
Linköping Studies in Science and Technology

Dissertation No. 1004

Admissible Heuristics for
Automated Planning

by

Patrik Haslum

Department of Computer and Information Science

Linköpings universitet

SE-58183 Linköping, Sweden

Linköping 2006

Abstract

The problem of domain-independent automated planning has been a topic of research
in Artificial Intelligence since the very beginnings of the field. Due to the desire not
to rely on vast quantities of problem specific knowledge, the most widely adopted ap-
proach to automated planning is search. The topic of this thesis is the development
of methods for achieving effective search control for domain-independent optimal
planning through the construction of admissible heuristics. The particular planning
problem considered is the so called “classical” AI planning problem, which makes
several restricting assumptions. Optimality with respect to two measures of plan
cost are considered: in planning with additive cost, the cost of a plan is the sum of
the costs of the actions that make up the plan, which are assumed independent, while
in planning with time, the cost of a plan is the total execution time – makespan – of
the plan. The makespan optimization objective can not, in general, be formulated
as a sum of independent action costs and therefore necessitates a problem model
slightly different from the classical one. A further small extension to the classical
model is made with the introduction of two forms of capacitated resources. Heuris-
tics are developed mainly for regression planning, but based on principles general
enough that heuristics for other planning search spaces can be derived on the same
basis. The thesis describes a collection of methods, including the hm, additive hm

and improved pattern database heuristics, and the relaxed search and boosting tech-
niques for improving heuristics through limited search, and presents two extended
experimental analyses of the developed methods, one comparing heuristics for plan-
ning with additive cost and the other concerning the relaxed search technique in the
context of planning with time. Experiments aim at discovering the characteristics of
problem domains that determine the relative effectiveness of the compared methods;
results indicate that some plausible such characteristics have been found, but are not
entirely conclusive.

Parts of the material in this thesis has previously appeared in the following papers:

Haslum, P., and Geffner, H. 2000. Admissible heuristics for optimal planning. In
Proc. 5th International Conference on Artificial Intelligence Planning and Scheduling
(AIPS’00), 140 – 149. AAAI Press.

Haslum, P., and Geffner, H. 2001. Heuristic planning with time and resources. In
Proc. 6th European Conference on Planning (ECP’01), 121 – 132.

Haslum, P. 2004. Improving heuristics through search. In Proc. European Conference
on AI (ECAI’04), 1031 – 1032.

Haslum, P.; Bonet, B.; and Geffner, H. 2005. New admissible heuristics for domain-
independent planning. In Proc. 20th National Conference on AI (AAAI’05), 1163 –
1168.

Haslum, P. 2006. Improving heuristics through relaxed search – an analysis of TP4
and hsp∗a in the 2004 planning competition. Journal of AI Research 25.

Contents

1 Introduction 1

2 Planning as Search 5

2.1 Sequential Planning . 5
2.2 Planning with Time . 12
2.3 Discussion: Planning Models and Methods 21

3 Relaxed Reachability Heuristics 35

3.1 Relaxed Reachability in the Planning Graph 36
3.2 hm Heuristics for Sequential Planning 38
3.3 hm Heuristics for Planning with Time 50
3.4 Discussion . 54

4 Pattern Database Heuristics 57

4.1 PDB Heuristics for STRIPS Planning 57
4.2 Constrained Abstraction . 65
4.3 Pattern Selection . 68
4.4 Discussion . 77

5 Planning with Resources 79

5.1 Discussion: Resources in Planning and Scheduling 79
5.2 Planning with Reusable Resources . 82
5.3 Planning with Consumable Resources 85

6 Cost Relaxation and the Additive hm Heuristics 97

6.1 The Additive hm Heuristics . 98
6.2 Partitioning the Set of Actions . 104

7 Improving Heuristics through Search 113

7.1 Relaxed Search . 114
7.2 Boosting . 138
7.3 Discussion: Related Ideas . 143

i

8 Conclusions 149

Acknowledgements 153

References 155

ii

1. Introduction

Planning is the art and practice of thinking before acting: of reviewing the courses
of action one has available and predicting their expected (and unexpected) results
to be able to choose the course of action most beneficial with respect to one’s goals.
Planning, alongside learning and language, is considered a hallmark of intelligence
and, not surprisingly, automatic planning has been one of the key goals of research
in Artificial Intelligence (AI) since the very beginnings of the field.
If planning is an archetypal AI problem, then search is the archetypal AI solution.
This thesis is about the application of search to planning. Specifically, it is about the
construction of admissible heuristics for the so called “classical” AI planning problem.
Admissible heuristics are essential for effectively solving hard combinatorial problems,
like the planning problem, optimally, i.e., for finding plans with guaranteed minimal
cost. Two measures of plan cost are considered: planning with additive cost (the cost
of a plan is the sum of the costs of the actions that make up the plan; here called
sequential planning) and planning with time (here called temporal planning; the cost
of a plan is in this case the total execution time – makespan – of the plan).

The Classical AI Planning Problem

Planning is an activity as varied as it is ubiquitous, yet whatever form the problem
takes, two facts remain. First, planning requires the ability to predict the results of
a plan of action, without actually having to carry it out, and prediction requires a
model of the dynamic system whose future state is to be predicted (in the literature
on AI planning, this is often referred to as the world model). Second, to plan requires
some notion of a goal.
To automate the process of planning requires a formal statement, or model, of the
problem. By varying the form in which the world model and the goal are expressed
and the properties they are assumed to have one can arrive at several different models
of what the planning problem is. In the study of automated planning certain problem
models have received particular interest: among them is the classical AI planning
problem (so called because it was formulated in the course of some of the earliest
efforts to construct automated reasoning systems, e.g., by Green, 1969, and Fikes and
Nilsson, 1971), but also other models of planning (such as motion or traffic planning;
see e.g. Hwang & Ahuja, 1992, or Patriksson, 1994, respectively).
Underlying the classical AI planning model is a view of planning as a state transfor-
mation problem: the world is seen as a space of states and the task of the planner is
to drive, through the application of actions, the world to a state satisfying the stated
goal. Several limiting assumptions are made: that world states are discrete, that the

1

planner’s model of the world is correct and complete, that the actions available to
the planner affect the world in predictable and deterministic ways and that the world
is static, in the sense that nothing besides the planned actions causes change to the
world (the assumptions of correctness and determinism of the model should not be
interpreted as an assumption that the world is modelled perfectly or that actions
never fail, but rather that the model is correct at the modelled level of abstraction
and that action failures, or other departures from the model, are infrequent enough
that it is not worthwhile to take them into account when planning). There are, how-
ever, many variations of the classical planning model and the exact boundaries of
what is “classical planning” are not easy to determine. A longer discussion of this
topic is made in chapter 2 (section 2.3).
In spite of the limitations of the classical planning model there are numerous ap-
plications, e.g. in the control of mobile robots (Beetz 2002), other robotic systems
(Jonsson et al. 2000) and industrial processes (Aylett et al. 1998; 2000) or in the
planning of large-scale human activities such as rescue operations (Biundo & Schat-
tenberg 2001), that fall, if not within the model, then close enough that the methods
developed for this problem are applicable with some modification.
There is in AI research a tradition of seeking solutions that combine general algorith-
mic techniques with declarative formalized knowledge of the specific problem and in
the area of planning this is manifested in the quest for domain-independence, i.e., a
separation of the planning engine from the world model, which is given to the auto-
mated planner as part of the problem, alongside the goal, in a suitable formalism. It
is this ambition of generality that makes the classical AI planning problem hard, even
with its many simplifying restrictions. In the complexity theoretic sense, it is as hard
as the hardest problem that can be formulated in the planner’s input language, and
the great variety in the problems that a domain-independent automatic planner can
be required to deal with is also a real and practical difficulty (consider, as an exercise,
the multi-UAV mission, (n2 − 1)-Puzzle and MRCPS example domains described in
chapters 2, 4 and 5, respectively, and what the differences between domain-specific
solution methods for each of them would be).
The world model and the goal are necessary inputs to the planning process, since they
inform the planner of what it needs to achieve and what means are at its disposal,
and in much of the work on classical planning it is assumed that this is the only
knowledge of the specific problem available to the planner. In many instances of the
planning problem, however, a lot of additional knowledge about the specific domain
is available, which may be taken advantage of to simplify the solving of problems in
the domain and thus to improve the performance of an automated planner. Thus,
there exists for approaches to automated planning a scale from “knowledge-light”
(relying only on the basic problem specification) to “knowledge-intensive” (requiring
large amounts of additional problem knowledge to function efficiently). In most cases
where automated planning has been applied to real-world problems, domain-specific
knowledge has been incorporated in the model (see e.g. Jonsson et al., 2000, or
Wilkins & desJardins, 2000) but there are also examples of applications for which
this has not been required (see e.g. Ruml, Do & Fromherz, 2005).

2

Admissible Heuristics for Automated Planning

The two desiderata of domain independence and of requiring no more problem knowl-
edge than necessary make search the most widely adopted – if not the only – approach
to automated planning (though there are many different ways in which this search
can be made; again, see the discussion in section 2.3 of chapter 2). Search control
is essential for making this approach efficient and heuristics, functions estimating
distance in the search space, are an important search control technique. To ensure
that plans found are optimal, i.e., guaranteed to have minimum cost according to
some measure of plan cost, heuristics are required to be admissible.
The topic of this thesis is the development of methods for automatic and domain-
independent creation of admissible heuristics for planning search. The problem model
considered is essentially the classical one, though the two measures of plan cost
considered require somewhat different models. In sequential planning, or planning
with additive cost, the objective is to minimize the sum of the costs of actions in
the plan, which are assumed to be independent. In planning with time, each action
has a specified duration and the objective is to minimize the total execution time
(makespan) of the plan. This objective can not, in general, be formulated as a
sum of independent action costs (because of this, planning with time is sometimes
considered to be an extension of the classical model). Another small departure from
the classical planning assumptions listed above is also made with the introduction
of capacitated resources (described in chapter 5) as in the extended model, world
states are no longer discrete. Heuristics are developed for the search space associated
with a particular method of plan search, viz. regression, but most of the methods
are based on principles general enough that methods for the creation of heuristics for
other planning search spaces can be derived on the same basis.

Contributions

This thesis compiles work done over the course of several years, and most of the
material has been published previously. This work is the result of a long term col-
laboration, primarily between myself, Héctor Geffner and Blai Bonet.
The main results are the development of two families of admissible heuristics and
of several techniques for improving the basic heuristics. The two families of heuris-
tics are the hm relaxed reachability heuristics for sequential and temporal regression
planning (introduced by Haslum & Geffner, 2000; 2001; the second paper also intro-
duced the adaptation of regression search to planning with time and resources) and
improved pattern database heuristics for sequential planning (introduced by Haslum,
Bonet & Geffner, 2005, building on earlier work on pattern database heuristics for
planning by Edelkamp, 2001). The improvements to the pattern database heuristics
are the use of a more powerful abstraction (constrained abstraction) and automatic
methods for pattern selection. The techniques for improving the basic heuristics have
been applied to the hm heuristics: For the case of sequential planning, an additive
version of the heuristic is created through cost relaxation (a generalization of the

3

principle behind additivity exploited in the construction of pattern database heuris-
tics; cost relaxation and the additive hm heuristic was also introduced by Haslum,
Bonet & Geffner 2005). The relaxed search and boosting methods (introduced in
Haslum 2004; 2006) improve heuristics by means of limited search, and are applied
to the hm heuristics for both sequential and temporal regression planning.
The main contribution of this thesis is a coherent, and far more detailed, presentation
of the material, not restricted by the chronology (or the, in some cases unfortunate,
terminology) of earlier publications, but it also presents some new ideas and results.
The formal proofs of a number of properties of the hm heuristics (in chapter 3),
including the equivalence of h2 and the planning graph heuristic for parallel planning,
are previously unpublished, as are the weighted bin-packing pattern selection method
(in chapter 4), the use of composite resources for improving heuristics when planning
with resources (in chapter 5) and a number of other minor improvements.
The experimental analyses presented here differ from those previously published in
that they are, in addition to being more detailed and in some cases more extensive,
aimed at discovering characteristics of planning problems that determine the relative
effectiveness of the different heuristics. The results of these analyses (particularly
those presented in chapters 6 and 7) are also an important contribution of this thesis
(although an earlier version of the analysis in chapter 7 appears also in Haslum 2006).

Organization

The next chapter contains background material on the sequential and temporal plan-
ning models and regression planning methods that form the context for the main topic
of the thesis. The extension of the planning models, and the corresponding regression
methods, with certain kinds of resources is described separately in chapter 5.
Chapters 3 and 4 introduce the two basic classes of heuristics, viz. the hm heuristics
and pattern database heuristics. Chapter 6 presents the principle of cost relaxation
and its application in the additive hm heuristic for sequential planning, while the
relaxed search and boosting techniques are covered in chapter 7.
Discussion and comparison with related work is distributed throughout the presen-
tation. In particular, alternative classical and slightly non-classical planning models
are discussed in chapter 2 (section 2.3), except for the treatment of resources in
planning, which is instead discussed in chapter 5 (section 5.1).
Likewise, experimental analyses are presented in conjunction with the heuristic or
method that is the topic of the analysis. As mentioned above, there are two ex-
perimental analyses of particular interest: In chapter 6 (page 105) the three main
heuristics for sequential planning (the h2, additive h2 and improved pattern database
heuristics) are compared, with results suggesting that the relative effectiveness of the
heuristics depends on certain properties of the problem domain. In chapter 7 (page
124) the relaxed search technique for improving the h2 heuristic is compared to the
basic h2 heuristic in the context of temporal planning, resulting in a partial charac-
terization of the problem domains in which relaxed search is cost effective.

4

2. Planning as Search

To solve any problem algorithmically, a formal model of the problem must be given.
To solve a problem by search, the formal model must be translated into a search space,
a search algorithm to explore the space must be chosen, and, in most cases, a heuristic
is needed to guide the search efficiently. The focus of this work is on the last of
these: admissible heuristics for domain-independent planning. Yet, knowledge of the
problem model and search space, and even some aspects of the search algorithm, are
a necessary background for the main topic. This chapter introduces that background:
it presents the first formal models of planning problems considered (which will be
somewhat elaborated in chapter 5) and describes how the planning problem can be
formulated as a search problem, via a technique known as regression (sections 2.1
and 2.2). Discussion of alternative planning models and ways of searching for plans
is postponed to section 2.3 at the end of the chapter.

2.1 Sequential Planning

The classical view of planning in AI is as a state transformation problem: the world
model consists of discrete states, and the task of the planner is to find a set of
steps to take in order to transform a given initial state into a state satisfying the goal
condition (Green 1969). The propositional STRIPS model of planning, introduced in
this section, adheres to this view, but is simplified compared to the original STRIPS
representation (Fikes & Nilsson 1971). It is essentially the model that was used
by Bylander (1991) in his analysis of the computational complexity of the planning
problem.
In the sequential case, the primary concern is the selection and ordering of actions
in the plan. Exact action execution times (absolute or relative) are not considered.
The cost model is additive: every possible action has a cost, and the cost of a plan
is the sum of the costs of actions in the plan. In most works on classical planning
unit costs are assumed for all actions, so that minimizing plan cost is equivalent to
minimizing the length of the plan.

The STRIPS Planning Model

A (propositional) STRIPS planning problem (P) consists of a set of atoms, a set
of action descriptions, an initial state description (I) and a goal description (G).
Each action a is described by three sets of atoms: the preconditions (pre(a)) and the
positive (add(a)) and negative (del(a)) effects. Associated with each action is also a
fixed cost (cost(a)), a real number greater than zero.

5

A state of the planning problem (world state) is a complete assignment of truth
values to the atoms of the problem. World states are normally described by the sets
of atoms true in each state. For action a to be executable in world state w, all atoms
in pre(a) must be true in w (i.e., pre(a) ⊆ w). If the action is executable, then in
the world state w′ resulting from its execution all atoms in add(a) are true, all atoms
in del(a) are false, and all remaining atoms keep the truth value they had in s (i.e.,
w′ = (w − del(a)) ∪ add(a)). The initial state description specifies a single world
state. Thus, in set form, I is a set of atoms and the initial state is one which assigns
the value true to atoms in I and false to atoms not in I. The goal description is
allowed to be partial, i.e., to specify a set of states. It is also a set of atoms, but with
the interpretation that the atoms in the set are required to be true in any goal state,
while remaining atoms are “don’t cares”. Thus, if w is a set of atoms describing a
world state, w is a goal state if G ⊆ w.
A sequence of actions, a1, . . . , an, is executable in a world state w if each ai is exe-
cutable in the state resulting from execution of the preceding sequence a1, . . . , ai−1.
A sequence of actions executable in the initial state of the problem and such that
the result of executing the entire sequence is a goal state (a state containing G) is a
plan. The cost of a plan is the sum of the costs of the actions in it.
In general, not all actions in a plan need to be a strictly ordered. A plan (or rather,
a set of alternative plans) may be represented as a partially ordered set of actions
(or action occurrences, since the same action can occur more than once in the plan).
The partially ordered set is a plan if every linearization consistent with the ordering
is a plan, according to the above definition.

Example: Blocksworld

The Blocksworld domain is a standard example in AI planning. It is a “toy example”,
in the sense that it does not model any conceivable real application, but it is a useful
example nonetheless, as it illustrates many different aspects of the classical planning
problem. (Note also that although it is a toy example, that does not mean it is easy:
solving it optimally is NP-hard, see Gupta & Nau, 1992.)
The Blocksworld domain involves a number of distinctly labeled blocks, set on a
table. Besides being on the table, blocks can be stacked on top of other blocks, but
there is room for at most one block to be on top of each block. A block with no other
block on it is said to be clear, and a block must be clear for it to be moved. The table
is large enough for all the blocks to be placed side by side on it. The problem is to
transform a given initial arrangement of the blocks into one satisfying a given goal
description, using a minimal number of moves. An example problem is illustrated in
figure 2.1.
The STRIPS model of the problem consists of atoms1 (on-table ?b), meaning

1We will use a PDDL-like syntax for examples throughout the thesis. Atom and action (and
later also resource) names are written in a schematic form (<SCHEMA-NAME> <ARG>*), where the
arguments are constants (i.e., the whole expression is the name of the atom or action). When

6

�

�

� �

�

�

�

�

�

(a) (b) (c)

Figure 2.1: Example Blocksworld problem: (a) arrangement of blocks corresponding
to initial state description {(on-table A), (on B A) (clear B), (on-table C),
(clear C)}; (b) – (c) two arrangements satisfying the goal description {(on A B)}.

block ?b is on the table, and (clear ?b), meaning ?b is clear, for each block ?b,
and atoms (on ?b ?c), meaning block ?b is stacked on block ?c, for each pair
of blocks. There are three separate actions for moving a block from the table to
another block, from being stacked on a block to the table, and from on top of one
block to another, respectively. As an example, the action (move ?b ?from ?to)
has preconditions (on ?b ?from), (clear ?b) and (clear ?to), adds atoms (on
?b ?to) and (clear ?from) and deletes atoms (on ?b ?from) and (clear ?to).
Since every action moves a single block, the optimization criterion is modelled by
assigning every action unit cost.

Properties of the STRIPS Planning Model

The plan existence problem, i.e., the problem of deciding if there exists a valid plan
for an arbitrary problem instance, in the propositional STRIPS planning model is
decidable. It is in fact PSPACE-complete, as shown by Bylander (1991). The same
also holds for the optimization problem of finding a valid plan of minimal cost for an
arbitrary problem instance.
If there exists a plan for a given problem instance, there exists a plan containing at
most 2n actions, where n is the number of atoms in the problem description. Since
actions are deterministic, an initial world state and a sequence of actions executable in
that state correspond to a unique sequence (of equal length) of world states resulting
from the execution of the action sequence. With n atoms there are only 2n distinct
world states so any longer plan must visit some world state at least twice. Since the
executability of an action, and therefore a sequence of actions, depends only on the
present world state (i.e., actions are Markovian) the plan remains valid if the cycle
(the part of the plan between the first and second visit to the world state) is removed.

describing example domains, we sometimes use parameterized schemata: symbols beginning with a
question mark (“?”) are parameters.

7

Invariants

The actions in a planning problem typically impose a certain amount of structure on
the world states that can be reached from the initial world state by execution of a
sequence of actions. A property of world states that is preserved by all actions in the
problem, and therefore holds in every reachable world state if it holds in the initial
world state, is called an invariant of the problem.
Invariants of a particular kind will be important to us, namely sets of atoms with the
property that at most one, or in some cases exactly one, of the atoms is true in every
reachable world state. For example, in the Blocksworld domain, at most one block
can be on top of another block, so for each block ?b at most one of the atoms (on ?c
?b) (for each ?c 6= ?b) should be true in any world state. The actions of the problem
do indeed maintain this property, so it is an example of an “at-most-one” invariant.
An example of an “exactly-one” invariant is the set of atoms (on-table ?b) and
(on ?b ?c) (for each ?c 6= ?b) which corresponds to the property that block ?b is
always in exactly one place (on the table or on one of the other blocks).
Invariants of this kind are very common in the problems that are frequently used as
examples or benchmarks in AI planning. An important special case is at-most-one
invariants consisting of only two atoms (this is often referred to as a mutex, short
for “mutually exclusive”; see section 3.1 in the next chapter). If a set C of atoms
is an exactly-one or at-most-one invariant, any (non-empty) subset of C is also an
at-most-one invariant. Hence, an at-most-one invariant can also be characterised as
a set of pairwise mutex atoms. The automatic extraction of invariants (and of other
properties of the planning problem) from the problem description is called domain
analysis, and there is a substantial amount of work on algorithms for such analysis
(e.g. Gerevini & Schubert, 1998; Fox & Long, 1998; Scholz, 2000; see Haslum &
Scholz, 2003 for more references).
The definition is easily generalized to “at-most-k” or “exactly-k” invariants, for ar-
bitrary k > 1, but such invariants are rarely, if ever, found in common example
problems (in fact, Fox & Long (2000) devised a suite of example planning problems
specifically rich in “two out of three” invariants to demonstrate a domain analysis
technique).

Planning via Regression Search

Regression, in AI parlance, means “reasoning backwards”. In the context of planning,
regressing a condition (on a world state) through an action yields a new condition
which ensures that the original condition holds in the state resulting from execution
of the action in any state satisfying the new condition (thus, the new condition must
imply the executability condition of the action).
Reasoning by regression leads to a planning method in which the search for a plan
is made in the space of “plan tails”: partial plans that end in a goal state, provided
certain conditions on the state in which they start are met. The condition is obtained

8

(on A B)

(clear B)
(clear A)
(on A C)}

(move A C B)

(clear B)
(clear A)

(on-Table A)

(move-from-table A B)

...

(clear C)
(on C B)
(clear A)

(on-Table A)

(move-to-table C B)

(clear B)
(on B A)

(on-Table A)

(move-to-table B A)

(clear B)
(clear A)
(on A C)

(move-to-table A C)

(clear C)
(clear B)
(on B A)

(on-Table A)

(move B A C)

...

Figure 2.2: Part of the regression search tree for the Blocksworld problem in figure
2.1. The leaf nodes drawn in bold are final states (sets of subgoals that are true in
the initial world state).

by regressing the goal condition G through the action sequence corresponding to the
tail end of the plan under construction, in reverse order. Search starts with an
empty plan, whose regressed condition equals G, the goals of the planning problem.
Successors to a plan tail are constructed by prepending to it a new action, such that
the action does not make the regressed goal of the partial plan unachievable. Search
ends when a partial plan whose regressed condition is satisfied in the initial state is
found.
In fact, it is not necessary to take the partial plan itself to be the search state: the
regressed goal condition provides a sufficient summary of what needs to be known
about it. Although different partial plans may result in the same regressed condition,
they are in this case equivalent, in the sense that their successors will also have
identical regressed goals, and either all or none of them are solutions. (Two partial
plans with identical regressed goal conditions may have different costs, but cost is a
property of the search space path, not the search state.) Thus, a sequential regression
search state is a set, s, of atoms, representing subgoals to be achieved. An action
a is applicable to a search state s (i.e., can be used to regress s) iff del(a) ∩ s = ∅,
i.e., if the action does not destroy any current subgoal. If action a is applicable, the
result of regressing s through a is s′ = (s − add(a)) ∪ pre(a), i.e., s′ contains the
preconditions of a and any subgoals in s that were not made true by a. Search starts
from the set of goals G and ends when a state s ⊆ I is reached.
An example of (part of) the search tree for the Blocksworld problem in figure 2.1
is shown in figure 2.2. There are two final states, i.e., sets of subgoals that hold in
the initial world state: {(clear B), (on B A), (on-table A)} and {(clear C),
(clear B), (on B A), (on-table A)} (these are the leaf nodes drawn in bold in
the figure). The corresponding plans can be found by tracing the paths from these
states back to the initial search state (the root of the tree) and reading off the

9

��� � ����� ��� �	��
�
��������������� ������ ����� � �

!"�
��������������� ������ �����#� �

!$�

%
'&�� &(� & �$��� &����) ��*�� � �
!"�

��) ��*�� � �
!$�

��+ � � ��, � ��� ��+ � � ��,-� ��� ��+ � � ��,-� ��� ��+ � � ��, � ���

Figure 2.3: Relation between regression search states on a solution path and the world
states resulting from the execution of the corresponding (reversed) action sequence.

associated actions: they are (move-to-table B A), (move-from-table A B) and
(move B A C), (move-from-table A B), respectively. The world states resulting
from the execution of these plans are the ones depicted in figures 2.1(b) and 2.1(c).

Regression and Invariants

A solution path in the sequential regression space is a sequence of sets of atoms
s0, s1, . . . , sn, such that s0 = G, i.e., the goals of the planning problem, si is obtained
by regressing si−1 through some action ai, and sn ⊆ I, i.e., the final state on the
path is a set of goals satisfied by the initial world state of the planning problem.
The sequence of actions used to regress states along the path, reversed, is executable
from the initial world state and its execution results in a world state in which all
atoms in s0 are true, i.e., a state satisfying the goal of the planning problem. In
fact, the sequence of world states generated by the execution of the reversed action
sequence is such that each world state satisfies the set of goals in the corresponding
regression state (this property, which implies correctness of the regression method,
can be shown formally by a straightforward induction on the length of the solution
path). The correspondence is illustrated in figure 2.3. Note also that any suffix
si, . . . , sn of the solution path is a solution path for si: thus, solving a regression
state s is equivalent to solving a planning problem with s as the problem goal.
Recall from the last section that an invariant of a planning problem is a property on
world states that is preserved by actions and that therefore holds in every reachable
world state if it holds in the initial world state. The correspondence between regres-
sion states on a solution path and world states reachable by an executable action
sequence implies that the goal sets on a solution path must be consistent with all
invariants of the planning problem that are true of the initial world state. Hence re-
gression states that are inconsistent with some invariant can never lead to a solution
and can therefore be pruned from the search tree. A regression state s is inconsistent
with an at-most-one or exactly-one invariant C iff |s ∩C| > 1, since in a world state
satisfying s all atoms in s must be true, while in any reachable world state at most
one atom in C can be true. (Note that s is not inconsistent with C if |s ∩ C| = 0,
even if C is an exactly-one invariant, since to satisfy s in a world state it is only

10

required that the atoms belonging to s are true, and atoms not belonging to s can
be either true or false.)
In many planning problems, pruning search states inconsistent with invariants is
important for the efficiency of the search. However, a good heuristic should also
detect the insolubility of such states and in this case invariants need not be checked
explicitly. This is demonstrated in the next chapter (section 3.2, page 46).

Commutativity

As noted above, it is often the case that a group of actions in a plan do not need
to be strictly ordered for the plan to work. This is sometimes due to actions being
commutative: two actions, a and a′ are commutative iff the sequences a, a′ and a′, a
are executable in exactly the same world states and also lead to the same resulting
state when executed in the same state. A set of actions is commutative iff every
pair in the set is. Under the assumptions of the sequential STRIPS planning model,
the condition for commutativity is that pre(a) ∩ add(a′) = ∅, pre(a) ∩ del(a′) = ∅,
add(a)∩ del(a′) = ∅, and vice versa, i.e., that neither action adds or deletes an atom
that is a precondition of the other, or deletes an atom added by the other.
In the same way as execution of two different sequences comprised of the same set of
commutative actions in the same world state leads to the same resulting world state,
regression of the same goal condition backwards through the two sequences result in
identical regressed conditions. Thus, the presence of commutative actions introduces
transpositions, alternate paths to the same state, in the regression planning search
space. (An example of a transposition, although one not caused by commutative
actions, can be seen in figure 2.2: the state {(clear B),(clear A),(on A C)} is
reached both by regression through action (move A C B) and by regression through
first (move-from-table A B), then (move-to-table A C).) Transpositions are a
source of inefficiency for linear-space search algorithms, such as IDA*, which do not
detect them and therefore may explore the same part of the search space several
times. General techniques for detecting (and thus avoiding) transpositions are based
on the use of additional memory (e.g. transposition tables; see Reinfeld & Marsland,
1994). Transpositions in the sequential regression planning search space that are due
to commutative subsequences of actions can be avoided by applying the following
rule: When expanding a state s, which was reached by regression through an action
a, an action a′ that is commutative with a can only be applied if, in addition to
the condition that del(a′) ∩ s = ∅, it follows a in a fixed arbitrary total ordering of
the set of actions (since the set of actions in a planning problem is finite, such an
ordering can always be found). This ensures that of the possible permutations of a
subsequence of commutative actions in a developing plan, only one is considered.
Enforcing such “commutativity cuts” is not unconditionally beneficial: the rule makes
the set of successors to a state dependent on the last action in the path by which the
state was reached, effectively making this action a part of the search state. Thus, the
rule eliminates paths from the search space, but at the cost of increasing the number
of distinct states. Hence, it is useful for linear-space search algorithms, such as IDA*

11

or DFS Branch-and-Bound, that suffer from transpositions, but actually harmful for
full-memory algorithms like A*.

2.2 Planning with Time

In most planning problems, the actual execution times of actions are not all equal – in
fact, they can vary a great deal. Also in many problems, it is desirable to synthesize
plans whose total execution time (known as the makespan of the plan) is minimal.
This objective can not, in general, be formulated as a sum of independent action
costs, and therefore requires an extended (temporal) model of planning problems.
Obviously, action durations must be specified. Also, when minimizing makespan
it is advantageous to plan actions that do not need to follow one another in time
concurrently, so the planning model must describe when this is possible. Actions that
are commutative in the sense defined above, and thus can be executed in arbitrary
order, may nevertheless interfere during their execution, so that they can not be
executed in parallel.
The temporal STRIPS planning model, introduced in this section, extends the STRIPS
model for classical planning only enough to enable makespan minimization. Except
for the addition of temporary delete effects, it is the model introduced with the
Temporal Graphplan (TGP) planning system by Smith & Weld (1999)

The Temporal STRIPS Planning Model

A (propositional) temporal STRIPS planning problem contains the same elements
as its non-temporal counterpart (a set of atoms, a set of action descriptions, and
initial state and goal descriptions). Each action a has preconditions (pre(a)), positive
(add(a)) and negative (del(a)) effects, but, in addition to these, also a set lock(a) of
atoms that are “temporarily deleted”, or “locked” by the action. Atoms in lock(a)
are destroyed by the action during its execution, but restored to their original truth
values before the action finishes. Locked atoms are a tool to model non-concurrency
restrictions in the planning problem. Each action also has a duration (dur(a)) greater
than zero. We assume that time is modelled by the extended rational numbers (i.e.,
the rational numbers together with +∞ and −∞), though extended integers or reals
could be used as well.
A schedule is a collection of action instances with specified start times, S = {(t1, a1),
. . . , (tn, an)}. The makespan of the schedule is the distance from the start time of the
earliest action to the end time of the latest. For simplicity, start times of actions in the
schedule are considered relative to the start time of the schedule, i.e., the start time
of the earliest action is assumed to be 0 (this means the makespan is max(t,a)∈S t +
dur(a)). A schedule is a plan iff every action in the schedule is executable at its
start time and the world state at the end time of the schedule satisfies the problem
goal description. For an action a to be executable over a time interval [t, t + dur(a)],
atoms in pre(a) must be true in the world state at t, and preconditions and positive

12

effects of the action (atoms in pre(a)∪add(a)) must not be destroyed (permanently or
temporarily) by any other action throughout the interval. This implies that persistent
preconditions (atoms in per(a) = pre(a) − (del(a) ∪ lock(a))) remain true over the
entire interval. Effects of the action take place at some (unspecified) point in the
interior of the interval, so (non-temporary) effects can be relied on to hold at the end
point.
Two actions, a and a′, are said to be compatible iff they can be safely executed
in overlapping time intervals. The assumptions listed above lead to the following
condition for compatibility: a and a′ are compatible iff (pre(a)∪ add(a))∩ (del(a′)∪
lock(a′)) = ∅ and vice versa, i.e., neither actions deletes (temporarily or permanently)
an atom required or added by the other action. Note that compatibility does not
imply commutativity (which requires also that neither action adds a precondition of
the other), nor does commutativity imply compatibility (since the former does not
take temporary deletes into account).

Example: Planning Multi-UAV Missions

The Multi-UAV Mission Planning domain models a fleet of autonomous unmanned
air vehicles (UAVs) whose joint task is to carry out a set of observations (of stationary
objects), as quickly as they can. The domain is inspired by the WITAS UAV project
(Doherty et al., 2004; the domain was originally designed by Per Nyblom). The
planning problem abstracts away many aspects of the real world. For example,
making an observation may involve complex image processing and reasoning, but
from a planning point of view it is simply a matter of moving a UAV to the correct
position for that observation and staying there for a short time. All UAVs are
assumed to carry the same sensor equipment, so any one of them can be used. The
intended UAVs are helicopters, but this fact is significant for the planning problem
only in that it implies that the UAVs are able to hover, i.e., to remain airborne at
a fixed position. The main complication is to ensure the UAVs are at all times kept
safely separated, in the air as well as on the ground.
To fit the problem into the temporal STRIPS model a finite set of “interesting” po-
sitions is assumed given, together with collision-free paths between those positions.
The position of each UAV is represented by atoms (at ?uav ?p), for ?p a position,
and atoms (airborne ?uav) and (on-ground ?uav) to indicate if the UAV is hov-
ering in the air or landed on the ground at the position. Atoms (free ?p), for each
position or path ?p are used to indicate that no UAV is currently on or dangerously
near the position or path. The action for flying a UAV along a path between two
positions, (fly ?uav ?from ?to ?path), has preconditions (at ?uav ?from) and
(free ?p) for every position and path that lies or passes within the safety distance
of the path ?path, except for those that are near the starting point ?from since these
will be occupied by the UAV itself and thus not free. The action deletes (at ?uav
?from) and adds (at ?uav ?to), and also deletes (free ?p) for any position or
path in the vicinity of the end point ?to and adds (free ?p) for corresponding posi-
tions or paths in the vicinity of the starting point. In addition, it locks (temporarily

13

deletes) (free ?p) for any position or path ?p that lies too close to the path flown
but not near the start or end positions. The duration of the action is calculated from
the path (this, and the generation of collision-free paths, is done by a specialized
path planner).
A small part of the map from an example problem is shown in figure 2.4. As can be
seen in the figure, the path between positions p0 and p42 crosses several other paths,
for example the path between p20 and p23, so the action of flying a UAV from p0 to
p42 locks (temporarily deletes) the corresponding atom, (free p20 p23). Because
the path passes within the safety distance of point p43, the action also locks atom
(free p43), as well as the free atoms corresponding to all paths starting/ending
in this point. It deletes (not locks) free atoms of all paths starting/ending in point
p42, since this position will be occupied by the UAV flying there from p0 at the end
of the action, but adds free atoms of paths starting/ending in point p0 since this
position was occupied by this UAV before the action (and therefore not by any other
UAV) but will not be after it is done.
Some important aspects of the mission planning problem are ignored in this model.
For example, UAVs can only stay in the air for a limited time (due to a limited supply
of fuel, among other things). This restriction is not captured by the planning domain
above, nor can it be using the temporal STRIPS model (except by imposing a limit
on the overall makespan of the plan). It is one example of why models of planning
problems often need to include resources, which will be dealt with in chapter 5.

Properties of the Temporal STRIPS Planning Model

The temporal STRIPS planning model has the property that all valid plans, indeed
all executable schedules, remain valid when sequenced, i.e., when all actions in the
schedule are placed in any sequence consistent with their ordering in the schedule.
This is because the model never requires actions to execute concurrently; concurrent
execution is only a means for reducing the makespan of plans. As a consequence,
the complexity of the plan existence problem for the propositional temporal STRIPS
planning model is the same as in the sequential case, i.e., PSPACE-complete (By-
lander 1991).

Temporal Regression Planning

Temporal regression, like regression in the sequential setting, is a search in the space
of plan tails, partial plans that achieve the goals provided that the preconditions
of the partial plan are met. In sequential planning, the atoms representing the
collected precondition of the plan tail provide a sufficient summary of the partial
plan, so search states are sets of (subgoal) atoms. In the temporal setting however,
actions may execute concurrently: in particular, at the starting time of an action
other actions may be on-going. Because of this, a set of precondition atoms is no
longer sufficient to summarize a plan tail. States have to include actions concurrent

14

�����

�����

�����

�����

�����

�����

�����

���

Figure 2.4: Part of the map for a UAV mission planning problem. The rectangles
represent bounding boxes around obstacles (buildings) rather than the actual geom-
etry of the obstacles. These include a safety margin, so paths that touch (but do not
enter) a bounding box are collision-free. Normally, paths may cross obstacle bound-
ing boxes if at a high enough altitude, but in this example the path planner has been
explicitly instructed not to do so. Point p0 is a UAV take-off/landing position, the
rest are observation positions.

15

����������	�
�������������

����������	�
�������������� ����������	�
����������

����������	�
� �������

�������!��	�
������������"�"�

����������	�
�������������
�������!��	�
����������#�� ����������	�
��!���"�"�

����������	�
������#��

� $��&%'�(%*)

Figure 2.5: Example of a schedule for a UAV mission planning problem with two
UAVs. (The corresponding planning problem is not the same as that shown in figure
2.4.)

with the subgoals, and the timing of those actions relative to the subgoals. Consider
the example plan in figure 2.5, and the world state at time 51.1 (marked in the
schedule by a vertical line). Since this is the starting point of action (fly uav1 p13
p0), the preconditions of this action must be subgoals to be achieved at this point.
But the action that achieves those conditions must be compatible with the action
(fly uav0 p10 p11), which starts 3 units of time earlier and whose execution spans
across this point.
A temporal regression search state is a pair s = (E,F), where E is a set of atoms
and F = {(a1, δ1), . . . , (an, δn)} is a set of actions ai with time increments δi. This
represents a partial plan (tail) where the atoms in E must hold and each action
(ai, δi) in F has been started δi time units earlier. Put another way, an executable
schedule achieves state s = (E,F) at time t iff the plan makes all atoms in E true
at t and schedules action ai at time t− δi for each (ai, δi) ∈ F .
When expanding a state s = (E,F), successor states s′ = (E′, F ′) are constructed by
chosing (non-deterministically) for each atom p ∈ E an establishing action (a regular
action a with p ∈ add(a), or a special “no-op” action with p as both precondition
and effect), such that the chosen actions are compatible with each other and with all
actions in F , and advancing time to the next point where an action starts (since this
is a regression search, “advancing” and “next” are in the direction of the beginning
of the developing plan). The collected preconditions of actions starting at this point
become E′ while remaining actions (with their time increments adjusted) become
F ′. More formally, let s = (E,F) be the state to be expanded. Let A be the set of
(non-deterministically) chosen establishers, a non-empty set of actions such that for
each a ∈ A, there exists some atom p ∈ E such that p ∈ add(a) and for no atom
p ∈ E does p ∈ del(a), and such that all actions in A ∪ F are pairwise compatible.
Let N = {p ∈ E | ¬∃a ∈ A : p ∈ add(a)}, i.e., the set N contains those atoms in E
that are not added by any of the actions chosen, and therefore must be supported by
no-ops. The successor state s′ = (E′, F ′) is now constructed by moving to the “next
interesting point” in time: this is the starting time of the action (or actions, if more
than one starts at the same time) in F ∪{(a, dur(a)) | a ∈ A} that is closest, i.e., has
the smallest δ value. Formally, the distance is

δadv = min{δ | (a, δ) ∈ F ∪ {(a, dur(a)) | a ∈ A}} (1)

16

Note that the no-ops supporting atoms in N are not included in the calculation: an
action with no effects other than the persistence of an atom can of course last for any
amount of time, and the selected no-ops are “stretched” just to the next interesting
time point. The two components of the successor state become

E′ = {pre(a) | (a, δadv) ∈ F ∪ {(a, dur(a)) | a ∈ A}} ∪N
F ′ = {(a, δ − δadv) | (a, δ) ∈ F ∪ {(a, dur(a)) | a ∈ A} ∧ δ > δadv}

Any actions starting at the new time point (whether they were in the parent state s
or added as new establishers) are removed from the successor state, and their precon-
ditions, together with any atoms that were supported by no-ops, become subgoals.
Remaining actions have their δ values decreased by the same amount, δadv. The
part of the plan tail that lies between the old and the new “current time point” is
effectively “forgotten”: it no longer matters what lies there, at least for the purpose
of the continued construction of the earlier part of the plan. (Once a final state has
been reached, the “forgotten” actions can be recovered from the solution path in the
search space by comparing the F component of each state along the path with that
of its predecessor.)
An example of successor construction is depicted in figure 2.6: 2.6(a) depicts the
state s = ({p1, p2, p3}, {(a1, 1), (a2, 2)}), i.e., a state with subgoals p1, p2 and p3,
and actions a1 and a2 scheduled at δ = 1 and δ = 2 time units earlier, respectively.
Suppose action a3, with duration 3, is selected to support atom p1, action a4, with
duration 1, is selected to support atom p2, and no action is selected for atom p3, which
is supported by a no-op. 2.6(b) shows the result of adding the selected actions to the
“front” of the plan tail. The smallest δ among all scheduled actions in the resulting
state is 1, so this is the value of δadv. The construction of the successor is finalized by
advancing the “current time point” by this amount, as shown in 2.6(c). Actions a1

and a4, which start at this point, are forgotten and their preconditions together with
atom p3, which was supported by a no-op, become the subgoals of the successor state.
The complete successor state is s′ = ({p3} ∪ pre(a1) ∪ pre(a4), {(a2, 1), (a3, 2)}).
The initial search state is s0 = (G, ∅), i.e., the state containing the goals of the
planning problem and no scheduled actions. A state s = (E,F) is final if F = ∅
and E ⊆ I. The time increment δadv defined by equation (1) above is the amount
that the makespan of the plan tail increases between state s and its successor s′, and
therefore it can be considered the “cost” of the transition from s to s′. When a final
state is reached, the sum of the transition costs along the solution path (the path
from the root to the final state) equals the cost (makespan) of the corresponding
plan.
The search space defined above is sound, in the sense that any solution path found
corresponds to a valid plan, but not all valid plans have a corresponding solution
path. In a temporal plan there is often some “slack”, i.e., some actions can be shifted
forward or backward in time without changing the plans structure or makespan, and
because time is represented by the dense rational numbers, the set of such small
variations of plans is infinite. The plans found in the temporal regression space are
such that a regular action (not a no-op) is executing at all times and no-ops start

17

���

���

���

���

���

���

���

���

���

����	�

�	

�������
���

�
	

������������
��	
��������
���

(a) (b) (c)

Figure 2.6: Illustration of the temporal regression process: (a) the state to be ex-
panded; (b) the selected establishers added; (c) the resulting successor state, after
the “current time point” has been moved.

only at the times where some regular action starts. For the present planning model,
however, this is enough to ensure that some optimal plan will be found (assuming
any plan exists at all).

Incremental Successor Construction

Heuristic search algorithms that find optimal solutions use an admissible heuristic to
estimate the cost of states encountered during the search. For any non-final state,
the admissible heuristic yields a lower bound on the cost of any solution reachable
through that state. Different search algorithms use this information in different ways:
in algorithms that perform cost-bounded search, such as IDA* or DFS branch-and-
bound, it is of vital importance for the efficiency of the search that if the estimated
cost of a successor state found during state expansion exceeds the current cost bound,
this is detected as early as possible.
Therefore, in practice, temporal regression is done incrementally. The set of estab-
lishers is not selected simultaneously, but rather for one subgoal at a time, and the
partially constructed successor state is evaluated after each selection to determine if
its estimated cost is still within the bound. A recursive version of this incremental
regression procedure is sketched in figure 2.7. The procedure is called initially with
the E and F components of the state being expanded and empty sets of selected
actions and no-ops. The procedure for evaluating (partial) states takes as arguments
the set of actions and no-ops that will go into the final successor construction (in-
cluding both those inherited from the expanded state and those newly selected), as
well as the set of subgoals that remain to be dealt with, and returns an estimate
of the cost of the successor state (actually an estimate of the estimated cost of the
successor state plus the transition cost from the current state). It is described in
more detail in the next chapter.
Another unspecified step of the procedure is how to pick the next subgoal atom to

18

TemporalRegress(E, F, selected, noops)

{

if (E is empty) {

finalize construction of successor state s’;

ContinueSearch(s’);

}

g = pick next atom in E;

// if g is a precondition of an already selected action, it

// is not necessary to consider any establisher for g

if (g in pre(a) for some a in selected) {

TemporalRegress(E - {g}, F, selected, noops + {g});

}

// try supporting g with a no-op

est. cost = eval(F + selected, noops + {g}, E - {g});

if (est. cost <= bound) {

TemporalRegress(E - {g}, F, selected, noops + {g});

}

// try each possible supporting action for g in turn

for (each action a such that g in add(a))

if (a compatible with F and selected) {

est. cost = eval(F + selected + {a}, noops, E - {g});

if (est. cost <= bound)

TemporalRegress(E - {g}, F, selected + {a}, noops);

}

}

Figure 2.7: Recursive algorithm for incremental temporal regression.

regress (g in the procedure in figure 2.7). The order in which this is done makes no
difference for the completeness of the procedure (since all atoms must be regressed
eventually), but can affect efficiency. Since the aim is to discover cost bound viola-
tions as early as possible, a sensible strategy is to choose first the atom expected to
be the most “difficult” (costly) and the same heuristic function that is used by the
state evaluation can be used also to estimate this.
Complementary to the early detection of cost bound violations is early detection
of final states. Recall that a state is considered final only if it consists of a set
of subgoal atoms that are true in the initial world state and the set of scheduled
actions is empty. In practice, this condition can be relaxed to include also states
containing some scheduled actions, if the preconditions of those actions all hold in
the initial world state. An example can be seen in the plan in figure 2.5, at the
time marked 4.6: the state at this point consists of E = pre((fly uav0 p0 p10))
and F = {((fly uav1 p1 p13), 4.6)}, and both sets of preconditions are initially
true. In such a state, there is no reason to consider any way of establishing current
subgoals (or preconditions of actions with a δ value smaller than the greatest) other
than by persistence from the initial world state, since this will yield a valid plan and
there is no way to obtain one with a smaller makespan as an expansion of this state
(the current time point must be advanced by an amount at least equal to the greatest
δ among the already scheduled actions to include the starting time for all of these).

19

���
���

�

����

	�
�
��� ������

���
���

�

����

�
	�������� ���� � �
	����

(a) (b)

Figure 2.8: Illustration of the right-shift cut rule: Suppose action a3 adds p, and is
compatible with actions a1 and a2. In figure (a) action a3 is positioned as early as
possible (left-shifted) and p is supported by a no-op from the end of a3 to the point
where it is required to hold. In figure (b) action a3 is positioned as late as possible
(right-shifted) and its preconditions are supported by no-ops until its starting point.
The right-shift cut rule eliminates the first possibility, by excluding a3 as a possible
establisher for p in state s′ since p was supported by a no-op in the predecessor state
s and a3 is compatible with all actions in the F component of s.

Right-Shift Cuts

Even though no-ops in plans corresponding to paths in the temporal regression space
are restricted to start only at times where some regular action starts, it may still be
possible to shift some actions forward or backward in time. Again, an example can
be found in the schedule in figure 2.5, where e.g. the action (fly uav0 p0 p10),
which starts at time 4.6 and is preceded by a no-op supporting the precondition of
the action, could start at time 0 instead and followed by a no-op supporting the atom
(at uav0 p10) which is added by this action and needed by the action (observe
uav0 p10) that follows.
A right-shifted plan is one in which all such movable actions are scheduled as late
as possible. Non-right-shifted plans can be excluded from consideration without
endangering optimality. Like the commutativity cuts in sequential planning, this
eliminates redundant paths in the search space. Right-shifting is ensured by applying
the following rule: When expanding a state s′ = (E′, F ′) whose predecessor is s =
(E,F), an action a that is compatible with all actions in F may not be used to
establish an atom in s′ when all the atoms in E′ that a adds have been obtained from
s by no-ops. The reason is that a could have been used to support the same atoms
in E, and thus could have been shifted to the right (delayed). The application of the
rule is illustrated in figure 2.8. Note that the right-shift cut rule, like commutativity
cuts in sequential planning, introduces a dependency on the predecessor state, and
therefore also effectively increases the number of distinct states.
From an execution point of view, it may be preferable to place actions whose exe-
cution time in the plan is not precisely constrained as early as possible (left-shifted)
rather than at the latest possible time. From a search point of view what matters is
that of the many possible, but structurally equivalent, positions in time for an action,
only one is considered. The reason why right-shifting is used instead of left-shifting

20

is that in a regression search, a left-shift rule will “trigger” later (deeper in the search
tree) and thus be less efficient.

Parallel Planning

An important special case of temporal planning is so called parallel planning, in
which all actions have unit duration. This may be because action durations really
are all equal (or near equal enough that the differences are of no practical concern).
Also, for some domains, heuristic estimates of “parallel length” are more accurate
than heuristics for sequential plan length (summed unit cost), so when the cost or
makespan of the plan does not matter (the interest is simply in finding a valid plan)
it is sometimes more efficient to search for parallel plans. When parallel planning
was introduced, with the Graphplan planning system (Blum & Furst, 1997; see also
next chapter), this was an important part of the motivation.
If the restriction to unit durations is made, temporal regression search may be simpli-
fied somewhat (generally resulting in improved performance). The most important
consequence of the restriction to parallel planning is that the set of scheduled actions
in a search state will always be empty. This is the case for the initial search state,
which contains only the set of goals of the planning problems. When this state is
expanded, the makespan increment between the state and its successors, δadv, which
is defined as the minimum δ value of all scheduled actions in the state, will in this
case equal the (unit) duration of any action just added, and since the durations of
all the added actions are the same, they will all be “forgotten” so that the successor
state again contains only atoms (the preconditions of the chosen actions, plus atoms
supported by no-ops). This property of regression states in parallel planning sim-
plifies the implementation of the search and the heuristic evaluation of such states,
compared to the temporal case.

2.3 Discussion: Planning Models and Methods

Having introduced the underlying models of classical and temporal planning and
the corresponding regression methods for translating planning problems into search
problems, on which the remainder of this work is based, we discuss in this section
some of the rationales for adopting these models and methods, and some alterna-
tives. The discussion is not intended to be an overview (or history) of research in
AI planning in general, but since the development of models for describing planning
problems is closely related to the development of systems for solving such problems,
a certain amount of systems name-dropping is unavoidable. Hendler, Tate & Drum-
mond (1990) provide a good account of AI planning up to that time; Weld (1999)
covers more recent developments. The textbook by Ghallab, Nau & Traverso (2004)
gives a more thorough introduction to AI planning, and an up-to-date and widely
scoped summary of variations on the planning problem, techniques and applications.
It is fair to say that the propositional STRIPS model is the simplest possible formal

21

model of classical planning problems. Likewise, the temporal STRIPS model is the
simplest possible in the sense that it is the smallest extension of the classical STRIPS
model that is necessary to allow for planning with makespan optimization (although
the temporary delete effects constitute a slight complication which could be done
away with for an even simpler model). This simplicity is precisely the reason why
these models have been chosen as the basis for this work: our primary topic is
admissible heuristics for planning and principles by which such heuristics can be
derived, and both the discovery and presentation of those principles benefit from
being made in a setting as simple as possible. But simplicity does not come without
a price: the expressive power of the chosen models is less than that of some of the
alternatives, in particular in the case of temporal planning. Applying the lessons
learned in this most basic setting to more expressive models is a logical direction
for the continuation of this research. As noted above, however, the plan existence
problem in the propositional STRIPS representation is PSPACE-complete (Bylander
1991). Thus, the simplicity of the representation does not imply computational
simplicity.

Models for Classical Planning

Underlying the STRIPS model of classical planning is a view of plan execution that
can be coarsely summed up as “actions, when executed under specific conditions,
cause change to the world state.” This leads to the view of plans as paths in a
state space, and of planning as a state transformation problem. The model rests
on a a set of assumptions (collectively known as the STRIPS assumptions), viz.
that the planners description of the world is correct and complete, and that the
world is deterministic both w.r.t. to the actions available to the planner and in the
sense that nothing besides actions in the plan change relevant parts of the world
while the plan is executed. The model can be traced to some of the earliest AI
planning systems (the QA3 system by Green (1969) and the STRIPS system by
Fikes and Nilsson (1971) which lent the model its name; although the QA3 system
employed general deductive reasoning, it was with a theory of actions similar to the
STRIPS model) – hence the epithet “classical”. However, the expression classical
planning is normally understood to encompass more than the STRIPS model. The
exact boundaries of classical planning are not easily determined, though typically
any planning model that accepts the STRIPS assumptions is said to be classical.
Hierarchical task decomposition models are an important borderline case, and will
be discussed separately at the end of this section.
The original STRIPS representation is a finite first order, or “lifted”, representa-
tion. This means predicates and parameterized action schemata are used in place of
propositions and actions, but there is a finite set of constants with which predicates
and action schemata can be instantiated (the restriction to a finite set of constants is
essential: if the predicates and action schemata can be instantiated with arbitrarily
nested function symbols, the corresponding plan existence problem is undecidable;
see Chapman, 1987 or Ghallab, Nau, & Traverso, 2004, chapter 3). A problem in

22

lifted representation can be transformed into an equivalent propositional problem,
equivalent in the sense that a valid plan exists for the transformed problem if and
only if one exists for the problem as originally stated (this plan also has the same op-
timal cost), a process commonly called grounding. The resulting propositional prob-
lem, however, may become exponentially larger. This increase in size is unavoidable,
since the plan existence problem for lifted STRIPS is EXPSPACE-hard (Erol, Nau,
& Subrahmanian, 1991; Ghallab, Nau, & Traverso, 2004, chapter 3). In spite of this,
grounding is done internally by many modern planning systems (see e.g. Hoffmann
& Koehler, 2000). Planners that work with the lifted representation internally (e.g.
UCPOP and its many descendants (Penberthy & Weld 1992); or IxTeT, Ghallab &
Laruelle, 1994; Trinquart, 2003), can benefit from having a smaller number of options
to consider (and thus a smaller branching factor for the search) by using partially
instantiated action schemata and from being able to recognize symmetric options (a
very important capability for some planning problems; see Fox & Long, 1999) but
must deal with the additional complexity of managing constraints on the possible
values of uninstantiated parameters. The potential benefit of using a lifted represen-
tation may also diminish with the introduction of cost-estimating heuristics, if the
cost of an action is permitted to depend on the instantiation of the parameters of
the corresponding action schema. Younes & Simmons (2002) compare the the use of
lifted and grounded internal representations in the context of partial order planning
and conclude that the advantages of grounding can for the most part be recaptured
in a lifted representation through extended use of constraints and some modifications
to the search strategy. In their empirical comparison, the improved lifted planner
often demonstrated better efficiency, but with significant variation across different
planning problems.
The STRIPS representation has been extended in many ways, while staying within
the confines of the classical planning model. For example, the ADL representation
(Pednault 1988) allows action schemata to have complex preconditions (essentially
first-order formulas, including quantified formulas), to specify sets of effects by quan-
tifying variables appearing in the effect description, and to specify for each individual
effect of an action additional conditions that must hold for that effect to take place
when the action is executed (so called conditional effects). These extensions can all
be “compiled away”, i.e., a problem description using them can be transformed into
an equivalent problem in basic STRIPS representation, although again at the cost
of a potentially exponential increase in size (Gazen & Knoblock 1997) or changes
to the structure of solution plans such that the compilation does not preserve op-
timal solution cost (Nebel 2000). The STRIPS representation and some extensions
have, relatively recently, been unified in the Planning Domain Definition Language
(PDDL; see McDermott et al., 1998, and Bacchus, 2000). The primary purpose of
PDDL has been to enable a series of planning system competitions, but due to suc-
cessive additions of new features to the representation it has also been one of the
forces pushing automated planning to deal with new challenging problems.
A feature found in the problem representations of many early planning systems (in-
cluding the aforementioned QA3 and STRIPS), which were strongly influenced by

23

the use of logic to represent knowledge, is a so called background theory: a set of
logical axioms about the problem domain that may, for example, define predicates
in terms of other, more basic, relations, express invariants (of the kind discussed be-
low, or others), or rules for determining indirect effects of domain actions. However,
since entailment in first-order logic is only semi-decidable in general, the use of an
unrestricted background theory makes the planning problem (at best) semi-decidable
as well. As the planning problem later received a more formal treatment (e.g. by
Chapman (1987), Bylander (1991) and others) the problem model was simplified
and the background theories discarded. Practical planning systems maintained the
use of background theories, but with strong restrictions on the inferences made (see
e.g. Wilkins, 1983). Recently, background theories in a restricted form were reintro-
duced, in version 2.2 of PDDL (Edelkamp & Hoffmann 2004). PDDL 2.2 allows so
called derived predicates, which are defined by a set of rules evaluated recursively (in
PROLOG style), rather than part of the world state. This restricted form of theory
allows, e.g., the transitive closure of a relation to be expressed, but is still compilable
into the basic representation (Thiebaux, Hoffmann, & Nebel 2003).
The state variable representation (Bäckström 1992; Sandewall & Rönnquist 1986)
replaces the logical propositions of the STRIPS representation by variables with finite
ranges of values, but embodies the same planning model: in fact, it is expressively
equivalent with propositional STRIPS (for each variable v and value c, “v = c”
is essentially a proposition; a formal proof of equivalence is given by Bäckström,
1992). However, describing the world state by non-binary variables makes some
of the structure of a planning problem explicit, since a state variable expresses an
exactly-one invariant (as described in section 2.1, page 8, above) over the set of values.
In the Blocksworld domain, for example, each block is in each world state in exactly
one place (on the table or on one of the other blocks) and has exactly one “thing”
on top of it (either nothing, or one of the other blocks). These properties of the
domain are reflected in the fact that atom sets {(on-table ?b), (on ?b ?c) | ∀?c
6= ?b)} and {(clear ?b), (on ?c ?b) | ∀?c 6= ?b)} are exactly-one invariants. In a
state variable representation the position of block ?b can be represented by a variable
pos(?b) with values on-table and on(?c) (for each ?c 6= ?b), making the invariant
explicit. We make use of the state variable representation in the construction of
pattern database heuristics, in chapter 4.

Models for Planning with Time

Planning problems including various temporal aspects have been addressed by sev-
eral AI planning systems: actions with explicit duration, goals with deadlines and
external events (events not under the control of the planner, but occurring at known
times) were introduced by Vere (1983) and by Allen & Koomen (1983); the IxTeT
planning system (Laborie & Ghallab 1995) combined durative actions with a model
of resources, allowing finer control of concurrency and more; the planning model of
the Zeno system (Penberthy & Weld 1994) described the world by continuous vari-
ables and actions causing continuous change to those variables; to name just a few.

24

Makespan minimization was made explicit in the TGP planning system (Smith &
Weld 1999). However, it is closely related to planning with goal deadlines (which is
essentially the decision version of the optimization problem). Due to the variation
in the set of problem aspects addressed by each system and in the solution methods
employed (and perhaps also in the philosophical standpoints of their creators, as is
not uncommon in the field of AI) no common model for planning with time has been
widely adopted, like the STRIPS model has for classical planning. Planning with
time is also closely related to scheduling: it always includes an element of scheduling,
in that actions in the plan are positioned in time, and any scheduling problem can
be stated as a planning problem with very limited action choice (given a problem
representation that is sufficiently expressive, in particular w.r.t. resources); on the
other hand, complex real-world scheduling problems (e.g. in transportation, Becker
& Smith, 2000 or manufacturing, Barták, 2004) usually involve a significant element
of planning (in the sense of action selection) and probably most temporal planning
problems can be stated as scheduling problems (given a problem representation with
a sufficiently rich model of choice). For example, the multi-UAV planning problem
could be (loosely) stated as a scheduling problem with sequence-dependent setup
times: the observations are the tasks to be scheduled, the UAVs are resources re-
quired by those tasks, and positioning a UAV for an observation is the setup activity
required to bring the resource into the correct state for the task (although this state-
ment of the problem ignores the complication that the time required for repositioning
a UAV can depend on the state, i.e., position, of other UAVs, due to the safe sep-
aration constraint). A more developed example of translating a planning problem
into a scheduling problem is presented by Bedrax-Weiss, Crawford & Smith (2004).
So, in our review of models for planning with time we should also consider models of
scheduling problems, which complicates the discussion since the two research fields
have (until quite recently) been relatively separate, and have developed somewhat
different basic concepts and terminology.
In coarse terms, two different kinds of models for planning with time can be distin-
guished: models descended from the classical planning view of planning as a state
transformation problem typically describe actions by the (more or less) abstracted
process of their execution, while so called “activity centered” models describe the
requirements and constraints on the composition of actions (or activities), rather
than the actions themselves. Like the classical view was summarized as “actions,
when executed under specific conditions, cause change to the world state,” the ac-
tivity centered view can be summed up as “activities, subject to resource and other
constraints, are executed to satisfy requests” (this is a very simplified rephrasing
of the scheduling ontology presented by Smith & Becker, 1997). Activity centered
models definitely dominate problem representations among scheduling systems and
integrated planning/scheduling systems originating in a scheduling perspective (e.g.
Muscettola, 1994), but can be seen also in hierarchical task decomposition models for
classical planning and in models based on AI knowledge representation formalisms
(Allen & Koomen 1983). It should be noted, however, that this distinction between
“state transformation” and “activity centered” models is mostly conceptual, and

25

probably does not have much practical significance. Both views can be “instanti-
ated” in a variety of different ways, resulting in models with different expressive
power, and most known solution techniques can probably be applied to models of
either kind.
In most applications of planning, the actual execution of an action in reality is a fairly
complex process, involving concurrent processes that cause continuous change to the
world state over time and events that cause those processes to begin, end, and follow
in sequence. The descriptions of world and actions in the classical STRIPS model
are abstractions in which all aspects of the execution process except its necessary
conditions and lasting effects are ignored. Temporal planning models based on the
classical view simply retain a little more of the original complexity, i.e., describe
the execution of actions in a slightly less abstract way. Depending on how, and to
what level, the abstraction is made, it is possible to arrive at many different models,
with different expressive power and different problem complexity. In most models
the continuous variables of the world state are abstracted to logical properties and
the continuous changes caused by actions are abstracted to events, corresponding to
changes in the abstract world state (examples include the problem representations of
planning systems such as Deviser (Vere 1983) and IxTeT (Ghallab & Laruelle, 1994;
see also Ghallab, Nau, & Traverso, 2004, chapter 14), version 2.1 of PDDL (Fox &
Long 2003), and the temporal STRIPS model), though this is not the case for all
planning models (the aforementioned Zeno system (Penberthy & Weld 1994) and a
more recent version of the IxTeT system (Trinquart & Ghallab 2001) both work with
models that include continuous change).
For example, consider the action of flying a UAV along a path (discussed in section
2.2, page 13). The execution of this action actually consists of an initial turning
phase, during which the UAV is still in hovering control mode, followed by a sequence
of path segments flown in trajectory following mode and a final transition back to
hovering control. At the end of the last segment, and at the end of any segment
followed by a segment with sharper curvature, there is also a braking phase. During
hovering and trajectory following, concurrent processes (feedback controllers) control
the vertical and horizontal velocity of the UAV. Figure 2.9(a) shows a schematic
illustration of this action. In the UAV mission planning problem, as it was described
in the preceding section, the horizontal position of a UAV ?u is abstracted to a set
of propositions (at ?u ?p), where ?p ranges over a finite set of discrete points of
interest, and the vertical position is even more abstracted, with only a proposition
(airborne ?u) to distinguish when the UAV is in the air from when it is on the
ground. The action of flying the UAV along the path from, e.g., point p0 to point
p42 (shown in the map in figure 2.4) makes (at ?u p0) false at a time point near
the start of the action (from a few up to perhaps 15 seconds, depending on the length
of the initial turning phase) and makes (at ?u p42) true near the end of the action
(say within the last 10 seconds). Preconditions of the action are associated with time
intervals during which they are required to hold, rather than with time points. For
example, the precondition (airborne ?u) of the flying action is required to hold
before and throughout the entire execution of the action while the precondition (at

26

(a)

���������
	����� ��� ����������������� ��� ����� ����������! ��� �����

(b)
���������
	�����������
��������������� ���
	�������������������� ����������� � !��

�#"�� �������
���
	��$�#"�� ��%�&('���� ���
	����#"�� ��%�& !����

���
	����#"�� �)� � !����

Figure 2.9: Schematic illustration of the action of flying UAV ?u along the path be-
tween points p0 and p42: (a) the control modes and continuous evolution of the world
state (heading, altitude, velocity) during and surrounding the action; (b) abstracted
view of the action (incomplete).

?u p0), which is destroyed by the action, is only required to hold up to the point
at which that effect takes place. Figure 2.9(b) shows part of the abstraction of the
action.
Effect time points and precondition time intervals can be, and in fact normally are,
related, as illustrated by the example action above. While effect time points can also
be related exactly to the start and end of the action, they are usually only constrained
to certain intervals within the duration of the action as the continuous processes
underlying events are typically too complex to be predicted with perfect accuracy
(indeed, even the duration of the action is usually only known to be within an interval,
as the end of the action is typically also defined by an event). An action model that
specifies the time of effects too precisely will often not be a correct description of the
action’s execution, and thus plans made on the assumption of such a model will run
a high risk of failing when executed. As described above, the execution of the action
of flying the UAV along the path to point p42 consists of invoking a sequence of
feedback controllers which each runs until a terminating condition is achieved. The
time this takes depends of course on the path flown, but also on many other factors,
e.g., wind speed and direction, the current load on the UAV and the accuracy of
its position estimate, all of which conspire to make estimating the exact duration of
the action practically impossible. An inexact estimate is relatively easy to obtain,
however, as the unpredictable factors rarely induce a deviation by more than a few
percent of the time predicted by an idealized model.
The temporal STRIPS model is simply the least detailed abstract process model
possible: the effects of an action, permanent as well as temporary, are minimally
constrained, i.e., only to occur at some point in the interior of the interval of the

27

actions execution, and the duration of the action is wide enough to ensure that it
encompasses all effects (under normal circumstances). Because of this, the model
is sometimes referred to as having a conservative action semantics. The high level
of abstraction does limit the expressive power of the representation, compared to
models that allow more precise specification of effect times (e.g. the IxTeT problem
representation, or PDDL 2.1). For example, the action description depicted in figure
2.9(b), even though it is a conservative abstraction of the actual action execution,
does not require that the condition (free p42) is true immediately at the start of
the action, which the corresponding action in temporal STRIPS representation must
do. Thus, a planning problem described using model of higher resolution could have
solutions in which a second UAV arrives at point p0 after the UAV en route to p42 has
vacated it, but well before the time at which it arrives at p42. However, expressive
power can be increased in other ways as well, for example by allowing the STRIPS
assumption that the truth of state propositions persist until affected by an action to
be selectively relaxed (this was noted already by Vere, 1983). An extension of this
kind to the model, in which state persistence can consume resources, is examined in
chapter 5.
A final point to remark on regarding the temporal STRIPS model, as it has been
defined here, is the use of rational numbers to model time, since it is more common to
model time by the (positive) reals. This is mainly a matter of convenience. Modelling
time by real numbers would give the model an increased expressivity, in that non-
rational action durations could be specified exactly, but since action durations are
generally conservative estimates, and thus not exact to begin with, the error induced
by approximating such durations with a rational number (which can also be made
arbitrarily small) is probably of no practical significance. Moreover, our techniques
for temporal planning (temporal regression and associated heuristics) would work as
well with the extended reals, or integers, since the operations required of the time
domain are only addition, subtraction and comparisons. Note in particular that the
existence of a smallest non-zero increment is not required. However, a complication
which is of practical significance is that the temporal regression method requires the
ability to reliably determine equality between time expressions (sums of constants).
Standard floating point representations of real numbers do not offer this functionality,
due to the possibility of round-off errors.
The constraint-based interval (CBI) temporal planning model was introduced with
the HSTS planning/scheduling system (Muscettola, 1994, though the model of Allen
& Koomen (1983) is very similar; the term “constraint-based interval” was introduced
by Smith et al., 2000). It is an example of a model based on the activity centered view,
and probably the model of this kind that has had the most influence on developments
in planning, outside of HTN planning, perhaps due to the fact that it has been used
in some very high-profile applications (e.g. the NASA Remote Agent Experiment;
Jonsson et al., 2000). The fundamental concept in the CBI model is a time line,
which is a function from time to values representing some aspect of the world state.
A time line can also be seen as the history (or evolution) of a single state variable
over the course of the plan. Such a variable can represent not only state, in the

28

conventional sense, but also on-going activity. Time line values are ascribed meaning
by constraints, which describe the valid transitions between values on each time line
and dependencies between values on different time lines (this use of constraints to
describe the planning problem is not the same as the use of constraints and CSP
techniques to represent and reason with search states, which has been applied also in
planning systems using temporal STRIPS or similar models). A planning problem
is specified by a partial description of the set of time lines, consisting of assertions
about the values held by variables over intervals of time, and the task of the planner
is to complement this description with additional assertions and further constrain
the assertion intervals, until all constraints of the problem are satisfied.
For example, in the temporal STRIPS model of the UAV domain the fact that UAV
?u is hovering at a position ?p is represented as state (by the two propositions
(airborne ?u) and (at ?u ?p)), while the fact that the UAV is flying along a
path between two positions is represented by an action. In a CBI model of the
UAV domain, the two modes of operation could be represented identically, by a vari-
able state(?u) (representing the “state” of UAV ?u) with values hovering(?p) and
flying(?p0,?p1). Examples of constraints in this domain could be that any interval
in which the value of state(?u) is flying(?p0,?p1) must be immediately preceded
by an interval in which the value is hovering(?p0) and immediately followed by
an interval in which the value is hovering(?p1), and that the length of the inter-
val lies within the (predicted) minimal and maximal time required to fly the path
from ?p0 to ?p1. The requirement that UAVs are kept safely separate could be en-
forced by constraints specifying that any interval in which the value of state(?u0) is
hovering(?p0) must be disjoint from all intervals in which the value of state(?u1)
is hovering(?p1) or flying(?p1,?p2), for every other UAV ?u1 and every position
and path too close to ?p0. An instance of the problem may specify that from −∞
to t1 and from t2 to +∞, state(uav1) = on-ground(p0) and that from t3 to t4
state(uav1) = hovering(p42), together with the constraint that t4 > t3 + 20; i.e.,
initially and at the end of the plan, the UAV is on the ground at point p0, but for
some interval (of at least 20 seconds) in between, it should be hovering at the obser-
vation point p42. Completing this description into a consistent plan involves adding
intervals during which the UAV is taking off, flying along the path to p42, flying
back and landing, and constraining these intervals relative to those in the problem
specification.

Hierarchical Task Decomposition Models

Hierarchical task decomposition models (or hierarchical task network (HTN) models,
as they are usually called) were introduced early in the development of planning
systems (the NOAH planning system, by Sacerdoti (1975) and the NONLIN system,
by Tate (1977), are usually named as the original sources). The first (and until
quite recently, only) planning systems to be used in applications (the SIPE system
(Wilkins 1990) and the O-Plan system (Tate, Drabble, & Kirby 1994)) were based
on HTN models, so clearly such models have some merit (Wilkins & desJardins

29

(2000) argue this point), but, like logical background theories, HTN models were
not considered in the later more formal works on planning (presumably due to the
somewhat “procedural” flavour of such models).
The HTN model is based on an activity centered view of planning (as outlined above):
it permits the description of the planning problem to specify arbitrary abstract tasks
(whereas in the STRIPS model, tasks are always related to the achievement of specific
conditions on the world state) and to specify arbitrary methods of decomposing
abstract tasks into networks of (less) abstract tasks or concrete actions (whereas
in the STRIPS model, a state condition can be achieved by any sequence of actions
with appropriate preconditions and effects). A solution plan is one in which all tasks
have been reduced to an executable sequence (or partially ordered set) of concrete
actions.
In the Blocksworld domain, for example, the abstract task of moving block ?b from
block ?b0 onto block ?b1 can be decomposed into the two abstract subtasks of making
?b and ?b1 clear and the concrete action of performing the move, where the first two
are ordered before the third, but not ordered w.r.t. each other. The abstract task of
making a block clear can be accomplished in several ways: by doing nothing if the
block is already clear, or by recursively clearing and moving away any blocks on top of
the block. Note that in this case, the abstract tasks all correspond to the achievement
of state conditions. The available methods, however, need not correspond exactly to
all possible ways of achieving those conditions: for example, the methods for clearing
a block may be specified so that if a block needs to be moved to make another block
clear, it should only be moved to the table. In a STRIPS model, it is not possible
to differentiate between moving a block in order to place it somewhere and moving
it in order to clear a block below it, and therefore not possible to rule out the use of
some actions for achieving one of those tasks. A typical example of an abstract task
not corresponding to achieving a state condition, in the context of the UAV domain,
may be, “take off, fly around a building, return and land” (a task that need not be
as pointless as it seems, if, for example, the UAV is carrying a manually teleoperated
camera, or other sensing equipment; it also tends to impress spectators).
Details of the problem representations used by different HTN planning systems vary
a great deal (e.g. what types of conditions are associated with task decompositions,
whether abstract tasks or only concrete actions can have state transforming effects,
etc.). Compared to planning with the STRIPS model, there has been relatively
little work on formal analysis of HTN planning (Erol, Nau & Hendler (1994) and
Kambhampati (1994) are two exceptions). Nevertheless, it has been shown that the
HTN model is, in the general case, more expressive than the STRIPS model (if the
action sequences corresponding to plans are seen as a language, the HTN model is
equivalent to a context-free grammar, while the STRIPS model is only regular; see
Erol, Nau, & Hendler, 1994) and that the corresponding plan existence problem can
be undecidable even if the world model is finite. On the other hand, the explicit
specification of decompositions of tasks also makes it possible to restrict the search
for a plan, i.e., the HTN model (implicitly) provides a way of describing domain-
specific search strategies as part of the problem statement. It has been argued that

30

this is the only purpose of the HTN methods (and consequently that HTN planning
is only a less domain-independent form of STRIPS planning), while others argue
that in many (real-world) domains, this flexible ability to restrict the set of plans
considered valid solutions to a problem is central to accurately describe the problem.
HTN and CBI models, although interesting, will not be further discussed in this
thesis. Investigating if effective admissible heuristics for HTN and CBI models can
be derived by principles we develop is a topic for future research.

Searching for Plans

Nearly all approaches to automated planning rely on search, in one form or another.
Enriching the description of a planning problem with knowledge beyond the basic
problem statement can make it possible to reduce the amount of search needed,
and in some specific domains eliminate the need for search altogether (Bacchus &
Kabanza 1995; Kvarnström & Doherty 2000). Most planning systems used for real-
world applications have relied on vast amounts of problem specific knowledge (see e.g.
Jonsson et al., 2000, or Wilkins & desJardins, 2000, but also Ruml, Do & Fromherz,
2005, for an example of an application problem solved without domain specific search
control). Even in such knowledge-intensive planning systems, however, the planning
problem is typically formulated as a search problem and problem specific knowledge
added on to effectively guide the search. Early planning systems formulated the
problem as one of logical deduction: the problem description is given as a set of
axioms, in first order logic, and automated deduction is used to prove the existence
of a plan (see e.g. Green, 1969; Manna & Waldinger, 1987). The STRIPS planning
system was the first to formulate planning as a search problem directly (specifically,
as the problem of searching for a path in the space of world states from the initial
world state to one satisfying the goal condition, Fikes & Nilsson, 1971).
The search for a plan can be carried out in many different ways. Like the STRIPS
and temporal STRIPS planning models, the regression method can be said to be
the simplest possible, in the sense that it is comparatively easy to derive admissible
heuristics for, and, again like with the choice of planning model, this is our reason
for adopting it. There are two main reasons why deriving and applying admissible
heuristics for regression search is easier than for other plan search methods. First, in
directional search spaces, of which regression is an example, there is a close correspon-
dence between plans (executable and goal achieving action sequences or schedules)
and solution paths (paths in the search space leading to a final state) and therefore
between the cost of plans and distance in the search space (recall figure 2.3), which
is lacking in non-directional search spaces (a recent version of the IxTeT planning
system uses a heuristic to estimate distance in a partial order planning search space,
but this heuristic does not yield an admissible estimate of plan cost; Trinquart, 2003).
Second, the STRIPS planning models are somewhat asymmetric in that they specify
a unique initial world state but only a condition on the goal state, i.e., there may
be several world states satisfying the goal condition, which means that more infor-
mation about the set of final search states is available when computing a regression

31

1 10 20 30

1

100

10k

Instance (increasing in size)

Ti
m

e
(s

ec
on

ds
)

BFHSP
CPT
OptiPlan
SATPLAN
SemSyn
TP4

Figure 2.10: Time to find a solution for optimal planners on problems of the Promela
domain (“philosophers” subset) from the 2004 International Planning Competition.
Instances in this domain are regular, increasing monotonically in size and difficulty.

heuristic (planners that perform heuristic search using progression, such as e.g. FF,
by Hoffmann, 2000, or the planner by McDermott, 1999, typically perform more
computation at each search state evaluation).
Again, however, simplicity comes at a price. It is a fairly well established fact
that non-directional plan search methods, such as partial order causal link plan-
ning (POCL; McAllester & Rosenblitt, 1991), SAT and CSP encodings (Kautz &
Selman 1992; 1996) and others (Rintanen 1998; Hoffmann & Geffner 2003), are more
efficient than directional search (see e.g. the experimental study by Barret & Weld,
1994). That planning systems using simple directional search, e.g., Graphplan (Blum
& Furst, 1995; 1997), HSP (Bonet, Loerincs, & Geffner 1997; Bonet & Geffner 1999)
and FF (Hoffmann 2000), have been able to achieve far better performance than
partial order planning systems (e.g. UCPOP, Penberthy & Weld, 1992; an experi-
mental comparison is presented by Blum & Furst, 1997) is explainable by the fact
that development of effective domain-independent search control heuristics for par-
tial order planning has been slower than for the simpler methods. More recently
POCL planning and planning methods based on SAT, IP and CSP encodings have
been combined with effective heuristics, which has demonstrated that the advantage
of non-directional search still exists.
As a case in point, figure 2.10 shows solution times for problems of the Promela
domain (“philosophers” subset) from the 2004 International Planning Competition
(see Hoffmann & Edelkamp, 2005, or http://ipc.icaps-conference.org/ for the
optimal planners participating in the competition. Among these planners, BFHSP
and TP4 are based on directional search (BFHSP, by Zhou & Hansen, 2004, uses
regression and progression, switching from one to the other if the first fails; TP4

32

uses temporal regression as described in this chapter) while CPT, OptiPlan and
SATPLAN are based on non-directional search (CPT (Vidal & Geffner 2004) is a
temporal partial order planner; OptiPlan (van den Briel & Kambhampati 2004)
and SATPLAN (Kautz 2004) are based on encoding into IP and SAT, respectively).
The difference in performance between the two directional search planners and the
planners using non-directional search is evident, and it is also plausible to ascribe this
difference in efficiency to the difference in plan search method since these planners
all use essentially the same heuristic: BFHSP, CPT and TP4 use the hm heuristic
(described in chapter 3 of this thesis) and the encodings produced by OptiPlan and
SATPLAN are based on the planning graph which encodes a heuristic estimate that
is equivalent to the h2 heuristic (the planning graph and its relation to this heuristic
are described in section 3.1 of the next chapter). SemSyn, which uses a kind of
bidirectional search (Parker 2004), falls somewhere in between. There is, however,
also another difference that may impact the relative performance of the planners:
BFHSP and SemSyn find optimal sequential plans (assuming unit action costs) while
the other find plans of optimal makespan (though SATPLAN also assumes unit action
durations, i.e., performs only parallel planning, as described in section 2.2 above, page
21). Thus, the planning systems are actually solving somewhat different problems.
That the hm and planning graph heuristics, which were both originally developed for
regression planning, are applicable also in the context of other plan search methods
is again due to the close correspondence between solution paths in the regression
search space and plans. As noted earlier in this chapter (section 2.1, page 10) solving
a regression state is equivalent to solving a planning problem with the set of atoms
in the state as the goal and therefore an admissible regression heuristic yields a
lower bound on the cost of the solution to a certain planning problem, which is valid
regardless of how the search for this solution is made. This information, in the form
of constraints, is incorporated in the pruning techniques used in the CPT planner,
and in the IP and SAT encodings generated by OptiPlan and SATPLAN. In this
way, admissible regression or progression heuristics can be incorporated even in local
search planning (as in e.g. the LPG planner, Gerevini & Serina, 2002).
Finally, partial order causal link planning bears a great deal of similarity to planning
methods for the constraint-based interval model. Planning methods of this kind are
generally believed to be more suited to temporal planning, as it is easier to integrate
external events, deadlines and other timing-related constraints.

33

34

3. Relaxed Reachability
Heuristics

The classical planning problem can be seen as the problem of finding a path from
the initial world state to a set of target states (those satisfying the goal condition)
in a directed graph (whose nodes correspond to states and links to the possible state
transitions, effected by actions). The hardness of the problem is due, quite simply,
to the size of the graph, which may be exponential in the size of the description of
the planning problem (in propositional form). This combinatorial blow-up is due to
the fact that goals (and action preconditions) are conjunctions of atomic facts that
need to be achieved simultaneously.
The standard approach to deriving admissible heuristics is to define a relaxed (simpli-
fied or abstracted) version of the problem, that can be solved optimally at reasonable
computational cost, and use the optimal solution cost for the relaxed problem as the
heuristic estimate (lower bound) on the solution cost for the original problem (see
e.g. Gaschnig, 1979; Pearl, 1984). This chapter describes the hm (m = 1, 2, . . .) fam-
ily of admissible heuristics, based on a particular relaxation which is to assume that
the cost of any set (conjunction) of more than m goals equals the cost of the most
costly subset of size m (it is popular to describe this relaxation as “ignoring delete
effects”, but this is accurate only for the special case m = 1). The parameter m of-
fers a trade-off between the accuracy of the heuristic and its computational cost: the
higher m the closer the heuristic is to the true cost of achieving all goals in a state,
but the complexity of computing the heuristic is exponential in m. The principle
by which the heuristic is derived is general and applied here to both sequential and
temporal regression planning (sections 3.2 and 3.3, respectively). In chapter 5, the
same approach is also used to derive estimators for resource consumption.
The hm heuristic combines and generalizes ideas from two planning systems: The
first is the Graphplan system (Blum & Furst, 1995; 1997) which uses a lower bound
function equivalent to h2 for parallel planning but defines and computes this function
in a very different way, through constructing a “relaxed reachability graph” (known
as the planning graph). The construction and use of the planning graph is briefly
reviewed first in this chapter (section 3.1). The second is the HSP system (Bonet,
Loerincs, & Geffner 1997; Bonet & Geffner 1999) which uses a different, inadmissible,
heuristic but defines (and computes) this heuristic in a way much like that described
here.

35

(on-Table A) noop

(on B A)

noop

(move-to-table B A)

(move B A C)
(clear B)

noop

(move-from-table C B)

(on-Table C)

noop

(clear C)

noop

(on-Table A)

(on B A)

(clear B)

(on-Table C)

(clear C)

(on-Table B)

(clear A)

(on B C)

(on C B)

...

(move-from-table A B)

(move-from-table A C)

...

...

(move-from-table C B)

...

(move-from-table C A)

...

(move C B A)

...

noop

...

...

(clear A)

(on A B)

(on A C)

(on C A)

(on C B)

Figure 3.1: Part of the planning graph for the Blocksworld problem shown in fig-
ure 2.1. Only a few mutex relations are shown (the dashed arrows connecting
atoms/actions in the same layer).

3.1 Relaxed Reachability in the Planning Graph

Admissible relaxed reachability heuristics were introduced into AI planning with the
Graphplan system (Blum & Furst, 1995; 1997), which performs parallel regression
planning using a heuristic that is equivalent to h2 for this search space (a formal proof
of equivalence is given at the end of this chapter; note, however, that the Graphplan
planner was not explained in these terms when originally presented). The heuristic,
however, is defined and computed by the construction of a graph, called the planning
graph. Although the hm definition is more general, and in a sense simpler, the
planning graph provides a more intuitive and “graphical” view of the concept of
relaxed reachability. Because of this, we begin this chapter by briefly explaining the
planning graph heuristic.
The planning graph is a directed graph, consisting of alternating layers of propositions
and actions. The first layer is a proposition layer, and contains all propositions that
are true in the initial world state. Each action layer contains every action a, including

36

no-ops, such that every atom p ∈ pre(a) can be found in the preceding proposition
layer (with an edge from p to a) and each proposition layer following the first contains
every atom p such that p ∈ add(a) for some action a in the preceding action layer
(with an edge from a to p). Figure 3.1 shows the first few layers of the planning
graph for the example Blocksworld problem described in chapter 2. The initial world
state of the problem (illustrated in figure 2.1(a), page 7) contains atoms (on-table
A), (on B A), (clear B), (on-table C), and (clear C). Actions in the first layer
(besides no-ops) are (move-to-table B A), (move B A C) and (move-from-table
C B), which add new atoms (on-Table B), (clear A), (on B C) and (on C B) to
the second proposition layer.
Since the atoms in the first proposition layer are initially true, they can be said to
be reachable in zero steps. Atoms in the second layer are added by actions that are
executable in the initial world state, so they are reachable in one step. The relaxation
lies in the reachability of conjunctions of atoms: the fact that two atoms are in the
second layer does not imply that the conjunction of those atoms is reachable in one
step, since the actions (or no-ops) that support the two atoms may be incompatible
(not possible to execute in parallel). For example, even though atoms (on C B) and
(clear A) are in the second proposition layer, the two of them can not be reached
in a single step since the action (move-from-table C B) is incompatible with both
(move-to-table B A) and (move B A C). In proposition layers beyond the second,
it is not even certain that single atoms appearing are actually reachable, since the
preconditions of actions supporting them are conjunctive. However, if an atom is not
found in the nth proposition layer it is certain that the atom can not be reached in
n− 1 steps. Thus, the index of the first proposition layer in which an atom appears
is a lower bound on the cost (the required number of steps) of reaching the atom.
The planning graph used by the Graphplan system is actually more intricate: it adds
to each layer a binary relation called the mutual exclusion relation (mutex for short).
Two actions a and b are mutex iff they are incompatible, or if some precondition of a
is mutex with a precondition of b in the preceding proposition layer. Two propositions
p and q are mutex iff every action supporting p is mutex with every action supporting
q in the preceding action layer. For example, atoms (on B A) and (clear A) are
mutex in the second proposition layer of the graph in figure 3.1 since the only action
supporting (on B A) (a no-op) is incompatible with both actions supporting (clear
A). In the same way, atoms (on C B) and (clear A) are also mutex in this layer.
If the preconditions of an action are present in a proposition layer, but any two of
them are mutex, the action is not included in the following action layer. An example
of such an action is shown in figure 3.1: the preconditions of (move C B A) are all
present in the second proposition layer, but as noted above (on C B) and (clear
A) are mutex, so the action is excluded from the second action layer.
The addition of mutex relations refines the heuristic estimate obtained from the
planning graph, in that the conjunction of two atoms is known to be unreachable in
n−1 steps if the atoms appear without mutex for the first time in the nth proposition
layer. It is still a relaxation though, since an action may require three (or more)
preconditions, and it may be the case that even when any two of them are jointly

37

reachable the conjunction of all of them is still unreachable. Mutex relations are of
two kinds: temporary and static. Temporary mutexes are those that disappear in
some subsequent layer. For example, although atoms (on C B) and (clear A) are
mutex in the second proposition layer of the graph in figure 3.1, they are both present
and non-mutex in the third proposition layer (because supporting (clear A) with
a no-op is compatible with supporting (on C B) with action (move-from-table C
B) in the second action layer). Static mutex relations do not disappear: they are in
fact a special case of the at-most-one invariants described in the preceding chapter
(section 2.1, page 8) consisting only of two atoms.

3.2 hm Heuristics for Sequential Planning

The definition of the hm family of heuristics rests on a little bit of dynamic program-
ming theory (see Bertsekas, 1995, ch. 2 of vol. 1 & ch. 1 of vol. 2, or Bellman, 1957).
We begin this section by introducing this theory, before entering into its application
to sequential regression planning.

The Optimal Cost Function and its Functional Equation

Consider an arbitrary search space, defined by an initial state (s0), a set of final
states and a basic transition relation (R(s, s′, cs,s′) iff there is a transition from s to
s′ with cost cs,s′). Let h∗(s) denote the optimal cost function, i.e., the function that
assigns to each state s in the search space the minimal cost of any path from s to
a final state, and ∞ if no such path exists. The optimal cost function satisfies the
equation

h∗(s) =
{

0 if s is final
min{s′ |R(s,s′,cs,s′)} h∗(s′) + cs,s′

(2)

known as Bellman’s equation (though Bellman, 1957, calls it the functional equation).
In fact, this equation uniquely determines h∗(s) over the set of states s from which
a final state is reachable. Combined with the condition

h∗(s) = ∞ if no final state reachable from s (3)

it characterises the function completely. In principle the optimal cost function, in
the form of an explicit table of values, can be computed from the system of equations
(2) – (3) by dynamic programming, but this is as hard as solving the corresponding
search problem since if the optimal cost function is known the optimal solution path
can be trivially extracted (by selecting in every state s a successor state s′ with
minimum cs,s′ + h∗(s′)).

38

hm Heuristics for Sequential Regression Planning

In sequential regression, as described in chapter 2, search states are sets of atoms,
representing subgoals to be achieved. Applying Bellman’s equation to the sequential
regression search space yields

h∗(s) =
{

0 if s ⊆ I
min{s′ |R(s,a,s′)} h∗(s′) + cost(a) (4)

where R(s, a, s′) holds iff s′ results from regressing s through action a (recall from
chapter 2 that this is the case iff del(a)∩ s = ∅ and s′ = (s−add(a))∪pre(a)), and I
is the set of atoms true in the initial world state (because a set of subgoals s satisfied
in the initial world state is a final state in the regression search space).
Because achieving a regression state (set of subgoals) s implies achieving all atoms
in s, and therefore any subset of s, the optimal cost function satisfies the inequality

h∗(s) > max
s′⊆s,|s′|6m

h∗(s′) (5)

for any positive integer m. Assuming that this inequality is actually an equality is
the relaxation that yields the hm heuristics: rewriting equation (4) using (5) as an
equality results in

hm(s) =

 0 if s ⊆ I
min{s′ |R(s,a,s′)} hm(s′) + cost(a) if |s| 6 m
maxs′⊆s,|s′|6m hm(s′) if |s| > m

(6)

The solution to equation (6) is a function hm(s), which is a lower bound on h∗(s)
and thus an admissible heuristic for searching in the sequential regression space. The
solution, in the form of an explicit table of hm(s) values for all sets with |s| 6 m,
can be computed in various ways, in time polynomial in the number of atoms in the
planning problem but exponential in m (one method, the generalized Bellman-Ford
algorithm, is presented below). Admissibility of the hm heuristic follows from the
inequality (5) and the observation that for any s′ ⊆ s every action that is applicable
in s (can be used to regress s) is also applicable in s′ and the result of regressing s′

through a is a subset of the state resulting from regression of s through a (a formal
proof is given below).
The hm relaxation can be explained as a change of search space, rather than in
terms of solution cost: any state s with more than m atoms is a “max state”, whose
successors are the size m subsets of s and whose cost is the max of the successor costs,
while states s with m or fewer atoms (“min states”) are regressed as normal. A max
(or “AND”) state is solved only if all successors are solved, while a min (or “OR”)
state is solved if some regression leads to a solution (this view of the hm relaxation is
the basis for the relaxed search method, described in chapter 7). Due to the recursive
focus on the most costly size m part of each state the heuristic can also be viewed as
a generalization of the well known critical path length estimate. Figure 3.2 illustrates

39

{(on A B)}: 2

{(clear B),(clear A),(on A C)}: 2

(move A C B)

{(clear B),(clear A),(on-Table A)}: 1

(move-from-table A B)

... {(clear B)}: 0 {(clear A)}: 1 {(on-Table A)}: 0

{(clear C),(on C A)}: 2

(move-to-table C A)

{(clear B),(on B A)}: 0

(move-to-table B A)

...

Figure 3.2: Illustration of the calculation of h1({(on A B)}) for the Blocksworld
problem shown in figure 2.1. States with more than m = 1 atoms are drawn as
rectangles: their child nodes correspond to subsets of size m (i.e., with m atoms in
the state) and the h1 value of the state is the maximum of the values of its child
nodes. States with m = 1 atoms are drawn as ellipses: their child nodes correspond
to possible regressions of the state, and the h1 value of the state is the minimum of
the value of the child node plus the cost associated with the edge (in this example,
1 for all actions) over all its child nodes.

the calculation of h1({(on A B)}) for the running example Blocksworld problem (see
figure 2.1, page 7), with the critical path that determines the h1 value of the state
indicated by bold arrows in the figure. In general, however, there need not be a
single path that determines the value of a state: in a state with more than m atoms
there can be several subsets of size m with maximum cost, and a state with m or
fewer atoms can have several alternative minimum cost regressions. Thus, the hm

heuristic estimate is more accurately described as “critical tree height”. Consider
for example a different Blocksworld problem, in which blocks A, B and C are all on
the table in the initial world state and the goal is {(on A B), (on B C)} (i.e., to
build a tower with A, B and C in order from top to bottom). Figure 3.3(a) shows the
calculation of the h1 value for this problem (which is 1), while figure 3.3(b) shows the
corresponding calculation of the h2 value (which is 2, and also the optimal solution
cost). This illustrates how the accuracy of the heuristic improves with increasing
m, but also that this improvement is in some cases not sufficient: the problem is
easily generalized to constructing a tower of n blocks, for which the optimal solution
requires n−1 moves, but the hm heuristic value for this problem is m (for m 6 n−1).
The hm value of single state can be calculated recursively, as illustrated in figures 3.2
– 3.3, but the complete solution to equation (6), tabulating hm values for all states
with at most m atoms, is more efficiently computed using a dynamic programing

40

{(on B C),(on A B)}: 1

{(on B C)}: 1 {(on A B)}: 1

{(clear C),(clear B),(on-Table B)}: 0

(move-from-table B C)

... {(clear B),(clear A),(on-Table A)}: 0

(move-from-table A B)

...

(a)

{(on B C),(on A B)}: 2

... {(clear B),(clear A),(on B C),(on-Table A)}: 1

(move-from-table A B)

{(clear B),(clear A)}: 0 {(clear B),(on B C)}: 1 {(clear A),(on B C)}: 1 {(on B C),(on-Table A)}: 1 ...

... {(clear C),(clear B),
 (on-table B)}: 0

(move-from-table B C)

... {(clear C),(clear B),
(clear A),(on-Table B)}: 0

(move-from-table B C)

... {(clear C),(clear B),
(on-Table B),(on-Table A)}: 0

(move-from-table B C)

(b)

Figure 3.3: Calculation of (a) the h1 value and (b) the h2 value for the goal of the
“tower construction” Blocksworld problem. The “critical tree” is indicated by bold
arrows in each.

or generalized shortest path algorithm. A variation of the generalized Bellman-Ford
algorithm is presented below (see Liu et al (2002) for some alternative methods).
The parameter m offers a trade-off between the accuracy of the heuristic and its
computational cost. As m increases, the relaxation (last clause of equation (6)) plays
a lesser role and the heuristic function more and more resembles the optimal cost
function. At the same time, however, the computation of a complete hm solution
is polynomial in the number of atoms but exponential in m (since the number of
subsets of size m or less grows exponentially with m). Also, the heuristic resulting
from a complete solution to the hm equation exhibits for many planning problems a
“diminishing marginal gain”: once m goes over a certain threshold (typically, m = 2)
the improvement brought by the use of hm+1 over hm becomes smaller for increasing
m. This combines to make this method of computing the heuristic cost effective,
in the sense that the heuristic reduces search time more than the time required to
compute it, only for small values of m (typically m 6 2; Zhou & Hansen (2004)
report also using h3). This is also supported by the experimental analysis presented
later in this chapter (page 46). In chapter 7, we present methods for computing only
partial solutions to the hm equation (by two methods, one of which is similar to the
recursive calculation illustrated in figures 3.2 – 3.3). The partial solution methods
are sometimes more efficiently computable and therefore applicable for higher values

41

eval(s) // s = {p1, ..., pn}

{

v = 0;

for (i = 1 ... size(s)) {

v = max(v, T(pi));

for (j = i+1 ... size(s))

v = max(v, T(pi,pj));

}

return v;

}

Figure 3.4: State evaluation algorithm for the h2 heuristic. T(p) and T(p, q) denote
the h2 values stored in the heuristic table for atom p and atom set {p, q}, respectively.

of m.

On-Line Evaluation and the Heuristic Table

The solution to equation (6) that is stored comprises only the values of hm(s) for
sets s such that |s| 6 m. To obtain the heuristic value of an arbitrary state, the last
clause of equation (6), i.e.,

hm(s) = max
s′⊆s,|s′|6m

hm(s′)

is evaluated “on-line”, and during this evaluation the value of hm(s′) for any set s′

such that |s′| 6 m is obtained by looking it up in the table (the evaluation algorithm
for the case when m = 2 is sketched in figure 3.4). This makes the complexity of the
heuristic evaluation of a state O(|s|m).
A more general heuristic table and evaluation procedure can be implemented, al-
though with a little overhead. This will be important in chapter 7, were several
complete and partial solutions to equation (6) for different values of m are combined
to form an improved heuristic. In this case, the heuristic table is a general mapping
from sets of atoms to their associated value, and the heuristic value of a state s is
the maximal value of any subset of s for which a value is stored in the table. In other
words, if (s, v) ∈ T denotes that s is stored with value v in the table, the heuristic
value of a state s is given by

h(s) = max
(s′,v)∈T,s′⊆s

v.

When all and only sets of size m or less are stored in the table (as is the case when hm

is computed completely), this coincides with evaluating the last clause of equation
(6), as described above. However, the use of a general heuristic table and evaluation
procedure implies that as soon as a value for any atom set s is stored in the table, it
becomes immediately included in all subsequent evaluations of atoms sets containing
s. In particular, by storing parts of the solution to hm′

, for some higher m′, in the

42

form of updates of the values of some size m′ atom sets, the heuristic evaluation
implicitly computes the maximum of hm and the partially computed hm′

.
The general heuristic table is implemented as a Trie (see e.g. Aho, Hopcroft, &
Ullman, 1983). Using this structure, the evaluation of an atom set s can be done in
time linear in the number of subsets of s for which values exist in the table. The
Trie data structure stores mappings indexed by strings. In the implementation of
the heuristic table, atom sets are treated as strings in which atoms appear in an
arbitrary, but fixed, lexical order. However, when an atom set s is stored in the
table, every set that is a prefix of s (viewed as a string with atoms in lexical order)
must also be stored, with value 0 if no better value is available. With most methods
of computing heuristic values this does not present a problem since whenever a set
is stored, all its subsets (including subsets corresponding to lexical prefixes) have
already been stored. Even so, there is some overhead compared to a table and
evaluation procedure designed for a fixed maximal subset size.

Properties of the hm Heuristic

Here, we formally show the admissibility and consistency of the hm heuristic.

Theorem 1 hm, for m > 1, is admissible.

Admissibility is shown by first showing that for any large enough m, hm = h∗ (lemma
2 below) and second that the heuristic function is decreasing in m, i.e., that if m < m′

then hm(s) 6 hm′
(s), for all s (lemma 3). Combined, this entails that for any m,

hm(s) 6 h∗(s), for all s, or, in other words, that hm is admissible.

Lemma 2 For every planning problem with n propositions, there is an m 6 n such
that hm(s) = h∗(s), for all s.
Proof: If m is larger than or equal to the size of every set of goals s in the regression
search space, the last clause of equation (6) is never invoked and equation (6) reduces
to equation (4) which characterises the optimal cost function h∗. Clearly no set of
goals can contain more than the number propositions in the planning problem. 2

Lemma 3 hm(s) 6 hm′
(s), for all s, whenever m < m′.

Proof: To show that hm(s) 6 hm′
(s) for m < m′, assume this is not the case,

i.e., that for some s, hm(s) = v > v′ = hm′
(s). Since there are only finitely

many states, it can be assumed that v is the smallest value for which this holds.
If |s| > m, hm(s) = v = hm(s′) for some subset s′ of s such that |s′| = m. (The
case when |s| 6 m, is basically the same, except that the subset s′ = s and the
minimizing action a below is the same for hm as for hm′

.) It must be the case that
hm′

(s′′) < v for every size m′ subset s′′ containing s′, since otherwise hm′
(s) > v

(contrary to assumption). Therefore, it is enough to consider the simpler case when
|s| = m′, and hm(s) = hm(s′) for some size m subset of s. By definition, hm′

(s) =
min{s′′ |R(s,a,s′′)} hm′

(s′′)+cost(a): suppose a is an action that minimizes this expres-
sion, i.e., hm′

(s) = hm′
((s−add(a))∪pre(a))+ cost(a) (replacing s′′ by the result of

43

regressing s through a). It follows that hm′
((s−add(a))∪pre(a)) = v′−cost(a). The

condition for regression applicability is that s∩del(a) = ∅, so if this holds for s it must
also hold for s′, since s′ ⊂ s. Thus hm(s′) 6 hm((s′ − add(a))∪ pre(a)) + cost(a) (6
rather than = since there may be actions with smaller cost applicable to s′ but not to
s) and thus hm((s′−add(a))∪pre(a)) > v−cost(a) > v′−cost(a) (due to the assump-
tion that v > v′ and the fact that cost(a) > 0). However, since (s′−add(a))∪pre(a) ⊆
(s−add(a))∪pre(a), hm((s−add(a))∪pre(a)) > hm((s′−add(a))∪pre(a)), and thus
hm((s− add(a))∪ pre(a)) > v− cost(a) > v′ − cost(a) = hm′

((s− add(a))∪ pre(a)),
contradicting the assumption that v is the smallest value such that hm(s) = v > v′ =
hm′

(s). Since such a smallest value must exist if hm(s) > hm′
(s) for any s, this can

not be the case.
Above, we’ve used the fact that the inequality (5) holds also for hm, i.e., that hm(s) >
hm(s′) for any s′ ⊂ s. This again follows from the fact that any actions that is
(regression) applicable to s is also applicable to s′. 2

Theorem 4 hm, for m > 1, is consistent.
Proof: Consistency is shown by essentially the same argument. Assume that it
does not hold, i.e., that for some state s and action a applicable to s, hm(s) >
hm((s − del(a)) ∪ pre(a)) + cost(a). hm(s) = hm(s′) for some s′ ⊆ s such that
|s′| 6 m (if |s| 6 m, s′ = s). Since s′ ⊆ s, a is applicable in s′ and thus hm(s) 6
hm((s′−del(a))∪pre(a))+cost(a). Since (s′−del(a))∪pre(a) ⊆ (s−del(a))∪pre(a),
hm((s′−del(a))∪pre(a))+cost(a) 6 hm((s−del(a))∪pre(a))+cost(a), contradicting
the assumption. 2

The Generalized Bellman-Ford Algorithm

The Generalized Bellman-Ford (GBF) algorithm is a “label correcting” algorithm: it
assigns a crude initial cost estimate to every state and then iteratively applies local
updates until costs converge. It can be viewed as an adaptation of the Bellman-Ford
single-source shortest path algorithm (see e.g. Cormen, Leiserson, & Rivest, 1990) to
graphs with directed multi-edges.
To describe the algorithm, it is convenient to rewrite equation (6) into a set of “update
equations” for a fixed value of m. For m = 2, this results in

h2({p}) = min
{a | p∈add(a)}

h2(pre(a)) + cost(a)

h2({p, q}) = min
(

min
{a | p,q∈add(a)}

(
h2(pre(a)) + cost(a)

)
,

min
{a | p∈add(a),q 6∈del(a)}

(
h2(pre(a) ∪ {q}) + cost(a)

)
,

min
{a | q∈add(a),p 6∈del(a)}

(
h2(pre(a) ∪ {p}) + cost(a)

))

44

GBF_H2()

{

// initialization:

for (each atom p) {

if (p in initial world state) T({p}) = 0;

else T({p}) = +INF;

}

for (each atom pair p,q) {

if (p,q in initial world state) T({p,q}) = 0;

else T({p,q}) = +INF;

}

// main loop (repeat until no change)

repeat {

changed = false;

for (each action a) {

c1 = eval(pre(a));

for (each atom p in add(a)) {

// update single atoms added by action a

update({p}, c1 + cost(a));

// update pairs of atoms added by action a

for (each atom q in add(a), q != p)

update({p,q}, c1 + cost(a));

// update atom pairs with p added by a and r by persistence

for (each atom r not in del(a), r != p) {

// the already computed c1 = h(pre(a)) can be used to speed

// up computation of c2

c2 = eval(pre(a) union {q});

update({p,r}, c2 + cost(a));

}

}

}

} until (not changed);

}

// update cost of atom set s (and note change) if the new value is smaller

// than the previously stored value

update(s, v) // s is a set of one or two atoms

{

if (T(s) > v) {

T(s) = v;

changed = true;

}

}

Figure 3.5: The GBF algorithm for computing the h2 heuristic for sequential planning
(a complete solution to equation (6)). T denotes the heuristic table (indexed by sets
of one or two atoms).

45

0 2000 4000 6000 8000 10000 12000 14000
0

10

20

30

40

50

60

70

80

90

Time (seconds)

%
 In

st
an

ce
s

so
lv

ed
 in

 ≤

h1

h1(inv.)
h2

h3

0 2000 4000 6000 8000 10000 12000 14000
0

10

20

30

40

50

60

70

80

90

100

Time (seconds)

%
 In

st
an

ce
s

so
lv

ed
 in

 ≤

h1

h1(inv.)
h2

h3

(a) Blocksworld (b) UAV Mission Planning

Figure 3.6: Runtime distribution for regression planning (IDA* search) with the
hm heuristics for m = 1, 2, 3 in (a) the Blocksworld domain and (b) the single UAV
mission planning domain. The h1 heuristic is used with and without explicit invariant
pruning (the former is labeled “h1 (inv.)”).

These equations correspond to the possible regressions of a set of at most 2 subgoals:
a set of only one atom {p} can only be (usefully) regressed through an action that
adds p; a set of two atoms {p, q} can be regressed through either an action that
adds both p and q, or an action that adds one and does not delete the other. It is
straightforward to derive the corresponding set of equations other values of m.
The GBF algorithm initializes the heuristic table with cost 0 for every size m set of
atoms that are true in the initial world state, and +∞ for every other size m set.
It then evaluates the right-hand side of each update equation in turn, and if the
computed value is less than what is stored for the atom set to the left atom, updates
the stored cost. This is repeated until no update equation yields a value lower than
the value already stored in the heuristic table. Evaluating the right-hand sides of
the above equations involves evaluating sets containing more than two atoms relative
to the current contents of the heuristic table. As noted above, heuristic evaluation
is somewhat expensive (quadratic for h2) and hence efficiency can be improved by
organizing updates to avoid duplicated effort: the resulting algorithm is sketched in
figure 3.5.

Analysis: Accuracy/Cost Trade-Off in the hm Heuristics

This section presents a small experimental analysis of the accuracy and computational
cost of the hm heuristics, for values m = 1, 2, 3. The main point demonstrated
is the accuracy/cost trade-off and its variation over different planning problems.
Experiments also demonstrate an important difference between h1 and hm for m > 2,
viz. the ability of the latter to detect problem invariants.

46

The Experiment

The h1, h2 and h3 heuristics were compared in the context of sequential regression
planning using IDA* search on planning problems from two different domains: the
Blocksworld domain, described in the chapter 2, and the UAV mission planning
domain but involving only a single UAV. (For reasons explained below, a fourth
configuration was also included in the comparison viz. the h1 heuristic combined
with explicit invariant pruning, as described in chapter 2, page 10.) The search was
made using commutativity cuts (described in chapter 2, page 11) and a standard
transposition table (as described by Reinfeld & Marsland, 1994).
The UAV mission planning problem was introduced in chapter 2 as an example of
a planning problem involving time and concurrent action. With only a single UAV,
however, it reduces to a sequential planning problem since the UAV can only do one
action at a time and the makespan of the plan equals the sum of the durations of
the actions it performs. Also, with only one UAV there is no need to model the
“safe separation” condition (so the sequential problem description does not have the
(free ?p) atoms). The problem is still difficult, however, because it contains what
is essentially a traveling salesman problem (see e.g. Garey & Johnson, 1979).
The test problems are all solvable so since regression planning is complete every
problem would be solved eventually, with any heuristic. For practical reasons, a time
limit of 4 hours CPU time per problem was imposed. Problem sizes (the number of
blocks and the number of observations, respectively) were scaled from nearly trivial
(5 blocks and 3 observations, respectively) to the the largest for which a reasonable
percentage could still be solved within the time limit (13 blocks and 6 observations;
with the h2 heuristic, which generally achieves the best performance, roughly a third
of the size 13 Blocksworld problems were solved). For the Blocksworld domain, 25
random problems for each size were generated using Slaney & Thiebaux’s bwstates
program (see Slaney & Thiebaux, 2001). For the UAV domain, 50 random problems
for each size were generated by selecting from five different combinations of buildings
the chosen number of observation points.

The Results

Results are summarized by runtime distributions in figure 3.6. A fact that is im-
mediately apparent is the very large gap between the h1 and h2 heuristics: this
is due to the presence of (at-most-one) invariants in the planning problems, which
are detected by hm for m > 2 but not by h1. As described in chapter 2 (page
10) states (atom sets) inconsistent with some invariant are frequently encountered
during a regression search, but can never be part of any solution path. Therefore,
detecting such states (and pruning them from the search) is important for reducing
the number of states searched. Any two atoms p and q that are part of the same
at-most-one invariant are jointly unachievable even when both atoms are achievable
separately (in planning graph terms, they constitute a static mutex). The h1 heuris-
tic, which only ever considers the cost of achieving individual atoms, can not detect

47

0 10 20 30 40 50 60 70 80 90 100%
0

10

20

30

40

50

Reduction in #Nodes Expanded

%
 In

st
an

ce
s

h1(inv.) to h2

h2 to h3

0 10 20 30 40 50 60 70 80 90 100%
0

10

20

30

40

50

60

70

80

90

100

Reduction in #Nodes Expanded

%
 In

st
an

ce
s

h1(inv.) to h2

h2 to h3

(a) Blocksworld (b) UAV Mission Planning

Figure 3.7: Reduction in the number of nodes expanded when the heuristic is changed
from h1 (with explicit invariant pruning) to h2 and from h2 to h3, respectively.
Percentages are relative to the number of problem instances solved by the weaker
heuristic in each case.

this (h1({p, q}) = max(h1({p}), h1({q})) is finite since h∗({p}) and h∗({q}) both are,
while in fact h∗({p, q}) = ∞). Although there is in general no guarantee that the h2

heuristic (or hm for other m > 2) detects mutexes (i.e., assigns infinite cost to such
atom sets) it very frequently does in practice. In the two planning domains used in
the experiment, h2 detects all invariants. That the detection of invariants is respon-
sible for a great part of the improvement in changing from h1 to h2 is demonstrated
by the fact that h1 with explicit invariant pruning (the curves labeled “h1 (inv.)” in
figure 3.6) achieves a performance significantly closer to that of h2.
The second observation that can be made is that even when invariant detection is
accounted for, the gain in changing from h2 to h3 is far smaller than the gain for
the change from h1 to h2. In the Blocksworld domain, runtimes obtained using h3

are actually worse than those obtained with h2. Figures 3.7 and 3.8 show results in
greater detail. Figure 3.7 shows how the reduction in the number of states explored
by the search (“nodes expanded”) in changing from h1 (with explicit invariant prun-
ing) to h2 and from h2 to h3 distributes over the (solved) problem instances: the
change from h1 to h2 reduces the number of nodes expanded by over 90% in half
the Blocksworld instances and all the UAV problem instances, while the reduction
caused by the change from h2 to h3 is smaller, and more varied, in both domains.
This illustrates the “diminishing marginal gain” mentioned above.
That the number of nodes expanded is reduced at all demonstrates that the h3

heuristic is more accurate than h2 in both domains, but it is not cost effective in
the Blocksworld domain. Recall that the time required to compute the complete hm

solution (a.k.a. the heuristic table) grows exponentially with m, as does the time to
evaluate the heuristic over a search state. A more accurate heuristic is cost effective
only when the time required to compute it is less than the search time saved due to

48

1

100

10k

1M

Instance

#N
od

es
 E

xp
an

de
d

h1(inv.)
h2

h3
100

10k

1M

20M

Instance

#N
od

es
 E

xp
an

de
d

h1(inv.)
h2

h3

0.01

1

100

10000

Instance

Ti
m

e
(s

ec
on

ds
)

h1(inv.)
h2

h3
1

100

10000

Instance

Ti
m

e
(s

ec
on

ds
)

h1(inv.)
h2

h3

(a) Blocksworld (b) UAV Mission Planning

Figure 3.8: Comparison of the number of nodes expanded (first row) and runtime
(second row) using heuristics h1 (with explicit invariant pruning), h2 and h3. In-
stances are sorted by the displayed value for h2 in each graph. Note that the Y-axis
(nodes expanded/time) is logarithmic.

49

the smaller number of expanded search states compared to using a less accurate, but
computationally cheaper, heuristic. In the Blocksworld domain, this is not the case
for h3. In the single UAV planning domain it is, but only by a very small margin.
Figure 3.8 provides a more detailed view of the accuracy and effectiveness of the
compared heuristics. Here data (expanded nodes and runtime, respectively) is plotted
by instance, with instances sorted in a rough order of increasing difficulty (note that
the sort order is not the same in the four graphs). This illustrates the effect of
a structural difference between the two domains, and why h3 is cost effective for
UAV planning but not for Blocksworld. The reduction in expanded nodes generally
increases with increasing problem difficulty (note that the scale on the Y-axis is
logarithmic). In the Blocksworld domain problem difficulty generally increases with
the size of the problem, while the UAV planning problems used in the experiment
are of constant size (in terms of the number of atoms and actions in the problem
description) and the difficulty is instead related to the number of goal atoms. The
effect of this is that in the Blocksworld domain, the increasing cost of using h3

(although it is only polynomially related to problem size) “keeps pace” with the
gain. Note that for the easiest problem instances, runtimes using h2 and h3 in the
Blocksworld domain and h3 in the UAV planning domain are almost constant since
they are dominated by the time needed to compute the hm solution.

Conclusions

Two principal conclusions can be drawn from the experiment described above. The
first is the importance of detecting and pruning states inconsistent with problem
invariants in regression search. This holds true for most planning problems. The
second is that if the hm heuristic is not effective enough to solve a particular planning
problem, increasing m alone is not likely to improve performance (for m > 2 at least),
although the “break even point”, in terms of m and in terms of problem difficulty,
varies with the structure of the problem. In chapters 6 and 7 we examine alternative
ways to improve the hm heuristics (computing several hm heuristics, for low m, in
such a way that estimates can be admissibly added and computing only partial hm

heuristics, for higher m, respectively).

3.3 hm Heuristics for Planning with Time

The hm heuristics for temporal planning are derived in basically the same way as in
the sequential case. Bellman’s equation for the optimal cost function has the same
form as equation (4). Recall that a search state in the temporal regression space is
a pair s = (E,F), where E is a set of atoms (subgoals to be achieved) and F a set
of concurrent actions with starting times relative to the time of achievement of the

50

atoms in E. The corresponding equation is2

h∗(E,F) =
{

0 if E ⊆ I and F = ∅
min{s′ |R(s,s′)} h∗(s′) + δadv(s, s′)

. (7)

Here, R(s, s′) holds iff s′ can be obtained from s by regression through a set of com-
patible actions (as described in chapter 2, page 16) and δadv(s, s′) is the corresponding
increase in plan makespan (defined by equation (1), page 16).
To apply the hm relaxation, approximating the cost of a state by the “most costly
size m subset”, requires a definition of the size of a state (and of what constitutes a
“subset” of a pair (E,F)) The obvious candidate is to define |s = (E,F)| = |E|+ |F |,
and this measure (with componentwise subsets) does indeed satisfy the relaxation
inequality (5), and rewriting the optimal cost equation using this as an equality
results in a characterisation of a lower bound function on the temporal regression
space. In this case, however, due to the presence of a time increment δ in each
(δ, a) ∈ F , the set of states with |s| 6 m is potentially infinite, which means a
complete solution to the equation, in the form of an explicitly tabulated function,
can not computed. (The number of distinct δ values appearing in the tabulated
function can actually be bounded, by the longest action duration divided by the
gcd of the durations of all actions, but since this can be a very large number the
characterised heuristic is still impractical.)
To define a practically usable heuristic function, a further relaxation is applied. Since
a plan that achieves the state s = (E,F), for F = {(a1, δ1), . . . , (an, δn)}, at time
t must achieve the preconditions of each action ai at time t − δi, and these must
remain true until t unless deleted by ai, the optimal cost function satisfies

h∗(E,F) > max
(ak,δk)∈F

(
h∗

(⋃
(ai,δi)∈F, δi>δk

pre(ai), ∅
)

+ δk

)
(8)

h∗(E,F) > h∗
(

E ∪
⋃

(ai,δi)∈F

pre(ai), ∅
)

. (9)

An example may clarify the principle: Consider the state s = ({p}, {(a1, 1), (a2, 2)}),
depicted in figure 3.9(a). A plan achieving this state at time t must achieve the
preconditions of a2 at t − 2, so h∗(s) must be at least h∗(pre(a2), ∅) + 2. If action
a2 is “left out”, as in figure 3.9(b), it can be seen that the same plan also achieves
the joint preconditions of actions a1 and a2 at t − 1, so h∗(s) must be at least
h∗(pre(a1) ∪ pre(a2), ∅) + 1. Finally, if both actions are left out (figure 3.9(c)), it is
clear that the plan also achieves simultaneously the preconditions of the two actions
and atom p, so h∗(s) must be at least h∗({p} ∪ pre(a1) ∪ pre(a2), ∅).
By treating inequalities (8) – (9) as equalities, a temporal regression state is relaxed
to a set of states in which F = ∅, i.e., states containing only goals and no concurrent

2Note that one set of parentheses has been simplified away from h∗(E, F): since a state s = (E, F)
is a pair, it should in fact be written “h∗((E, F))”. This simplified form, with only a single pair of
parentheses, will be used throughout.

51

���

���

�

���������
	��

��

�

���������
	��

������������

�

(a) (b) (c)

Figure 3.9: Relaxation of temporal regression states.

actions. Applying the relaxation (5) to each such state results in an equation similar
to equation (6), defining the temporal hm heuristic:

hm(E,F) =

max
(

max
(ak,δk)∈F hm(

⋃
(ai,δi)∈F,

δi>δk

pre(ai), ∅) + δk

)
,

hm(E ∪
⋃

(ai,δi)∈F
pre(ai), ∅)

if F 6= ∅

0 if F = ∅, E ⊆ I
min{(E′,F ′) |R((E,F),(E′,F ′))} hm(E′, F ′) + δadv if F = ∅, |E| 6 m
maxE′⊆E,|E′|6m hm(E′, ∅) if F = ∅, |E| > m

(10)

This equation has a finite explicit solution, in the form of a table of the hm values for
states s = (E, ∅) with |E| 6 m. Methods for computing the solution are the same as
in the sequential case. The hm heuristics for temporal planning are admissible and
consistent, and the properties shown in lemmas 2 and 3 (page 43), that hm(s) = h∗(s)
for any sufficiently large m (with the number of atoms in the planning problem as an
upper bound) and that hm(s) 6 hm′

(s) for all s when m < m′, hold for the temporal
case as well.

Evaluation of Temporal Regression States

Heuristic evaluation of a temporal regression s = (E,F) is done analogously to the se-
quential case, by evaluating the relaxation equations (first and last clause of equation
(10)) on-line and looking up the values of states (E, ∅) with |E| 6 m in the precom-
puted heuristic table. It is, however, possible to strengthen the relaxation of concur-
rently scheduled actions (first clause of equation (10)) somewhat, thus obtaining bet-
ter heuristic values. Reconsider the relaxation of the state s = ({p}, {(a1, 1), (a2, 2)}),
illustrated in figure 3.9: if every action that can be used to establish atom p (i.e.,
that adds p) is incompatible with action a1, then atom p must be established by a
no-op at least from the point where a1 starts; in other words, hm(s) must be at least
hm(pre(a2) ∪ pre(a1) ∪ {p}, ∅) + 1. If all possible establishers for p are incompatible
with a2, the lower bound hm(pre(a2)∪{p}, ∅)+2 is similarly obtained, and the heuris-
tic value is of course set to the maximum of all lower bounds, in accordance with the
relaxation inequalities (8) – (9). The information about incompatible atom/action
pairs can be computed in advance and cached.

52

eval(F, NOOP, E) // F = {(a1,delta1), ..., (aN,deltaN)}

{

sort F by decreasing delta values;

A = {}; // empty set

d = delta1; // greatest delta value

v = 0;

for (i = 1 ... N) {

add pre(ai) to A;

for (each p in E or NOOP, p not compatible with ai) {

add p to A;

remove p from E or NOOP;

}

v = max(v, eval(A) + deltai);

}

min delta = min dur(a) over all a that add some p in E;

if (min delta < deltaN) {

add NOOPS to A;

v = max(v, eval(A) + min delta;

}

add NOOPS and E to A;

v = max(v, eval(A));

}

Figure 3.10: Procedure for heuristic evaluation of (partially constructed) temporal
regression states. F is the set of scheduled actions (including both those of the
parent state and the newly selected establishers), NOOP the set of atoms selected
to be established by no-ops (empty for a completely constructed state), and E the
set of subgoal atoms (atoms remaining to regress for a partially constructed state).
eval(A) gives the heuristic estimate for a set of atoms (see figure 3.4).

This is particularly important for the early detection of cost bound violations during
incremental successor state construction, as described in the previous chapter (page
18). The procedure for heuristic evaluation of a partially constructed successor state,
sketched in figure 3.10, takes as input a set of scheduled actions, which includes both
scheduled actions (the F component) in the parent state and the already selected new
actions (there is no essential difference between them, as illustrated in figure 2.6(b),
page 18), a set of selected no-ops and the set of atoms remaining to regress (a subset
of the E component of the parent state), and returns an estimate of the hm value of
the completed successor state plus the makespan increment δadv. The inconsistent
establishers optimization described above is applied both to atoms corresponding to
already selected no-ops and atoms remaining to regress. Selected no-ops that are
not “stretched” in this way have a minimum duration equal to the smallest possible
value that δadv can take, which is the minimum of the δ values among (old and new)
scheduled actions in the state and the shortest duration among all actions that may
be selected as establisher for any of the atoms remaining to regress.
Evaluation of finished states is done by the same procedure, the only difference being
that the set of selected no-ops is empty.

53

3.4 Discussion

The Graphplan and HSP planning systems outperformed the best comparable plan-
ning systems in existence at the time when they were introduced, in spite of the fact
that they both use simple forms of directional search (regression and progression,
respectively), due to the use of effective search control (Blum & Furst, 1995; Bonet,
Loerincs, & Geffner, 1997). This issue had previously received relatively little at-
tention, except in the context of knowledge-intensive planning systems, e.g. O-Plan
(Tate, Drabble, & Dalton 1994), TLPlan (Bacchus & Kabanza 1995) or PRODIGY
(Veloso et al. 1995). Heuristics for certain local decisions in partial-order planning
had also been studied (e.g. by Peot & Smith, 1993).
The heuristics employed by Graphplan and HSP, however, estimate the required cost
(number of actions or time steps) of a plan to achieve a goal which in a directional
plan search this corresponds closely with the distance to a solution in the search
space, since steps taken in the search space correspond to actions (or time steps)
added to the plan. The definition of the HSP heuristic is very similar to h1: the
difference is that the cost of a set of more than one atom is estimated with the sum
of the estimated cost of atoms in the set, instead of only the most costly atom. For
sequential planning (where cost is additive) this is often closer to the true cost, but
it is not admissible since there can be positive interactions between subgoals, i.e.,
cases where some action contributes to the achievement of more than one subgoal,
and is therefore counted by the heuristic more times than it actually appears in the
plan. (In chapter 6 we describe a method that allows subgoal cost estimates to be
added without loss of admissibility, resulting in a more accurate variant of the hm

heuristic for sequential planning.) The HSP heuristic is computed (tabulated) for
single atoms and evaluated on-line for larger atom sets in essentially the same way
as described for the hm heuristics in this chapter.
Several efficient but non-optimal planning systems based on state space search guided
by inadmissible variants of relaxed reachability heuristics have since been developed
(e.g. GRT (Refanidis & Vlahavas 1999), FF (Hoffmann 2000) and FastDownward
(Helmert 2004), to name a few). The planning graph has also inspired a great deal of
innovation: it has been analyzed, improved, extended and put to many different uses.
In particular, the planning graph has been used as a basis for devising a variety of very
effective inadmissible heuristics, both for classical sequential planning (including the
famous FF heuristic and others; see e.g. Hoffmann, 2000 and Nguyen, Kambhampati,
& Nigenda, 2002) and for planning problems involving time/resource/cost trade-offs
(Do & Kambhampati 2000).

The h2 Heuristic and the Planning Graph: A Comparison

The development of admissible heuristics for optimal cost (or makespan) planning has
been less explosive than the development of inadmissible heuristics. Besides the hm

heuristics and the planning graph, pattern databases is the only alternative approach
to deriving admissible heuristics for planning to have been tried (Edelkamp 2001).

54

Pattern database heuristics are the subject of chapter 4 and their relation to the
hm heuristics is discussed there. As mentioned at the beginning of this chapter, the
planning graph heuristic is equivalent to h2 for parallel planning (temporal planning
with unit action durations). A formal proof of this equivalence is given in the next
section below. An equivalent of h2 for sequential planning can also be easily obtained
from the planning graph by making all non-noop actions in each action layer mutex
(thus allowing at most one action in each time step). The planning graph has been
extended to yield an admissible makespan heuristic for temporal planning, in the
TGP (Smith & Weld 1999) and TPSys (Garrido, Onaindia, & Barber 2001) planning
systems.
However, the planning graph has more uses than only as a tool for computing a
heuristic value: it is also an explicit representation of the space of bounded-makespan
plans. As such, it has been used for structuring and indexing information learned
during the plan search (a simple form of learning, called memoization, was used
in the Graphplan system; Kambhampati (2000) describes the application of more
advanced learning methods). The main advantage of the explicit plan space rep-
resentation, however, appears to be as a basis for efficient non-directional search:
encoding the problem of finding a plan in the graph as a satisfiability or constraint
satisfaction problem has been shown to be much more effective than encoding the
(bounded) planning problem directly, but also more effective than the regression
search through the graph done by the Graphplan system (Kautz & Selman 1999;
Do & Kambhampati 2000). Hoffmann & Geffner (2003) show how such a non-
directional search can be done on the planning graph directly, without the need for
an intermediary encoding of the problem. In fact, the idea of a representation of the
space of bounded-length plans by alternating layers of atoms and actions was used in
the SATPLAN system (Kautz & Selman 1992). The planning graph adds reachability
information, resulting from a particular admissible heuristic, to this representation
(by removing unreachable atoms and actions, and by annotating unreachable, i.e.,
mutex, pairs), which obviously could be done using any admissible heuristic.

Equivalence of the h2 and Planning Graph Heuristics

We show the equivalence of the h2 and planning graph heuristics only for the case of
parallel planning (temporal planning with unit durations) as this is the most natural
formulation of the planning graph. The temporal h2 heuristic estimates the makespan
required to reach search states of the form s = (E,F), where E is a set of atoms
representing subgoals to achieve and F a set of concurrently scheduled actions, but
when all actions have unit durations only states with F = ∅ appear (see discussion
in chapter 2, page 21). Thus, we identify a set of atoms s with the search state (s, ∅).
The construction of the planning graph was described in section 3.1 above. Let
hG(s) denote the planning graph estimate of the cost (number of parallel action
steps) required to achieve the set of atoms s, i.e., the index of the first proposition
layer in the graph in which all atoms in s appear and there is no mutex between any
of them.

55

Theorem 5 h2(s) = hG(s), for all s.
Proof: We show that if hG(s) is finite then h2(s) 6 hG(s) and, conversely, that if
h2(s) is finite then hG(s) 6 h2(s). Equivalence follows since this implies that if either
estimate is finite they are equal, and if not then both must be infinite (and the atom
set s thus unachievable).
Both proofs are by induction: we begin with showing that hG(s) 6 h2(s) when h2(s)
is finite. For the base case, suppose h2(s) = 0, which it can be only if all atoms
in s are true in the initial world state; if this is the case then all atoms in s also
appear in the zeroth layer of the planning graph, without mutex since there are no
mutexes in this layer, so hG(s) = 0 also holds. For the induction step, assume that
hG(s) 6 h2(s) holds whenever h2(s) 6 k, for all s. Suppose that h2(s) = k + 1:
then for each subset s′ ⊆ s such that |s′| 6 2, and h2(s′) 6 k + 1, with equality for
at least one such subset. By definition of the temporal h2 heuristic (see equation
(10) above) h2(s′) = k + 1 iff there exists some state s′′ that results from regression
of s′, such that k + 1 = h2(s′′) + δadv, where δadv is the corresponding increase in
plan makespan (defined by equation (1), page 16). Because |s′| 6 2, the regression
leading to s′′ is through a set of two compatible actions {a1, a2} (one of which may
be a no-op) and because actions have unit durations, δadv = 1 and s′′ consists only
of the set of precondition atoms of those actions. Thus, h2(s′′) = k and by the
induction assumption hG(s′′) 6 k, i.e., the joint set of preconditions of actions a1

and a2 appears without mutex in proposition layer k (or earlier) of the graph, which
means that a1 and a2 appear in the following action layer. Since the actions are
compatible there is no static mutex between them, so by the construction of the
planning graph all atoms in add(a1) ∪ add(a2), which includes those in s′, appear,
without mutex, in the next proposition layer, and because this holds for every subset
s′ ⊆ s of at most two atoms, hG(s) 6 k.
The proof that h2(s) 6 hG(s) when hG(s) is finite is very similar: the induction step
is just the reverse of the above, and rests on the fact that if two atoms appear without
mutex in proposition layer k +1 of the planning graph then there are two non-mutex
(and thus compatible) actions a1 and a2 whose preconditions are present and non-
mutex in the preceding proposition layer, and that if h2(pre(a1)∪ pre(a2)) 6 k then
h2(add(a1) ∪ add(a2)) 6 k + 1. 2

56

4. Pattern Database
Heuristics

A Pattern Database (PDB) is a memory-based heuristic function obtained by ab-
stracting away all but a part of the problem (the pattern) small enough to be solved
optimally for every state by blind exhaustive search. The results are stored in a ta-
ble in memory (the pattern database) and define an admissible heuristic function by
mapping states into corresponding abstract states and reading their associated value
from the table (Culberson & Schaeffer, 1996; 1998; Hernadvölgyi & Holte, 2000).
Heuristic estimates from multiple abstractions can be combined by taking their max-
imum or, under certain conditions, their sum. Pattern database heuristics have been
successfully applied to a number of search problems (Culberson & Schaeffer 1998;
Felner, Korf, & Hanan 2004) and to sequential STRIPS planning (Edelkamp 2001).
The main problem with PDB heuristics is that since the time and memory required
to compute and store the pattern database limits the size of the pattern, the quality
of the heuristic depends crucially on the selection of an appropriate pattern (or
patterns). In domain-independent planning, where the appropriate pattern can vary
a lot between different planning problems and selection should ideally be automatic,
this is particularly troublesome.
This chapter reviews the principles of pattern database heuristics and Edelkamp’s
application of PDB heuristics to planning (section 4.1), and introduces an improved
abstraction, which enables better heuristic values to be obtained without increasing
the size of the pattern (section 4.2). Finally, some strategies for automatically se-
lecting patterns are presented, with an experimental analysis of the quality of the
resulting heuristics (section 4.3).

4.1 PDB Heuristics for STRIPS Planning

Pattern database heuristics are defined by abstractions, which are mappings between
search spaces with the property that optimal solution cost in the space mapped to
is a lower bound on optimal solution cost in the space mapped from (Culberson &
Schaeffer, 1996; Hernadvölgyi & Holte, 2000; the term “pattern” refers to states in
the abstract space, in the sense that all states mapped to the same abstract state
“match the pattern”). Recently, Edelkamp (2001) showed how such abstractions,
and thereby PDB heuristics, can be constructed for domain-independent (sequential)
STRIPS planning. In Edelkamp’s formulation, a pattern consists of a subset of the
propositions (or variables) of a planning problem and defines an abstraction mapping
by ignoring propositions (or variables) not in the pattern.

57

Abstractions of Search Spaces

Consider a search space, S, defined by a basic transition relation (RS(s, s′, cs,s′) iff
there is a transition from s to s′ with cost cs,s′ in S), an initial state and a set of
final states, and let h∗S(s) denote the optimal cost function, i.e., the function that
assigns to each state s in the search space the minimal cost of any path from s to a
final state, and ∞ if no such path exists. An abstraction of S is a surjective mapping
ϕ from S to a search space S′ that preserves transitions and transition costs, i.e., if
RS(s, s′, cs,s′) then RS′(ϕ(s), ϕ(s′), cs,s′), and that preserves final states, i.e., if s is
a final state in S then ϕ(s) is final in S′. Any such mapping defines an admissible
heuristic function hϕ on S, through hϕ(s) = h∗S′(ϕ(s)). Admissibility follows from
the fact that ϕ preserves solution paths: if s, . . . , sn ∈ F is a solution path in S then
ϕ(s), . . . , ϕ(sn) is a solution path in S′, with equal cost. Since h∗ is defined as the
minimum cost over all solution paths, hϕ(s) = h∗S′(ϕ(s)) 6 h∗S(s) (less than or equal
because there can exist solutions in S′ that do not correspond to a solution in S).
If the abstract space S′ is small enough the optimal cost function h∗S′(s) can be com-
puted for all s by means of a breadth-first search from the final states “backwards”
along the transition relation, and the results stored in a table (this is essentially equiv-
alent to solving Bellman’s equation for h∗S′ by dynamic programming, as described
in chapter 3). The table constitutes a pattern database (PDB) for the original search
space S and allows the heuristic hϕ(s) to be computed by computing only the ab-
straction ϕ(s) and looking up the corresponding value in the table. The reverse
search computes, of course, only the optimal costs of states from which a final state
is reachable. For efficient indexing, the table must contain all states in the abstract
space, so the values for unsolvable states (which are by definition all ∞) must be
entered in an extra step.

Abstraction of STRIPS Planning Problems

Applied to STRIPS planning, abstractions can be defined by selecting a subset of
the atoms in the planning problem and ignoring all other atoms. This subset, A,
defines an abstracted planning problem in which the initial and goal states, and
the preconditions, positive and negative effects of each action are simply intersected
with A. The abstract problem can be viewed as a relaxation of the original planning
problem where only the status of some propositions counts. Following Edelkamp,
we refer to the atom set A as the pattern. The pattern A defines a mapping, ϕA,
from the regression search space associated with the original planning problem to the
corresponding search space associated with the abstract planning problem, also by
intersection with A (ϕA(s) = s ∩ A). This mapping is an abstraction, as previously
defined, and thus the pattern defines an admissible heuristic hA(s) for the original
search space as described above (in fact, the pattern defines an abstraction mapping
also for the progression search space associated with the problem, as well as for
some other planning search spaces, in the same way; a formal proof for the case of
progression planning is given by Edelkamp, 2001).

58

Any subset A′ of a pattern A defines an abstraction mapping from (the search space
associated with) the abstract planning problem determined by A to (the search space
associated with) the abstract planning problem determined by A′ in exactly the same
way, which implies that optimal solution cost in the latter, “more abstract”, space is
also a lower bound on optimal solution cost in the former, “less abstract”, space. In
other words,

hA′
(s) 6 hA(s) (11)

for all s when A′ ⊆ A, and in particular

max(hA(s), hB(s)) 6 hA∪B(s) (12)

for all s and for any patterns A and B. Under certain conditions this can be strength-
ened to

max(hA(s), hB(s)) 6 hA(s) + hB(s) 6 hA∪B(s) (13)

in which case patterns A and B are said to be additive. In the case of sequential
planning, where the cost of a plan is the sum of the costs of actions in the plan,
additivity holds between atom sets A and B iff add(a)∩A = ∅ or add(a)∩B = ∅ for
every action a, i.e., no action adds atoms belonging to both sets.
To show that this is sufficient to ensure the right inequality in (13), consider a state
s and its optimal solution path s, . . . , sn in the abstract space defined by the pattern
A∪B. This path corresponds to a sequence of actions a1, . . . , an (where si is obtained
by regression of si−1 through ai). The actions can be divided in two sets: those that
add some atom in A and those that add some atom in B, and by assumption these
sets are disjoint (actions that do not add any atom in either A or B are redundant
in the abstract space defined by A∪B, and therefore can not appear on the optimal
solution path). The subsequence of a1, . . . , an consisting only of actions in the first
set is a solution path in the abstract space defined by the pattern A (if it were not,
this could only be because some precondition of one of the actions is not achieved,
but this precondition either belongs to A, in which case the sequence would not be
a solution in the A ∪ B abstract space, or does not belong to A, in which case it
is ignored in the abstract space defined by A and so can not affect the validity of
the solution path) and therefore hA(s) can not be greater than the sum of the costs
of the actions in this subset. The same argument applies to the subset of actions
that add atoms in B. Because the action subsets are disjoint it follows that the sum
hA(s) + hB(s) can not be greater than the cost of the solution path s, . . . , sn, which
was optimal in the abstract space defined by the pattern A ∪ B and hence equal to
hA∪B(s).
Relation (11) indicates that the quality of a PDB heuristic, in general, improves with
increasing pattern size. However, if the pattern A contains n atoms the corresponding
abstract space has 2n abstract states, and the corresponding PDB contains 2n entries,
so available memory limits the pattern size. Several approaches to reducing the
memory required have been proposed: some exploit problem-specific properties, e.g,

59

symmetries (Culberson & Schaeffer 1998; Felner et al. 2005), while others are general
(Felner et al. 2004; Edelkamp 2002). The time required to compute the PDB also
grows linearly with the number of entries. Additive patterns allow PDB heuristics to
be constructed using exponentially less memory, since the size of the PDB for pattern
A ∪ B equals the product of the sizes of the PDBs for patterns A and B while the
heuristic hA + hB requires memory only equal to the sum of the PDBs for patterns
A and B. However, the relation between hA +hB and hA∪B is an inequality, because
there can be negative interactions between actions relevant to atoms in A and actions
relevant to atoms in B that are not visible in the abstract spaces defined by patterns
A or B, but that are detected by hA∪B . Selecting the collection of patterns yielding
the best heuristic within given memory bounds is an intricate problem, which is
discussed further in section 4.3 below.

Patterns based on State Variable Representations

Edelkamp (2001) based patterns on a (multi-valued) state variable representation of
the planning problem rather than the propositional STRIPS representation (though
the state variable representation is constructed from exactly-one invariants, which
are automatically extracted from the STRIPS representation). As described in the
previous section, any subset of the atoms in a planning problem defines a pattern and
a corresponding PDB heuristic. The reason for basing patterns on state variables
is to make more effective use of memory: whereas in general a pattern consisting
of n atoms gives rise to 2n abstract states, and thus to a PDB with 2n entries, a
pattern consisting of a state variable with n values (corresponding to a set of n atoms
forming an exactly-one invariant) gives rise to only n abstract states, and a PDB with
n entries (the size of the PDB for a pattern consisting of several state variables is of
course still equal to the product of the ranges of the variables).
In this chapter, we will assume that the planning problem is available in state vari-
able representation as well as propositional STRIPS representation, and that we can
translate freely between the two, without worrying about how the representations
and the mapping between them are obtained. As described in chapter 2 (page 24)
a state variable corresponds to an exactly-one invariant containing the values of the
variable. Invariants can be extracted automatically from the STRIPS representa-
tion by a variety of methods (e.g. Gerevini & Schubert, 1998; Fox & Long, 1998;
Scholz, 2000). Two examples of state variable representations of planning problems
are described below, mainly for illustrative use in the remainder of the chapter.
The correspondence between state variables and exactly-one invariants implies that
the condition for additivity of two patterns based on state variables is that no action
changes the value of variables in both patterns. When this is true for two patterns
consisting of a single variable each, we simply say that the two variables are additive.
Note that two patterns are additive if and only if every variable in one is additive
with every variable in the other.
There is a slight complication with the use of patterns based on state variables to

60

create PDB heuristics for regression planning: since a regression search state consists
only of a set of atoms required to be true (and does not require atoms not in the
set to be false) the atom set may map to a partial assignment of values to state
variables and therefore the range of each state variable has to be extended with a
“don’t care” value. (We say a variable is undefined in an assignment if it has this
special value and defined if it has any of the normal values in the variables range;
an assignment is complete if all variables (in the pattern of interest) are defined,
and partial otherwise.) Note that a complete assignment to a set of state variables
determines a unique world state (an assignment of truth values) relative to the set
of propositions corresponding to the state variables. The cost associated with an
abstract state in which one or more variables of the pattern are undefined equals
the minimum over all completions of the abstract state, i.e., complete assignments
of the variables that agree with the partial state on all variables that are defined
(because a regression state is equally achieved no matter what the truth value of any
atom not in the state). Partial assignments can either be explicitly represented in the
PDB (which increases the size of the PDB) or determined “on-line”, by minimizing
over all completions w.r.t. the pattern (which increases the computational cost of
evaluating states). A procedure for computing the regression PDB (with explicit
partial assignments) for a state variable pattern is presented below, after the two
examples.

Example: Blocksworld

The Blocksworld planning problem was introduced in chapter 2. As described there,
there are two exactly-one invariants for each block: one that describes where the block
is and one that describes what is on top of the block. We name the corresponding
state variables pos(?b) and top(?b). The values of pos(?b) are (on-table ?b)
and (on ?b ?c) (for each ?c 6= ?b), and the values of top(?b) are (clear ?b) and
(on ?c ?b) (for each ?c 6= ?b). We use the names of the atoms in the propositional
STRIPS representation of the problem as the names of state variable values as an
easy way to describe the correspondence between the two representations. The world
state depicted in figure 2.1(a) (chapter 2, page 7) maps to the complete assignment

pos(A) = (on-table A), top(A) = (on B A),
pos(B) = (on B A), top(B) = (clear B),
pos(C) = (on-table C), top(C) = (clear C)

while the goal state description {(on A B)} maps to the partial assignment pos(A)
= (on A B), top(B) = (on A B).
The pos(?b) variables are all additive, since every action moves only one block. The
top(?b) variables are not additive, because an action that moves a block from being
on ?b to being on ?c changes both top(?b) and top(?c). For each block ?b, pos(?b)
and top(?b) are additive, since no action can move ?b and move something to or
from the top of ?b at the same time, but top(?b) is not additive with pos(?c) for
any block ?c 6= ?b.

61

14 13 15 7

11 6 9 5

12 2 1

4 8 10 3

1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

(a) (b)

Figure 4.1: Two configurations of tiles in the 15-Puzzle (the arrangement in (b) is
the standard goal state). The sum of Manhattan distances heuristic for state (a) in
relation to goal (b) is 37 while the optimal solution cost is 55.

For an example where a good PDB heuristic is easy to find, consider again the
“tower construction” Blocksworld problem (also described in chapter 3, page 40):
n blocks (b1 to bn) are on the table in the initial world state, and the goal is
{(on b1 b2), . . . , (on bn−1 bn)}, i.e., to have the blocks form an ordered tower
with b1 at the top and bn at the base. The PDB heuristic based on a pattern con-
sisting of a single variable pos(bi) gives a value of 1 for this problem, since one action
is required to change the value of this variable to the value specified by the goal state
(except for block bn which does not need to be moved), and since the patterns are
all additive these values can be summed over all blocks resulting in a heuristic value
of n− 1, which is also the optimal solution cost.

Example: The 15-Puzzle

The “(n2 − 1)-Puzzle” (8-Puzzle, 15-Puzzle, 24-Puzzle, etc.) problem is a popular
benchmark for evaluating search algorithms and related techniques in AI. The puzzle
consists of a board with n×n squares occupied by n2−1 numbered tiles. This leaves
one square empty, and tiles (horizontally or vertically) adjacent to the empty square
can be moved into it (the empty square is traditionally called the “blank”). The goal
of the puzzle is to rearrange the tiles from the given initial placement to a specified
goal configuration (usually with the tiles ordered by number, left-to-right and top-to-
bottom). An example of initial and goal configurations (for n = 4, i.e., the 15-Puzzle)
is shown in figure 4.1. The 8-Puzzle is the smallest version, and is considered easy.
Problem-specific search implementations solve the 15-Puzzle easily and can also solve
most instances of the 24-Puzzle (Korf & Taylor 1996). Recently, a combination of
pattern database heuristics and a suite of problem-specific enhancements have made
it possible to solve some instances of the 35-Puzzle (Felner, Korf, & Hanan 2004). For
a domain-independent planning system, however, solving the 15-Puzzle optimally is
still a challenge.
A propositional STRIPS representation of the problem has atoms (at ?t ?x ?y),

62

where ?t = T1, . . ., T15 ranges over the 15 tiles and ?x, ?y = 1, . . ., 4 range over the
16 positions on the board, and atoms (blank ?p), describing the places occupied by
the tiles and the empty square. The action to move, for example, tile ?t to the left
has preconditions (at ?t ?x ?y) and (blank ?x-1 ?y), deletes both of these and
adds (at ?t ?x-1 ?y) and (blank ?x ?y) instead.
In the state variable representation there is a variable pos(?t) for each tile ?t, with
values (at ?t ?x ?y) (for ?x, ?y = 1, . . ., 4), and a variable blank with values
(blank ?x ?y) (also for ?x, ?y = 1, . . ., 4), since every tile, and the blank, is in
exactly one square in any world state. There are also variables in(?x,?y) for all
coordinates ?x, ?y, with values (at ?t ?x ?y) for each tile ?t and (blank ?x ?y).
These represent what is in the square at ?x, ?y, which is exactly one of the tiles or
nothing (the blank).
There is a simple and well known admissible heuristic for the puzzle, based on sum-
ming over all tiles the “Manhattan distance”, which is the horizontal and vertical
distances added together, from the tiles current position to its position in the goal
state. This heuristic can be explained as the optimal solution to a relaxed problem,
in which the tiles are allowed to move into any adjacent square (whether empty or
occupied by another tile), but it can also be reconstructed as the sum of a collection
of additive PDBs, each for a pattern consisting of a single pos(?t) variable (Korf &
Taylor 1996).

Computing Regression PDBs

The value stored for each abstract state s in a PDB is the minimum cost of any path
from s to a final state in the abstract space, which is the same as the minimum cost
over any path from a final state to s under the inverse transition relation. Thus,
computing the PDB for a given pattern amounts to solving a shortest path problem
(similar, but not identical, to computing the hm solution as described in chapter 3).
In a straightforward formulation of “inverse regression” in the abstraction defined by
a pattern consisting of state variables, the starting (zero cost) states are all (complete
and partial) assignments to variables in the pattern that agree with the initial world
state of the planning problem. An action a is applicable to a (partial) assignment iff
the assignment defines, and agrees with the preconditions of a, on all variables (in
the pattern) on which a has a precondition, and when applied leads to all (partial)
assignments that agree with the effects of a on at least one of the variables in the
pattern and that for each variable (in the pattern) changed by a either agrees with
the effects of a (on this variable) or is undefined.
A slightly different approach leads to a simpler (and perhaps also more effective)
procedure: divide the computation of the PDB in two steps, where the first is to
apply a standard single-source shortest path algorithm to compute the values of all
complete assignments (w.r.t. the pattern) and the second is to fill in the values of
partial assignments, using the fact that the PDB value of a partial assignment is the
minimum over the values of all its completions. The two-step procedure is shown

63

ComputeRegressionPDB({V1,...,Vn}, PDB)

{

// initialization:

for (each assignment s to {V1,...,Vn}) {

PDB[s] = +INF;

}

// step 1: compute complete assignments (Djikstra’s algorithm)

s = initial world state assignment to {V1,...,Vn};

PDB[s] = 0;

initialize queue to contain s with cost 0;

while (queue not empty) {

s = min cost assignment in queue;

remove s from queue;

for (each action a) {

if (s agrees with pre(a) on {V1,...,Vn}) {

s’ = apply effects of a to s;

PDB[s’] = PDB[s] + cost(a);

insert s’ with cost PDB[s’] in queue;

}

}

}

// step 2: compute partial assignments

ComputePartial({V1 = undefined, ..., Vn = undefined});

}

ComputePartial(s)

{

if (s is complete) {

return PDB[s];

}

else {

V = first undefined variable in s;

min val = +INF;

for (each value v of V) {

s’ = s completed with V = v;

val = ComputePartial(s’);

min val = min(val, min val);

}

PDB[s] = min val;

return min val;

}

}

Figure 4.2: Procedure for computing the regression PDB for a pattern consisting of
state variables V1,...,Vn. Function ComputePartial finds the value of a partial
assignment s by recursively minimizing over all completions, and also stores the
values of all “partial completions” of s, as well as the value found for s, in the PDB
during the process.

64

�

�

�

�

�

(a) (b)

Figure 4.3: The “swap base blocks” Blocksworld problem, for three blocks: (a) initial
world state; (b) goal state description. Block A does not figure in the goal state
description, since the goal mentions only the two blocks at the base of the tower in
the initial world state.

in figure 4.2. Alternatively, only the values for complete assignments can be stored
in the PDB and values for partial assignments determined on-line by a function like
ComputePartial in figure 4.2.

4.2 Constrained Abstraction

In the abstract planning problem defined by a subset of atoms (A) above, atoms
not in A are ignored completely. A consequence of this is that interactions between
actions caused by conflicting requirements on atoms not in A do not arise in the
abstract problem, which often causes the PDB heuristic to underestimate the true
cost of solving a state by more than what is necessary. To some extent this problem
can be remedied by including the atoms causing conflicts in the pattern, but this
is not really a satisfactory solution (since the size of patterns that can be used is
typically limited). This section presents a better approach, which uses a stronger
abstraction that carries certain invariants from the original planning problem into
the abstract search space. The stronger abstraction retains the nice properties of the
weaker abstraction, such as the condition under which patterns are additive.
For example, consider a Blocksworld problem in which there are n blocks (b1,...,bn)
that in the initial world state form an ordered tower with bn at the base and b1 at the
top, and the goal is to swap the two bottom blocks, i.e., the goal is (on bn bn−1).
Figure 4.3 illustrates the initial and goal states for the case of three blocks (named A,
B and C). A PDB heuristic based on a pattern consisting of only the variable pos(bn)
gives an estimated cost of only 1 for this problem. This is because the single-step plan
moving bn directly to bn−1 is valid in the abstract problem, where everything except
the atoms specifying the position of block bn, including the atoms (clear bn) and
(clear bn−1), has been abstracted away from the preconditions of this move action.
For the same reason, the estimated cost is still 1 even if the position of the block
immediately above bn, i.e., variable pos(bn−1), is also included in the pattern. The

65

(world) state space of the abstract planning problem defined by this pattern (for the
case of three blocks A, B and C) is shown in figure 4.4(a). This is not as reasonable,
however, since the value of this variable in the initial state is (on bn−1 bn), which
means block bn can not be clear. In fact, the two atoms (on bn−1 bn) and (clear
bn) are mutex (form a two-atom at-most-one invariant) in the original problem but
this fact is lost in the abstraction.
For another example, consider the 15-Puzzle problem shown in figure 4.1(a), specifi-
cally tiles 5 and 6: the sum of their Manhattan distances is 4, since both are 2 steps
away from their goal positions, but the number of moves required to shift them both
into their goal positions is at least 6. This is because they are in a so-called linear
conflict: they are in the same row, but need to pass each other, and consequently at
least one of them must move “out of the way” and back, adding (at least) 2 extra
steps. The PDB heuristic h{pos(T5),pos(T6)}, however, yields only a value of 4. The
reason is again that the abstraction removes the preconditions involving the position
of the blank, which prevent tiles from moving to an occupied square, from the actions.
The problem could be remedied by including the variable blank in the pattern, but
this increases the size of the PDB, and worse, since it would have to be included
in the pattern for every pair of tiles, the corresponding PDBs would no longer be
additive.
The general problem illustrated by the two examples is that even if two variables are
in a pattern, interactions between actions relevant to those variables but caused by
conflicting requirements on other variables are lost in the abstraction, unless those
other variables are also in the pattern. This is due to the fact that the abstraction
completely ignores everything not in the pattern.
Constrained abstraction enforces certain invariants (viz. invariants of the at-most-one
kind) of the original planning problem in the abstract planning problem, even though
they are not invariants of the abstract problem (because some action preconditions
have been abstracted away). Simplifying somewhat, it can be described as applying
invariant pruning (as described in chapter 2, page 10) to the abstract regression space
but using the at-most-one invariants of the original planning problem.
Let C = {C1, . . . , Ck} be a collection of at-most-one invariants of a planning prob-
lem, i.e., sets of the atoms such that for every Ci at most one of the atoms in Ci

is true in any reachable world state. Recall from section 4.1 that a pattern A de-
fines an abstraction mapping from the regression search space associated with the
original planning problem to an abstract search space (by intersection with A). The
constrained abstraction (relative to C) is based on the same mapping, but excludes
from the abstract search space any transition from a (abstract) search state s to a
state s′, where s′ is the result of regressing s through action a, such that s′ ∪ pre(a)
violates some invariant in C. In other words, the constrained abstraction excludes
transitions that are known to lead to unreachable states in the original search space
given only the part of the problem kept by the abstraction. Figure 4.4(b) shows
the constrained abstract (world) state space for the pattern consisting of variables
pos(B) and pos(C) for the “swap base blocks” problem discussed above.

66

0 1

pos(C)=(on-Table C),
pos(B)=(on B C)

pos(C)=(on C B),
pos(B)=(on B C)(move C ..)

pos(C)=(on C A),
pos(B)=(on B C)

(move C ..)

pos(C)=(on-Table C),
pos(B)=(on-Table B)(move B ..)

pos(C)=(on-Table C),
pos(B)=(on B A)

(move B ..)

2

pos(C)=(on C B),
pos(B)=(on-Table B)

(move B ..)

pos(C)=(on C B),
pos(B)=(on B A)

(move B ..)

pos(C)=(on C A),
pos(B)=(on-Table B)

(move B ..) pos(C)=(on C A),
pos(B)=(on B A)

(move B ..)

(move C ..)

(move C ..)

(move C ..)

(move C ..)

(a)

0 1

pos(C)=(on-Table C),
pos(B)=(on B C)

pos(C)=(on-Table C),
pos(B)=(on-Table B)

(move B ..)

pos(C)=(on-Table C),
pos(B)=(on B A)

(move B ..)
pos(C)=(on C A),
pos(B)=(on B C)

(move C ..)

pos(C)=(on C B),
pos(B)=(on B C)

(move C ..)

2

pos(C)=(on C B),
pos(B)=(on-Table B)

(move C ..)

pos(C)=(on C A),
pos(B)=(on-Table B)

(move C ..)

pos(C)=(on C B),
pos(B)=(on B A)

(move C ..)

pos(C)=(on C A),
pos(B)=(on B A)(move C ..)

3

(move B ..)

(move C ..)

INF

(move B ..)

(move B ..)

(move B ..)

(move B ..)

(move C ..)

(b)

Figure 4.4: (a) State space of the abstract problem defined by the pattern
{pos(B), pos(C)} for the “swap base blocks” Blocksworld problem (illustrated in
figure 4.3). The states are grouped by the minimum cost to reach them (which is
indicated at the bottom of the figure); the left-most state is the initial world state.
States satisfying the goal condition (pos(C)=(on C B)) are drawn in bold. (b) State
space of the constrained abstract problem for the same pattern. Excluded transitions
are shown as dashed arrows. Note that some states are unreachable in this problem
(these are also drawn with dashed lines).

67

Let hA
C(s) denote the optimal cost function associated with the constrained abstract

space defined by pattern A and invariant set C.

Theorem 6 Optimal cost in the constrained abstract space is an admissible heuristic
for the original problem and it is at least as strong as the heuristic obtained from
unconstrained abstraction, i.e.,

hA(s) 6 hA
C(s) 6 h∗(s), (14)

for all s.
Proof: A solution path in the regression space corresponds to an action sequence
executable in the initial world state of the planning problem, so the states along
the path must satisfy all problem invariants (see figure 2.3, page 10), and the so-
lution path therefore also exists in the constrained abstract space, as well as in the
unconstrained abstraction. 2

Relations (11) and (12) hold also for constrained PDB heuristics (provided they are
computed using the same set of invariants), as does relation (13) under the same
condition for additivity (that no action adds atoms, i.e., changes variables, in both
patterns). The argument is essentially the same as in the unconstrained case.

4.3 Pattern Selection

The selection of appropriate patterns is crucial for the quality of PDB heuristics.
In general there is no way to determine which of two patterns will yield the more
accurate heuristic for a given problem, short of actually computing the respective
PDBs and using them to solve the problem. Relation (11) implies that a larger
pattern can never result in a less accurate heuristic, but the memory (and time)
required for the PDB grows exponentially with the size of the pattern, which limits
the size of patterns that can be used in practice. When patterns A and B are additive
the sum hA +hB (which requires only space equal to the sum of the PDBs for A and
B) can be used in place of hA∪B (which requires space equal to the product of the
PDBs for A and B) but the heuristic for the combined pattern can be more accurate
than the sum, in particular when constrained abstraction is used (as illustrated by
the examples in the preceding section).
This section presents a number of methods for selecting patterns based on state vari-
ables, automatically and in a domain-independent way, and an experimental analysis
of the quality of the resulting heuristics. All PDB heuristics discussed here are com-
puted with constrained abstraction.

Bin-Packing Pattern Selection

The input to pattern selection is assumed to be the set P = {V1, . . . , Vn} of state
variables and a limit L on the allowed size of any single PDB. The result is a collection

68

of patterns, A1, . . . , Ak, which are subsets (not necessarily disjoint) of the set of
variables, such that the size of the PDB for each pattern is no more than L. The size
of the PDB for pattern A is

∏
V ∈A |V |, where |V | is the size of variable V , i.e., the

number of values it can take (+1 if the undefined value is explicitly represented).
Edelkamp (2001) suggests this can be viewed as a bin-packing problem: the variables
are items to be packed in bins of limited size, with the objective of using the capacity
of each bin as effectively as possible, i.e., minimizing the number of bins needed to
pack them all. This makes the collection of patterns a partitioning of the set of state
variables, and the final heuristic maxi=1...k hAi . Optimal bin-packing is an NP-hard
problem, but there are good and efficient approximation algorithms.

Additive Bin-Packing

The plain bin-packing method, however, fails to take into account additivity. If
patterns are additive the final heuristic can be taken as the sum of the values from
each of the PDBs instead of only the maximum, resulting in a far more accurate
heuristic. In general, there need of course not be any partitioning of variables into
patterns (of limited size) such that they are all additive: in this case the best that
can be done is to find subsets (again, not necessarily disjoint) of additive patterns
and maximizing over the resulting sums.
A way to do this is to find a collection of (not necessarily disjoint) maximal sets of
additive variables, such that the collection covers all the variables, and to treat each
such set separately. More precisely, find a collection Q1, . . . , Ql of subsets of the set
of variables such that

(i) the variables in each Qi are all mutually additive,

(ii) each Qi is maximal, i.e., there is no variable V 6∈ Qi such that V is additive
with all variables in Qi, and

(iii)
⋃

i=1,...,l Qi = P , i.e., the collection covers all variables.
Next, bin-packing is applied to each set Qi separately, producing a collection of
patterns Ai,1, . . . , Ai,ki

for each Qi. These patterns are additive, so values from the
resulting PDBs can be summed and the max of the sums taken as the final heuristic:
maxi=1...l Σki

j=1h
Ai,j .

Finding sets Q1, . . . , Ql satisfying the stated properties is also an NP-hard problem
(the maximum independent set problem), but again there are good approximation
algorithms (see e.g. Boppana & Halldorsson, 1992).
In many planning problems large sets of additive variables can be found, e.g., the
variables representing the positions of blocks in Blocksworld, or the positions of tiles
in the 15-Puzzle. However, there are often also small sets, e.g., in the Blocksworld
domain each of the variables top(?b) is only additive with pos(?b) for the same
block ?b. A small refinement to the procedure above is to merge the sets Qi that
are too small to require division into patterns and apply bin-packing to the union of
their variables. This can not result in a worse heuristic, since the values from the

69

PDBs built for each of the small sets were only maximized in any case.

Weighted Additive Bin-Packing

The size of a PDB for pattern A = {V1, . . . , Vk} equals the product of the sizes of
PDBs for each of the variables Vi, so why group additive variables into patterns at
all when the values from PDBs corresponding to each variable can be summed? The
reason is that the heuristic for the larger pattern is in many cases more accurate, since
it captures negative interactions between actions relevant to each of the variables, in
particular when the PDB is computed using constrained abstraction. On the other
hand, there are also many cases when the combination of several additive variables
into one pattern does not produce better values than the sum of one PDB per variable.
The problem is that there is no general domain-independent way of deciding which
case one is dealing with.
Consider again the 15-Puzzle instance shown in figure 4.1(a). The variables {pos(T1),
. . . , pos(T15)} are a (maximal) additive set and the sum of the corresponding PDBs,
which is also the Manhattan heuristic, is 37. The sum of PDBs

h{pos(T1),pos(T2)} + h{pos(T3),pos(T4)} + · · ·+ h{pos(T13),pos(T14)} + h{pos(T15)},

corresponding to one possible partitioning of the variables into patterns of at most
two, yields a value of 39. This is because it captures the linear conflict between tiles
T5 and T6. The following collection of patterns,

h{pos(T1), pos(T2)} + h{pos(T3),pos(T7)} + h{pos(T5),pos(T6)} + h{pos(T4),pos(T8)}+

h{pos(T9),pos(T10)} + h{pos(T11),pos(T12)} + h{pos(T13),pos(T14)} + h{pos(T15)} ,

which swaps pos(T3) and pos(T7) compared to the previous, gives a value of 41,
because it captures also the linear conflict between tiles T7 and T3. However, there
are also many partitionings into sets of at most two tiles that give only the same
value as the Manhattan heuristic (sum of single-variable PDBs).
Examples like this are frequent. Figure 4.5 shows the results of an experimental
comparison of the PDB heuristics resulting from several different pattern selection
strategies, on problems from the Blocksworld and 15-Puzzle domains. Among the
strategies compared are random additive bin-packing selection, which works like the
additive bin-packing procedure described above except that variables are placed in
patterns at random (subject to the PDB size limit). In the experiment the random
selection strategy was applied with 5 different random seeds and the curves labeled
“min/max random” in the figure show the best and worst performance, per problem,
thus obtained. For now, note only that there is a fairly large difference between the
best and worst values obtained by different random variable placements.
This shows that there is room for improving the quality of PDB heuristics by a
more careful partitioning of additive variable sets. In fact, minimizing the number of
PDBs (as done by bin-packing) is a secondary concern: using more and smaller PDBs

70

consumes less memory, and the time to compute PDBs is in any case dominated by
the largest PDB. Thus, we seek to maximize some measure of the “goodness” of the
partitioning into patterns instead of blindly minimizing the number of partitions.
This problem can be stated as follows: given a set of state variables, Q, find a
partitioning of Q into patterns A1, . . . , Ak that maximizes

∑
i=1,...,k F (Ai), subject

to the PDB size constraint (that
∏

V ∈Ai
|V | 6 L, for each Ai). Again, this is done

for each maximal set of additive variables Q, and the final heuristic sums the values
from the PDBs constructed from each additive variable set and maximizes over the
sums.
Note that the above optimization problem is slightly simplified, in that the value of
the target function for the partitioning is assumed to be the sum of its values for each
partition. Even so, maximizing an arbitrary function over partitions is also an NP-
hard problem (if the target function is a negative constant the standard bin-packing
problem results as a special case).
This method depends on having a target function F that accurately measures the
“goodness” of patterns, and a general domain-independent such measure is difficult to
define. The following function combines two measures of the degree of “interaction”
between the variables in a partition:

F (A) =
(∑

V,V ′∈A

1− ISI(V, V ′)
)

+ ICG2(A)
)

,

where ISI(V, V ′) is a measure of how “close” variables V and V ′ are in the ini-
tial world state and ICG2(A) measures the amount of inter-dependencies between
variables in A. Intuitively, F favours grouping variables that are close in the ini-
tial world state and variables with common dependencies. This is of course only a
heuristic approximation of pattern goodness. The closeness of two variables V and
V ′ in the initial world state is measured by comparing the number of actions that
are executable given the value of V with the number that are executable given the
values of both variables:

ISI(V, V ′) =
|{a |V = p, V ′ = p′ consistent with pre(a)}|

|{a |V = p consistent with pre(a)}|
,

where p and p′ are the initial values of variables V and V ′. The amount of common
dependencies between variables in A is given by

ICG2(A) =
∑
V ∈A

(
|CG−1(V) ∩A|
|CG−1(V)|

)2

where V ′ ∈ CG−1(V) iff some action that changes V ′ has a precondition or effect on
V (CG−1(V) is the set of V s immediate predecessors in the causal graph, hence the
name).
The experimental analysis below shows that PDB heuristics resulting from weighted
bin-packing using this function compare quite well against random packing in some

71

problem domains but not in all (see figure 4.5). The complex, and somewhat ad hoc,
nature of the target function makes it difficult to characterize precisely the class of
planning problems for which it is an accurate measure of pattern goodness.

Incremental Pattern Selection

The weighted additive bin-packing pattern selection method produces PDB heuristics
of good quality for certain planning problems, but its behavior is difficult to explain
and predict. Also, while the method tries to find the partitioning of a set of additive
variables into patterns that will yield the best heuristic it is, like all bin-packing
methods, “overly eager” in the sense that additive variables are joined into larger
patterns even when no such grouping yields an improvement over building separate
PDBs and summing their values, which may result in some waste of memory and
computation time.
This section presents a different approach, which constructs patterns incrementally
by first computing a PDB for each variable alone and then analyzing the abstract
solutions corresponding to the values in the PDBs for possible conflicts and merging
the patterns that appear to be most strongly interdependent. This is repeated until
no conflicts are found or no more mergers can be made without making the resulting
PDB too large. Like additive bin-packing the process is applied to each maximal set
of additive variables separately to ensure that the collection of patterns is additive.
The final heuristic sums the values from the PDBs constructed from each additive
variable set and maximizes over the sums.
Recall that a regression PDB is computed by an exhaustive breadth-first exploration
forwards from the initial world state. During this exploration a pointer can be stored
with every abstract state, indicating which action was applied in which (abstract)
state to reach this state and using these pointers the abstract plan corresponding to
an entry in the PDB can be quickly extracted (this is the standard way of extracting
the shortest path in any single-source shortest path algorithm). For a given pattern
A, consisting of a set of variables, potential conflicts are found by extracting the
abstract plan for the goal of the planning problem (projected onto A) from the
corresponding PDB and simulating this plan forwards from the initial world state,
using the original (unabstracted) actions. When a precondition of an action in the
abstract plan is found to be inconsistent with the value of a variable V not in the
pattern, either because the precondition is on the value of V and contradicts the
current value or because the precondition and the value of V together violate an
invariant, a conflict between pattern A and the pattern that V is part of is noted.
For each (maximal) set of additive variables, {V1, . . . , Vn}, the process starts with
a corresponding collection of single-variable patterns, A1, . . . , An, and computes for
each pattern a PDB and its conflicts with the other patterns. Each conflict is assigned
a weight, given by the h1 value of the inconsistent atom set. A pair of patterns Ai

and Aj is a feasible merge iff the size of the PDB for Ai ∪ Aj is less than the given
limit L. The feasible pair of patterns with the heaviest conflict are merged and a

72

new PDB for the joint pattern is computed, along with its conflicts with the other
patterns. This repeats until there are no more conflicts or no feasible pair to merge.
Values from the PDBs built from an additive variable set are added, and the final
heuristic value is the maximum over the sums.
As an example, here is how the procedure is applied to the Blocksworld problem
of swapping the two blocks at the base of a tower, described in section 4.2 above.
The only large set of additive variables in this problem is {pos(b1), . . . ,pos(bn)}, of
which only pos(bn) has a goal value, (on bn bn−1). The abstract plan extracted
from its PDB consists of the single action (move-from-table bn bn−1). Simulat-
ing this action in the initial world state reveals that its preconditions conflict with
variables pos(bn−1) (whose value in the initial state is inconsistent with the pre-
condition (clear bn)) and pos(bn−2) (whose value is inconsistent with the precon-
dition (clear bn−1)). The first of these conflicts has a slightly higher weight, so
pos(bn) and pos(bn−1) are merged into the pattern {pos(bn),pos(bn−1)}, and a
new PDB is computed. This pattern still has a goal value, with an associated abstract
plan consisting of two steps: (move-to-table bn−1 bn) and (move-from-table bn

bn−1). This plan also conflicts with variable pos(bn−2), so the pattern is extended
to {pos(bn),pos(bn−1), pos(bn−2)}. The abstract plan extracted from this PDB
will conflict with pos(bn−3), so the merging process continues until the pattern has
grown so large that no more mergers are feasible.

Analysis: Quality of PDB Heuristics Resulting from Different
Pattern Selection Strategies

This section presents the results of an experimental comparison of the quality of PDB
heuristics resulting from the pattern selection methods described above. The quality
of a heuristic is measured by the number of nodes expanded in an A* search, using
sequential regression (runtimes are quite closely related to this measure as well, since
the time spent computing PDBs does not differ much between the different selection
methods). The experimental results show that the “intelligent” pattern selection
methods (weighted additive bin-packing and additive incremental selection) result in
better heuristics than randomly selected patterns, even when additivity is taken into
account, but also that there are weaknesses in both methods.

The Experiment

The pattern selection methods compared are a randomized version of the additive
bin-packing method, weighted additive bin-packing using the goodness function F
described above, and incremental pattern selection. All PDBs were computed using
constrained abstraction, with the full set of invariants in the planning problem. The
limit (L) on the size of any single PDB was set to 2 million entries, except in the
random STRIPS domain where a limit of 20,000 entries was used.
Randomized additive bin-packing selection works like the additive bin-packing proce-

73

dure described above except that variables are placed in patterns at random instead
of arbitrarily (but still in the smallest number of patterns and respecting the PDB
size limit). The random selection strategy is applied with 5 different random seeds:
the curves labeled “min/max random” in figure 4.5 indicate the best and worst per-
formance, per problem, over the 5 random trials. In other words, the performance
of the “best of 5 random” is only available at five times the cost, in memory and
computation time, compared to the other PDB heuristics.
The planning problems used in the experiment are from three different domains: the
Blocksworld and 15-Puzzle domains, described earlier in this chapter, and random
(propositional) STRIPS problems. The random STRIPS problems differ significantly
from the Blocksworld and 15-Puzzle problems in that they lack structure: there are
very few invariants, and consequently the state variable representation of the problem
is closer to the propositional representation. Typically, variables are binary with
values corresponding to a proposition and its negation3.
The Blocksworld problems are the same as in the experiment described in chap-
ter 3 (page 46) but due to the volume of the experiment only half the problems
(the smaller half) were used. The 15-Puzzle problems are the easiest quarter of the
collection of random 15-Puzzle problems presented by Korf (1985). The random
STRIPS problems were generated according to Bylander’s variable model (1996), in
which the preconditions and effects of each action are chosen independently, with
equal probability for each proposition, as are the goal propositions. The parameters
of the model (and values used in this experiment, respectively) are the number of
propositions (n = 60), the number of actions (o = 118), the average number of pre-
conditions and effects per action (r = s = 3) and the number of goals (g = 6). The
hardness of deciding plan existence for random STRIPS problems depends mainly on
the number of actions in relation to the number of atoms and goals, peaking around
o = O(n ln g) (see Bylander, 1996). The chosen parameter values are in the “hard
region” but even so a significant fraction of the generated problems are either trivial
or trivially proved unsolvable. The problems used in the experiment were selected as
follows: 200 problems were generated, an IDA* search with the h2 heuristic run for
each, and problems that were proved unsolvable (problems for which h2(G) = ∞) or
that were solved very quickly were removed. This left 55 problems. Because, how-
ever, the PDB heuristics generally work rather poorly for random STRIPS problem,
the set was further reduced by excluding problems not solved within 4 CPU hours
(by IDA* with the h2 heuristic), leaving a final of 42 problems. Again, this was done
to keep the volume of the experiment manageable (recall that each problem is solved
seven times).

3Although the propositional STRIPS planning model, as defined in chapter 2, does not include
negation the negation of an atom p can be represented by an atom not-p, if action and initial world
state descriptions are written accordingly.

74

100

1k

10k

100k

Instance

#N
od

es
 E

xp
an

de
d

Min/Max Random
Weighted Add. Bin
Incremental

10k

100k

1M

Instance

#N
od

es
 E

xp
an

de
d

Min/Max Random
Weighted Add. Bin
Incremental

(a) Blocksworld (b) 15-Puzzle

1k

10k

100k

Instance

#N
od

es
 E

xp
an

de
d

Min/Max Random
Weighted Add. Bin
Incremental

(c) Random STRIPS

Figure 4.5: Number of nodes expanded in A* search using heuristics resulting from
random additive bin-packing, weighted additive bin-packing and incremental pattern
selection. The “min” and “max” random show the best and worst performance, per
problem, over 5 random trials. Instances are sorted by the median value over the 5
random additive bin-packing heuristics.

75

Results and Conclusions

Figure 4.5 shows the results. A first observation that can be made is that across all
the domains there is a significant gap in performance between the best and worst
PDBs obtained by random additive bin-packing. This demonstrates that considering
only additivity is not enough: heuristic quality improves when additive variables are
combined into larger patterns, but is also very sensitive to the exact partitioning.
Weighted additive bin-packing produces PDBs that compare quite well with the best
of 5 random bin-packing selections in the Blocksworld and 15-Puzzle domains, but
only around the median in the random STRIPS domain. This suggests that the target
function is not quite domain-independent, i.e., that it is only accurate for planning
problems of a certain kind (in fact, it is not unlikely that the target function may be
somewhat “overfitted” to the Blocksworld and 15-Puzzle domains specifically).
The results of incremental pattern selection, compared to the best random bin-
packing selection, are more uneven within each domain, but are on the other hand
more even across the three domains. This suggests that some of the choices that are
currently made arbitrarily, e.g., which of the possibly many different abstract plans
is analyzed for conflicts or which pair to merge in case of ties, are significant. Inves-
tigating this, through further experiments with random variations, is an interesting
topic for future research, since if this is the case it may be possible to refine the
method by making these choices more informed.
It is also worth noting that neither weighted additive bin-packing nor incremental
pattern selection produces PDBs that dominate those obtained by the “best of 5
random” bin-packing in any of the domains.
As noted above the performance of the PDB heuristics, regardless of pattern selection,
is generally quite poor on the random STRIPS problems (the PDB and hm heuristics,
and an additive version of the hm heuristics, are compared in chapter 6). In part this
is probably due to the lack of structure in these problems, which results in a state
variable representation with a large number of “small” variables. Another factor that
may also be important, however, is that these problems typically have many large
and overlapping sets of additive variables, whereas in problems of the Blocksworld
and 15-Puzzle domains there is only one large set of additive variables. The bin-
packing and incremental pattern selection methods both work on each set of additive
variables separately (to ensure the additivity of the resulting PDBs) which in the
random STRIPS problems results in a large number PDBs (this is why a smaller
PDB size limit was used for the problems in this domain: a greater size limit would
not significantly reduce the number of PDBs, but only increase the time required
to compute them). Selecting patterns across additive sets may yield better PDB
heuristics for problems in which this phenomenon occurs.

76

4.4 Discussion

Pattern database heuristics (introduced by Culberson & Schaeffer, 1996) have at-
tracted a great amount of interest recently and have been used to solve a number of
hard “puzzle” search problems, e.g., the 15-, 24- and even 35-Puzzle, Rubik’s Cube
and others (see e.g. Hernadvölgyi & Holte, 2000; or Felner, Korf, & Hanan, 2004)
and also, e.g., sequence alignment problems. For many of the problems PDBs are the
only effective admissible heuristics known. The first application of PDB heuristics
to domain-independent (STRIPS) planning was by Edelkamp (2001).
Several improvements to the basic PDB method have been suggested, most con-
cerning ways to reduce the amount of memory required to store the PDB (thus
allowing larger patterns to be used). When applied to a specific problem, prop-
erties of that problem are of course exploited to improve performance or reduce
the memory requirement. For example, symmetries in the abstract state space can
be used to look up multiple values in the same PDB (Culberson & Schaeffer 1998;
Felner et al. 2005), or a problem specific heuristic can be used and only improvements
over the base heuristic stored in the PDB (Korf & Taylor 1996). PDB compression
(Felner et al. 2004) is a general technique, in which the size of a PDB is reduced
after it has been computed by “abstracting out” one or more pattern variables. This
differs from not including the variables in the pattern in the first place in that inter-
actions caused by those variables are taken into account, so heuristic values over the
variables that remain after compression tend to be higher, although lower than in the
uncompressed PDB (under certain conditions, the compression loss can be bounded,
or reduced to nothing by the use of some additional memory). Another general mem-
ory reduction technique is the use of so called symbolic representations (e.g. ordered
binary decision diagrams, OBDDs) to store the heuristic function instead of a plain
lookup table (Edelkamp 2002).
For each of the search problems that have been solved with PDB heuristics different
selections of patterns have been tried (see e.g Felner, Korf, & Hanan, 2004), but
concerning pattern selection in general relatively little is known. Holte et al. (2004)
found that the combination of several smaller PDBs (by maximum or sum, as possi-
ble) tends to yield better heuristics than one or a few larger PDBs, over a range of
different search problems. Edelkamp (2001), in applying PDBs to STRIPS planning,
discusses additivity (stating the condition “no action adds atoms in both patterns”
described above and proving that it is sufficient to ensure admissibility) but does not
describe how to exploit it in pattern selection, stating this only as a bin-packing prob-
lem. As the experimental analysis above demonstrates, plain bin-packing is unlikely
to produce high quality heuristics, even if it is applied to sets of additive variables
to produce additive PDBs.
Felner, Korf & Hanan (2004) describe dynamic additive PDBs (for the (n2 − 1)-
Puzzle) which are based on a different form of pattern selection: instead of partition-
ing the additive set of variables representing positions of tiles statically, a PDB is
created for every pair of tiles and a subset of PDBs whose values are added is selected
dynamically at every heuristic evaluation, in such a way that the heuristic value is

77

maximized. (The reason why this is done for pairs of tiles is that pairs correspond
to edges in a graph with tiles as nodes: thus the problem of finding the maximiz-
ing partitioning corresponds to a weighted matching problem, which is solvable in
polynomial time; see Papadimitriou & Steiglitz, 1982).

Pattern Database and hm Heuristics: A Comparison

As briefly mentioned in chapter 3, the hm relaxation can be understood as a change
of search space, in which every state s with |s| > m is a “max state”, whose successors
are the size m subsets of s and whose cost is the max of the successor costs, while
states s with |s| 6 m (“min states”) are regressed as normal. Thus, there is a
similarity with PDB heuristics in that hm “abstracts” states with more than m
atoms to states of size m (in all possible ways) but more importantly a difference
in that the hm relaxation recursively selects the most maximum cost “abstraction”
(size m subset) while the abstraction induced by a pattern selects the same subset
of variables in every state.
This makes the hm heuristic stronger, in some cases. Recall the Blocksworld problem
of swapping the two blocks at the base of a tower of n blocks (described in section
4.2 above). For the goal of this problem, even h1 yields the optimal cost estimate of
n, because it is able to “shift focus”, and consider all blocks: to move bn onto bn−1,
bn−1 must be clear; to clear bn−1 bn−2 must be moved, so it must also be clear; and
so on, while any PDB heuristic based on the pos(bi) variables can consider only a
fixed subset of blocks (this applies to the dynamic additive PDBs of Felner, Korf &
Hanan (2004) as well).
However, there are also advantages to using a fixed abstraction, like that induced by
a pattern. Computing a complete hm solution is only feasible for small values of m
(typically, m 6 2 or m 6 3), while the patterns used in PDB heuristics are generally
much larger and therefore may be able to capture more interactions. More important
is that certain properties of the abstraction, like additivity, can be determined. Recall
the Blocksworld problem of “tower construction”, i.e., building an ordered tower out
of n blocks initially on the table: an additive PDB based on the pos(?b) variables
yields for the goal of this problem the optimal value n − 1, while the hm heuristic
yields at most m (which is typically much smaller). This illustrates how additivity
allows a collection of relatively simple heuristics to be combined into a very powerful
heuristic.
Chapter 6 describes how hm heuristics can be made additive, without loss of admis-
sibility. An experimental comparison of the hm, additive hm and PDB heuristics is
also presented there.

78

5. Planning with Resources

Resources are an important part of many planning problems, particularly planning
problems involving time as they are related to scheduling problems (it is probably
fair to say that scheduling would not be a problem if not for resource limitations).
Resource is a very wide concept. Smith & Becker (1997) in their scheduling ontology
define a resource as “an entity that supports or enables the execution of activities”.
The “entity” that is a resource can be material, e.g., a tool needed or raw materials
consumed, but it can also be logical, e.g., a space being empty or a computer being
powered on and idle.
Certain kinds of resources can be represented in the STRIPS planning model: in fact,
the planning problems described in chapters 2 and 4 exhibit several examples of things
that can be argued to be resources, e.g., the UAVs in the UAV planning domain,
the empty square in the 15-Puzzle or the “clearness” of blocks in the Blocksworld
domain. This chapter deals with two classes of resources that can not be expressed
in the STRIPS model (or the temporal STRIPS model), namely resources whose
capacity is a numeric value. The two classes of resources are reusable resources
(section 5.2), whose capacity limit what actions can be executed concurrently (and
thus make sense only in temporal planning), and consumable resources (section 5.3),
whose capacity limit what actions can be in the plan overall. The sequential and
temporal STRIPS planning models are extended and the regression search space
and heuristics are adapted to the extended model in each case (although in the
case of consumable resources only under certain restrictions on the model which are
necessary to ensure that the problem is decidable). The chapter begins, however,
with a brief discussion of the different kinds of resources that appear in planning and
scheduling problems.

5.1 Discussion: Resources in Planning and
Scheduling

Resource is a wide concept, with somewhat fuzzy borders. Most planning and
scheduling problems contain elements that can be argued to be resources. In this sec-
tion we distinguish, and name, a few different classes of resources, following loosely
the ontologies by Smith & Becker (1997) and Laborie (1995; 2001). Fadel et al.
(1994) remark that “being a resource is not an innate property of an object, but is
a property that is derived from the role an object plays with respect to an activity”.
Thus, sometimes the same entity can appear as a different kind of resource in relation
to different actions, even at times not being considered a resource at all.
A first distinction made by Smith & Becker is between capacitated and discrete-state

79

resources. A discrete-state resource is a condition, or “resources whose availability
is more a qualitative function of state” (Smith & Becker, 1997, page 5). This corre-
sponds to a condition on the world state and is thus something that is expressible
in, and indeed quite central to, the STRIPS planning model. A typical example
of a discrete-state resource is the above mentioned “clearness” of a block in the
Blocksworld domain, which is required by, for example, actions that move the block.
A capacitated resource is characterized by the amount of the resource that is avail-
able. This corresponds perhaps more to the intuitive notion of a resource: typical
examples include money, fuel, raw materials or parts, space, bandwidth, vehicles,
tools, machines or workers etc. Characteristic of capacitated resources is that when
part (or all) of the resource capacity is allocated to an action, the allocated capac-
ity can not be used by another action, i.e., use of the resource is exclusive (though
there are exceptions to this principle, e.g., batch capacity resources). Capacitated
resources can be divided into reusable and consumable: with a reusable resource, the
capacity allocated to an action becomes available again when the action ends, while
with a consumable resource, the allocation of capacity is permanent, i.e., the resource
is consumed. A resource is also called renewable if there are actions that increase the
amount available of the resource (though the term “renewable” is sometimes used
for what is here called reusable resources, e.g., by Laborie, 1995, and by Kolisch &
Sprecher, 1996). By consumable resources we will generally mean resources that may
or may not be renewable, and use the term “(monotonically) decreasing” to indicate
that a consumable resource is not renewable.
Both reusable and consumable capacitated resources can also be classified according
to the requirements that actions have on them. Laborie (1995) distinguishes between
discrete resources, which are used only in “whole units”, and continuous resources,
of which actions can require or consume arbitrary amounts. Examples of discrete
resources are transport vehicles, machines or tools (reusable) or parts (consumable)
in a manufacturing problem, while fuel (consumable) or storage space (reusable) are
examples of continuous resources. An important special case of discrete resources are
resources with unit capacity, i.e., resources that can only be used once (if consumable)
or by one action at a time (if reusable). Smith & Becker (1997) do not distinguish
between discrete and continuous resources but only between unit capacity and aggre-
gate (multi-capacity) resources. Aggregate resources are further divided into simple
(or homogeneous) resources, whose units are indistinguishable, and structured (or
heterogeneous; called “individualized” by Laborie, 1995), whose units have individ-
ual state and/or attributes. An example of structured resources is transport vehicles,
which can differ by being at different locations (thus having individual state) and by
having different load carrying capacity (thus having individual attributes). Shin &
Davis (2005) distinguish a class they call interval resources, which are continuous but
also individualized in the sense that capacity is allocated in “segments” that can not
overlap. An example of a reusable interval resource given by Shin & Davis (2005)
is heap space (once a segment of memory is allocated, it can not be moved), while
an example of a consumable interval resource is a piece of material, e.g., wood or
cardboard, out of which shapes are cut (obviously the pieces can not overlap).

80

Resources that have (individual) state can require a setup activity to be done before
the resource is used by an action. The duration of the setup activity can be either
a constant, or dependent on the current state of the resource and the state that the
action requires the resource to be in (in the second case, the setup time is often
called “sequence dependent”, since the current state of the resource depends on
what action used the resource most recently, and thus on how actions using the
resource are sequenced). An example of resources with sequence dependent setup
times, mentioned in chapter 2 (page 24) is the UAVs in the UAV mission planning
domain.

Planning with Resources

As noted above, discrete-state resources correspond to conditions on world states,
and are therefore naturally expressible in the STRIPS planning model. A few special
cases of capacitated resources can also be represented in the STRIPS, or temporal
STRIPS, model (some of them are described in more detail in the following sections).
Most problems involving planning with capacitated resources, however, require some
extension to the planning model. A number of AI planning systems have been ex-
tended to address problems involving resources of some kind but, as with planning
problems involving time (discussed in section 2.3, page 24), there is some variation
in the planning models assumed by different systems.
In most planning systems that deal with capacitated (consumable) resources, the
resources play only the role of additional constraints on executable plans, and many
systems, e.g., RIPP (Koehler 1998), the LPSAT and TM-LPSAT planners (Wolfman
& Weld 1999; Shin & Davis 2005), also require that action resource consumption
is a linear function of action parameters. Some planning systems, e.g., Pyrrhus
(Williamson & Hanls 1994), ASPEN, (Fukunaga et al. 1997; Chien et al. 2000),
Sapa (Do & Kambhampati 2001), Excalibur (Nareyek 2001) and MO-GRT (Refanidis
& Vlahavas 2003), are able to include resource consumption in the optimization
objective (though none of them offer an optimality guarantee). Version 2.1 of PDDL
(Fox & Long 2003) introduced numeric state variables (allowing a fairly unrestricted
use of them) which can be used to model consumable resources as well as more general
metrics. In combination with the extensions for temporal planning also introduced
in PDDL 2.1 it is also possible to model reusable resources (although with some
restrictions, due to certain peculiarities of the PDDL 2.1 semantics; see Hoffmann
et al., 2004). In the area of scheduling, efficient algorithms have been developed for
treating several special classes of resources (see e.g. Laborie, 2001), and some planning
systems, e.g. O-Plan (Tate, Drabble, & Kirby 1994) and RealPlan (Srivastava &
Kambhampati 1999), incorporate such specialized methods for dealing with resource
constraints.

81

5.2 Planning with Reusable Resources

A reusable resource is a resource whose capacity constrains which, or how many,
actions can take place concurrently, but does not impose any limit on actions execut-
ing in sequence. Thus, reusable resources are interesting only in temporal planning.
From the perspective of actions, an action requiring a reusable resource “borrows”
some (or all) of that resources capacity during its execution, returning the full amount
when the action ends.
A special case of reusable resources, viz. discrete resources with unit capacity, is
expressible in the temporal STRIPS model: an action that has as a precondition an
atom p and that locks (temporarily deletes) p can be said to “require” p (exclusively),
and hence p can be thought of as a unit capacity discrete reusable resource. In
general, a resource can have any capacity and actions can require arbitrary amounts,
something that can not be expressed in the temporal STRIPS model. In fact, even
the only slightly more general case in which all actions requiring the resource have
a requirement of 1 and the capacity of the resource is an integer (i.e., the resource
permits at most k > 1 actions to execute concurrently) can not be expressed in the
basic model.

Extensions to the Planning Model

In the temporal STRIPS planning model extended with reusable resources, each
resource r has a capacity (cap(r)) and each action a has for each resource r a re-
quirement (req(a, r) > 0), equal to zero if the action does not require the resource.
As with durations, we assume that resource capacities and requirements are rational
numbers (though integers or reals could also be used).
Recall from chapter 2 (page 12) that a schedule is a collection of action instances with
specified start times, S = {(t1, a1), . . . , (tn, an)}, and that the schedule is executable
iff each action ai is executable in the world state that results at ti when the schedule
is executed. In the presence of reusable resources, the condition for executability of
a schedule S is amended to require that for every resource r and each time point t,(∑

{(ti,ai)∈St}

req(ai, r)
)

6 cap(r)

where St = {(ti, ai) ∈ S | ti < t < ti + dur(ai)} is the set of actions executing at
t, i.e., that the sum of requirements of the set of actions executing concurrently
at any time does not exceed the capacity, for any resource. Note that an actions
resource requirements, like the effects of the action, are restricted to the interior of
the execution interval.
As a consequence, a set of actions is compatible only if the sum of their requirements
does not exceed the capacity for any resource (in addition to the pairwise condition
for compatibility stated in chapter 2, page 13). Thus, in the presence of reusable

82

resources, pairwise compatibility is a necessary, but no longer sufficient, condition
for a set of actions to be compatible.

Regression Planning with Reusable Resources

Apart from the above modification to the condition for compatibility of a set of
actions, no further changes are required to the temporal regression method to plan
with reusable resources. Nor are any changes to the definition of the hm heuristic
required, though the heuristic may become less accurate due to the limited way in
which resources are taken into consideration.
Recall from chapter 2 (page 14) that a temporal regression search state is a pair
s = (E,F), where E is a set of atoms (subgoals to be achieved) and F is a set of
actions scheduled relative to the goals in E. Expanding a state involves choosing
(non-deterministically) an establishing action for each atom in E, such that the set
consisting of the chosen actions and any actions in F is compatible (see figure 2.6(b),
page 18). The set of actions scheduled concurrently at any time point in a plan found
by temporal regression corresponds to the set of actions chosen in the construction of
a successor state together with the set of scheduled actions (actions in F) in its pre-
decessor state at some point along the search path. Therefore, ensuring compatibility
in the construction of successor states in temporal regression is sufficient to ensure
that the schedule corresponding to a solution path respects the capacity constraints
of reusable resources.

hm Heuristics for Planning with Reusable Resources

The hm relaxation (equation (5), page 39) and the additional relaxations applied
to the temporal heuristic (inequalities (8) and (9), page 51) remain admissible in
the presence of reusable resource constraints. In the definition of the temporal hm

heuristic, states with m or fewer atoms and no scheduled actions are regressed in the
same way as in the temporal regression search (case F = ∅, |E| 6 m of equation (10),
page 52). In particular, the same condition for compatibility of the set of actions
applies. Thus, the heuristic takes some account of resource limitations.
However, the heuristic for reasonable values of m can become much weaker. Since
the hm heuristic regresses states with at most m atoms, at most m concurrent actions
are considered, but in the presence of reusable resources compatibility of each size m
subset of a set of actions does not necessarily imply compatibility of the whole action
set. As an illustrative example, consider a very simple scheduling problem involving
n jobs J1, . . . , Jn without ordering constraints, each requiring 1 unit of a reusable
resource R (an example of a much more general scheduling problem, the multi-mode
resource-constrained project scheduling problem, is given in the next section). The
problem can be stated as a temporal STRIPS planning problem with atoms (done
?j), for each job ?j, and actions (do ?j) that have no preconditions, add (done
?j), and require 1 unit of R (req((do ?j), R) = 1). For simplicity, assume that the

83

{(done J1),(done J2),...}: 2

{(done J1),(done J2)}: 2 {(done J1),(done J3)}: 2

{(done J1)}: 1

(do J2)

{(done J2)}: 1

 (do J1)

{(done J1)}: 1

 (do J3)

{(done J3)}: 1

 (do J1)

{}: 0

 (do J1)

{}: 0

 (do J2)

{}: 0

 (do J1)

{}: 0

 (do J3)

(a) cap(R) = 1

{(done J1),(done J2),...}: 1

{(done J1),(done J2)}: 1 {(done J1),(done J3)}: 1

{(done J1)}: 1

(do J2)

{(done J2)}: 1

(do J1)

{}: 0

(do J1)
(do J2)

{(done J1)}: 1

(do J3)

{(done J3)}: 1

(do J1)

{}: 0

(do J1)
(do J3)

(b) cap(R) = 2

Figure 5.1: Illustration of how the resource capacity influences the calculation of
h2({(done J1), (done J2), . . .}) in the example scheduling problem (described on
page 83). In figure (a) the capacity of the resource is 1 (< m = 2) and the h2 value
is 2, while in figure (b) the capacity of the resource is 2 (> m = 2) and the h2 value
is 1.

84

duration of each action (do ?j) is 1. The atoms (done ?j) are all goals (since all
jobs must be done) and are all false initially (since no job has been done then). If the
capacity of the resource allows all actions to be executed concurrently (cap(R) > n)
the optimal makespan is 1. If the capacity of the resource is less the optimal makespan
is n

cap(R) (rounded up), since the n actions have to be executed in groups of cap(R)
at a time. The hm heuristic, however, because it considers only sets of m concurrent
actions yields an estimate of m

cap(R) (rounded up), which is 1 whenever cap(R) > m

(since then any set of m actions can be executed concurrently). Figures 5.1(a) and
(b) illustrate the calculation of the h2 value when the capacity of the resource is
1 and 2, respectively. As the cost of computing a complete hm solution increases
exponentially with m, the discrepancy between optimal and estimated cost can grow
arbitrarily large as the problem size (n) grows. Chapter 7 presents two methods for
improving the h2 heuristic (by computing only partial hm solutions for higher m)
which are applicable to planning with reusable resources as well.

5.3 Planning with Consumable Resources

A consumable resource is a resource whose capacity constrains which, or how many,
actions can be executed at all, concurrently or in sequence. A certain amount of the
resource is initially available, and each action either reduces this amount (consumes
the resource) or increases it (produces the resource). The resource has a minimum
and a maximum capacity constraint and the amount available can never be reduced
below the minimum or increased above the maximum. Concurrent consumption
and/or production by several actions is assumed to be possible as long as capacity
constraints are guaranteed to be respected.
Discrete consumable resources (resources that are consumed and produced only in
whole units) with bounded minimum and maximum capacities can be represented in
the basic STRIPS model, by treating the resource amount available as a proposition.
For example, a resource r with minimum capacity capmin(r) and maximum capacity
capmax(r), can be represented with a proposition (avail r i) for each capmin(r) 6
i 6 capmax(r), where (avail r i) holds in a world state iff i units of the resource are
available in that state. Each action consuming or producing the resource exists in
a number of “copies” such that each is executable at a specific resource availability
level, specified as a precondition of the action, and changes the state accordingly
(multiple copies of actions can be avoided if conditional effects are used instead).
Aside from the obvious limitations (and impracticality) of this way of describing
consumable resources, it also does not work in temporal planning, where the effect
of several actions concurrently consuming or producing the resource is cumulative.
Thus, there are several incentives to extend the model with a more general treatment
of consumable resources.

85

Extensions to the Planning Model

Consumable resources are useful in both sequential and temporal planning, and the
required extensions to the corresponding STRIPS models are also very similar. Here,
we introduce first the extension to the STRIPS model of sequential planning and
then its adaptation to the temporal planning case.

Consumable Resources in Sequential Planning

In the STRIPS planning model extended with consumable resources, each resource
r has a minimum and a maximum capacity (capmin(r) and capmax(r), respectively)
and an amount available in the initial world state (init(r)). We assume that planning
problems are well posed, in the sense that the initial amount available is within the
capacity limits for all resources. Note that the minimum and maximum capacities
can be infinite. Each action a has for each resource r an effect on that resource
(chg(a, r)), which is positive if the action produces the resource, negative if the
resource is consumed by the action, and zero if the action has no effect on the
resource. Again, we assume that the resource capacities and effects are rational
numbers.
Because the amount available of each consumable resource varies over the course of
execution of a plan, it is a part of the world state. Thus, a world state w in the
extended model consists of a complete assignment of truth values to atoms and an
assignment of rational values to each of the resources in the planning problem (the
amount available of resource r in state w will be denoted w(r) and also referred to
as the level of the resource in state w). An action a when executed changes the
amount available of each resource r by chg(a, r) (in addition to changing the truth
values of atoms as described in chapter 2). The condition for the executability of an
action in a world state is amended to require that the resource levels resulting from
execution of the action do not violate the minimum or maximum capacity of any
resource. Formally, action a when executed in world state w leads to a world state
w′ such that

w′(r) = w(r) + chg(a, r)

for every consumable resource r, and the action is executable in w only if

capmin(r) 6 w′(r) 6 capmax(r)

for every consumable resource r. (This can of course be translated into an equivalent
condition on w.)
If a resource r is either consumed or not changed by every action (chg(a, r) 6 0
for all a) the resource is said to be decreasing. Conversely, if a resource r is either
produced or unchanged by every action (chg(a, r) > 0 for all a) the resource is said to
be increasing. A resource that is either increasing or decreasing is monotonic. Note
that an increasing resource can be converted into an equivalent decreasing resource

86

(and vice versa) by multiplying all effects on the resource by −1 and modifying
capacities and initial level accordingly.

Consumable Resources in Temporal Planning

The treatment of consumable resources in temporal planning is very similar to the
case of sequential planning, due to the assumption that the effect of concurrent
consumption and/or production of a resource by several actions is simply cumulative.
The same conservative semantics of actions are assumed for resource effects as for
the propositional effects, i.e., the change in resource level caused by an action takes
place at some, unspecified, point in the interior of the actions interval of execution.
Thus, the condition for executability of a schedule must ensure that the capacity con-
straints of all resources are respected no matter what order the resource effects of ac-
tions executing concurrently take place in. For a schedule S = {(t1, a1), . . . , (tn, an)}
and a time point t, the set of actions completed by t is S<

t = {(ti, ai) ∈ S | ti +
dur(ai) 6 t} and the set of actions executing at t is St = {(ti, ai) ∈ S | ti < t <
ti + dur(ai)}. The possible levels of a resource r at time point t are given by the
initial level of r plus the total effects on r of all actions completed by t plus the total
effects on r of any subset of the actions executing at t. Thus,

capmin(r) 6 init(r) +
(∑

(ti,ai)∈S<
t

chg(ai, r)
)

+
(∑

(ti,ai)∈S′

chg(ai, r)
)

6 capmax(r)

must hold for every resource r, time point t and S′ ⊆ St to ensure the executability
of the schedule. This condition is fairly complex, and potentially computationally
expensive to verify. In the special case when all resources are monotonic, however, it
suffices to verify a much simpler condition: because all action effects on a resource
in this case change the level of the resource in the same direction, and thus towards
the same capacity limit, if the sum of all effects that can possibly have taken place
at some time t (all actions in S<

t and St) does not violate the capacity constraint
then no subset of those effects can violate the constraint either.

Example: Multi-Mode Resource-Constrained Project Scheduling

Resource-Constrained Project Scheduling (RCPS) is a general abstract scheduling
problem that has been extensively studied in operations research, where both optimal
and heuristic solution methods have been developed (see e.g. Kolisch & Sprecher,
1996, for an introduction to the problem, and Kolisch & Hartmann, 2005, for an
overview and analysis of current solution methods). In the RCPS problem, the task
is to schedule a set of n jobs, each with a specified duration, in a way that is consistent
with a set of precedence constraints (in the form of a partial order on the execution
of the jobs) and resource constraints. Resources can include both reusable resources,
with arbitrary capacity, and decreasing consumable resources, and each job can have
arbitrary resource requirements (for example, some jobs may require and/or consume

87

J1

M1 (d=3,R1:5,F1:2)

M2 (d=9,R1:3,F2:3)

M3 (d=10,R1:2,F2:3)
J3

M1 (d=6,R2:6,F2:6)

M2 (d=9,R1:8,F1:8)

M3 (d=10,R1:5,F2:5)

J4

M1 (d=1,R2:4,F2:6)

M2 (d=2,R1:8,F2:6)

M3 (d=9,R1:8,F1:4)

J2

M1 (d=2,R2:9,F2:6)

M2 (d=2,R1:3,F1:9)

M3 (d=4,R2:7,F1:8)

J6

M1 (d=2,R2:6,F2:10)

M2 (d=4,R1:6,F2:9)

M3 (d=10,R1:5,F2:8)

J9

M1 (d=4,R2:7,F2:7)

M2 (d=6,R1:5,F2:5)

M3 (d=7,R2:7,F1:3)

J5

M1 (d=2,R1:5,F2:5)

M2 (d=5,R1:3,F1:4)

M3 (d=9,R2:2,F1:4)

J8

M1 (d=8,R2:7,F2:6)

M2 (d=9,R1:7,F2:5)

M3 (d=10,R1:6,F1:9)

J7

M1 (d=5,R1:7,F2:7)

M2 (d=7,R2:8,F1:1)

M3 (d=9,R1:5,F2:7)

(a)

���������

���	���
�

���
���

��	�����

���	�����

���	���
�

���	���

���	���
�

���	���
�

�

(b)

Figure 5.2: (a) Example MRCPS problem. Each node corresponds to a job, with the
available modes of execution listed and duration and resource requirements indicated
for each mode (R1 and R2 are reusable resources, while F1 and F2 are consumable).
Arcs represent precedence constraints. (b) A possible mode selection and schedule
with optimal makespan.

88

only some resources). The objective is typically to minimize makespan, but a variety
of other optimization criteria can also be defined (e.g. given a maximal permitted
makespan, or deadline, minimize the capacities of reusable resources needed to meet
it).
The multi-mode version of the problem (MRCPS) offers an additional choice be-
tween different modes for the execution of each job, where each mode can have a
different duration and different resource requirements and consumption (precedence
constraints are the same for all modes, however). A small example problem is shown
in figure 5.2(a). Typically, modes represent possible trade-offs between time and re-
source use, or the use of different resources. For example, modes M1 and M2 of job J2
in the example problem in figure 5.2(a) have the same duration, but when executed
in mode M1 the job requires resource R2 and consumes resource F2 and when executed
in mode M1 the job requires resource R1 and consumes resource F1. The duration of
the job when executed in mode M3 is twice what it is in the other two modes, but
executing the job in this mode uses less resources than both the other modes.
The task in the MRCPS problem is for each job to select a mode and to schedule
the job so as to minimize makespan, subject to precedence and resource constraints
as in the single-mode case. The choice of modes introduces a planning aspect into
the problem, although the structure of the planning problem is relatively simple.
Still, choices of modes for different jobs interact through their resource requirements,
which makes finding optimal schedules hard. Figure 5.2(b) shows an example of a
schedule with optimal makespan for the problem shown in figure 5.2(a)
The MRCPS problem, under the makespan minimization criterion, is straightfor-
wardly expressed in the temporal STRIPS model with reusable and consumable re-
sources. An atom (done ?j), for each job ?j, represents the fact that the job has
been done. For each job ?j and mode ?m that this job can be executed in there is
an action (do ?j ?m) which adds (done ?j), has as preconditions (done ?i) for
each job ?i constrained to precede ?j and has the resource requirements and effects
specified for the mode ?m.

Decidability

An analysis of the decidability of the plan existence problem for a variety of sequen-
tial planning models involving the combination of propositional and numerical state
variables is carried out by Helmert (2002). In the absence of further restrictions the
STRIPS planning model with consumable resources, as defined here, corresponds to
the class (C∅, Cc, E+c) in Helmert’s taxonomy, meaning planning problems in which ac-
tions can compare the value of a numeric variable to a constant and modify variables
by addition or subtraction of a constant, but in which there are no goal conditions
on the numeric variables (a certain transformation is necessary since in our model an
action can not have a precondition on the level of a resource without changing it).
This class generalizes the class (C∅, C0, E+1), which is shown to be undecidable.
For (provably) optimal plan generation to be possible the planning model has to

89

be restricted so that the plan existence problem is decidable. The case of discrete
consumable resources with bounded capacity described above, which is expressible
in the basic propositional STRIPS model, is one example of such a restricted model.
Another planning model for which the plan existence problem is decidable is when
consumable resources are restricted to be monotonic. This is the model for which
we describe an adaptation of the regression planning method and heuristics below.
Helmert (2002) also presents several other restrictions that lead to decidable planning
models.

Regression Planning with Monotonic Consumable Resources

This section describes how the regression planning method, for sequential and tem-
poral planning, is adapted to work for the corresponding planning models extended
with monotonic consumable resources. As the plan existence problem becomes un-
decidable in the presence of unrestricted consumable resources, the method can not
be complete (and therefore not deliver guaranteed optimal solutions) unless some
further restrictions on the use of resources are made. The restriction to monotonic
resources is sufficient to ensure decidability (as, in fact, follows from the correctness
of the method described below).
To simplify the presentation we assume that all resources are decreasing and have
a minimum capacity of zero, but these assumptions are not restrictive. (As noted
above, a monotonic increasing resource can be transformed into an equivalent de-
creasing resource. A decreasing resource with a minimum capacity other than zero
can be “shifted” by adding a constant to the capacities and the initial level.) As
usual we begin with the case of sequential planning, followed by the adaptation to
the temporal planning case.

Sequential Regression with Monotonic Consumable Resources

Recall that regression is a search in the space of plan tails, partial plans leading
to a goal-satisfying world state, and that the search state summarizes what needs
to be known about the plan tail in order to complete it into a plan. In sequential
regression planning the search state is the regressed goal condition: in any world
state satisfying this condition the corresponding plan tail is known to be executable.
With consumable resource constraints, however, the regressed goal condition alone is
no longer enough to summarize a plan tail. To ensure that the completed plan meets
resource capacity constraints (and is thus executable) a summary of the resource
effects of the plan tail must also be included in the search state.
When consumable resources are restricted to be decreasing, the level of a resource
during the execution of a valid plan can only change downwards from the level in
the initial world state to the minimum capacity of the resource. Therefore, the
total amount consumed by the actions in a plan tail, for each resource, is sufficient
to summarize the resource effects of the plan tail. If this amount is less than the

90

amount initially available for all resources when the plan is complete, executing the
plan will not reduce any resource below zero (the assumed minimum capacity of all
resources). If, on the other hand, this amount exceeds the amount initially available
for some resource, the plan tail can not be completed into a plan, as the level of a
resource can not be increased.
Formally, a search state s is extended to include the total amount consumed of each
resource r, denoted s(r). s(r) = 0 for each resource r in the starting search state. An
action a is applicable in search state s if s(r)+−chg(a, r) 6 init(r), for each resource
r, in addition to the condition that del(a)∩s = ∅ (described in chapter 2, page 8). In
the successor state s′ resulting from application of a to s, s′(r) = s(r) +−chg(a, r),
for each resource r. (Recall that chg(a, r) < 0 if a consumes r: thus the amount of
r consumed by a is −chg(a, r).)

Temporal Regression with Monotonic Consumable Resources

The modification described for sequential regression search above also works for tem-
poral regression planning with decreasing consumable resources. Recall from chapter
2 (page 16) that the construction of a successor state to temporal regression state
s involves choosing (non-deterministically) a set of actions A, mutually compati-
ble and compatible with scheduled actions in s. The chosen actions are all added
to the plan tail, which increases the total amount consumed of each resource r by∑

a∈A −chg(a, r).

Resource Consumption and the Persistence of World State

A fundamental assumption in the STRIPS and temporal STRIPS planning models is
that world states persist, i.e., that an atom once made true in a world state remains
true, without further effort, until explicitly made false by an action. This assumption
limits the expressive power of the models, and needs to be relaxed in order to capture
the essential constraints of some planning problems. As an example, consider the
UAV mission planning problem described in chapter 2 (page 13). An important
aspect of this problem, ignored in the problem model presented in chapter 2, is that
the UAVs carry a limited supply of fuel and have to land before fuel runs out. In the
extended planning model, it is straightforward to introduce a resource (fuel ?u),
for each UAV ?u, and to add to each (fly ?u ?p) action a corresponding resource
effect, chg((fly ?u ?p), (fuel ?u)) = −v (for some appropriate value v), but this
problem description still ignores the fact that a UAV (helicopter) consumes fuel also
while hovering and not just when flying along a path. In the problem formulation,
however, there is no action for hovering (as the activity of UAV ?u hovering at
position ?p is represented by the persistence of the atoms (airborne ?u) and (at
?u ?p)) and therefore no way to state the associated fuel cost.
Lifting this limitation requires only a small extension to the planning model, and to
the temporal regression method. For each resource r, each atom p has a maintenance
effect on that resource (denoted chg(p, r)) which is negative if maintaining the truth

91

of the atom consumes the resource and zero otherwise (the case that maintaining
the truth of an atom produces resources is less reasonable, so we do not consider
it). While the resource effect of an action is interpreted as an absolute amount, the
maintenance effect of an atom is interpreted as a rate of consumption. In other words,
the amount of resource r consumed by maintaining atom p over an interval of duration
t is t∗−chg(p, r). In the construction of a successor state s′ to a temporal regression
state s = (E,F), any atom p ∈ E not established by one of the chosen actions is
supported by a no-op (i.e., by persistence) from the next time point (see chapter 2,
page 16). The duration of the interval of persistence is δadv, as defined by equation (1)
on page 16. Thus, when the successor state s′ is finalized the maintenance resource
cost during the step from s to s′ is known and can be added to the total amount
consumed in s′ (cf. figures 2.6(b) and (c), page 18).
The extension described above, although simple, increases the expressive power of
the temporal STRIPS planning model drastically, as it makes it possible to force
one action to follow another within a certain time (including to follow immediately
after). This opens up several possibilities, e.g., of splitting an action into a series
of consecutive actions and thus to model the temporal relations between effects and
conditions of an action more precisely (cf. figure 2.9 and the discussion in section
2.3, page 27). The increased expressive power comes at the cost of a computationally
harder planning problem, however: in particular, the introduction of maintenance
resource costs weakens the early detection of cost bound violations (described in
section 2.2, page 18) and aggravates the problem of isolated resource consumption
estimates, discussed in the next section.

Heuristics for Resource Consumption

In the regression search space for planning with decreasing consumable resources de-
scribed above, a branch of the search tree is cut only when resource over-consumption
is a fact, i.e., when the total amounts consumed are so large that no relevant action
is any longer applicable. This can cause a great waste of search effort: as it is in
a cost bounded search important to detect cost bound violations early, so it is in a
resource bounded search important to detect resource over-consumption as early as
possible.
Let hr(s) denote an admissible heuristic function for the consumption of resource r,
i.e., hr(s) is a lower bound on the minimum amount of resource r consumed by any
plan that achieves s. If s(r) + hr(s) > init(r), no plan that achieves s and respects
resource constraints exists and thus the branch below s can be pruned from the
search tree. Note that the search still minimizes plan cost (in the sequential case) or
makespan (in the temporal case). The resource consumption estimator is used only
to prune search states that can not lead to any solution.
The total amount consumed of a resource r by a plan equals the sum of the amounts
consumed by each of the actions in the plan. Thus, resource consumption is an
additive cost measure, same as the cost associated with actions in sequential planning

92

(except that the resource cost of an action may be zero for some resource, if the action
does not use the resource, whereas action cost in sequential planning was assumed to
be strictly positive). This means that admissible heuristics for estimating the amount
of resources required to achieve a goal (or search state) can be derived in exactly
the same way as admissible heuristics for sequential planning, e.g., as described in
chapters 3, 4 and 6, only with a different measure of cost.

Composite Resources

The approach to deriving admissible heuristics for resource consumption outlined
above, although simple, suffers from a significant weakness: the required amount of
each resource is estimated in isolation, independent of the use of other resources and
independent of the plan cost or makespan. In many planning problems, there is a
possibility of trading use of one resource for use of another, or of obtaining a plan
with smaller resource use at the expense of increased cost or makespan.
Consider, for example, the MRCPS problem depicted in figure 5.2(a), and specifically
job J4. If executed in mode M1 or mode M2 this job consumes resource F2, but if
executed in mode M3 it consumes resource F1. Thus, neither resource F1 or F2 is
necessarily consumed by a plan for doing this job (for achieving the goal (done
J4)). Heuristic estimates of the resources required to achieve (done J4) suffer from
the same problem: h1

F1((done J4)) = 0 and h1
F2((done J4)) = 0, since the two jobs

preceding J4 can also both be done using either resource (h1
F1 and h1

F2 denote the
(sequential) h1 heuristic function computed with the consumption of F1 and F2 as
cost measure, respectively). However, it is clear that (done J4) can not be achieved
without consuming some resource.
This problem can be countered to some extent by introducing composite resources.
A composite resource is an artificial entity representing the sum of several resources,
but is treated like any other consumable resource. If r1 and r2 are consumable
resources in a planning problem, the characteristics of the composite resource r1+r2

are obtained by adding the corresponding characteristics of r1 and r2, i.e., r1+r2 has
an initial level equal to init(r1)+ init(r2) and chg(a, r1+r2) = chg(a, r1)+ chg(a, r2)
for each action a. Composite resources can of course also be defined as the sum of
more than two resources.
Conjoining r1+r2 to the problem description does not change the set of valid plans: any
plan that respects the capacity constraints of r1 and r2 also respects the constraints
imposed by r1+r2. More importantly, any plan that overconsumes r1+r2 must also
overconsume r1 or r2, so an admissible heuristic for r1+r2 cost can be safely used
to prune unsolvable search states. Intuitively, hr1+r2 can be viewed as a heuristic
obtained by a relaxation of the problem which is to assume that r1 and r2 are
completely interchangeable. Returning to the example of job J4 of the MRCPS
problem in figure 5.2(a), h1

F1+F2((done J4)) = 10 (since J2 consumes a minimum of
6 units of resource F2 and J4 a minimum of 4 units of resource F1). An experimental
analysis of the effectiveness of the use of composite resources, in combination with
the h1 and h2 heuristics for resource cost, is presented in the next section.

93

The introduction of composite resources, however, can not solve the problem that the
heuristic for the primary optimization objective (cost or makespan) is independent
of the resource consumption heuristics. To address this issue properly requires a true
multi-criteria optimization method, e.g., along the lines suggested by Refanidis &
Vlahavas (2003). This is an interesting topic for future research.

Analysis: Effectiveness of Resource Consumption Heuristics

This section presents an experimental analysis of the effectiveness, and cost effec-
tiveness, of the use of the h1 and h2 heuristics for resource cost, with and without
composite resources, in the MRCPS problem domain. The problems used in the
experiment are taken from the PSPLib repository of benchmark problems (sets J16
and N3; see Kolisch & Sprecher, 1996, or http://129.187.106.231/psplib/). Each
problem consists of 16 jobs with 3 possible modes of execution and has 2 reusable and
2− 3 consumable resources. The amount available of each resource in relation to the
amounts required varies according to two parameters, called the reusable and con-
sumable resource strength. At strength 1 a resource is available in sufficient quantity
to execute each job in any mode, so the resource imposes practically no constraints
on possible schedules, while at strength 0 the resource is limited to the minimum
that allows each job to be executed in some mode, so that the resource alone does
not render the problem unsolvable (though at low resource strengths, many problems
are still unsolvable due to interactions between different resources). The strength of
reusable and consumable resources in the problem set varies between 0.25 and 1.
Four different planner configurations are compared. The base configuration uses tem-
poral regression, with extensions for reusable and consumable resources as described
in this chapter, in an IDA* search (with standard enhancements, i.e., right-shift
cuts and a transposition table) with the h2 heuristic for makespan (the optimiza-
tion objective) and the h1 heuristic to estimate the consumption of each consumable
resource. The three alternative configurations differ from the base configuration by
the addition of composite resources (all combinations of size 2), by replacing the h1

resource consumption heuristic with h2 for each resource and by the combination of
both, respectively. A time limit (4 hours CPU time) for each problem was set for
each of the planners.
Results are summarized in figures 5.3(a) and (b): figure 5.3(a) shows a runtime
distribution (percentage of instances solved as a function of runtime), while figure
5.3(b) shows the distribution of the reduction, compared to the base configuration, in
the number of nodes expanded for the three alternative planner configurations (only
instances solved by both the base configuration and the alternative are included in
this comparison).
Clearly, there is not a large difference between the four configurations: for the ma-
jority of problems the reduction in the number of expanded nodes is small (less than
10%) and although there is some runtime overhead associated with each of the alter-
native configurations (the base configuration is the fastest overall) this is also quite

94

0 2h 4h 6h 8h
50

55

60

65

70

75

80

85

Time

%
 In

st
an

ce
s

so
lv

ed
 in

 ≤

no composition and h1

composition (2) and h1

no composition and h2

composition (2) and h2

0 10 20 30 40 50 60 70 80 90%
0

10

20

30

40

50

60

70

80

90

100

Reduction in #Nodes Expanded

%
 In

st
an

ce
s

no composition and h2

composition (2) and h1

composition (2) and h2

(a) (b)

0 2h 4h 6h 8h
15

20

25

30

35

40

45

50

55

60

65

Time

%
 In

st
an

ce
s

so
lv

ed
 in

 ≤

no composition and h1

composition (2) and h1

no composition and h2

composition (2) and h2

0 10 20 30 40 50 60 70 80 90%
0

10

20

30

40

50

60

70

80

90

Reduction in #Nodes Expanded

%
 In

st
an

ce
s

no composition and h2

composition (2) and h1

composition (2) and h2

(c) (d)

0 2h 4h 6h 8h
50

55

60

65

70

75

80

Time

%
 In

st
an

ce
s

so
lv

ed
 in

 ≤

no composition and h1

composition (2) and h1

no composition and h2

composition (2) and h2

0 10 20 30 40 50 60 70 80 90%
0

10

20

30

40

50

60

70

80

90

100

Reduction in #Nodes Expanded

%
 In

st
an

ce
s

no composition and h2

composition (2) and h1

composition (2) and h2

(e) (f)

Figure 5.3: (a) Runtime distributions for the four variations of resource consumption
estimators (using the h1 and h2 heuristics, with and without composite resources) on
the MRCPS problem set. (b) Distribution of the reduction in the number of nodes
expanded, compared to the base configuration (using the h1 heuristic and no com-
posite resources). Distributions are also shown for two subsets of problem instances:
in (c) – (d) instances with tighter consumable resource constraints (instances with
consumable resource strength 6 0.5, roughly 45% of the problem set) and in (e) –
(f) instances with 3 consumable resources.

95

small. Still, it can be observed that the introduction of composite resources only
leads to any significant reduction in node expansions if combined with the use of the
h2 heuristic to estimate resource consumption.
The lack of difference can be explained by the fact that in a large fraction of the in-
stances in the problem set it is not the consumable resource constraints that are the
main source of difficulty (some problems are simply easy and in some it is reusable
resource constraints that cause difficulty). Figures 5.3(c) and (d) show the same dis-
tributions for the subset of problem instances with a consumable resource strength
of 0.5 or less, i.e., problems in which consumable resource constraints are relatively
tight. On this subset the reduction in node expansions is greater for all the alternative
configurations, so much so that the configuration using the h2 resource consumption
heuristic without composite resources achieves runtimes comparable to those of the
base configuration. Figures 5.3(e) and (f), finally, show the same distributions for
another subset of instances, those with 3 consumable resource. Also here a slightly
greater reduction in node expansions, compared to the full problem set, can be ob-
served for all three alternative configurations. The runtime overhead, however, is
also noticeably larger, in particular for the configurations using the h2 heuristic to
estimate resource consumption. This is reasonable since evaluating the h2 heuristic
is computationally more expensive than evaluating h1 and this price is paid for each
consumable resource in each state evaluated during the search.
In conclusion, the results suggest that it is only for problems with a small num-
ber of tightly constrained consumable resources that the introduction of composite
resources in combination with the use of the h2 heuristic to estimate resource con-
sumption is cost effective. It should be noted, however, that in this experiment only
a few of the many possible configurations of resource estimators were compared. In-
teresting alternatives to investigate in future research are the use of pattern database
heuristics (described in chapter 4) and additive hm heuristics (described in chapter
6) for resource consumption and more selective resource composition strategies.

96

6. Cost Relaxation and the
Additive hm Heuristics

The hm family of admissible heuristics, introduced in chapter 3, is based on the
relaxation of assuming that the cost of achieving any set of more than m atoms
equals the cost of the most costly subset of size m. This recursive focus on the most
costly part of each state means that the heuristic can be viewed as a generalization of
the critical path length estimate, but because a state of size |s| > m can have several
subsets with maximum cost and a state of size |s| 6 m can have several alternative
minimum cost regressions the heuristic is more accurately described as measuring
the (weighted) height of a “critical tree” rooted in the state evaluated. Illustrations
of this critical tree (for two example Blocksworld problems) can be found in figures
3.2 and 3.3 in chapter 3 (page 40).
In sequential planning, however, the cost of a plan is the sum of the costs of the
actions in the plan, so a heuristic estimate obtained by summing the costs of all
actions in the critical tree, rather than only those along an arbitrary critical path, is
often much more accurate. In fact, it is something like this that is done in the HSP
heuristic, which adds up the estimated costs of subgoal atoms in any state with more
than one atom, and the FF heuristic, which counts the number of actions in a relaxed
plan, corresponding to the critical tree of the h1 heuristic (Bonet & Geffner 1999;
Hoffmann 2000). However, these heuristics are not admissible. The HSP heuristic
fails to take into account the fact that some actions may contribute to the achievement
of more than one subgoal and thus appear more than once in the critical tree. The
FF heuristic does take this into account to some extent, as in the relaxed plan it
extracts such duplicate actions are only counted once but it does not extract the
minimal relaxed plan because doing this is NP-hard (it amounts to solving optimally
a STRIPS problem with actions that have no negative effects; see Bylander, 1991).
This chapter introduces the principle of cost relaxation, by which the hm heuristic for
sequential planning can be made additive (and thus more accurate) while retaining
admissibility. The idea is simple: The set of actions is partitioned into disjoint sets,
A1, . . . , An, and the heuristic hm

Ai
is defined (and computed) exactly like hm except

that the cost of any action not in Ai is considered to be zero. The sum
∑

i hm
Ai

is then
admissible, and often a more accurate estimate than hm. This is in fact a general
principle which can be applied to any admissible heuristic for sequential planning
(provided the heuristic satisfies a certain condition), or indeed for any problem where
the cost of a solution is the sum of individual costs of elements of the solution.
As with pattern database heuristics the accuracy of the additive hm heuristics de-
pends crucially on the selection of an appropriate partitioning of the set of actions.
A method for automatically selecting the action partitioning is presented (in section

97

6.2) and the quality and cost effectiveness of the resulting heuristic is experimentally
compared to the normal hm heuristic and the pattern database heuristics developed
in chapter 4.

6.1 The Additive hm Heuristics

For any subset A of the actions in a planning problem, hm
A (s) denotes a heuristic

function that is defined identically to hm except that the cost of every action not in
the set A is considered to be zero. We say the costs of those actions are relaxed.
More formally, the set A can be said to define a relaxed planning problem (PA) that is
identical to the original problem (P) except that in the relaxed problem cost(a) = 0
for every action a 6∈ A: hm

A is then the hm heuristic for the relaxed problem PA.
This means that any method for computing hm can also be used to compute hm

A , by
changing only the cost function.
Any solution to the original problem is also a solution to the problem with relaxed
action costs but may have a lower cost in the relaxed problem if the solution contains
some actions whose costs have been relaxed. This implies that h∗A(s) 6 h∗(s) for all
s (with equality for all s when A is the set of all actions in the problem) and since hm

A

is admissible for the relaxed problem (i.e., hm
A (s) 6 h∗A(s), for all s) it follows that

hm
A (s) is admissible also for the original problem. Moreover, if A1, . . . , An are disjoint

sets of actions then the sum hm
A1

(s) + . . . + hm
An

(s) is also an admissible heuristic,
since the cost of no action is counted more than once (a formal proof is given below).
For an illustration of the additive hm heuristic, consider again the Blocksworld prob-
lem of constructing a tower, represented by the goal {(on b1 b2), . . . , (on bn−1 bn)},
from a collection of n blocks, b1 to bn, initially on the table. This problem was first
described in chapter 3 (page 40) and also discussed in chapter 4 (page 61 and page
78) where it was used to illustrate the advantage of additivity in pattern database
heuristics. The shortest plan for this problem consists of n − 1 actions, since each
block except the one at the base of the tower needs to be moved, but the h1 value of
the goal G of having all blocks in their goal positions is only 1, since only one move
is needed to achieve each subgoal (on bi bi+1).
If the set of actions is partitioned into n sets such that set Ai contains all actions that
move block bi then h1

Ai
((on bi bi+1)) = 1. For each other subgoal (on bj bj+1) the

value of h1
Ai

is zero, because even though this goal also requires one action (moving
block bj) the cost of this action is relaxed in h1

Ai
. Thus, h1

Ai
(G) = 1 (except for

h1
An

(G) = 0, since block bn at the base of the tower does not have to be moved) and
because each h1

Ai
counts the cost of a different action the sum h1

A1
(G)+ . . .+h1

An
(G)

is n − 1, the optimal plan length. Figure 6.1 illustrates for the case of three blocks
(named A, B and C).
Next, consider the Blocksworld problem of swapping the two blocks at the base of a
tower (introduced in chapter 4, page 65; initial and goal states for a small instance
with three blocks are shown in figure 4.3, page 65). The shortest solution to this

98

{(on B C),(on A B)}: 1

{(on B C)}: 0 {(on A B)}: 1

{(clear C),(clear B),(on-Table B)}: 0

(move-from-table B C)

{(clear B),(clear A),(on-Table A)}: 0

(move-from-table A B)

(a)

{(on B C),(on A B)}: 1

{(on B C)}: 1 {(on A B)}: 0

{(clear C),(clear B),(on-Table B)}: 0

(move-from-table B C)

{(clear B),(clear A),(on-Table A)}: 0

(move-from-table A B)

(b)

{(on B C),(on A B)}: 0

{(on B C)}: 0 {(on A B)}: 0

{(clear C),(clear B),(on-Table B)}: 0

(move-from-table B C)

{(clear B),(clear A),(on-Table A)}: 0

(move-from-table A B)

(c)

Figure 6.1: Calculation of the (a) h1
A, (b) h1

B and (c) h1
C values for the goal G =

{(on A B), (on B C)}, where h1
?b counts only actions that move block ?b. Cost

relaxed actions are drawn as dashed arrows and the critical tree is indicated in bold.
Note how h1

A(G) + h1
B(G) + h1

C(G) = 2.

99

{(on C B)}: 1

{(clear C),(on-Table C),(clear B)}: 1

(move-from-table C B)

{(clear C)}: 1 {(on-Table C)}: 0 {(clear B)}: 1

{(clear B),(on B C)}: 1

(move-to-table B C)

{(clear A),(on A B)}: 0

(move-to-table A B)

{(clear B)}: 1 {(on B C)}: 0

{(clear A),(on A B)}: 0

(move-to-table A B)

(a)

{(on C B)}: 1

{(clear C),(on-Table C),(clear B)}: 2

(move-from-table C B)

{(clear C)}: 1 {(on-Table C)}: 0 {(clear B)}: 0

{(clear B),(on B C)}: 0

(move-to-table B C)

{(clear A),(on A B)}: 0

(move-to-table A B)

{(clear B)}: 0 {(on B C)}: 0

{(clear A),(on A B)}: 0

(move-to-table A B)

(b)

Figure 6.2: Calculation of the (a) h1
A, (b) h1

B and (c) h1
C values for the goal of the

“swap base blocks” Blocksworld problem, G = {(on C B)}. Figure (d) shows the
calculation of the plain h1 value, for reference. Cost relaxed actions are drawn
as dashed arrows and the critical tree is indicated in bold (some of the relaxed
actions appearing in each of the figures are also part of the critical tree). Note that
h1
A(G) + h1

B(G) + h1
C(G) = 3, which is also h1(G).

100

{(on C B)}: 1

{(clear C),(on-Table C),(clear B)}: 0

(move-from-table C B)

{(clear C)}: 0 {(on-Table C)}: 0 {(clear B)}: 0

{(clear B),(on B C)}: 0

(move-to-table B C)

{(clear A),(on A B)}: 0

(move-to-table A B)

{(clear B)}: 0 {(on B C)}: 0

{(clear A),(on A B)}: 0

(move-to-table A B)

(c)
{(on C B)}: 3

{(clear C),(on-Table C),(clear B)}: 2

(move-from-table C B)

{(clear C)}: 2 {(on-Table C)}: 0 {(clear B)}: 1

{(clear B),(on B C)}: 1

(move-to-table B C)

{(clear A),(on A B)}: 0

(move-to-table A B)

{(clear B)}: 1 {(on B C)}: 0

{(clear A),(on A B)}: 0

(move-to-table A B)

(d)

Figure 6.2 (continued).

101

problem needs to move every block once (the blocks above the one at the base to
clear it and the block at the base because the goal is to have it on another block).
As noted in the discussion of the relative merits of the pattern database and hm

heuristics in chapter 4 (page 78) even the h1 heuristic yields the optimal cost (n
moves for n blocks) for this problem. This is because h1 considers the most costly
subgoal recursively: to move bn onto bn−1, bn−1 must be clear; to clear bn−1, bn−2

must be moved so it must also be clear; and so on. The sum of h1
Ai

(G), for the
same action partitioning A1, . . . , An as in the previous example, yields the same
result. This is because even though each h1

Ai
only counts the cost of one action

they all detect that the other actions are necessary, by the same reasoning as for the
standard h1 heuristic, and therefore all the necessary actions are counted by some
component of the sum. Figure 6.2 illustrates for the case of three blocks.
Compared to the standard hm heuristic the additive version is clearly computational-
ly more expensive, to compute as well as to evaluate, as it involves computing and
evaluating the standard hm heuristic n times. For this to be cost effective the heuristic
must be much more accurate which depends on selecting the sets of actions A1, . . . , An

appropriately, in the same way that the effectiveness of pattern database heuristics
depends on the selection of appropriate patterns. In practice, the collection of subsets
A1, . . . , An will be a partitioning of the set of actions so that the cost of every action
is counted by some hm

Ai
. A method for partitioning the set of actions automatically

is presented in section 6.2 below.

Admissibility of Cost Relaxation

The modification done to the hm heuristic above can be generalized to what can be
called the principle of cost relaxation. Next, we show that this principle is applicable
to any heuristic function satisfying a certain condition for a wide class of search
spaces and that applying it preserves the admissibility of the heuristic. Admissibility
of the additive hm heuristic for sequential planning follows as a special case.
Consider a search space, defined as in chapter 3 (page 38) by an initial state, a set
of final states and a basic transition relation (R(s, s′, cs,s′) iff there is a transition
from s to s′ with cost cs,s′), with the property that the cost of a solution path is
the sum of the costs of transitions along the path, i.e., if s0, . . . , sl is a sequence
of states such that s0 is the initial state, sl belongs to the set of final states and
R(si−1, si, csi−1,si

) holds for i = 1, . . . , l, then s0, . . . , sl is a solution and its cost
equals

∑
i=1,...,l csi−1,si

. (Recall that in the regression search space for sequential
planning, R(s, s′, cs,s′) holds iff s′ can be obtained by regressing s through some
action a and in this case cs,s′ = cost(a).) Also, let h∗R(s) denote the optimal cost
function for the search space (the function that assigns to each state s the minimal
cost of any path from s to a final state, or ∞ if no such path exists) and let hR be an
admissible heuristic for the search space (a function such that h(s) 6 h∗(s) for all s).
Here we assume that the function h is parameterized by R, i.e. that any transition
relation R′ over the same set of states defines a corresponding heuristic function hR′

that is admissible with respect to R′, i.e. such that hR′(s) 6 h∗R′(s) for all s.

102

Let R1, . . . , Rn be a collection of transition relations over the same set of states as R
with the property that (1) Ri(s, s′, ·) iff R(s, s′, ·), for all i and (2) if Ri(s, s′, c) and
c > 0 then R(s, s′, c) and Rj(s, s′, 0) for all j 6= i. In other words, each Ri has the
same transitions as R but counts only the cost of some of them and each transition
is counted only in one Ri. (In the case of sequential regression planning a division of
R into R1, . . . , Rn is obtained by dividing the set of actions in the planning problem
into disjoint sets, A1, . . . , An, counting only the cost of actions in Ai.)
Finally, let hΣ(s) =

∑
i=1,...,n hRi

(s).

Theorem 7 hΣ is an admissible heuristic for the search space R, i.e., hΣ(s) 6 h∗(s),
for all s.
Proof: To show this note that the cost of a solution path s0, . . . , sl can be rewritten
as ∑

i=1,...,l

csi−1,si
=

∑
k=1,...,n

(∑
i=1,...,l

csi−1,sik
|Rk(s, s′, csi−1,sik

)
)

+

(∑
i=1,...,l

csi−1,si |R(s, s′, csi−1,si), Rk=1,...,n(s, s′, 0)
)

i.e., as the sum of the cost of the path according to each relation Rk, plus the cost
of the transitions not counted in any Rk. Equality holds because of condition (2)
above, that the sets of transitions counted in each of the relations Rk are disjoint.
Since this holds for any solution path it holds also for the minimum cost paths and
therefore∑

k=1,...,n

h∗Ri
(s) 6 h∗R(s)

for all s, from which it follows that∑
k=1,...,n

hRi
(s) 6 h∗R(s)

since each hRi
underestimates h∗Ri

. 2

Admissibility of the additive hm heuristic for sequential regression planning follows
from this general theorem because solution cost in the sequential regression space is
additive, the partitioning of actions induces a corresponding collection of transition
relations Ri satisfying properties (1) and (2) stated above, and the hm heuristic is
admissible and parameterized by the transition relation (induced by the set of actions
and their associated costs).

103

6.2 Partitioning the Set of Actions

While the sum
∑

i hm
Ai

is admissible for any collection A1, . . . , An of disjoint sets
of actions, the quality of the heuristic depends very much on the selection of an
appropriate partitioning. This section presents one method for partitioning the set
of actions automatically and demonstrates experimentally that it generally results in
a good heuristic.
The approach is to create one partition Ai for each atom gi in the problem goal G
and assign actions to the partition where they appear to contribute the most to the
sum. To determine if an action a is relevant for goal atom gi the heuristic resulting
from relaxing the cost of a is compared to one that does not relax the cost of a: if the
value of hm

A−{a}(gi) is less than hm
A (gi) then action a belongs to the critical tree of gi

and is clearly relevant. The “loss”, hm
A (gi)−hm

A−{a}(gi), is a (rough) measure of how
relevant action a is to each of the different goals and the action can be assigned to the
goal where relaxing its cost causes the greatest loss. Ties can be broken arbitrarily,
randomly or using some secondary ranking (e.g. assigning actions to the smallest
partition with the greatest loss balances the sizes of the partitions).
The process of assigning actions to goals is iterative. Initially, partition A1, . . . , An

contains all actions. When an action is assigned to one partition it is removed from
all the other so that at the end, when all actions have been assigned, the partitions
are disjoint (and their union contains all actions).
The test hm

A−{a}(gi) < hm
A (gi), however, is sometimes not enough to detect relevance.

This is because the hm value of even a single atom is determined often by a critical
tree, branching out on the preconditions of actions. Thus, relaxing the cost of a
single action sometimes does not change the h1 estimate of an atom, although simul-
taneously relaxing the costs of several actions does. The impact of this problem can
be lessened by dividing the set of actions into sets of related actions and performing
the test for each set of actions simultaneously relaxed. The preliminary division of
actions into sets is based on state variables, specifically on finding a maximal set of
additive state variables (as described in chapter 4, page 69): related actions are those
that affect the same variable in this set. Because the variables are additive the sets
of related actions are disjoint and because the set of additive variables is maximal
all actions are in some set (except for actions that do not have any effect, but those
can safely be ignored).
The partitioning method described above has some obvious shortcomings: First, if
the goal of the planning problem consists of only one atom, it will not result in any
partitioning at all. This problem can be overcome by basing partitions, in case the
goal set of atoms is too small, on the set of atoms immediately relevant to the goal
atoms, i.e., the set of atoms that appear in search states reachable by one or a few
regressions. Second, since the method involves computing the hm heuristic numerous
times it can be computationally very expensive. In the experimental analysis pre-
sented in the next section the test for relevance is done with the h1 heuristic, even
though the additive heuristic computed for the final partitioning is h2, precisely for

104

this reason.

Analysis: Comparison of the hm, Additive hm and PDB
Heuristics

This section presents an experimental comparison of the quality and cost effectiveness
of the normal and additive h2 heuristics and the pattern database heuristics discussed
in chapter 4. The experiment involves planning problems from three domains, each
of which demonstrates a very different possible relationship between the compared
heuristics.
The combined heuristic max(h2, additive h2) is also included in the comparison. In-
tuitively, the reasons for considering this heuristic are that the h2 and the additive
h2 heuristics often exhibit complementary strengths (see figure 6.6) and that the
overhead of computing and maximizing with the h2 heuristic is relatively small com-
pared to the cost of computing and evaluating the additive h2 heuristic. As it turns
out, however, maximizing the h2 and additive h2 heuristics does not always result
in a more effective heuristic: for some problems search with this heuristic actually
expands more nodes than search with only the additive h2 heuristic. The effect of
maximizing is analyzed more in depth below (page 110).

The Experiment

The comparison of the heuristics is made in the context of sequential regression,
with A* search. The quality, or effectiveness, of each heuristic is measured by the
number of nodes expanded during search using the heuristic, since this indicates how
effectively it guides the search. The cost effectiveness of each heuristic is measured
by the total runtime, including both the time required for computing the heuristic
and for the search, since this shows if the time spent on computing the heuristic is
compensated for by a reduction of the time spent on search. Each run was limited
to a total of 1GB of memory, for heuristics and for the search, but no time limit was
imposed.
The pattern database heuristics were computed by the weighted additive bin-packing
and additive incremental pattern selection methods (described in section 4.3 of chap-
ter 4). The PDB size limits were the same as in the experimental comparison of
pattern selection methods in chapter 4. The additive h2 heuristic was computed
with the action partitioning method described above. As already mentioned the h1

heuristic was used to test for loss in the partitioning of actions, since using h2 for
this purpose is too computationally expensive. In case of ties assigning actions to
smaller partitions was preferred, since this tends to keep the sizes of the partitions
more even.
The planning problems used in the experiment are from the Blocksworld, 15-Puzzle
and random STRIPS domains. The Blocksworld problems are the same as in the
experiment described in chapter 3 (page 46; the smaller half of this problem set was

105

10 100 1k 10k 100k
0

10

20

30

40

50

60

70

80

90

100

#Nodes Expanded

%
 In

sr
ta

nc
es

 s
ol

ve
d

in
 ≤

h2

Additive h2

max(h2,Add.h2)
PDB (A.I.)
PDB (W.A.B.)

10k 100k 1M

10

20

30

40

50

60

70

80

90

100

#Nodes Expanded

%
 In

st
an

ce
 s

ol
ve

d
in

 ≤

Additive h2

max(h2, Add. h2)
PDB (A.I.)
PDB (W.A.B.)

(a) Blocksworld (b) 15-Puzzle

100 1k 10k 100k
0

10

20

30

40

50

60

70

#Nodes Expanded

%
 In

st
an

ce
s

so
lv

ed
 in

 ≤

h2

Additive h2

max(h2,Add.h2)
PDB (A.I.)
PDB (W.A.B.)

(c) Random STRIPS

Figure 6.3: Cumulative distribution of the number of node expansions required to
reach a solution by A* search with the h2 and additive h2 heuristics, the combi-
nation (by maximization) of the two (in figure (a) the curves for additive h2 and
the combined heuristic are so close as to be nearly indistinguishable), and the PDB
heuristics resulting from additive incremental (“A.I.”) and weighted additive bin-
packing (“W.A.B.”) pattern selection. Note that the scale on the X-axis (number of
nodes expanded) is logarithmic.

106

1 10 100 1k 6k
0

10

20

30

40

50

60

70

80

90

100

Time (seconds)

%
 In

st
ac

es
 s

ol
ve

d
in

 ≤

h2

Additive h2

max(h2,Add.h2)
PDB (A.I.)
PDB (W.A.B.)

300 3k 30k

10

20

30

40

50

60

70

80

90

100

Time (seconds)

%
 In

st
an

ce
s

so
lv

ed
 in

 ≤
Additive h2

max(h2, Add. h2)
PDB (A.I.)
PDB (W.A.B.)

(a) Blocksworld (b) 15-Puzzle

1 10 100 1k 7k
0

10

20

30

40

50

60

70

Time (seconds)

%
 In

st
an

ce
s

so
lv

ed
 in

 ≤

h2

Additive h2

max(h2,Add.h2)
PDB (A.I.)
PDB (W.A.B.)

(c) Random STRIPS

Figure 6.4: Distribution of the time required to find a solution with the h2, additive
h2, combined and PDB heuristics. The time measured is total runtime, i.e., including
the time required to compute heuristics before the search. The scale on the X-axis
(time) is logarithmic.

107

also used in the comparison of pattern selection methods in chapter 4, page 73).
The 15-Puzzle problems are the easiest quarter of the collection of random 15-Puzzle
problems presented by Korf (1985; also the same problems that were used in the
experiment reported in chapter 4). The random STRIPS problem set included the
55 problems originally generated for the experiment reported in chapter 4 and an
additional set of 110 larger problems (parameters n = 90, o = 218, r = s = 3 and
g = 9) generated by the same method (described on page 74; note that the final
filtering step was not applied here).

Results and Conclusions

Results of the experiment, in the form of the cumulative distribution of the node
expansions and runtime required to find a solution, are shown in figures 6.3 and 6.4,
respectively. As can be seen, the relative effectiveness, and cost effectiveness, of the
compared heuristics is very different in the three problem domains.
In the Blocksworld domain (figures 6.3(a) and 6.4(a)) the additive h2 heuristic is
clearly more effective than the PDB and h2 heuristics, which are rather similar.
Maximizing the additive h2 heuristic with h2 reduces the number of nodes expanded
only marginally but incurs a noticeable runtime overhead.
In the 15-Puzzle domain (figures 6.3(b) and 6.4(b)) the PDB heuristics are more
effective than the additive h2 heuristic and the difference is magnified even more
when looking at runtime, since the computational cost of heuristic evaluation is
greater for the additive h2 heuristic. Search with only the plain h2 heuristic fails to
solve any instance in this domain and neither does maximizing h2 with the additive
h2 improve the effectiveness of the latter. In fact, for roughly half of the instances
search with the combined heuristic expands more nodes than with the additive h2

heuristic alone. This, somewhat surprising, result is further analyzed below.
For random STRIPS problems (figures 6.3(c) and 6.4(c)) the h2 heuristic outperforms
the additive h2 heuristic, though maximizing the two yields a heuristic clearly more
effective than either. Looking at runtime, however, there is no such clear advantage of
the combined heuristic: the greater number of nodes expanded with the h2 heuristic
is roughly compensated for by the lower cost of computing and evaluating it. The
PDB heuristics are very ineffective in this domain, as was noted also in chapter 4.
Although a sample of three problem domains is really too small as a basis for a
theory of the relative effectiveness of the studied heuristics, a few interesting obser-
vations can be made. First, and as already mentioned in the discussion concerning
the results of the experiment reported in chapter 4, the state variable representa-
tions of Blocksworld and 15-Puzzle problems contain comparatively few and large
variables (variables with many values) while the state variable representations of
random STRIPS problems consist of many small (typically binary) variables.
The second characteristic that differs significantly between the three domains is the
length of optimal plans and the number of variable value changes during the course
of plans. The Blocksworld and random STRIPS problems have relatively short plans

108

Blocksworld 15-Puzzle Random STRIPS
Average # of variables 23.0 32 74.1

...with goal value 16.0 30 7.6

...with secondary goal value(s) 5.8 2 17.5
Average plan length 13.5 47.4 9.5
Average # value changes/variable 1.4 ∼ 5.9 0.5

Figure 6.5: Number of variables and number of variables with goal values and sec-
ondary goal values in the state variable representation, plan length and number of
value changes per variable, averaged over the set of all solved instances in each of
the three problem domains. The number of value changes per variable for 15-Puzzle
problems is an estimate, based on the fact that each action changes four variables.

(averaging 13.5 and 9.5 actions, respectively) and each variable, of those that change
at all, changes value only a few times during the course of the plan (the average
number of value changes in Blocksworld problems is 1.4, and no variable changes
value more than twice, while for the random STRIPS problems the average is 0.5,
although some variables change value 2 – 4 times). Also, many of the variables
that change do so not because the goal of the planning problem specifies a value
for them but because a different value of the variable is required by a precondition
of some action in the plan. The number of variables with goal values averages 16.0
of 23.0 for the Blocksworld problems and only 7.6 of 74.1 for the random STRIPS
problems. The number of variables with “secondary” goal values (variables that do
not have a value specified in the goal of the planning problem but for which some
particular value is required by the precondition of some action in the plan) averages
5.8 and 17.5, respectively, for the two domains. Plans for 15-Puzzle problems, by
comparison, are much longer (averaging 47.4 actions over the set of instances solved
in the experiment) with each variable changing value numerous times during the
course of the plan (the exact figure was not determined but given that there are
only 32 variables and each action changes 4 of them an estimate is 5.9, although this
is probably a bit too high) and 30 of the 32 variables have goal values (the last 2,
representing the empty square, have secondary goal values).
In summary, 15-Puzzle problems can be described as having “deep” solutions (each
variable changes value several times to reach its goal value) while random STRIPS
problems have “wide” solutions (variables change directly to required values, but
many variables are required to change values to enable the few that have goal values
to change) and Blocksworld problems fall somewhere in between (the numbers men-
tioned above are summarized in table 6.5). This goes some way towards explaining
why PDB heuristics are more effective for 15-Puzzle problems and less effective than
(additive) h2 for Blocksworld and random STRIPS problems, since PDB heuristics
take into account all required value changes of variables in the pattern but ignore
any required changes outside the pattern while the hm heuristics are able to cap-
ture required changes across all problem variables (cf. the discussion of the example

109

0 1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

h2

A
dd

iti
ve

 h
2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

h2

A
dd

iti
ve

 h
2

(a) Blocksworld (b) 8-Puzzle

Figure 6.6: Distribution of combinations of h2 and additive h2 heuristic values over
the set of nodes encountered during search. The size of each point in the diagrams
indicates (approximately) the relative frequency of values at that point.

Blocksworld problem of swapping two blocks at the base of a tower in section 4.4 of
chapter 4, page 78).

The Effect of Maximizing the h2 and Additive h2 Heuristics

As observed above, maximizing the h2 and additive h2 heuristics does not always
result in a heuristic that is more effective at guiding the search than the additive h2

heuristic alone, in spite of the fact that the combined heuristic is never less accurate.
In fact, it is in general more accurate as the h2 and additive h2 heuristics tend
to have somewhat complementary strengths. This is illustrated in figure 6.6 which
shows the distribution of combinations of values for the two heuristics over the set of
states encountered during searches, with the combined heuristic, made in a collection
of Blocksworld and 8-Puzzle problems (due to the volume of data, only smaller
Blocksworld problems and 8-Puzzle instead of 15-Puzzle problems were used in this
experiment).
In the comparative experiment presented above, however, search with the combined
heuristic was found to expand more nodes than search with the additive h2 heuristic
alone for about half the 15-Puzzle problems. To explain this apparent contradiction
requires a closer examination of how the improved accuracy of the combined heuristic
affects the search. Because the A* algorithm expands states strictly in order of
increasing total cost (i.e., the sum of accumulated and estimated cost, the so called
f -value) and stops when the next state to be expanded is a final state, it expands
every state with an f -value less than the optimal solution cost but only some of
the states with f -values equal to the optimal solution cost (no state with an f -value
greater than the optimal cost is expanded). Which states with f -values equal to

110

−7 −6 −5 −4 −3 −2 −1 0 1 2
0

5

10

15

20

25

30

35

40

45

50

55

Relative f−Value (Acc. + Est. − Opt. Cost)

%
 N

od
es

h2

Additive h2

max (h2, Add. h2)

−16 −15 −14 −13 −12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2
0

5

10

15

20

25

30

35

Relative f−Value (Acc. + Est. − Opt. Cost)

%
 N

od
es

h2

Additive h2

max (h2, Add. h2)

(a) Blocksworld (b) 8-Puzzle

Figure 6.7: Distribution of the relative f -value (the sum of accumulated and esti-
mated cost, minus optimal solution cost) over the set of nodes encountered during
search.

the optimal cost are expanded and which are not is determined by the order of
expansion of states with equal f -value, which in principle can change arbitrarily as
a result of any change to the relative heuristic values of the successor states of any
expanded state. Thus, if the number of states with f -value equal to the optimal
cost that are expanded is considered random it is not at all strange that in half the
cases it is greater and in half the cases it is less, given that maximizing with the h2

heuristic does not significantly change the number of such possibly expanded states
(which is reasonable considering the weakness of the h2 heuristic in this domain).
The question is rather why in the Blocksworld domain, where maximizing with h2

also does not significantly reduce the number of node expansions compared to the
additive h2 heuristic alone, the same does not happen.
Part of the reason lies in the fact that maximizing with the h2 heuristic has very
little effect in the Blocksworld domain: on the set of smaller problems used in this
analysis it improves the heuristic value of less than 0.02% of the states encountered
during search and consequently it also changes the relative heuristic values of the
successor states of a very small fraction of the expanded states, while in the 8-Puzzle
problems maximizing with h2 increases the heuristic value of approximately 0.7% of
the encountered states and changes the relative values of the successors of slightly
less than 0.1% of the expanded states. Because the heuristic guides the exploration
of the search space, the greater effect that maximization has in the 8-Puzzle domain
quite simply implies a greater degree of rearrangement in the part of the search
space that is explored. Another part of the explanation lies in which states have
their heuristic values improved by maximization and thus how this improvement
translates into improved f -values. Figure 6.7 shows the distributions of the relative f -
values (f -value minus optimal cost) calculated with the h2, additive h2 and combined
heuristics, of states encountered during search (including both states expanded and

111

states created but not expanded). As can be seen, maximizing the additive h2 and
h2 heuristics in the 8-Puzzle domain shifts some fraction of states from negative
relative f -values (necessarily expanded states) to zero (possibly expanded states)
while in the Blocksworld domain both the fractions of states with negative and zero
f -values decrease (although the effect is very small). However, even in the 8-Puzzle
domain the total fraction of necessarily and possibly expanded states is less when
maximization with h2 is used, which is confirmed by the fact that when A* is modified
to search all nodes with f -value equal to the optimal, i.e., to find all optimal solutions,
maximization with h2 does reduce the number of nodes expanded.

112

7. Improving Heuristics
through Search

The hm family of heuristics, introduced in chapter 3, offers a trade-off between ac-
curacy and computational cost, by varying the parameter m: the higher the value of
m the closer the heuristic estimate is to the true cost, but the cost of computing the
heuristic grows exponentially with m. For most planning problems, the hm heuristics
exhibit a diminishing marginal gain, in the sense that the higher m already is the
smaller is the improvement in heuristic accuracy brought by raising it further, a fact
that was also experimentally demonstrated in chapter 3 (page 46). This combines to
make the heuristic cost effective, in the sense that it reduces search time more than
the time taken to compute it, only for small values of m (typically m 6 2). Yet, for
many planning problems the h2 heuristic is too weak.
However, the exponentially increasing computational cost and the diminishing im-
provement are not absolutely inherent in the definition of the hm heuristic but are
both to some extent due to the method used to compute the heuristic, specifically
the fact that it computes a complete solution to the set of equations that define the
heuristic (comprising hm values for every search state of size m or less). First, the
size of the complete solution grows exponentially with m, which explains the expo-
nentially increasing computational cost. Second, the hm value of a search state s (of
size greater than m) is the maximum of the values of any size m subset of s and
therefore the computed values of small sets contribute to the evaluation of a greater
number of search states than the heuristic values of large states (which are more spe-
cific). As m increases the complete solution includes an increasing fraction of larger
atom sets, and a smaller fraction of the solution is thus relevant to evaluating states
actually encountered in the search.
This chapter presents two alternative methods, both based on search, for computing
hm heuristics: relaxed search, which computes a partial solution to the hm equation,
and boosting, which improves the accuracy of an hm solution “pointwise”. Intuitively,
the idea behind both methods is to focus effort on computing the part of the heuristic
that is relevant to the planning problem at hand, and thus to avoid the two problems
described above. Relaxed search (described in the next section) exploits the fact
that the hm heuristic is also the optimal cost in a relaxed search space and computes
partial solutions by searching this space and recording information discovered during
the search. As computing a partial solution is (sometimes) less computationally
expensive the method can be applied for higher values of m, resulting in a more
accurate heuristic. Boosting (described in section 7.2) instead makes use of the fact
that each size m atom set is itself a search state and improves the estimated cost of
selected atom sets by performing a limited search starting from the corresponding

113

state. Results of the three methods (in the form of complete or partial hm solutions,
or isolated improved heuristic values) are combined by storing them all in the heuristic
table. As described in chapter 3 (page 42) the heuristic table, which stores the
computed hm solution and which is used to perform the on-line evaluation of search
states, can be implemented as a general mapping from states (sets of atoms) to
associated heuristic values. Because the relaxed search and boosting methods are
both based on search, a vital concern is to make use of any heuristic information
already computed to reduce the cost of this search.
Heuristics derived by searching in an abstraction of the search space have been stud-
ied extensively in AI (e.g. by Gaschnig, 1979, Pearl, 1984, Prieditis, 1993, and in
the works on pattern database heuristics mentioned in chapter 4) and the chapter
concludes with a discussion of related ideas (section 7.3).

7.1 Relaxed Search

This section introduces the relaxed search method of computing partial hm heuris-
tics, based on the idea of viewing the hm relaxation as a relaxation of the search
space rather than the equations characterizing the cost function. Arguably, relaxed
search is most interesting in the case of temporal planning where the cost relaxation
method from the last chapter can not be applied, but since there are some complica-
tions in applying the method to temporal regression planning it is first described for
the sequential case, followed by the modifications required in the case of temporal
planning (on page 123). The section concludes with a more extensive analysis of the
cost effectiveness of relaxed search for temporal planning (page 124).

The m-Regression Search Space and its Relation to the hm Heuristic

As explained in chapter 3 the hm relaxation (equation (5) on page 39) can be viewed
as a change of search space. The relaxed search space, which we will call the m-
regression space, is an AND/OR (or “min/max”) space: any state s with more than
m atoms is a “max state”, whose successors are the size m subsets of s and whose
cost is the max of the successor costs, while states s with m or fewer atoms are “min
states” and are regressed as normal. A max (or AND) state is solved only if all
successors are solved, while a min (or OR) state is solved if some regression leads to
a solution. Figures 7.2 – 7.2 show (part of) the 2-relaxed search tree for an example
planning problem (the example is described in detail on page 119). As can be seen
in the examples, the search space is not strictly layered in the sense that OR-nodes
may have successors that are also OR-nodes.
The hm heuristic is the optimal cost function for the m-regression space, i.e., the hm

value of any search state equals the optimal m-relaxed solution cost, which can be
found by searching in the m-regression space. In fact, the optimal m-relaxed solution
to a search state s, which in an AND/OR search space has the form of a tree rather
than a path, gives the optimal cost of many more states than s (the same holds in

114

a normal “OR-space”: an optimal solution path gives the optimal cost of all states
along the path).
The relaxed search method exploits this correspondence to compute a partial hm

solution by searching in the m-regression space, starting from the state consisting of
the goals of the planning problem. This makes the part of the hm solution that is
computed likely to be the part most relevant for solving the planning problem. The
search is carried out using a heuristic search algorithm called IDAO*, which, as the
name suggests, is an adaptation of the IDA* search algorithm to AND/OR spaces
(Haslum, 2004; the algorithm is described on page 117 below). For any m′ 6 m, hm′

is an admissible heuristic also for search in the m-regression space. This follows from
the fact that hm′

(s) 6 hm(s), for all s, when m′ < m, which was shown in chapter
3 (page 43). The IDAO* algorithm has the important property that it discovers the
optimal cost of every state that is solved (this includes the states appearing in the
solution tree, but may also include other states) and a lower bound greater than the
cost estimate given by the heuristic used in the search for every state that is expanded
but not solved (this property is not unique to IDAO*: alternative algorithms are
discussed in section 7.3).
The hm values (and lower bounds) discovered during the search are combined, by
maximization, with the heuristic used to guide the search, resulting in a more accurate
heuristic. This can be done using the same generalized heuristic table both to store
improved values and to evaluate states in the relaxed search (as described in chapter
3, page 42). Thus, the heuristic used to guide the search in the m-regression space
is actually the maximum of several (complete and partial) hm′

solutions for different
values of m′ (but all smaller than, or equal to, m). The maximization is automatic,
since the heuristic value of a state is simply the maximum value of any subset of the
state that is stored in the table. In particular, heuristic values discovered and stored
during the relaxed search become immediately available for use in subsequent state
evaluations so that the part of the hm solution computed by the part of the search
that is already done is also used for the part of the search that remains. An example of
this can be seen in the search tree in figure 7.3: the search state {(at p2), (at p0)},
with an initial heuristic estimate of 3, is expanded in the left-most branch of the tree
and as a result its estimated cost is increased to 4. When the same state appears in
a later branch its heuristic estimate is the new value of 4 and since this exceeds the
cost bound at this point in the search the state is not expanded as it would otherwise
have been.
A final important point to note is that transposition elimination rules for regression
planning described in chapter 2 (commutativity cuts for sequential planning, on page
11, and right-shift cuts for temporal planning, on page 20) can not be applied in the
relaxed search. Doing so would endanger admissibility, because the elimination rules
make the set of successor states to a search state (and therefore the optimal cost
of the state) dependent on the path by which the state was reached, and thus a
lower bound on the cost of a state reached through one path is not necessarily a
lower bound on the cost of the same state reached through a different path. Unless
the path (or the relevant features of the path) is not used along with the state to

115

retrieve values stored in the heuristic table it then becomes possible to overestimate
cost. The fact that transposition elimination rules are not used when searching the
m-regression space in some cases has a significant impact on the efficiency of the
relaxed search, as shown in the experimental evaluation later in this chapter (page
124).

Properties of the Resulting Heuristic

Properties of the heuristic resulting from relaxed search depend, of course, on how
the search is carried out. For the heuristic to be admissible, the initial heuristic (the
one being improved by the relaxed search) must be admissible and the algorithm
used to search the m-regression space must store only values that are optimal, or
lower bounds on optimal, costs. The IDAO* algorithm satisfies this requirement.

Theorem 8 If the initial heuristic is admissible and the values discovered and stored
during the relaxed search are (lower bounds on) optimal solution costs then the re-
sulting heuristic is admissible.
Proof: This follows directly from the fact that optimal solution cost in the m-
regression space equals the hm heuristic estimate, which is admissible, and that the
maximum of any two admissible heuristics is also admissible. 2

It is also easily seen that when m is sufficiently large there will not be any AND-nodes
in the m-regression space, since AND-nodes are defined as states of size greater than
m, and in this case the m-regression space is identical to the normal regression space
(analogous to the fact that hm = h∗ for any sufficiently large m, shown in chapter 3,
page 43).
Consistency of the resulting heuristic is more complicated to show, since it depends
on the workings of the IDAO* algorithm. It also holds only for sequential planning,
because of certain simplifications made in the temporal case (described on page 123).

Theorem 9 For sequential planning, provided that the heuristic used to guide the
relaxed search is consistent, the heuristic resulting from values discovered by IDAO*
is consistent.
Proof: Let s be a regression search state and s′ a successor state obtained by re-
gressing s through action a, and let h and h′ denote the heuristic (defined as the
maximum value of any subset stored in the heuristic table: see chapter 3, page 42)
before and after the relaxed search, respectively. Note that h′(s) > h(s), since any
updates made in the relaxed search can only increase the heuristic value. First, if
s has not been expanded in the relaxed search, h(s) = h′(s) and consistency of h′

follows from the consistency of h and the fact that h′(s′) > h(s′). Assume s has
been expanded during the relaxed search. If |s| 6 m, s is expanded by normal
regression in the relaxed search and h′(s) equals the minimum h′(s′′) + cs,s′′ over
all successor states s′′ of s, which include s′, so h′(s′) + cs,s′ can not be less than
h′(s) (recall that cs,s′′ is the transition cost from s to s′′, i.e., the cost of the ac-
tion used to regress s to s′′ in the case of sequential planning). If |s| > m, s is an

116

AND-node in the m-regression space and h′(s) = h′(s′′) for some size m s′′ ⊂ s,
which implies that s′′ was also expanded during the relaxed search (see the IDAO*
algorithm in figure 7.1). Since s′ is obtained by regressing s through a, there are two
possibilities: either a adds some atom in s′′, or it does not. In the first case, a is
applicable also to s′′, which means h′(s′′) 6 h′((s′′−add(a))∪pre(a))+cost(a), since
h′(s′′) has been updated to the minimum over all regressions of s′′, and since s′′ ⊂ s,
(s′′−add(a))∪pre(a) ⊂ (s−add(a))∪pre(a) = s′ so h′((s′′−add(a))∪pre(a)) 6 h′(s′),
from which follows that h′(s) = h′(s′′) 6 h′(s′)+ cost(a). In the second case, s′′ ⊂ s′

which implies that h′(s′) > h′(s′′) = h′(s) and thus that h′(s) 6 h′(s′) + cost(a),
which shows the consistency of h′. 2

IDAO*

IDAO* is an adaptation of IDA* to searching AND/OR graphs (Haslum 2004). Like
IDA*, it carries out a series of cost-bounded depth-first searches with increasing cost
bound. IDAO* is admissible, in the sense that if guided by an admissible heuristic,
it returns the optimal solution cost of the starting state. In fact, it finds the optimal
cost of every OR-node that is solved in the course of the search. However, it does
not keep enough information for the optimal solution itself to be extracted so it can
not be used to find solutions to AND/OR search problems. It works for the purpose
of improving the heuristic since for this only the optimal cost needs to be known.
The algorithm is sketched in figure 7.1. The main difference from IDA* is in the DFS
subroutine: when expanding an AND-node it recursively invokes the main procedure
IDAO*, instead of the DFS function. Thus, for each successor to an AND-node the
algorithm performs a series of searches with increasing cost bound, starting from the
heuristic estimate of the successor state (which for some successors may be smaller
than that of the AND-node itself) and finishing when a solution is found or the cost
bound of the predecessor AND-node is exceeded. This ensures that IDAO-DFS is
never called with a state and a cost bound exceeding the optimal solution cost of that
state and thus that the cost returned is always a lower bound on the optimal cost
of the expanded state, equal to the optimal cost if the state is solved. As described
above, the updated costs of OR-nodes are stored in the heuristic table, and the same
table is used to evaluate states in the search. In this way the partial hm solution that
is discovered by the search is combined with the previously computed heuristic and
the result becomes immediately available for use in subsequent heuristic evaluations.
IDAO* stops searching the successors of an AND-node as soon as one is found to
have a cost greater than the current bound, since this implies the cost of the AND-
node is also greater than the bound. However, since the algorithm performs repeated
depth-first searches with increasing bounds, remaining successors of the AND-node
will eventually also be solved. When an m-solution has been found, all successors
to every AND-node appearing in the solution tree have been searched, and their
updated costs stored.
Because the successor nodes of AND-nodes are subsets, IDAO* frequently encounters

117

IDAO*(s, b) // search root and cost bound

{

solved = false;

current = h(s);

while (current < b and not solved) {

current = IDAO_DFS(s, current);

}

return current;

}

IDAO_DFS(s, b)

{

if final(s) {

solved = true;

return 0;

}

if (s stored in SolvedTable) { // short-cut search if s already solved

solved = true;

return stored solution cost;

}

if (|s| > m) { // AND-node

for (each subset s’ of s such that |s’| <= m) {

new cost of s’ = IDAO*(s’, b); // call IDAO* with cost bound b

if (new cost of s’ > b) { // s’ not solved

return new cost of s’;

}

}

solved = (all subsets solved);

new cost of s = max over all s’ [new cost of s’];

if (solved) {

store (s, new cost of s) in SolvedTable;

}

return new cost of s;

}

else { // OR-node

for (each s’ such that R(s,s’,c(s,s’))) {

if (c(s,s’) + h(s’) <= b) {

new cost through s’ = c(s,s’) + IDAO_DFS(s’, b - c(s,s’));

if (solved) {

new cost of s = new cost through s’;

store (s, new cost of s) in SolvedTable;

return new cost of s;

}

}

else {

new cost through s’ = c(s,s’) + h(s’);

}

}

new cost of s = min over all s’ [new cost through s’];

T(s) = new cost of s; // store new cost in the heuristic table;

return new cost of s;

}

}

Figure 7.1: The IDAO* algorithm (with solved table). R denotes the transition
relation of the search space, i.e., R(s,s’,c(s,s’)) iff there is a transition from s to
s’ with cost c(s,s’). h is the heuristic defined by current contents of the heuristic
table, T.

118

the same state (set of goals) more than once during search. The algorithm can be
sped up, significantly, by storing solved nodes (both AND-nodes and OR-nodes)
together with their optimal cost and short-cutting the search when it reaches a node
that has already been solved. This is done in the “solved table” referred to in figure
7.1. In difference to the lower bounds stored in the heuristic table, which are valid
also in the m′-regression search space for any m′ > m as well as in the original
search space, the information in the solved table is valid only for the current m-
regression search (since states of size m′, for m′ > m are relaxed in the m-regression
space but not in m′-regression). An example can be found in figure 7.3: the state
{(at p2), (airborne)} is solved with a cost of 3 (at the root the subtree drawn in
bold) and appears again in a different branch of the tree. If the fact that the node is
solved has been recorded, the same solution does not have to be found again.
Note that a standard transposition table (Reinfeld & Marsland 1994) which records
updated cost estimates of unsolved nodes is of no use in IDAO* since this role is
played by the heuristic table: estimated cost of OR-nodes are stored in the heuristic
table and the heuristic estimate of an AND-node is always given by the maximum
of its size m subsets. The solved table complements the information in the heuristic
table by indicating when the heuristic value of a state is equal to its optimal cost
and not only a lower bound. Since the solved table is only a speed-up technique it
is not necessary to store every solved node, so the table can be limited in size and
implemented efficiently (e.g. as a closed hash table).

An Example

For an illustration of how relaxed search using the IDAO* algorithm proceeds, con-
sider a simplified instance of the single UAV mission planning problem (this problem
was introduced in chapter 3, page 47, for the experimental analysis of the accu-
racy/cost trade-off in the hm heuristics; here, we simplify the problem by assuming
all actions have unit cost). The UAV is initially on the ground (atom (on ground))
at point p0, and the goal is to have images from two points ((img p2) and (img
p8)), and to have the UAV back on the ground. To take an image, the UAV needs
to be at the point (represented by atom (at ?p)), and to fly to a point it must be
airborne (atom (airborne)). To land, the UAV must be airborne and at a landing
point (p0 and p1 in this example).
To keep the size of the example manageable, assume a complete solution has been
computed only for h1 and that relaxed search is used to compute a partial h2 solution.
Figures 7.2 – 7.4 show (part of) the 2-regression space explored by the first, second
and third iteration, respectively, of an IDAO* search starting from the problem goals.
In the first iteration (figure 7.2) IDAO-DFS is called with a cost bound of 4, as
this is the estimated cost of the starting state given by the precomputed h1 heuris-
tic. The root node is an AND-node, so when it is expanded IDAO* is called for
each size 2 subset. This recursive call to IDAO* is made with a cost bound equal
to the current IDAO-DFS bound (4). The first such subset to be generated is
{(img p2), (on ground)}. This state also has an estimated cost of 4, so IDAO-DFS

119

{(img p2),(img p8),(on_ground)}: 5 (4)

{(img p2),(on_ground)}: 5 (4) {(img p8),(on_ground)}: 4 {(img p2),(img p8)}: 4

{(at p2),(on_ground)}: 4 (3)

(tk_img p2)

{(img p2),(at p0),(airborne)}: 4

(land p0)

{(img p2),(airborne),(at p1)}: 4

(land p1)

{(at p3),(on_ground),(airborne)}: INF (2)

(fly p32)

{(at p2),(at p0),(airborne)}: 3

(land p0)

{(at p5),(on_ground),(airborne)}: 4

(fly p52)

{(at p3),(airborne)}: 2 {(on_ground),(airborne)}: INF (1) {(at p3),(on_ground)}: 2

... {(at p0),(airborne)}: 1

(fly p03)

{(on_ground),(at p0)}: 0

(take-off p0)

Figure 7.2: Part of the 2-Regression tree for the example UAV planning problem
expanded in the first IDAO* DFS iteration (with a cost bound of 4). AND-nodes are
depicted by rectangles, OR-nodes by ellipses. Nodes drawn in bold are solved, while
nodes drawn with a dashed outline are not expanded in this IDAO* DFS iteration
due to the updates caused by their siblings (the expansion of child nodes proceeds
left to right). For nodes whose estimated cost has been updated after expansion, the
(h1) estimate before expansion is given in parentheses.

120

{(img p2),(img p8),(on_ground)}: 6 (5)

{(img p2),(on_ground)}: 6 (5) {(img p8),(on_ground)}: 4 {(img p2),(img p8)}: 4

{(at p2),(on_ground)}: 5 (4)

(tk_img p2)

{(img p2),(at p0),(airborne)}: 5 (4)

(land p0)

{(img p2),(airborne),(at p1)}: 5 (4)

(land p1)

{(at p2),(at p0),(airborne)}: 4 (3)

(land p0)

{(at p2),(airborne),(at p1)}: 4 (3)

(land p1)

{(img p2),(at p0)}: 5 (4) {(img p2),(airborne)}: 4 {(at p0),(airborne)}: 1 {(img p2),(airborne)}: 4 {(img p2),(at p1)}: 5 (4) {(airborne),(at p1)}: 2

{(at p2),(at p0)}: 4

(tk_img p2)

{(img p2),(at p7),(airborne)}: 4

(fly p70)

... {(at p2),(airborne)}: 3

(tk_img p2)

{(img p2),(on_ground),(at p0)}: 5

(take-off p0)

... {(at p2),(at p1)}: 4

(tk_img p2)

...

... ...

{(at p2),(at p0)}: 4 (3) {(at p2),(airborne)}: 3 {(at p0),(airborne)}: 1 {(at p2),(airborne)}: 3 {(at p2),(at p1)}: 4 (3) {(airborne),(at p1)}: 2

{(at p3),(at p0),(airborne)}: 3 (2)

(fly p32)

... {(at p3),(airborne)}: 2

(fly p32)

... {(at p3),(airborne),(at p1)}: 3 (2)

(fly p32)

...

{(at p3),(at p0)}: 3 (2) {(at p3),(airborne)}: 2 {(at p0),(airborne)}: 1 {(at p0),(airborne)}: 1

(fly p0 p3)

... {(at p3),(airborne)}: 2 {(at p3),(at p1)}: 3 (2) {(airborne),(at p1)}: 2

{(at p3),(airborne),(at p1)}: 2

(fly p10)

... {(on_ground),(at p0)}: 0

(take-off p0)

... ... {(at p0),(airborne),(at p1)}: 2

(fly p01)

...

Figure 7.3: Part of the tree expanded in the second IDAO* DFS iteration (cost
bound of 5). Note that the estimate before expansion (the value in parentheses) here
includes the updates made in the previous iteration.

{(img p2),(img p8),(on_ground)}: 6

{(img p2),(on_ground)}: 6 {(img p8),(on_ground)}: 5 (4) {(img p2),(img p8)}: 4

... {(at p8),(on_ground)}: 4 (3)

(tk_img p8)

{(img p8),(at p0),(airborne)}: 4

(land p0)

{(img p8),(airborne),(at p1)}: 4

(land p1)

{(at p8),(at p0),(airborne)}: 3

(land p0)

{(at p8),(airborne),(at p1)}: 3

(land p1)

Figure 7.4: Part of the tree expanded in the third IDAO* DFS iteration (cost bound
of 6), but showing only the first iteration of the recursive IDAO* call to the second
node below the root.

121

is called with this bound in the first iteration (since 4 also happens to be the cost
bound of the recursive IDAO* call, this is the only iteration that will be made). From
this node search proceeds like a normal IDA* search, expanding nodes within the cost
bound by regression, until it reaches the state {(at p3), (on ground), (airborne)},
which is an AND-node with an estimated cost of 2. This AND-node is again ex-
panded by calling IDAO* for each size 2 subset, with the current cost bound (2).
The first subset, {(at p3), (airborne)}, has an estimated cost of 2 and is solved
within that bound. The second subset, {(on ground), (airborne)}, has an esti-
mated cost of 1, but when it is expanded it is discovered that there are no possible
regressions of this state so its cost is updated to +∞ (the new cost is stored in the
heuristic table). Since this exceeds the cost bound of the recursive IDAO* call this
call returns, and since the estimated cost of the parent AND-node is now above the
bound with which IDAO-DFS was called (2) this call also returns, without searching
the last subset. The remaining regressions of the two expanded OR-nodes lead to
states with estimated costs above their respective bounds, so these are not searched.
The costs of the two OR-nodes are updated to the minimum cost of their child nodes
(action cost plus the estimated cost of the child node). Since this is enough to raise
the estimated cost of the root AND-node over the cost bound of the initial call to
IDAO-DFS (4) the remaining subsets of this node are not searched.
In the second iteration (figure 7.3) IDAO-DFS is called with a cost bound of 5.
This iteration proceeds like the first, but this time the branch leading to the state
{(at p3), (airborne), (on ground)} is not examined, since its already known to be
unsolvable. Instead, other regressions of the two OR-nodes expanded but unsolved
in the last iteration are now within the cost bound, and therefore expanded. These
lead to AND-nodes, and the recursive invocation of IDAO* on the size 2 subsets as
before. The cost of the state {(at p2), (at p0)}, in the left-most branch is updated
from 3 to 4 which increases the cost of the parent AND-node above the bound so that
remaining subsets are not searched. Note that when the state {(at p2), (at p0)}
reappears (to the left in the second branch of the first OR-node below the root) its
estimated cost is the new value 4 and the state is therefore not expanded again. The
search proceeds in a similar fashion and when the iteration finishes the estimated
cost of the first subset of the root AND-node has increased to 6.
In the third iteration, the first subset of the root AND-node is solved, with a cost
of 6, and search proceeds to the next subset, {(img p2), (on ground)}. This state
has an estimated cost of 4 so the first iteration of the recursive IDAO* call is made
with cost bound 4, but note that the cost bound of the recursive IDAO* call is 6, the
estimated cost of the parent AND-node. The first iteration of the recursive IDAO*
call is shown in figure 7.4: during this iteration, the cost of the state is updated to
5. Because this is still below the cost bound of the IDAO* call (6) more iterations
are made until either the state is solved, in which case the last subset of the root is
also searched, or the cost increases above the bound of the recursive IDAO* call.
The process continues until all the size 2 subsets of the root state have been solved,
at a cost of 7. At this point, improved heuristic estimates of roughly one quarter of
the size 2 atom sets have been stored in the heuristic table.

122

Relaxed Temporal Regression

As with the hm heuristic itself, adapting relaxed search to temporal regression plan-
ning, although straightforward in principle, is somewhat complicated in its details.
The crux is how to define which states are AND-nodes in the temporal m-regression
space and what their successor states are. There are at least two ways that this can
be done.
Recall from chapter 3 that an additional relaxation, defined by equations (8) – (9)
on page 51, was applied and that the cost of a temporal regression state s = (E,F)
is estimated by the maximum of a set of states without scheduled actions, i.e., of the
form (E′, ∅) where E′ ⊆ E ∪

⋃
(a,δ)∈F pre(a) (and |E′| 6 m). The first alternative is

to define only states of this form to be OR-nodes in the temporal m-regression space
(and the successors of AND-nodes correspondingly as all (E′, ∅) as above). This
definition, however, leads to a higher density of AND-nodes, each with a large number
of successor states, in the m-regression space. These factors both contribute to make
the relaxed search computationally more expensive, as shown in the experimental
analysis in the next section.
The second alternative is slightly less restrictive, in the sense that some states with
a non-empty F component are regarded as OR-nodes. Define the size of a state
s = (E,F) as

|(E,F)| =
∣∣∣∣E ∪

⋃
(a,δ)∈F

pre(a)
∣∣∣∣ (15)

and s as an AND-node in the temporal m-regression space iff |s| > m, with successor
states being all size m subsets of the atom set on right hand side of equation (15).
This corresponds to relaxing temporal regression states using only equations (9) and
(5). This, however, gives rise to another difficulty: a state with a non-empty F
component can not be stored in the heuristic table (which maps only atom sets to
associated costs) and neither can the optimal cost or lower bound discovered for
such a state be stored as the cost of the corresponding atom set (right hand side of
equation (15)) since the optimal cost of achieving this atom set can be lower (recall
that equation (9), page 51, is in fact an inequality). However, a plan that achieves
E∪

⋃
(a,δ)∈F pre(a) at time t also achieves the state (E,F) at most max(a,δ)∈F δ time

units later, through inertia, i.e.,

h∗(E,F) 6 h∗
(

E ∪
⋃

(a,δ)∈F

pre(a), ∅
)
−

(
max

(a,δ)∈F
δ

)
(16)

Thus, to maintain the admissibility of the heuristic defined by the values stored
during relaxed search the largest δ among all actions in F is subtracted from the
discovered cost of the state before it is stored (this modification does not affect the
states that are immediate successors of AND-nodes since they have, by definition, an
empty F component).

123

While this definition leads to fewer AND-nodes, and AND-nodes with fewer successor
states, in the temporal m-regression space it also has some drawbacks: subtracting
the largest δ value weakens the heuristic values discovered by relaxed search and, what
is worse, since a cost under-approximation is applied when storing states containing
scheduled actions, but not during the search, the heuristic resulting after relaxed
search can be inconsistent. Also, as mentioned earlier, right-shift cuts can not be
used in the relaxed search, since the discovered cost values could then be inadmissible.

Analysis: Cost Effectiveness of Relaxed Search

This section presents an experimental analysis of the cost effectiveness of the use of
relaxed search as a method of enhancing hm heuristics. The main result is a char-
acterization, in terms of certain features of the planning problem, of the conditions
under which relaxed search can be expected to be cost effective. These features
are related to the frequency of AND-nodes in the m-regression search space and
the relative computational cost of expanding OR-nodes in the m-regression space as
compared to the normal regression space. The characterization is somewhat weak:
it can not quantitatively predict the performance of a planner using relaxed search
relative to one that does not, and in at least one problem domain there are other, as
yet undetermined, factors involved. The analysis does however provide some insight
into the factors that can potentially make relaxed search ineffective, leading to some
ideas for improvement. These are discussed more at length in section 7.3.
Before describing the experiment and its results, in the first section below, we discuss
some theoretical results on the cost effectiveness of heuristics based on search and
provide an intuitive picture of how relaxed search is intended to work. The next
section describes how relaxed search is integrated in the planning system used in
the experiment (page 126). The following section presents the problem domains on
which the experiment was carried out and an overview of the results (page 127), and
after this the domains where relaxed search fails to be effective are examined in more
depth. The findings are summarized in the last section (page 137).

Can Relaxed Search be Cost Effective?

For small values of m it is normally more efficient to compute a complete hm solu-
tion using the GBF algorithm, as described in chapter 3. The experimental anal-
ysis in chapter 3 indicated that the breakpoint typically lies at m = 2 and also
demonstrated that an advantage of the complete h2 heuristic is that it often de-
tects binary at-most-one invariants (mutexes). While relaxed search can also find
such invariants (as illustrated in the example above by, for example, the atom set
{(on ground), (airborne)} in figure 7.2) it is less likely to find all of them. For
example, in the 2-regression trees shown in figures 7.2 – 7.4 there are many atom
sets of the form {(at ?p0), (at ?p1)} that are mutexes but that are not discovered
by the 2-relaxed search until the tree has been expanded to such a depth that cycles
appear along every branch, something that typically only happens at a cost bound

124

much greater than the cost of the relaxed solution.
For these reasons, relaxed search is interesting mainly as a method of improving on
the h2 heuristic, by computing partial hm solutions for m = 3, . . . and maximizing
the results. Thus, a first condition for relaxed search to be cost effective is that the
heuristic improvement results in a reduction of search effort (in other words, that the
resulting heuristic is more accurate than h2 and that h2 is not good enough for the
problem at hand). Second, the computational cost of the relaxed search, relative to
this reduction, must not be too large.
The generalized theorem of Valtorta, by Holte et al (1996), states that in the course of
an A* search guided by a heuristic derived by searching blindly in some relaxation of
the search space, every state that would be expanded by a blind search in the original
search space must be expanded either in the relaxed space or by the A* search in
the original. In particular, if the relaxation is an embedding (the set of states in the
relaxed space is the same as in the original search space) such a heuristic can not
be cost effective (Valtorta 1984). Although the theorem has not been shown for the
case of IDA* search, the fact that the m-relaxation of the regression planning search
space is an embedding (since every state in the normal regression space corresponds
to exactly one state, containing the same set of subgoal atoms, in the m-regression
space) may invite some scepticism as to the potential cost effectiveness of the relaxed
search method. However, relaxed search can be cost effective (as demonstrated by the
two examples below, and the following experiment), which can be explained by the
following facts: First, the algorithm used to search the m-regression space discovers
(and stores in the heuristic table) the true hm value, or a lower bound on this value
greater than that given by the current heuristic, for every OR-node expanded during
the course of the relaxed search. The AND/OR structure of the m-regression space
and the fact that the general heuristic evaluation procedure makes use of all relevant
information present in the heuristic table together imply that an improvement of the
estimated cost of an OR-node may yield immediately an improved estimate of the cost
of many states (all states that are supersets of the improved state) in both the relaxed
and the normal regression space, without any additional search effort. Second, each
OR-node expansion in the m-regression space is likely to be computationally cheaper
than the average in the normal regression space. This is because the number of
successors generated when regressing a state generally increases with the number of
subgoal atoms in the state and OR-nodes in the m-regression space are states of
limited size.
The experiment described below compares a planning system that uses relaxed search
to improve the h2 heuristic to one that does not (the two planning systems are de-
scribed in detail in the next section). Both systems use iterative deepening search,
both for the relaxed search (the IDAO* algorithm) and search in the normal regres-
sion space (the IDA* algorithm), so that there is a best known lower bound on the
optimal solution cost which gradually increases during the course of the search (until
it reaches the actual solution cost and a solution is found). Thus, the lower bound
on solution cost can be seen as a function of the search effort invested (or search
time) and the shape of this function indicates the effectiveness of the search. Figure

125

100 1k 2k
10

12

14

Time (seconds)

Lo
w

er
 B

ou
nd

 o
n

h*

No Relaxed Search
3−Relaxed Search
Final Search

100 1k 10k
76

90

110

132.1

Time (seconds)

Lo
w

er
 B

ou
nd

 o
n

h*

No Relaxed Search
3−Relaxed Search
Final Search

(a) Pipesworld (b) Multi-UAV Planning

Figure 7.5: Evolution of the lower bound on solution cost during relaxed and final
search in two example problems: (a) problem #8 from the Pipesworld domain and
(b) a multi-UAV mission planning problem with two UAVs. Stars indicate where
(relaxed and real) solutions are found. Note that the time scale is logarithmic.

7.5 illustrates with two example problems for which relaxed search is cost effective.
In the first example (problem #8 from the Pipesworld domain) the 3-relaxed search
reaches a solution (with cost 12) faster than the normal regression search discovers
that there is no solution within the same cost bound and the final (non-relaxed) re-
gression search with the resulting heuristic is also faster than the search with only h2

(as indicated by the slope of the curve). In the second example (a multi-UAV prob-
lem) it takes more time to find a 3-relaxed solution than to reach the corresponding
lower bound in normal search, but the final search with the improved heuristic is so
much faster that the total time (for the relaxed and final search) is still less than
that for searching with only the h2 heuristic.

Integrating Relaxed Search in a Heuristic Search Planner

The heuristic search planner incorporating relaxed search consists of three main
stages: the first computes the h2 heuristic, completely, using the GBF algorithm,
the second performs a series of m-relaxed searches, for m = 3, . . ., in order to im-
prove the heuristic, and the last is a search in the normal (temporal) regression space
guided by the computed heuristic, which is then the combination of the complete h2

solution and one or more partial hm solutions, for m = 3, . . . (the last stage is re-
ferred to as the “final search” in the following descriptions). The m-relaxed searches
are done by IDAO* and the final search is done using the standard IDA* algorithm
(with standard enhancements, i.e., right-shift cuts and a transposition table).
In the procedure outlined above, relaxed searches are carried out for increasing m
until some stopping condition is satisfied. If the last m-regression search finishes
without encountering any AND-node, so that the relaxed solution is in fact a solution

126

to the original problem, there is obviously no reason to continue with further relaxed
searches, but it is in most cases much too computationally expensive to pursue relaxed
searches up to this point. The basic configuration of the planning system used in
this experiment is to perform only 3-relaxed search. In one problem domain, an
alternative configuration is also tested: this configuration performs relaxed searches
for increasing m until the cost of the m-solution found is the same as that of the
(m−1)-solution (or h2 heuristic estimate, for m = 3). This is a reasonable, but by no
means perfect, indicator that relaxed searches for higher m will not yield additional
heuristic improvement. Another alternative, though one not used in this experiment,
is of course to limit relaxed searches to a certain amount of time, number of expanded
nodes, or some other measure of search effort.
To measure the impact that relaxed search has on the performance of this planning
system, with a minimum of noise, it is compared to a planner that is identical except
that it does not use relaxed search, i.e., that consists simply of only the first and last
stages in the above procedure: computing h2 by GBF and searching by regression
using IDA* (with the same enhancements as in the final search). The two systems
share implementations of all common parts.

Experiment and Results Summary

The two planners are compared on temporal planning problems from seven different
domains (the Promela and PSR domains are actually parallel rather than temporal
problems, cf. chapter 2, page 21). Six of these (the Airport, Pipesworld, Promela,
PSR and UMTS domains) are the problem domains of the most recent International
Planning Competition. and the last is the multi-UAV mission planning problem in-
troduced in chapter 2 (page 13). The Airport domain models movements of aircraft
on the ground at an airport and the goal is to guide arriving aircraft to parking po-
sitions and departing aircraft to suitable runways. The Pipesworld domain is also a
transportation problem, concerning batches of petroleum products in a pipeline net-
work. The Promela domain is a translation of a model checking (deadlock detection)
problem into STRIPS (the problems used in the experiment are from the “dining
philosophers” subset). The PSR domain models a power network reconfiguration
problem. The Satellite domain is about scheduling astronomical observation tasks
on a collection of satellites. The UMTS domain models the call set-up procedure for
data applications in mobile telephones, and is also a scheduling problem. Detailed
descriptions of the IPC domains are given by Hoffmann, Edelkamp et al. (2004; the
problem collection can also be found at http://ipc.icaps-conference.org/).
For the Satellite domain, a set of additional problems were generated for this experi-
ment, with the random problem generator used to create the problems in the IPC col-
lection (the problem generator is also available at http://ipc.icaps-conference.
org/). The set comprises 80 additional problems, 10 random variations for each of
the controllable parameter settings of the 8 smallest instances in the IPC set. This
was done in an attempt to control the very large impact that the random elements
in the problem generation procedure have on the difficulty of the resulting problems.

127

It could not be done for the other IPC domains because problem generators were not
available.
When using IDA* with temporal regression, the cost bound tends to increase by the
gcd (greatest common divisor) of action durations in each iteration, except for the
first few iterations4. In problems of the Satellite domain, action durations differ by
very large amounts and are at the same time specified with a very high resolution (for
example, in problem #2 one action has a duration of 1.204 and another a duration of
82.99) and as a result the gcd of action durations is typically very small (on the order
of 1

100). Combined with the fact that the h2 heuristic is quite weak in this domain,
which means the difference between the initial heuristic estimate of the solution cost
of a problem and the actual optimal cost is often large, this results in an almost
astronomical number of IDA* iterations being required before a solution is found.
To avoid this (somewhat artificial) problem, action durations in this domain were
rounded up to the nearest integer. This increases the makespan of the plans found,
but not very much – on average by 2.9%, and at most by 5.9% (comparison made
on the problems that could be solved with original durations). Optimality can be
restored by a two-stage optimization scheme, in which the makespan of the non-
optimal solution is taken as the initial upper bound in a branch-and-bound search,
using the original action durations.
The set of multi-UAV mission planning problems comprises 350 problems. In all
problems there are two UAVs and two buildings. The buildings and the number
and selection of observation goals vary and in roughly half the problem the goal also
requires both UAVs to be back on the ground. The two planners were run on each
problem with a time limit of 4 − 8 hours of CPU time, varying with domain. This
limit exists mainly for practical reasons: since both planners are complete and all
problems are solvable, both planners will eventually find a (optimal) solution to every
problem instance. The limit was chosen so as to generate sufficient data for each of
the domains considered.
Results are summarized by problem domain in figure 7.6. Each graph shows the
solution time, per problem instance, with no relaxed search (i.e., search with the
plain h2 heuristic) and solution time with the h2 heuristic improved by 3-relaxed
search, including the time required for the 3-relaxed search. The time for the 3-
relaxed search alone is also shown (in figures (a) and (c) it is not visible, since
in these two domains the time in the final search is so small that they practically
coincide). Instances in each domain are sorted by the solution time with no relaxed
search, which gives a rough order of problem difficulty. Only instances solved by
both planners within the time limit are shown. In the Pipesworld, Promela, PSR

4The planner implementations treat action durations as rationals: by the gcd of two rationals a
and b is meant the greatest rational c such that a = mc and b = nc for integers m and n. Note that
the planners do not compute the gcd of action durations and use this to increment the cost bound
(as is done in e.g. the TGP planner; Smith & Weld, 1999). The bound is in each iteration increased
to the cost of the least costly node that was not expanded due to having a cost above the bound in
the previous iteration (as this is the standard IDA* algorithm). That this frequently happens to be
(on the order of) the gcd of action durations is an undesirable effect of the branching rule used to
generate the search space.

128

0.01

0.1

1

10

100

1k

10k

Instance

Ti
m

e
(s

ec
on

ds
)

No Relaxed Search
Relaxed + Final Search
3−Relaxed Search

0.01

0.1

1

10

100

1k

2k

Instance
Ti

m
e

(s
ec

on
ds

)

No Relaxed Search
Relaxed + Final Search
3−Relaxed Search

0.1

1

10

100

1k

10k

Instance

Ti
m

e
(s

ec
on

ds
)

No Relaxed Search
Relaxed + Final Search
3−Relaxed Search

(a) Airport (b) Pipesworld (c) Promela

0.01

0.1

1

10

100

1k

10k

Instance

Ti
m

e
(s

ec
on

ds
)

No Relaxed Search
Relaxed + Final Search
3−Relaxed Search

0.01

0.1

1

10

100

1k

10k

Instance

Ti
m

e
(s

ec
on

ds
)

No Relaxed Search
Relaxed + Final Search
3−Relaxed Search

0.01

0.1

1

10

100

1k

10k
20k

Instance

Ti
m

e
(s

ec
on

ds
)

No Relaxed Search
Relaxed + Final Search
3−Relaxed Search

(d) PSR (e) Satellite (f) UMTS

150
0.1

1

10

100

1k

Instance

Ti
m

e
(s

ec
on

ds
)

No Relaxed Search
Relaxed + Final Search
3−Relaxed Search

151
1

10

100

1k

10k

Instance

Ti
m

e
(s

ec
on

ds
)

(g) Multi-UAV Mission Planning

Figure 7.6: Solution time, per problem instance, in each of the problem domains,
with no relaxed search (i.e., with the plain h2 heuristic) compared to solution time
with the h2 heuristic improved by 3-relaxed search plus the time required for the 3-
relaxed search, and the time for the 3-relaxed search alone. Note that the time scale
(vertical axis) is logarithmic. Instances in each domain are sorted by the solution
time with no relaxed search (as a rough order of difficulty). Results for the multi-
UAV mission planning domain are split over two graphs, due to the large number of
instances in this domain and the wide span in solution times. Only instances solved
by both planners within the time limit (4 – 8 hours of CPU time, varying with the
domain) are included: in the Pipesworld, Promela, PSR and Satellite domains, the
planner using relaxed search solves more problems than the planner that does not.

129

and Satellite domains, the planner using relaxed search solves more problems than
the planner that does not, while in the Airport domain it is the other way around.
In the multi-UAV mission planning domain, both planners solve a few instances that
the other fails to solve.
Across all domains solution times on the easiest instances (to the left in the graphs)
for the planner using relaxed search are dominated by the relaxed search itself and
exceed solution times with only the h2 heuristic. In three of the domains (Pipesworld,
Promela and PSR) there clearly exists a point beyond which the total time taken by
the relaxed and final searches is less than that taken by search with h2, i.e., in these
domains relaxed search is clearly cost effective for hard problem instances, while in
the Satellite domain this holds for a majority of instances but it is not as clearly
related to problem hardness (as measured by the time taken by search with h2). In
the remaining three domains (Airport, UMTS and multi-UAV mission planning) the
relative performance of the planner using relaxed search does not as clearly improve
on that of the planner without relaxed search (in the Airport domain it is clearly
much worse).

Some Observations in the Airport Domain

The Airport domain offers an example of problems on which relaxed search is clearly
very computationally expensive, as can be seen in figure 7.6(a). The problems solved
(within the time limit) by the planner not using relaxed search in this domain are
relatively easy, as evidenced by the fact that the number of nodes expanded in search
is about the same as the solution depth. This implies that, for these particular
instances, the h2 heuristic is very accurate, so the fact that the heuristic improvement
due to relaxed search is small (close to non-existent) is not surprising. However, the
solved problems are only 13 out of the 50 in the problem set, which indicates that a
more accurate heuristic is needed to solve the hard instances.
The question, then, is why the relaxed search is so time consuming. The apparent
reason is that in this domain, search in the 3-regression space is more expensive than
search in the normal regression space. This is contrary to the assumption stated
above, that the cost of expanding a state (OR-node) in the relaxed regression space
should be smaller than in the normal regression space due to a smaller branching
factor.
For problems in the Airport domain states in the normal regression space contain
a fairly large number of subgoal atoms, as much as 88.7 on average, while in the
3-regression space states corresponding to OR-nodes are by definition limited to 3
atoms. Consequently, the branching factor of OR-nodes in 3-regression is smaller
(since the choice of establisher for each subgoal is a potential branch point) but not
by much: 1.09, compared to 1.37 in the normal regression space. The many subgoals
in the normal regression states interact, resulting in relatively few consistent choices.
Also, the right-shift cut rule, which eliminates some redundant branches, is used
in the normal regression space, but not when expanding OR-nodes in 3-regression.
However, regression tends to make states “grow”, i.e., successor states generally

130

contain more subgoals than their predecessors, and while this effect is quite moderate
in normal regression, where successors have, on average, 3% more subgoals, it is much
more pronounced for the smaller states corresponding to OR-nodes in the 3-regression
space, whose successors are on average 2.79 times larger. As a result, successors to
OR-nodes are all AND-nodes, with an average of about 8.3 atoms and 70.8 successors
(subsets of size 3). In summary, each expanded OR-node in 3-regression results (via
an intermediate “layer” of AND-nodes) in an average of 77.2 new OR-nodes. Even
though most of them (74.2%) are found in the IDAO* solved table, and therefore
don’t have to be searched, those that remain yield an effective “OR-to-OR” branching
factor of 19.9 (25.8% of 77.2), to be compared with the branching factor of 1.37 for
normal regression.
The problem is not the high branching factor in itself, but that the branching factor
in the relaxed search space is far higher than it is for normal regression and that
search in the 3-regression space is consequently more expensive than search in the
normal regression space, rather than less.

Some Observations in the UMTS Domain

In the UMTS domain 3-regression is not very expensive (taking no more than 10
seconds, even on the hardest instances) but does on the other hand not lead to any
significant improvement of the efficiency of the final search. Unlike in the Airport
domain, this is not because solved instances are easy, in the sense that the h2 heuristic
is accurate enough: the hardest instances are solved just short of the 8 hour CPU time
limit, requiring in excess of 10 million node expansions. The final search using the
improved heuristic resulting from 3-relaxed search expands fewer nodes than search
using only the h2 heuristic (see figure 7.7(d)) but for a majority of the instances the
reduction is not enough to have a significant effect on the total time, as shown by
figure 7.6(f).
Problems in the UMTS domain are actually scheduling, rather than planning, prob-
lems and feature a number of reusable resources, i.e., resources whose capacity con-
strain which, or how many, actions can take place concurrently but do not impose any
limit on actions executing in sequence (the integration of reusable resources in tem-
poral regression planning and in the hm heuristics was described in chapter 5, page
82). Reusable resource constraints are the main reason why optimizing makespan
in this domain is a hard problem, although a sizable fraction of the instances in the
problem set are actually trivial in the sense that there are no resource conflicts (these
instances are of course solved easily even with only the h2 heuristic, as can be seen
in the left part of the graph in figure 7.6(f)).
Reusable resources frequently cause non-binary mutual exclusions between actions,
as the capacity of a resource may be sufficient to execute two actions concurrently
but not three, or three but not four, etc., and such exclusions are not detected by the
h2 heuristic, which considers at most two subgoal atoms and therefore at most two
concurrent actions (as illustrated by the example in chapter 5, page 83). A possible
explanation for the weak improvement yielded by 3-relaxed search is that a large

131

1

10

100

1k

10k

Instance

Ti
m

e
(s

ec
on

ds
)

No Relaxed Search
Relaxed + Final Search
3−Relaxed Search

1

10

100

1k

10k

Instance

Ti
m

e
(s

ec
on

ds
)

No Relaxed Search
Relaxed + Final Searches
Relaxed Searches

1

10

100

1k

10k

instance

Ti
m

e
(s

ec
on

ds
)

No Relaxed Search
Relaxed + Final Searches
Relaxed Searches

(a) 3-Relaxed Search (b) 3- & 4-Relaxed Search (c) 3-, 4- & 5-Relaxed
Search

0 10 20 30 40 50 60 70 80 90 100%
0

5

10

15

20

25

30

35

40

45

50

Reduction in #Nodes Expanded

%
 In

st
an

ce
s

3−Relaxed Search
3− & 4−Relaxed Search
3−, 4− & 5−Relaxed Search

(d)

Figure 7.7: (a) – (c): Solution time, per problem instance, in the UMTS domain,
comparing search with only the h2 heuristic to search with the h2 heuristic improved
by relaxed searches plus the relaxed search time. Note that the time scale (vertical
axis) is logarithmic. Instances are sorted by the solution time with no relaxed search.
Unsolved and trivial instances are not included. (d) Distribution of the reduction
of the number of nodes expanded in final search with the heuristic resulting from
relaxed searches as compared to the number of nodes expanded in search with the
h2 heuristic.

number of these constraints involve more than three actions and are therefore not
detected by the (partial) h3 heuristic resulting from the relaxed search either. If this
is the case then the heuristic resulting from m-relaxed search for higher values of m
should be more effective.
Figure 7.7(a) – (c) shows the solution times for search with the h2 heuristic compared
to solution times with the heuristic resulting from relaxed search for m = 3 up to
m = 3, . . . , 5 (as before, the final search heuristic is the maximum of the complete h2

and partial hm solutions). Only solved instances are shown, except in figure 7.7(c)
where instances not solved by the planner using relaxed search are also indicated.
The trivial instances (with no resource conflicts) are also excluded. Figure 7.7(d)
shows the distribution of the reduction in the number of nodes expanded in the final
search, compared to search with h2 only. As can be seen, the more accurate heuristics

132

do reduce the number of nodes expanded in the final search somewhat but still not
enough to significantly reduce the total solution time. Also, the 4- and 5-relaxed
searches are clearly much more computationally expensive – on several instances the
5-relaxed search is not even completed within the time limit.
In this domain, again unlike the Airport domain, the high computational cost of
relaxed search is not due to states growing (in fact, due to the simple structure of
solutions, states tend to decrease in size when regressed) but due to OR-nodes in
the m-regression space having a higher branching factor than states in the normal
regression states. The most likely explanation for this is that right-shift cuts, which
reduce the branching factor, are applied in the normal regression search but not in
the relaxed search. This is supported by the fact that the average branching factor
in normal regression without right-shift cuts is 2.7 (higher than the branching factor
of OR-nodes in 3-regression).

The Computational Cost of Relaxed Search

The hm relaxation of a planning problem is in a sense a simpler problem: part of
the idea underlying the relaxed search method of improving the heuristic is that the
hm relaxation also simplifies solving the problem by search. The assumption behind
this idea is that small states (states consisting of a small number of subgoal atoms)
are computationally cheaper to regress than larger states, due to having a smaller
branching factor, and that regressing small states also gives rise to small successor
states. As observed in the experiment, this assumption does not hold in some of the
problem domains.
Figure 7.8 summarizes some characteristics of the normal and relaxed regression
spaces for each the considered domains. These are the average state size (|s|), the
average ratio of successor state size to the size of the predecessor state (|s′|/|s|) and
the average branching factor (the number of successor states generated, and evalu-
ated, per state expanded). The values are averages over the set of solved instances in
each domain, except in the UMTS domain where trivial instances are not included
and the Airport domain where they are from the smallest unsolved instance (since
only trivial instances were solved in this domain).
In the domains where relaxed search is expensive, states tend to grow when regressed,
i.e., |s′|/|s| is large and as a result there are many AND-nodes with many successors
(a typical example being the Airport domain) or because OR-nodes in the relaxed
regression space have a higher branching factor than in the normal regression space
and are therefore computationally more expensive to expand (as for e.g. 4- and
5-regression in the UMTS domain). In the domains where relaxed search is cost
effective, on the other hand, |s′|/|s| is typically close to 1, i.e., small states stay small
when regressed, and regression of OR-nodes in the relaxed space is computationally
cheaper than node expansion in the normal regression space, as indicated by a lower
(or roughly equal) branching factor. The averaged numbers are of course not perfect
predictors of performance: in the Promela domain, for example, the |s′|/|s| ratio is
quite large but relaxed search is quite effective anyway (as shown in figure 7.6(c)).

133

Normal 3-Regression 4-Regression 5-Regression
Regression OR AND OR AND OR AND

Airport
|s| 88.7 3.0
|s′|/|s| 1.03 2.79
branching factor 1.37 1.09 70.8

Pipesworld
|s| 6.76 2.99
|s′|/|s| 1.21 1.35
branching factor 15.1 5.13 5.2

Promela
|s| 14.9 2.99
|s′|/|s| 1.17 2.17
branching factor 21.2 3.30 30.6

PSR
|s| 9.05 2.99
|s′|/|s| 1.08 1.42
branching factor 24.5 15.1 7.75

Satellite
|s| 6.88 2.99
|s′|/|s| 1.04 1.06
branching factor 6.98 5.01 7.33

UMTS
|s| 8.10 2.52 3.61 4.49
|s′|/|s| 0.97 0.91 0.87 0.89
branching factor 1.85 2.40 6.36 4.98 17.9 8.27 48.1

Multi-UAV Planning
|s| 11.7 2.98
|s′|/|s| 1.26 1.7
branching factor 6.93 1.75 71.4

Figure 7.8: Some characteristics of the normal regression and m-regression search
spaces in the domains considered: the average state size (|s|), the average ratio of
successor state size to the size of the predecessor state (|s′|/|s|) and the branching
factor. In general, the values are averages over the set of solved instances, except in
the UMTS domain where trivial instances are not included and the Airport domain
where the values are from the smallest unsolved instance.

134

In the multi-UAV planning domain the sizes of AND-nodes in the 3-regression space
show great variance, typically with many small states and a few large. As a result,
the average |s′|/|s| ratio is low but the average branching factor of AND-nodes quite
large. This is because the number of successor states of an AND-node (subsets of
size 3) is (|s|3) which grows exponentially with the state size so that the (very) high
branching factor of the (relatively) few large states tends to dominate the average.
It is instructive to look more closely at why states grow when regressed in the Airport
domain. The domain models movements of aircraft on the ground at an airport and
thus part of the world state describes the position and status, for each aircraft, by
three state variables (corresponding to exactly-one invariants, as described in chapter
2, page 24, and chapter 4, page 60): one tells where the aircraft is in the network
of airport runways and taxiways, one which direction it is facing and one whether it
is parked, being pushed or moving under its own power. Almost every action that
changes one of these has a precondition on the other two as well. For example, actions
that change the position of an aircraft require the aircraft to be moving and facing
a particular direction and may also change the facing. Because of this, regressing a
state containing only an atom from one of the state variables results, in most cases,
in a state containing an atom from each of the three. A conclusion that can be made
from this observation is that splitting large states (AND-nodes) into smaller states
(OR-nodes) based only on the number of atoms is not always the right choice. An
alternative would be to divide atoms in the planning problem into groups of “related”
atoms and take the number of groups represented in a state to be its size.
Another observation is that the bulk of time spent in relaxed search is spent in the
final search iteration, when a solution exists within the current cost bound. This
iteration is not only the most expensive but also tends to be the least useful, since
relatively few heuristic improvements are discovered during it. This also relates to the
branching factor, specifically the fact that AND-nodes have many more successors
than OR-nodes: for an AND-node to be solved all its successors must be solved and
thus in the final iteration all successors of every AND-node are searched. However,
the purpose of relaxed search is not to find a solution in the m-regression space but
to improve the heuristic by finding size m states (OR-nodes) whose cost is underes-
timated and more accurate cost estimates for these. Therefore it may not actually
be necessary to search all the successors to every AND-node: an alternative would
be a (m, k)-regression search in which only the k most “promising” successors to
every AND-node are considered, giving another dimension for iteratively refining the
relaxed search.

The Value of the Heuristic Improvement

Another, even more fundamental, assumption on the basis of which the idea of the
relaxed search method was conceived is that on problems for which the h2 heuristic
is not accurate enough, maximizing h2 with one or more partial hm solutions, for
higher values of m, results in a better heuristic. This is, of course, mostly true, in
the sense that the number of nodes expanded in the final search with the heuristic

135

0

20

40

60

80

100%

Instance

R
ed

uc
tio

n
in

 #
N

od
es

 E
xp

an
de

d

95

96

97

98

99

100%

Instance

R
ed

uc
tio

n
in

 #
N

od
es

 E
xp

an
de

d

0

20

40

60

80

100%

Instance

R
ed

uc
tio

n
in

 #
N

od
es

 E
xp

an
de

d

(a) Pipesworld (b) Promela (c) PSR

0

20

40

60

80

100%

Instance

R
ed

uc
tio

n
in

 #
N

od
es

 E
xp

an
de

d

0

20

40

60

80

100%

Instance

R
ed

uc
tio

n
in

 #
N

od
es

 E
xp

an
de

d

0

20

40

60

80

100%

Instance

R
ed

uc
tio

n
in

 #
N

od
es

 E
xp

an
de

d

(d) Satellite (e) UMTS (f) Multi-UAV Planning

Figure 7.9: Reduction in the number of nodes expanded in search with the h2 heuristic
improved by 3-relaxed search compared to the number of nodes expanded in a search
using only the h2 heuristic, per problem instance. Instances in each domain are
selected and sorted as in figure 7.6.

resulting from relaxed search is less than the number of nodes expanded in the search
using h2 alone (although on a few problems in the Pipesworld, UMTS and multi-
UAV planning domains the final search with the improved heuristic actually expands
more nodes: this can be explained by the fact that the searches are done using IDA*
and that raising some heuristic values can sometimes cause IDA* to perform more
iterations, which can lead to more nodes being expanded if the heuristic improvement
does not reduce the number of nodes expanded in each iteration enough).
It is, however, not always the case that the improvement is proportional to the
weakness of the h2 heuristic, or even shows any tendency to correlate with it. Figure
7.9 shows the reduction of the number of nodes expanded in the final search with the
heuristic resulting from relaxed search compared to the number of nodes expanded
in search with the h2 heuristic, per problem instance in each of the domains (the
Airport domain is not included because only very easy instances were solved in this
domain). Instances are sorted in the same order as in figure 7.6, i.e., by the time
required to find the solution when searching with the h2 heuristic. This shows a clear
difference between on the one hand the Pipesworld, Promela and PSR domains, in
which the reduction, i.e., the gain due to the improved heuristic, increases with the
hardness of the problem, as measured by the difficulty of solving it with only h2, and
the Satellite, UMTS and multi-UAV planning domains on the other, in which there
is no such correspondence (except that in the UMTS domain the reduction is zero
for the trivial instances which are also the easiest to solve).

136

Another point to consider is that the computational cost of the heuristic evaluation
of a state, using the generalized heuristic table, is proportional to the number of
subsets of the state for which there are values in the table. Thus, storing values of
more atom sets in the heuristic table increases the cost of heuristic state evaluation
and thus the search time. This effect varies between domains, from reducing the
number of state expansions per second by only 1% in the UMTS domain to reducing
it by 30− 40% in e.g. the Pipesworld and PSR domains.

Conclusions

The experiment and analysis described above reveals some characteristics of the prob-
lem domains for which the use of relaxed search for improving the h2 heuristic is likely
to be cost effective, at least for harder problem instances: in such domains, states
corresponding to OR-nodes in the m-regression space are computationally cheaper to
regress than states in the normal regression space (due to having a smaller branching
factor) and do not give rise to many or large successor AND-nodes, and the relative
effectiveness of the resulting improved heuristic at controlling the search compared
to that of the underlying (unimproved) heuristic increases with the hardness of the
problem, as measured by the weakness of the underlying heuristic. Conversely, if the
computational cost of searching in the relaxed regression space is higher than that
of normal regression (due to OR-nodes having a higher branching or giving rise to
large successor states that become AND-nodes with a high branching factor) or if the
resulting heuristic is not significantly more effective than the underlying heuristic,
the relaxed search method is not cost effective.
The experiment, however, also demonstrates that several problem domains fall in
the grey zone between these extremes: the Satellite, UMTS and multi-UAV planning
domains are the main examples to be found among the domains considered. Yet,
there is clearly a difference between e.g. the Satellite domain, in which the total time
taken by relaxed search and the final search with the resulting heuristic is less than
the time taken by search with only h2 for 73% of the solved instances, and the multi-
UAV planning domain in which this is the case for only 34% of the solved instances.
Explaining this difference is an important open research question.
As a final note, an experiment comparing the cost effectiveness of the boosting tech-
nique (described in the next section) to that of relaxed search in the multi-UAV
domain shows some interesting facts. The boosting technique exhibits greater vari-
ability, reducing the total time, compared to search with the basic h2 heuristic, by as
much as a factor 50 on some problem instances and increasing it by as much on some
problem instances (to be compared with an increase/decrease of at most a factor 5
for relaxed search). The instances on which boosting is cost effective are relatively
few, but those instances are also ones for which relaxed search is not cost effective.
Thus, there seems to be some complementarity between the two techniques.

137

7.2 Boosting

The hm heuristic estimates the cost of a set of atoms s by the cost of the most costly
subset of size m but because this relaxation is applied recursively the heuristic can
also underestimate the cost of a state s of size |s| 6 m. Thus, the heuristic can be
improved in a different way by computing more accurate cost estimates for states
of size at most m, but still using the approximation maxs′⊂s,|s|6m h(s′) for states s
with more than m atoms. We will refer to this as boosting the heuristic.
The optimal cost of a state can be found by simply performing a search starting
from s. Since the heuristic that is being boosted is admissible it can be used to
guide the search and if the search algorithm is admissible (guaranteed to find optimal
solutions when guided by an admissible heuristic) boosting can not make the heuristic
inadmissible. Even if the search is interrupted before a solution is found it may still
result in an improved estimate of the cost of s (if done by a search algorithm that
approaches the optimal cost from below, such as IDA* or A*).
For this to be cost effective the search for improved heuristic values must, obviously,
be strictly limited. The idea of the scheme presented in this section is to keep the
required search depth low by boosting heuristic estimates of states in increasing order,
starting with states that have a low estimated cost and proceeding to states with
higher heuristic values. In this way, the already boosted heuristic values contribute
to reducing the effort needed for later boosting searches. Even so, searches may need
to be further limited and focused.

Boosting in the Planning Graph

The boosting scheme presented here is more easily explained by applying it to the
planning graph (described in chapter 3, page 36). Recall that the planning graph
is a directed graph of alternating proposition and action layers, where each action
layer contains the actions (including no-ops) whose preconditions are present (and
non-mutex) in the preceding proposition layer and each proposition layer contains all
atoms added by actions (or no-ops) in the preceding action layer. The graph encodes
a relaxed notion of atom reachability, in the sense that if an atom p appears for the
first time in the nth layer it is not achievable in less than n steps. Furthermore, in
each layer a binary mutex relation marks pairs of atoms whose conjunction is not
achievable in the corresponding number of steps (in action layers, the mutex relation
marks actions that are not concurrently executable). The graph thus encodes a
heuristic that estimates the cost of a pair of atoms by the index of the first proposition
layer in which they both appear and are not mutex, and the cost of a larger set of
atoms by the highest cost of any pair in the set. This heuristic is admissible for
parallel planning (and, in fact, equivalent to h2).
In the context of the planning graph, boosting a heuristic value means taking a pair
of atoms, p and q, that appear without mutex for the first time in the nth proposition
layer and performing a search to solve the goal {p, q} in at most n steps (single atoms

138

appearing for the first time in the nth layer are also eligible for boosting). If no such
solution exists, the conjunction of atoms p and q can not be achieved in n steps and
the two atoms can therefore be marked as mutex in the nth layer of the planning
graph (in the case of a single atom the atom is removed from the nth layer, as it is
in fact not reachable in n steps).
In Graphplan, the planning system that introduced the planning graph, the search
for a solution is done by parallel regression (a special case of temporal regression, as
described in chapter 2, page 14) but organized by the layers of the graph (though as
noted in section 3.4 of chapter 3, later planning systems have organized search around
the planning graph in different ways). A search state is a set of atoms (representing
subgoals to be achieved) in a specific layer. The state is regressed by choosing, non-
deterministically, a set of compatible establishing actions from the preceding action
layer, and the preconditions of those actions, in the preceding proposition layer,
become the next search state. Whenever a search state contains a pair of atoms that
are mutex the state is known to be unsolvable and that branch of the search can be
cut.
By performing the boosting searches for pairs of atoms in the lower layers of the
planning graph first the mutex relations added to the graph as a result of boosting
help cut search branches, thereby reducing the computational cost, in the following
boosting searches.

Boosting the hm Heuristic

Applying the scheme outlined above to boosting the hm heuristic works, in principle,
in the same way, but instead of proving additional mutex relations the boosting
searches prove higher (admissible) heuristic estimates for search states of size at
most m.
As noted at the beginning of this chapter we assume that a generalized heuristic table
is used to store the heuristic and to perform on-line state evaluations (as described in
chapter 3, page 42) and denote the table by T and the corresponding heuristic simply
by h. Exactly what is stored in the table is not important: it can be a complete or
partial hm solution or even the combination of several (complete or partial) solutions
(like the heuristic resulting from relaxed search). For the purpose of boosting the
heuristic it is sufficient that a list of entries (s, v) ∈ T can be efficiently extracted.
We also make use of the fact that additional information (in particular, a number of
binary variables or “marks”) can easily be associated with each entry in the table.
This affects the memory requirements of the general heuristic table only marginally
and the cost of performing heuristic evaluations not at all.
A possible boosting procedure is sketched in figure 7.10 and described in more detail
in the following. Note, however, that there are a number of choices and alternatives
in applying the boosting idea to the hm heuristics, some of which are also discussed
below.
Entries in the heuristic table whose cost is already known to be infinite (i.e., unreach-

139

boost(T) // heuristic table to be boosted

{

// extract and sort the list of entries

L = sort {(s,v) in T | v < +INF and s not solved} by increasing v;

// main loop

repeat {

(s,v) = first entry in L;

lim = v’ of second entry (s’,v’) in L, +INF if |L| = 1;

new v = IDA*(s, lim); // search with cost bound lim

if (new v > v) {

T(s) = new v;

}

if (s solved) {

mark s as solved;

remove (s,v) from L;

}

else if (new v = +INF) {

remove (s,v) from L;

}

else if (new v > v) {

replace (s,v) by (s,new v) in L, at appropriate position;

}

else { // no cost improvement and not solved

remove (s,v) from L;

}

} until (v > h(G), for (s,v) = first entry in L, or L empty)

}

Figure 7.10: Boosting procedure, using IDA* for boosting searches. The procedure
uses the early stop condition (estimated cost of cheapest boostable entry greater than
h(G)) and can also be used with a limit on the amount of work allowed per boosting
search (only with such a limit can the last case, where s is not solved but the new
cost is not higher, occur).

able states) obviously do not need to be boosted, so any such states can be removed
from the list of entries to boost, as can states whose cost is known to be optimal
(i.e., states for which a solution has been found within the current estimated cost).
Initially, only states with an estimated cost of zero, i.e., sets of atoms that hold in the
initial world state, are known to be optimal but as boosting searches are carried out
more states become solved, since some searches end with a solution found. Entries
in the heuristic table whose cost is known to be optimal are marked as such. Among
the remaining entries many are not relevant, in the sense that they do not contribute
to the evaluation of any state encountered in the search for a solution to the planning
problem at hand, but deciding which entries are relevant in this sense is hard.
Throughout the boosting process the list of selected entries is maintained sorted in
order of increasing estimated cost, and boosting searches are made in this order. To
achieve the behaviour described above for boosting in the planning graph, however,
boosting searches are made with a cost limit equal to the estimated cost of the next

140

(higher cost) entry in the list. If a state is solved within this limit the corresponding
entry is marked as solved and removed from the list, otherwise it is repositioned in
the list to reflect its new (higher) estimated cost, unless the search proved that the
state is unreachable. Boosting of the state may be resumed if it again becomes the
least costly entry on the list. This assumes that the boosting search is carried out
using a search algorithm that approaches the optimal solution cost from below, such
as IDA* or A*, and that the searches are guided by the heuristic that is being boosted
so that effective use is made of the already boosted heuristic values in subsequent
boosting searches. If necessary, boosting searches can be further limited to a fixed
time, number of nodes expanded or some other measure of search effort. In this case
entries for which the search is interrupted without any improvement in cost are also
removed from the list.
As entries are solved or proved unreachable (or reach some search effort limit without
cost improvement) the list of entries to boost shortens and eventually becomes empty,
at which point the boosting process comes to a natural end. Continuing up to this
point, however, is typically too computationally expensive to be cost efficient. If there
exists a solution for the set of goals of the planning problem (G) within the current
estimated cost h(G) there is clearly nothing to be gained from boosting the heuristic
estimates of states s that already have a value h(s) > h(G): thus, a reasonable earlier
stopping point is when the estimated cost of the next (least costly) entry in the list
is greater than h(G). Note that h(G) may increase during the process as a result of
the cost estimates of subsets of G being boosted.
If boosting is performed in a separate step before the search for a plan (like the relaxed
searches in the planning system described on page 126 in the previous section) the
cost of the problem goals may be underestimated, so stopping at h(G) some relevant
entries may be missed. An alternative is to interleave the main search for a plan with
the boosting searches. This is described in the section following the next (page 143).

Conflict Detection

Boosting can only improve the hm heuristic to a certain point. This is because
boosting only improves the heuristic estimates of states already stored in the heuristic
table, i.e., states with |s| 6 m. In this respect boosting differs from relaxed search
which if performed for increasing m approaches h∗, albeit only for part of the search
space (but a part that includes the problem solution). To achieve this with boosting
increasingly larger atom sets have to considered for boosting.
As long as a state s is not solved there is no reason to boost any superset of s since
further improving the cost estimate for s also improves on all its supersets. Thus,
it is only when a set s becomes solved that new states s ∪ {p}, for atoms p 6∈ s, are
considered for boosting. Many of these are not interesting, however, in the sense
that their cost equals that of the most costly subset: this is of course discovered
when the new entry is boosted, but because the boosting search that finds a solution
is typically the most expensive search (and does not yield any improvement to the

141

heuristic) the strategy for adding new states to the list of entries to boost must be
more selective for this method to be cost effective. Several criteria, with different
degrees of selectivity, for choosing potentially interesting supersets of s can be devised
based on analyzing the solution plan found for s for conflicts with atoms not in s.
The criteria are slightly different for sequential and for temporal planning.

Conflict Criteria for Sequential Planning

If the plan for s also achieves p the set s∪ {p} has the same optimal cost as s and is
thus uninteresting in the sense above. This is true of both sequential and temporal
planning. In the sequential planning case, only if no plan that achieves s also makes
p true must the set s∪ {p} necessarily have a higher optimal cost since then at least
one more action must be taken to achieve p (to call the failure of the plan for s to
achieve p a “conflict” may seem like stretching the word: the conflict lies in the fact
that different plans are required to achieve s and p, and in sequential planning this
causes a conflict in the sense that the two plans can not both be executed at the
same cost).
A criterion based on the set of all optimal solutions for s is typically too computa-
tionally expensive (although it is possible to infer some properties that hold for every
valid plan for a given problem without actually generating all such plans, e.g., using
landmarks as described by Hoffmann, Porteous, & Sebastia, 2004). A computation-
ally cheaper alternative is to consider only the (arbitrary) plan found for s. This
is more restrictive, as even if this plan does not achieve p there can be an alterna-
tive plan for s that does. In practice, however, using a more restrictive condition is
preferable, since this helps keep the list of entries to boost from growing too much.

Conflict Criteria for Temporal Planning

Temporal planning differs from sequential planning in that separate plans required
to achieve separate goals can sometimes be executed concurrently, and thus at a cost
(makespan) not necessarily greater than that of the separate goals. Thus, conflict
criteria for temporal planning aim to detect if the found plan (or every optimal
plan) for s is (or is likely to be) incompatible with any (or some) plan to achieve
p. None of the following criteria are sufficient to ensure that the makespan of an
optimal plan for s ∪ {p} is necessarily greater than that for achieving s only, they
only suggest that this is more likely to be the case: the plan for s contains an action
that deletes p; the plan for s contains an action that deletes a precondition of some
(or every) action that adds p; the reusable resource requirements of the plan (at
some point, or throughout the whole of the plan) are high enough to prevent some
(or every) action that adds p from being executed concurrently (this also applies to
unit capacity resources modelled by temporary delete effects). As in the sequential
case, the different criteria can be made more or less restrictive by considering the set
of all optimal plans for s (in addition to the alternatives outlined above), though this
is typically too computationally costly.

142

Interleaved Search and Boosting

The main problem with the boosting method, as presented above, is that it lacks
goal direction in the sense that many of the boosted heuristic table entries are not
relevant to the search for a plan for the problem goal, G. By interleaving the main
search for a plan with (possibly limited) boosting, information learned in the search
can be used to better direct boosting efforts. If the main search is done with IDA*,
the natural point to insert boosting is between iterations, when the known lower
bound on the cost of the root search state has increased, and a similar point can also
be found in the A* algorithm (whenever the estimated cost of the first node on the
open queue increases).
This can be done in three ways: First, if the boosting process is terminated early
(when the estimated cost of the least costly entry in the list of entries to boost
exceeds the estimated cost of the problem goals, h(G)) it can be resumed when the
main search has progressed enough to prove that there is no solution within h(G).
Again, this assumes that the search algorithm is one that approaches the optimal
cost from below, like IDA* or A*. Second, boosting can be limited to only those
entries that have actually been used in the evaluation of some search state during
the main search so far (in addition to the conditions specified above), thus directing
boosting efforts to the entries that appear to be relevant. Marking the heuristic table
entries that are used can be done during the heuristic evaluation procedure, without
significant overhead.
Third, when interleaving boosting with the main search it is possible to impose a
limit on the amount of effort invested in boosting searches and to adjust this limit
dynamically, based on the effort spent in the main search. For example, the time per
boosting search can be limited so that the total time consumed by the next round
of boosting is no more than a constant times the time consumed by last segment
of the main search (since the number of entries to be boosted is known). Limiting
the boosting effort can of course also be done when boosting is done as a separate
step before the main search, but the advantage in the case of interleaved boosting
and search is that the limit can be determined automatically and adjusted to the
hardness of the problem as indicated by the time consumed by search.

7.3 Discussion: Related Ideas

The idea of using search to derive or improve heuristics is not new. This section
reviews a selection of related methods and discusses how these (or similar methods)
can be adapted and exploited to improve the relaxed search and boosting methods
presented in this chapter.

143

Search-Based Heuristics

Deriving heuristics by solving an abstracted, or relaxed, version of the search problem
is not a new idea, and neither is the idea of using search to solve the abstract problem
(see e.g. Gaschnig, 1979, Pearl, 1984, or Prieditis, 1993).
The recently most successful variant on this theme is pattern database heuristics,
which were discussed in chapter 4. Pattern database heuristics are cost effective
because the relaxation defined by a pattern is an abstraction, mapping many states in
the original search space to each state in the abstract space (cf. the discussion about
cost effectiveness and Valtortas theorem earlier in this chapter, page 124). As noted
in chapter 4 (page 78) the hm and pattern relaxations are actually very different,
in that the hm relaxation recursively selects the most expensive of all possible size
m subsets of any state with size greater than m while the abstraction induced by
a pattern selects the same subset of variables in every state. Thus, the methods
presented in this chapter have little in common with pattern database heuristics
beyond the fact that they both use search to solve relaxed problems.
More closely related is the idea of pattern searches, developed in the context of the
Sokoban puzzle (Junghanns & Schaeffer 2001), which are more dynamic. Like a
pattern database heuristic, a pattern search abstracts away part of the problem and
solves the remaining (small) problem to obtain an improved lower bound but the
pattern (i.e., the part of the problem that is kept by the abstraction) is selected
whenever a particular state expansion (“move”) is considered. Patterns that have
been searched are stored, along with their updated cost, and taken into account in
the heuristic evaluation (by maximization) of any new state that contains the same
pattern encountered in the search. This is similar to the way that boosting the hm

heuristic improves the cost estimates for selected relaxed states in a way so that
heuristic estimates of several search states are improved. The patterns explored by
pattern searches are found through an incremental process: The first pattern consists
of only the part of the problem (“stone”) that is directly affected by the move under
consideration. The next pattern extends the previous with stones that in the current
state conflict with the solution found in the preceding pattern search, and this is
repeated until no more conflicts are found. The method of expanding the list of
entries to boost through conflict detection described above (page 141) is inspired by
the way conflicts are used in pattern searches. In fact, the same idea can be seen
in the incremental pattern selection method presented in chapter 4 (page 72) and
a similar use of conflicts to direct search efforts in the context of relaxed search is
discussed below.
An observation made in the experimental analysis of relaxed search (section 7.1,
page 135) is that one factor contributing to the sometimes high computational cost
of the m-regression search is the fact that AND-nodes have many successors. As
also noted it is most of the time not actually necessary to search all successors for
every AND-node: often, many of them are solved at a cost lower than that of the
most costly size m subset and thus do not contribute to raising the estimated cost
of the parent AND-node. An alternative is to search only the most “promising”

144

successors, where a promising successor is an OR-node whose cost is likely to be
underestimated by the current heuristic and therefore likely to increase when the
node is expanded. Limiting the number of successors searched for every AND-node
uniformly to at most k results in an (m, k)-regression space, and a series of (m, k)-
regression searches with increasing m and k can be organized in different ways: for
example, the planner could perform (m, 1)-regression searches for m = 3, . . . until
some stopping condition is met, then (m, 2)-regression searches for m = 3, . . ., etc.
This is very similar to the iterative broadening search described by Ginsberg &
Harvey (1992). Incremental solving of subproblems is also found in the Russian doll
search algorithm (by Verfaillie, Lemaitre, & Schiex, 1996) for constraint optimization,
the problem of finding an assignment of discrete values to a collection of n variables
that minimizes a specified target function, subject to a set of hard constraints. The
algorithm proceeds by solving subproblems of increasing size, starting with the nth
variable only, then the two last variables, and so on, similar to an (m, 1)-relaxed
search. The solution cost for the i last variables is a useful lower bound in the search
for a solution to the problem involving the i + 1 last variables because variables are
assigned in a fixed order (from 1 to n).
Another alternative is to limit the expansion of AND-nodes non-uniformly, e.g., to
search all successors satisfying some criterion for being promising, similar to itera-
tive widening used in the context of game-tree search (Cazenave 2001). Promising
successors can be identified by looking at conflicts, similar to the strategy for select-
ing entries to boost presented here and the process for finding patterns in pattern
searches. Consider sequential planning where an AND-node is simply a set of more
than m atoms and the successors are all size m subsets of this set: subsets more likely
to have a higher cost than the estimate given by hm−1 can be identified by solving
each size m−1 subset and examining the solutions for conflicts with remaining atoms
in the state (using various conflict criteria, as discussed in section 7.2 above). Some
care must be taken to ensure that the searches needed to find the promising sets are
not more expensive than searching every set but if the hm−1 value was also computed
by relaxed search, the size m − 1 subsets (or at least some of them) have already
been searched and conflicts found during previous searches can be saved.
Another method that uses limited search to improve heuristic estimates is perimeter
search (Dillenburg & Nelson, 1994; Manzini, 1995) This algorithm first performs
a depth-limited search from the target node, following the transitions of the search
space in reverse, to generate a set of nodes (the perimeter) from which the target node
is reachable with known cost. In the main search, which starts from the source node,
the heuristic estimate is calculated as the estimated cost of reaching a node n on the
perimeter plus the known cost of reaching the target node from n, minimized over all
nodes on the perimeter. Since the error in heuristic estimates tends to increase with
the distance in the search space, this estimate is often more accurate than the raw
heuristic estimate of the cost of reaching the target node. The main problem with the
method is that heuristic evaluations become very expensive as the set of perimeter
nodes grows (Kaindl & Kainz, 1997, provide a detailed analysis of perimeter search
and other bidirectional search algorithms, and suggest remedies for this problem).

145

The relation between perimeter search and boosting is easiest to explain in the con-
text of the planning graph: Recall that the planning graph encodes information
about relaxed, or possible, reachability. By performing boosting searches for atom
pairs that appear reachable in a layer and extending the mutex relation to include
those pairs proved unreachable, the relaxed measure of reachability is brought closer
to actual reachability. The construction of a perimeter in perimeter search does the
same thing, but limited in depth rather than in the size of atom sets considered.
Thus, in the context of the planning graph, constructing a perimeter up to a depth
of n corresponds to boosting every atom set (regardless of size) but in the first n
proposition layers of the graph only. By contrast, the boosting scheme presented
here boosts sets in every proposition layer of the graph, but only sets of at most two
atoms.

AND/OR Search Algorithms

Algorithms for searching AND/OR spaces (or trees) have been mostly investigated
in the AI area of game playing.
The SCOUT AND/OR tree search algorithm, developed by Pearl (1984), tries to
reduce the number of nodes evaluated by first testing for each node if it can affect
the value of its parent before evaluating the node exactly. The test is performed by
a procedure, called simply “Test”, which takes as arguments a node and a threshold
value and determines if the value of the node is greater (or equal) than the threshold
by recursively testing the node’s successors (to a specified depth) but only until
the inequality is proved. The procedure can easily be modified to return a greater
value for the node when such a value is found (though this may still be less than
the nodes actual value) and it has been shown that the Test procedure, enhanced
with memory in the form of a transposition table, can be used iteratively to give an
efficient algorithm that determines the exact value of a node (Plaat et al. 1996).
The DFS subroutine of IDAO* is very similar to a depth-unbounded version of the
Test procedure and thus the IDAO* algorithm is similar to such an iterative applica-
tion of Test. The main difference lies in that IDAO-DFS applies iterative deepening
(by calling IDAO*) to the successors of AND-nodes, whereas Test calls itself recur-
sively with the same cost bound. As a result, IDAO* finds the optimal cost of any
solved OR-node which Test does not (though the higher cost returned by the mod-
ified Test procedure when the cost of a node is proved to exceed the threshold is
still a lower bound on the nodes optimal cost). Recently, Bonet & Geffner (2005)
presented a general depth-first search algorithm for AND/OR spaces, called LDFS,
which is also similar to IDAO*. Like IDAO*, it finds the optimal cost of every solved
node and improved lower bounds on nodes that are explored but not solved. LDFS,
however, stops searching the successors of an AND-node as soon as one of them is
found to have a cost greater than the current estimate for that node, even if the new
cost estimate is still less than that of the parent AND-node (and the cost estimate
of the AND-node thus unaffected by the improvement). IDAO*, on the other hand,
performs iterative deepening searches until the node is solved or shown to have a cost

146

greater than the current estimated cost of the predecessor AND-node. Experiments
with an Iterative Test algorithm for m-regression search have shown that it is not
more efficient than IDAO*. An experimental comparison between IDAO* and the
LDFS algorithm remains to be done.
The GBF algorithm described in chapter 3, like most other algorithms for computing
complete solutions to the hm equation, can be seen a “bottom-up” labeling of the
nodes in the m-regression space, starting from nodes with cost zero and propagating
costs to parent nodes according to the min/max principle. The propagation is com-
plete, i.e., it proceeds until every (solvable) node has been labeled with its optimal
cost (although only the costs of OR-nodes are actually stored). IDAO*, Iterative Test
and LDFS, on the other hand, all perform top-down, depth-first iterative deepening
searches. None of these characteristics of the algorithms, however, are essential for
the their use in computing an improved heuristic. Any AND/OR search algorithm
can be used to carry out the relaxed search, as long as it discovers the optimal cost
(or a greater lower bound) of every expanded OR-node. For example, the standard
AO* algorithm (Nilsson 1968) and the Generalized Djikstra algorithm by Martelli
and Montanari (1973) both do this, and both offer a possibility of trading greater
memory requirements for (hopefully) less search time (though the results of Bonet &
Geffner, 2005, indicate that this may not be the case).
The AND/OR (or Min-Max) search spaces representing two-player games are some-
what different from the m-regression space: there is no concept of solution cost,
other than the won/lost distinction, and for most games it is infeasible to search for
a complete solution, rather the search aims to improve the accuracy of a heuristic es-
timate of the usefulness of a move or position in the game. Thus, game-tree searches
are depth-bounded, rather than cost-bounded, and values at the leaf nodes of the
tree are given by a static heuristic function. m-regression can be formulated in this
way, by taking the sum of accumulated and estimated cost as the static heuristic
function, and a depth-bounded search with a standard game-tree search algorithm
used to improve the accuracy of the estimated cost of the root node. This, how-
ever, fails to achieve the main objective of relaxed search, which is to discover (and
store) improved cost estimates for the size m states encountered during the search.
Thus, this method would have to be used in a different way, e.g., as a depth-bounded
look-ahead to improve the accuracy of heuristic evaluations of states in the normal
regression search.

147

148

8. Conclusions

The development of efficient and capable domain-independent automated planners
is a many-faceted problem: the problem model must be expressive enough to allow
application problems to be accurately stated and the efficiency of a search-based
planner depends both on the formulation of planning as a search problem and on
effective search control. This thesis addresses only one aspect of this broad problem,
that of search control for optimal planning through the automatic creation of admis-
sible heuristics, specifically, heuristics for the regression search space associated with
the classical sequential and temporal STRIPS planning models.
As noted in chapter 2, the sequential and temporal STRIPS models are not the
most expressive and the regression method of plan search is not the most efficient,
but the developed methods are based on principles general enough that methods for
the creation of heuristics for other, more efficient, planning search spaces and other,
more expressive, planning models can be derived on the same basis. For example, the
definition of the hm heuristic depends only on the existence of a “subset” relation
and a measure of size on states of the search space and the admissibility of the
heuristic rests only on the requirement that any expansion operation applicable to
a search state is applicable also to any of its subsets. Pattern database heuristics
can be applied to any search space where a mapping to a finite abstract space can
be defined from patterns of some suitable form, and the principle of enforcing global
constraints in the pattern abstraction is also generally applicable.
An indication of this is the fact that some of our methods, in particular the hm

heuristics, have been adopted by researchers focusing on other aspects of the devel-
opment of automated planning systems: e.g., the CPT temporal planning system
employs the hm heuristic in a constraint-based partial order planning search (Vidal
& Geffner 2004), while the BFHSP sequential planner uses it in progression and
regression search together with a novel search algorithm (Zhou & Hansen 2004).
The thesis collects material previously published in a series of papers: Haslum &
Geffner (2000) introduced the hm heuristics for sequential and parallel planning.
Haslum & Geffner (2001) introduced temporal regression, including planning with
resources, and the adaption of the hm heuristics to this case. Haslum (2004; 2006)
introduced the relaxed search and boosting methods (the second paper also contains
an earlier version of the experimental analysis presented in chapter 7). Haslum,
Bonet & Geffner (2005) introduced the constrained abstraction for pattern database
heuristics, the iterative pattern selection method and the additive hm heuristics.
The main addition to this material that has been made in the thesis is a considerable
amount of detail: complete algorithm descriptions, formal proofs, more extensive
analyses of experimental results and discussions of alternative problem models.

149

Final Analysis: Admissible Heuristics for
Regression Planning

Not that many different admissible heuristics for classical planning are known: there
are heuristics based on variations of the planning graph, the hm heuristics, the addi-
tive hm heuristics, and pattern database heuristics. An important part of this work
is the analysis of the relative strength and cost effectiveness of different heuristics.
As shown in chapter 3, for the case of sequential and parallel planning with unit
costs the hm and planning graph heuristics are equivalent, in the sense that they
yield the same heuristic estimates, though they are different in other respects, such
as e.g. their respective methods of computation. The planning graph has also been
extended to yield admissible makespan heuristics for temporal planning (Smith &
Weld 1999; Garrido, Onaindia, & Barber 2001), which are not obviously equivalent
to the temporal h2 heuristic. Proving or disproving this equivalence is an open
problem.

Heuristics for Sequential Planning

For the case of sequential planning, the h2, additive h2 and the improved pattern
database heuristics have been experimentally compared (in chapter 6, page 105). Al-
though the experiment covers only three different problem domains, this is sufficient
to demonstrate that none of the heuristics dominates any of the other. Results of
the experiment suggest that pattern database heuristics are more effective in prob-
lem domains that have “deep” solutions (involving many changes of value for each
state variable) while the h2 heuristic is more effective in domains where solutions are
“wide” (each state variable changes value only a few times, but many variables are
required to change values to enable the few that have goal values to change) and that
the additive h2 heuristic combines both some strengths and some weaknesses of the
other two (being the most effective in the “intermediate” problem domain). How-
ever, this can only be considered a conjecture since the scope of the comparison is
quite small. Also, it should be emphasized that only one particular action partition
method for the additive h2 heuristic is considered in this experiment. A different
partitioning method may yield very different results.

Cost Effectiveness of Improving hm through Search

The second large experimental analysis (presented in chapter 7, page 124) concerns
the cost effectiveness of the use of the relaxed search technique for improving the hm

heuristics for temporal planning. Results demonstrate some characteristics of the
problem domains in which this use of relaxed search is likely to be cost effective, at
least for harder problem instances: in such domains, states corresponding to OR-
nodes in the m-regression space are computationally cheaper to regress than states
in the normal regression space (due to having a smaller branching factor) and do

150

not give rise to many or large successor AND-nodes, and the relative effectiveness
of the resulting improved heuristic at controlling the search compared to that of
the underlying (unimproved) heuristic increases with the hardness of the problem,
as measured by the weakness of the underlying heuristic. Although this analysis is
performed only for the case of temporal planning, it is a reasonable conjecture that
similar criteria hold for the sequential case. For sequential planning, however, a wider
range of methods is available, so that the heuristic resulting from applying relaxed
search to improve a complete hm solution may be outperformed by, e.g., an additive
hm or pattern database heuristic even in domains where the use of relaxed search is
cost effective compared to the use of only the basic hm heuristic.
For the second technique, boosting, only a few initial experiments have been made,
but results suggest that in certain cases where relaxed search is not cost effective,
compared to the basic hm heuristic, this technique may be.

Directions for Future Research

As mentioned, above and in chapter 2, the classical and temporal planning models for
which our methods of heuristic construction have been developed are quite simple,
so one direction for the continuation of this work is adapting the methods to more
expressive models of planning problems. Particularly, the more scheduling-like CBI
and HTN models (described in section 2.3 of chapter 2, page 28) are interesting for
planning with time. A small step towards increasing the expressivity of the planning
models was made in chapter 5, with the introduction of resources. The methods of
constructing heuristics for the extended models are quite crude, however: for the case
of consumable resources in particular, estimates of plan cost or makespan and esti-
mates of the resources required are not integrated and thus heuristics frequently fail
to detect cost/resource trade-offs, which are typical of planning problems involving
resources. A more elaborate solution would likely involve some kind of multi-criteria
optimization method (such as e.g. that suggested by Refanidis & Vlahavas, 2003).
Concerning the methods themselves, several design options remain unexplored. For
example, the analysis of the quality of the PDB heuristics resulting from different
pattern selection methods (in section 4.3 of chapter 4, page 72) suggests that there
is room for improving the incremental selection method by making more informed
some of the choices that are currently made arbitrarily. For the problem of parti-
tioning the set of actions in the construction of the additive hm heuristics only a
single method was developed, though there are many more imaginable. Finally, the
boosting technique has barely been sketched and may also be applicable to heuristics
other than hm.
The experimental analyses presented in this thesis are aimed at discovering charac-
teristics of planning problems that determine the relative effectiveness of the different
heuristics. The resulting characterizations, however, are yet far from exact, and need
to be further refined. Although our results indicate that no single method of ad-
missible heuristic construction will yield results superior to all others across the full

151

spectrum of planning problems, the eventual development of a suite of methods along
with a precise characterization of the problem domains best fit to each method is a
conceivable prospect.

152

Acknowledgements

I am deeply grateful to a great many people: my advisor, Patrick Doherty; my
collaborators, Héctor Geffner and Blai Bonet; everyone else I’ve worked with, in and
out of the WITAS project (Peter, Marcus, Uli, Jonas, Lars, Silvia, Tommy, Björn,
Klas, Johan, Fredrik, Per-Olof, Per, Erik, Simone, Torsten, Gianpaolo, Mariusz,
Piotr); the department administrators (Janette, Jenny, Anna-Maria, Anki, Lillemor,
Britt-Inger); friends and family; and probably many more.
The constructive criticisms of Patrick, Jonas, and Per-Olof on this thesis, and of
numerous anonymous reviewers on the papers that preceded it, have helped shape it
into its present, hopefully readable, form.
All faults are, of course, mine.
This work has been funded in part by the Knut and Alice Wallenberg Foundation
under the WITAS UAV Project and by the ECSEL/ENSYM graduate school.

153

154

References

Aho, A.; Hopcroft, J.; and Ullman, J. 1983. Data Structures and Algorithms.
Addison-Wesley.

Allen, J., and Koomen, J. 1983. Planning using a temporal world model. In Proc.
8th International Joint Conference on Artificial Intelligence (IJCAI’83), 741 – 747.

Aylett, R.; Soutter, J.; Petley, G.; Chung, P.; and Rushton, A. 1998. AI plan-
ning in a chemical plant domain. In Proc. 13th European Conference on Artificial
Intelligence (ECAI’98), 622 – 626.

Aylett, R.; Petley, G.; Chung, P.; Chen, B.; and Edwards, D. 2000. AI planning:
Solutions for real world problems. Knowledge-Based Systems 13:61 – 69.

Bacchus, F., and Kabanza, F. 1995. Using temporal logic to control search in a for-
ward chaining planner. In Proc. 3rd European Workshop on Planning (EWSP’95).

Bacchus, F. 2000. Subset of PDDL for the AIPS 2000 planning competition. http:
//www.cs.toronto.edu/~aips2000/pddl-subset.ps.

Bäckström, C. 1992. Computational Complexity of Reasoning about Plans. Ph.D.
Dissertation, Linköpings Universitet.

Barret, A., and Weld, D. 1994. Partial-order planning: Evaluating possible efficiency
gains. Artificial Intelligence 67(1):71 – 112.

Barták, R. 2004. Integrating planning into production scheduling: A formal
view. In Proc. ICAPS’04 Workshop on Integrating Planning into Scheduling, 1
– 8. http://pst.istc.cnr.it/wipis-at-icaps-04/WIPIS-ICAPS04-Notes.pdf.

Becker, M., and Smith, S. 2000. Mixed-initiative resource management: The AMC
barrel allocator. In Proc. 5th International Conference on Artificial Intelligence
Planning and Scheduling (AIPS’00), 32 – 41.

Bedrax-Weiss, T.; Crawford, J.; and Smith, D. 2004. Com-
piling planning into scheduling: A sketch. In Proc. ICAPS’04
Workshop on Integrating Planning into Scheduling, 9 – 16.
http://pst.istc.cnr.it/wipis-at-icaps-04/WIPIS-ICAPS04-Notes.pdf.

Beetz, M. 2002. Plan representation for robotic agents. In Proc. 6th International
Conference on Artificial Intelligence Planning and Scheduling (AIPS’02).

Bellman, R. 1957. Dynamic Programming. Princeton University Press.

Bertsekas, D. 1995. Dynamic Programming and Optimal Control, volume 1 & 2.
Athena Scientific.

Biundo, S., and Schattenberg, B. 2001. From abstract crisis to concrete relief: A
preliminary report on combining state abstraction and HTN planning. In Proc. 6th
European Conference on Planning (ECP’01), 157 – 168.

155

Blum, A., and Furst, M. 1995. Fast planning through planning graph analysis.
In Proc. 14th International Joint Conference on Artificial Intelligence (IJCAI’95),
1636 – 1642.

Blum, A., and Furst, M. 1997. Fast planning through graph analysis. Artificial
Intelligence 90(1-2):281 – 300.

Bonet, B., and Geffner, H. 1999. Planning as heuristic search: New results. In
Proc. 5th European Conference on Planning (ECP’99), 360 – 372.

Bonet, B., and Geffner, H. 2005. An algorithm better than AO*? In Proc. 20th
National Conference on AI (AAAI’05), 1343 – 1347.

Bonet, B.; Loerincs, G.; and Geffner, H. 1997. A robust and fast action selection
mechanism for planning. In Proc. 14th National Conference on Artificial Intelli-
gence.

Boppana, R., and Halldorsson, M. 1992. Approximating maximum independent
sets by excluding subgraphs. BIT 32(2).

Bylander, T. 1991. Complexity results for planning. In Proc. 12th International
Joint Conference on Artificial Intelligence (IJCAI’91), 274 – 279.

Bylander, T. 1996. A probabilistic analysis of proposition STRIPS planning. Arti-
ficial Intelligence 81(1-2):241 – 271.

Cazenave, T. 2001. Iterative widening. In Proc. 17th International Conference on
Artificial Intelligence (IJCAI’01), 523 – 528.

Chapman, D. 1987. Planning for conjunctive goals. Artificial Intelligence 32:333 –
377.

Chien, S.; Rabideau, G.; Knight, R.; Sherwood, R.; Engelhardt, B.; Mutz, D.; Es-
tlin, T.; Smith, B.; Fisher, F.; Barrett, T.; Stebbins, G.; and Tran, D. 2000. ASPEN
– automating space mission operations using automated planning and scheduling.
In Proc. 6th International Symposium on Technical Interchange for Space Mission
Operations.

Cormen, T.; Leiserson, C.; and Rivest, R. 1990. Introduction to Algorithms. MIT
Press.

Culberson, J., and Schaeffer, J. 1996. Searching with pattern databases. In Cana-
dian Conference on AI, volume 1081 of LNCS, 402 – 416. Springer.

Culberson, J., and Schaeffer, J. 1998. Pattern databases. Computational Intelligence
14(3):318 – 334.

Dillenburg, J., and Nelson, P. 1994. Perimeter search. Artificial Intelligence
65(1):165 – 178.

Do, M., and Kambhampati, S. 2000. Solving planning-graph by compiling it into
CSP. In Proc. 5th International Conference on Artificial Intelligence Planning and
Scheduling (AIPS’00), 82 – 91. AAAI Press.

156

Do, M., and Kambhampati, S. 2001. Sapa: A domain-independent heuristic metric
temporal planner. In Proc. 6th European Conference on Planning (ECP’01), 109 –
120.

Doherty, P.; Haslum, P.; Heintz, F.; Merz, T.; Persson, T.; and Wingman, B. 2004.
A distributed architecture for intelligent unmanned aerial vehicle experimentation.
In Proc. 7th International Symposium on Distributed Autonomous Robotic Systems.

Edelkamp, S., and Hoffmann, J. 2004. PDDL2.2: the language for the classical part
of IPC-4. In 4th International Planning Competition Booklet, 2 – 6. Available at
http://ipc.icaps-conference.org/.

Edelkamp, S. 2001. Planning with pattern databases. In Proc. 6th European
Conference on Planning (ECP’01), 13 – 24.

Edelkamp, S. 2002. Symbolic pattern databases in heuristic search planning. In
Proc. 6th International Conference on Artificial Intelligence Planning and Schedul-
ing (AIPS’02), 274 – 283.

Erol, K.; Nau, D.; and Hendler, J. 1994. HTN planning: Complexity and expres-
sivity. In Proc. National Conference on Artificial Intelligence (AAAI’94), 1123 –
1128.

Erol, K.; Nau, D.; and Subrahmanian, V. 1991. Complexity, decidability and unde-
cidability results for domain-independent planning: A detailed analysis. Technical
Report CS-TR-2797, Computer Science Department, University of Maryland.

Fadel, F. G.; Fox, M. S.; and Gruninger, M. 1994. A generic enterprise resource on-
tology. In Proc. of the 3rd IEEE Workshop on Enabling Technologies: Infrastructure
for Collaborative Enterprises.

Felner, A.; Meshulam, R.; Holte, R.; and Korf, R. 2004. Compressing pattern
databases. In Proc. 19th National Conference on AI (AAAI’04), 638 – 643.

Felner, A.; Zahavi, U.; Schaeffer, J.; and Holte, R. 2005. Dual lookups in pat-
tern databases. In Proc. 19th International Conference on Artificial Intelligence
(IJCAI’05).

Felner, A.; Korf, R.; and Hanan, S. 2004. Additive pattern database heuristics.
Journal of AI Research 22:279 – 318.

Fikes, R., and Nilsson, N. 1971. STRIPS: A new approach to the application of
theorem proving to problem solving. Artificial Intelligence 2:189 – 208.

Fox, M., and Long, D. 1998. The automatic inference of state invariants in TIM.
Journal of Artificial Intelligence Research 9:367 – 421.

Fox, M., and Long, D. 1999. The detection and exploitation of symmetry in
planning domains. In Proc. 16th International Conference on Artificial Intelligence
(IJCAI’99), 956 – 961.

Fox, M., and Long, D. 2000. Utilizing automatically inferred invariants in graph
construction and search. In Proc. 5th International Conference on Artificial Intel-
ligence Planning and Scheduling (AIPS’00), 102 – 111. AAAI Press.

157

Fox, M., and Long, D. 2003. PDDL2.1: An extension to PDDL for expressing
temporal planning domains. Journal of AI Research 20:61 – 124.

Fukunaga, A.; Rabideau, G.; Chien, S.; and Yan, D. 1997. ASPEN: A framework
for automated planning and scheduling of spacecraft control and operations. In
Proc. International Symposium on AI, Robotics and Automation in Space.

Garey, M., and Johnson, D. 1979. Computers and intractability: A guide to the
theory of NP-completeness. Freeman.

Garrido, A.; Onaindia, E.; and Barber, F. 2001. Time-optimal planning in temporal
problems. In Proc. 6th European Conference on Planning (ECP’01), 397 – 402.

Gaschnig, J. 1979. A problem similarity approach to devising heuristics: First
results. In Proc. 6th International Joint Conference on Artificial Intelligence (IJ-
CAI’79), 301 – 307.

Gazen, B., and Knoblock, C. 1997. Combining the expressivity of UCPOP with the
efficiency of Graphplan. In Proc. 4th European Conference on Planning (ECP’97),
223 – 235.

Gerevini, A., and Schubert, L. 1998. Inferring state constraints for domain-
independent planning. In Proc. 15th National Conference on Artificial Intelligence
(AAAI’98), 905 – 912.

Gerevini, A., and Serina, I. 2002. LPG: A planner based on local search for plan-
ning graphs with action costs. In Proc. 6th International Conference on Artificial
Intelligence Planning and Scheduling (AIPS’02), 281 – 290.

Ghallab, M., and Laruelle, H. 1994. Representation and control in IxTeT, a temporal
planner. In Proc. 2nd International Conference on AI Planning Systems (AIPS’94),
61 – 67.

Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated Planning: Theory and
Practice. Morgan Kaufmann Publishers. ISBN: 1-55860-856-7.

Ginsberg, M., and Harvey, W. 1992. Iterative broadening. Artificial Intelligence
55(2-3):367 – 383.

Green, C. 1969. Applications of theorem proving to problem solving. In Proc.
International Joint Conference on Artificial Intelligence (IJCAI’69), 219 – 240.

Gupta, N., and Nau, D. 1992. On the complexity of blocks-world planning. Artificial
Intelligence 56:223 – 254.

Haslum, P., and Geffner, H. 2000. Admissible heuristics for optimal planning. In
Proc. 5th International Conference on Artificial Intelligence Planning and Schedul-
ing (AIPS’00), 140 – 149. AAAI Press.

Haslum, P., and Geffner, H. 2001. Heuristic planning with time and resources. In
Proc. 6th European Conference on Planning (ECP’01), 121 – 132.

Haslum, P., and Scholz, U. 2003. Domain knowledge in planning: Representation
and use. In Proc. ICAPS 2003 workshop on PDDL.

158

Haslum, P.; Bonet, B.; and Geffner, H. 2005. New admissible heuristics for domain-
independent planning. In Proc. 20th National Conference on AI (AAAI’05), 1163
– 1168.

Haslum, P. 2004. Improving heuristics through search. In Proc. European Confer-
ence on AI (ECAI’04), 1031 – 1032.

Haslum, P. 2006. Improving heuristics through relaxed search – an analysis of TP4
and hsp∗a in the 2004 planning competition. Journal of AI Research 25.

Helmert, M. 2002. Decidability and undecidability results for planning with numer-
ical state variables. In Proc. 6th International Conference on Artificial Intelligence
Planning and Scheduling (AIPS’02), 303 – 312.

Helmert, M. 2004. A planning heuristic based on causal graph analysis. In Proc.
14th International Conference on Automated Planning & Scheduling (ICAPS’04),
161 – 170.

Hendler, J.; Tate, A.; and Drummond, M. 1990. AI planning: Systems and tech-
niques. AI Magazine 11(2):61 – 77.

Hernadvölgyi, I., and Holte, R. 2000. Experiments with automatically created
memory-based heuristics. In In Proc. Abstraction, Reformulation, and Approxima-
tion, 4th International Symposium (SARA 2000), 281 – 290.

Hoffmann, J., and Edelkamp, S. 2005. The classical part of IPC-4: An overview.
To appear in the Journal of AI Research (this Special Track).

Hoffmann, J., and Geffner, H. 2003. Branching matters: Alternative branching
in Graphplan. In Proc. 13th International Conference on Automated Planning &
Scheduling (ICAPS’03), 22 – 31.

Hoffmann, J., and Koehler, J. 2000. Handling of inertia in a planning system.
Technical Report 122, Institute for Computer Science, Albert Ludwigs University,
Freiburg.

Hoffmann, J.; Edelkamp, S.; Englert, R.; Liporace, F. Thiébaux, S.; and Trüg, S.
2004. Towards realistic benchmarks for planning: The domains used in the classical
part of IPC-4. In 4th International Planning Competition Booklet, 7 – 14. Available
at http://ipc.icaps-conference.org/.

Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered landmarks in planning.
Journal of AI Research 22:215 – 278.

Hoffmann, J. 2000. A heuristic for domain independent planning and its use in
an enforced hill-climbing algorithm. In Proc. 12th International Symposium on
Methodologies for Intelligent Systems (ISMIS’00), 216 – 227.

Holte, R.; Perez, M. B.; Zimmer, R. M.; and MacDonald, A. J. 1996. Hierarchical
A*: Searching abstraction hierarchies efficiently. In Proc. 13th National Conference
on Artificial Intelligence (AAAI’96), 530 – 535.

159

Holte, R.; Newton, J.; Felner, A.; Meshulam, R.; and Furcy, D. 2004. Multiple
pattern databases. In 14th International Conference on Automated Planning and
Scheduling (ICAPS’04), 122 – 131.

Hwang, Y. K., and Ahuja, N. 1992. Gross motion planning – a survey. ACM
Computing Surveys 24(3):219 – 291.

Jonsson, A.; Morris, P.; Muscettola, N.; Rajan, K.; and Smith, B. 2000. Planning
in interplanetary space: Theory and practice. In Proc. 5th International Conference
on Artificial Intelligence Planning and Scheduling (AIPS’00), 177 – 186.

Junghanns, A., and Schaeffer, J. 2001. Sokoban: Enhancing general single-agent
search methods using domain knowledge. Artificial Intelligence 129(1-2):219 – 251.

Kaindl, H., and Kainz, G. 1997. Bidirectional heuristic search reconsidered. Journal
of AI Research 7:283 – 317.

Kambhampati, S. 1994. Comparing partial order planning and task reduction
planning: A preliminary report. In Working notes of the AAAI’94 Workshop on
Comparative Analysis of Planning Systems. Also available as Technical Report CSE
94-001, Arizona State University.

Kambhampati, S. 2000. Planning graph as a (dynamic) CSP: Exploiting EBL, DDB
and other CSP search techniques in Graphplan. Journal of AI Research 12:1 – 34.

Kautz, H., and Selman, B. 1992. Planning as satisfiability. In Proc. 10th European
Conference on Artificial Intelligence (ECAI’92), 359 – 363.

Kautz, H., and Selman, B. 1996. Pushing the envelope: Planning, propositional logic
and stochastic search. In Proc. 13th National Conference on Artifical Intelligence.

Kautz, H., and Selman, B. 1999. Unifying SAT-based and graph-based planning.
In Proc. 16th International Joint Conference on Artificial Intelligence (IJCAI’99),
318 – 325.

Kautz, H. 2004. SATPLAN04: Planning as satisfiability. In
4th International Planning Competition Booklet, 44 – 45. Available at
http://ipc.icaps-conference.org/.

Koehler, J. 1998. Planning under resource constraints. In Proc. 13th European
Conference on Artificial Intelligence (ECAI’98), 489 – 493.

Kolisch, R., and Hartmann, S. 2005. Exprerimental investigation of heuristics for
resource-constrained project scheduling: An update. To appear in European Journal
of Operational Research.

Kolisch, R., and Sprecher, A. 1996. PSPLIB – a project scheduling problem library.
European Journal of Operational Research 96:205 – 216.

Korf, R., and Taylor, L. 1996. Finding optimal solutions to the twenty-four puzzle.
In Proc. 13th National Conference on Artificial Intelligence (AAAI’96), 1202 – 1207.

Korf, R. 1985. Depth-first iterative-deepening: An optimal admissible tree search.
Artificial Intelligence 27(1):97 – 109.

160

Kvarnström, J., and Doherty, P. 2000. TALplanner: A temporal logic based forward
chaining planner. Annals of Mathematics and Artificial Intelligence 30(1):119 – 169.

Laborie, P., and Ghallab, M. 1995. Planning with sharable resource constraints.
In Proc. 14th International Joint Conference on Artificial Intelligence (IJCAI’95),
1643 – 1651.

Laborie, P. 1995. IxTeT: Une Approche Intégrée pour la Gestion de Ressources
et la Synthèse de Plans. Ph.D. Dissertation, École Nationale Supérieure des
Télécommunications. LAAS-CNRS Rapport No 95526.

Laborie, P. 2001. Algorithms for propagating resource constraints in AI planning
and scheduling: Existing approaches and new results. In Proc. 6th European Con-
ference on Planning (ECP’01), 205 – 216.

Liu, Y.; Koenig, S.; and Furcy, D. 2002. Speeding up the calculation of heuristics
for heuristic search-based planning. In Proc. 18th National Conference on Artificial
Intelligence (AAAI’02), 484 – 491.

Manna, Z., and Waldinger, R. 1987. How to clear a block: A theory of plans.
Journal of Automated Reasoning 3:343 – 377.

Manzini, G. 1995. BIDA*: An improved perimeter search algorithm. Artificial
Intelligence 75(2):347 – 360.

Martelli, A., and Montanari, U. 1973. Additive AND/OR graphs. In Proc. 3rd
International Joint Conference on Artificial Intelligence (IJCAI’73), 1 – 11.

McAllester, D., and Rosenblitt, D. 1991. Systematic nonlinear planning. In Proc.
9th National Conference on Artificial Intelligence.

McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C. A.; Ram, A.; M., V.; Weld,
D.; and Wikins, D. 1998. PDDL – the planning domain definition language. Techni-
cal Report CVC TR-98-003/DCS TR-1165, Yale Center for Computational Vision
and Control. ftp://ftp.cs.yale.edu/pub/mcdermott/software/ pddl.tar.gz.

McDermott, D. 1999. Using regression-match graphs to control search in planning.
Artificial Intelligence 109:111 – 159.

Muscettola, N. 1994. Integrating planning and scheduling. In Zweben and Fox
(1994).

Nareyek, A. 2001. Beyond the plan-length criterion. In Local Search for Planning
and Scheduling, volume 2148 of LNAI. Springer Verlag. 55 – 78.

Nebel, B. 2000. On the compilability and expressive power of propositional planning
formalisms. Journal of AI Research 12:271 – 315.

Nguyen, X.; Kambhampati, S.; and Nigenda, R. 2002. Planning graph as the basis
for deriving heuristics for plan synthesis by state space and csp search. Artificial
Intelligence 135(1-2):73 – 123.

Nilsson, N. J. 1968. Searching problem-solving and game-playing trees for minimal
cost solutions. In Proc. IFIP Congress, 125 – 130.

161

Papadimitriou, C., and Steiglitz, K. 1982. Combinatorial Optimization: Algorithms
and Complexity. Prentice-Hall.

Parker, E. 2004. Combining backward-chaining with forward-chaining AI
search. In 4th International Planning Competition Booklet, 51 – 52. Available
at http://ipc.icaps-conference.org/.

Patriksson, M. 1994. The Traffic Assignment Problem: Models and Methods.
Utrecht, The Netherlands: VSP.

Pearl, J. 1984. Heuristics: Intelligent Search Strategies for Computer Problem
Solving. Addison-Wesley.

Pednault, E. 1988. Synthesizing plans that contain actions with context-dependent
effects. Computational Intelligence 4:356 – 372.

Penberthy, J., and Weld, D. 1992. UCPOP: A sound, complete, partial order
planner for ADL. In Proc. International Confrence on Knowledge Representation
and Reasoning (KR’92).

Penberthy, J., and Weld, D. 1994. Temporal planning with continous change. In
Proc. 12th National Conference on Artificial Intelligence (AAAI’94), 1010 – 1015.

Peot, M., and Smith, D. 1993. Threat-removal strategies for partial-order planning.
In Proc. 11th National Confrence on Artificial Intelligence.

Plaat, A.; Schaeffer, J.; Pijls, W.; and de Bruin, A. 1996. Best-first fixed-depth
minimax algorithms. Artificial Intelligence 87(1-2):255 – 293.

Prieditis, A. E. 1993. Machine discovery of effective admissible heuristics. Machine
Learning 12:117 – 141.

Refanidis, I., and Vlahavas, I. 1999. A domain-independent heuristic for STRIPS
worlds based on greedy regression tables. In Proc. 5th European Conference on
Planning (ECP’99), 347 – 359.

Refanidis, I., and Vlahavas, I. 2003. Mulitobjective heuristic state-space planning.
Artificial Intelligence 145:1 – 32.

Reinfeld, A., and Marsland, T. 1994. Enhanced iterative-deepening search. IEEE
Transactions on Pattern Analysis and Machine Intelligence 16(7):701 – 710.

Rintanen, J. 1998. A planning algorithm not based on directional search. In
Principles of Knowledge Representation and Reasoning: Proc. 6th International
Conference (KR’96).

Ruml, W.; Do, M.; and Fromherz, M. 2005. On-line planning and scheduling for
high-speed manufacturing. In Proc. 15th International Conference on Automated
Planning & Scheduling (ICAPS’05).

Sacerdoti, E. 1975. The nonlinear nature of plans. In Proc. 4th International Joint
Conference on Artificial Intelligence (IJCAI’75), 206 – 214.

Sandewall, E., and Rönnquist, R. 1986. A representation of action structures. In
Proc. National Conference on Artificial Intelligence (AAAI’86), 89 – 97.

162

Scholz, U. 2000. Extracting state constraints from PDDL-like planning domains.
In Proc. AIPS 2000 Workshop on Analyzing and Exploiting Domain Knowledge for
Efficient Planning, 43 – 48.

Shin, J., and Davis, E. 2005. Processes and continuous change in a SAT-based
planner. Artificial Intelligence 166:195 – 254.

Slaney, J., and Thiebaux, S. 2001. Blocks world revisited. Artificial Intelligence
125. http://arp.anu.edu.au:80/~jks/bw.html.

Smith, S., and Becker, M. 1997. An ontology for constructing scheduling systems.
In Working Notes of the 1997 AAAI Symposium on Ontological Engineering. AAAI
Press.

Smith, D., and Weld, D. 1999. Temporal planning with mutual exclusion reasoning.
In Proc. 16th International Joint Conference on Artificial Intelligence (IJCAI’99),
326 – 333.

Smith, D.; Frank, J.; and Jonsson, A. 2000. Bridging the gap between planning
and scheduling. Knowledge Engineering Review 15(1).

Srivastava, B., and Kambhampati, S. 1999. Scaling up planning by teasing out
resource scheduling. In Proc. 5th European Conference on Planning (ECP’99), 172
– 186.

Tate, A.; Drabble, B.; and Dalton, J. 1994. The use of condition types to restrict
search in an AI planner. In Proc. 12th National Conference on Artificial Intelligence
(AAAI’94), 1129 – 1134.

Tate, A.; Drabble, B.; and Kirby, R. 1994. O-Plan2: An open architecture for
command, planning and control. In Zweben and Fox (1994). 213 – 239.

Tate, A. 1977. Generating project networks. In Proc. 5th International Joint
Conference on Artificial Intelligence (IJCAI’77), 88 – 93.

Thiebaux, S.; Hoffmann, J.; and Nebel, B. 2003. In defense of PDDL axioms.
In Proc. 18th International Conference on Artificial Intelligence (IJCAI’03), 961 –
968.

Trinquart, R., and Ghallab, M. 2001. An extended functional representation in
temporal planning: Towards continuous change. In Proc. 6th European Conference
on Planning (ECP’01), 217 – 228.

Trinquart, R. 2003. Analyzing reachability within plan space. In Proc. of the
ICAPS’03 Doctoral Consortium, 122 – 126.

Valtorta, M. 1984. A result on the computational complexity of heuristic estimates
for the A* algorithm. Information Sciences 34:48 – 59.

van den Briel, M., and Kambhampati, S. 2004. Optiplan: Unifying IP-based and
graph-based planning. In 4th International Planning Competition Booklet, 18 – 20.
Available at http://ipc.icaps-conference.org/.

163

Veloso, M.; Carbonell, J.; Perez, A.; Borrajo, D.; Fink, E.; and Blythe, J. 1995. Inte-
grating planning and learning: The PRODIGY architecture. Journal of Theoretical
and Experimental AI 7(1):81–120.

Vere, S. 1983. Planning in time: Windows and durations for activities and goals.
IEEE Trans. on Pattern Analysis and Machine Intelligence 5:246 – 267.

Verfaillie, G.; Lemaitre, M.; and Schiex, T. 1996. Russian doll search for solving
constraint optimization problems. In Proc. 13th National Conference on Artifical
Intelligence (AAAI’96), 181 – 187.

Vidal, V., and Geffner, H. 2004. Branching and pruning: An optimal temporal
POCL planner based on constraint programming. In Proc. 19th National Conference
on Artificial Intelligence (AAAI’04), 570 – 577.

Weld, D. S. 1999. Recent advances in AI planning. AI Magazine 20(2):93 – 123.

Wilkins, D., and desJardins, M. 2000. A call for knowledge-based planning. In
Proc. AIPS Workshop on Analysing and Exploiting Domain Knowledge for Efficient
Planning.

Wilkins, D. 1983. Representation in a domain-independent planner. In Proc. 8th
International Joint Conference on Artificial Intelligence (IJCAI’83), 733 – 740.

Wilkins, D. 1990. Can AI planners solve practical problems? Computational
Intelligence 6(4):232 – 246.

Williamson, M., and Hanls, S. 1994. Optimal planning with a goal-directed utility
model. In Proc. 2nd International Conference on Artificial Intelligence Planning
Systems (AIPS’94), 176 – 181.

Wolfman, S., and Weld, D. 1999. The LPSAT engine & its application to resource
planning. In Proc. 16th International Joint Conference on Artificial Intelligence
(IJCAI’99), 310 – 317.

Younes, H., and Simmons, R. 2002. On the role of ground actions in refinement
planning. In Proc. 6th International Conference on Artificial Intelligence Planning
and Scheduling (AIPS’02), 54 – 61.

Zhou, R., and Hansen, E. 2004. BFHSP: A breadth-first heuristic search plan-
ner. In 4th International Planning Competition Booklet, 61 – 63. Available at
http://ipc.icaps-conference.org/.

Zweben, M., and Fox, M., eds. 1994. Intelligent Scheduling. Morgan-Kaufmann.

164

No 14

No 17

No 18

No 22

No 33

No 51

No 54

No 55

No 58

No 69

No 71

No 77

No 94

No 97

No 109

No 111

No 155
Department of Computer and Information Scien
Linköpings universitet

Dissertations

Linköping Studies in Science and Technolog

Anders Haraldsson: A Program Manipulation
System Based on Partial Evaluation, 1977,
ISBN 91-7372-144-1.

Bengt Magnhagen: Probability Based Verifica-
tion of Time Margins in Digital Designs, 1977,
ISBN 91-7372-157-3.

Mats Cedwall: Semantisk analys av process-
beskrivningar i naturligt språk, 1977, ISBN 91-
7372-168-9.

Jaak Urmi: A Machine Independent LISP
Compiler and its Implications for Ideal Hard-
ware, 1978, ISBN 91-7372-188-3.

Tore Risch: Compilation of Multiple File Que-
ries in a Meta-Database System 1978, ISBN 91-
7372-232-4.

Erland Jungert: Synthesizing Database Struc-
tures from a User Oriented Data Model, 1980,
ISBN 91-7372-387-8.

Sture Hägglund: Contributions to the Devel-
opment of Methods and Tools for Interactive
Design of Applications Software, 1980, ISBN
91-7372-404-1.

Pär Emanuelson: Performance Enhancement
in a Well-Structured Pattern Matcher through
Partial Evaluation, 1980, ISBN 91-7372-403-3.

Bengt Johnsson, Bertil Andersson: The Hu-
man-Computer Interface in Commercial Sys-
tems, 1981, ISBN 91-7372-414-9.

H. Jan Komorowski: A Specification of an Ab-
stract Prolog Machine and its Application to
Partial Evaluation, 1981, ISBN 91-7372-479-3.

René Reboh: Knowledge Engineering Tech-
niques and Tools for Expert Systems, 1981,
ISBN 91-7372-489-0.

Östen Oskarsson: Mechanisms of Modifiabili-
ty in large Software Systems, 1982, ISBN 91-
7372-527-7.

Hans Lunell: Code Generator Writing Sys-
tems, 1983, ISBN 91-7372-652-4.

Andrzej Lingas: Advances in Minimum
Weight Triangulation, 1983, ISBN91-7372-660-5.

Peter Fritzson: Towards a Distributed Pro-
gramming Environment based on Incremental
Compilation,1984, ISBN 91-7372-801-2.

Erik Tengvald: The Design of Expert Planning
Systems. An Experimental Operations Plan-
ning System for Turning, 1984, ISBN 91-7372-
805-5.

Christos Levcopoulos: Heuristics for Mini-
mum Decompositions of Polygons, 1987, ISBN
91-7870-133-3.

No 165 James W. Go
Non-Monoto
7870-183-X.

No 170 Zebo Peng: A
mated Synth
91-7870-225-9

No 174 Johan Fagers
Design of Di
7870-301-8.

No 192 Dimiter Dri
Logic of Qua
374-3.

No 213 Lin Padgham
an Object O
ISBN 91-7870

No 214 Tony Larsso
tion and Ver
7870-517-7.

No 221 Michael Rein
Foundations
91-7870-546-0

No 239 Jonas Löwg
Support and
Interface Man
7870-720-X.

No 244 Henrik Erik
Knowledge
746-3.

No 252 Peter Eklund
active Design
chies,1991, IS

No 258 Patrick Doh
Formalism w
91-7870-816-8

No 260 Nahid Shah
Debugging, 1

No 264 Nils Dahlbä
Cognitive an
ISBN 91-7870

No 265 Ulf Nilsson:
stract Machin
gy for the Im
1992, ISBN 91

No 270 Ralph Rönn
Tense-bound
7870-873-7.

No 273 Björn Fjellb
Data Path Sy

No 276 Staffan Bon
Clause Logic
tions, 1992, IS
ce

y

odwin: A Theory and System for
nic Reasoning, 1987, ISBN 91-

Formal Methodology for Auto-
esis of VLSI Systems, 1987, ISBN
.

tröm: A Paradigm and System for
stributed Systems, 1988, ISBN 91-

ankov: Towards a Many Valued
ntified Belief, 1988, ISBN 91-7870-

: Non-Monotonic Inheritance for
riented Knowledge Base, 1989,
-485-5.

n: A Formal Hardware Descrip-
ification Method, 1989, ISBN 91-

frank: Fundamentals and Logical
of Truth Maintenance, 1989, ISBN
.

ren: Knowledge-Based Design
Discourse Management in User
agement Systems, 1991, ISBN 91-

sson: Meta-Tool Support for
Acquisition, 1991, ISBN 91-7870-

: An Epistemic Approach to Inter-
in Multiple Inheritance Hierar-

BN 91-7870-784-6.

erty: NML3 - A Non-Monotonic
ith Explicit Defaults, 1991, ISBN
.

mehri: Generalized Algorithmic
991, ISBN 91-7870-828-1.

ck: Representation of Discourse-
d Computational Aspects, 1992,
-850-8.

Abstract Interpretations and Ab-
es: Contributions to a Methodolo-
plementation of Logic Programs,
-7870-858-3.

quist: Theory and Practice of
Object References, 1992, ISBN 91-

org: Pipeline Extraction for VLSI
nthesis, 1992, ISBN 91-7870-880-X.

nier: A Formal Basis for Horn
with External Polymorphic Func-
BN 91-7870-896-6.

No 277

No 281

No 292

No 297

No 302

No 312

No 338

No 371

No 375

No 383

No 396

No 413

No 414

No 416

No 429

No 431

No 437

No 439

No 448
Kristian Sandahl: Developing Knowledge
Management Systems with an Active Expert
Methodology, 1992, ISBN 91-7870-897-4.

Christer Bäckström: Computational Complex-
ity of Reasoning about Plans, 1992, ISBN 91-
7870-979-2.

Mats Wirén: Studies in Incremental Natural
Language Analysis, 1992, ISBN 91-7871-027-8.

Mariam Kamkar: Interprocedural Dynamic
Slicing with Applications to Debugging and
Testing, 1993, ISBN 91-7871-065-0.

Tingting Zhang: A Study in Diagnosis Using
Classification and Defaults, 1993, ISBN 91-
7871-078-2.

Arne Jönsson: Dialogue Management for Nat-
ural Language Interfaces - An Empirical Ap-
proach, 1993, ISBN 91-7871-110-X.

Simin Nadjm-Tehrani: Reactive Systems in
Physical Environments: Compositional Mod-
elling and Framework for Verification, 1994,
ISBN 91-7871-237-8.

Bengt Savén: Business Models for Decision
Support and Learning. A Study of Discrete-
Event Manufacturing Simulation at Asea/ABB
1968-1993, 1995, ISBN 91-7871-494-X.

Ulf Söderman: Conceptual Modelling of Mode
Switching Physical Systems, 1995, ISBN 91-
7871-516-4.

Andreas Kågedal: Exploiting Groundness in
Logic Programs, 1995, ISBN 91-7871-538-5.

George Fodor: Ontological Control, Descrip-
tion, Identification and Recovery from Prob-
lematic Control Situations, 1995, ISBN 91-7871-
603-9.

Mikael Pettersson: Compiling Natural Seman-
tics, 1995, ISBN 91-7871-641-1.

Xinli Gu: RT Level Testability Improvement
by Testability Analysis and Transformations,
1996, ISBN 91-7871-654-3.

Hua Shu: Distributed Default Reasoning, 1996,
ISBN 91-7871-665-9.

Jaime Villegas: Simulation Supported Indus-
trial Training from an Organisational Learning
Perspective - Development and Evaluation of
the SSIT Method, 1996, ISBN 91-7871-700-0.

Peter Jonsson: Studies in Action Planning: Al-
gorithms and Complexity, 1996, ISBN 91-7871-
704-3.

Johan Boye: Directional Types in Logic Pro-
gramming, 1996, ISBN 91-7871-725-6.

Cecilia Sjöberg: Activities, Voices and Arenas:
Participatory Design in Practice, 1996, ISBN 91-
7871-728-0.

Patrick Lambrix: Part-Whole Reasoning in De-
scription Logics, 1996, ISBN 91-7871-820-1.

No 452 Kjell Orsbor
tional Databa
Analysis App
9.

No 459 Olof Johans
for Complex
7871-855-4.

No 461 Lena Strömb
in Unificatio
91-7871-857-0

No 462 Lars Degerst
gramming: A
swering, 1996

No 475 Fredrik Nilss
ing - En stud
utformas och
1997, ISBN 91

No 480 Mikael Lind
quirements-D
Oriented Sof
7871-927-5.

No 485 Göran Forslu
Cooperative
Decision Sup

No 494 Martin Sköl
Systems for
ISBN 91-7219

No 495 Hans Olsén
Nets in a CL
011-6.

No 498 Thomas Dra
plexity for T
1997, ISBN 91

No 502 Jakob Axels
Heterogeneo
91-7219-035-3

No 503 Johan Rings
Data-Parallel
Two-Level
ISBN 91-7219

No 512 Anna Mobe
kommunikat
flexibla konto

No 520 Mikael Rons
Parallel Data
1998, ISBN 91

No 522 Niclas Ohlss
Prevention -
Engineering,

No 526 Joachim Kar
Prioritizing S
91-7219-184-8

No 530 Henrik Nils
Lazy Functio
7219-197-x.
n: On Extensible and Object-Rela-
se Technology for Finite Element
lications, 1996, ISBN 91-7871-827-

son: Development Environments
Product Models, 1996, ISBN 91-

äck: User-Defined Constructions
n-Based Formalisms,1997, ISBN
.

edt: Tabulation-based Logic Pro-
Multi-Level View of Query An-

, ISBN 91-7871-858-9.

on: Strategi och ekonomisk styrn-
ie av hur ekonomiska styrsystem

används efter företagsförvärv,
-7871-914-3.

vall: An Empirical Study of Re-
riven Impact Analysis in Object-

tware Evolution, 1997, ISBN 91-

nd: Opinion-Based Systems: The
Perspective on Knowledge-Based
port, 1997, ISBN 91-7871-938-0.

d: Active Database Management
Monitoring and Control, 1997,

-002-7.

: Automatic Verification of Petri
P framework, 1997, ISBN 91-7219-

kengren: Algorithms and Com-
emporal and Spatial Formalisms,
-7219-019-1.

son: Analysis and Synthesis of
us Real-Time Systems, 1997, ISBN
.

tröm: Compiler Generation for
Programming Langugaes from

Semantics Specifications, 1997,
-045-0.

rg: Närhet och distans - Studier av
ionsmmönster i satellitkontor och
r, 1997, ISBN 91-7219-119-8.

tröm: Design and Modelling of a
Server for Telecom Applications,
-7219-169-4.

on: Towards Effective Fault
An Empirical Study in Software

 1998, ISBN 91-7219-176-7.

lsson: A Systematic Approach for
oftware Requirements, 1998, ISBN
.

son: Declarative Debugging for
nal Languages, 1998, ISBN 91-

No 555

No 561

No 563

No 567

No 582

No 589

No 592

No 593

No 594

No 595

No 596

No 597

No 598

No 607

No 611

No 613

No 618

No 627
Jonas Hallberg: Timing Issues in High-Level
Synthesis,1998, ISBN 91-7219-369-7.

Ling Lin: Management of 1-D Sequence Data -
From Discrete to Continuous, 1999, ISBN 91-
7219-402-2.

Eva L Ragnemalm: Student Modelling based
on Collaborative Dialogue with a Learning
Companion, 1999, ISBN 91-7219-412-X.

Jörgen Lindström: Does Distance matter? On
geographical dispersion in organisations, 1999,
ISBN 91-7219-439-1.

Vanja Josifovski: Design, Implementation and
Evaluation of a Distributed Mediator System
for Data Integration, 1999, ISBN 91-7219-482-0.

Rita Kovordányi: Modeling and Simulating
Inhibitory Mechanisms in Mental Image Re-
interpretation - Towards Cooperative Human-
Computer Creativity, 1999, ISBN 91-7219-506-1.

Mikael Ericsson: Supporting the Use of De-
sign Knowledge - An Assessment of Com-
menting Agents, 1999, ISBN 91-7219-532-0.

Lars Karlsson: Actions, Interactions and Nar-
ratives, 1999, ISBN 91-7219-534-7.

C. G. Mikael Johansson: Social and Organiza-
tional Aspects of Requirements Engineering
Methods - A practice-oriented approach, 1999,
ISBN 91-7219-541-X.

Jörgen Hansson: Value-Driven Multi-Class
Overload Management in Real-Time Database
Systems, 1999, ISBN 91-7219-542-8.

Niklas Hallberg: Incorporating User Values in
the Design of Information Systems and
Services in the Public Sector: A Methods
Approach, 1999, ISBN 91-7219-543-6.

Vivian Vimarlund: An Economic Perspective
on the Analysis of Impacts of Information
Technology: From Case Studies in Health-Care
towards General Models and Theories, 1999,
ISBN 91-7219-544-4.

Johan Jenvald: Methods and Tools in
Computer-Supported Taskforce Training,
1999, ISBN 91-7219-547-9.

Magnus Merkel: Understanding and
enhancing translation by parallel text
processing, 1999, ISBN 91-7219-614-9.

Silvia Coradeschi: Anchoring symbols to
sensory data, 1999, ISBN 91-7219-623-8.

Man Lin: Analysis and Synthesis of Reactive
Systems: A Generic Layered Architecture
Perspective, 1999, ISBN 91-7219-630-0.

Jimmy Tjäder: Systemimplementering i
praktiken - En studie av logiker i fyra projekt,
1999, ISBN 91-7219-657-2.

Vadim Engelson: Tools for Design, Interactive
Simulation, and Visualization of Object-
Oriented Models in Scientific Computing,
2000, ISBN 91-7219-709-9.

No 637 Esa Falkenr
Control and
766-8.

No 639 Per-Arne P
Knowledge
Design for
Command W

No 660 Erik Larsso
Design for Te
91-7219-890-7

No 688 Marcus Bjä
Monitoring, 2

No 689 Joakim Gu
Action Logic

No 720 Carl-Johan P
Provision - M
tionary Use
ISBN-91-7373

No 724 Paul Scerri: D
Adjustable A
9.

No 725 Tim Heyer:
Artifacts: From
7373 208 7.

No 726 Pär Carlsham
quirements E
Product Deve

No 732 Juha Takkin
ment to Task
2002, ISBN 91

No 745 Johan Åberg
to Intelligent
tems, 2002, IS

No 746 Rego Granlu
work Trainin

No 757 Henrik Andr
Time Series D

No 747 Anneli Hagd
ted Inter-org
Study in the
91-7373-314-8

No 749 Sofie Pilema
Non-Profit O
tory Design o
Union Shop S
318-0.

No 765 Stefan Holm
theory of use

No 771 Magnus Mo
of Distribute
91-7373-421-7

No 772 Pawel Pietrz
Locating Erro
2002, ISBN 91

No 758 Erik Bergl
Among Prog
ISBN 91-7373
oth: Database Technology for
Simulation, 2000, ISBN 91-7219-

ersson: Bringing Power and
Together: Information Systems

Autonomy and Control in
ork, 2000, ISBN 91-7219-796-X.

n: An Integrated System-Level
stability Methodology, 2000, ISBN
.

reland: Model-based Execution
001, ISBN 91-7373-016-5.

stafsson: Extending Temporal
, 2001, ISBN 91-7373-017-3.

etri: Organizational Information
anaging Mandatory and Discre-

of Information Technology, 2001,
-126-9.

esigning Agents for Systems with
utonomy, 2001, ISBN 91 7373 207

Semantic Inspection of Software
Theory to Practice, 2001, ISBN 91

re: A Usability Perspective on Re-
ngineering - From Methodology to
lopment, 2001, ISBN 91 7373 212 5.

en: From Information Manage-
Management in Electronic Mail,

 7373 258 3.
: Live Help Systems: An Approach

Help for Web Information Sys-
BN 91-7373-311-3.
nd: Monitoring Distributed Team-
g, 2002, ISBN 91-7373-312-1.
é-Jönsson: Indexing Strategies for
ata, 2002, ISBN 917373-346-6.
ahl: Development of IT-suppor-

anisational Collaboration - A Case
Swedish Public Sector, 2002, ISBN
.
lm: Information Technology for
rganisations - Extended Participa-
f an Information System for Trade
tewards, 2002, ISBN 91-7373-

lid: Adapting users: Towards a
quality, 2002, ISBN 91-7373-397-0.
rin: Multimedia Representations
d Tactical Operations, 2002, ISBN
.
ak: A Type-Based Framework for
rs in Constraint Logic Programs,
-7373-422-5.

und: Library Communication
rammers Worldwide, 2002,
-349-0.

No 774

No 779

No 793

No 785

No 800

No 808

No 821

No 823

No 828

No 833

No 852

No 867

No 872

No 869

No 870

No 874

No 873

No 876
Choong-ho Yi: Modelling Object-Oriented
Dynamic Systems Using a Logic-Based Frame-
work, 2002, ISBN 91-7373-424-1.
Mathias Broxvall: A Study in the
Computational Complexity of Temporal
Reasoning, 2002, ISBN 91-7373-440-3.
Asmus Pandikow: A Generic Principle for
Enabling Interoperability of Structured and
Object-Oriented Analysis and Design Tools,
2002, ISBN 91-7373-479-9.
Lars Hult: Publika Informationstjänster. En
studie av den Internetbaserade encyklopedins
bruksegenskaper, 2003, ISBN 91-7373-461-6.
Lars Taxén: A Framework for the Coordina-
tion of Complex Systems´ Development, 2003,
ISBN 91-7373-604-X
Klas Gäre: Tre perspektiv på förväntningar
och förändringar i samband med införande av
informationsystem, 2003, ISBN 91-7373-618-X.
Mikael Kindborg: Concurrent Comics - pro-
gramming of social agents by children, 2003,
ISBN 91-7373-651-1.
Christina Ölvingson: On Development of In-
formation Systems with GIS Functionality in
Public Health Informatics: A Requirements
Engineering Approach, 2003, ISBN 91-7373-
656-2.
Tobias Ritzau: Memory Efficient Hard Real-
Time Garbage Collection, 2003, ISBN 91-7373-
666-X.
Paul Pop: Analysis and Synthesis of
Communication-Intensive Heterogeneous
Real-Time Systems, 2003, ISBN 91-7373-683-X.
Johan Moe: Observing the Dynamic
Behaviour of Large Distributed Systems to Im-
prove Development and Testing - An Emperi-
cal Study in Software Engineering, 2003, ISBN
91-7373-779-8.
Erik Herzog: An Approach to Systems Engi-
neering Tool Data Representation and Ex-
change, 2004, ISBN 91-7373-929-4.
Aseel Berglund: Augmenting the Remote
Control: Studies in Complex Information
Navigation for Digital TV, 2004, ISBN 91-7373-
940-5.
Jo Skåmedal: Telecommuting’s Implications
on Travel and Travel Patterns, 2004, ISBN 91-
7373-935-9.
Linda Askenäs: The Roles of IT - Studies of Or-
ganising when Implementing and Using En-
terprise Systems, 2004, ISBN 91-7373-936-7.
Annika Flycht-Eriksson: Design and Use of
Ontologies in Information-Providing Dialogue
Systems, 2004, ISBN 91-7373-947-2.
Peter Bunus: Debugging Techniques for Equa-
tion-Based Languages, 2004, ISBN 91-7373-
941-3.
Jonas Mellin: Resource-Predictable and Effi-
cient Monitoring of Events, 2004, ISBN 91-
7373-956-1.

No 883 Magnus Bån
per: Ubiquito
Healthcare P
971-5

No 882 Robert Eklun
human-huma
booking dialo

No 887 Anders Lind
Linquistic El
ies of Produc
using Finite-
981-2.

No 889 Zhiping Wan
tion-inventor
ysis in both
context, 2004

No 893 Pernilla Qva
action, 2004,

No 910 Magnus Ka
Strategy and
ical Framew
2004, ISBN 9

No 918 Jonas Lund
Genre Persp
2004, ISBN 9

No 900 Mattias Arv
of interactio
ISBN 91-8529

No 920 Luis Alejan
Scheduling
bedded Syst

No 929 Diana Szen
Fault-Tolera
85297-58-5.

No 933 Mikael Cäk
Constructing
Three Case S
ing and Cus
85297-64-X.

No 937 Jonas Kvarn
Extensions t
ISBN 91-8529

No 938 Bourhane K
Visual Servo
2005, ISBN 9

No 945 Gert Jervan
Test Genera
tems, 2005, I

No 946 Anders Arp
Information
98-4.

No 947 Ola Angelsm
for Constrain
lems - Metho
91-85297-99-

No 963 Calin Cures
Resource Al
2005. ISBN 9

No 972 Björn Johan
Situations, 2
g: Computing at the Speed of Pa-
us Computing Environments for
rofessionals, 2004, ISBN 91-7373-

d: Disfluency in Swedish
n and human-machine travel
gues, 2004. ISBN 91-7373-966-9.

ström: English and other Foreign
ements in Spoken Swedish. Stud-
tive Processes and their Modelling
State Tools, 2004, ISBN 91-7373-

g: Capacity-Constrained Produc-
y systems - Modellling and Anal-
a traditional and an e-business

, ISBN 91-85295-08-6.
rfordt: Eyes on Multimodal Inter-
ISBN 91-85295-30-2.
ld: In the Borderland between
Management Control - Theoret-
ork and Empirical Evidence,

1-85295-82-5.
berg: Shaping Electronic News:
ectives on Interaction Design,

1-85297-14-3.
ola: Shades of use: The dynamics
n design for sociable use, 2004,
5-42-6.
dro Cortés: Verification and

Techniques for Real-Time Em-
ems, 2004, ISBN 91-85297-21-6.
tivanyi: Performance Studies of
nt Middleware, 2005, ISBN 91-

er: Management Accounting as
and Opposing Customer Focus:

tudies on Management Account-
tomer Relations, 2005, ISBN 91-

ström: TALplanner and Other
o Temporal Action Logic, 2005,
7-75-5.
admiry: Fuzzy Gain-Scheduled
ing for Unmanned Helicopter,

1-85297-76-3.
: Hybrid Built-In Self-Test and
tion Techniques for Digital Sys-
SBN: 91-85297-97-6.
teg: Intelligent Semi-Structured
Extraction, 2005, ISBN 91-85297-

ark: Constructing Algorithms
t Satisfaction and Related Prob-
ds and Applications, 2005, ISBN
2.
cu: Utility-based Optimisation of
location for Wireless Networks,
1-85457-07-8.
sson: Joint Control in Dynamic
005, ISBN 91-85457-31-0.

No 974

No 979

No 983

No 986

No 100

Linkö
No 1

No 2

No 3

No 4

No 5

No 6

No 7

No 8

No 9

No 10

No 11

No 12

No 13
Dan Lawesson: An Approach to Diagnosa-
bility Analysis for Interacting Finite State
Systems, 2005, ISBN 91-85457-39-6.
Claudiu Duma: Security and Trust Mecha-
nisms for Groups in Distributed Services,
2005, ISBN 91-85457-54-X.
Sorin Manolache: Analysis and Optimisa-
tion of Real-Time Systems with Stochastic
Behaviour, 2005, ISBN 91-85457-60-4.
Yuxiao Zhao: Standards-Based Application
Integration for Business-to-Business Com-
munications, 2005, ISBN 91-85457-66-3.

4 Patrik Haslum: Admissible Heuristics for
Automated Planning, 2006, ISBN 91-85497-
28-2.

ping Studies in Information Science
Karin Axelsson: Metodisk systemstrukture-
ring- att skapa samstämmighet mellan infor-
ma-tionssystemarkitektur och verksamhet,
1998. ISBN-9172-19-296-8.

Stefan Cronholm: Metodverktyg och använd-
barhet - en studie av datorstödd metodbaserad
systemutveckling, 1998. ISBN-9172-19-299-2.

Anders Avdic: Användare och utvecklare - om
anveckling med kalkylprogram, 1999. ISBN-
91-7219-606-8.

Owen Eriksson: Kommunikationskvalitet hos
informationssystem och affärsprocesser, 2000.
ISBN 91-7219-811-7.

Mikael Lind: Från system till process - kriteri-
er för processbestämning vid verksamhetsana-
lys, 2001, ISBN 91-7373-067-X

Ulf Melin: Koordination och informationssys-
tem i företag och nätverk, 2002, ISBN 91-7373-
278-8.

Pär J. Ågerfalk: Information Systems Actabili-
ty - Understanding Information Technology as
a Tool for Business Action and Communica-
tion, 2003, ISBN 91-7373-628-7.

Ulf Seigerroth: Att förstå och förändra
systemutvecklingsverksamheter - en taxonomi
för metautveckling, 2003, ISBN91-7373-736-4.
Karin Hedström: Spår av datoriseringens
värden - Effekter av IT i äldreomsorg, 2004,
ISBN 91-7373-963-4.

Ewa Braf: Knowledge Demanded for Action -
Studies on Knowledge Mediation in Organisa-
tions, 2004, ISBN 91-85295-47-7.

Fredrik Karlsson: Method Configuration -
method and computerized tool support, 2005,
ISBN 91-85297-48-8.

Malin Nordström: Styrbar systemförvaltning -
Att organisera systemförvaltningsverksamhet
med hjälp av effektiva förvaltningsobjekt,
2005, ISBN 91-85297-60-7.

Stefan Holgersson: Yrke: POLIS - Yrkeskun-
skap, motivation, IT-system och andra förut-

sättningar för
43-X.
polisarbete, 2005, ISBN 91-85299-

