Schedulability Analysis of Real-Time Systems with Stochastic Task Execution Times,
2002.
Diana Szentiványi: Performance and Availability Trade-offs in Fault-Tolerant Middleware, 2002.
Iakov Nakhimovski: Modeling and Simulation of Contacting Flexible Bodies in Multibody Systems, 2002.
Levon Saldamli: PDEModelica - Towards a High-Level Language for Modeling with Partial Differential
Equations, 2002.
Almut Herzog: Secure Execution Environment for Java Electronic Services, 2002.
Jon Edvardsson: Contributions to Program- and Specification-based Test Data Generation, 2002
Anders Arpteg: Adaptive Semi-structured Information Extraction, 2002.
Andrzej Bednarski: A Dynamic Programming Approach to Optimal Retargetable Code Generation for
Irregular Architectures, 2002.
Mattias Arvola: Good to use! : Use quality of multi-user applications in the home, 2003.
Lennart Ljung: Utveckling av en projektivitetsmodell - om organisationers förmåga att tillämpa
projektarbetsformen, 2003.
Pernilla Qvarfordt: User experience of spoken feedback in multimodal interaction, 2003.
Alexander Siemers: Visualization of Dynamic Multibody Simulation With Special Reference to Contacts,
2003.
Jens Gustavsson: Towards Unanticipated Runtime Software Evolution, 2003.
Calin Curescu: Adaptive QoS-aware Resource Allocation for Wireless Networks, 2003.
Anna Andersson: Management Information Systems in Process-oriented Healthcare Organisations, 2003.
Björn Johansson: Feedforward Control in Dynamic Situations, 2003.
Traian Pop: Scheduling and Optimisation of Heterogeneous Time/Event-Triggered Distributed Embedded
Systems, 2003.
Britt-Marie Johansson: Kundkommunikation på distans - en studie om kommunikationsmediets betydelse i

affärstransaktioner, 2003.
Aleksandra Tesanovic: Towards Aspectual Component-Based Real-Time System Development, 2003.

No 1034
No 1033

Fif-a 69
No 1049
No 1052
No 1054
Fif-a 71
No 1055
No 1058
FiF-a 73

No 1079
No 1084

FiF-a 74
No 1094
No 1095
No 1099
No 1110
No 1116

FiF-a 77

No 1126
No 1127
No 1132

No 1130
No 1138
No 1149
No 1156
No 1162
No 1165

FiF-a 84
No 1166

No 1167

No 1168
FiF-a 85

No 1171
FiF-a 86

No 1172
No 1183
No 1184

No 1185

No 1190
No 1191

No 1192
No 1194
No 1204

No 1206
No 1207
No 1209

No 1225
No 1228
No 1229
Arja Vainio-Larsson: Designing for Use in a Future Context - Five Case Studies in Retrospect, 2003.
Peter Nilsson: Svenska bankers redovisningsval vid reservering för befarade kreditförluster - En studie vid
införandet av nya redovisningsregler, 2003.
Fredrik Ericsson: Information Technology for Learning and Acquiring of Work Knowledge, 2003.
Marcus Comstedt: Towards Fine-Grained Binary Composition through Link Time Weaving, 2003.
Åsa Hedenskog: Increasing the Automation of Radio Network Control, 2003.
Claudiu Duma: Security and Efficiency Tradeoffs in Multicast Group Key Management, 2003.
Emma Eliasson: Effektanalys av IT-systems handlingsutrymme, 2003.
Carl Cederberg: Experiments in Indirect Fault Injection with Open Source and Industrial Software, 2003.
Daniel Karlsson: Towards Formal Verification in a Component-based Reuse Methodology, 2003.
Anders Hjalmarsson: Att etablera och vidmakthålla förbättringsverksamhet - behovet av koordination och
interaktion vid förändring av systemutvecklingsverksamheter, 2004.
Pontus Johansson: Design and Development of Recommender Dialogue Systems, 2004.
Charlotte Stoltz: Calling for Call Centres - A Study of Call Centre Locations in a Swedish Rural Region,
2004.
Björn Johansson: Deciding on Using Application Service Provision in SMEs, 2004.
Genevieve Gorrell: Language Modelling and Error Handling in Spoken Dialogue Systems, 2004.
Ulf Johansson: Rule Extraction - the Key to Accurate and Comprehensible Data Mining Models, 2004.
Sonia Sangari: Computational Models of Some Communicative Head Movements, 2004.
Hans Nässla: Intra-Family Information Flow and Prospects for Communication Systems, 2004.
Henrik Sällberg: On the value of customer loyalty programs - A study of point programs and switching costs,
2004.
Ulf Larsson: Designarbete i dialog - karaktärisering av interaktionen mellan användare och utvecklare i en
systemutvecklingsprocess, 2004.
Andreas Borg: Contribution to Management and Validation of Non-Functional Requirements, 2004.
Per-Ola Kristensson: Large Vocabulary Shorthand Writing on Stylus Keyboard, 2004.
Pär-Anders Albinsson: Interacting with Command and Control Systems: Tools for Operators and Designers,
2004.
Ioan Chisalita: Safety-Oriented Communication in Mobile Networks for Vehicles, 2004.
Thomas Gustafsson: Maintaining Data Consistency im Embedded Databases for Vehicular Systems, 2004.
Vaida Jakoniené: A Study in Integrating Multiple Biological Data Sources, 2005.
Abdil Rashid Mohamed: High-Level Techniques for Built-In Self-Test Resources Optimization, 2005.
Adrian Pop: Contributions to Meta-Modeling Tools and Methods, 2005.
Fidel Vascós Palacios: On the information exchange between physicians and social insurance officers in the
sick leave process: an Activity Theoretical perspective, 2005.
Jenny Lagsten: Verksamhetsutvecklande utvärdering i informationssystemprojekt, 2005.
Emma Larsdotter Nilsson: Modeling, Simulation, and Visualization of Metabolic Pathways Using Modelica,
2005.
Christina Keller: Virtual Learning Environments in higher education. A study of students’ acceptance of edu-
cational technology, 2005.
Cécile Åberg: Integration of organizational workflows and the Semantic Web, 2005.
Anders Forsman: Standardisering som grund för informationssamverkan och IT-tjänster - En fallstudie
baserad på trafikinformationstjänsten RDS-TMC, 2005.
Yu-Hsing Huang: A systemic traffic accident model, 2005.
Jan Olausson: Att modellera uppdrag - grunder för förståelse av processinriktade informationssystem i trans-
aktionsintensiva verksamheter, 2005.
Petter Ahlström: Affärsstrategier för seniorbostadsmarknaden, 2005.
Mathias Cöster: Beyond IT and Productivity - How Digitization Transformed the Graphic Industry, 2005.
Åsa Horzella: Beyond IT and Productivity - Effects of Digitized Information Flows in Grocery Distribution,
2005.
Maria Kollberg: Beyond IT and Productivity - Effects of Digitized Information Flows in the Logging
Industry, 2005.
David Dinka: Role and Identity - Experience of technology in professional settings, 2005.
Andreas Hansson: Increasing the Storage Capacity of Recursive Auto-associative Memory by Segmenting
Data, 2005.
Nicklas Bergfeldt: Towards Detached Communication for Robot Cooperation, 2005.
Dennis Maciuszek: Towards Dependable Virtual Companions for Later Life, 2005.
Beatrice Alenljung: Decision-making in the Requirements Engineering Process: A Human-centered
Approach, 2005
Anders Larsson: System-on-Chip Test Scheduling and Test Infrastructure Design, 2005.
John Wilander: Policy and Implementation Assurance for Software Security, 2005.
Andreas Käll: Översättningar av en managementmodell - En studie av införandet av Balanced Scorecard i ett
landsting, 2005.
He Tan: Aligning and Merging Biomedical Ontologies, 2006.
Artur Wilk: Descriptive Types for XML Query Language Xcerpt, 2006.
Per Olof Pettersson: Sampling-based Path Planning for an Autonomous Helicopter, 2006.

	lic.pdf
	Lic-sammanst.pdf

