
Linköping Studies in Science and Technology
Thesis No. 1000

Adaptive Semi-structured Information
Extraction

A User-Driven Approach to IE

Anders Arpteg

LiU-Tek-Lic-2002:73

The Computer and Information Science Department
Linköpings university, SE-581 83, Linköping, Sweden

http://www.ida.liu.se/

Linköping January 2003

Printed by:
UniTryck, Linköping, Sweden
ISBN 91-7373-5892-2
ISSN 0280-7971

Distributed by:
Linköpings university
The Computer and Information Science Department
SE-581 83, Sweden

c© 2003 Anders Arpteg

No part of this publication may be reproduced, stored in a retrieval system, or be
transmitted, in any form or by any means, electronic, mechanic, photocopying,
recordning, or otherwise, without prior permission of the author.

Abstract

The number of domains and tasks where information extraction tools can be used
needs to be increased. One way to reach this goal is to construct user-driven in-
formation extraction systems where novice users are able to adapt them to new
domains and tasks. To accomplish this goal, the systems need to become more
intelligent and able to learn to extract information without need of expert skills or
time-consuming work from the user.

The type of information extraction system that is in focus for this thesis is semi-
structural information extraction. The term semi-structural refers to documents that
not only contain natural language text but also additional structural information.
The typical application is information extraction from World Wide Web hypertext
documents. By making effective use of not only the link structure but also the
structural information within each such document, user-driven extraction systems
with high performance can be built.

The extraction process contains several steps where different types of tech-
niques are used. Examples of such types of techniques are those that take advan-
tage of structural, pure syntactic, linguistic, and semantic information. The first
step that is in focus for this thesis is the navigation step that takes advantage of
the structural information. It is only one part of a complete extraction system,
but it is an important part. The use of reinforcement learning algorithms for the
navigation step can make the adaptation of the system to new tasks and domains
more user-driven. The advantage of using reinforcement learning techniques is that
the extraction agent can efficiently learn from its own experience without need for
intensive user interactions.

An agent-oriented system was designed to evaluate the approach suggested in
this thesis. Initial experiments showed that the training of the navigation step and
the approach of the system was promising. However, additional components need
to be included in the system before it becomes a fully-fledged user-driven system.

iii

ABSTRACT

iv

Acknowledgments

This work has been supported by The Knowledge Foundation and the University of
Kalmar in Sweden. I wish to thank my main supervisor Professor Erik Sandewall
for his encouragement and wise guidance throughout this project. I would also like
to give my thanks to Christer Lundberg and Professor Wlodek Kulesza.

I would probably not have started my Ph D studies without the encouragement
and support given by Christer Lundberg. Professor Kulesza, who is also one of
my supervisors, has also been very helpful to me. The general discussions and
especially the financial support throughout the difficult economic situation at our
department have been appreciated. I would also like to give my thanks to professor
Valeri Marenitch for very interesting discussions and wise comments.

Final thanks go to my parents for always being there and supporting me.

v

ACKNOWLEDGMENTS

vi

Contents

Abstract iii

Acknowledgments v

1 Introduction 1
1.1 Thesis Goals . 4
1.2 Thesis Overview . 5

2 Background 7
2.1 Knowledge Management . 7
2.2 Information Retrieval . 8
2.3 Information Extraction . 8
2.4 Semantic Web . 8
2.5 Semi-structured IE . 9
2.6 Agent-Oriented Development . 10

2.6.1 The Agent Concept . 10
2.6.2 Agent-Oriented Programming 11
2.6.3 Agent Properties . 12
2.6.4 Agent Architectures . 13
2.6.5 Agent Design . 16
2.6.6 Agent Communication 17
2.6.7 Agent Frameworks . 21

2.7 The Buyer’s Guide System . 22
2.7.1 System Architecture . 23
2.7.2 Extraction Approach . 23
2.7.3 Extraction Problems . 23
2.7.4 Conclusions . 24

3 The Extraction Task 27
3.1 Extraction Task Types . 27
3.2 System Modes . 29

3.2.1 The Training Mode . 29
3.2.2 The Extraction Mode . 30
3.2.3 The Query Mode . 31

vii

CONTENTS

3.3 The Hypertext Model . 31

3.4 The Navigation Step . 32

3.4.1 Learning to Navigate . 33

3.5 Additional Steps . 33

4 Design for the ASIE System 35
4.1 Methodology . 35

4.2 Agent Platform . 35

4.3 System Architecture . 36

4.3.1 The Butler Agent . 36

4.3.2 The Surfer Agent . 37

4.3.3 The Analyzer Agent . 38

4.4 The Learning Algorithm . 38

4.4.1 Random Walk Experiment 40

4.4.2 Learning Algorithm Extensions 44

4.4.3 Algorithm Complexity 44

5 Evaluation 47
5.1 Experiment Overview . 47

5.2 Experiment Setup . 49

5.3 Results . 50

5.3.1 Local Optima Problem 51

5.3.2 Non-greedy Action Problem 52

5.3.3 Penalty Accumulation Problem 52

6 Related Work 55
6.1 Existing Semi-structural IE Systems 56

6.1.1 Ashish and Knoblock’s Wrapper Generation Toolkit . . . 56

6.1.2 Rapper: A Wrapper Generator with Linguistic Knowledge 57

6.1.3 Wrappers in the TSIMMIS System 57

6.1.4 The Webfoot preprocessor 58

6.1.5 The ShopBot Comparison Shopping Agent 58

6.1.6 The WYSIWYG Wrapper Factory (W4F) 59

6.1.7 Head-Left-Right-Tail (HLRT) and Related Wrappers . . . 59

6.2 Discussion . 60

7 Ethical Considerations 63
7.1 General Effects of Knowledge Management 63

7.2 Intellectual Property Rights . 66

7.3 Ethical Theories . 67

viii

CONTENTS

8 Conclusions 71
8.1 Intelligent Navigation . 71
8.2 Information Extraction . 72
8.3 Ethics . 73
8.4 Limitations . 74
8.5 Future Work . 75

Bibliography 77

List of Figures 83

List of Equations 85

ix

CONTENTS

x

Chapter 1

Introduction

The information extraction (IE) concept has been given a number of different defi-
nitions such as “the task of semantic matching between user-defined templates and
documents written in natural language text”, “a process that takes unseen text as
input and produces fixed-format, unambiguous data as output”, and “to extract rel-
evant text fragments and piece them together into a coherent framework” [1, 2, 3].
The preferred definition for this thesis is to find subsets of relevant textual infor-
mation for a given task or question and organize them into a clearly defined data
structure. This is different from the area of text understanding that attempts to
capture the semantics of whole documents, IE deals only with document subsets
relevant for a given task or question.

Examples of applications of IE are shopping agents that locate information
about products or services at different retailers and compare them to find the best
retailer, event agents that collect information about events that occur at different lo-
cations and times, and news agents that collect news articles from different sources
and present articles relevant for a specific user. Information stored in free natu-
ral text or with a semi-structural format would be too difficult to handle directly
without IE for these applications.

The area of information retrieval (IR) has attracted a lot of attention recently
due to the increased popularity of the World Wide Web. Services such as AltaVista
and Google are known by most Internet users and are an essential part of the Web
today. The main difference between IR and IE is that IR returns a set of documents
rather than a set of answers or phrases related to the query. Thus, the information
is not translated to a defined data structure in IR. The advantage of IR is that it is
possible to cover a large number of domains, whereas IE typically requires domain-
dependent knowledge and is therefore limited in the number of covered domains.
These two areas should not be seen as predecessors or successors of each other,
rather they can be combined and complement each other to provide more useful
services.

The concept structured text as used in this paper refers to textual information
stored in a clearly defined data model, for example in a relational database. The

1

CHAPTER 1. INTRODUCTION

advantage of clearly defined structural information is that the information can be
automatically analyzed and processed more effectively. All the information has to
adhere to the schema that defines the data model. Semi-structured text does not
have the clear data model representation as structured text, but has more structural
information than natural language text, e.g. HTML documents with presentational
information combined with the content. The information does not have to adhere
to a predefined schema. These semi-structural documents are often less grammati-
cally correct than natural language texts with choppy sentence fragments [4]. The
natural language processing (NLP) methods designed for free text do usually not
work as well for semi-structural information sources.

A possible solution to this problem could be to simply remove the presentation
related information and continue to use NLP techniques. The disadvantage of this
solution is that valuable information for the extraction task would be lost. The
problem of choppy sentence fragments would also still be present. It has also been
shown that the extraction task can be performed with very high accuracy using only
the semi-structural information, without the use of any NLP technique [4].

Web documents change rapidly, in both content and structure. To handle the
dynamic nature of the Web, it is necessary to have adaptive and easily developed
IE systems. A common task of web-based IE systems is to collect information
from a web site where the semi-structural information is more or less constant
and the content changes frequently. Thus, the IE system benefits from the use of
semi-structural information to complete the task. This is not possible with free text
information extraction, which lacks the kind of semi-structural information present
in Web pages.

The term wrapper has been given different definitions depending on the con-
text. In the database community, it represents a software component that converts
data from one data model to another. In the Web context, it represents a software
component that converts information in a Web page to a structural format, e.g. into
a database. The latter corresponds to the preferred definition in this thesis. The
term wrapper represents an IE software component that takes semi-structured tex-
tual input and generates structured text as output. Automatic wrapper generation
and wrapper induction are terms that refer to the automatic construction of wrap-
pers, for example using machine-learning techniques.

The performance of semi-structural IE systems (e.g. wrappers) is often mea-
sured differently than traditional systems. The precision and recall measure is typ-
ically very high and therefore not a useful measure of the system. Only systems
with 100% precision and recall are of interest for sources with significant amounts
of semi-structural information [5]. These systems are evaluated by their expres-
siveness and efficiency, which measures the coverage of the wrapper (percentage
of sources that have 100% precision and recall) and how easily the wrapper can be
adapted to new domains.

The development and adaptability of IE systems can be categorized in the three
different approaches described below. The knowledge engineering approach is the
traditional way to construct IE systems and the user-driven approach is novel and

2

still mostly a concept [6]. A truly user-driven IE system has the advantage of not
requiring a domain or computer expert to adapt to new domains and tasks. Without
the need for domain and computer experts, the availability and use of IE systems
can be increased significantly.

Knowledge Engineering This approach requires a domain expert who is able to
add extraction rules to the system. The difficulty of finding domain experts
who also have sufficient computer knowledge makes it difficult to adapt to
new domains.

Automatic Training The use of machine learning techniques can relax the re-
quirement of computer knowledge for the domain expert and thus only re-
quire domain experts who can annotate documents for the domain. The sys-
tem can automatically be trained using annotated documents. This makes
the job of adapting an IE system to a new domain easier, but it still requires
a significant amount of work to construct the training data for the system.

User-Driven IE UDIE differs from automatic training in that novice users rather
than domain experts shall be able construct an IE system without need of
large training sets. This makes it easy to adapt to new domains, although
more intelligence is required for the system and higher requirements of the
domain. For example, it may be necessary to have semi-structural documents
instead of free natural language texts.

One of the main topics in this thesis deals with the adaptivity of the naviga-
tion task for an IE system. The navigation task involves how to navigate through
the hypertext parse tree (or subset of that tree) from a given start point to desired
extraction points. The navigation can cover multiple linked pages, thus the task
defines which pages to download in addition to which nodes in the parse tree to
extract.

It would require a lot of work for the user to manually define and maintain the
path through the tree. It would be more efficient to require only a starting point and
a few examples of what to extract from the user and to then automatically locate
the optimal paths between the starting point and the extraction points. The level
of adaptivity of the navigation tasks depends on the amount of work and expertise
required for new domains and tasks. A high degree of adaptability is required to
make the IE system user-driven.

Specialized techniques are necessary to be able to let novice users construct
wrappers with few examples, handle complex structures such as nested and linked
lists, and handle the dynamics in the source documents. The learning algorithms
used in wrapper induction systems are seldom able to handle uncertainty or dy-
namic properties of the process. Furthermore, they use a character-based view of
documents, rather than a tree-view; thus, the patterns that are identified do not
take full advantage of the nodes and relationships between them. A tree-view of

3

CHAPTER 1. INTRODUCTION

the documents and the links between them would possibly increase the use of the
existing structural information.

One approach to the problem is to view the corpus as a large tree where each
node represents an element in the document1. The extraction process can then be
viewed as a Markov process where a decision is made for each node as to whether
it should be explored further and/or if it should be extracted. Since we do not have a
large amount of training data or ability to know in advance which node that should
be traversed, it would be appropriate to use reinforcement learning techniques to
create and maintain a decision policy. The Q-lambda learning [7] which is based
on traditional Q-learning and has the ability of off-line policy learning, does not
need to know the complete process model, and relatively quickly approaches the
optimal policy. These properties makes the algorithm suitable for the navigation
and extraction type process described above.

With this model of the process, a learning algorithm and an interactive user
interface during the learning phase, a new type of information extraction system
is proposed. Advantages should be that novice users would be able to extract in-
formation from semi-structured sources in an easy and efficient fashion. Another
feature to consider is to include an automatic re-calibration, i.e. re-training of nav-
igation and extraction policy, if the structure dramatically changes.

1.1 Thesis Goals

The general IE task is an AI-complete problem. It would require full natural lan-
guage understanding, something that we are far from being able to accomplish to-
day. IE for limited domains and tasks does not require the same amount of knowl-
edge and intelligence, and successful application of such IE systems exists today.

The overall goal of the work presented in this thesis is to improve knowledge
management techniques, more specifically in the context of intelligent automated
processing of information provided by World Wide Wed services. The following
list describes the goals in more detail:

• Propose an approach for a user-driven information extraction system in semi-
structural environments

• Suggest a suitable learning algorithm to handle the semi-structural informa-
tion

• Find a way to handle the dynamic nature of the Web

• Implement a test-bed, or a prototype system

• Indicate future topics of research

1The node actually represents only block-level HTML elements, not character-level elements.

4

1.2. THESIS OVERVIEW

1.2 Thesis Overview

Chapter two presents background information for topics related to the main content
of this thesis. The purpose is to “set the stage” for the rest of the thesis and show the
position in a number of questions. A substantial introduction is given to the agent
concept, which otherwise may not be as noticeable in the thesis but still central to
the ideas and developments for the project.

A description of the complete information extraction task that is in focus for
this thesis is given in chapter three. This chapter explains the different steps and
components of the task and their relationships to each other. The ASIE (Adaptive
Semi-structured IE) system that is used to evaluate the approach taken in this thesis
is presented in chapter four. This chapter is the most practically oriented part of
the thesis. It also describes the reinforcement learning algorithm that is used for
the navigation step of the extraction task. The extensions made to the algorithm
are also described and partly motivated in this chapter.

The implementation of the ASIE system is evaluated in chapter five. It de-
scribes the methodology used and details about experiments performed to put the
system to test. Results of the experiments are also included in this chapter. Related
work is described and compared to the approach in this thesis in chapter six.

The development of any powerful technique may be subject to abuse and pos-
sibly lead to undesired consequences. It is therefore important to consider the
positive as well as negative effects of the techniques presented in this thesis. An
introduction to ethics is given in chapter seven, together with ethical discussions of
possible negative effects.

The final chapter provides conclusions of the thesis, what its contributions and
limitations are, and identifies possible future work.

5

CHAPTER 1. INTRODUCTION

6

Chapter 2

Background

This chapter provides background information for topics that are used in this the-
sis. The chapter starts with theoretical information about general topics such as
knowledge management and becomes more specific and practical at the end.

2.1 Knowledge Management

The major problem in the information society of today is how to handle the huge
amount of information that is available. Computer-aided techniques that can au-
tomatically find relevant information, perform intelligent analyzes, and provide
knowledge rather than information are becoming essential for everyday activities.

Knowledge Management (KM) tries to maximize the use of available knowl-
edge in a system or organization. This implies that knowledge should be accessi-
ble, shared, reused, and embedded in the work context to increase the effectiveness
of the organization. The knowledge management process can be divided into the
following steps [8]:

• Knowledge Goals: Determine Goals for KM Activities

• Knowledge Identification: Create Overview of Available Knowledge

• Knowledge Structuring: Structuring and Integration of Knowledge

• Knowledge Capturing: Acquisition of Knowledge

• Knowledge Dissemination: Goal Oriented Dissemination of Knowledge

• Knowledge Usage: Productive Usage of Knowledge for the Company

• Knowledge Preservation: Storage and Maintenance of Knowledge

• Knowledge Assessment: Assessment of Current Knowledge and Compli-
ance with Goals

7

CHAPTER 2. BACKGROUND

The term ”knowledge” is usually interpreted differently from ”information”
and ”data”. Data is just the bits or numbers without any defined meaning or con-
text. Information is obtained by interpreting the data and thereby adding a seman-
tic/meaning. For example, a message containing data in a defined syntax can be
given a defined meaning/semantic by declaring a language and ontology for the
message. The language together with ontologies gives the message semantics for
a specific domain of discourse. The information is often descriptive by nature and
describes events in the past. To have use of the information, it should also be
able to predict things about the future, i.e. the information becomes knowledge.
Knowledge can be thought of as a collection of information that is of use for the
organization and is therefore predictive in nature [9].

2.2 Information Retrieval

The area of Information Retrieval (IR) [10] has already reached high levels of so-
phistication and is used by a very large amount of users today. Services such as
AltaVista, Google, and Yahoo are known by most Internet users. The main advan-
tage of this type of service is that it is able to handle generic domains and can cover
the entire the Web in a single system. However, it is not sufficient for all types of
questions or tasks that are needed. The lack of semantic understanding and ability
to compile a directly useful answer, i.e. provide knowledge, makes semantically
more difficult tasks not appropriate for this type of service.

2.3 Information Extraction

Information Extraction (IE) uses techniques different from Information Retrieval
to obtain a higher degree of knowledge from textual information sources [3]. The
basic IE system consists of a set of predefined templates containing a set of name-
value pairs that are used to extract information from the corpus. The information
obtained is structured and relatively easy to analyze to provide directly useful in-
formation. The disadvantage is that the templates are typically domain-specific;
thus making an IE system less generic than a typical IR system.

Common approaches in IE consist of using statistical and linguistic knowledge
to be able to find syntactical patterns that match the set of templates in the system.
The use of resources such as WordNet [11] can give more semantically driven
approaches by considering the underlying concepts and their relationships instead
of the syntactical patterns.

2.4 Semantic Web

The task of IE would be greatly simplified if more semantics were included in
the source documents. The documents on the Web today are primarily targeted

8

2.5. SEMI-STRUCTURED IE

towards humans and not towards machines. The amount of background knowledge
in humans makes it unnecessary to “tag” the information with semantic clues, it
is sufficient with the content and information about how to present it. Machines
of today require more information; they cannot interpret the complex meaning of
natural language text or the “semi-structural” information1 that is available on the
Web. The Semantic Web initiative [12] tries to define how to include semantic
clues in the document so that machines in the future will be able to interpret the
information effectively.

One of the applications of IE in the future will be to translate existing docu-
ments automatically or semi-automatically into semantically enriched documents.
Given that this semantic information is present, information retrieval systems could
be greatly enhanced to provide services that are more intelligent.

2.5 Semi-structured IE

A problem with the IE techniques of today is that they are mostly targeted for
natural language text, i.e. unstructured text. If more structural information such as
tables or lists is present in the document, the system will often fail to employ the
linguistic and statistical methods. The term “semi-structured” refers to information
that contains more structural information than natural language text, but not as
structured as in relational or object-oriented databases. Semi-structured documents
may have an irregular structure that does not adhere to any predefined schema.

One of the main conferences for IE, the Text REtrieval Conference (TREC),
focuses mainly on the ability to handle natural language text rather than semi-
structural text. Many tasks and questions relevant for the user and suitable for IE
deal with information that is presented in tabular format, e.g. price of products,
schedule of events, and personnel lists.

The task of extracting information from semi-structured sources is not as dif-
ficult as extracting information from natural language text. There are more clues,
i.e. the structure, to guide the process to the right extraction points. However, some
of the common IE techniques such as linguistic rules become less useful and new
techniques are needed to handle the structural information.

A large number of applications that work with this kind of task already exist
today , e.g. a number of “shopping sites” that extract information about certain
types of products from different retailers and compare them with each other to find
the best retailer. The Buyer’s Guide [13] is an example of such a site that works in
the computer products domain in Sweden.

The current approach used in these applications is to use some kind of “knowl-
edge engineering” approach, i.e. a domain expert constructs a set of extraction
rules. This makes it difficult to construct and maintain the system. It would be bet-
ter if the system itself could construct the rules and handle changes in the source

1Semi-structural in this context refers to the natural language text combined with information
about how to present it

9

CHAPTER 2. BACKGROUND

documents that might occur in the future. This suggests that a machine-learning
approach would be appropriate.

There are a number of approaches to the task of automated template construc-
tion. The basic architecture of these systems consists of an IR module that selects
relevant documents from a given corpus and another module that creates templates
based on the objects/concepts that interact and their relationships and properties
[14]. These systems primarily work with natural language text. The area of wrap-
per induction typically deals with automated construction of wrappers [5], i.e. tem-
plates for semi-structured documents. The basic approach consists of a variation
of Head-Left-Right-Tail (HLRT) identification in the documents, i.e. to find the
extraction points for some kind of list of items.

2.6 Agent-Oriented Development

The system described in this thesis (see chapter 4 on page 35) has been developed
based on agent-oriented ideas. The use of agent-oriented design makes complex
systems more robust and provides an intuitive view of the system. The main dis-
tinction between agents and non-agents is in our expectations and our point of view.
Just as some algorithms can be more easily expressed and understood in an object-
oriented representation than in a procedural one, so it may be easier for developers
and users to interpret the behavior of their programs in terms of agents.

2.6.1 The Agent Concept

The initial meaning of an agent, originated by J. McCarthy in the mid-1950’s and
coined by O. Selfridge a few years later, was a system that given a goal could per-
form appropriate actions and that asks for advice when necessary. However, the
term has later been used for a variety of purposes. Various definitions have been
used such as “something acting on behalf of someone else”, “serving as a medi-
ating role between humans and computer software”, “anything that can be viewed
as perceiving its environment through sensors and acting upon that environment
through effects”, or simply a software entity that executes in the background or is
scheduled to run later. These definitions are quite general and can be interpreted to
allow anything be an agent.

A popular understanding in the web community of the term agent in recent
years is that of a service that collects information from different web sites and
presents a compiled result, e.g. an Internet shopping agent. These services could
more appropriately be called information agents or wrappers. The term agent
should be given a general definition that describes the characteristics of the en-
tity in question rather than a specific task or environment where the entity resides.
A preferred definition from Jennings [15] states:

An agent is an encapsulated computer system situated in some envi-
ronment and capable of reactive, proactive, and autonomous action in

10

2.6. AGENT-ORIENTED DEVELOPMENT

that environment in order to meet its design objectives.

This definition is specific for software agents, i.e. computer systems, but it
captures the most important properties that differentiate an agent from a non-agent.
More information about such properties is given in chapter 2.6.3.

2.6.2 Agent-Oriented Programming

The concept of agent-oriented programming, as presented in the ground-breaking
paper written by Shoham in 1993 [16], introduces a new language paradigm2. A
substantial amount of work has been carried out since then trying to complete a
formalism for intelligent agents. Shoham’s view of a software agent consists of
mental components such as beliefs, capabilities, choices, and commitments, i.e.
software with mental states.

An agent according to Shoham is an entity whose state is viewed as consisting
of mental components, i.e. it is the view of the entity rather than the entity itself
that makes it an agent or not. This view can be applied to small and well-known
systems such as thermostats, but it is most useful when applied to complex systems
that are largely unknown in structure. This can be illustrated through the light-
switch example [17]:

It is perfectly coherent to treat a light switch as a (very cooperative)
agent with the capability of transmitting current at will, that invari-
ably transmits current when it “believes” that we want it transmitted
and not otherwise; flicking the switch is simply our way of commu-
nicating our desires. However, while this is a coherent view, it does
not buy us anything, since we essentially understand the mechanism
sufficiently to have a simpler, mechanistic description of its behavior.
In contrast, we do not have equally good knowledge of the operation
of complex systems such robots, people, and, arguably, operating sys-
tems. In these cases it is often most convenient to employ mental
terminology.

Agent-Oriented Programming (AOP) can also be seen as a specialization of
the Object-Orientation Programming (OOP) paradigm where the object’s (or rather
the agent’s) states have been fixed to a set of mental states. A new programming
language called Agent-0 [18] defines language constructs for mental components
such as belief, capability, obligation, and commitment. The control loop of an
Agent-0 program starts with gathering incoming messages and updates the mental
state, and then executes commitments using the capabilities.

Agent-0 should not be seen as a complete ready-to-use language, but as a base
for other languages. However, few actual useful languages have been developed

2The AOP term was actually coined in 1989 by Shoham

11

CHAPTER 2. BACKGROUND

that fulfill the promise of AOP. Agent frameworks based on traditional program-
ming languages have now reached a higher level of usefulness and have become
more popular (see section 2.6.7). This definition of agent-orientation that only ad-
dresses the view of a system helps in understanding how a system works but may
be of little guidance when designing a system. A definition should also provide de-
tails about how a system should be designed to be agent-oriented, such as Jennings’
definition.

2.6.3 Agent Properties

Agents can be classified by different properties such as the environment they live in,
type of task they perform, or their architecture. For example, an information agent
can be designed to operate in the Web environment dealing mainly with textual
information. It should also be noted that the term agent represents more than just
software agents, e.g. humans are also agents. Figure 2.1 shows some examples of
different types of agents.

Biological
Agents

Robotic
Agents

Software
Agents

Task-specific
Agents

Entertainment
Agents

Information
Agents

Autonomous
Agents

Figure 2.1: Agent Taxonomy (modified from Franklin and Graesser [19])

There are no sharp lines between what an agent is and what is not an agent.
The set of properties listed in table 2.1 represents certain features that separate
agents from non-agents, but it is not always possible to give an absolute answer
as to whether a specific property applies or not for an entity. These properties do
however show in an informal way what constitutes an agent.

The following simple example can be used to understand these properties. Con-
sider the difference between a football and a football (soccer) player. The player
is obviously an agent and the football is not. The player has reactivity since he/she
operates in an environment where he/she can sense input such as vision and audio
and he/she can act by muscular power in a timely fashion to reach the goal. The
football can neither sense nor act in the environment. The player has autonomy
since he/she can change his/her internal state, the football has not. Similar argu-
ments can be made for the rest of the properties. Mobility, the last property, does

12

2.6. AGENT-ORIENTED DEVELOPMENT

not apply to this example since it does not deal with a computer environment.
It should be noted that it is not necessary to fulfill all these properties to be

called an agent and it can be difficult to give a definitive yes or no answer to
whether an agent possesses a certain property. Few existing software agents have
for example real deliberative capabilities. Service agents that do not interact with
human users have no need for a human-like personality interface. One of the most
important properties that separate agents from non-agents is that of autonomy. A
software entity that is completely dependent on someone else to reach the goal,
e.g. requires human input, should not be called an agent. However, it is of course
allowed and often appropriate for an agent to ask for assistance, but without being
completely dependent on the answer.

2.6.4 Agent Architectures

The deliberative and reactive properties previously described also show two classi-
cal types of agents. A classical deliberative agent contains an explicitly represented
symbolic model of the world, where decisions are made via logical reasoning and
theorem proving [21]. Two main challenges with this approach are how to translate
the real world into an accurate, useful symbolic description and how to represent
and reason with that symbolic information. Techniques such as vision, speech un-
derstanding, learning, commonsense reasoning, and automated reasoning need to
be solved to be able to use this approach effectively. Current techniques are far
from complete in these areas.

A reactive architecture contains no symbolic model of the world; it is much
simpler in terms of the computation that they need to perform. Some researchers
say that most everyday tasks are ”routine” in the sense that they require little, if
any, new abstract reasoning [22]. Most tasks, once learned, can be accomplished
in a routine way with little variation. These routines could be encoded into a low-
level structure that only needs periodic updating. Agents may have both a reactive
and deliberative behavior and perform quick actions for some events and plan for
more long-term actions to be performed later. This is called hybrid architecture.

An early example of a deliberative architecture is the STRIPS planning system
[23]. This system takes a symbolic description of the world, a desired goal state,
and a set of action descriptions that characterize the pre- and post-conditions asso-
ciated with various actions. It then attempts to find a sequence of actions that will
achieve the goal, by using simple means-ends analysis, which essentially involves
matching the post-conditions of actions to the desired goal. These very simple
methods where shown to be ineffective on problems of even moderate complex-
ity. Even with refinements to this method, theoretical results have been shown that
indicate that these techniques will turn out to be unusable in any time-constrained
system [24]. These results have had a profound influence on subsequent AI plan-
ning research and caused researchers to question the whole symbolic AI paradigm.

The mental categories beliefs, desires and intentions (BDI) can be used to de-
scribe the internal processing of a deliberative agent. This BDI architecture has

13

CHAPTER 2. BACKGROUND

Table 2.1: Agent Properties (adapted from Bradshaw [20])

Reactivity the ability to selectively sense and act in a timely fashion

Autonomy have control over their own internal states and behavior

Goal Directedness the ability to fulfill given objectives, without being told how
to fulfill them

Pro Activeness self-starting behavior, ability to initiate actions

Collaborative Behavior can work together with other agents to achieve a com-
mon goal

Knowledge Level the ability to communicate with persons and other agents
with languages resembling human-like ”speech acts” different from typical
symbol-level program-to-program protocols

Deliberative the ability to plan a sequence of actions to reach the goal; to be able
to reason about the utility of the actions, perhaps using a symbolic model of
the environment

Temporal Continuity persistence of identity and state over long periods of time

Personality the capability of manifesting the attributes of a human-believable
character such as emotion

Adaptivity being able to learn and increase performance with experience

Mobility being able to migrate in a self-directed way from one host platform to
another.

14

2.6. AGENT-ORIENTED DEVELOPMENT

initialize();
while (true) {

options = optionGenerator(eventQueue);
selectedOptions = deliberate(options);
updateIntentions(selectedOptions);
execute();
getNewExternalEvents();
dropSuccessfulAttitudes();
dropImpossibleAttitudes();

}

Figure 2.2: Abstract BDI Interpreter

become a popular model in the design of agents and been used since Bratman et al
in 1987 [25]. A sample of an abstract BDI interpreter can be seen in figure 2.2 that
gives a basic understanding of the process of a BDI agent [26].

Beliefs are usually modeled using possible-world semantics where a set of pos-
sible worlds is associated with each situation. The set of beliefs are dynamic and
depend on sensory input from the world. The desires of an agent specify what
preferences the agent has. The desires need not be consistent with what the agent
believes to be possible, it can be a set of preferred future world states or courses
of action. The goals of an agent are a subset of desires that are currently possible
and can be used to define what options an agent currently has. The term strong
realism refers to the goals also being a strict subset of the beliefs. The intentions
of an agent are the subset of goals that the agent has the intention to perform. The
agent can seldom perform all goals, even if they were consistent, due to resource
limitations. This process of selection of goals/actions to perform is called the for-
mulation of intentions. The plans of an agent consist of a sequence of intentions to
achieve a higher goal, thus an intention can be seen as a partial plan.

A popular architecture for hybrid agents, i.e. agent with both reactive and
deliberative capabilities, is the Reactive Action Packages (RAP) architecture [27].
This architecture consists of the three layers planning, executor and controller, see
figure 2.3. This model of three layers is very characteristic for hybrid agents.

The planning layer manages the deliberative tasks such as planning and pro-
duces sketchy plans for achieving goals using internal knowledge about the world
and a plan library. The executor fills in with details in the plans when they are about
to be executed. The executor is also able to detect failure and to select alternative
plans to achieve the goal. It is also able to provide primitive actions to the planner.

The controller provides sensing routines that give information about the world
to the executor and behavior routines that handle the reactive nature of the agent.
The behavior routines handle things like collision detection that need to be dealt
with in a timely fashion. Firby also focused on the interface between continuous
and symbolic robot control, i.e. how to turn symbolic actions into continuous pro-
cesses. The planning layer deals with the symbolic representation of the world

15

CHAPTER 2. BACKGROUND

Sensor Effector

Planner

Executor

Controller

Figure 2.3: The RAP’s Architecture

and the executor turns the symbolic and discrete actions into a sequence of contin-
uous processes. This architecture does not include interaction with other agents,
something that is required in the strong notion of an agent. There are extensions
to this architecture, such as InterRAP [26], that extends the model with an addi-
tional cooperation layer that can generate plans that satisfy multiple agents and add
inter-agent communication capabilities.

2.6.5 Agent Design

The agent-oriented paradigm is of particular use when designing complex systems.
To be able to handle these complex systems effectively, they need to be decom-
posed into smaller sub-systems, organized to find appropriate relationships, and
abstracted to find a suitable level of relevant details [28]. As seen in figure 2.4,
complex systems can often be organized into a hierarchy that consists of sub-
systems at different levels of abstraction. It is typical for these sub-systems to
interact highly within themselves and only rarely with other sub-systems.

Figure 2.4: Relationships in Complex Systems [28]

16

2.6. AGENT-ORIENTED DEVELOPMENT

The development of a system can be handled more effectively if the designer
can focus at smaller sub-systems separately, i.e. the system needs to be decom-
posed. Complex systems can typically be decomposed into smaller parts that in-
teract mainly with itself and only rarely with other sub-systems. This makes it
possible to handle each sub-system separately as an autonomous and flexible unit.
A sub-system works together with related sub-systems to reach the goal of the par-
ent system. This motivates the choice to decompose a system by considering the
goals or function they provide, rather than the data they provide as in traditional
OO. Current trends in software engineering also motivate the design of proactive
and autonomous entities [28, 29], i.e. agents with their own thread of control able
to reach their goal and deal with unknown situations.

The abstraction of a system provides an intuitive model where the designer
can focus on the relevant properties. The decomposition into sub-systems of dif-
ferent abstraction level is one way to abstract that is already motivated above. The
interaction between sub-systems can also be abstracted as high-level social interac-
tions, which is a natural way to view communication. The method-invocation type
of communication can be difficult to use for complex systems. It removes the au-
tonomy of the entities and requires the caller to consider not only failures for itself
but also failures for the responder and all actions that it will perform. An agent-
oriented approach using speech-act based communication protects the autonomy
of the entities and allows entities to communicate using standardized protocols and
languages (see chapter 2.6.6).

As seen in figure 2.4 above, a number of relationships at different levels of
abstraction exist in complex systems. These relationships can be of different types
such as part-of, type-of, client-server, peer, and team relationships. It is also possi-
ble that these relationships are dynamic, i.e. they change over time. The traditional
class structures used in OO design provides little support for representing these
types of relationships in an intuitive fashion. Agent-oriented frameworks such as
JADE (see section 2.6.7) allow these relationships to be represented as behaviors
implementing interaction protocols as defined by FIPA [30]. It is therefore possible
to handle dynamic relationships of different types in an intuitive fashion.

2.6.6 Agent Communication

The ability to inter-operate and reuse software components is central to software
engineering. This requires a way of interacting and communicating between the
components. The use of method invocation as used in traditional object-orientation
is limited to communication only between other components written in the same
programming language and platform. Component-based communication, e.g.
CORBA, COM, and JavaBeans, increases the ability to communicate to other
components by introducing a standardized interface that makes it independent of
the programming language used to implement the component. Agent-oriented
high-level communication based on standardized protocols allows communication
independent of programming language, platform, or network protocol. However,

17

CHAPTER 2. BACKGROUND

this requires well-accepted agent communication language standards, something
that has not yet been achieved [31].

Another problem with method-invocation communication is the lack of se-
mantics included in the messages. The meaning and reason for the invocation
is not clear from the invocation itself and thus an increased responsibility is placed
on the designer to consider the effects of an invocation. Agent communication
typically consists of speech-act based messages that stand a level above method-
invocation communication. This does not replace existing techniques such as RMI
or CORBA; they are still used during agent communication at a lower level and it
is hidden from the designer. The use of specific content languages and ontologies
in agent communication allows messages to contain a higher level of semantics and
thus increase the ability to communicate with other agents.

The two major classical agent communication languages (ACLs) are KQML
[32] and FIPA ACL [33]. According to the authors of KQML, agent communica-
tion languages should exhibit properties such as declarative form, separate content
language and message language, clear semantics, efficient implementation, and
be independent of network transport mechanism[32]. An ACL message typically
consists of three abstraction layers as seen in figure 2.5.

CONTENT

COMMUNICATION

MESSAGE

Agent 1 Agent 2

Figure 2.5: ACL Message Format

The highest layer, the content layer, contains the actual meaning/purpose of the
message. This content is encoded by specified language and uses a vocabulary that
is specified by the ontology. The ontology specifies available concepts and relation-
ships between these concepts. For example, if an agent is talking to other agents
about a shopping domain, the ontology could contain concepts such as vendor,
customer, products, price, order and rules for how propositions can be constructed
with these concepts. The language specifies how to encode these propositions into
a single serial digital unit, e.g. LISP or XML syntax is often used. It is important
to have a clear semantic in the message to avoid incorrect interpretations by other
agents. This will increase the ability to talk to agents that have been designed by
other persons and organizations.

The communication layer adds information to the message such as the sender
and receiver name for the message. The low-level message layer specifies which
network protocol to use and how to encode the message before transmitting it. It
also adds information about which language is used in the content of the message,
which ontology to use, and which performative (speech act) is used. See figure 2.6
for an example of a KQML message.

18

2.6. AGENT-ORIENTED DEVELOPMENT

(ask-one
:sender joe
:content (PRICE IBM ?price)
:receiver stock-server
:reply-with ibm-stock
:language LPROLOG
:ontology NYSE-TICKS)

(tell
:sender stock-server
:content (PRICE IBM 14)
:receiver joe
:in-reply-to ibm-stock
:language LPROLOG
:ontology NYSE-TICKS)

Figure 2.6: KQML Message Example [34]

The ACL developed by FIPA is similar to KQML in most aspects. The main
difference is the semantics of the speech acts [34]. Therefore, it is not possible
to match exactly the acts from KQML to FIPA ACL and vice versa. FIPA ACL
use a content language called Semantic Language (SL) (as opposed to the KIF
language commonly used in KQML) that is a form of multi-model logic with modal
operators for beliefs, desires, uncertain beliefs, and intentions. FIPA agents need to
have some understanding of this language to process ACL messages. However, by
using frameworks such as JADE, most of this processing is handled automatically
and hidden from the designer.

The XML language is proposed as a standard that shall make machine-read-
able documents by providing a clean and formal design. It should be noted that
XML provides a low level syntactic standard that makes the documents machine-
readable, not machine-understandable. Despite the presence of DTDs and XML
Schemas that describe the XML document structure, this only describes the gram-
mar for the document and not the semantics of the document. In addition, an XML
document does not have to conform to a given DTD or XML Schema, the only
requirement is that the document is well-formed. In practice, XML is being used
as serialization syntax for other markup languages, as a data-exchange format for
computer applications, and as content markup language for Web pages with a con-
necting XML style sheet to transform the document to suitable presentation format.

The Resource Definition Framework (RDF) [35] is a proposed standard for
metadata, i.e. descriptions for resources on the Web, although it is not limited to
only working with Web resources. The goal is to make machine-understandable
documents by providing a higher level of semantics than present in for example
XML documents. The basic structure of an RDF document is a set of triples
where each triple consists of an object, an attribute, and a value. The triple is

19

CHAPTER 2. BACKGROUND

normally written as A(O,V), for example hasPrice(’http://www.books.
org/ISBN0012315866’, ’$62’). This is actually all that is defined in the
RDF model, i.e. the model itself is domain independent and does not place any
restrictions on the names of the objects or attributes used. The RDF model does
not specify any mechanism for reasoning; it can be characterized as a simple frame
system, which can be used as a base for a reasoning system. The serialization syn-
tax of RDF documents is proposed to be XML documents, but other formats are
also possible.

RDF Schemas can be used to define a particular vocabulary that should be used
for RDF attributes and it allows the specification of the kinds of object to which
these attributes may be applied. This is similar to how XML Schemas define the
vocabulary and rules for elements and attributes that should be used in XML doc-
uments. For example, two crucial RDF Schema constructions are subClassOf and
subPropertyOf that define a hierarchical organization of types (classes) of objects
and a hierarchical organization of properties of objects. Furthermore, constraints
on properties can be specified using domain and range constructs.

The use of RDF and RDF Schemas for communication between agents and
gain a semantic inter-operability has significant advantages over XML due to the
entity-relationship model (which is a natural way of describing a domain) that
is used in RDF documents instead of an arbitrary grammar defined in an XML
Schema. Of course, this does not solve the general problem of finding semantic-
preserving mappings between objects. However, the usage of RDF for data inter-
change raises the level of potential reuse much beyond parser reuse, which is all
that one would obtain from using plain XML.

DARPA Agent Markup Language (DAML) is a part of the DAML program
with the goal of creating technologies that will enable software agents to dynami-
cally identify and understand information sources, and to provide inter-operability
between agents in a semantic manner [36]. Besides creating an agent language,
the program contains tasks to create tools that embed DAML markup in web pages
and similar documents. Internet markup languages must move towards making
semantic entities and markup. DAML will be a semantic language that ties the
information on a page to machine-readable semantics.

A first draft release for the ontology core of the DAML language was released
in October 2000. The draft defines classes, subclasses, properties and a set of
restriction theorems. No explicit inference rules are included yet. The language
core was developed by a group of researchers from MIT. A number of people
joined the group later, including representatives from the OIL effort [37], the SHOE
project [38], and the KIF work [39]. Recently, research groups from Europe have
also joined the DAML effort, including Blekinge Institute of Technology, Sweden.

DAML-ONT markup (and later DAML+OIL [40]) is a specific kind of RDF
markup, which in turn is written in XML using XML Namespaces and URIs. A
DAML-ONT document consists of an Ontology root element, elements with meta
information such as version and comments, elements for defining classes, subclass
of, disjoint of class, and elements for defining properties, unique properties, unam-

20

2.6. AGENT-ORIENTED DEVELOPMENT

biguous properties, sub properties, equivalent to, inverse of, transitive relation, and
more. The expressiveness of DAML+OIL is significantly higher than the expres-
siveness of RDF.

2.6.7 Agent Frameworks

The development of agent systems is a complicated process that needs various tools
and platforms to be efficient. A number of frameworks exist today that support
building agent-systems. They provide features such as class libraries for develop-
ment support, platforms for executing agents, and services to manage the agents.
A large collection of links to different agent frameworks and other resources can
be found at the AgentWeb, MultiAgent and AgentLink sites [41, 42, 43].

This chapter will give a short description of JADE that is the framework used
in the system described in this thesis. A short introduction to the Via framework
and other related techniques are also given for comparison.

Java Agent Development Framework (JADE) [44] assists in the development
and execution of multi-agent systems. One of the main advantages of JADE is the
comprehensive support of the FIPA specifications [30], especially in agent com-
munication. It is ironic that although agents are supposed to increase the ability to
communicate with other systems, a well accepted standard for agent communica-
tion does not exist [31]. The support of FIPA standards is therefore significant. The
framework provides a class library for developing agents, a platform for execution
of agents that includes white- and yellow page services, and a message transport
and parsing service. The agent communication language is the FIPA ACL that
is very similar to the widely known KQML language. It also supports using and
building ontologies to support increased semantics in the agent communication.
JADE is available for free download [45] under the LGPL license.

The JADE framework can also be combined with JESS and the Protege toolkits
to provide support for agents with deliberate capabilities [46]. JESS is a Java-
based rule engine that supports reasoning with declarative rules. Knowledge can
be added and edited with the Protege tool that provides a graphical interface for
editing ontologies and knowledge-bases.

The Via system [47] is a commercial software product that provides a frame-
work for developing agents. It contains an API for building agents, a toolkit of
multiple communication and network services, built-in user-tracking features, an
agent server, and an easy-to-use graphical client interface. The system is built
entirely in Java; allowing agents to operate on any platform with a Java virtual
machine.

The graphical client interface allows novice users to manage available (i.e. al-
ready developed) agents in the server and the server loads and unloads agents from
RAM when needed to optimize server resources. The actual agents normally con-
sist of three parts: the agent, stimulus tasks, and action tasks. These parts have
their own thread of execution and can do their job at the appropriate time. The
stimulus tasks can be seen as the sensor of the agent that obtains information for

21

CHAPTER 2. BACKGROUND

the agent. The action tasks can be seen as the effectors that perform some action
in the environment. The Via system comes with a number of ready-to-use stimulus
and actions that help the developer in the process of designing an agent.

The development of agents is very similar (syntactically) to the development
of Java applets. The ViaAgent interface is inherited instead of the Applet interface,
and similar methods such as start() and stop() are implemented. The developer
chooses certain properties that are exposed to the user, e.g. an email address that
will receive some notification when the agent wants to inform the user. The user of
the agent can modify these properties with the graphical client interface. The pack-
age comes with a number of examples of simple agents, e.g. LoginWatcherAgent
that notifies the user when users log in and out of a UNIX server. The system is free
for educational purposes and can be obtained through Kinetoscope’s homepage.

A related technique that shows much promise in becoming a popular way of
interacting over the Internet is Web Services. A Web Service uses a set of XML-
based languages to locate and communicate with other systems in traditional low-
level method-invocation style. Support for building Web Services exists for most
programming languages and platforms, including Java. Microsoft’s .NET initiative
[48] even provides new programming languages that have intrinsic support for Web
Services, which makes the development of Web Services very efficient and intu-
itive. The main advantage of Web Services is the ease of development and use of
W3C standardized XML-based languages. There is however no support for high-
level declarative communication as in agent communication. The use of high-level
speech-based agent communication is possible with Web Services as a lower layer;
thus, they can complement each other to increase the inter-operability further.

2.7 The Buyer’s Guide System

The interest in information extraction and the work for this thesis began with the
development of the shopping agent site called “The Buyer’s Guide” [13]. The
purpose of that site is to guide and assist consumers of computer products in their
purchase. It collects information about computer products from different retailers
and compiles “tracks” a list of where to find and buy the best products. It is also
possible to execute advanced queries to find appropriate products.

The motivation for constructing this web site back in 1997 was that no similar
service existed at that time and it was very difficult to manually compare computer
products from different retailers. The site has now been running for about 5 years,
it collects information from about 40-50 retailers, has about 1 million page hits per
month, and has been voted in the top 100 web sites in Sweden for the last four
years by Internetworld. The following section gives a brief overview of the system
and what problems that have been experienced administrating the service.

22

2.7. THE BUYER’S GUIDE SYSTEM

2.7.1 System Architecture

The information about computer products is extracted from the retailers’ home-
page. The retailer does not have to construct or change anything on the web site;
the same pages as used by normal visitors are used. Figure 2.7 gives an overview
of the main components of the system. The agents work independently of the web
site and update information in a database. The information stored in the database
can subsequently be used by other agents to analyze the information further and to
present information in the web site.

USERS
WEB
SITE

DB

RETAILERS
AGENTS

Figure 2.7: TBG Architecture

2.7.2 Extraction Approach

The technique used by the agents to extract information has basically been built
using a knowledge engineering approach. A set of heuristic rules has been con-
structed that allows an agent to start on a given page and navigate through the
retailer’s site to find pages that contain different product categories. The infor-
mation about computer products are normally classified into different categories
by the retailers and the information about the assigned category is valuable to the
agent. Figure 2.8 gives an overview of the extraction agent process.

One of the more important tasks of the extraction agents in the site is to classify
the products into a common taxonomy. Thus, all the products from the retailers
shall be classified into a common taxonomy even if the taxonomy used by the
retailers differs substantially.

The information about product category, manufacturer, retailer, price range and
the description of the product is used to be able to identify identical products from
the retailers. The technique used to find identical products is again based on knowl-
edge engineering heuristic rules.

2.7.3 Extraction Problems

One of the first problems that occurs with the agents in the system is how to locate
the wanted information in the site. A specific agent is developed for each retailer.
The addition of a new retailer involves starting with a generic agent and adding

23

CHAPTER 2. BACKGROUND

Locate Product
Information

Extract
Information

Classify
Information

Update
Database

Figure 2.8: TBG Agent Flowchart

some retailer specific details to that agent. These details involve rules for how to
navigate through the site and how to classify the products.

The rules used to navigate the retailers’ site basically consist of Perl 5 regular
expressions. By combining use of common and specific rules for the retailers and
the power of regular expressions, the time required to add a new retailer is quite
short. However, the development of these rules requires significant experience and
knowledge in regular expression and programming.

The static nature of these rules also presents a problem when the structure of
the retailer’s web site is changed. The rules are made as generic as possible to
allow for some changes in the web site, but they fail to work if the structure of the
web site undergoes significant modifications.

One of the agents has the task of analyzing the information gathered by the
extraction agents and identifying identical products. The detailed information that
has been provided by the extraction agents, i.e. slots such as price, manufacturer,
model, size and speed of the product, makes this task significantly easier than a
pure natural language approach of the description of the product. This indicates
the need for an intelligent extraction process. The rules for product identification
are however static as well and it would be useful if they could handle the dynamics
of the product information. For example, the prices of computer memory change
rapidly and could decrease to 20% of the original price in as little as one month.

2.7.4 Conclusions

Even though the extraction rules work quite well, they do require significant knowl-
edge to develop. If information extraction is to reach a similar level of coverage

24

2.7. THE BUYER’S GUIDE SYSTEM

as information retrieval, novice users must be able to adapt and create extraction
services for new domains. This indicates the need for user-driven and intelligent
extraction systems.

The system must also be able to handle the dynamic nature of the Web. As ex-
perienced with this service, it is common that retailers change the structure of their
web site and the system must at least be able to handle small structural changes.

The use of artificial intelligence techniques in tasks such as product identifica-
tion is essential and very effective, e.g. use of Bayesian networks to classify and
identify products. Product identification would however be very difficult to per-
form without intelligent extraction techniques that provide sufficient information
to work with.

25

CHAPTER 2. BACKGROUND

26

Chapter 3

The Extraction Task

The need for efficient knowledge management tools is essential for the everyday
activities of today and the need will continue to increase with the amount and flow
of available information. Information Extraction is a type of knowledge manage-
ment tool that given a set of slots, i.e. fields can be filled with specific information,
produces a result set where these slots are filled with appropriate information from
given documents. The resulting information is highly structured and can be easily
analyzed by users of the system.

Information extraction can be used for different types of source documents and
tasks. Chapter 3.1 describes the type of system that is the focus of this thesis.
A system that performs this type of information extraction can be divided into
different modes or stages such as a training mode and an extraction mode. Chapter
3.2 describes how such a system can be divided into different modes. The type of
source documents that are the focus of this thesis need a model of how to represent
the content of these documents. Chapter 3.3 describes how such a model can be
designed and why it is appropriate for this type of extraction task.

One of the major parts of the extraction task that has been examined for this
thesis is the navigation step. The navigation step involves how to find the optimal
path from a given starting point to the desired extraction points. Chapter 3.4 de-
scribes what that step involves and how to handle it. A problem that occurs for
this type of extraction task is how to manage the dynamic nature of the Web and
specifically how to handle structural changes. Finally, to let the system be able to
handle more complex extraction tasks and to be less dependent on structural infor-
mation, additional techniques need to be implemented. Chapter 3.5 introduces the
problem.

3.1 Extraction Task Types

The type of information extraction system that is the focus of this thesis is sys-
tems that deal with semi-structural documents, i.e. documents that contain more
structural information than natural text but not as structured as in, for example,

27

CHAPTER 3. THE EXTRACTION TASK

relational or object-oriented databases. Such databases have a pre-defined schema
to which the data must conform. Semi-structured documents may have missing or
additional information, i.e. have an irregular structure that does not conform to a
predefined schema. The main type of application for semi-structured IE is intelli-
gent information agents that surf the World Wide Web and take advantage of the
semi-structural information in HTML documents.

This type of extraction system can be designed for specific domains by pro-
grammers that posses skills in programming and have knowledge of the domain of
discourse. It would be useful to have general-purpose extraction systems that can
handle any domain, similar to how information retrieval systems like Google and
AltaVista can handle nearly the entire Internet. However, the current state of the art
in the information extraction area is not able to handle such wide domains. Since it
would be too resource demanding to have programmers design extraction tools for
every domain, it is necessary to allow users without programming skills to design
or at least adapt systems to new domains. The term “user-driven information ex-
traction” (UDIE) [49] refers to this type of system that allows users without expert
skills to efficiently adapt and use such systems.

Information extraction systems that deal with natural language text have reach-
ed high levels of performance with the use of linguistic techniques such as part-
of-speech tagging, named-entity taggers, co-reference analysis, and word sense
disambiguation. Additional improvements can be achieved with shallow semantic
analysis such as using WordNet to find synonyms and being able to merge similar
appositives.

The additional structural information that exists in semi-structural documents
provides a significant amount of knowledge of how to locate the wanted pieces
of information for the extraction task. For some tasks, the structural information
is sufficient by itself to complete the extraction task successfully without addi-
tional linguistic or semantic knowledge, e.g. extraction of news headlines from
CNN’s web site [4]. The linguistic techniques used in many natural language ex-
traction systems unfortunately do not work as well in semi-structural documents.
The text is often less grammatically correct and contains mostly choppy sentence
fragments [4]. Therefore, the structural information becomes even more important
when working with semi-structural documents.

For semi-structural extraction tasks, it is common that a set of documents are
used repeatedly that have the same structure as in previous extraction. For example,
when extracting news headlines from CNN’s web site, the page structure remains
constant over time and the textual content varies. It is therefore possible to reuse
knowledge about how to extract information from previous extractions. Hence, the
structural information provides crucial knowledge for the extraction task and the
system can be effectively trained to extract information from certain domains using
that information.

The advantage of using machine-learning techniques, as opposed to traditional
knowledge-engineering methods, is that less work is required of the programmer.
Thus, the system becomes more user-driven. The use of supervised learning tech-

28

3.2. SYSTEM MODES

niques to train extraction agents, such as in ShopBot [50] and Webfoot+CRYSTAL
[4, 51], may still require a lot of work from a domain expert to produce a sufficient
training set for each domain. By using reinforcement learning techniques, the ex-
traction agent is able to learn from its own experience when interacting with the
environment; thus reducing the amount of work from a domain expert to produce
a large training set.

3.2 System Modes

It is possible to identify at least the following three different stages, or modes, of
the extraction process. First, the system needs to be trained to extract the infor-
mation. Second, the system must extract the information. Third and finally, the
system can answer questions from the user. If the system is truly user-driven, a
user without expert skills should be able to handle all of these stages. Figure 3.1
shows an example of the relationships between the different stages (or modes) of
an extraction system.

Obtain
documents

Analyze
and train

Obtain user
feeback

Obtain initial
user input

Obtain
documents

Extract
information

Successful
extraction

No

Update
Yes

Interpret
question

Search the
KB

Present
results

Obtain user
question

1. TRAINING MODE

2. EXTRACTION MODE

3. QUERY MODE

Figure 3.1: Extraction System Modes

3.2.1 The Training Mode

During the training mode, the agent finds an optimal decision policy to be able
to extract wanted information. The process is initiated by giving essential user
input such as the address where to start looking for information and a few exam-
ples of wanted information pieces. Given the starting address, the agent is able
to download the initial document and start analyzing its contents. Given that the
environment is hypertext documents, e.g. Web pages, the documents may contain
links t other documents. If the agent during its training decides to examine the

29

CHAPTER 3. THE EXTRACTION TASK

child nodes of the link, it has to download these additional documents as well and
analyze their content.

The exploration of the hypertext tree1 may continue until a maximum depth
of the tree has been reached or until no further documents are downloaded and
analyzed. Additional details of how this navigation step works is given in section
3.4.

The navigation step alone is rarely sufficient to complete the extraction task,
but it provides one useful step in the process that exploits the structural information
available in semi-structural documents. If sufficient semi-structural information is
present in the documents, none or only a small amount of extra work is needed to
complete the extraction process.

There may also be a final step in the training mode where the user can examine
the results of the training and give additional feedback. If insufficient user input
was given at the start of the training, the user can provide additional examples of
wanted information pieces and reject some information pieces that were suggested
by the agent.

3.2.2 The Extraction Mode

When the agent has been trained to extract the information, it may start to execute
the actual extraction of information. Remember that the typical semi-structured
extraction task consists of a source of information where the structure remains
mostly constant and where the content changes over time.

The extraction mode is similar to the training mode. It starts by download-
ing the initial document and analyzing its content. However, the agent no longer
explores unknown paths of the hypertree as done during training. It exploits the
knowledge stored in its decision policy to find the optimal path to the extraction
points. The extraction mode is finished when no additional extraction points exist.
The extracted information is either returned to the user or stored in a knowledge
base where it can be further analyzed.

The navigation step alone may not be sufficient if the extraction task becomes
more complex. It is often necessary to postprocess the text, for example, to remove
remaining HTML elements. Other IE components such as named entity recogni-
tion, part-of-speech tagging, co reference resolution, and use of semantic resources
would improve the utility of the extraction system. The navigation step provides
the ability to locate relevant pieces of the source documents and return a hierarchi-
cal structure of these pieces.

A problem occurs if the structure of the source document suddenly changes.
The decision policy no longer works and the agent has to start exploring for new
paths to the desired information. If the structure changes, it is usually easy to detect
the change since the path does not lead to wanted extraction points. More formally,
the rewards returned and the total return obtained during the extraction does not

1See chapter 3.3 for more information about the hypertext tree

30

3.3. THE HYPERTEXT MODEL

match the rewards and the total return obtained during training. As indicated in
figure 3.1, the agent can automatically jump from extraction mode to training mode
to find a new decision policy. This has not been investigated yet and needs further
research.

3.2.3 The Query Mode

The extraction system may also have a user interface where the user is able to
analyze the information that has previously been extracted. However, for some
applications this may not be appropriate. For example, consider a news filtering
application that is supposed to extract news articles from different sites and select
those articles that are of interest to the user. The extraction system may only send
an email or change the content of a web page when a new article is found, i.e. no
user interaction is taking place. For other applications such as Buyer’s Guide 2.7,
i.e. shopping agents that compare and find the most suitable products for users, the
users may want to be able to query the database of extracted information and select
suitable products themselves.

The query mode is a standard search system where the user is presented a
search form and the system interprets the query, executes the search, and presents
the results. However, due to the high level of structure that exists in the extracted
information, it is possible to provide a more advanced form with fields of specific
data types that match different slots in the extracted information.

3.3 The Hypertext Model

The process of the information extraction task in semi-structural environments can
be designed differently than in traditional natural-text environments. Instead of
trying to map templates of different slots to a set of words or sentences, the doc-
ument, or more specifically a set of connected nodes in a set of linked hypertext
pages, can be viewed as a large parse tree where certain nodes shall be extracted.
Similar models have been used by for example Rennie and McCallum [52] where
each hyperlink represents a node. However, structural information other than the
links is not used.

The model suggested in this thesis consists of a tree with nodes representing
certain HTML elements in each page, including not only links but also other infor-
mation. Figure 3.2 demonstrates how the hypertext linked pages are transformed
into a hypertext tree. One step in the extraction task consists of locating the ap-
propriate nodes that contain the relevant pieces of information, i.e. the navigation
task.

A possible problem with using such a model of the source documents is that a
single extraction point may be larger than the size of a single node, i.e. the wanted
extraction pieces may span several nodes. A possible solution is to mark all of
the nodes within the extraction unit, including child nodes, as desired extraction

31

CHAPTER 3. THE EXTRACTION TASK

Figure 3.2: Hypertext Transformation

nodes. However, this may lead to unnecessarily large trees that will take a long
time to train and require a large amount of memory.

A more suitable solution is to for example only represent so called HTML
block elements and treat character-level elements such as FONT and B elements
as normal text connected to a node in the tree. This will reduce the size of the
tree without losing valuable structural information. The character-level elements
usually do not provide valuable structural information for the extraction task.

Each block element according to the HTML specification [53] is represented as
a node in the tree with subsumed block elements as child nodes. The A HTML el-
ement is given special consideration since it is an in-line element, but still provides
valuable structural information and is highly important for the extraction process.

3.4 The Navigation Step

Given that the source documents have been transformed into a tree where each
node represents structural elements in the documents, it is now possible to use this
tree to locate the extraction points.

The navigation task for information extraction involves finding the optimal path
from a given starting point in the parse tree to the extraction points. It is defined
as a set of states S, a set of actions A, a transition function T : S × A → S, and
a reward function R : S × A → R. Given an initial state, the goal is to find the
optimal transition function that maximizes the sum of rewards.

The intuition behind this approach is that it is similar to how humans would
act if they were to complete the extraction task, i.e. to start from some node and
traverse the hypertext information through the parts of the page and by following
existing links up and down the tree. Of course, humans additionally interpret the
information present in the source document in a much higher linguistic and seman-
tic fashion. However, the main similarity is that a decision as to whether a node
should be further explored is based on future actions. This model of the source doc-
uments allows the system to similarly trace future actions back to previous actions
and improve performance with its own experience.

32

3.5. ADDITIONAL STEPS

3.4.1 Learning to Navigate

During the training mode of the extraction system, a decision policy should be
constructed that can be used to navigate to the wanted extraction points. Rein-
forcement learning techniques are suitable for the learning part since the utility of
each action in the navigation task is based on future actions.

The tree model can be seen as a Markov decision process suitable for rein-
forcement learning algorithms. The extraction system is able to explore the tree
structure and navigate, i.e. find the optimal path from a given starting point to de-
sired extraction points. The learning algorithm used for this purpose is presented in
a separate chapter since it is an important part of the system and vital to make the
system more user-driven and maintain a sufficient performance. More information
about the learning algorithm is given in chapter 4.4.

If the extraction task is not too complex, the extraction points could have been
simply located by performing a breadth-first systematic search through the parse
tree and skipping the training of a decision policy. Studies have shown that rein-
forcement learning techniques can outperform these techniques by a factor of three
or more [52]. This becomes more evident when the complexity of the task in-
creases. The advantage of having this kind of reinforcement learning with explicit
modeling of future rewards is also that more user input as well as other heuristics
and knowledge can be used at different points during the navigation process. Thus,
the reward function can contain more feedback than just for example one for ex-
traction nodes, -0.1 for links and zero for other nodes as used in the experiment
described below. The intuition is that this process corresponds more closely to the
behavior of human manual extraction. For example, consider the task of locating
information about products at a vendor web site. These products are often grouped
into categories and there are additional hints at the web site that lead the Surfer to
the final destination. By incorporating this information into the reward function,
the system will be able to skip irrelevant links and concentrate on paths that are
more relevant.

The goal is to be able to complete the extraction task with as little input and di-
rection from the user as possible. Besides the advantage of providing a user-driven
IE system, this also enables the system to automatically handle structural changes
in the source documents. If the source structure changes so that the decision policy
suddenly does not lead to the extraction points, it can automatically start a new
training phase to adapt to these changes.

3.5 Additional Steps

The work behind this thesis has so far primarily dealt with the navigation step
that imitates the intuitive way of surfing through hypertext and takes advantage of
the structural information. That step alone may not be sufficient to complete the
extraction task. The information that has been located in the navigation step often

33

CHAPTER 3. THE EXTRACTION TASK

needs to be further analyzed. At the very least, the text should be post-processed
to remove for example HTML elements.

If the task is more complex, it may also be necessary to implement traditional
information extraction NLP techniques such as named entity recognition, part-of-
speech tagging, co-reference resolution, and use of semantic resources such as
WordNet [11]. The implementation of these techniques could also be integrated
into the reward function to improve the performance of the navigation step further.
However, as previously stated, natural language processing techniques unfortu-
nately do not work as well in semi-structural documents. The text is often less
grammatically correct and contains mostly choppy sentence fragments [4]

A common situation in semi-structured extraction tasks is that the information
is grouped or split into several pieces in some way. For example, a list of computer
hard drives may be grouped by manufacturer and split into multi-page tables to
limit the length of a single page. The consequence of this is that items in subsequent
pages are not considered to be “siblings” of the items in the first page. As shown
in one of the experiments in chapter 5.2, the user may give some examples of
wanted extraction pieces and specify that siblings should be extracted. Therefore, it
would be advantageous if the items in subsequent pages in multi-page tables were
considered as siblings. This could be accomplished by implementing heuristic
rules that change the structural information accordingly. This is a topic of future
research that needs further investigation.

34

Chapter 4

Design for the ASIE System

The Adaptive Semi-structured Information Extraction (ASIE) system was designed
to evaluate the approach described in chapter 3 and to be used as a test bed for
future developments. The system is still under heavy development and is not to be
considered as a fully-fledged information extraction system.

The design of the system is based on agent-oriented ideas as described in the
background chapter 2.6. The agent design and the platform used are described in
chapter 4.2. The architecture of the system and its various components are pre-
sented in subsequent sub-chapters.

4.1 Methodology

The system described in this chapter is used to evaluate the approach described
in the previous chapter. It would have been advantageous to use standardized test
applications such as those defined in the TREC conferences. However, the type of
application and approach makes these tests not currently suitable. One of the main
properties that should be evaluated is the level of user-driven nature of the system
and not performance such as precision and recall. This type of evaluation does not
exist in these conferences.

The system is designed to initially confirm that the approach works with sat-
isfactory performance and approach level of user interaction. It will also be used
to conduct additional evaluations as the system evolves. These evaluations include
tests of performance, adaptiveness to new domains and the user-driven nature of
the system.

4.2 Agent Platform

The system is built with and upon the JADE framework [45]. The framework
provides a package to assist the development of agents and a platform where the
agents can be executed. One of its main advantages is its strong compliance with
the FIPA standards [30] and that it is implemented in Java.

35

CHAPTER 4. DESIGN FOR THE ASIE SYSTEM

To assist in the execution of agents, the framework provides a distributed plat-
form that can be split across several machines. Additionally, it provides a graphi-
cal management user interface, white-page and yellow-page services, and efficient
means of agent communication based on traditional protocols such as CORBA.
The underlying protocols such as CORBA are invisible to the developer who can
only work with FIPA-compliant ACL messages. The Java classes provided with the
framework simplify the development of the agent and support for example the de-
velopment of custom communication languages and ontologies. Figure 4.1 shows
the architecture of the JADE platform. The Agent Management System agent man-
ages all the agents in the platform and provides a white page service. The Directory
Facilitator agent provides a yellow page service where agents can search for other
agents that for example provide a specific service.

Figure 4.1: JADE Architecture

4.3 System Architecture

The architecture of the current implemented ASIE system, as shown in figure 4.2,
consists of Surfer agents that are able to efficiently download and handle web pages
on the Internet, Analyzer agents that take requests and analyze documents to find
the relevant pieces of information, and Butler agents that communicate with the
user. Currently all agents are located on a single machine, but since the JADE
platform supports a distributed platform and mobile agents, the agents could be
located on different machines and moved during execution if necessary.

4.3.1 The Butler Agent

The Butler agent handles communication between users and the extraction system.
Currently, a user interface is implemented that allows for communication to human
users. A Web service interface is also planned to be implemented in the Butler
agent to allow machine users of the system as well.

The Butler agent allows users to train the extraction system for new domains
and to schedule extractions and manage the trained agents. Currently, only the

36

4.3. SYSTEM ARCHITECTURE

Information Extraction System

Analyser

Surfer Butler

 Internet
User

Figure 4.2: System Architecture

training of the agents interface is implemented, but future versions should also
support management of the agents and possibly also provide support for direct
queries of the data that has been extracted. A screen-shot of the Butler training
interface is shown in figure 4.3. It is implemented as a Java applet embedded in a
web page that communicates with the Butler agent over the network.

Figure 4.3: Butler Agent User Interface

4.3.2 The Surfer Agent

The Surfer agent has the capability to download web resources from the Internet.
As shown in figure 4.1, it is used by the Analyzer agent. The Analyzer sends
download requests of Web resources to the Surfer during the training and execution
of extraction tasks.

The Surfer can be seen as a web client used by the system. It provides similar
features such as a Web cache to increase the performance. Multiple Surfer agents
can be alive simultaneously to decrease the download time, and each agent can also
handle multiple download requests simultaneously.

37

CHAPTER 4. DESIGN FOR THE ASIE SYSTEM

4.3.3 The Analyzer Agent

The Analyzer agent is the brain of the system. The Butler agent can for example
request start of training of a new extraction task to the Analyzer or start an extrac-
tion for an existing task. Multiple instances of the Analyzer agent can be executed
simultaneously to increase the performance of the system.

The learning of a new extraction task is the process that is of most interest
in the Analyzer agent. After a request has been received from the Butler agent
with information such as the starting address and extraction patterns, the Analyzer
initiates a new MDP (Markov Decision Process). The MDP represents the tree
where the structural information will be stored. Initially, the tree only contains
the given starting point and the Analyzer sends a request to the Surfer agent to
start downloading the starting web page. When the Analyzer receives the page
content from the Surfer, the Analyzer translates the page from the character level
representation to a hierarchical parse tree representation according to the hypertext
model described in chapter 3.3.

The Analyzer then examines the top nodes of the tree and makes a decision
as to whether the child nodes should be traversed. Currently, “starting explore”
is used when the process is initiated and therefore all child nodes will be exam-
ined during the training phase. This behavior is not suitable for complex extraction
tasks and will change in future versions of the system. The Q(λ) algorithm will
subsequently be used to update the decision policy and find the optimal path to the
extraction points. A reward function evaluates each node in the tree and returns an
appropriate reward. For example, the reward function can return one if the current
node contains matching extraction pattern and zero otherwise. The experiment de-
scribed in chapter 5 also uses the rule that any sibling node to a matching extraction
node should receive reward one as well as certain penalties for each download of a
new page.

The process is finished when all nodes have been examined and the maximum
page depth has been reached. An initial update to the decision policy has now
been performed. The process is then repeated to reach a stable decision policy,
according to the standard general policy iteration idea. About 10-20 repetitions
may be necessary. Further information about the learning algorithm used in the
training process is given in chapter 4.4.

4.4 The Learning Algorithm

One advantage of using reinforcement learning algorithms for the navigation task is
that actions are assigned a utility based on the future result, i.e. actions that give no
immediate benefit may still be considered important due to possible future states.
The utility is measured in the total return, i.e. the estimated discounted sum of all
future actions, instead of only the immediate reward. The goal of reinforcement
learning is to obtain a policy that maps states to actions, π : S → A. The total
return, or the value of a specific state is defined as seen in equation 4.1 where γ

38

4.4. THE LEARNING ALGORITHM

∀x, a [Q̂(x, a) ← 0]
∀x, a [Tr(x, a) ← 0]
while (true) {

xt ← the current state
at ← arg maxa Q̂(xt, a)
execute action at

rt ← reward for action at

e′t = rt + γV̂t(xt+1) − Q̂t(xt, at)
et = rt + γV̂t(xt+1) − V̂t(xt)
∀x, a [Tr(x, a) ← γλTr(x, a)]
∀x, a [Q̂t+1(x, a) ← Q̂t(x, a) + αTr(x, a)et]
Q̂t+1(xt, at) = Q̂t+1(x, a) + αe′t
Tr(xt, at) = Tr(xt, at) + 1

}

Figure 4.4: The Q(λ) Algorithm [7]

is the discount factor, r is the reward at time step t after given state s, and V π is
the optimal value function. This relates to the navigation task since it consists of a
sequence of decisions to stop or continue through a specific path.

V π(s) =
∞∑

t=0

γtrt (4.1)

The algorithm used for the experiment is based on the Q(λ)-learning algorithm
[7]. This algorithm combines the advantages of Q-learning and TD(λ)-learning.
Q-learning is an off-policy method that allows non-greedy (exploratory) actions to
be selected without losing the ability to obtain an optimal policy. TD(λ)-learning
is a combination of Monte Carlo simulations and dynamic programming. Similar
to Monte Carlo, it can learn a policy without complete knowledge of the environ-
ment dynamics, i.e. all states, actions and associated transitions. TD-learning also
inherits the benefits of dynamic programming where the policy is updated directly
after each time-step, as opposed to the end of the episode. The addition of eligi-
bility traces assigns credit or blame to visited states and actions according to the
λ factor. This will increase the learning speed and faster reach the optimal policy.
Further details about these algorithms can be found in the textbook by Sutton and
Barto [54].

An outline of the algorithm can be seen in figure 4.4. The Q̂(x, a) function rep-
resents the estimated total return for state-action pair (x, a) and Tr(x, a) represents
the eligibility trace value for (x, a). The V (x, a) function returns the maximum Q
value for given state, i.e. V (x) = arg maxa Q(x, a). A common approximation
that is also used in this system is to cut off the eligibility trace when the Tr(x, a)
value subsides beneath a given threshold, thus making it unnecessary to iterate
through all state-action pairs.

39

CHAPTER 4. DESIGN FOR THE ASIE SYSTEM

4.4.1 Random Walk Experiment

A simple experiment was conducted to examine how the parameters of the Q(λ)
algorithm affect the estimated total return values. The Random Walk Markov pro-
cess was used for the experiment. It consists of 20 states S = s1, ..., s20 and the
only transitions that are allowed from state sn are to state sn−1 or sn+1. State s1

and s20 are terminal states in the process. The goal is to reach state s20 and thus
the learning algorithm shall find a decision policy that moves from the starting state
s10 to terminal state s20. Figure 4.5 shows the transitions allowed in the process.

... 10 ...2 19

lose win start

1 20

Figure 4.5: Random Walk Markov Process

For each action taken in the process, a reward of one is returned if state s20 is
reached and zero otherwise, i.e. only when moving from state s19 to s20 is reward
one returned. Due to its simplicity, the Random Walk process is commonly used
when comparing or evaluating reinforcement learning algorithms. For the Q(λ)
algorithm used in this experiment, it is easy to calculate the optimal Q∗ value for
each state-action pair. As seen in equation 4.2, the Q∗ value should be zero for
all actions that move to the left and near one for actions that move to the right
depending on the γ parameter.

Q∗(state, action) =

{
0 | action = left
γ19−state | action = right

(4.2)

For each experiment, the Random Walk process was executed through 60 epi-
sodes. Executing any further episodes does not improve the policy for most settings
of the parameters. Table 4.1 lists the experiments that were performed on the Ran-
dom Walk process and the setting of the parameters. For example, experiment 1
uses α = 0.5, γ = 0.5, λ = 0.5 and varies ε from 0 to 1.0 in step of 0.051.

The ε (epsilon) parameter determines the probability that a random action will
be selected, instead of the greedy action. If set to one, only greedy actions will be
selected; thus, the policy will only be exploited and not explored. If the parameter
is set to zero, a random action will always be chosen; thus, all paths of the tree will
be explored but the behavior will be completely random.

Figure 4.6 shows the Q values of the 19 states 2 and how they depend on the
value of the epsilon parameter for experiment 1. As seen in the figure, the optimal

10:1.0:0.05 is Matlab style for creating a set of values from 0 to 1 in steps of 0.05
219 states was actually used in the experiment instead of 20 states to find a starting state that is

placed in the middle of the process

40

4.4. THE LEARNING ALGORITHM

Table 4.1: Random Walk Experiments
num ε (epsilon) α (alpha) γ (gamma) λ (lambda) # episodes

1 0:1.0:0.05 0.5 0.5 0.5 60
2 0.5 0.05:0.95:0.05 0.5 0.5 60
3 0.5 0.1:0.9:0.1 0.5 0.5 10:100:10
4 0.5 0:1.0:0.05 0.5 0.5 0
5 0.5 0.5 0:1.0:0.05 0.5 60
6 0.5 0.5 0.5 0:1.0:0.05 60

Q∗ value of one for state-action pair (17, right)3 is reached for all settings of the
epsilon parameter after 60 episodes.

0.00
0.20

0.40
0.60

0.80
1.00

0 3 6 9 12 15 18
0

0.2

0.4

0.6

0.8

1

Figure 4.6: The State and Epsilon Parameter

It even finds the optimal policy for ε = 0 when only the greedy action will be
chosen, but that depends on the fact that the default action is to go right when both
go left and right have the same Q value. The optimal policy would not have been
found if the default action had been to go left. A more suitable implementation
would have been to choose a random action when two actions have the same Q
value, since the optimal policy would then always be found given sufficient time.

Figure 4.7 shows the Q value for state-action pair (16, right) for experiment
1. A slight trend can be seen in the figure that the optimal Q value is not found
after 60 episodes when ε approaches 1. Thus, for this process, it will reach the
optimal policy faster if the current policy is exploited and not only explored. In
fact, it could even be concluded from the figure that the best value of ε is zero, i.e.
no random actions. Even if that may be true for this process, it will not necessarily
be true for more complex and dynamic processes. As seen in later experiments that

3The states are numbered 0-18; thus (17, right) corresponds to state 18 and action right

41

CHAPTER 4. DESIGN FOR THE ASIE SYSTEM

perform actual navigation tasks, too little exploration may cause the process to be
stuck in wrong final states and never to find the appropriate states.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.00 0.20 0.40 0.60 0.80 1.00

Figure 4.7: The Epsilon Parameter

Experiment 2 evaluates the learning rate parameter α (alpha). Figure 4.8 shows
the Q value for state-action pair (16, right) for different α settings. After 60
episodes, the optimal Q value of 0.5 is found when α approaches one. When
alpha = 1, the complete error between the last reward the current estimate of the
reward for the state-action pair is used in policy updates. For this simple and static
process, a high learning rate works very well. For more complex and dynamic pro-
cesses, setting α too high may cause an unstable policy and it may take a longer
time to find the optimal policy than with a lower learning rate.

0.0
0.1
0.2
0.3
0.4
0.5

0.05 0.20 0.35 0.50 0.65 0.80 0.95

Figure 4.8: The Alpha Parameter

Experiment 3 evaluates the correlation between the number of episodes exe-
cuted and the learning rate parameter. As expected, the optimal Q value can be
reached even with a low learning rate if a sufficient number of episodes are exe-
cuted, or with a low number of episodes and high learning rate as seen in figure
4.9.

Experiment 4 evaluates the γ (gamma) parameter. The γ parameter determines
how much previously executed state-action pairs shall be blamed or credited for
current reward. Setting γ = 1 results in a full update of all previous state-action
pairs for each error. Figure 4.10 shows that the optimal Q value for state-action
pair (16, right) is found for each setting of γ. The γ parameter does not change

42

4.4. THE LEARNING ALGORITHM

10 30 50 70 90

0.1

0.5

0.9

0

0.1

0.2

0.3

0.4

0.5

Figure 4.9: The Alpha Parameter and Number of Episodes

how the policy is updated, rather it changes what the optimal Q value should be.
As seen in equation 4.2, the optimal Q value for state-action pair (16, right) is γ1

(remember that only 19 states were used in the experiment and they are numbered
0-18). If γ = 1 then the Q value would propagate all the way back to state 1;
thus the optimal policy would contain value 1 for action right and value 0 for
action left for all states in the process. Even though this may be appropriate for
this process, a more complex process with different rewards in several state-action
pairs could suffer severely from a too high γ setting. This is a difficult parameter to
set, it may sometimes be appropriate to populate the error far back through previous
state-action pairs and sometimes it may interfere with neighbor paths that lead to
wanted states. This is especially true when not selecting the greedy action, i.e.
when exploring the process.

0

0.2

0.4

0.6

0.8

1

0.05 0.20 0.35 0.50 0.65 0.80 0.95

Figure 4.10: The Gamma Parameter

The final parameter that was evaluated was the λ parameter. It determines how
fast the error should be distributed through the eligibility trace. The eligibility trace
propagates the error back through previous states for each policy update. Without
the trace, it would take a longer time to find the optimal policy. As with the γ pa-
rameter, setting λ too high may cause interference with neighborhood states in the

43

CHAPTER 4. DESIGN FOR THE ASIE SYSTEM

process. The Watkins version of Q(λ) [55] cuts off the trace for each state that per-
forms an exploratory action. Peng’s Q(λ) algorithm treats exploratory actions the
same as greedy actions and most studies have shown that it performs significantly
better than Watkins’ algorithm [54].

0

0.1

0.2

0.3

0.4

0.5

0.6

0.05 0.20 0.35 0.50 0.65 0.80 0.95

Figure 4.11: The Lambda Parameter

As seen in figure 4.11, the optimal Q value for state (16, right) is reached
after 60 episodes for low settings of λ. Higher settings cause later inappropriate
states, mainly through exploratory actions, to interfere with the Q value. Since 60
episodes were used in the experiment, the optimal policy was reached even with
low settings of the λ parameter. If the process were bigger or a fewer number of
episodes were executed, the optimal policy would not be reached for low settings
of the parameter.

4.4.2 Learning Algorithm Extensions

As indicated in the evaluation chapter of this thesis, the algorithm needs to be
extended if the extraction task shall reach satisfactory levels of performance.

Firstly, the eligibility trace is cut off for non-greedy actions. The update of the
Tr(x, a) value is therefore replaced as shown in equation 5.4. Secondly, the error
values that are used to update the Q̂(x, a) value are changed so that it becomes
dependent on the state-action pair that it shall update. Therefore, it needs to be
calculated for each node in the trace according to equation 5.5. More information
about their extensions can be found in chapter 5.3.

4.4.3 Algorithm Complexity

The space requirements of this algorithm depend mainly on the number of state-
action pairs that exist in the process. The Q̂(x, a) needs to store the estimated total
return for each pair in the process. The Tr(x, a) does not need to save a trace
value for each pair in the process, the trace can be cut off for value below a given
threshold and a value of zero can be assumed for pairs that do not exist in the trace
array. Thus, the space complexity is linear in the number of pairs in the process.

44

4.4. THE LEARNING ALGORITHM

The most time expensive operation in the algorithm is the update of the Q̂(x, a)
values. The Q value for each state-action pair needs to be updated for each action
executed by the agent. Additionally, the extended version of the algorithm needs to
calculate the error for each such update. The time complexity is therefore O(nm)
where n is the number of pairs in the process and m the average number of actions
per state.

45

CHAPTER 4. DESIGN FOR THE ASIE SYSTEM

46

Chapter 5

Evaluation

The approach of the extraction task described in chapter 3 was evaluated with the
ASIE system described in chapter 4. This chapter describes how the experiment
was setup and the results of the experiment.

The choice of experiment is motivated and explained in section 5.1. Details
about experiment setup and algorithm parameters are given in section 5.2. The
results of the experiment and comments about them are given in section 5.3.

5.1 Experiment Overview

A simple information extraction task was selected to evaluate the navigation step
using reinforcement learning techniques. The experiment that was selected was to
extract the set of undergraduate programs available in the department web site of
the University [56] of Kalmar. This is not a complex task, in terms of linguistic or
semantic knowledge requirements. This is appropriate in this case since the use of
structural information is in focus.

The goal of the Analyzer agent is to find the optimal decision policy to be able
to navigate quickly to the extraction points in the tree. For the chosen extraction
task, about 20 pages need to be downloaded and about 1000 nodes are present in
the parse tree. Figure 5.1 shows target text pieces that should be extracted in the
final page for this experiment. The given start page for the extraction task is the
start page for the department and the final page can be found within two links from
that start page. However, about 20 pages needed to be downloaded to find that page
for this task.

To obtain a user-driven system, as little work and expertise as possible should
be required of the user to complete this task. The input from the user for this
task consists of a starting URL and a small set of example extraction patterns. It
was actually only necessary to have one simple pattern to complete this task, but
input that is more complex may of course be necessary to complete more difficult
extraction tasks.

An important part of the navigation step is how the rewards are calculated for

47

CHAPTER 5. EVALUATION

Figure 5.1: Extraction Targets (text inside shaded box)

48

5.2. EXPERIMENT SETUP

the actions performed in given environment. Since the extraction task has the goal
of finding the information pieces to extract, the rewards of the state-action pairs are
high if they lead to states where information to extract exists and low otherwise,
e.g. the reward can be set to one if a relevant information point has been found and
zero otherwise. Additional assignments of the reward should also be used to guide
the agent in the right direction and avoid resource and time-consuming paths.

The selected extraction task can be easily completed with little user input. The
reason that such a simple task was selected was that the main objective with the
experiment is to evaluate the learning algorithm used for the navigation task. For
more advanced extraction tasks, additional user input, feedback as well as intelli-
gent calculation of the reward function will be necessary. The level of intelligence
implemented in the reward function is crucial to maintain a user-driven extraction
system for more advanced extraction tasks and will be the focus of future research.

5.2 Experiment Setup

Table 5.1 list the input given for the experiment. The start URL and maximum
page depth represent the obvious start address for the extraction task and maximum
consecutive page links. The given pattern states that the agent should look for a
node that contains the text “120p” and extract the all the content of those nodes.
The pattern also states that any siblings that exist to a matching node should also
be extracted. This type of rule is common in semi-structured extraction tasks since
the wanted information is often placed in tables or bullet lists as in this case. It
reduces the burden of creating necessary and sufficient textual patterns.

Table 5.1: User Input for the Navigation Experiment
Start URL http://www.te.hik.se/
Page Depth 3
Pattern 1 Contain “120p” + siblings

The reward function for this experiment is defined according to equation 5.1.
When a desired extraction node s′ is located after executing action a in state s,
the positive value is returned by the reward function and subsequently distributed
back through the process according to the learning algorithm. A negative reward
is given when a hyperlink is followed since the jump to another page results in a
subsequent resource demanding page download. If another path to the extraction
node can be found without making as many downloads, then that path should be
preferred.

The specific values of zero and one that have been chosen correspond to stan-
dard reward values for reinforcement learning algorithms. Other values could have
been chosen as long as desired states received higher rewards.

49

CHAPTER 5. EVALUATION

r(s, a) =




1 | s′ is an extraction node
−0.1 | s is a hyperlink

0 | otherwise
(5.1)

The Q values for the decision policy are initiated to one according to equation
5.2, i.e. the estimated total return for all state-action pairs equals one in the be-
ginning of the process. This is called starting explore and will make the process
explore all the nodes in the process due to the high initial Q values. The policy will
subsequently approach the optimal policy Q∗.

∀s, a Q̂(s, a) = 1 (5.2)

The parameters for the Q(λ) algorithm in this experiment are λ = 0.9, γ =
0.99, α = 0.5. The motivation for the high gamma (γ) parameter, i.e. the discount
factor, is that the process is large and not very dynamic and it is important for this
experiment to make the correct decision in the top nodes to reach the extraction
nodes. The lambda (λ) parameter influences the decay rate for the eligibility trace
and can make the process converge faster but also increases the computational de-
mands on the process. It also represents how significant the rewards in future states
are and they are highly important for this experiment. The alpha (α) represents the
learning rate and influences how much of the error that should be adjusted for each
step. Too high a value may cause the policy to fluctuate thereby increasing conver-
gence time and too low may cause increased convergence time.

5.3 Results

The agent was able to navigate successfully to the desired extraction points after
executing a number of episodes. The interesting result of this simple task is how the
update of the policy worked. It should be noted that for more complicated extrac-
tion tasks, the use of only the semi-structural information as currently implemented
would not be sufficient. However, the idea is that it will provide a foundation for
an extraction system that can be extended with additional techniques.

An example of how the Q values are updated during the policy iteration can
be seen in figure 5.2. The two series in the graph represent two FRAME HTML
elements near the top of the tree. These two nodes are especially important because
they are far from the final nodes in a tree that consists of about 1000 nodes. The Q
value of these two nodes will therefore receive a lot of influence from nodes further
down the tree. The frame named FRAME2 leads to a set of desired extraction
points and the other does not.

As seen on the right, on the final episodes, the policy is stabilizing and ap-
proaching the optimal decision policy. The optimal Q value for FRAME2 can
be calculated as the discounted sum of rewards from the frame state and forward
according to equation 5.3. The optimal value for the FRAME2 state with the
rewards in the given experiment is −0.1 + −0.1 · 0.996 + 1 · 0.9916 + −0.1 ·

50

5.3. RESULTS

-0,2

-0,1

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

FRAME1

FRAME2

Figure 5.2: Q Values of Two Top Frame Nodes

0.9917 ≈ 0, 573. This value is obtained within three significant figures after about
10 episodes as seen in figure 5.2. The first −0.1 reward represents the link in the
frame element itself, the second and last −0.1 reward represents anchor element
links in the tree, and the 1 reward represents a matching extraction node.

Qπ(st, at) =
∞∑

n=0

γnR(st+n, at+n) (5.3)

5.3.1 Local Optima Problem

As seen in the first episodes in figure 5.2, there is a dip in episode two where the
Q values do not approach the optimal value. The reason for this dip is that the
rewards from the extraction nodes have not reached the top nodes yet. The greedy
action in the state that represents the FRAME’s parent node is therefore incorrectly
set to FRAME1 node. Fortunately, the rewards will have propagated all the way
back to the top nodes in the tree after a few episodes and the decision policy will
converge to the optimal policy.

If the task had been more complex, the extraction nodes may not have been
found and the agent could have been stuck in local optima due to a faulty decision
in the beginning of the process. Of course, in an environment as complex as the
Internet, it is impossible to guarantee that the wanted nodes will be found. If the
environment is restricted in some way, for example by limiting the page depth as
done in this experiment, the policy will easier approach the optimal policy. The
convergence of Peng’s Q(λ) has not been proven yet; however, most empirical
studies have shown it performs better than other off-policy algorithms [54].

The problem of local optima can also be reduced by modifying the parameters
of the algorithm. By increasing the γ factor that regulates how far the error should
be propagated back through the process, the rewards of states far away will have
a higher influence thus reducing the risk of local optima. However, too high γ
values will result in other problems such as top nodes being too highly blamed for
errors even though some other wanted child nodes exist. This problem indicates

51

CHAPTER 5. EVALUATION

the need for more intelligent error propagation in the process. This topic needs
further investigation as indicated in the future work chapter 8.5.

5.3.2 Non-greedy Action Problem

The first runs of the experiment did not result in a stable policy that approaches
the optimal policy as shown in figure 5.2. In fact, some state-action pairs receive
Q values of about 200, which is far from the optimal Q value that usually resides
between zero and one.

A problem with the Peng Q(λ) algorithm is that λ is not set to zero when non-
greedy actions are chosen, i.e. the eligibility trace is not cut off for non-greedy
actions. This could possibly increase the convergence speed [7, 57]; however, this
is not the case for this process.

Since a high γ value had been chosen, the tree paths that did not lead to an
extraction point significantly reduced the Q values of the top nodes. That caused
the process never to converge to the optimal policy. In particular the top nodes will
have Q values far from the optimal values. The trace factor that regulates how the
error is distributed through the eligibility trace was therefore modified according
to equation 5.4 to cut off the eligibility trace for non-greedy actions, similar to the
Watkins’ algorithm [58]. The n in the equation represents the number of time steps
back through the process. Thus, errors are only propagated back through the last
greedy actions in the eligibility trace. The parent of a non-greedy action is therefore
not blamed for any subsequent errors. This solution significantly increases the
performance of the algorithm; however, a more intelligent propagation of the error
is still desirable.

t(st−n, at−n) =

{
(λγ)n | ¬∃nongreedy(am) ∧ 0 < m < n
0 otherwise

(5.4)

5.3.3 Penalty Accumulation Problem

Another problem with the Q(λ) algorithm is that the top nodes accumulate penal-
ties from errors in the nodes further down the eligibility trace. The error is calcu-
lated for the bottom nodes and that error is then distributed back through the trace
according to the standard Q(λ) algorithm. The problem is that the top nodes will
receive a huge amount of penalty if the process is large and a high gamma value
is used in the algorithm. For this experiment, starting explore was used to force
the process to explore a large number of nodes in the beginning and become more
exploitive when the policy becomes stable, i.e. the Q values are initiated to value
1. The error for the first episodes will consequently be quite large and negative
since the value one is far from the optimal value. The top nodes could therefore
reach Q values down to −200 after the first episode, which is of course far from
the optimal value. Even if the policy does converge given enough episodes, it will
take an unnecessarily long time to find the optimal value.

52

5.3. RESULTS

A solution to this problem is to calculate the error for each node in the trace
instead of distributing the error for the bottom node. The rewards for each node
in the trace, i.e. state and actions, are known since all of these actions have previ-
ously been executed. This information should be used to update the Q value more
precisely. The error function for updates of Q values in the trace was therefore
modified according to equation 5.5. The first term represents the discounted sum
of rewards from the given state-action pair in the trace (t1) to the end of the trace
(t2). The second term represents the estimated total return after the trace, and the
final term represents the current total return estimate of the state-action pair that
shall be updated.

e(st1 , at1) =
t2∑

n=t1
γn−t1R(sn, an)+

γt2+1−t1Q̂∗(st2+1, at2+1) − Q̂∗(st1 , at1)
(5.5)

This modification increases the performance of the algorithm. The Q values of
the top nodes will now stay close to the optimal value even in the first episodes, as
seen in figure 5.2.

53

CHAPTER 5. EVALUATION

54

Chapter 6

Related Work

The information extraction area is quite new; it has existed for about seven years.
However, a variety of types of systems and extraction tasks already exist. This
chapter describes and discusses a set of systems and work related to this thesis.
These systems will be evaluated mainly from two aspects: (1) the amount and type
of knowledge used, and (2) the level of adaptiveness of the system.

As stated previously, the amount and type of knowledge used in semi-structural
systems is usually quite different from natural language IE systems. More lin-
guistic and semantic knowledge are typically used in natural language systems,
whereas pattern matching and structural information are used in semi-structural
systems. The following classification of knowledge will be used for the systems
described in this chapter.

Pattern Matching Use of syntactic character-level pattern matching, e.g. regular
expressions and named-entity identification

Structure Matching Use of structural information in the process, e.g. use of
HTML structure and relationships between the nodes

Linguistic Knowledge Use of linguistic related heuristics, e.g. part-of-speech
taggers and grammatical analysis

Semantic Knowledge Use of semantic/conceptual processing, e.g. use of shallow
semantic resources such as WordNet

A very important aspect of an IE system is how easy it is to adapt to new do-
mains. The level of adaptiveness is therefore especially evaluated for the systems
described in this chapter. The development and adaptability of IE systems can be
considered in the three different approaches described below. The same classifica-
tion is described in the introduction of the thesis, but it is repeated here for clarity.
The knowledge engineering approach is the traditional way to construct IE systems
and the user-driven approach is novel and still mostly a concept.

55

CHAPTER 6. RELATED WORK

Knowledge Engineering This approach requires a domain expert who is able to
add extraction rules to the system. The difficulty of finding domain experts
that also have sufficient computer knowledge makes it hard to adapt to new
domains.

Automatic Training The use of machine learning techniques can relax the re-
quirement of computer knowledge for the domain expert and thus only re-
quire domain experts that can annotate documents for the domain. The sys-
tem can automatically be trained given the annotated documents. This makes
the job of adapting an IE system to a new domain easier, but it still requires
a significant amount of work to construct the training data for the system.

User-Driven IE UDIE differs from automatic training in that novice users rather
than domain experts should be able construct an IE system without need of
large training sets. This makes it easy to adapt to new domains, although
more intelligence is required for the system and higher requirements of the
domain. For example, it may be necessary to have semi-structural documents
instead of free natural language texts.

6.1 Existing Semi-structural IE Systems

This section will briefly describe a number of IE systems that are able to process
semi-structural texts. Some of these systems are pure wrappers and others are com-
binations of natural language and semi-structural IE systems, e.g. the Webfoot
and CRYSTAL systems.

6.1.1 Ashish and Knoblock’s Wrapper Generation Toolkit

The main idea in the system described in the paper by Ashish and Knoblock [59] is
to exploit the semi-structural information present in Web pages to facilitate the ex-
traction process. The construction of a wrapper starts with identifying the relevant
structure of a page, building a parser based on given structure, and finally adding
communication capabilities to the wrapper to be able to find different sources of
information and give the result to a mediator.

A set of heuristic rules are used to identify sections and subsections in the web
pages. These rules are basically regular expressions that exploit HTML knowledge
to find the structure. In addition, heuristics such as font size are used to determine
the hierarchical level of the structure.

There is no training in the system, although the user is able to correct erroneous
guesses through a graphical user interface. The heuristics basically employs pat-
tern matching rules to identify sections and subsections, with assistance of HTML
knowledge. The actual structural relationships present in the source pages are not
used for the identified output structure.

56

6.1. EXISTING SEMI-STRUCTURAL IE SYSTEMS

6.1.2 Rapper: A Wrapper Generator with Linguistic Knowledge

The approach used in the Rapper system [60] applies linguistic techniques to
the wrapper generation task for semi-structured documents. The use of regular-
expression pattern matching rules is insufficient to handle changes in word use
and the order of the words. The addition of linguistic knowledge should increase
performance and make the development of pattern-matching expressions easier.

The parsing starts with a preprocessing phase, syntactic analysis, domain in-
dependent rules, domain specific rules, co reference, and finally tag clean-up. The
algorithm first makes a shallow parse and checks if it is enough. If more process-
ing is required, it continues with deeper parsing. The preprocessing and syntactic
analysis phases can for example add part-of-speech tagging to the text. The domain
independent rules include techniques such as number rules that recognize and pro-
vide a standard form of numbers (e.g. three thousand becomes 3000, 3K, etc).
Other rules such as date-time rules, units of measure, and named entities (names
for people, organizations, and locations) are also included. Domain-specific rules
exploit knowledge about a specific application domain to do deeper parsing, for
example find the number to the left of the word personnel, and give it the label
personnel-strength.

The system uses the same techniques as in the Ashish system [59] and adds
algorithms that employ linguistic knowledge. These extensions increase the cost
of adapting the system to new domains, although they increase the accuracy for
implemented domains. As stated in the paper, the construction of wrappers is a
non-trivial task even with these tools. A significant amount of knowledge is still
required to construct a wrapper.

6.1.3 Wrappers in the TSIMMIS System

Hammer et al have developed a wrapper implementation toolkit to make the devel-
opment of wrappers more efficient [61]. The toolkit consists of a set of templates
that contain common types of answers. Application developers can translate and
match queries against these templates and swiftly be able to extract information
if a suitable set of existing templates are found. A post-processing engine is also
part of the toolkit that is able to translate the answer to the desired format for the
application.

A declarative, rule-based query language called MSL is used in the TSIMMIS
project [62]. The data is represented according to a model called OEM that is
similar to wrapper templates. MSL queries sent to the system extract OEM objects
that match the patterns in the query.

The system relies on a predefined set of templates that are matched to the query
and used to extract relevant information. This makes the development easier given
that predefined templates exist. The adaptation to new domains involves construc-
tion of new templates, which can be a non-trivial task. The possibility to inte-
grate the new templates into the existing system makes it viable to obtain a larger

57

CHAPTER 6. RELATED WORK

more domain-independent solution. The templates basically seem to rely on pat-
tern matching rules.

6.1.4 The Webfoot preprocessor

It is difficult to combine the benefits of semi-structured oriented IE systems and
NLP oriented systems. Soderland tries to solve the problem by preprocessing the
documents with the Webfoot preprocessor [4] and then passing the output to an
NLP system named CRYSTAL [51].

As stated in the paper, it is important to include the structural relationships
and not only the facts from the documents. For example, the relationships be-
tween the day, location, and weather conditions provide crucial information to be
able to answer advanced queries. The Webfoot system transforms the document
using structural information from the HTML layout to a sequence of segments.
The goal is that relevant facts should be grouped together into a single segment.
Each segment is further divided into fields using a set of delimiters, both domain-
independent and domain-dependent.

The sequence of segments produced by the Webfoot system is passed on as
input to the CRYSTAL NLP system that learns text extraction rules from exam-
ples. A domain-dependent lexicon is also included in the input together with the
sequence of segments from Webfoot.

The Webfoot preprocessor relies on a set of predefined heuristic rules, thus
no training is involved in this first stage. The CRYSTAL system employs a super-
vised learning that requires texts that have been manually annotated to match terms
in the documents to concepts in the system. In addition, a lexicon has to be con-
structed for the domains of interest. Both linguistic knowledge and some semantic
knowledge from the lexicons are used. The structure of the source document is
used, although only one level hierarchy is constructed.

6.1.5 The ShopBot Comparison Shopping Agent

The goal of the ShopBot [50] system is to be able to compare computer product
prices for different vendors. The user of the system should be able to enter product
keywords and receive a sorted list of products from different vendors. The system
should automatically be able to learn where search forms are located at each vendor
and interpret the response from queries executed at each vendor.

The agent learns how to handle the search forms at a specific vendor during
the “learning phase” of the system. After the learning phase, users of the system
can send queries that will be executed for all vendors included in the system and
in real-time see the result of the query. A set of heuristic rules are used to locate
the correct search form at the vendor. The learning algorithm does not require
any annotation of the documents, but it requires a “domain model” that contains a
set of example products with their associated attributes. These examples are used
together with HTML heuristics to induce the extraction rules for each vendor.

58

6.1. EXISTING SEMI-STRUCTURAL IE SYSTEMS

The system is heavily targeted to the vendor-product domain, although it would
work for other product types than computer products. Adaptation to new vendors
within the same product domain seems to work with very little effort. Adaptation to
new types of products requires more work, e.g. construction of the domain model
that requires domain expertise. There is practically no use of linguistic or semantic
knowledge, with the possible exception of the domain model. The extraction rules
basically rely on pattern matching and some minor structural matching.

6.1.6 The WYSIWYG Wrapper Factory (W4F)

The W4F toolkit [63] assists users in the construction of wrappers with a graphical
user-interface. A set of wizards presents web pages that are annotated with extrac-
tion rules. The user can click on specific parts of the page to find extraction rules
for that piece of text. These rules can be further generalized and modified by the
user to construct a wrapper for a specific target site.

As written in the paper, the design of wrappers should be written in a layered
architecture where the retrieval, extraction, and mapping of the output are carried
out separately. This will increase the ability to adapt the wrappers to new domains
and target sites.

The toolkit transforms the HTML pages into a parse tree according to the
HTML specification. Instead of considering the HTML page as a string; it is
viewed as a tree where each node corresponds to an HTML element. The advan-
tage is that the structural information in the document can be used in the extraction
rules, instead of just character-level patterns. The rules are written in a declara-
tive language for each layer, i.e. the retrieval, extraction, and mapping layer. In
addition, non-declarative user-defined mappings in the Java language are provided
which makes it very easy to include the wrapper in Java applications.

The graphical user-interface makes it easy to construct wrappers for new do-
mains, even though no automatic training is used in the toolkit. The user is still
required to have knowledge about how the extraction language works and about
for example regular expressions. The toolkit relies heavily on the structural infor-
mation in the web pages and on some pattern matching.

6.1.7 Head-Left-Right-Tail (HLRT) and Related Wrappers

Six different classes of wrappers are evaluated in the paper by Kushmerick [5] with
focus on their efficiency and expressiveness. A wrapper is formally defined as a
function from a page to a label, i.e. the result of executing a wrapper on a page is a
label. The simple LR wrapper class uses left- and right-hand delimiters to extract
the relevant pieces of text. More than one attribute can of course be extracted, each
having associated pairs of left- and right-hand delimiters.

The wrapper induction problem is defined as finding a wrapper of given class
that maps the given set of example pages and associated labels. The labeling of
the example pages used for the supervised training is often performed manually.

59

CHAPTER 6. RELATED WORK

However, since the goal is to automate the wrapper construction, some initial ex-
periments have also been performed on ways to label the examples automatically.

The other classes of wrappers presented in the paper extend the LR class in
different ways. The HLRT is a useful class that identifies the delimiters for the head
and tail of the page in addition to the left and right for each attribute, thus providing
support for more sophisticated pages. The OCRT class differs from HLRT in that
the opening and closing delimiter is identified for each group of attributes instead
of for each page. The N-LR class extends the LR class to support nested attributes,
i.e. name, street, and city can be sub-attributes of an address attribute. The HLRT
and other classes could also be extended to support nested attributes, e.g. class
N-HLRT.

One of the purposes of the paper is to compare the performance of the wrapper
induction task for the different classes, thus automated training is used for the
construction of the wrappers. There seems to be little more than pattern matching
rules that are being induced by the learning algorithms presented.

6.2 Discussion

The systems selected for this paper by no means constitute a complete list of sys-
tems that can handle semi-structural text. They have mainly been selected to show
different approaches for systems related to this thesis. This section will discuss the
differences in the systems by looking at the type of knowledge that is used and the
level of adaptiveness. Figure 6.1 gives an overview of the differences in the amount
and type of knowledge used.

Ashish’s
Toolkit

RAPPER

TSIMMIS

Webfoot +
CRYSTAL

ShopBot

W4F
Toolkit

HLRT
Wrappers

Linguistic
Knowledge

Semantic
Knowledge

Pattern
Matching

Structural
Information

Figure 6.1: Amount and Type of Knowledge

The ShopBot system, the HLRT related wrappers, and the TSIMMIS system
rely mostly on pattern matching capabilities and do not take significant advantage

60

6.2. DISCUSSION

of structural, linguistic, or semantic knowledge. Even though HTML heuristics
are included in some of these systems, the web pages are basically viewed as a
character-based representation rather than a hierarchal structure. The W4F toolkit
makes more use of the structural information by transforming the pages into a parse
tree that is used to navigate through the text. The Webfoot system together with
the CRYSTAL system makes an ambitious attempt to take advantage of linguistic,
semantic, as well as structural knowledge. The level of structural knowledge used
is still not as rigorous as in the W4F toolkit.

Knowledge
Engineering

User-Driven
IE

Automatic
Training

RAPPER TSIMMIS

ShopBot

HLRT
Wrappers

Ashish’s
Toolkit

W4F
Toolkit Webfoot +

CRYSTAL

Figure 6.2: System Adaptiveness

An overview of the adaptiveness of the systems is shown in figure 6.2. The
TSIMMIS and RAPPER systems rely on traditional knowledge engineering meth-
ods for adapting to new domains. The ShopBot and the HLRT related wrapper
classes rely on automatic training, although some expert work may be needed to
annotate documents or provide new domain knowledge. The W4F toolkit has no
training and relies on a user/expert to create the extraction rules with valuable assis-
tance from the graphical user interface. The optimal solution would be to be able to
have intelligent training guided by novice users, i.e. a truly user-driven IE system.
In addition, the current border between semi-structural IE and natural language IE
should be removed in the future to let techniques from both areas complement each
other.

Another system that is related to this thesis, even though it is not an information
extraction system but rather a web spider, is the Cora project [52]. A Web spider
is an agent, a.k.a. robot, that collects documents for an information retrieval sys-
tem. The Cora system uses reinforcement learning techniques to choose efficiently
which links to follow. Thus, a policy is trained for the hyperlink structure but the
semi-structural information present in the document is not used since the goal is
not to extract information. However, the use of reinforcement learning techniques
to navigate through some structure is similar to the approach of the ASIE system.

61

CHAPTER 6. RELATED WORK

62

Chapter 7

Ethical Considerations

Novel scientific knowledge and advances in technology give more power to the
users of these tools. This power can not only be used but also abused for destructive
and morally questionable goals. It is therefore important to consider the possible
and probable consequences of these new technologies. The purpose of this chapter
is to identify and discuss these consequences.

7.1 General Effects of Knowledge Management

A serious problem in the information society of today is the information overflow
problem. A large amount of money is spent on knowledge management (KM)
tools that are effective in producing large quantities of information. These tools are
also efficient in distributing this information around an organization, even to users
that are not interested in the information. When users receive too much irrelevant
information, the relevant information will be lost. Thus, the goal of the KM tools
to increase the effectiveness of the organization [8] is not achieved. In extreme
cases, these tools can even decrease the effectiveness.

KM tools should produce information with high quantity and quality, i.e. as
large an amount of information as possible that is relevant to the specific user and
as small an amount of irrelevant information as possible. Tools used for applica-
tions such as data warehousing and data mining are able to produce large quantities
of data, but unable to make a semantic interpretation of the data to judge whether or
not the information is relevant. More tools that are intelligent should be used where
a user can easily choose relevant information topics and that automatically adapt
to the user’s needs. A crude example is the comparison between information re-
trieval (IR) and information extraction (IE) services. IR services such as AltaVista
and Google produce a large amount of information, including a large amount of
irrelevant information. IE services extract only the relevant part of the documents
and present a smaller amount of information but with higher quality. The problem
with IE tools is that they are more difficult to build.

I hope that the type of service that is presented in this thesis will not only in-

63

CHAPTER 7. ETHICAL CONSIDERATIONS

crease the quantity of information, but also increase the quality and make it possible
for users to obtain relevant and interesting information.

Another consideration is that of personal privacy. Privacy refers to the ability
for an individual to control information about him- or herself, consistent with his
and her expectations and values. Loss of privacy may result in ethical and social
problems.

American law classifies privacy into the following four types: disclosure, in-
trusion, false light, and appropriation [64]. Disclosure happens when potentially
harmful information about an individual is given to someone else without given
consent. Intrusion occurs when the personal sphere of an individual has not been
respected. False light is another form of invasion of privacy where false informa-
tion is spread about an individual. It may seem questionable as to whether false
light is really a privacy issue, since it does not reveal true privacy information.
However, since the false information may cause serious harm to the individual, it
is an ethical problem. Appropriation is the act of taking on the identity of others for
purposes of one’s own. An example of this type of invasion of privacy is carding,
i.e. using other people’s credit cards. It should be noted that these different types of
invasion of privacy are not independent of each other. Some have even suggested
that all privacy issues can be reduced into disclosure or intrusion.

The introduction of knowledge management tools brings these privacy issues
into new situations. The magnitude of information that can be collected, analyzed,
and distributed has increased significantly due to these computer-aided tools. For
example, the use of data mining tools to identify zip codes for where to send adver-
tisements can be seen as a positive example of how KM tools decrease unwanted
advertisement. However, the same tools can also be used to refuse orders from
certain low-income zip codes. This may increase the revenue for the company in
question, but it may also increase segregation and cause increased harm to society.
KM tools not only increase the effect of existing privacy problems, new KM appli-
cations introduce new privacy concerns in situations that were not possible before.
An example of such an application is transaction generated information (TGI). In-
formation can be gathered from various transactions that individuals perform such
as credit card purchases and telephone calls. Advanced KM tools make it feasible
to gather and analyze this huge amount of information. These tools can produce
personal profiles that contain personal information and potentially cause privacy
problems.

The popularity of the Internet has also significantly changed these privacy is-
sues. The Internet is quite different from other existing forms of communication.
In-Real-Life (IRL) communication can be categorized as “few-to-few” where only
a small number of people can send and only a small number of people can receive
the information. Newspapers, radio, and television are examples of “few-to-many”
communication where a small number of people can broadcast information to a
large number of people. The Internet makes it possible for a large number of peo-
ple to send information to a large number of people, thus it is “many-to-many”
communication [65].

64

7.1. GENERAL EFFECTS OF KNOWLEDGE MANAGEMENT

It may not be obvious why this increased access to information and possibility
to analyze and distribute information may be harmful. Some people say that only
individuals who have something to hide will get hurt. One way to argue against
this opinion is to compare it to the extreme example of a panopticon. A panopticon
is a prison where the cells are arranged in a circle and the side facing the center
of the circle is made of glass. A guard tower in the middle can observe everything
that happens in the cells. Even though the prisoners will not be observed at all
times, they do not know themselves when they are being watched. Since the pris-
oners think they are being observed, they will change their behavior as if someone
were watching them. If all information about ourselves were accessible, such as
credit card purchases and telephone calls, we would also change our behavior. This
change of behavior can lead to loss of autonomy, fear of acting against the general
opinion, and problems with the development of our democratic society [66].

To protect our privacy, the use of knowledge management tools and the infor-
mation they produce needs to be regulated. Even the development of these tools
may need to be regulated in extreme cases. How this should be regulated is a com-
plex issue and not the main topic of this thesis. It is however important to be aware
of these problems and what consequences the use of these tools can have.

An interesting example of how privacy can be protected by regulation is Swed-
ish legislation. Sweden has been called one of the most open societies in the world.
The so called “publicity principle” states that there should be free access to offi-
cial documents and anyone who wants access has the right of anonymity and does
not have to state his/her purpose. Sweden was also the first country in the world
that enacted a Data Protection Law in 1973 that regulated the use of personal data
files. This law was superseded in 1998 by PUL, an implementation of an EU di-
rective that regulates use of personal information. The purpose of this directive
was to adjust the legislation to the IT society of today. Unfortunately the directive
was interpreted in an extreme way by the Swedish government so that it was not
even allowed to print other people’s names without given consent. It was no longer
possible even to have a list of employees in the company homepage without first
given explicit consent. Even though this certainly protects our privacy, it also pre-
vents legitimate and non-harmful activities. The law was later changed to be less
restrictive.

Another example of Swedish extreme protection of privacy was a recent court
decision that held the publisher of a major Swedish newspaper responsible for con-
tent written in a public unmoderated web forum [67]. This decision resulted in the
forum being shutdown and many people lost the ability to give their opinion and
take advantage of the possibilities of the Internet. This is similar to the famous
German case where the managing director of Compuserve was held responsible
for pornographic material present in a Compuserve newsgroup [68].

New laws need not always be legislated to regulate the use of IT tools. In a
personally related case, misleading articles that were written by the Swedish press
caused a public Internet chat service at University of Kalmar to be shutdown[69]. A

65

CHAPTER 7. ETHICAL CONSIDERATIONS

DALnet IRC1 server that I co-administrated was used by a group of Nazis. A major
Swedish newspaper wrote a headline article where they said that the University of
Kalmar supported Nazis, only because a few Nazis were using the server together
with over 10.000 other users. This is a misleading article implying that University
of Kalmar is pro-Nazi, and wrong from several aspects such as freedom of speech
and democratic values. We should be careful not to be overly restrictive in the use
of IT tools. It is important to protect privacy, but we should be careful not to restrict
legitimate use as well. On a positive note, the server was later brought back online
after long discussions with the head of the University.

A problem with the legislation of today is that it tries to define what should
be allowed instead of what should be disallowed. This is called the use-model and
the misuse-model respectively [70]. The conclusion from a Swedish investigation
in 1993 found that the current use-model system with licenses and permissions
did not function as intended. The immense work brought about by applications
prohibits the Data Protection Agency from making the necessary inspections out
in the field. Only about 10% of the available personal data files in the country were
legal. A conclusion of the investigation was that only a Misuse-model was feasible
in today’s society, but the new EU directive was a perfect example of the use-model
and the Swedish government felt obliged to implement it. The IT of tomorrow will
provide even more intelligent and effective tools. We need to find effective ways
to regulate the use of these tools if our privacy is to be protected.

7.2 Intellectual Property Rights

Knowledge management tools such as semi-structured IE make it easier to auto-
matically extract relevant pieces of information from web sites around the Internet.
This may tempt people to abuse these tools to take advantage of services and in-
formation in malevolent ways. The use (abuse) of these tools may also be illegal if
they violate for example copyright restrictions placed on the source documents.

It may not be obvious why it is important and beneficial for the society to
have copyright laws and patents. They are after all infringements of our rights of
freedom of speech. It may seem that these laws only benefit the inventor or the
company holding the patent at the expense of the public at large. However, if one
considers that the invention or the information may not have been possible to create
unless these laws existed; it is easy to see that they benefit the society in the end.

The following personally related incident is an example of the problem of bal-
ancing the copyright restriction and public benefits for a specific case. Microsoft
has a knowledge base [71] that contains about 100.000 short articles that describe
and give suggestions of how to handle problems with their products. The search

1An Internet Relay Chat (IRC) server provides a service where users can join and talk to each
other in different channels to discuss various topics. DALnet is a global network of connected IRC
servers that shares channels and users around the world.

66

7.3. ETHICAL THEORIES

engine that Microsoft provided unfortunately did not work very well2. Articles
that should have been returned were not returned, i.e. the search engine had a
low recall. Therefore, I personally created a service that collected the articles and
provided my own search engine for the knowledge base.

It can be difficult to see who was hurt by this action. The users of Microsoft
products will benefit from the service since they more easily solve problems that
occur and Microsoft itself should increase their status among their customers.
However, this was not the reaction of Microsoft when they became aware of the
service. They threatened with legal action unless the service was shutdown due
to copyright infringements. Even though I had asked permission and received an
acceptance from the European Microsoft headquarters previously, I was forced to
shutdown the service according to American headquarters.

The American headquarters was after all correct, it was an infringement of the
copyright statement and it should therefore be shutdown. This is also an example
of how knowledge management tools can be misused, even though it was for a
beneficial purpose. Copyright laws restrict the rights to reproduce and publish
information and patents prevent others from making, using, and selling inventions.
This trade off between freedom and welfare is worth taking since it is beneficial in
the end.

This also opens the question of how to uphold these laws. The same problem
exists in the information retrieval area where some sites do not want to be indexed
by any search engine. This resulted in a standard for how web sites should inform
search engines (a.k.a robots, spiders) that they want to be excluded from the index
[72]. A similar solution should be appropriate for information extraction (IE) tools
as well. If such a standard became widely accepted, then it would be easier to
prevent abuse of IE systems.

The copyright laws prevent people from republishing the same information at a
different site. However, they do not explicitly prevent publishing of derived works,
i.e. the result of analyzing and processing the source information. Some content
providers may not want any information, even derived information, to be published
elsewhere whereas other providers allow a certain amount of derived works. This
problem of derived works also needs to be considered and regulated.

7.3 Ethical Theories

The main ethical theory that is used to judge what is right and wrong in this chapter
is Mill’s utilitarianism. Utilitarianism is a theory where an action is judged on the
consequences of performing the action. The basic principle is that everyone ought
to act so as to bring about the greatest amount of happiness for the greatest number
of people [73]. The ultimate intrinsic good in the world is total happiness, i.e. not
happiness of one specific individual. A common critique of utilitarianism is that it
may seem to favor the decision to kill one individual to save ten other individuals,

2This occurred in 1998, it works better today

67

CHAPTER 7. ETHICAL CONSIDERATIONS

e.g. for organ transplants. However, if the long-term consequences of this action
are considered then utilitarianism will not favor such an action. If it were allowed
to kill one individual to save other individuals, then we would live in a society
where most people would feel unsafe and the total happiness would be decreased.

Another question is whether the intentions of the individual should be consid-
ered or the actual consequences of the action. If the individual could not foresee
the actual consequences of an action but had good intentions, then the individual
still has high moral character. If we were judging the moral character of the indi-
vidual, then it would be appropriate to consider the intentions of the individual. To
put it in agent terms, the individual/agent can only maximize his expected utility.
However, we are actually interested in whether it is morally correct to perform an
action and therefore the consequences of the action should be considered and not
the intentions of the individual or agent.

According to the theory of ethical relativism, the question of what is right and
wrong might have different answers for different individuals. This means that there
cannot exist any universal law or individual-independent morality, which makes the
theory very impractical. It also focuses on the moral aspects of individuals rather
than on actions. If we are interested in the moral aspects of an action, then the
action should be dependent on the individual. It may however be dependent on the
context of the action. If the action is later performed in the same context then the
same moral value should apply.

Kant’s deontological theory of ethics emphasizes the act itself rather than the
consequences of performing the act. Some acts are never good no matter what
the consequences are, for example killing another individual. It states that one
should never treat humans as a means to an end, they are ends in themselves. This
prevents the organ transplant problem previously explained since one cannot use
one individual as a means to save other individuals. The categorical imperative
states that one should only perform actions that you would like to be a universal
law. Due to the complexity of our world, it is very difficult to find universal laws,
e.g. Thou shalt not lie. Each action needs to be considered separately in the right
context and it is difficult to find general context-independent laws.

Given that we have an ethical theory that we can use to evaluate actions, when
is it appropriate to use it? Since our world evolves and the people who enact laws
makes mistakes as we all do, it may be morally justified to break the law in some
cases. Assume the following scenario. We have an IE system that is able to collect
and process information from various sources. Let us also assume that it never pub-
lishes information from sites that have copyright restrictions. Would it be morally
justified to collect and process information but not publish any information? Since
the collection and processing actions do not hurt any other individual, what would
be the harm?

Let us add some more information to the system, and assume that it has access
to various Internet backbones and can gather a huge amount of information. The
system is now able to analyze everyday traffic, e.g. transaction generated infor-
mation, and create detailed profiles of specific individuals. This type of use of IE

68

7.3. ETHICAL THEORIES

raises various privacy concerns. Even though the information is not published, the
bare knowledge that such a system exists may influence our behavior. The situa-
tion is similar to that of the panopticon that was described earlier in this chapter
and leads to loss of autonomy.

Would this type of use of IE be morally justified if it could prevent another
crime? It may be possible to use the system to detect carding, i.e. abuse of other
people’s credit cards. Would the appropriation abuse outweigh the loss of auton-
omy in the society? The loss of autonomy may seem to cause greater harm in this
case, but would that still be the case if the system could prevent a terrorist attack?
The terrorist attack may kill thousands of people and cause wide spread fear in the
society. These difficult questions show some of the possible consequences that can
be the result of use of knowledge management techniques.

69

CHAPTER 7. ETHICAL CONSIDERATIONS

70

Chapter 8

Conclusions

This chapter discusses the results of the work presented in this thesis. The prob-
lems and solutions of the experiments are initially discussed, followed by a discus-
sion that is more general about information extraction and knowledge management.
Additionally, the ethical considerations are discussed as well as limitations of the
current approach and future work.

8.1 Intelligent Navigation

Training of the navigation task can be successfully accomplished using reinforce-
ment learning techniques. One of the main advantages of reinforcement learning
techniques, as opposed to supervised learning techniques, is the ability to learn
from experience while interacting with the environment. Thus, the goal of a user-
driven system, where the user is not required to prepare large training sets, is ap-
proached.

One of the problems identified in the experiment was that the agent might be
stuck in local optima and not find the optimal path or the desired extraction points.
This is not a problem if the environment can be restricted so that every node can be
evaluated. However, it should be noted that the convergence of the Q(λ) algorithm
has not been proven. For tasks that are more complex where the environment can
not be sufficiently restricted, the agent must choose which paths to investigate and
leave other paths unexplored. The problem of local optima becomes more difficult
for these tasks. These types of tasks require further investigation to show that they
can be handled with satisfactory performance.

The Q(λ) algorithm described by Peng that propagates errors through the el-
igibility trace from non-greedy actions proved to present some problems for this
application. These problems involved how the non-greedy action error was propa-
gated and how the error was calculated. The performance of the learning algorithm
was significantly increased by cutting off the eligibility trace for non-greedy ac-
tions. Due to the high value of the discount factor chosen for this experiment, the
γ (gamma) parameter, the iteration of the policy did not benefit from errors from

71

CHAPTER 8. CONCLUSIONS

non-greedy actions. As stated in other papers [54], the use of non-greedy errors
might very well benefit the training of the decision policy but this is not always the
case.

Another problem experienced in the experiment was the problem of accumu-
lating traces. Since the top nodes in the process received the same error, discounted
by gamma, the estimation of the total return in the decision policy does not work
well. The problem can be reduced by changing the way the error is calculated and
re-calculating the error for each top node in the trace. This gives a better estimate
of the total return and makes the policy converge faster to the optimal policy.

One of the goals behind this thesis was to be able to handle the dynamic nature
of the Web. Since the approach proposed for the ASIE system involves high use
of the structural information, it becomes sensitive to structural changes. A change
in the structure can be easily detected by comparing the received total return with
the estimated total return in the decision policy during the extraction mode of the
system. If a change occurs after the training mode, the received total return will
differ substantially from the estimated total return. A possible way to handle the
change is to automatically switch to training mode again and try to find the similar
extraction points again. The old patterns given by the user can be used, or possibly
the content of the last successful extraction. The content extracted from the last
successful extraction will probably still exist, but with a different structure. It
should be possible to use this information to identify the new structure. However,
it may be necessary to interact with the user in some cases to handle the structural
change. This problem requires additional research.

8.2 Information Extraction

The area of semi-structural IE differs from natural language based IE in a number
of ways, e.g. the source text is often not as grammatically correct or structured in
the same way. Thus, techniques designed for natural language text may not work
well for semi-structured text and vice versa. The performance of wrappers that
work with semi-structured text is typically very high if the source text contains
enough structural information that can be used for the extraction task. As stated in
the introduction, the problem with these systems is how to adapt quickly to new
domains and thus how to construct truly user-driven IE systems that can easily
adapt to new domains. The usefulness of IE systems will not reach the same level
of popularity as IR until they can handle a similar coverage of domains. For semi-
structural information extraction systems, this can be possible in the near future.
Natural language IE has already reached surprisingly high levels of accuracy, near
human level performance for some specific tasks such as named entity recognition.
However, the concept of user-driven IE systems for free text is still far away due to
the demand for a large amount of linguistic and semantic knowledge.

The goal of user-driven information extraction systems says that minimal input
from the user should be required, both in required time and in knowledge. The

72

8.3. ETHICS

navigation task is only one part of the complete information extraction system, but
an important task that takes advantage of the semi-structural information. If the
source documents contain a large amount of semi-structural information, no other
processing may be required to complete the task [4].

The intuition behind the approach described in this thesis is that it should pro-
vide a base for future intelligent techniques and simulate human “surfing” behavior.
The current implementation with the hypertext tree model and the learning algo-
rithm with its reward function and error propagation only considers the syntactic
and structural information. The performance of the system, and ability to handle
more than just rigorous semi-structural domains, could benefit from additional use
of linguistic and semantic knowledge. This will also be one of the topics for future
research.

The current implementation, which mainly deals with semi-structural domains,
can still provide several important applications. The Buyer’s Guide shopping-agent
system is one example. Another example that I have been involved in is Structure
Knowledge Initiative - SKICal [74]. That initiative has the goal of increasing the
knowledge management of public events. One task in that project is to collect and
compile information from calendars that exist in different Web sites. This is an ex-
cellent example of the application of semi-structural information extraction. Other
smaller applications that are of personal use are a TV-planner agent and a news
agent. The TV-planner collects information from different TV program listings,
learns personal preferences, and alerts the user when the show starts. The news
agent simply extracts news headlines from about 10 news agencies and compiles a
compact list of headlines with links to the articles. Several other similar applica-
tions can be envisioned and the need for these services will increase further as they
become sufficiently effective.

The overall goal of the thesis is to improve techniques in the knowledge man-
agement area. The semi-structured information extraction technique is one part
of the knowledge management area that can be of significant use in the near fu-
ture. The amounts of information that exist in semi-structured environments have
already reached high levels today. The work of the Semantic Web initiative, that
has the goal to present information with sufficient semantics so that the informa-
tion shall be machine-understandable, also requires effective information extrac-
tion techniques. With such information extraction systems and the use of stan-
dardized languages and ontologies, new services can be designed with machine-
understandable semantic information.

8.3 Ethics

The purpose of the ethical chapter in this thesis was to consider possible conse-
quences of fulfilling the goals of this thesis. The preferred ethical theory used
to decide what is right and wrong is that of Mill’s utilitarianism. It is the conse-
quences of performing an act that should be evaluated and how these consequences

73

CHAPTER 8. CONCLUSIONS

might hurt individuals in our world, both the short- and long-term consequences.
The first problem that was considered was that of information overflow. By

increasing the performance of knowledge management tools, the flow of informa-
tion might increase so that individuals get even more filled with information and
unable to handle it. Firstly, knowledge management does not simply strive to in-
crease the flow of information; the real goal is to increase the effectiveness of an
organization/individual by better information handling. Thus, knowledge manage-
ment tools should strive to provide knowledge and not simply information. The use
of information extraction tools will certainly benefit the direct user of the system,
but the question is if the user will later use that information to common good or
not. For example, it might be possible that someone uses information extraction
tools to collect email address information and then uses that information to send
spam email. There are of course many other examples of benevolent use of the in-
formation as well. If the primary use of the information extraction technology was
malevolent, then the development of such information extraction techniques should
be seriously questioned. The number of applications that can be envisioned, both in
the short and long-term, should however provide more benevolent than malevolent
use. For example, applications such as shopping agents benefit users since they are
able to find the best retailer and the competition among the retailers is increased.

Another problem is that of privacy. Information extraction tools can certainly
be used in a malevolent way to collect personal information without given consent.
If this abuse continued without improved legislation, the total happiness would
decrease. Therefore, the question is whether it is probable that the legislation will
be improved or whether the development of information extraction techniques is
morally questionable. The best solution were if the legislation would be improved,
e.g. by application of the misuse-model, since the benevolent use of information
extraction techniques would be increased. Also, as indicated in the end of the
chapter, we need to regulate the use of knowledge management tools and access to
information.

The third problem deals with protection of intellectual property. As described
in chapter 7.2, I have personal experience with how easy it is to get in to such
problems. If it is easy to extract information from other services, it is easy to
violate copyrights even if the intent is benevolent. If a standard for what is allowed
to be extracted was developed, similar to the robot exclusion standard used for
information retrieval services, the problem would be reduced. However, it would
not stop users of information extraction systems who intend to violate copyrights.
Again, the need for improved legislation is indicated.

8.4 Limitations

The approach proposed in this thesis is suitable for semi-structured information ex-
traction tasks in hypertext environments. Natural language processing techniques
should be used for other information extraction tasks such as extracting informa-

74

8.5. FUTURE WORK

tion about different companies from news articles. The approach in this thesis is
also dependent on high existence of structural information in the source documents.
The desired information should preferably be present in lists or tables for the task
to work satisfactorily.

It should also be noted that the current system is not a fully-fledged extraction
system, but rather the foundation that additional components shall be built upon.

8.5 Future Work

The system described in this thesis is still in the beginning of the development
cycle. Even though it can already handle simpler tasks, the goal is that it should
be able to handle complex tasks and still maintain the user-driven property. The
following list presents some topics and problems that need further work to reach
that goal.

• Additional experiments should be performed to evaluate the system further
in different environments and levels of complexity.

• The problem of dynamic structures need further investigation and experi-
mentation. The detection and automatic retraining of the agent are two such
topics that should be investigated.

• The navigation step should be given the ability to handle various types of
structures that needs special handling. For example, it is common to have
multi-page tables, i.e. lists that are split across several pages since they will
not fit on a single page, and special consideration should be given to the
structural information for these lists.

• The reward function should be improved to guide the agent intelligently
through the hypertext environment. Linguistic and semantic techniques -
could be included in this function to be able to give more input from the
environment to the learning algorithm. Various such techniques exist today,
and the addition of them to the system would make it more general and able
to handle other domains.

• The error propagation should be further developed so that errors are more
intelligently blamed through the eligibility trace. The current solution to
simply cut off the trace for non-greedy actions and use a discounted distri-
bution for greedy actions can be improved. This could reduce the problem
of local optima and make the algorithm converge to the optimal policy more
quickly.

• The users of the system should also be given additional ability to interact and
give feedback to the system. This includes both human and machine users.

75

CHAPTER 8. CONCLUSIONS

76

Bibliography

[1] N. Guarino, Information Extraction: A Multidisciplinary Approach to an
Emerging Information Technology, vol. 1299 of Lecture Notes in Artificial
Intelligence, ch. 8. Semantic Matching: Formal Ontological Distinctions for
Information Organization, Extraction, and Integration, pp. 139–170. Frascati:
Springer, July 1997.

[2] H. Cunningham, Information Extraction: A User Guide (Revised Version),
Report CS-99-07, Department of Computer Science, University of Sheffield,
May 1999.

[3] J. Cowie and W. Lehnert, Information Extraction, Communications of the
ACM, vol. 39, no. 1, pp. 80–91, 1996.

[4] S. Soderland, Learning to Extract Text-Based Information from the World
Wide Web, in Proceedings of the 3rd International Conference on Knwoledge
Discovery and Data Mining (KDD-97), 1997.

[5] N. Kushmerick, Wrapper Induction: Efficiency and Expressiveness, Artificial
Intelligence, vol. 118, pp. 15–68, 2000.

[6] Y. Wilks and R. Catizone, Information Extraction: Towards Scalable, Adapt-
able Systems, vol. 1714 of Lecture Notes in Artificial Intelligence, ch. Can
We Make Information Extraction More Adaptive?, pp. 1–16. Frascati, Italy:
Springer, June 28 – July 2 1999.

[7] J. Peng and R. J. Williams, Incremental Multi-Step Q-Learning, Machine
Learning, vol. 22, pp. 283–290, 1996.

[8] G. Probst, S. Raub, and K. Romhardt, Managing Knowledge. London: Wiley,
1999.

[9] N. J. Kock, R. McQueen, and J. Corner, The Nature of Data, Information and
Knowledge Exchanges in Business Processes: Implications for Process Im-
provement and Organizational Learning, The Learning Organization, vol. 4,
no. 2, pp. 70–80, 1997.

[10] M. J. McGill, Introduction to Modern Information Retrieval. New York, NY:
McGraw-Hill, 1983.

77

BIBLIOGRAPHY

[11] G. A. Miller, WORDNET: A Lexical Database for English, Communications
of ACM, vol. 11, pp. 39–41, 1995.

[12] T. Berners-Lee, Semantic Web Road Map, 1998. http://www.w3.org/
DesignIssues/Semantic.

[13] A. Arpteg, The Buyers Guide. Master’s thesis, Sweden, 1997.

[14] R. Collier, Automatic Template Creation for Information Extraction. PhD
thesis, University of Sheffield, UK, 1998.

[15] N. R. Jennings, Agent-Based Computing: Promise and Perils, in Proceed-
ings of the Sixteenth International Joint Conference on Artificial Intelligence
(IJCAI-99), (Stockholm, Sweden), pp. 1429–1436, 1999.

[16] Y. Shoham, Agent-oriented programming, Artificial Intelligence, vol. 60,
no. 1, pp. 51–92, 1993.

[17] Y. Shoham, Time for action: On the relation between time, knowledge, and
action, in Proceedings of IJCAI-89, pp. 954–959, 1989.

[18] Y. Shoham, AGENT-0: A simple agent language and its interpreter, in Pro-
ceedings of the Ninth National Conference on Artificial Intelligence, vol. 2,
pp. 704–709, 1991.

[19] S. Franklin and A. Graesser, Is It an Agent or Just a Program? A Taxonomy
for Autonomous Agents, in Proceedings of the Thrid International Workshop
on Agent Theories, Architectures, and Languages, (New York), pp. 21–35,
Springer-Verlag, 1996.

[20] J. M. Bradshaw, ed., Software Agents. AAAI Press/The MIT Press, 1997.

[21] M. J. Wooldrige and N. R. Jennings, Agent Theories, Architectures, and Lan-
guages: A Survey, in Proceedings of the ECAI-94 Workshop on Agent The-
ories, Architectures, and Languages, vol. 890 of Lecture Notes in Artificial
Intelligence, pp. 1–39, Springer-Verlag, 1995.

[22] D. Chapman and P. Agre, Abstract reasoning as emergent from concrete ac-
tivity, in Proceedings of the 1986 Workshop on Reasoning about Actions and
Plans, Morgan Kaufmann Publishers, Inc., 1986.

[23] R. E. Fikes and N. Nilsson, STRIPS: A new approach to the application of
theorem proving to problem solving, Artificial Intelligence, vol. 5, no. 2,
1971.

[24] D. Chapmen, Planning for conjunctive goals, Artificial Intelligence, vol. 32,
1987.

78

BIBLIOGRAPHY

[25] M. E. Bratman, Intentions, Plans, and Practical Reason, report, Harvard Uni-
versity Press, Cambridge, MA, 1987.

[26] J. P. Müller, The Design of Intelligent Agents: A Layered Approach, vol. 1177
of Lecture Notes in Artificial Intelligence. Springer-Verlag, 1996.

[27] J. Firby, Adaptive Execution in Complex Dynamic Worlds. PhD thesis, De-
partment of Computer Science, Yale University, 1989.

[28] N. R. Jennings and M. Wooldridge, Handbook of Agent Technology,
ch. Agent-oriented Software Engineering. AAAI/MIT Press, 2000.

[29] H. V. D. Parunak, Multi-Agent Systems, ch. Industrial and Practial Applica-
tions of DAI. MIT Press, 1999.

[30] The Foundation for Intelligent Physical Agents. http://www.fipa.
org/ (2002-05-10), 2002.

[31] S. Virdhagriswaran, D. Osisek, and P. O’Connor, Standardizing agent tech-
nology, ACM StandardView, vol. 3, no. 3, pp. 96–101, 1995.

[32] T. Finin, R. Fritzson, D. McKay, and R. McEntire, KQML as an Agent Com-
munication Language, in Proceedings of the 3rd International Conference on
Information and Knowledge Management (CIKM’94), (Gaithersburg, MD,
USA), pp. 456–463, ACM Press, 1994.

[33] FIPA ACL Message Structure Specification. http://www.fipa.org/
specs/fipa00061/ (2002-05-01), 2000.

[34] Y. Labrou, T. Finin, and Y. Peng, Agent Communication Languages: The
Current Landscape, IEEE Intelligent Systems, vol. 14, no. 2, pp. 45–52, 1999.

[35] W3C, Resource Description Framework. http://www.w3.org/RDF/
(2002-05-01), 1999.

[36] The DARPA Agent Markup Language Homepage. http://www.daml.
org/ (2002-05-01), 2000.

[37] D. Fensel, I. Horrocks, F. van Harmelen, S. Decker, and M. Klein, OIL in
a Nutshell, in Proceedings of 12th International Conference on Knowledge
Engineering and Knowledge Management, 2000.

[38] J. Heflin, J. Hendler, and S. Luke, SHOE: A Knowledge Representation Lan-
guage for Internet Applications, Report CS-TR-4078, Department of Com-
puter Science, University of Maryland, 1999.

[39] M. Genesereth and R. Fikes, Knowledge Interchange Format (Version 3.0) -
Reference Manual, report, Computer Science Department, Stanford Univer-
sity, 1992.

79

BIBLIOGRAPHY

[40] DAML+OIL Homepage. http://www.daml.org/2001/03/daml+
oil-index.html (2002-05-01), 2001.

[41] T. Finin and Y. Labrou, UMBC Agent Web. http://agents.umbc.
edu/ (2002-05-01), 2002.

[42] J. M. Vidal, MultiAgent.com. http://www.multiagent.com/ (2002-
05-01), 2002.

[43] AgentLink.org. http://www.agentlink.org/ (2002-05-01), 2002.

[44] F. Bellifemine, A. Poggi, and G. Rimassa, JADE — A FIPA-compliant agent
framework, in Proceedings of the 4th International Conference on the Practi-
cal Applications of Agents and Multi-Agent Systems (PAAM-99), pp. 97–108,
1999.

[45] F. Bellifemine and T. Trucco, Java Development Framework. http://
sharon.cselt.it/projects/jade/ (2000-11-27), 2000.

[46] O. Hoffmann, JadeJessProtege. http://sourceforge.net/
projects/jadejessprotege/ (2002-05-01), 2001.

[47] Kinetoscope, Via 1.1 Developer’s Guide. http://www.kinetoscope.
com/shared/docs/userguide.pdf (2000-11-02), 1998.

[48] Microsoft .NET. http://www.microsoft.com/net/ (2002-05-01),
2002.

[49] D. Day, J. Aberdeen, L. Hirschman, R. Kozierok, P. Robinson, and M. Vilain,
Mixed-Initiative Development of Language Processing Systems, in Proceed-
ings of the 5th Conference on Applied NLP Systems (ANLP-97), 1997.

[50] R. Doorenbos, O. Etzioni, and D. Weld, A Scalable Comparison-Shopping
Agent for the World-Wide Web, in Proceedings of the First International
Conference on Autonomous Agents, pp. 39–48, 1997.

[51] S. Soderland, D. Fisher, J. Aseltine, and W. Lehnert, Crystal: Inducing a
conceptual dictionary, in Proceedings of the Fourteenth International Joint
Conference on Artificial Intelligence, pp. 1314–1319, 1995.

[52] J. Rennie and A. K. McCallum, Using reinforcement learning to spider the
web efficiently, in Proceedings of the 16th International Conference on Ma-
chine Learning, pp. 335–343, Morgan Kaufmann, San Francisco, CA, 1999.

[53] W. W. W. Consortium, HTML 4.01 Specification, 1999. http://www.w3.
org/TR/html4/ (2001-12-01).

[54] R. Sutton and A. Barto, Reinforcement Learning: An Introduction. Cam-
bridge, MA: MIT Press, 1999. ISBN 0-262-19398-1.

80

BIBLIOGRAPHY

[55] C. J. C. H. Watkins and P. Dayan, Q-learning, Machine Learning, vol. 8, no. 3,
pp. 279–292, 1992.

[56] University of Kalmar, Department of Technology, 2001. http://www.
te.hik.se/ (2001-12-01).

[57] G. Rummery and M. Niranjan, On-Line Q-Learning Using Connectionist
Systems, Report CUED/F-INFENG/TR166, Cambridge University Engineer-
ing Department, 1994.

[58] C. Watkins and P. Dayan, Q-Learning, Machine Learning, vol. 3, no. 8,
pp. 279–292, 1992.

[59] N. Ashish and C. Knoblock, Wrapper Generation for Semi-structured Internet
Sources, in Proc. Workshop on Management of Semistructured Data, (Tuc-
son), 1997.

[60] D. Mattrox, L. J. Sligman, and K. Smith, Rapper: A Wrapper Generator with
Linguistic Knowledge, in Workshop on Web Information and Data Manage-
ment, pp. 6–11, 1999.

[61] Y. Papakonstantinou, A. Gupta, H. Garcia-Monlina, and J. Ullman, A Query
Translation Scheme for Rapid Implementation of Wrappers, in International
Conference on Deductive and Object-Oriented Databases, pp. 97–107, Au-
gust 1995.

[62] J. Hammer, M. Breunig, H. Garcia-Monlina, S. Nestorov, V. Vassalos, and
R. Yerneni, Template-Based Wrappers in the TSIMMIS System, in Proceed-
ings of the Twenty-Sixth SIGMOD International Conference on Management
of Data, (Tucson, Arizona), May 12–15 1997.

[63] A. Sahuguet and F. Azavant, WysiWyg Web Wrapper Factory, 1999.

[64] G. Collste, ed., Ethics in the Age of Information Technology, ch. 2. Infor-
mation Technology and Values, pp. 59–88. Linköping, Sweden: Linköpings
University, 2000.

[65] D. G. Johnson, Computer Ethics, ch. 4. Ethics and the Internet I: Ethics On-
line, pp. 81–108. Upper Saddle River, New Jersey: Prentice Hall, third ed.,
2001.

[66] D. G. Johnson, Computer Ethics, ch. 8. Ethics and the Internet II: Social Im-
plications and Social Values, pp. 199–230. Upper Saddle River, New Jersey:
Prentice Hall, third ed., 2001.

[67] F. Rundkvist, (Swedish) Aftonbladet.se stänger Tyck till-sidorna.
http://www.aftonbladet.se/vss/nyheter/story/0,2789,
137738,00.html (2002-05-10), 2002.

81

BIBLIOGRAPHY

[68] Cyber-Rights and Cyber-Liberties, Felix Somm Decision in English.
http://www.cyber-rights.org/isps/somm-dec.htm (1999-
04-24), 1999.

[69] D. Lagerlöf, (Swedish) Nazisterna chattar på högskolans nät. http://
www.expressen.se/article.asp?id=77501 (2001-11-10), 2001.

[70] G. Collste, ed., Ethics in the Age of Information Technology, ch. 4. Informa-
tion Technology and Society, pp. 143–243. Linköping, Sweden: Linköpings
University, 2000.

[71] The Microsoft Knowledge Base. http://support.microsoft.com/
default.aspx?scid=fh;en-us;kbinfo (2002-04-22), 2002.

[72] M. Koster, A Standard for Robot Exclusion. http://www.robotstxt.
org/wc/norobots.html (2002-04-22), 1994.

[73] D. G. Johnson, Computer Ethics, ch. 2. Philosophical Ethics, pp. 26–53. Up-
per Saddle River, New Jersey: Prentice Hall, third ed., 2001.

[74] G. FitzPatrick, Structure Knowledge Initiative - SKICal. http://www.
skical.org/ (2002-05-01), 1998.

82

List of Figures

Thesis 1

2.1 Agent Taxonomy (modified from Franklin and Graesser [19]) 12
2.2 Abstract BDI Interpreter . 15
2.3 The RAP’s Architecture . 16
2.4 Relationships in Complex Systems [28] . 16
2.5 ACL Message Format . 18
2.6 KQML Message Example [34] . 19
2.7 TBG Architecture . 23
2.8 TBG Agent Flowchart . 24

3.1 Extraction System Modes . 29
3.2 Hypertext Transformation . 32

4.1 JADE Architecture . 36
4.2 System Architecture . 37
4.3 Butler Agent User Interface . 37
4.4 The Q(λ) Algorithm [7] . 39
4.5 Random Walk Markov Process . 40
4.6 The State and Epsilon Parameter . 41
4.7 The Epsilon Parameter . 42
4.8 The Alpha Parameter . 42
4.9 The Alpha Parameter and Number of Episodes . 43
4.10 The Gamma Parameter . 43
4.11 The Lambda Parameter . 44

5.1 Extraction Targets (text inside shaded box) . 48
5.2 Q Values of Two Top Frame Nodes . 51

6.1 Amount and Type of Knowledge . 60
6.2 System Adaptiveness . 61

83

LIST OF FIGURES

84

List of Equations

Thesis 1

4.1 Total Return . 39
4.2 Random Walk Q-value . 40

5.1 Reward Function . 50
5.2 Initial Q-values . 50
5.3 Optimal Q-value . 51
5.4 Trace Factor . 52
5.5 Trace Error . 53

85

Datum
Date

2002-12-16
LINKÖPINGS UNIVERSITET

Avdelning, institution
Division, department

Institutionen för datavetenskap

Department of Computer
and Information Science

Rapporttyp
Report category

Licentiatavhandling

Examensarbete

C-uppsats

D-uppsats

Övrig rapport

Språk
Language

 Svenska/Swedish

 Engelska/English

URL för elektronisk version

X
X

ISBN

ISRN

Serietitel och serienummer ISSN
Title of series, numbering

Linköping Studies in Science and Technology

Thesis No. 1000

91-7373-5892-2

LiU-Tek-Lic-2002:73

0280-7971

Titel
Title

Författare
Author

Adaptive Semi-structured Information Extraction

Anders Arpteg

Sammanfattning
Abstract

The number of domains and tasks where information extraction tools can be used needs to be increased. One way to
reach this goal is to construct user-driven information extraction systems where novice users are able to adapt them
to new domains and tasks. To accomplish this goal, the systems need to become more intelligent and able to learn to
extract information without need of expert skills or time-consuming work from the user.

The type of information extraction system that is in focus for this thesis is semi-structural information extraction.
The term semi-structural refers to documents that not only contain natural language text but also additional
structural information. The typical application is information extraction from World Wide Web hypertext
documents. By making effective use of not only the link structure but also the structural information within each
such document, user-driven extraction systems with high performance can be built.

The extraction process contains several steps where different types of techniques are used. Examples of such
types of techniques are those that take advantage of structural, pure syntactic, linguistic, and semantic information.
The first step that is in focus for this thesis is the navigation step that takes advantage of the structural information.
It is only one part of a complete extraction system, but it is an important part. The use of reinforcement learning
algorithms for the navigation step can make the adaptation of the system to new tasks and domains more user-
driven. The advantage of using reinforcement learning techniques is that the extraction agent can efficiently learn
from its own experience without need for intensive user interactions.

An agent-oriented system was designed to evaluate the approach suggested in this thesis. Initial experiments
showed that the training of the navigation step and the approach of the system was promising. However, additional
components need to be included in the system before it becomes a fully-fledged user-driven system.

Nyckelord
Keywords
information extraction, artificial intelligence, semi-structured data, reinforcement learning, knowledge management

Department of Computer and Information Science
Linköpings universitet

Linköping Studies in Science and Technology
Faculty of Arts and Sciences - Licentiate Theses

No 17 Vojin Plavsic: Interleaved Processing of Non-Numerical Data Stored on a Cyclic Memory. (Available at:
FOA, Box 1165, S-581 11 Linköping, Sweden. FOA Report B30062E)

No 28 Arne Jönsson, Mikael Patel: An Interactive Flowcharting Technique for Communicating and Realizing Al-
gorithms, 1984.

No 29 Johnny Eckerland: Retargeting of an Incremental Code Generator, 1984.
No 48 Henrik Nordin: On the Use of Typical Cases for Knowledge-Based Consultation and Teaching, 1985.
No 52 Zebo Peng: Steps Towards the Formalization of Designing VLSI Systems, 1985.
No 60 Johan Fagerström: Simulation and Evaluation of Architecture based on Asynchronous Processes, 1985.
No 71 Jalal Maleki: ICONStraint, A Dependency Directed Constraint Maintenance System, 1987.
No 72 Tony Larsson: On the Specification and Verification of VLSI Systems, 1986.
No 73 Ola Strömfors: A Structure Editor for Documents and Programs, 1986.
No 74 Christos Levcopoulos: New Results about the Approximation Behavior of the Greedy Triangulation, 1986.
No 104 Shamsul I. Chowdhury: Statistical Expert Systems - a Special Application Area for Knowledge-Based Com-

puter Methodology, 1987.
No 108 Rober Bilos: Incremental Scanning and Token-Based Editing, 1987.
No 111 Hans Block: SPORT-SORT Sorting Algorithms and Sport Tournaments, 1987.
No 113 Ralph Rönnquist: Network and Lattice Based Approaches to the Representation of Knowledge, 1987.
No 118 Mariam Kamkar, Nahid Shahmehri: Affect-Chaining in Program Flow Analysis Applied to Queries of Pro-

grams, 1987.
No 126 Dan Strömberg: Transfer and Distribution of Application Programs, 1987.
No 127 Kristian Sandahl: Case Studies in Knowledge Acquisition, Migration and User Acceptance of Expert Sys-

tems, 1987.
No 139 Christer Bäckström: Reasoning about Interdependent Actions, 1988.
No 140 Mats Wirén: On Control Strategies and Incrementality in Unification-Based Chart Parsing, 1988.
No 146 Johan Hultman: A Software System for Defining and Controlling Actions in a Mechanical System, 1988.
No 150 Tim Hansen: Diagnosing Faults using Knowledge about Malfunctioning Behavior, 1988.
No 165 Jonas Löwgren: Supporting Design and Management of Expert System User Interfaces, 1989.
No 166 Ola Petersson: On Adaptive Sorting in Sequential and Parallel Models, 1989.
No 174 Yngve Larsson: Dynamic Configuration in a Distributed Environment, 1989.
No 177 Peter Åberg: Design of a Multiple View Presentation and Interaction Manager, 1989.
No 181 Henrik Eriksson: A Study in Domain-Oriented Tool Support for Knowledge Acquisition, 1989.
No 184 Ivan Rankin: The Deep Generation of Text in Expert Critiquing Systems, 1989.
No 187 Simin Nadjm-Tehrani: Contributions to the Declarative Approach to Debugging Prolog Programs, 1989.
No 189 Magnus Merkel: Temporal Information in Natural Language, 1989.
No 196 Ulf Nilsson: A Systematic Approach to Abstract Interpretation of Logic Programs, 1989.
No 197 Staffan Bonnier: Horn Clause Logic with External Procedures: Towards a Theoretical Framework, 1989.
No 203 Christer Hansson: A Prototype System for Logical Reasoning about Time and Action, 1990.
No 212 Björn Fjellborg: An Approach to Extraction of Pipeline Structures for VLSI High-Level Synthesis, 1990.
No 230 Patrick Doherty: A Three-Valued Approach to Non-Monotonic Reasoning, 1990.
No 237 Tomas Sokolnicki: Coaching Partial Plans: An Approach to Knowledge-Based Tutoring, 1990.
No 250 Lars Strömberg: Postmortem Debugging of Distributed Systems, 1990.
No 253 Torbjörn Näslund: SLDFA-Resolution - Computing Answers for Negative Queries, 1990.
No 260 Peter D. Holmes: Using Connectivity Graphs to Support Map-Related Reasoning, 1991.
No 283 Olof Johansson: Improving Implementation of Graphical User Interfaces for Object-Oriented Knowledge-

Bases, 1991.
No 298 Rolf G Larsson: Aktivitetsbaserad kalkylering i ett nytt ekonomisystem, 1991.
No 318 Lena Srömbäck: Studies in Extended Unification-Based Formalism for Linguistic Description: An Algo-

rithm for Feature Structures with Disjunction and a Proposal for Flexible Systems, 1992.
No 319 Mikael Pettersson: DML-A Language and System for the Generation of Efficient Compilers from Denotatio-

nal Specification, 1992.
No 326 Andreas Kågedal: Logic Programming with External Procedures: an Implementation, 1992.
No 328 Patrick Lambrix: Aspects of Version Management of Composite Objects, 1992.
No 333 Xinli Gu: Testability Analysis and Improvement in High-Level Synthesis Systems, 1992.
No 335 Torbjörn Näslund: On the Role of Evaluations in Iterative Development of Managerial Support Sytems,

1992.
No 348 Ulf Cederling: Industrial Software Development - a Case Study, 1992.
No 352 Magnus Morin: Predictable Cyclic Computations in Autonomous Systems: A Computational Model and Im-

plementation, 1992.
No 371 Mehran Noghabai: Evaluation of Strategic Investments in Information Technology, 1993.
No 378 Mats Larsson: A Transformational Approach to Formal Digital System Design, 1993.
No 380 Johan Ringström: Compiler Generation for Parallel Languages from Denotational Specifications, 1993.
No 381 Michael Jansson: Propagation of Change in an Intelligent Information System, 1993.
No 383 Jonni Harrius: An Architecture and a Knowledge Representation Model for Expert Critiquing Systems, 1993.
No 386 Per Österling: Symbolic Modelling of the Dynamic Environments of Autonomous Agents, 1993.
No 398 Johan Boye: Dependency-based Groudness Analysis of Functional Logic Programs, 1993.

No 402 Lars Degerstedt: Tabulated Resolution for Well Founded Semantics, 1993.
No 406 Anna Moberg: Satellitkontor - en studie av kommunikationsmönster vid arbete på distans, 1993.
No 414 Peter Carlsson: Separation av företagsledning och finansiering - fallstudier av företagsledarutköp ur ett agent-

teoretiskt perspektiv, 1994.
No 417 Camilla Sjöström: Revision och lagreglering - ett historiskt perspektiv, 1994.
No 436 Cecilia Sjöberg: Voices in Design: Argumentation in Participatory Development, 1994.
No 437 Lars Viklund: Contributions to a High-level Programming Environment for a Scientific Computing, 1994.
No 440 Peter Loborg: Error Recovery Support in Manufacturing Control Systems, 1994.
FHS 3/94 Owen Eriksson: Informationssystem med verksamhetskvalitet - utvärdering baserat på ett verksamhetsinrik-

tat och samskapande perspektiv, 1994.
FHS 4/94 Karin Pettersson: Informationssystemstrukturering, ansvarsfördelning och användarinflytande - En kompa-

rativ studie med utgångspunkt i två informationssystemstrategier, 1994.
No 441 Lars Poignant: Informationsteknologi och företagsetablering - Effekter på produktivitet och region, 1994.
No 446 Gustav Fahl: Object Views of Relational Data in Multidatabase Systems, 1994.
No 450 Henrik Nilsson: A Declarative Approach to Debugging for Lazy Functional Languages, 1994.
No 451 Jonas Lind: Creditor - Firm Relations: an Interdisciplinary Analysis, 1994.
No 452 Martin Sköld: Active Rules based on Object Relational Queries - Efficient Change Monitoring Techniques,

1994.
No 455 Pär Carlshamre: A Collaborative Approach to Usability Engineering: Technical Communicators and System

Developers in Usability-Oriented Systems Development, 1994.
FHS 5/94 Stefan Cronholm: Varför CASE-verktyg i systemutveckling? - En motiv- och konsekvensstudie avseende ar-

betssätt och arbetsformer, 1994.
No 462 Mikael Lindvall: A Study of Traceability in Object-Oriented Systems Development, 1994.
No 463 Fredrik Nilsson: Strategi och ekonomisk styrning - En studie av Sandviks förvärv av Bahco Verktyg, 1994.
No 464 Hans Olsén: Collage Induction: Proving Properties of Logic Programs by Program Synthesis, 1994.
No 469 Lars Karlsson: Specification and Synthesis of Plans Using the Features and Fluents Framework, 1995.
No 473 Ulf Söderman: On Conceptual Modelling of Mode Switching Systems, 1995.
No 475 Choong-ho Yi: Reasoning about Concurrent Actions in the Trajectory Semantics, 1995.
No 476 Bo Lagerström: Successiv resultatavräkning av pågående arbeten. - Fallstudier i tre byggföretag, 1995.
No 478 Peter Jonsson: Complexity of State-Variable Planning under Structural Restrictions, 1995.
FHS 7/95 Anders Avdic: Arbetsintegrerad systemutveckling med kalkylkprogram, 1995.
No 482 Eva L Ragnemalm: Towards Student Modelling through Collaborative Dialogue with a Learning Compani-

on, 1995.
No 488 Eva Toller: Contributions to Parallel Multiparadigm Languages: Combining Object-Oriented and Rule-Based

Programming, 1995.
No 489 Erik Stoy: A Petri Net Based Unified Representation for Hardware/Software Co-Design, 1995.
No 497 Johan Herber: Environment Support for Building Structured Mathematical Models, 1995.
No 498 Stefan Svenberg: Structure-Driven Derivation of Inter-Lingual Functor-Argument Trees for Multi-Lingual

Generation, 1995.
No 503 Hee-Cheol Kim: Prediction and Postdiction under Uncertainty, 1995.
FHS 8/95 Dan Fristedt: Metoder i användning - mot förbättring av systemutveckling genom situationell metodkunskap

och metodanalys, 1995.
FHS 9/95 Malin Bergvall: Systemförvaltning i praktiken - en kvalitativ studie avseende centrala begrepp, aktiviteter och

ansvarsroller, 1995.
No 513 Joachim Karlsson: Towards a Strategy for Software Requirements Selection, 1995.
No 517 Jakob Axelsson: Schedulability-Driven Partitioning of Heterogeneous Real-Time Systems, 1995.
No 518 Göran Forslund: Toward Cooperative Advice-Giving Systems: The Expert Systems Experience, 1995.
No 522 Jörgen Andersson: Bilder av småföretagares ekonomistyrning, 1995.
No 538 Staffan Flodin: Efficient Management of Object-Oriented Queries with Late Binding, 1996.
No 545 Vadim Engelson: An Approach to Automatic Construction of Graphical User Interfaces for Applications in

Scientific Computing, 1996.
No 546 Magnus Werner : Multidatabase Integration using Polymorphic Queries and Views, 1996.
FiF-a 1/96 Mikael Lind: Affärsprocessinriktad förändringsanalys - utveckling och tillämpning av synsätt och metod,

1996.
No 549 Jonas Hallberg: High-Level Synthesis under Local Timing Constraints, 1996.
No 550 Kristina Larsen: Förutsättningar och begränsningar för arbete på distans - erfarenheter från fyra svenska fö-

retag. 1996.
No 557 Mikael Johansson: Quality Functions for Requirements Engineering Methods, 1996.
No 558 Patrik Nordling: The Simulation of Rolling Bearing Dynamics on Parallel Computers, 1996.
No 561 Anders Ekman: Exploration of Polygonal Environments, 1996.
No 563 Niclas Andersson: Compilation of Mathematical Models to Parallel Code, 1996.
No 567 Johan Jenvald: Simulation and Data Collection in Battle Training, 1996.
No 575 Niclas Ohlsson: Software Quality Engineering by Early Identification of Fault-Prone Modules, 1996.
No 576 Mikael Ericsson: Commenting Systems as Design Support—A Wizard-of-Oz Study, 1996.
No 587 Jörgen Lindström: Chefers användning av kommunikationsteknik, 1996.
No 589 Esa Falkenroth: Data Management in Control Applications - A Proposal Based on Active Database Systems,

1996.
No 591 Niclas Wahllöf: A Default Extension to Description Logics and its Applications, 1996.
No 595 Annika Larsson: Ekonomisk Styrning och Organisatorisk Passion - ett interaktivt perspektiv, 1997.
No 597 Ling Lin: A Value-based Indexing Technique for Time Sequences, 1997.

No 598 Rego Granlund: C3Fire - A Microworld Supporting Emergency Management Training, 1997.
No 599 Peter Ingels: A Robust Text Processing Technique Applied to Lexical Error Recovery, 1997.
No 607 Per-Arne Persson: Toward a Grounded Theory for Support of Command and Control in Military Coalitions,

1997.
No 609 Jonas S Karlsson: A Scalable Data Structure for a Parallel Data Server, 1997.
FiF-a 4 Carita Åbom: Videomötesteknik i olika affärssituationer - möjligheter och hinder, 1997.
FiF-a 6 Tommy Wedlund: Att skapa en företagsanpassad systemutvecklingsmodell - genom rekonstruktion, värde-

ring och vidareutveckling i T50-bolag inom ABB, 1997.
No 615 Silvia Coradeschi: A Decision-Mechanism for Reactive and Coordinated Agents, 1997.
No 623 Jan Ollinen: Det flexibla kontorets utveckling på Digital - Ett stöd för multiflex? 1997.
No 626 David Byers: Towards Estimating Software Testability Using Static Analysis, 1997.
No 627 Fredrik Eklund: Declarative Error Diagnosis of GAPLog Programs, 1997.
No 629 Gunilla Ivefors: Krigsspel coh Informationsteknik inför en oförutsägbar framtid, 1997.
No 631 Jens-Olof Lindh: Analysing Traffic Safety from a Case-Based Reasoning Perspective, 1997
No 639 Jukka Mäki-Turja:. Smalltalk - a suitable Real-Time Language, 1997.
No 640 Juha Takkinen: CAFE: Towards a Conceptual Model for Information Management in Electronic Mail, 1997.
No 643 Man Lin: Formal Analysis of Reactive Rule-based Programs, 1997.
No 653 Mats Gustafsson: Bringing Role-Based Access Control to Distributed Systems, 1997.
FiF-a 13 Boris Karlsson: Metodanalys för förståelse och utveckling av systemutvecklingsverksamhet. Analys och vär-

dering av systemutvecklingsmodeller och dess användning, 1997.
No 674 Marcus Bjäreland: Two Aspects of Automating Logics of Action and Change - Regression and Tractability,

1998.
No 676 Jan Håkegård: Hiera rchical Test Architecture and Board-Level Test Controller Synthesis, 1998.
No 668 Per-Ove Zetterlund: Normering av svensk redovisning - En studie av tillkomsten av Redovisningsrådets re-

kommendation om koncernredovisning (RR01:91), 1998.
No 675 Jimmy Tjäder: Projektledaren & planen - en studie av projektledning i tre installations- och systemutveck-

lingsprojekt, 1998.
FiF-a 14 Ulf Melin: Informationssystem vid ökad affärs- och processorientering - egenskaper, strategier och utveck-

ling, 1998.
No 695 Tim Heyer: COMPASS: Introduction of Formal Methods in Code Development and Inspection, 1998.
No 700 Patrik Hägglund: Programming Languages for Computer Algebra, 1998.
FiF-a 16 Marie-Therese Christiansson: Inter-organistorisk verksamhetsutveckling - metoder som stöd vid utveckling

av partnerskap och informationssystem, 1998.
No 712 Christina Wennestam: Information om immateriella resurser. Investeringar i forskning och utveckling samt

i personal inom skogsindustrin, 1998.
No 719 Joakim Gustafsson: Extending Temporal Action Logic for Ramification and Concurrency, 1998.
No 723 Henrik André-Jönsson: Indexing time-series data using text indexing methods, 1999.
No 725 Erik Larsson: High-Level Testability Analysis and Enhancement Techniques, 1998.
No 730 Carl-Johan Westin: Informationsförsörjning: en fråga om ansvar - aktiviteter och uppdrag i fem stora svens-

ka organisationers operativa informationsförsörjning, 1998.
No 731 Åse Jansson: Miljöhänsyn - en del i företags styrning, 1998.
No 733 Thomas Padron-McCarthy: Performance-Polymorphic Declarative Queries, 1998.
No 734 Anders Bäckström: Värdeskapande kreditgivning - Kreditriskhantering ur ett agentteoretiskt perspektiv,

1998.
FiF-a 21 Ulf Seigerroth: Integration av förändringsmetoder - en modell för välgrundad metodintegration, 1999.
FiF-a 22 Fredrik Öberg: Object-Oriented Frameworks - A New Strategy for Case Tool Development, 1998.
No 737 Jonas Mellin: Predictable Event Monitoring, 1998.
No 738 Joakim Eriksson: Specifying and Managing Rules in an Active Real-Time Database System, 1998.
FiF-a 25 Bengt E W Andersson: Samverkande informationssystem mellan aktörer i offentliga åtaganden - En teori om

aktörsarenor i samverkan om utbyte av information, 1998.
No 742 Pawel Pietrzak: Static Incorrectness Diagnosis of CLP (FD), 1999.
No 748 Tobias Ritzau: Real-Time Reference Counting in RT-Java, 1999.
No 751 Anders Ferntoft: Elektronisk affärskommunikation - kontaktkostnader och kontaktprocesser mellan kunder

och leverantörer på producentmarknader,1999.
No 752 Jo Skåmedal: Arbete på distans och arbetsformens påverkan på resor och resmönster, 1999.
No 753 Johan Alvehus: Mötets metaforer. En studie av berättelser om möten, 1999.
No 754 Magnus Lindahl: Bankens villkor i låneavtal vid kreditgivning till högt belånade företagsförvärv: En studie

ur ett agentteoretiskt perspektiv, 2000.
No 766 Martin V. Howard: Designing dynamic visualizations of temporal data, 1999.
No 769 Jesper Andersson: Towards Reactive Software Architectures, 1999.
No 775 Anders Henriksson: Unique kernel diagnosis, 1999.
FiF-a 30 Pär J. Ågerfalk: Pragmatization of Information Systems - A Theoretical and Methodological Outline, 1999.
No 787 Charlotte Björkegren: Learning for the next project - Bearers and barriers in knowledge transfer within an

organisation, 1999.
No 788 Håkan Nilsson: Informationsteknik som drivkraft i granskningsprocessen - En studie av fyra revisionsbyråer,

2000.
No 790 Erik Berglund: Use-Oriented Documentation in Software Development, 1999.
No 791 Klas Gäre: Verksamhetsförändringar i samband med IS-införande, 1999.
No 800 Anders Subotic: Software Quality Inspection, 1999.
No 807 Svein Bergum: Managerial communication in telework, 2000.

No 809 Flavius Gruian: Energy-Aware Design of Digital Systems, 2000.
FiF-a 32 Karin Hedström: Kunskapsanvändning och kunskapsutveckling hos verksamhetskonsulter - Erfarenheter

från ett FOU-samarbete, 2000.
No 808 Linda Askenäs: Affärssystemet - En studie om teknikens aktiva och passiva roll i en organisation, 2000.
No 820 Jean Paul Meynard: Control of industrial robots through high-level task programming, 2000.
No 823 Lars Hult: Publika Gränsytor - ett designexempel, 2000.
No 832 Paul Pop: Scheduling and Communication Synthesis for Distributed Real-Time Systems, 2000.
FiF-a 34 Göran Hultgren: Nätverksinriktad Förändringsanalys - perspektiv och metoder som stöd för förståelse och

utveckling av affärsrelationer och informationssystem, 2000.
No 842 Magnus Kald: The role of management control systems in strategic business units, 2000.
No 844 Mikael Cäker: Vad kostar kunden? Modeller för intern redovisning, 2000.
FiF-a 37 Ewa Braf: Organisationers kunskapsverksamheter - en kritisk studie av ”knowledge management”, 2000.
FiF-a 40 Henrik Lindberg: Webbaserade affärsprocesser - Möjligheter och begränsningar, 2000.
FiF-a 41 Benneth Christiansson: Att komponentbasera informationssystem - Vad säger teori och praktik?, 2000.
No. 854 Ola Pettersson: Deliberation in a Mobile Robot, 2000.
No 863 Dan Lawesson: Towards Behavioral Model Fault Isolation for Object Oriented Control Systems, 2000.
No 881 Johan Moe: Execution Tracing of Large Distributed Systems, 2001.
No 882 Yuxiao Zhao: XML-based Frameworks for Internet Commerce and an Implementation of B2B

e-procurement, 2001.
No 890 Annika Flycht-Eriksson: Domain Knowledge Management inInformation-providing Dialogue systems,

2001.
Fif-a 47 Per-Arne Segerkvist: Webbaserade imaginära organisationers samverkansformer, 2001.
No 894 Stefan Svarén: Styrning av investeringar i divisionaliserade företag - Ett koncernperspektiv, 2001.
No 906 Lin Han: Secure and Scalable E-Service Software Delivery, 2001.
No 917 Emma Hansson: Optionsprogram för anställda - en studie av svenska börsföretag, 2001.
No 916 Susanne Odar: IT som stöd för strategiska beslut, en studie av datorimplementerade modeller av verksamhet

som stöd för beslut om anskaffning av JAS 1982, 2002.
Fif-a-49 Stefan Holgersson: IT-system och filtrering av verksamhetskunskap - kvalitetsproblem vid analyser och be-

slutsfattande som bygger på uppgifter hämtade från polisens IT-system, 2001.
Fif-a-51 Per Oscarsson:Informationssäkerhet i verksamheter - begrepp och modeller som stöd för förståelse av infor-

mationssäkerhet och dess hantering, 2001.
No 919 Luis Alejandro Cortes: A Petri Net Based Modeling and Verification Technique for Real-Time Embedded

Systems, 2001.
No 915 Niklas Sandell: Redovisning i skuggan av en bankkris - Värdering av fastigheter. 2001.
No 931 Fredrik Elg: Ett dynamiskt perspektiv på individuella skillnader av heuristisk kompetens, intelligens, mentala

modeller, mål och konfidens i kontroll av mikrovärlden Moro, 2002.
No 933 Peter Aronsson: Automatic Parallelization of Simulation Code from Equation Based Simulation Languages,

2002.
No 938 Bourhane Kadmiry: Fuzzy Control of Unmanned Helicopter, 2002.
No 942 Patrik Haslum: Prediction as a Knowledge Representation Problem: A Case Study in Model Design, 2002.
No 956 Robert Sevenius: On the instruments of governance - A law & economics study of capital instruments in li-

mited liability companies, 2002.
FiF-a 58 Johan Petersson: Lokala elektroniska marknadsplatser - informationssystem för platsbundna affärer, 2002.
No 964 Peter Bunus: Debugging and Structural Analysis of Declarative Equation-Based Languages, 2002.
No 973 Gert Jervan: High-Level Test Generation and Built-In Self-Test Techniques for Digital Systems, 2002.
No 958 Fredrika Berglund: Management Control and Strategy - a Case Study of Pharmaceutical Drug Development,

2002.
Fif-a 61 Fredrik Karlsson: Meta-Method for Method Configuration - A Rational Unified Process Case, 2002.
No 985 Sorin Manolache: Schedulability Analysis of Real-Time Systems with Stochastic Task Execution Times,

2002.
No 982 Diana Szentiványi: Performance and Availability Trade-offs in Fault-Tolerant Middleware, 2002.
No 989 Iakov Nakhimovski: Modeling and Simulation of Contacting Flexible Bodies in Multibody Systems, 2002.
No 990 Levon Saldamli: PDEModelica - Towards a High-Level Language for Modeling with Partial Differential

Equations, 2002.
No 991 Almut Herzog: Secure Execution Environment for Java Electronic Services, 2002.
No 999 Jon Edvardsson: Contributions to Program- and Specification-based Test Data Generation, 2002
No 1000 Anders Arpteg: Adaptive Semi-structured Information Extraction, 2002.

