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ABSTRACT

The overall objective of the Wallenberg Laboratory for Information Technology and Auton-
omous Systems (WITAS) at Linkdping University is the development of an intelligent com-
mand and control system, containing vision sensors, which supports the operation of a
unmanned air vehicle (UAV) in both semi- and full-autonomy modes. One of the UAV plat-
forms of choice is the APID-MK3 unmanned helicopter, by Scandicraft Systems AB. The
intended operational environment is over widely varying geographical terrain with traffic
networks and vehicle interaction of variable complexity, speed, and density.

The present version of APID-MK3 is capable of autonomous take-off, landing, and
hovering as well as of autonomously executing pre-defined, point-to-point flight where the
latter is executed at low-speed. This is enough for performing missions like site mapping
and surveillance, and communications, but for the above mentioned operational
environment higher speeds are desired. In this context, the goal of this thesis is to explore
the possibilities for achieving stable “aggressive” manoeuvrability at high-speeds, and test
a variety of control solutions in the APID-MKS3 simulation environment.

The objective of achieving “aggressive” manoeuvrability concerns the design of attitude/
velocity/position controllers which act on much larger ranges of the body attitude angles, by
utilizing the full range of the rotor attitude angles. In this context, a flight controller should
achieve tracking of curvilinear trajectories at relatively high speeds in a robust, w.r.t.
external disturbances, manner. Take-off and landing are not considered here since APID-
MK3 has already have dedicated control modules that realize these flight modes.

With this goal in mind, we present the design of two different types of flight controllers: a
fuzzy controller and a gradient descent method based controller. Common to both are model
based design, the use of nonlinear control approaches, and an inner- and outer-loop control
scheme. The performance of these controllers is tested in simulation using the nonlinear
model of APID-MKS.

This work was supported by a research grant provided by the Knut and Alice Wallenberg
Foundation in Sweden.
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Abstract

The overall objective of the Wallenberg Laboratory for Information Technology and Autonomous Systems
(WITAS) at Linkdping University is the development of an intelligent command and control system, con-
taining vision sensors, which supports the operation of a unmanned air vehicle (UAV) in both semi- and
full-autonomy modes. One of the UAV platforms of choice is the APID-MK3 unmanned helicopter, by Scan-
dicraft Systems AB. The intended operational environment is over widely varying geographical terrain with
traffic networks and vehicle interaction of variable complexity, speed, and density.

The present version of APID MK-3 is capable of autonomous take-off, landing, and hovering as well as
of autonomously executing pre-defined, point-to-point flight where the latter is executed at low-speed. This
is enough for performing missions like site mapping and surveillance, and communications, but for the above
mentioned operational environment higher speeds are desired. In this context, the goal of this thesis is to
explore the possibilities for achieving stable “aggressive” manoeuvrability at high-speeds, and test a variety
of control solutions in the APID-MK3 simulation environment.

The objective of achieving “aggressive” manoeuvrability concerns the design of a attitude/velocity/ po-
sition controllers which act on much larger ranges of the body attitude angles, by utilizing the full range of
the rotor attitude angles. In this context, a flight controller should achieve tracking of curvilinear trajecto-
ries at relatively high speeds in a robust, w.r.t. external disturbances, manner. Take-off and landing are not
considered here since APID MK-3 has already have dedicated control modules that realize these flight modes.

With this goal in mind, we present the design of two different types of flight controllers: a fuzzy controller
and a gradient descent method based controller. Common to both are model based design the use of nonlinear
control approaches and an inner- and outer-loop control scheme. The performance of these controllers is
tested in simulation using the nonlinear model of APID-MK3.

This work was supported by a research grant provided by the Knut and alice Wallenberg Foundation in
Sweden.
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Chapter 1

Introduction

The central problem addressed in this thesis is the design of a control system that asthldee'aggressive”
manoeuvrability for an unmanned helicopter

While almost all existing work in this area uses various modificatiomeaxfback linearizatiowe employ
a gain-scheduling approach based on the use of Takagi-Sugeno fuzzy models fl}4yegain-scheduling
However, here, we differ significantly from the conventional two-step gain-scheduling by proposing a one-
step design — simultaneous synthesis of linear controllers and a gain scheduler with guaranteed global stability
and robustness properties.

The experimental results showing the feasibility of the proposed fuzzy gain-scheduling approach are
obtained via simulation using a mathematical model of the APID-MK3 unmanned helicopter, by Scandicraft

Systems AB (www.scandicraft.se).

1.1 Motivation

Basically, there are two types of UAV autononiynctionalandtactical. The first type of autonomy addresses

the execution of basic flight modes such as “take off”, “landing ", “cruise flight” as well as more aggressive
flight patterns. Here, the major concern is twofold: 1) use and reliability of proprioceptive sensors (compass,
GPS, gyros, etc.) to monitor the internal state of the UAV; and 2) robust and stable position/velocity control
based on inputs from the UAV’s proprioceptive sensors. Thus, this concern is related to the air-worthiness
of an UAV in unmanned flight and unmanned landing/take-off. The subject of this thesis is this type of
tactical autonomy, and in particular, increasing the “aggressiveness” with which it is performed. We assume

here the availability of reliable —within certain noise characteristics— proprioceptive sensors and focus on the

1



robustness and stability of attitude/altitude/velocity control via the use of fuzzy gain-scheduling.

The tactical type of autonomy addresses mission execution in a safe and reliable manner. Typical mission
examples include “track ground vehicle”, “follow coast line”, “deliver load” and autonomy requires making as
few assumptions as possible about the environment encountered during mission execution; and that execution
should be sensitive to the environment, and adapt to the contingencies encountered. A typical example of a
safety-related UAV behavior during mission execution is "sense and avoid”: it makes sure that collisions
with elevated ground formations do not occur. Thus a major concern in achieving mission autonomy is
the use of exteroceptive sensors, like a camera or a laser range finder, to acquire information about the
state of the environment as it is at the moment and based on this information to react instantly to it by
adopting a behavior that complies with this state alone. Therefore the success of the mission and the safety
of an UAV is not dependent on delays in communication with a ground-station operator during which the
possibility of a communication failure cannot be neglected. This type of autonomy is not of concern here.

However one necessary condition for achieving it is for example, the ability to fly at varying speed and fast

acceleration/deceleration capability.

1.1.1 Why aggressive manoeuvrability

The work reported in this thesis is a contribution to the overall objective dMédéenberg Laboratory for In-
formation Technology and Autonomous Syst@BMIAS, www.ida.liu.se/ext/witas) at Lirkping University:

the development of an intelligent, deliberative/reactive command and control system, containing active-vision
sensors, which supports the operation of a unmanned air vehicle (UAV) in both semi- and full-autonomy
modes.

One of the UAV platforms of choice is the APID MK-1l1l unmanned helicopter. The intended operational
environment for APID MK-IIl is over widely varying geographical terrain with traffic networks and vehicle
interaction of variable complexity, speed, and density. The present version of APID MK-Ill is capable of
unmanned take-off, landing, hovering, and motion along linear trajectories with a constant low-speed. This
is enough for performing missions like site mapping and surveillance, and electronic warfare and communi-
cations where the predominant flight modes used are hovering at predefined points and slowly moving, along
a predefined straight-line, from one hovering point to another.

Other type of missions, e.g., tracking a ground vehicle, require the execution of curvilinear trajectories

with a varying speed profile. However, the current control system for APID MK-IIl does not utilize large



ranges of the rotor attitude angles. As a consequence this produces lower rate-of-change of the body attitude
angles. Consequently, the control is done on rather small ranges for these and this restricts the magnitude of
the curvature of the trajectory which these angles can follow at a given relatively high speed. Furthermore,
control within small ranges for the body attitude angles implies small acceleration rate — a shortcoming when
a ground object is capable of accelerating at higher rates. Last but not least, the ability to decelerate fast
is necessary for safe navigation when sudden unknown terrain elevations are encountered and have to be
avoided as fast as possible.

In this context, the objective of achieving “aggressive” manoeuvrability concerns the design of a atti-
tude/velocity/position controllers which act on much larger ranges of the body attitude anglesyj.¢.<
¢ < 47w/4,—7/4 <0 < +n/4,—7m < p < +m, by utilizing the full range of the rotor attitude angles. The
latter are approximated to the interyal0.25, +0.25] rad. These controllers should achieve robust and stable
tracking of trajectories with varying curvature magnitude at relatively high speed. Take-off and landing are
not considered here since APID MK-III has already have dedicated control modules that realize these flight
modes.

It has to be noted here that the above interpretation of “aggressive manoeuvrability” agrees with the one
given in [2], that is “ the ability to tracKast trajectories. A principally different reading of “aggressive
manoeuvrability” is provided in [3] in: “the finite time transition between twion trajectories. Trim
trajectories are defined as those trajectories along which the velocities in body axes (the twist) and the control

input are constant.

1.1.2 Why fuzzy gain scheduling ?

A study of the relevant literature on unmanned helicopter control reveals very few well-documented case
when a nonlinear model of an unmanned helicopter is deployed for the controller design. In all other cases the
design is based on linear models and the linear control techniques ugegwarthesis [4] H, [5], or Linear
Quadratic Gaussian LQG [6]. Examples include: a linear robust controller implemented on the Yamaha R-50
at Carnegie Mellon University. The controller consists of one MIMO loop for attitude stabilization and four
separate SISO loops for velocity and position control. The speed of motion achieved is 4 m/s. Recent flight
test can be found atww — 2.cs.cmu.edu/ marcol /research/ flight_tests/html/ flight_tests.html;

2) MIMO linear controller, based on-synthesis, is implemented on the Yamaha R-50 at the University

of California at Berkeley for control during hover and way-point navigation. Recent flight test at speeds up to



6m/s can be found at http://robotics.eecs.berkeley.edu/bear/; 3) MiM@nd LQG hovering controllers [7]

are implemented on the Caltech’s Kyosho EP Concept electric model helicopter. It is important to emphasize
on the fact that all linear designs are implemented and tested on the real platforms, while almost all nonlinear
designs only are evaluated in simulation with the exception of the Georgia Tech controller implemented on

the Yamaha-50 platform.

The predominant nonlinear controller designs are based on the notion of feedback linearization [8] of the
original nonlinear helicopter model. The idea here is to transform the nonlinear dynamics into a linear form
by using state feedback, with input-state linearization corresponding to complete linearization, and input-
output linearization to partial linearization. It is the latter type of feedback linearization that is normally used

for controller design in the case of unmanned helicopters.

Input-output linearization means the generation of a linear differential relation between the output and
a new input. By means of this the dynamics of the original nonlinear system is decomposed into external
(input-output) part and internal (unobservable) part. Since the external part consists of a linear relation
between the output and the new input it is easy to design the input so that the output behaves as desired. Then
the question is whether the internal part will also behave well, i.e., whether the internal states will remain
bounded. The answer to this question is provided by studying the so-called zero-dynamics of the internal
part, i.e., the dynamics when the control input is such that the output is maintained at zero. If an input-output
linearized system has stable zero dynamics it is called minimum phase, and if it has unstable dynamics then
it is a non-minimum phase. The control law for a minimum phase system can simply be obtained by model
inversion. However this type of control law cannot be applied to non-minimum phase systems since they
are not invertible. Thus the major focus in all reported controller designs for unmanned helicopters that are
based on input-output linearization is: the generation of such input-output relation for the original nonlinear
system so that the internal dynamics of the input-output linearized system is either minimum phase or it has
no internal (zero-) dynamics. An input-output linearized system with no internal dynamics can be obtained as
follows [9]: when performing successive differentiations of the selected output, to simply neglect the terms
containing the input and keep differentiating the output a number of times equal to the system’s order, so
that there is “approximately” no internal dynamics. Of course this approach is only meaningful if the input
coefficients at the intermediate steps are “small”, i.e., the system is “weakly non-minimum phase”, i.e., “fast

" right-half plane zeros are neglected.



Controller designs based on input-output linearization have a number of important limitations amongst
which the most important one, in the context of control of unmanned helicopters, is that no robustness is
guaranteed in the presence of parameter uncertainties, unmodeled dynamics, or external disturbances [8]. In
this context, the dynamic output fuzzy gain-scheduling controller [10] designed withiH théamework
and presented in this thesis allows to: 1) shape the closed loop transient dynamics so that it conforms to
performance specifications; and 2) design a robust controller that rejects the influence of bounded model
uncertainties and external disturbances. Yet another principal difference between fuzzy gain-scheduling and
input-output linearization is that: fuzzy gain-scheduling design is a technique for transforming the origi-
nal nonlinear system into another nonlinear system while input-output linearization transforms the original

nonlinear system into a (fully or partially) linear system.

1.1.3 Why not conventional gain scheduling ?

The design of gain scheduled controllers [11] has, for a very long time, followed a two-step approach: first, the
nonlinear model under control is linearized at a number of different operating points These operating points
may be different velocities, angles of attack, and altitudes. As a result one obtains a grid of working points
according to the previously mentioned parameters and a linear model for each point in the grid. Then a linear
controller is designed for each of the linear models in this set. When the flight conditions (altitude, velocity,
angle of attack) change, the general control strategy should determine the working point in the grid to which
these new conditions (approximately) correspond. The control action is performed by the linear controller
which corresponds to this working point. Second, for points in the grid that do not have a corresponding
linear controller a so-calledain-scheduleiis designed via interpolation of the linear controllers in their
neighborhood. The gain-scheduler is then used to perform the change from one linear controller to another
that is, to control the system during the transition from one flight condition to another. This is gaited
scheduling The weak part here is that each linear controller is only effective in a small neighborhood of its
corresponding grid point (flight condition). Therefore one needs to verify that the change from one controller
to another is smooth enough and doesn’t cause instabilities. The most common approach is to leave this

evaluation for the simulation stage.

In contrast to the above, fuzzy gain scheduling [12] is a one-step approach to the design of gain-schedulers:

it provides for the simultaneous synthesis of linear controllers and a gain scheduler with guaranteed global



stability and robustness properties, thus avoiding the need for extensive simulation. It uses an approxima-
tion of the original nonlinear model in terms of a Takagi-Sugeno fuzzy system where the latter is a convex

nonlinear combination of a set of linear models, hence the similarity with conventional gain-scheduling.

1.2 Related Work

In recent years, the design and implementation of control algorithms for unmanned helicopters has been the
object of quite a number of studies. This is due to the recognized need for maneuverable autonomous air
vehicles, for both military and civil applications. While slower and less efficient than airplanes, helicopters
are capable of vertical take-off and landing, hover, and in general are more maneuverable in tight spaces than
airplanes. As a consequence, helicopters are one of the best platforms for operations in urban or otherwise
cluttered environments. However, in many respects the dynamics of a helicopter are more complicated than
those of a fixed wing aircraft: a helicopter is inherently unstable at hover, and the flight characteristics change
dramatically over the entire flight envelope.

In order to provide a proper framework within which the contributions of this thesis can be meaningfully

evaluated we will only consider here studies that report in significant level of detail:

1. control algorithms that make use of nonlinear models and control techniques and their performance is
evaluated either on the real platform or in simulation based on a mathematical model close enough to

the real platform.

1.2.1 The Berkeley Aerorobot Team

The controller design [13] is based on a nonlinear model of the Ursa-Minor unmanned helicopter and its
performance has so far been evaluated in simulation. In particular, the design is bagguloximate input-

output linearizationof the original nonlinear helicopter model. “Approximate” here means that the input-
output linearization is performed on the original nonlinear model only after the coupling effect between
rolling moment and lateral force on one side and pitching moment and longitudinal force on the other are
neglected. Then by choosing positions and heading as outputs and applying a dynamic decoupling algorithm
[14] a linearized helicopter model which does not contain any unobservable zero-dynamics, and hence is
minimum phase, is obtained. Finally, a tracking control law for this linearized model is designed and applied

to the original nonlinear helicopter model so that a bounded tracking error is guaranteed. However, as noticed



in [15], the so-obtained tracking control law is sensitive to model disparities such as changes in the payload
or the thrust-torque model, or external disturbances such as side-winds. Though, as mentioned in [10], the
tracking error can be reduced by placing the poles further away from the origin in the left-half plane, this
comes with a price — higher control input magnitude which may not be physically feasible. As already
mentioned, this type of robustness limitations is inherent to all controller designs based on input-output

linearization.

1.2.2 The Georgia Tech Aerial Robotics Mission

The design of an attitude controller is done on approximate linear model of the rotational dynamics and im-
plemented on the Yamaha R-50 unmanned helicopter (see www.ae.gatech.edu/research/controls /labs/uavrf/).
The controller design [16] uses linear model inversion. However, since the linear model is only approxima-
tion of the real dynamics of the helicopter it is subject to modeling errors arising from flight conditions and
inaccurate modeling. Hence, an adaptive unit in the form of a neural network, is used to cancel the inversion
errors using feedback and a stable update law based on Lyapunov stability theory. This same structure is used
in all three channels, roll, pitch, and yaw. The adaptive unit also adjusts to changing atmospheric conditions

and dynamics. Thus, the controller can be used at different points in the flight envelope without tuning.

1.2.3 The MIT Backstepping Controller

The backstepping controller design [17] is performed on the Berkeley UAV model and experimental results
based on simulation are performed.

The major motivation is avoiding artificial singularities due to attitude dynamics representation via the use
of Euler angles. These singularities arise when maneuvers like loops, barrel rolls, and split-ups are executed.

The helicopter model is approximated in the same manner as in [13]. Thus the approximated model
is feedback linearizable or has differential flatness. On the basis of this model a non-trivial extension of
backstepping ideas [18] is proposed. In its basic form backstepping is carried out on a chain of integrators
(integrator backstepping). In this particular case backstepping is done on the group of rotations in the 3-D
space rather in 2-D space. The design procedure avoids the introduction of artificial singularities through
over parameterization of the outputs: full specification of the reference attitude is required. The so obtained
backstepping controller is capable of tracking trim trajectories, e.g, climbing turn, and transitions between

trim trajectories, e.g., a transition to inverted flight. The latter is the authors’ interpretation of aggressive



maneuvering.

1.2.4 The Compiegne University Controller

The controller design [19] is done on a model valid for slow maneuvers (e.g., take-off and landing) close to
hover and the control task is to track a trajectory given in position coordinates. The model describes a model
helicopter (mass- 16kg) used in the unmanned helicopter project at Compiegne University of Technology,
France. However the controller performance is evaluated in simulation.

The major effort is the derivation of a helicopter model in block pure feedback form so that backstepping
or input-output linearization techniques can be used. In order to achieve this the helicopter is considered as
a rigid body consisting of two parts: the helicopter airframe and additional load associated with the sensing
and computer systems. The additional load is then distributed in such a way so that the moments of inertia of
the helicopter around the first two principal axis corresponding to pitch and roll are equal. Using the tail rotor
input to put to zero the rotation around the third principal axis, the reduced rigid body dynamics are simplified.
Due to a specific structure of the inertia matrix, diagonal with the first two entries equal, this only requires
an input sufficient to cancel the torques due to rotor drag and fully decouples the rotational dynamics of the
system.The reduced dynamics obtained after this allows to define a point that acts as a center of oscillation
for the airframe. The coordinates of this center of oscillation are are not differentially flat outputs due to
the presence of the parasitic torques associated with the rotor drag. However, taking these coordinates as
the position of the airframe, the reduced dynamics can be rewritten in block pure feedback form with four
integrations corresponding first to the translational dynamics and then to the rotational dynamics. From here
a control law for almost exact tracking of the center of oscillations can be derived using backstepping or

input-output linearization.
1.2.5 The Fuzzy Unmanned Helicopter

The work by Sugeno [20] reports a hierarchical, Mamdani-type of a controller for the unmanned helicopter
Yamaha R-50 by Yamaha Motors. The lower layer contains a number of Mamdani-type control modules:
longitudinal (pitch control), lateral (roll control), collective (vertical control), rudder (yaw control), and cou-
pling compensation modules. Furthermore, within each such module there is a number of sub-modules only

some of which correspond directly to our Mamdani-type controller from Sect. 4. These are as follows:

e Longitudinal: this module includes :a Mamdani-type controller. The controller infers a desired



pitch angle using a velocity-error and its derivative and is identical to the one used by us;

e Lateral: this module includesiaMamdani-type controller. Thg controller infers a desired roll angle

using a velocity-error and its derivative and is identical to the one used by us;

e Collective: this module includes aMamdani-type controller. Thé controller infers a control value

for the main collective using altitude, velocity-error and its derivative;

e Rudder: this module, given a desired heading, infers a control input for the tail collective using yaw

angle error and its rate of change;

e Coupling compensation: the use of this module is twofold: i) it takes into account cross-couplings
between longitudinal/lateral and vertical motion; ii) it takes into account cross-couplings between yaw

and roll during a turn.

In Section 3.5.4, we make a detailed comparison between our outer-loop Mamdani-type controller and

the one proposed by Sugeno, and point out important differences.

1.3 The Purpose of the Thesis

The purpose of this thesis is three-fold.

First, we aim at showing that the current limited number of flight modes that APID-MK3 is capable of can
be extended to include “aggressive manoeuvrability’capabilities defined in terms of: 1) tracking curvilinear
trajectories at high speed; and 2) fast acceleration/deceleration.

Second, we aim at showing the feasibility of controller design that is directly based on the nonlinear
unmanned helicopter model and at the same time its stability can be guaranteed in a formal way. Furthermore,
this design should be preferably done in a modern robust control framework,sawhich can be used for
limiting the effect of model uncertainties and external disturbances.

Third, we aim at identifying the major limitations of fuzzy gain scheduling for the control of multiple-
input multiple-output (MIMO) models of nonlinear dynamic systems by using it on a very realistic MIMO
model of an intrinsically unstable unmanned helicopter. In addition, we illustrate how a fuzzy gain-scheduler
can be used for performing aggressive flying.

We are completely aware that the “realism” of the results reported in this thesis w.r.t. the above aims is

limited by the fact that all the work is performed in simulation. However, since the mathematical model used
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in simulation is close enough, from control point of view, to the real APID-MK3 system we have all reasons
to believe in the realism of these results. We can also mention here that for example, the reported results
on work in advanced controller design for “aggressive” manoeuvrability in the BEAR project are also only

tested and evaluated in simulation.

1.4 Publications

Parts of this thesis have been presented at international conferences. These are as follows:

1. Autonomous helicopter control using fuzzy gain scheduling; Kadmiry, B.; Bergsten, P.; Driankov, D.
In: Proc. of the IEEE Int. Conf. on Robotic and Automation( ICRA ), 3: pp. 2980-2985, May 2001,

Seoul, Korea.

2. Autonomous Helicopter Control Using Gradient Descent Optimization Method; Kadmiry, B.; Palm R;
Driankov, D. In: Proc. of the Asian Conf. on Robotic and Automation (ACRA), pp: 193-198; June

2001, Singapore.

3. Fuzzy control of an autonomous helicopter; Kadmiry, B.; Driankov, D. In: Proc. of the 9th IEEE
Int. Fuzzy Systems Association (IFSA/NAFIPS) World Congress, 5: pp. 2797-2802; July 2001,

Vancouver-Canada.

4. Autonomous Helicopter Control Using Linguistic and Model-based Fuzzy Control; Kadmiry, B.; Dri-
ankov, D. In: Proc. of the IEEE Int. Symposium on Intelligent Control (CCA / ISIC), pp: 348-352;
Sept. 2001, Mexico-city-Mexico.

The last publication was awarded a second best student paper award.

1.5 Contributions

The major contributions in this thesis are as follows:

1. deriving the simplified version of the APID-MK3 model and comparing it to a general VTOL model,

and the Berkeley and CMU unmanned helicopter models;

2. developing two novel nonlinear control methods for the design of a stable and robust -with respect to

external disturbances- flight controllers for achieving aggressive manoeuvrability; and
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3. performing extensive simulation in order to verify the previously mentioned properties of the flight

controllers.

1.6 Outline of the thesis

The thesis is structured as follows. Chapter 2 is devoted to the mathematical model of APID-MKS. It
presents this mathematical model and the assumptions under which it is derived. It also compares it to
a general VTOL model and to the mathematical models developed in Berkeley and Carnegie-Mellon for
similar unmanned platforms. In Chapter 3, we present the design of two different flight controllers. The
fuzzy flight controller uses a combination of fuzzy gain scheduling (FGS) and heuristic fuzzy control in an
inner- outer- control loops scheme. The gradient descent method (GDM) uses a combination of a gradient
descent optimization and linear control. Both controllers are intended to realize aggressive flying subject
to external disturbances. Chapter 4 presents results from extensive simulation and aimed at showing the
robustness of the flight controllers and their capability to realize aggressive flying. The robustness properties
are verified in simulations of the inner-loop controllers while aggressive flying is simulated via the use of the

full inner- outer- control loops. In chapter 5, we summarize the thesis and present directions for future work.
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Chapter 2

The helicopter model

The major aim of this chapter is to introduce the reader to the mathematical model of APID-MK3. The quality
of the control algorithms, described in later chapters, as well as the validity of the simulation results depend
heavily on how much the mathematical model reflects the real APID-MK3 platform. For this purpose, it is
important to highlight the assumptions under which this model is derived, and also the simplifications made

in order to facilitate the design of the flight controllers proposed here.

Yet another aim is to present comparisons between the APID-MK3 mathematical model, and the math-
ematical models for similar platforms in order —one more time— to assess the model’s quality. The other
mathematical models considered here describe platforms that have actually been used in a unmanned flight

mode.

In Section 2.1 we introduce in an informal manner the basic concepts related to the motion and control
of a VTOL aircraft. Then in Section 2.2, we introduce the reader to the mathematical representation of the
kinematics and dynamics of a general VTOL. Then in Section 2.3, the general kinematics and dynamics are
further developed in order to obtain the mathematical models of motion that can be used for the purpose
of control. Section 2.4 presents the mathematical model of APID-MK3 and compares it, where possible,
to the general equations of motion developed in the previous sections. Finally, in Section 2.5, we compare
the APID-MK3 mathematical model with models developed in Berkeley and Carnegie-Mellon for similar

unmanned platforms.

13
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2.1 Helicopter basic concepts

Helicopters are vertical take off and landing aircraft. They use rotating blades in order to create forces
necessary to lift and move the helicopter body (VTOL). The helicopter has 6 D.O.F. which contribute to

maintain the aircraft in normal flight position.

e Longitudinal motion: motion along the x-axis, described by the positiand the velocity:;

Lateral motion: motion along the y-axis and described by the posijtimnd the velocityy;

Heave: vertical motion along the z-axis and described by the positionl the velocity;

Roll: obtained by rotation around the x-axis and described by the Euler aragid its ratep;
e Pitch: obtained by rotation around the y-axis and described by the Euleréaagtkits rated; and
e Yaw: obtained by rotation around the z-axis and described by the Euler arzgid its rate).

The positions, y, z) and their time derivativesi( y, 2) determine the helicopter’s translational motion (lon-
gitudinal , lateral and heave motions) along the x-,y- and z-axis and are described in the inertialdrgame (
The anglesd, 6, 1) and their time derivatives)( 6, 1)) determine the helicopter’s attitude, defined as the ori-
entation of the helicopter body fram®& ¢) w.r.t. the vehicle-carried vertical fram&(,). The latter frame,
whose origin is the C.O.G. of the helicopter body, is oriented in the same way as the inertial Ramne (
Thus, we will call (Rv/) the inertial frame.

To perform the different types of motion, the helicopter depends on the main and tail rotor’s forces and
moments which relate to cabin aerodynamﬁ;s main rotor aerodynamic§‘ m and tail rotor aerodynamics
fT, as well as verticaJ?—:V and horizontalfH stabilizers. The previous defined forces are controlled as

follows:

e main rotor collective pitch or “collective”, increases the main rotor forﬁ‘gﬂ[, which gives the heli-

copter the possibility to perform ascend/descend (vertical) motion;

e cyclic pitch or “longitudinal cyclic”, directs the main rotor force along the x-axis, which induces a

longitudinal motion by inclining the main rotor force in the x-direction;

e cyclic roll or “lateral cyclic”, directs on the main rotor force along the y-axis, which induces a lateral

motion by inclining the main rotor force in the y-direction; and
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e tail rotor collective pitch or “tail”, acts on the tail rotor forcff) to turn the helicopter around its main

rotor axis (azimuthal turn).

Due to the construction characteristics of a helicopter, some of these control commands result in undesired

motion, distinguishing the existence of cross-couplings. We list in the following some of these:

¢ the inclination of the main rotor forcéEW) from its vertical position reduces the lift force to the benefit
of the trust force. Thus, the result is a loss of altitude. The lift force is the vertical component of the

main rotor force while the trust is the horizontal component;

e due to transverse airflowF{; ), additional forces induce a tendency of the helicopter to pitch when in

longitudinal motion, and roll when in lateral motion;

e the tail rotor force £7) may cause a lateral motion and a rolling moment -this induces a drift in the

helicopter’s horizontal and vertical motions.

The cross-couplings mentioned above should be foreseen when designing a motion controller, it should

be able to counterbalance the undesired motions caused by the cross-couplings.

The pilot action only refers to the action of the main and tail rotor force on the motion of the helicopter. In
order to model this motion we have to consider the totality of forces and moments that apply to the helicopter
body. These forces are mainly expressed in terms of wind action, gravity force, aerodynamics, and main and

tail rotor force.

2.2 A general model

2.2.1 General kinematics and dynamics

In this section we will describe the kinematics and dynamics of a general VTOL. These two components are
necessary to determine the motion of the helicopter in terms of position, velocity, and attitude through the

knowledge of forces and moments.
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Kinematics

The kinematic equations relate the descriptions of velocities and angular speeds (the rates of roll, pitch and

yaw). These descriptions are done in both inerfig}and body R g) frame as follows:

¢ R 0:
i=J@OYwith =19 [and JO)=|""" 7 (2.1)
03 Ra
C
. X ) ]
5 VI ; ¥ 3 ¢
n= Q, with, Vi = Y and Q7= 0
I ] i 5 | w ]
‘7 9 u
V= ﬂB with, VB = | v |and QB =|gq
Qp
- | W T

where

e 7] is a vector of state-variables expressed in terms of position, ¢) and attitude ¢, 6, ¢). 7 is its

derivative w.r.t. the inertial frame;

e Vis the vector of state-variables expressed in terms of velogjty, (v) and attitude ratey g, 7). Vis

the time derivative off described w.r.t. to the body frame; and
e J(O) is the operator which transforms the state-variables from body frame to the inertial frame.

e R;p andRg are the transformation matrices for both the translation and rotation vectors respectively,

between inertial and body frames.

The advantage of this parameterization is that it allows for a direct measurement of the angulanspeeds (
and their accelerationg (g, 7). This is done by using on-board sensors such as magnetic compass, inclinome-

ters, and gyros. The velocities and positions are given by accelerometers, GPS, and altimeter.
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Helicopter dynamics

The dynamics of the helicopter body are related to the forces acting on it. These forces generate accelerations

according to the general rules of forces and moments defined as follows:

V=T with 2.2)
5] U P
5, Vi 5 .
V = ;B with V= | ¢ [and Qp=| ¢ |,
Qp

w
X

with F=|vy |and M= | M
Z

=

where

e V represents the state-variables in terms of the time derivative of the vectorgpeed, v, w) and

angular rate$); = (p, g, ) both derived and represented in the body frame;

. ZT is a sum of forcesX,Y, Z) and moments R, M, N) describing system inputs that produce

motion; and

e )\ is an intrinsic constant related to the helicopter characteristics (inertia) in terms of mpssd

angular momentsz)).
The parameterization described above is frame dependent. The state-variables are provided by the sensors.

Relation between kinematics and dynamics

The model including both kinematics and dynamics is given by a sum of the forces, and a sum of the moments,

w.r.t. the body frame. Thus the helicopter’s translational and angular motion equations are given as follows:

Vi =RisVp; Qr = Raflp
. d _, - d =
Flp = %h(mVB) and M|p = %|I(ZQB) (2.3)

whereF| 5 is the sum of forces andH| 5 is the sum of moments acting on the helicopter body, both described

in the body framem is the mass of the helicopter including fuel and sensory platformZaheé moment of
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inertia of the helicopter body. Eg. (2.3) can be rewritten as

Vilr = RieValr; Qrlr = RaQB|1
VB|]:VB‘B+QBXmVB; QB|1:QB‘B+QBXmQB:QB‘B (2.4)

Flg=mVs|; and M|z =1I05|;
whereVB|1 is the derivative of the velocity “defined” in the body frame and “derived” in the inertial frame.
2.2.2 Nature of the model
Basically, there exist two flight modes:
e The hover mode: steady positioning of the helicopter at a certain position.

e The free flight mode: consisting of the fore/aft (longitudinal), side-ward (lateral) and up/downward

(vertical) motions.

The mathematical model that can be used to stabilize a VTOL in a hover mode is obtained from Eq. (2.4)
by neglecting the Corioli§25 x mVp and gyroscopi€lp x ZQ2p components, because the attitude rates

(p, q,r) and the translational speéd, v, w) are very small in the hover mode.

ﬁ‘B = mVB|1:mVB|B; and

<
Ss|
I

IOz = IQ5|5 (2.5)

As it can be seen from above, only the translational acceler&iop = (i, 0, w) and rotational acceleration
Qsle = (p, ¢, 7) w.rt. the body frame are considered.

In order to be able to perform free flight, then the full model in Eg. (2.4) should be considered. The
APID-MK3 model to be presented in later sections corresponds to the one given by Eq. (2.5). That is, it can
be used for stabilization in hover mode. However, we use Eq. (2.5) also to design motion controllers for free
flight. Then the question is: Is this correct, since Eq. (2.5) lacks the Coriolis and gyroscopic components
? The answer is yes, because when Eq. (2.5) is transformed from the body to the inertial frame, then the

previously mentioned components are recovered as illustrated below. From the hover model we have that

mVplp = Flp;
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the equivalent expression in the inertial frame will be
mVilr = Flr; (2.6)
where, from the use of the kinematic relation (see Eq. (2.1)
Vilr = RisValr = Vil = RisValr + RisValr (2.7)
Furthermore, the derivative of the transformation maRixs is given as the operator
Rrs() = RisQp x () (2.8)
where(-) is any vector. WhefR ;5 (-) is injected in Eq. (2.7), this gives
Vilr = RigQs x Vsl + RisVaslr (2.9)
The law of composition of accelerations states that
Velr = Vslp+ Q5 x Vsl (2.10)
Thus, we obtain
Vili = RipQs x Valr + Ris(Vs|s + s x Vp|p) (2.11)

The last term in this equation contains the Coriolis compofientx mVpg|p that was missing from the
expression of forces w.r.t. the body frame in the hover model. The missing gyroscopic compgnefif) g
in the expression of moments for the hover model can be recovered in the same manner once this expression

is transformed in the inertial frame.

2.3 Equations of motion

2.3.1 Translational motion

We introduce here the equations that produce translational motion. The forces producing this motion consti-

tute the termF |5 in EQ. (2.4): are respectively. These are:

e the gravityfg, acting on the body mass with a constant gravity accelergtiatescribed w.r.t. the

inertial frameR ; asZ¢|; = (0,0, mg);
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e the wind action?-:W in terms of wind disturbancedy, in the north, east and downward directions,

thus expressed W.rR; asFy | = (W, Wg, Wp);

e the aerodynamicF, resulting from the action of the wind on the cabin produces: cabin drag

cabin side forc&’c and cabin lift forceLo. All of these are given w.r.t. the airfranfe 4 asf“A|A =

(=Dc¢,Ye,—Lc).

e the main rotor forcef v results from the lift forcel,,, side forceY), and drag forceD,, generated

by the main rotor blades, described w.r.t. the main rotor frﬂ@easme = (D, Yo, L)

e the tail rotor force?-:T results from the lift force.r, side forcel’r and drag forceD generated by the

tail rotor blades, described w.r.t. the tail rotor frae asFr|r = (D Y, Lr).

Summing these forces, after a transformation to the body frame, we obtain

f|B:fw|B+fG|B+fA|B + -7':’J\I|B+~7:—'T‘B+fc|3 with

Xc Dr
Fols=1| Yo |; Frlg=Rsr | Yr
Zc | | Lr
: - ey
Falp=Rpr| 0 |; Falp=TRpa| Yc
mg | i —L¢e
Wy Dy
~7:W|B:RBI Wg and fM|B:/R/BR Yur
Wp Ly

The above expression represented in the inertial frame reads as

f|[:fg‘[+fw‘] + ﬁA|1+fM|1 with

0 _De
-fG|I = 0 |; ﬁA|I =RiBRBa Yo

mg —L¢

WN DM
Fwlr=| wg and Fulr = RisRer | Yu

Wp Ly

(2.12)

(2.13)

In the case of the mathematical model of APID-MKS3, we have the following assumptions regarding Egs.

(2.12) and (2.13):
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. The main rotor rotation spedd,, is assumed constant for the sake of simplicity (the main rotor force

is a function of3,).

. The wind action is simply expressed as a white ndisg0, V). It is considered as a perturbation for

the control to compensate for.

. The gravityg is supposed constant and depends slightly on the altitud€g0, 200]m in the case of

our platform.

. We consider the body mass constant and concentrated in the C.O.G. of the helicopter, assumed fixed.

The body mass change in time is considered as an external disturbance.

. The cabin is assumed of spherical shape. The aerodynamicfgrdxecomputed from this character-

istic and the airspeel,. Thus its action is equal in all directions, and its description w.r.t. any frame

is then the same.

. Generally, the rotor is approximated as a rigid disc. The aerodynamics of the rotor depend on the

aerodynamics of each of its blades. Because of the symmetry, the dra@fer@@nd side forc&’y,)

of each blade eliminate the one generated by the other blade.

. For the same reason, the components of the lift fdrgein the rotor disc plane eliminate each other,

and only the component on the rotor z-axis (orthogonal to the disc plane) remains.

. Since the tail rotor is also approximated as a rigid disc. The tail Btolis described in the same

manner asFy,.

. The action of the tail rotof is not represented in the equation of lateral motion, though it is respon-

sible for a lateral drift of the helicopter when it rolls.

The Coriolis force is neglected in the description of the hover model of motion, due to small attitude

rates and speeds.
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Taking assumption 2 into account, the expression of the wind force in both the inertial and body frames

is given as
Nw(O,VN)
Fwlr = | Nu(0,Vg) | and
N, (0,Vp)
Xw Ny (0,Vn)
fW\B = RBlﬁWh — Yw | =RBr| Nu(0,Vg) (2.14)
Zw Ny (0,Vp)

Taking assumptions 3 and 4 into account, the expression of the gravity in both inertial and body frames is

given as
Felr = and Fcls = RerFalr
L "9
I Xa —sind
Folg = | Yo | =mg | singcosd (2.15)
RZe cos¢ cos 6
Taking into account assumption 5, thati9¢- = Yo = —L¢, the cabin aerodynamic§A are given as
follows
1 —1
Do = 5CaAV] = KaVi = Fala=KqVi| 1 |; and Falp=RapFala
-1
XA —1 —1
= Falp=|va | = KV3| 1 and Fal = RipFalp = KVi2 | 1
ZA -1 —1

where(Cy is the drag coefficientd = 47TR%' is the area of the cabin?q is the radius of the cabin and
Ky = QCder%; is a constant depending on the previously mentioned parameéteis.= V| +RerViw s
is the airspeed of the helicopter. Because of the model of motion is in hover mode, the assumption of small
velocities impliesV, =~ Vi,
From assumption 6 and 7, we conclude that it follows tﬁﬁqR = (0,0, Lys). Furthermore, taking also

into account the tilt of the main rotor, the cyclic pitch and roll enter into the description of the main rotor
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forces as follows:

0
Ly = Ky Q3,00 = Fulr = 0 and Fulp = RerFulr
L
X —sinas
= Fulp=| Yu = KuQ3,0m sin by (2.16)
2y — COS A1 COS big

wheref,, is the collective pitch ands,, is a constant involving aerodynamic parameters of the main ro-
tor. The effect of K, Yas) is neglected in the equations of translational motion because of small cyclics

(a1s,b15). However, it will be used in the attitude equations since as the moments induced by them cannot

be neglected. Thus we have that

0
Fulp ~ 0 and Fulr = RipFuls
—K Q3,00
cos ¢ sin 0 cos ¥ + sin ¢ sin ¢
= Fulr = —Ku3,00 | cos ¢sinfsiniy — sin ¢ cosp (2.17)
cos ¢ cos 0
Assumption 8 results in
0
Ly = Ky(0r — Y1) = Frlr=1 0 and Fr|p = RprFr|r
Lt
Xr 0
— Frlp=| vr = —Lp (2.18)
Zr 0

Assumption 9 states the useﬁﬂ p to counteract the effect of cabin spin due to the main rotor rotation.
This force is neglected in the force equations, but will be considered in the equations of moments.

Finally the expression of Coriolis forc§C|B is given w.r.t. the body frame as

Xe vr — wq
ﬁC|B =Qp xmVp :>fC|B =| Yo [ =m| wp—ur (2.19)
Zc ugq — pv

Assumption 10 neglects the Coriolis force in the description of the hover model of motion. Thus, summing

up Egs. (2.14) to (2.17), we obtain the model of translational motion for APID-MK3 in the inertial frame.
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Couplings between translational motions

From Eqgs. (2.14) to (2.17), the only existing cross-coupling is the one between longitudinal and lateral
motions. This is due to cross-coupling between attitude angles throught the use of the transformation matrix

Rip in Eq. (2.17).
2.3.2 Rotational motion

We introduce here the equations that describe rotational motion. The moments producing this motion and

involved in./\7l|B in Eq. (2.4) are:
e The anti—torque/\;l p| B resists the cabin rotation and is expressed in the inertial frame.

e The rotor aerodynamics momeMM|B is produced by the main rotor force and is given in the main

rotor frame.

e The tail rotor momenI/\7lT|B is created in the C.O.G. of the cabin by the tail rotor fQV_'éqa and is

given in the tail rotor frame.

Thus,/\7l| B can be expressed w.r.t. the body frame as follows
M|p = Mw|p + Mc|p + Mals + Mulp + Mzl + Mc|s (2.20)
The equivalent expression in the inertial frame is
M1 = Mw |1 + Malr + Malr + Mulr + Mz|r + Meclr (2.21)

In the case of the mathematical model of APID-MKS3, we have the following assumptions regarding Egs.

(2.20) and (2.21):

1. The moment of inertid is represented as a diagonal matrix, which implies that no coupling between

the attitude angles is assumed.

2. Generally, the C.0.G. is always assumed to be in a fixed position, and this permits a computation of

the moments of all the forces involved in the model.

3. Generally, the gravity force acts on the C.O.G., it does not generate any rotational moment and thus,

its has no impact on the rotational motion.
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. The aerodynamic£ 4|z applied on the helicopter cabin are located in its C.O.G. and because of this,

it has no impact on the rotational motion.

. The action of the wind force on the tail boom is neglected, thus no moment is generated.

. When the main rotor tilts, its forcé:M|B generates the momem?lM|B. This moment is function of

Fu|p and the distance between the rotor hinge and the C.0.G. of thefbgdy

. The tail rotor center position is supposed to be axial to the x-axis, and of distancéom the C.O.G.

(Hr = (—~lr,0,0)). The main rotor center position is axial to the z-axis and of distaricgy from

the C.O.G. HM = (07 0, —h]u)).

. The main rotor spin creates an anti-torque which induces yaw turns. This anti-@Qrgigdamped by

an off-set on the yaw{r) in order to balance the helicopter’s directional turn. Thus, this anti-torque

will not be represented in the APID model of motigh, = 0.

. The tail rotor spin creates an anti-torque which induces roll turns, because directed in the y-axis only.

This anti-torquelr is not damped generally. We will not consider this anti-torque in our equations

Qr =0.

There exists centrifugal forces on the main rotor blades, which create centrifugal moments. This is due
to the rotor hinge configuration. Because of our assumption on the rotor geometry, we will not consider

these centrifugal forces/moments.
Besides the geometry of the main rotor, we assume that the hinge radius is veryesmall. (

The gyroscopic momenti is neglected in the description of the hover model of motion, due to small

attitude rates.

Eq. (2.4) stresses the fact that the rotational accelerations derived w.r.t. the inertial frame are equal to

the ones derived in the body frame.

Assumptions 2 and 3 imply tha‘t7lg|3 = 0. Assumptions 2 and 4 imply tha\t7lA|B = 0. Assumptions 2

and 5 imply thatM |5 = 0.

Assumption 2 is used to determine the moments created by both the main and tail rotors’ forces. This is

done using the distance between C.O.G. and the main hinge dépteand between C.0.G. and tail hinge
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centerHr. Thus in the case of the main rotor we have

0
Muls = Hu x Fulp; with Hy = 0 and (2.22)
—hyy
—sin A1s RM KJWQ%IQM sin blshM
Fulp = KuQ30m sin by = Mulp=| My | = | —KyQ2,00 sinayshy
—cosays cosbyg Ny 0

As to the tail rotor, using the assumption 7, we obtain

—lp
Mrlp = HpxFrlg; with Hp=| 0 and (2.23)
0
0 Ry 0
Frlg = Ky(0u—vr)| -1 | = Torlp=| My | = 0
0 Nr Ky (0r — 7))l

Assumption 1 is used to describe the moment, due to inertia, on the attitude rates as a linear function on

theses. That is

R dyd
MDlB = M]w = d99 (224)
N dytp

where(dy, dg, dy,) depend on the matrix of inertia of the cabin and given drag moment coefficients.

Finally, based on assumption 1, we can express the gyroscopic moment w.r.t. the body frame as

qr(Z, — I)
Mclp=QQI) = Mclp=| pr(Z.-1,) (2.25)
pq(—Z, — I,)

Assumption 12 neglects the effect of this moment in the equations of rotational motion. Assumption 13 will
be used to support an approximation by which Euler angles rates and attitude angle rates are made equal
(6, 0, 1&) ~ (p,q,7). Thus, this allows the equations for rotational motion in the body frame to be changed

for those in the inertial frame. Summing up the terms w.r.t. the inertial frame in Egs. (2.22),(2.23) and (2.24),

we obtain the model for rotational motion for APID-MK3.
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Couplings between rotational motions

From Egs. (2.22) to (2.23), it is obvious that we do not consider any coupling between the attitude angles or
their rates. However there a coupling between main-collective and the longitudinal cyclic. See Eq. (2.22).
This in turn causes a coupling between rotational and translational motion, in particular pitch may cause a
loss of altitude. Similarly, we have the same effect of roll angle on the altitude, because of the couplings

between the main collective and the lateral cyclic.

2.4 Mathematical model of APID-MK3
2.4.1 APID-MK3 general model

The model for APID-MK3, derived w.r.t. the inertial frame is as follows

T = %(Nw(O,VN) — KgVi3 — K Q3,00 (cos ¢ sin 0 cos 1 + sin ¢ sin 1))

i = %(Nw((), Vi) + KiViy — Kpr3,01(cos ¢psin @ sintp — sin ¢ cos 1))

;= %(Nw(o, Vp) + g — KaVij — K3, (0ar cos ¢ cos0)) (2.26)
b Z%(d“ﬁé + K Q3 hoarOarbis)

6 = Ily(dgé — Ky Q3 harfaass)

§ o= 2+ Ky(0r — )

z.

It has to be noticed that this model is a simplified version of the original model of APID-MK3. The latter

is given as
i o= %(Nw((), Vy) — KqVi3 — Tar(cos ¢sin 6 cos 9 + sin ¢ sin 1))
i = %(Nw((), Vi) + KqVi3 — Tas(cos ¢sin 0 sinth — sin ¢ cos 1))
3 = %(NW(O, Vb) + 9 — KaViy — Tar (0 cos ¢ cos 0)) (2.27)
¢ = Z%(dw + Fohu)
6 = Ily(deé + Fyhar)
b = Ziz(d«zﬂb‘FKw(@T —r)
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whereT), is the rotor trust], andTy are the forces obtained by rotation of the main rotor, and are given by

Ty = cos(arcsin by ) cos(arcsin ais)
T, = sin(arcsinb;s)cos(arcsinas)Fas (2.28)
Ty = —sin(arcsinass)Fps

andFy; = KQ2,0,,. The assumption of small angles (—0.25, 0.25|rad) applied to the cyclica;; and
b1s implies a simplification as follows:
Thr = cos(bis) cos(ars)Fyy <= Ty = KMQ?WOM
Ty =~ sin(bis) cos(ars)Fr <= Ty~ KMQ%V[OMZ)M
Ty ~ —sin(a15)Fyy <= Ty = —KMQ?MF)Mals
(2.29)

which leads to the expressions presented in Eq. (2.26). Furthermore, the control inputs are given as

a1s = Kgais + Kcoug,,

bis = Kgbis + Kcouy,, (2.30)
Oy = KgOy+ Kcug,,

0r = Kgbr+ Kcug,

whereK s = 300 is the damping coefficient for the cycli€, s, b1s) and collective$6,,, 61), andK = 300

is the sensitivity of the control inputs.).
2.4.2 Longitudinal motion model

First , we will have to transform Eqgs. (2.26) in the body frame.Then, the equation used for longitudinal

acceleration in the body frame, for APID-MKS, is derived from (2.12) as follows:

1
i = —(Nu(0,Vwg) —mgsinf — KqVi3 — Ky Q3,0 sinay ) (2.31)
m
where Xy, = N, (0, Vwg) is the wind term (in front direction)X¢ = —mgsin 6 is the gravity term;
X4 = —K,ViZ is the aerodynamic term, andy, = K Q3,60 sin a5 is the main rotor force term. Now,

in the case of a general VTOL, we have

T

1
—(~mgsind - chACIVj — Ly sinay, — Dy — Dy) (2.32)
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also, whereXg = —mgsin8; X4 = —gCDACij; Xy = —Lysinays; Xy = —Dy is the drag of
the horizontal stabilizer, andy, = — Dy, is the drag of the vertical stabilizeA .. is the frontal area of the
cabin and’'p, is its drag coefficient.

Now, one can see the differences between Eg. (2.31) and (2.32)

e the lack of Xy in Eq. (2.32) is not important since it is just a disturbance which can easily be intro-

duced in Eq. (2.32) for the purpose of control design;

¢ the lack of the terms(y, and X in Eq. (2.31) is not significant at all since they represent stabilizers

which are not present in APID-MKS3 platform model; and

o the difference between the teri#s in Eqgs. (2.31) and (2.32) is not significant sificg|s ~ Viv|p

in hover mode.

2.4.3 Lateral motion model

The equation used for lateral acceleration in the body frame, for APID-MK3, is derived from (2.12) as follows
1
- E(Nw(o, Vwg) +mgsin ¢ cosf + KqViy + KaQ3 0, sinby ) (2.33)

whereYy = N,,(0,Vwg) is the wind term (in right direction)Ys = mgsin ¢ cos 6 is the gravity term;
Ya = KdVVQV is the aerodynamic term, and, = KMQﬁﬁM sin b1, is the main rotor force term. Now, in

the case of a general VTOL, we have
1
o = —(mgsingcosd+ gCYACyVV%, + Lyssinbyy — Ly + Y — Ly) (2.34)
m

also, wheré¥y = mgcosgcost; Y4 = gCLACZVj; Yy = Lysinby,; Yr = — L is the tail rotor force
term; Yy is the side force of the horizontal stabilizer, aiid = — Ly is the lift force of the vertical stabilizer.
Acy is the side area of the cabin a6l is its side force coefficient.

Now, one can see the differences between Eq. (2.33) and (2.34)

e the lack ofYy, in Eq. (2.34) is notimportant since it is just a disturbance which can easily be introduced

in Eq. (2.34) for the purpose of control design;

¢ the lack of the term&y, andYy in Eq. (2.33) is not significant at all since they represent stabilizers

which are not present in APID-MKS3 platform model;
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e the difference between the terig in Eqgs. (2.33) and (2.34) is not significant singg ~ Vi in

hover mode.

e the lack of the tail rotor ternty in Eq. (2.33) means that this is an unmodeled dynamics in this
equation, due to assumption 9 in Section 2.3.1. Normally this is taken care of by the design of a robust

controller.

2.4.4 \ertical motion model

The equation used for vertical acceleration in the body frame, for APID-MK3, is derived from (2.12) as

follows:
1
w = —(Nu(0,Vwp)+mgcospcost — KdVV2V — KMQ?WHM cos a1 cos bys) (2.35)
m

whereZy, = N, (0,Vwp) is the wind term (in downward direction){; = mgsin 6 is the gravity term;
Za = —K4Vi3 is the aerodynamic term, andy, = —K Q3,05 cosays cos by is the main rotor force

term. Now, in the case of a general VTOL, we have
1
w = —(mgcos¢dcos — gC’LAcZVj — Ly cosaygcosbis — Ly — Yy) (2.36)
m

also, whereZg = mgcos ¢ cos0; Zy = —5CLAc.V3; Zy = —Lag cos ars cosbis; Zy = — Ly is the lift
of the horizontal stabilizer, and;, = —Y7  is the side force of the vertical stabilizet, is the bottom area
of the cabin and’;, is its lift coefficient.

Now, one can see the differences between Eq. (2.35) and (2.36)

e thelack ofZy, in Eq. (2.36) is notimportant since it is just a disturbance which can easily be introduced

in Eq. (2.36) for the purpose of control design;

e the lack of the term&/y, andZy in Eq. (2.35) is not significant at all since they represent stabilizers

which are not present in APID-MK3 platform model; and

o the difference between the teri#s, in Eqgs. (2.35) and (2.36) is not significant sificg|s ~ Viv|p

in hover mode.

In conclusion, we can see that the APID-MK3 model has all the necessary components of a general VTOL

model. The only important component that lacks in the APID-MK3 model is the tail rotor force contribution
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in lateral motion. This is the element of unmodeled dynamics in the APID-MK3 model which should be

taken into account in the flight controller design.
2.4.5 Roll model

The equation used for roll acceleration in the body frame is, for APID-MKS3, derived from (2.26) as follows:

. 1. .
b= = (dpp+ KnQihaOn sinbis) (2.37)

where Rc = d,p is the moment created by the cabin roll due to the action of the main rotor tilt, and

Rar = Yarhar = Ky Q3 ka0 sin by is the moment created by the main rotor force. Now, in the case of

a general VTOL, we have

1 dR

p= Z( —(E)bls—QMsinals—i—LMthinbls
—Lyypr cosays cosbys — Lrhy + Yvhv) (238)
whereR),, = —(%)615 is the longitudinal stiffness of the main rotor when tiltingg,,, = —Qas sinai,

is the anti-torque generated by the main rotor rotati®; = Yayhy — Zyyne = Lashy sinbyg —
Ly cosars cosbyg is the moment generated by the main rotor for&; = —Lrhr is the moment
generated by the tail rotor force, ait}, = Yy hy is the moment due to the vertical stabilizer side force.

2 . . . . . . . .
d‘i}f = e"bmbR&(jMﬂM) is the stiffness term, given as a function of the hinge raéljtise main rotor radius

Ry, the mass of the blades;, the number of blades;,, and the rotor speed of rotatiéhy, .

Now, one can see the differences between Eq. (2.37) and (2.38)

e the lack of Z,yas in Eq. (2.37) can be explained as follows. Due to assumption 7 in Section 2.3.2,
we have the position of the tail rotor at the coordinateg = (0,0, —h,,) instead of the position
Hy = (v, yum, —hr), where the latter is valid in the VTOL case. Thus, in the case of APID-MK3,

Zyuym = 0;

e the lack of Rz in Eq. (2.37) can be explained as follows. Due to assumption 7 in Section 2.3.2,
we have the position of the tail rotor at the coordinatés = (—Ir,0,0) instead of the position
Hp = (—l7,0,—hr), where the latter is valid in the VTOL case. Thus, in the case of APID-MK3, the

tail rotor force does not generate a moment. This is again the case of unmodeled dynamics;

e the lack of Ry in Eq. (2.37) is due to the fact that APID-MK3 does not have a vertical stabilizer;



32

o the lack of the main rotor stiffnes8,,, in Eq. (2.37) is due to assumption 11 in Section 2.3.2 which

states that e = 0. Thugi% =0;

e the lack of the main rotor anti-torqueg,, in Eqg. (2.37) is due to the assumption 8 in Section 2.3.2.
This assumption states th@t,, = 0 in APID-MK3 platform. However, the ternR¢ in Eq. (2.37),
representing the moment of rotation of the body due the main rotor tilt can be used as a substitute for

the stiffness and anti-torque terms.

2.4.6 Pitch model

The equation used for pitch acceleration in the body frame is, for APID-MK3, as follows

1
i = f(dqq—KMﬁﬁthaM sinays) (2.39)

)
where M¢c = dgq is the moment created by the cabin pitch due to the action of the main rotor tilt, and
My = —Xyhy = —KMﬁfth‘)M sin by, is the main rotor moment. Now, in the case of a general

VTOL, we have

dM
q':Ifl( —(d Yais + Qarsinbis + Laglps cosags cosbys
A1s
+Lyhy sinars + Zplyg — Qr + Zuly — Xghy — Xvhy) (2.40)

where My, = (3 )q,, is the lateral stiffness of the main rotor when tilting/g,, = Qarsinby,

dals

is the anti-torque generated by the main rotor rotatidfyy, = Znlps — Xyphyy = Lashprsinays +
Lyl cosars cos by is the moment generated by the main rotor forkg; = — Xy hy is the moment gen-

erated by the vertical stabilizer drag, ahtl; = Zyly — Xghy is the moment generated by the horizontal

enymy R (R Q)

AR, is the stiffness term.

stabilizer lift and drag; 2L =

Now, one can see the differences between Eq. (2.39) and (2.40)

e the lack of 7,1, in Eg. (2.39) can be explained as follows. Due to assumption 7 in Section 2.3.2,
we have the position of the tail rotor at the coordinateg = (0,0, —h,,) instead of the position
Hyr = (L, yar, —hr), where the latter is valid in the VTOL case. Thus, in the case of APID-MK3,

Zyly =0;

¢ the lack of the tail rotor anti-torque @ in Eq. (2.39) is due to assumption 9 in Section 2.3.2 which

states thaf)r = 0. This is yet another case of unmodeled dynamics present in the APID-MK3 model;
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e the lack of My and My in Eg. (2.37) is due to the fact that APID-MK3 does not have a vertical and a

horizontal stabilizers.

e the lack of the main rotor stiffnes8,,, in Eq. (2.39) is due to assumption 11 in Section 2.3.2 which

states thate = 0. Thugl% =0;

e the lack of the main rotor anti-torquily,, in Eq. (2.39) is due to the assumption 8 in Section 2.3.2.

This assumption states th@t,, = 0 in APID-MK3 platform. However, the termd/¢ in Eq. (2.39),

representing the moment of rotation of the body due the main rotor tilt can be used as a substitute for

the stiffness and anti-torque terms.

2.4.7 Yaw model

The equation used for yaw acceleration in the body frame is, for APID-MK3, as follows

Fo= 2+ Ky(Or — ) (241)

whereN¢s = d,.r7 is the moment created by the cabin yaw due to the main rotor rotationyand Yl =
Ky (87) is moment generated by the tail rotor force, aWig, = —K ¥ is a compensation for the anti-

torque of the main rotor. Now, in the case of a general VTOL, we have

1
T o= I—(—QM cos ais cosbis + Laflpg sinbis + Ly sinars + Lply — Yyly) (2.42)
4

whereNg,, = —Qar cos a1, cos by i the anti-torque generated by the main rotor rotatiogy; = Yarln —
Xnym = Lalarsinbys + Layas sinags is the moment generated by the main rotor fordg; = Lplr

is the moment generated by the tail rotor force, &id = —Yy 1y, is the moment generated by the vertical
stabilizer side force.

Now, one can see the differences between Eg. (2.41) and (2.42)

e the lack of Ny, in Eg. (2.41) can be explained as follows. Due to assumption 7 in Section 2.3.2,
we have the position of the tail rotor at the coordinateg = (0,0, —h,,) instead of the position
Hyr = (I, yar, —hr), where the latter is valid in the VTOL case. Thus, in the case of APID-MK3,
Ny =0;

e the lack of Ny in Eq. (2.41) can be explained as follows. Due to assumption 7 in Section 2.3.2,

we have the position of the tail rotor at the coordinatés = (—Ip,0,0) instead of the position
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Hr = (—lr7,0,—hr), where the latter is valid in the VTOL case. Thus, in the case of APID-MK3, the

tail rotor force does not generate a moment. This is again the case of unmodeled dynamics;
e the lack of My in Eq. (2.41) is due to the fact that APID-MK3 does not have a vertical stabilizer.

e the lack of the main rotor anti-torqu¥g,, in Eq. (2.41) is due to the assumption 8 in Section 2.3.2.
This assumption states th@h, = 0 in APID-MKS3 platform. However, the terVg,. in Eq. (2.41) is

used as a substitute for the main rotor anti-torque term.

In conclusion, we can see that the terms in the APID-MK3 model are due to simplifications on the main
and tail rotors’ configurations. These simplifications are reflected in assumptions from Sections 2.3.1 and

2.3.2.

2.5 Comparison with other helicopter models

This section describes the models developed in Carnegie Mellon and Berkeley for their UAV platforms.
Both are based on a Yamaha R-50 unmanned helicopter. Section 2.5.1 introduces the Berkeley model of the
Yamaha -R50, which is a hover model in the sense of Section 2.2.2. Section 2.5.2 presents the CMU platform,
which is similar to the Berkeley one but with two additional equations. These two models are compared to

the APID-MK3 model in the body frame.
2.5.1 The Berkeley model
The Berkeley model is of the hover type, (see Section 2.2.2), and is derived under a number of assumptions:

1. velocity and attitude are assumed to be very small so that the simplificatians£ x, cosx = 1) are

valid

2. the helicopter body has small velocity and attitude angles in every direction, the Coriolis and gyroscopic

terms are ignored x mVp = 0, andQl x ZQ = 0)
3. only the vertical drag force will be considered as it counteracts the grﬁz,ityt (0;0; Zp)
4. the vertical stabilizer does not generate any force on the system in Fover (0;0;0)

5. only the vertical drag force is generated by the horizontal stabiffzer= (0;0; Zx)
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6. the tail rotor shaft is aligned along the y axis and it does not generate any significant forces in other
directions it generates only the lateral thrigt = (0; —L7;0), and yaw moment and anti-torque in

pitch axisMr = (0; —Qr;0)

7. the rotor is equated as a rigid disc which can tilt about the longitudinal and lateral axis. The resulting
rotor equations of motions are two first order differential equations, for the lateral and longitudinal

cyclics. Far = (—Tharars, Tarbis, —Tar)

The main rotor is the source of vertical lift, horizontal force, and anti-torque. It also generates the rotor
stiffness, that is rolling and pitching moments by flapping. This flapping of the blades described by the rotor

equations of motions for the lateral and longitudinal flapping (cyclics) as follows:

. ay

a1s = — Tfs —q+ Ap, b1s + Auals Uay, + Auhls Ubrs

. b1

bis = — TfS —p+ Ba,a1s + Buals Uay, + Bubls Up, (2.43)

Then the Berkeley model is given as:

1
u = ——Lpays —gb
m
. 1
0 = —(Lybis—Lr)+ g9
m
1
w = %(—LM-FZH-FZF)‘FQ
. 1
p = T(RMS — Qumars + Larharbis — Layryasr — Lrhr) (2.44)
T
. 1
q = f(MMS + Qurbis + Lasharars + Lvilar — Qr + Zw)
Yy
. 1
ro= f(—QM + Larlpbis + Lrlr)
Q1s
a1s = —q-— - + Ab1sb15 + Aual Uay, + Aub1 Upy
Tf el S
; bls
bls = —p—- ; + Ba1sa’18 + Buals Uq,y + Bubls Ub,

We will compare the model above with the one describing APID-MK3.

The longitudinal motion for APID-MK3 4) and Berkley(< ) is given as

(N (0, V) — KgVir —mgh — K Q3,00a1s) (2.45)

up =

3=3~

(—=mgl — Lyrass)
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The APID-MKS3 equation of longitudinal motion is “richer” since it has the wind term and cabin drag
force. Though the wind in the APID-MKS3 case is an external disturbance and can be also introduced as such
in the Berkeley model. Also the drag term has been considered in the Berkeley model to be zero because of
their assumption 3. Also, the terfi, Q3 ,057a15 in the APID-MK3 model correspond to the terfna;
in the case of Berkeley model and represents the main rotor force.

The lateral motion for APID-MK3 ¢ 4) and Berkley(v) is given as

T (N (0, Vwg) + KqVi3: + mgo + KnQ3,0nb1s) (2.46)

3=3=

VB (mg@—FLMbls +LT)

The APID-MK3 equation of lateral motion is again “richer” in terms of wind action and cabin side force,
but it is lacking the term of tail rotor force. The latter is due to assumption 8 in Section (2.3.2). Also, the
term K ,,Q3,0,,b15 in the APID-MK3 model correspond to the terfny, by in the case of Berkeley model
and represents the main rotor force.

The vertical motion for APID-MK3w 4) and Berkley(w g )is given as

(Nw(0,Vwp) — KqVi3 + mg — KprQ3,01r) (2.47)

Wy =

wp = (mgfLM+ZH+ZF)

3=3=

The APID-MKS3 equation of vertical motion is again “richer” in terms of wind action and cabin. Fur-
thermore, the the termi;V,2 in the APID-MK3 model correspond to the ter#fy- in the case of Berkeley
model and represents the cabin lift force. Also, the téfmﬁfweM in the APID-MK3 model correspond to
the termL,, in the case of Berkeley model and represents the main rotor force. The lack of th& geim
APID-MK3 model is due to the absence of horizontal stabilizer.

The roll acceleration for APID-MK3p 1) and Berkley(pg) is given as

) 1 ;
pa = I—(d¢¢ + Ky Q300 b1shay) (2.48)
. 1
PR = T(RNIS — Qumais + Larharbis — Lagysr — Lrhr)
xT

The rotor stiffnessk,,, and anti-torque) ;a1 due to the main rotor are present in the Berkeley model.
These terms are corresponding to the tdgm in the APID-MK3 model. Furthermore, the the terdl i1

is lacking in the APID-MK3 model. This due to assumptioniy; (= 0) in Section 2.3.2. Also, the term
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Karha Q3,001 in the APID-MK3 model corresponds to the tefm, h,,,b1 5 in the case of Berkeley model
and represents the moment generated by the main rotor force. Because of the assumption 7 in Section 2.3.2,
ya = 0. This eliminates the term ,;y,, representing part of the moment due to the main rotor force in the

APID-MK3 model of motion, when it exists in the case of Berkeley model.

The pitch acceleration for APID-MK8j 4) and Berkley(¢z) is given as

) 1 :

qa = f(dga — K]\/]Q?WGMCLL@}LM) (249)
Y

. 1

gp = T(MMS + Qubis + Lashyars — Ll — Qr + Zwuly)
Yy

The terms representing the rotor stiffnéds,, and anti-torque) ;b due to the main rotor are present
in the Berkeley model. Their action is covered by the tefgth in the APID-MK3 model. Furthermore, the
term Ly hpsaqs in Berkeley model corresponds to the tefin Q3,0 harass in the APID-MK3 model.
The stabilizer termZyly lacks in the case of APID.-MK3 model because the platform does not have a
horizontal stabilizer. Because of the assumption 7 in Section 2,3.2 0. This eliminates the term ,; 1,
representing part of the moment due to the main rotor force in the APID-MK3 model of motion, when it exists
in the case of Berkeley model. Finally, the te@s in Berkeley model is not represented in the APID-MK3

model due to assumption 9 in Section 2.3.2.

The yaw acceleration for APID-MK8r4) and Berkley(r ) is given as

. 1 ] et

Fa = —(dpt+ Ky(Onm —Yr)) (2.50)
) 1

g = —(—Qm + Lylybis + Trly)

The term representing the anti-torq@e, is present in the Berkeley model and its action is covered by
the termdwv,z} in the APID-MK3 model. The tail rotor force creates a moment represented in both models in
terms of 'zl for Berkeley andi 0, for APID-MK3.

Because of the assumption the assumption 7 in Section 2;3.2; 0. This eliminates the main rotor
term L l5rb1 in the APID-MK3 model of motion, when it exists in the case of a VTOL model.

The remaining two equations represent the the dynamics related to the tateaald longitudinal;
cyclics given in Eq. (2.43). We compare here the Berkeley model of the rotor actuation with the one related

to the APID-MK3 model given in Eq. (2.30).



38

For the longitudinal cyclia, , the equations for APID-MK3a1 , ) and the Berkeley platforrfu,,, ) are

given as

a1s, = Ksars+ Kcug,, (2.51)

Q1s

dls,q = —q-— - + Ablbbls + Auals Ug,, T Aublsubls
1 ;

We can see that all the terms in the Berkeley model of rotor dynamics for the longitudinalcyctice
not present in the case of APID-MK3 model: The damping téfgu,; for APID-MK3 corresponds t(}‘%};’
in the Berkeley model. The sensitivity to control inputg:u,,, for APID-MK3 corresponds tod,,,  uq,,
in the Berkeley model. However a cross-coupling tetp)_ b, in the Berkeley model is not present in the
APID-MKS3 model. Moreover, the pitch ratgis also present in the the Berkeley model and lacks in the case
of APID-MK3. These terms are mainly due to the action of centrifugal forces in the main rotor, which are
not taken into account in the case of APID-MK3 model. Similarly, for the lateral cyglithe equations for

APID-MKS3 (b;5, ) and the Berkeley platforr(h, s, ) are given as

bis, = Ksbis+ Kous,, (2.52)

. b s
blsA = —p—- Lo + Ba“als +B

Uq,, + Bubl Uby
Ty s

Uaq g

Again, we see that all the terms in the Berkeley model of rotor dynamics for the lateral iy clice not
present in the case of APID-MK3 model: The damping tdkigb,, for APID-MK3 corresponds t(}%ﬁ
in the Berkeley model. The sensitivity to control inputs:us,, for APID-MK3 corresponds td3,, us,,
in the Berkeley model. However a cross-coupling te&Bg)_as, in the Berkeley model is not present in the
APID-MK3 model. Moreover, the roll ratg is also present in the the Berkeley model and lacks in the case
of APID-MK3. These terms are mainly due to the action of centrifugal forces in the main rotor, which are

not taken into account in the case of APID-MK3 model.

2.5.2 The CMU model

The CMU model is identical to the Berkeley one regarding the equations of translational and rotational
motion. Furthermore, the CMU model has also the two equations describing the main rotor flapping in terms

of the lateralb;, and longitudinala;, cyclics. The difference is that the system is augmented with two
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additional equations for the Bell-Hiller stabilization. These are given as follows:

¢=—— — g+ Cua, (2.53)

Ts

: d
d=———p+ Duy,,
Ts

wherec andd are respectively the longitudinal and lateral stabilizer angleand D are input derivatives and
7, is the stabilizer bar’s time constant. The dynanii@ndd are not represented in the case of APID-MK3
model.

Furthermore, the yaw dynamics of CMU model can be modeled as a simple first order, for practical

purposes, namely to simplify the yaw general equation given in (2.44) as follows:

. 1
ro= f(—QM + Lalabis + Lrlr) (2.54)

The yaw acceleration simplified equation is given as
Po= Npr+ Nop (00 —7yp) (2.55)

where N, is the yaw damping coefficientYy,. is the sensitivity of the pedal contréf-, andry, is a yaw

feedback term given as as low-pass filter. Its expression is given as follows:
ry = Kpr—Ke,rpp (2.56)

We can see now a similarity between the equation of yaw dynamics presented for APID-MK3 and the

CMU model, given as
. 1 .
ro= I—(d,.r + Ky(0r — ¢r)) (2.57)

The term representing the yaw dampilNgr in the CMU model corresponds to the te%ndrf in the APID-
MK3 model; the sensitivity ternVy,. (67 — ;) in the CMU model corresponds to the tegjan (61 — 7).
The only difference between them is that, in APID-MK3 model, the térms a constant offset, and in the

case of CMU model, this term is represented by a low-pass filter expression.

2.6 Summary

This chapter presented in detail the mathematical model of APID-MK3 used for the design of flight con-

trollers. The model is a simplified version of the original APID-MK3 model and is obtained from it under a
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number of realistic assumptions. The viability of the simplified model is demonstrated later on in the thesis
by using the same controllers on both models with very similar control performance results.

The main contributions of this chapter are as follows:

1. a comparison between a general VTOL model on one side and the simplified and original APID-MK3

models on the other;

2. a comparison between the simplified APID-MK3 model on one side and two different models of an

APID-MK3-like unmanned platform, namely Yamaha R50, on the other.

The comparisons show that the APID-MK3 model is realistic enough both from the point of view of a
generic VTOL aircraft and a different unmanned platform. The comparisons with the models of Yamaha
R-50 show enough similarities to allow the conclusion that the flight controllers developed in Chapter 3 can

also be used for the control of this type of unmanned platform as well.



Chapter 3

Flight Controller Design

3.1 Introduction

The subject of this chapter is the design of a flight controller that executes, in a stable and robust manner,

e tracking of trajectories describing curvilinear translational (or horizontal) motion at relatively high

speed and
e set-point regulation for fast acceleration/deceleration, hovering and climb.

We do not deal here with the problem of automatically generating the motion trajectories and set-point
values — these are assumed given. Furthermore, the robustness of the flight controller is defined as its ability

to compensate for:
e external disturbances in terms of wind gusts;
e model parameter uncertainties in terms of changing payload; and
e sensor noise for attitude control signals.

The chapter is organized as follows. Section 3.2 presents the overall cascaded control scheme for the
flight controller and defines the control tasks to be executed by its inner- and outer-loop controllers. Section
3.3 introduces fuzzy gain-scheduled (FGS) controller design and Section 3.4 the so-called Mamdani fuzzy
controllers. Section 3.5 presents the design of the inner- and outer-loop controllers respectively: the outer-
loop uses Mamdani controllers to determine desired attitude angles that can achieve desired velocity at a

given altitude. Then the inner-loop takes these desired attitude angles as inputs and generates the actuator

41
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deflections that will result in that attitude. Section 3.6 describes an alternative design where the outer-loop can
determine not only desired attitude angles but, also a desired collective main rotor collective pitch. Providing
these as inputs to the inner-loop causes the nonlinear attitude dynamics to be transformed into a linear one and
thus provides for a linear attitude controller design. However the overall flight controller remains nonlinear
because of the nonlinear optimization — gradient descent method (GDM) - used to produce the desired attitude

angles and main rotor collective.

3.2 The control scheme

Having in mind that VTOL vehicles of any kind are maneuvered by controlling their attitude angles, i.e., roll,
pitch, and yaw, it is only natural to design the flight controller as consisting of two cascaded controllers: a

translational controller and an attitude controller. This cascaded structure implies two control loops:

¢ the inner loop, that has the fastest dynamics, is the attitude controller. It takes desired attitude angles

as inputs and generates the actuator commands that will result in the desired attitude;

e the outer-loop controls the slower translational rate variables. It takes desired velocity/position as input

and generates desired attitude angles that will produce the desired velocity/position.

Cuter-dyn.(Eqs. 1-3) g Inner-dyn (Eqgs. 4-6) ¢
LA Translation v Attitude _ec.. Nonlinear >
controller controller By model
PV Inner-loop o
6.0,y
Cuter-loop

Figure 3.1: Overall flight control scheme

The above scheme for the overall flight controller is presented in Fig. 3.1 and it has to be mentioned
here that it is common for all flight controller designs considered in the introductory chapter. However, we
differ somewhat from this general control scheme. In the case of the Mamdani plus FGS controller design,

the inputs to the inner-loop are not only desired attitude angles but also a desired altitude, see Fig. 3.2. In the
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case of the GDM controller design, the inputs to the inner-loop are desired attitude angles and a desired value
for the main rotor collective, see Fig. 3.3. This leads to the fact that in the first case we do not have a pure

attitude controller but an altitude-and-attitude controller. In the second case though we have a pure attitude
controller.

Fig. 3.1 presents the overall flight control scheme, whifepr P¢ stand for desired velocity or position
respectively, that i¢ = (V,,, V,,, V.)¢ or P? = (z,y,2)?. The outer-loop regulates these reference values
and outputs desired attitude angles. The inner-loop control is designed to regulate desired values of the
attitude anglego, 0,v)? and feeds the model with control inputs for the cyclic angles6..) and collective

angles(#,s, 0r) to control the main and tail rotors respectively.

7
Cuter-dyn. (Eqs. 1-2) 1 Inner-dyn (Eqgs. 3-6) ¢
e : Fuzzy Gain & Nonlinear
Zﬂf; Mamdani ¢ Scheduling Bar > model >
£ By
W yt Inner-loop
L4 . 0,y
Cuterloop

Figure 3.2: Control scheme for the fuzzy gain scheduling method

Fig. 3.2 presents Mamdani plus FGS controllers which inputs are desired horizontal vél&city
(Vz, V)4 and the desired heading. The Mamdani controller computes the desired attitude arigles 1)<
These values —plus a desired altitude— are fed to the FGS controller which outputs the values for the control
of the model in term of cycli¢e.., 6.)and collective angled,,, 61 ) for the main and tail rotors respectively.

One important reason for having altitude-and-attitude controller is as follows. The vertical motion of the
helicopter depends on the relation between its weight and the lift force generated by the main rotor blades. If
the lift force is greater than the weight, the helicopter accelerates upwards (climb); if it is less than the weight,
the helicopter accelerates downwards (descent); and if it is equal to the weight, the helicopter remains at a
constant altitude (hover). The horizontal motion of the helicopter (longitudinal — alongales; and lateral
— along they-axis) occurs when there is a horizontal force component. Such a force is generated by inclining

the lift force in the desired direction, inducing by that the trust force. However, because of the coupling
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between the different types of motion, the following effect is observed: when the lift force is inclined, creating

a horizontal motion (trust/drag), the magnitude of the vertical component is decreased under the action of the
weight, thus, causing loss of altitude. That is why we would like to control the attitude angles in such a way
that a desired horizontal motion is produced but, without loss of altitude. This obviously can be achieved by

a controller that is able to simultaneously regulate both the attitude angles and the altitude.

B (k)
Cuter-dyn.(Eqs. 1-3) Inner-dyn (Eqs. 4-6) |dF ()
A Attitnde Model |t | Nonlinear
GDM thtude : ocle > -
() Inversion | ayi9 | model
& (k) By (k)
Inner-loo
B |V (k) b
(Ve 4k, &k, Wk
Cuter-loop

Figure 3.3: Control scheme for the gradient descent method

In Fig. 3.3 the inputs to the model are the control inputs for the cy¢licsé.) and the collectives
(0nr, 07) for the main and tail rotors respectively. They are computed in the inner-loop by solving the
attitude equations in the model using a model-inversion method from desired attitude angles. The outer-
loop controller uses a GDM to derive the main collectiyg and the desired attitude angles 6,)? given

desired velocitie$ ¢ or positionP?.

The collective pitctd,, in the case of the Mamdani plus FGS controller is obtained by providing the FGS
controller with a desired altitude?, and then a desired collective pitch is computed. That,sjs derived
in the inner-loop. In the case of the GDM controll@j, is derived in the outer-loop and is then injected in
the inner-loop. Another difference between the two controllers is the way the control of the yaw is done. To
understand this, one has to keep in mind the following: The air- and body-frames can be assumed the same.

The GDM controller is based on this assumption while the Mamdani plus FGS controller is not.
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3.3 Fuzzy Gain-Scheduled Control

During the past decade two principally different approaches to the design of fuzzy controllers have emerged:
heuristics-based and model-based designs.The latter are known under the name of Takagi-Sugeno (TS) fuzzy
models and controllers or fuzzy gain schedulers.

The main applications of the heuristics-based design are in cases when a given plant is subject to well-
known and understood manual control strategy by an experienced operator. In this case it is enough to
translate the operator's manual control strategy into a set of fuzzy if-then rules in order to obtain an equally
good, or even better, wholly automatic fuzzy control system. However, the complexity of the fuzzy control
system is normally confined to this of P- or PD-controllers and can rarely be applied to the control of MIMO
plants. In our case, the heuristic-based design is applied to the outer-control loop of the flight controller.
Since a set of well-known heuristics describing the relationship between horizontal velocities and attitude
angles is readily available, these heuristics can be translated into a set of fuzzy if-then rules.

The main applications of the model-based design are in cases when there is an available open-loop plant
model, normally a nonlinear one of the MIMO type. For this type of models, of central interest are the
issues of stability and robustness of the closed loop system as well as the ease with which one can automate
the controller design. The attitude-and-altitude dynamics of a helicopter are a typical example of such a
nonlinear MIMO plant. However, there is no general method for designing nonlinear controllers. What
is available today, is a collection of alternative and complementary techniques, each best applicable to a
particular class of nonlinear systems. This explains why the helicopter’s original nonlinear model has to
be “modified” in one way or another in order a particular design technique to be used. In this context, the
advantage of using Takagi-Sugeno models is that a large class of nonlinear plants, including the attitude
dynamics of a helicopter, can be well represented by these models, without the need to modify the original
nonlinear dynamics in any significant way.

Our goal in this chapter is to integrate the above two types of fuzzy controller designs in an overall flight
controller, by taking advantage of easily available heuristics for its outer-loop and a MIMO nonlinear model
for its inner-loop. In the following section, we present the Takagi-Sugeno (TS) fuzzy model in some detail.
Although the TS fuzzy models are based on fuzzy logic we will not go deeper into the fuzzy logic theories.
Interested readers are directed to [21] for a comprehensive reading. We will simply use the TS fuzzy model as

a tool to approximate/represent nonlinear functions and systems. Section 3.3.1 presents the general structure
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of the TS fuzzy model. The TS model used in the context of dynamical systems is outlined in Section 3.3.2.
The problem of how to obtain a TS model as a representation or approximation of nonlinear functions is
given in Section 3.3.3. Section 3.3.4 presents TS fuzzy controllers. In Section 3.4 the Mamdani type of
controllers are discussed. In Section 3.5 the design of the fuzzy flight controller is presented. Finally Section

3.6 introduces the GDM flight controller.

3.3.1 Structure of the Takagi-Sugeno model

The TS fuzzy model, originally proposed in [1], is composed of a fuzzy if-then rule base that partitions a
space — usually called theniverse of discourse into fuzzy regions described by thale antecedentsThe
consequenof each rulei is usually a functional expressian = f;(z). A common format of a rulé is as

follows:

Rulei : IF 6y is F} AND 6, is F; AND ... AND 6, is F; THEN y; = f;(z).

The vecto € R? contains th@remise variablesand may be a subset of the independent variablesR™.
Each premise variablg has its own universe of discourse that is partitioned into fuzzy regions by the fuzzy
sets describing thiinguistic variableF;;,. The premise variabl@; belongs to a fuzzy sétwith atruth value
given by themembership functiop;,(6;) : R — [0,1] for k = 1,2, ..., s; wheres; is the number of fuzzy
sets for premise variable The notatioer andu;'. refers to the specific linguistic variable and its membership
function respectively that correspond to the premise variépie rulei. Thatis,F; € {Fj1, Fja,..., Fjs, }
and(60;) € {1j1(0;), 11j2(6;), - -, s, (6;)}-

The truth value (or activation degreig)for the complete ruléis computed using the aggregation operator

AND, also called a-norm, which is often denoted by : [0, 1] x [0, 1] — [0, 1],
hi(0) = 1 (61) © i (62) © ... @ pug (6y). (3.1)

There is a number of different t-norms available, see [21]. However, in this work we will use the simple

algebraic product, thus Eq. (3.1) reads

q
hi(0) = T w5065). (3:2)
j=1
The degree of activation for rules then normalized as
hi(0
wi(0) = — 1O (3.3)

2 p=1 hr(0)
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wherel is the number of rules. This normalization implies that

l
> wi(f) = 1. (3.4)
=1
In conclusion, the response of the TS model, for a giveand 6, is a weighted sum of the consequent

functions, f;, which reads
l
y=> wi(0)fi(x). (3.5)
=1
Note thaty in Eq. (3.5) is a convex combination of the local functions (modgisk fact that facilitates

stability analysis.
3.3.2 TS models for dynamical systems

This section presents the TS model described in Section 3.3.1 in the context of dynamical systems. A general
continuous dynamical system may be given as

&= f(z,u,)
(3.6)
Yy = g(gj, u, 19);
wheref : R" x R™ x R®* — R™andg : R" x R™ x R®* — RP. ¢ € R? is a vector of possibly time varying
parameters. The functionfsandg may very well be represented by a TS fuzzy system. Lettibhg a subset
of z, w andy¥ we can write rule in a fuzzy rule base as
Rulei :IF 6, is F{ AND 6, is F; AND ... AND 4, is F,
L ’\i 19
THEN { v f (@, )
Y=g (.’E, u, ,'9)

wheref; : R x R™ x R® — R"andg; : R™ x R™ x R® — RP. The TS fuzzy system is then written

l
T = sz(e)fz(xauvﬂ)

l

Y= sz(e)gz(xﬂ"ﬂ)a

i=1

(3.7)

and the weightsv; () are computed as described in Eq. (3.3). The choice of the consequent futﬁ:mmis

g; depends on the application. We will confine ourselves to the following case:

=t (3.8)



48

or the more general form, derived from the Taylor expansion

l
&= wi(0)(Aix + Bu+ a;) = A(0)x + B(0)u + a(0)
=1 (3.9)

whereAd; € R"*", B, € R"*™,q; € R", C; € RP*™ andc; € RP. Ifitis not clear from the context, we
will in the following label (3.8) as @omogeneousS fuzzy system while we denote (3.9) asafine TS

fuzzy system.
3.3.3 Obtaining TS fuzzy models

There are basically two principal ways to obtain a TS fuzzy model: nonlinear identification from experimental
data or using linearization of some kind. A good exposure of different methods for TS fuzzy model identifi-
cation is given in the collection [22]. A comprehensive description of a method for automatic identification

of TS models for control purposes is also presented in [23]. The purpose of this section is to discuss how
a TS fuzzy model of the form (3.8) or (3.9) can be obtained from the general nonlinear system description
in Eq.(3.6). Thus, a nonlinear system is already given and we will not deal with identification, and thereby
redirecting interested readers to the references mentioned above. It has been shown that a TS model of type
(3.8) can approximate any smooth nonlinear function and its first order derivative [24]. Furthermore, in [25]

it is shown that an affine TS system may also be able to approximate the second order derivatives of a smooth
nonlinear function.

Although the universal approximation capabilities are of a considerable theoretical interest we will only
confine ourselves with the mechanism of how to approximate a nonlinear function by a TS model in this
section. Two approaches are presented: the first one is based on approximation, using Taylor expansion of
the nonlinear function in a number of points. The second one tries to find a linearizing transformation such
that the nonlinear function is exactly represented by the fuzzy system over a specified domain. The two
techniques have one thing in common: they strive to capture the nonlinearity of the original nonlinear system

into the rule base.
Approximation by Taylor expansion

The idea of this method is to do a first-order Taylor expansion in different p&jrasd let the rule base

describe the validity of the obtained linear model in each point. First, one has to decide which variables
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in z, v andd, i.e., the premise variablés capture the nonlinearities in Eg. (3.6). A reasonable number of
linearization points together with a partition of the universe of discourse must also be chosen. The consequent

system parameters are then obtained by

4= (o u,0) s o (o u,0) _a- 29 (0, u,) 6w
with the affine terms
ai = f(@i,ui, Vi) — Aiwi — Biu; (3.11)
and
ci = g(xi, ui, 9;) — Ciz;. (3.12)

Obviously, a TS model obtained by this method is an extension of a linear system obtained through lineariza-
tion in an equilibrium point. As a parallel, in classical gain scheduling one does often approximate a nonlinear
system with a number of linear systems obtained through linearization over the equilibrium maofdie:
nonlinear system in Eq. (3.6), as

e ={(z,u,9) | f(z,u,?d) =0} (3.13)

See [26] for a discussion about linearization and classical gain scheduling. When linearizing outside the
equilibrium manifold we obtain an affine term as in (3.9), see also the discussion in [27] and [28]. This
implies that our approximation may resemble the original nonlinear system even outside the equilibrium
manifold. We may also say that the fuzzy system approximates the flow of the vector field represented by
Eq. (3.6) as discussed in [27]. The example below shows how to approximate a simple function using
linearization, in terms of first-order Taylor expansion.

Example 1 Consider the approximation of the functigitz) = sin(x) over the domaifj—m, 7). Fig. 3.4
show the original function together with approximations using three (-2.6, 0 and 2.6) respectively five (-2.6,
-1.57, 0, 1.57, 2.6) linearization points. Fig. 3.5 shows the chosen membership functions.

From Example (1) we can immediately see that more linearization points —i.e., an increased granularity

in the fuzzy partition — the better approximation accuracy.
Approximation by a linearizing transformation

Here we describe how a TS fuzzy model (without affine terms) may be represented by using sector bounded
nonlinearities. This approach is thoroughly described in [29] and [30] and only an outline is given here. This

technique can at least be used for continuously differentiable systemg (@ith) = 0. The idea is to bound
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Figure 3.4: Real function (solid), 3-mf approximation (dashed), 5-mf approximation(dotted)

nonlinearities by sectors described by linear subsystems. The resulting system is then written as a convex

combination of these subsystem by transforming the original nonlinearities into fuzzy membership functions.

Example 2 Consider the same function as in Examplefly) = sin(z). We would like to express this
function as a convex combination of linear functionals as follows

pr(z)arz + (1 — pi(x))aze = sin(x) (3.14)

with g1 (x) > 0 anduq (z) + (1 — pa(z)) = 1. Solving forp, (z) gives

sin(x)—azxw 0
(e = { “aeEs T2 315)
If we letz € [Zmin, Tmaz] = [—7, 7] We Seta; = min, sin(z) = —1 andaz = max, sin(z) = 1. Hence
Eq. (3.15) becomes
w—szin(ac) x 7& 0 316
i ={ TES T (316)

Inserting Eq. (3.16) in to Eqg. (3.14) we obtain equality for @l [z,,in, Tmae|- HeNce, it is possible to
exactly represerdin(z) over an interval using a convex combination with the weiaght&r) = u1(z) and

wo(x) =1 — pp(x).



51

L L h L L L L
-3 -2 -1 0 1 2 3
X

Figure 3.5: Membership functions to approximate sin(x)

The reasoning used in this example is easily extended to a wide variety of nonlinear functions and in particular

to nonlinear systems of the form

arr(z,u)  ap(z,u) ... a(z,u)| |21
fla,u) =
an1(z,u)  apa(x,u) ... app(z,u) —_Jin 3.17)
bii(z,u) bra(x,u) ... bim(z,u)| |w
+
bpi(z,u) bpo(z,u) .o bpm(z,u)]| |um

Each nonlinearity is taken care of separately. The nonlinearities are assumed to be bounded as in Example
(2): ai; € [ming,, a;j(x, w), max, , a;;(z, w)] for z,u belonging to the universe of discourse. The result

from Example (2) shows that this technique is likely to be more powerful than the Taylor expansion approach
described in the previous section: both with respect to the number of rules required and with the respect to
the absence of an affine term. However, one problem that may arise -in the context of control design for the
obtained TS system- is that the linear subsystems may be uncontrollable and/or unobservable respectively.
The reason is that the relationships between states and inputs may be hidden in the membership functions
and will not show up in the linear subsystems. Another issue is that the resulting sub-models, in general, do
not represent local system dynamics, but only sector boundaries. Sometimes it may be desirable to have the

intuitive feeling for the local system behavior encoded explicitly in the fuzzy model.



52

3.3.4 Takagi-Sugeno controllers

We will concentrate here on output feedback controllers that do not depend on an explicit observer scheme,
and we will constrain the model with certain assumptions when necessary. It it is also assumed that the

varying parameters i are measurable.

&= wi(0)(Aiz + Biu+ a;) = A(0)z + B(0)u + a(0)
=l (3.18)

Static output feedback fuzzy control

Consider the problem of how to construct a static output feedback stabilizing fuzzy controller for a fuzzy

system with linear consequents

l
# =Y wi(0)(Aix + Biu) = A(0)z + B(O)u

; (3.19)
y= Zwi(G)Cvm =C(0)x
=1
A fuzzy controller may be formed as
l
u="Y wi(0)Kyy = K(0)y. (3.20)
i=1
The closed loop system then becomes
z=A0)x+ B(O)K(0)y = (A(0) — B(O)K(0)C(0))x

! ! (3.21)

-y

l
w; (0)w; (0)wy(0)(Ai + B K;Cy)x.
i=1 j=1 k=1
To simplify the presentation, assume for a moment fhat= B andC; = C fori = 1,2,...,l. Then Eq.
(3.21) simplifies to

l
&= wi(0)(A; + BK;C)x. (3.22)
=1

Now using a quadratic Lyapunov functiovi{z) = 2T Pz, the following stability theorem for Eq. (3.22) can

be verified
Theorem 1 [10] If there exists a symmetric positive definite matfbsuch that

(A; + BK;C)'P + P(A; + BK;C) <0 (3.23)
then the system in Eq. (3.22) is asymptotically stable.
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One attempt to formulate the design is to form the feasibility problem

Find P K; s.t(4; + BK,C)"'P + P(A; + BK;C) < 0 (3.24)

The problem (3.24) is indeed very difficult to solve, because it is not convBxand K;. Furthermore, there
does not exist a linearizing variable substitution in this case. Heuristic approaches have been proposed for
solving (3.24), for example, the so-calléd— K iteration [31]. However, using these kind of methods one
can only hope to achieve convergence to a local minimum.

The discussion above shows that static output feedback fuzzy controllers may be hard to find. However,
in the next section it is shown how it may be possible to obtain full order dynamic output feedback controllers

by solving a convex programming problem.
Dynamic output feedback fuzzy controllers

In this section it is shown how a dynamic output feedback fuzzy controller can be designed.

Consider the system

l
&= wi(0)(Aix + B+ a;) = A(0)x + B(0)u + a(0)
=1 l (3.25)
Y= Z w;(0)(Ciz + ¢;) = C(0)x + c(0)

System (3.25) can be thought of as a polytopic linear parameter varying system subjected to certain
disturbances, stemming from the affine terms. The idea here is to make use of the framework for gain
scheduled ., controllers in order to: 1) Shape the closed loop transient dynamics so that it conforms to the
performance specifications and 2) Design the controller to reject the influence of the affine terms. We will
concentrate on the first step for the moment. In [10] it is shown how to design a gain scheduled controller

with guaranteed{ ., performancey for the following general LPV system
&= A(f)x + B1(0)w + Ba(0)u
z=C1(0)x + D11(0)w + D12(0)u (3.26)
y = Ca(0)x + Doy (0)w + Dao(8)u

whereA € R ™, By € R"™ By € R"™™2 () € RP**™ and(Cy € RP2*™. 0 is allowed to vary

in a parameter bo® with [ extreme points and the LPV matrices depend affinely.omhe system (3.26)



54

is therefore constrained to vary in a polytope with vertices given by the extreme poiatsTihus, setting
a(f) = 0 andc(f) = 0in (3.18) yields to a system that can be written in the form of (3.26). In addition, the
following assumptions must hold:

Assumption 1 Dyy(6) = 00r Dayy; =0fori=1,...,1.

Assumption 2 By (6), C2(0), D12(0) and Dy, (6) are parameter independent d2; = Bs, Cy; = Co,

D1iy; = DisandDyy; = Doy fori=1,...,1.

Assumptions (1) and (2) may seem to be restrictive in practice. However, it is often possible to augment
the plant with linear filters representing the actuator and sensor dynamics and thereby make the input and
output matrices parameter independent. The objective is to find an internally stabilizing parameter-dependent
dynamic output feedback controller, with the infinity norm of the transfer function feoto = less thany,

IT%wllco < 7, Of the form

:tc = AK(H)IEF + BK(Q)y

(3.27)
u=Ck(0)x.+ Dk(0)y
with the controller parameters
Ak (0) Bg(6
Q) = x(0) Bic(0) (3.28)
Ck(0) Dk(0)

Ari Bk
Cri Dk

€ Co{ ,z’:l,...,l}.

From the convex solvability condition theorem [10], there exists a LPV controller that guarantees quadratic

Hoo performancey over© if and only if there exist symmetric matricés .S € R™*" satisfying the2r + 1

linear matrix inequalities

AR+ RAT RCT| By,
NE CuR —~I | Dy1; |Nr < 0
Bf; DYy ‘ -1 |
i=1,...,1 (3.29)
ATS +SA; SBy | CF
NE BLS —I | DT, | Ns
Chi Dy, ‘ -1 ]
i=1,...,1 (3.30)
ko >0 (3.31)
I S
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with
e [Hi] and Ay — [%1] |
0 |1 0 |I
where Ny andNs denote the null space ¢B1', DI,) and (Cy, D2;) respectively. If a feasible solution is
found, a closed loop Lyapunov matri,; can be obtained by computing (via singular value decomposition)

two matricesM andN such that

MNT =1—-RS (3.32)

and solve the following matrix equation fof,;

S I I R
= Xa (3.33)
NT 0 0 MT
Now, given a closed loop Lyapunov mattk,; the vertice controllers
= |78 K (3.34)
Cki Dk

can be found (from the use of the bounded real lemma, see e.g. [32], extended to polytopic systems) by

solving the following system of LMIs

AliXa + XaAai XaBai Cl;

C

BcTzz'Xcl -1 Dg;i < 0
Ccli Dcli _'71
i=1,....1 (3.35)
with
A -Ai + ByDg;Cy BoCk;
cli —
BgiCh Ak
[By; + BsDi Doy
Bcli -
By Doy
Cai = |C1i+ D12Dk;Cs D12CK1}
Dyi = |Dyyi+ D12DK2‘D12}

Thus, a LPV controller can be designed for the linear part of (3.18). The controller is then parameterized
on-line by using measurements @fand the convex decomposition given by the fuzzy rule base, i.e., the
convex combination:

Ak(0) Bg(0

( Agi Bk
Ck(0) Dxk(0

(3.36)
Cri Drk;

)
)

l
= Zwi(9)
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Due to assumptions (1) and (2), the affine te«i#) disappears and attention must only be givea®). The
approach taken here is to consid€f) as a “measurable” disturbance. That is, given a particfaom
measurements, it is always possible to compute the disturkgfit@cting on the model. By feed-forward

of the computed:(6) to the controller it is possible to make the controller compensate for it, see Fig. 3.6.
Modeling the disturbance and its measurement is easily done by adding entBesind D2, respectively.

The controller is then synthesized according to the steps outlined above.

a()

. +? K(e) LPV =)

Figure 3.6: Closed loop with an affine term as a “measurable” disturbance

3.4 Mamdani-type controllers

A Mamdani fuzzy model/controller is a static MIMO system. It is formed by the following components: a
fuzzy rule base, a fuzzy inference engine, a fuzzifier operator, and a defuzzifier operator. In what follows we
will briefly describe each of these components and for the sake of simplicity we will consider a Mamdani
SISO model/controller. The results easily can be extended to the MIMO case and for a detailed description

the reader is referred to [33].

3.4.1 The fuzzy rule base

The fuzzy rule base consists of a setdluzzy if-thenrules each one of the form:
if XisA® thenY isB®), k=1,...,n,

where



57

o A is the linguistic value of the input variablg in the kth rule. For exampleX can represent the
error between desired longititudinal velocity and the actual onedfitimay express “small negative

error”. “z is A®)” is interpreted by a given membership functién 11 4 () /; and

e B) s the linguistic value of the outpuf in theith rule. For exampleY can represent the desired
pitch that is required to correct the above error @@ may express “small positive pitch”.y"is

B*)"is interpreted by a given membership functifp 1z (y) /y

The “meaning” of asingle ruleis represented as a fuzzy relation defined as:

vi: RM = /X ymin (Haw (x), ppa () / (2, 9).

Then the meaning of th&hole set of ruless defined as:

which means that

vxa Y:UR, (ZL’, y) = ml?x lu’Rs,’f) (‘Tv y)
= maxmin (uam (), kpw () -
The fuzzifier operator

Given a crisp input*, i.e., a specific value of the input variab{g this crisp input iguzzifiedn the following

1 ifz=ua*
Ve:u*(m):{ nr=a

manner:

0 otherwise
The fuzzy inference engine

After the crisp inputs* is fuzzified the inference with the set of rules is performed via the use of the operation

compositiorbetween the fuzzified crisp input art),, as:

Yout = /J/* o Rma i.e., Vy : MY(Q) = ml?x min (/’LA(M (x*)aﬂB(k‘) (y))

The fuzzy sety,,; is the output that corresponds to the given fuzzy inpuaind is denoted ag,,; =

Jy B0 W)y
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The defuzzifier operator

The defuzzifier operator is applied on the fuzzy output given by the membership fuligtigrfor example

by finding its center-of-gravity*. That is, the center of the area covered by the membership furictien

fy T (W)/y
* _ fy yu’{;<k>(y)
fy T (y)

3.4.2 The Mamdani PD-controller

A Mamdani model can be instantiated as a Mamdani PD-controller in the following mannerdéebte the
error, that is the difference between the desired and the actual system state at saniple(fine x,—x(k).

Let alsoAe denote the change-of-error, thatAz(k) = e(k) — e(k — 1), andu be the control output that is
to be produced given particular values k) and Ae(k). Then a Mamdani PD-controller consists of a set

of fuzzyi-f-thenrules of the form:
if eis E®) andAeis AE®thenuisU®), k=1,...,n,
where

e E*) isthe linguistic value of the errerin thekth rule. For exampled(*) may express “small negative

error”. “z is E(*)” is interpreted by a given membership functign pa) (e) /e; and

o U is the linguistic value of the control inputin theith rule. For example/ %) may express “small

positive pitch”. “u is U*)” is interpreted by a given membership functig%puwk) (u)/u

The linguistic values taken by and Ae are normally classified as “positive”, “negative”, and “zero”
and represented as appropriate fuzzy sets on the universes of discourse of these two variables. For example,
“positive small error” expresses the fact that the stais below its desired value,, and the difference
betweenr andzx, is rather small. Furthermore, a “a positive big change-of-error” means that ther siite
time k is significantly smaller tham; at timek — 1.

Whene and Ae are considered together this expresses the “dynamics” of the system. For example, the
combination (“positivee” and “negativeAe”) means that the current process state is below its desired value,
and increasing since the change-of-error is negative. Thus, the current state shows a tendency of approaching

the desired value from below.
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The linguistic values for the control inputare similarly divided in “positive”, “negative”, and “zero”.
For example, a “small positive u” means that the curteshould be changed to a rather small value. Such a
course of action only depends on the current valuesafd Ae. For example, consider the case (“positive
big e” and “positive bigAe”). This means that the current state is at a large distance below its desired value
and it has settled at this position after having made a large step in the direction of the desired value. Thus,
since the state is moving in the direction of the desired value with a large step, the appropriate control input
would be “small positive:” so that the state is moved further up in the direction of the desired value without
overshooting it.

In this thesis we utilize the structure of the above Mamdani PD-controller in the outer control loop of the
flight controller. In our case the control input is a desired value for either pitch, roll, or yaw which has to be

maintained in order to achieve a desired velocity.

3.5 The Fuzzy Flight Controller

The two-step synthesis for the fuzzy flight controller proceeds as follows:

1. given desired horizontal velocity at certain altitude, a set of Mamdani-type of linguistic rules computes
desired attitude angles that help achieve this desired velocity at the given altitude. The rules are heuris-
tic in nature and reflect the experience of a human “pilot” who is an expert in remotely controlling the

vehicle;

2. on the basis of TS model for the dynamics of both vertical motion and attitude angles, TS control laws

(FGS controller) that achieve the desired attitude angles at a given altitude are designed.

The current control system for APID-MK3 does not utilize the full range of the rotor attitude angles. As
a consequence, this produces lower rate-of-change of the attitude anglesid, and consequently the
control is done on rather small ranges for these — all this reduces manoeuvrability w.r.t. these angles. In this
context, the objective of our study is to design an attitude controller which acts on much larger ranges of the
attitude angles, i.e57/4 < ¢ < 4+7/4, —7/4 < 0 < +7/4, —7 < ¢ < +m, by utilizing the full range of

the rotor attitude angles. The latter, for the purpose of this study, are in the intgpral:.[—0.25, 0.25] rad.
3.5.1 The FGS controller for the inner-loop

The design approach used here consists of the following steps:
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e Decoupling the nonlinearities in the control inputs by adding first-order actuator transfer functions — as

a result, the nonlinearities are moved into the state;

e The new model is linearized either using Taylor series expansion around appropriately chosen points
in the state space, or by bounding the nonlinearities in the state by linear functions — in this way the
nonlinear model is approximated by a TS fuzzy model, which boils down to convex combination of

linear sub-models;
e A gain scheduled output feedbatk,, controller for the so-obtained approximated model is designed.

In what follows we will describe in more detail the above three steps of the design. The mathematical

model used for the attitude/altitude control of APID MK-III, defined in the inertial frame, is of the form:

z = %(Zw + Zy — KpnQ3,00 cos ¢ cos 6)

b = —agp+dKpyQ%(bis + Ny)bu (3.37)
0 = —bb—eKpyQ2, (a1 + No)lus

b= —cp+ f((0r + Ny) + 1)

where the state vector ig, ¢, 0, v, 2, b, 0, ¢), i.e., altitude, attitude angles and their respective rates. The
control inputs ar€b; s, a1, 0ar, 07), i.€., these are the usual control inputs in terms of lateral and longitudinal
cyclics, and collective angles for the main and tail rotors. The first equation describes the dynamics of altitude
motion whereZ,, is a wind force in the z-axis, and is the gravity force on the cabitiN,, Ng, Nw)T rep-
resents the noise associated with the attitude anglésc, d, e, f, Ky, Q2ar, andyr are model parameters,
and their specific values have been introduced in Chapter 2 together with the full model description.

The above model has to be transformed in the form of Eq. (3.18), with the wg@pbeing the affine
term representing wind accelerations and attitude angles a@se- (%7 Ny, Ng, Ny)T. All the outputs of
the model are directly measurable (attitude angles and their rates, position and velocity). Thus the expression
in 3.18 is reduced to the identity matrix an@) = 0.

In the above model, the control inputs are produced by servo-actuators and that is why we will introduce
the transfer functions that relate the outputs from these servo-actuators to the control inputs. The servo-

actuators used in APID-MK3 are first-order transfer functions with saturation, augmented with a linear model

for the Bell-Hiller mixer and angles-to-signals plus signals-to-angles transformations, as shown in Fig. 3.7.
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T(a,s)

Figure 3.7: Servo-actuator diagram including the Bell-Hiller mixer
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Figure 3.8: Bode diagram and step response for the servo-actuator

The servo-actuator presented in Fig. 3.7 is simplified in the form of a first-order function which still

obeys the constraints for the actuated signals to be within the range [-1.8, +1(8).{ar; ;) and [-1, +1] for

(0nr, 07). The Bode diagram for the simplified servo-actuator is given in Fig. 3.8. We verify that the outputs

produced from the original (see Fig. 3.9 middle) and simplified servo-actuators (see Fig. 3.9 bottom)-once

proportionally amplified— are very similar and are still within the range [-1, +1]. This in turn implies that

the rotor angles produced by the servo-actuators’ outputs are realistic, that is they are within their admissible

ranges (approx. [-0.25, +0.25] rad).
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+ offset: 0

Figure 3.9: Boundaries of inputs, and outputs for the servo-actuators

The simplified expression for the servo-actuators transfert functions are as follows

bis = —300by, + 300wy,

a1s = —300a1s + 300 ug,,, (3.38)
Orr = —3000n + 300 ug,, ,

Or = —30007 + 300 ug,,

Now, we can expend the model with the above actuators whose outputs are the cyclid&ngles) and
the collective angle&dy, 61), and whose inputs are the signéls, . , ua,,, ta,,, us, ). AS a result, this will
shift the nonlinearities —due to couplings between the control inputs— into nonlinearities between the state

variables, as mentioned in Section 3.3.4.
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As a result, the model from Eq. (3.37) becomes as follows:

T3 = Tg
Ty = T
Ts = T11
Te = T12
Tg = %(Zw + Zy — Ky Q3,215(cos x19 cos 1))
i1 = —axio+ dKyQ% vis(xs + Ny)
i1 = —ba — eKpnQ3; 215714 + Np) (3.39)
t12 = —cxiz+ f (w16 + Ny) +¥r),
i13 = —300 213 + 300 up,
g14 = —300214 + 300 ug, .,
g15 = —300215+ 300 ug,, ,
i1 = —300 216 + 300 ug,.,

where the(zs, ...xs, To, ...x12) corresponds tdz, ¢, 6,1, 2, ¢, 0,v), i.e., altitude, attitude angles and their
respective rategx1s, ..., £16) are(bis, a1s, s, 07), i.€., these are the usual control inputs in terms of lateral
and longitudinal cyclics, and collective angles for the main and tail rotors. Furthermorey,, ., us,,, and

ugp,. are the commanded cyclic roll and pitch together with the main and tail rotor collective angles. Note that

bis, a1s, 07 @andé are now pseudo state variables.

3.5.2 Linearization of the inner-loop model

Consider again the model described in Eq. (3.39). For each of the nonlinear terms in this model we choose
a linear bounding such that the fuzzy system obtained represents exactly the nonlinear system. Now, we
considercos(z19) cos(x11)x15, 13715 andzi4x15 to be the nonlinear terms subject to linear bounding —
these reside in the attitude equations associatediwjth,, andi1; respectively. The state variables involved

in these nonlinear terms satisfy:
z10, 211 € [—7/4, 7/4],

(3.40)
x15 € [7/18, 57 /18].
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The state variable; s is trivially bounded by

1745 < @15 < .8727. (3.41)

cos(z19) andcos(x11), taking into account the bounds from Eq. (3.40), can be bounded by the two constant

functions:

0.7071 < cos(x19) <1, 0.7071 < cos(x11) < 1. (3.42)

The above bounds result in

0.5 < cos(z19) cos(x11) < 1. (3.43)

Then the above three nonlinear terms can be represented via the use of the derived upper and lower bounds

—as described in Example (2)- by Eq. (3.14), and in the following manner;

Ti13715 = FL0.8727213 + F20.174523,
T1a15 = FL0.8727T214 + F20.174521,,
COS(IH)) COS($11)$15 = F213315 + F220.53315,

whereF}, Fy € [0,1], F2 =1 — F} andF = 1 — F. By solving the above equations fé}', F'Z, F} and

FZ, see Example (2) Eq. (3.15), we obtain the following membership functions:

Fl(z15) = (x15—0.1745)/0.6981,
Fl(x15) = (0.8727 —x15)/0.6981,
Fy(z10,211) = 2cos(z1g)cos(xyy) — 1,
F22(:r10,x11) = 2 —2cos(z10) cos(z11).

The graphs of the membership functioR$ and F? related to the roll and pitch angles are shown in Fig.

3.10 left part, and the graphs 6% andF3 related to the collective pitch are shown in Fig. 3.10 right part.
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Figure 3.10: Membership functiorﬁ(‘) andFQ(')

Takagi-Sugeno Controller for the inner-loop

The fuzzy model, with regard to the results established in Section 3.7, is then expressed as the following set

of only four rules:

1 : IFx5is F} and cos(z10) cos(x11) is Fy
2 . IFx5is F} and cos(z19) cos(x11) is F5
3 ¢ IF x5 is F? and cos(x1g) cos(w1y) is Fy
4 : IFzy5is F? and cos(x1g) cos(z11) is F

THEN

THEN

THEN

THEN

& = A1z + Bu + a(6),
& = Asx + Bu + a(),
& = Asz + Bu+ a(6),

& = Asx + Bu+ a().

In the above rules the matri®; is obtained from of Eq. (3.39) in the following manner. First, values@f

x11, andz;; are chosen such that! (z15) = 1, andFy (710, 211) = 1, namely, these are;g = 21, = —7/4

andz,5 = 57/18. Second, we replace the previous values in Eq. (3.39) whAegiis given by the equations

associated withi(s, ...212). The matrix B is represented by the equations associated sith.(.41¢) and is

thus the same for all the rules.

For illustration, we give the expression of the state-space representation for the firstzyle=Ib7/18
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andcos z1g cos 11 = 0.5 then

04 14 04 04 04
Ay =04 Gy Hy |; B = 04 ;oa@)=| N
04 04 54 L _S4 04
1, 04 O [0
C = o ;and D= *
04 1y Oy 0,

where ‘0;” is a zero matrix of rank i, ;" identity matrix of rank i, and=,, H, and.S, given by:

[ 0 0 —05K0Q2, 0
G | 08T, 0 0 01,
0 0.8727e 2, 0 0
i 0 0 0 f
[0 0 0 0 Zw + Z,s
o= |0 . N= No and Sy =300-1,
0 b 0 N,
| 0 0 -—c N+ for

The rest ofA,y, A3, and A, are obtained in the same manner. The global model resulting from the fuzzy
rules corresponds to the one from the system described by Eq. (3.25), where the enftieslatfed to
altitude/attitude angles and their rates are equal to 1 and furtherfidseidentical for all rules ¢; = C).

Also, D; = D = 0. Thus the global TS model corresponding to 3.39 is given as:

4
T = Zwi(xm,xu,mw)(Aim—&—Bu)—|—a(9)

i=1
4

Yy = Zwi(ﬂfw,ﬂ?n,mw)(cﬂ)icx (3.44)

=1
In the abovew; is the degree to which a rule is activated given some valuesfgrxz,; andx;5. Then,

according to Egs. (3.1-3.4) in Section 3.3.1, we have that

wy = F (z15) - Fy (v10,711) wy = Fl (z15) - F3 (210, 711)
w3 = F(x15) - Fy (v10, 211) wy = F{(z15) - Fy (210, 211)
and St wi=1 (3.45)

Given the TS fuzzy model in Eq. (3.44), a FGS dynamic output feedbaglcontroller can be designed
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as described in Section 3.3.4. In particular, using Egs. (3.27) and (3.36) the controller is then of the form:

T 4 AL B! T
=> wi| ¢ ° : (3.46)

The controller is designed so that it can track desired altitude and attitude angles. Integral action is

introduced to avoid steady state errors in the inner-loop control as shown in Fig. 3.11.

attitucesaltitucle
i model
fitter FGS controller ind

1 (2 F—w{distubance state

— W eror-rde

s+ contralinput e conrol input state -rate
stote - rate

attituce
hidise

state
desired

inner -loop

outer -loop

Figure 3.11: Fuzzy gain scheduler for the inner-loop

The integral action is a first-order integrator of time constant 1sec. and it permits the synthesis of
region-wiseH ., controllers verifying the Lyapunov global stability conditioris; s, ...z1¢) are in the range
[-1, +1] and this is accounted for in the controller design. The servo stgtenust of course be measured

because of its use in the scheduling.

3.5.3 Mamdani fuzzy controller for the outer-loop

The state space representation of the horizontal motion is as follow:

jfl = X7

. 1 9 . . .

t7 = —(Xuw — KnQjx15(cosx10s8inxyy cos 212 + sinzqp sin 212))
m

. 1 9 . . .

tg = — (Y — KyQya5(coszigsinay sinxia — sin 19 cos x12))
m

The Mamdani-type of linguistic controller is used to generate desired values for attitude angles given
desired horizontal velocities at a given altitude. This type of controller has a heuristic nature which reflects
the experience of a human “pilot” who is an expert in remotely controlling the vehicle. The motivation for

resorting to such a heuristic approach is as follows:
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e The available equations describing the dynamics of horizontal motion do not take into account aerody-

namic effects related to the main rotor.

¢ Also the contributions of the tail rotor torque and force are neglected.

Thus, using the Eq. (3.47) to derive desired attitude angles, given desired horizontal velocities, is not be
a reliable option. Instead, the Mamdani-type of linguistic controller uses the magnitude of acceleration and
velocity-error to infer attitude angles that if achieved will reduce the velocity error to zero. Thus they “mimic

" a human pilot’s behavior when trying to achieve certain desired velocities via manual control.

Mamdani rule for longitudinal velocity

In this context, the rules used to compute desired values for pitch are according to Section 3.4 of the form:
IF e,, is Neg anct,,, is NegTHEN 6¢ is Pos

wheree,,, is the longitudinal velocity-error anél,, is the longitudinal acceleration add the desired pitch

angle. The “heuristic” interpretation of this particular rule is as follows: if the current longitudinal velocity

is higher than the desired one and we are accelerating, i.e., we are moving further away from the desired
velocity which is caused by a negative pitch angle. In order to bring the current velocity back to the desired
one we have to slow down the longitudinal motion and reverse the acceleration. This is done by bringing the
pitch from a negative to a positive angle. Furthermore, Neg and Pos are linguistic labels for the magnitudes of
€y, €y, , and the pitch. The meaning of these linguistic labels is given by fuzzy sets defined on the physical
domains ok, , é,,,, and the pitch. Fig. 3.12 illustrates the above rule in terms of these membership functions.

All'in all there are 9 rules describing the relationship betwegné,,, and the pitch.

elli= -1Z7 ahH = -9.19 d
th" = 0.599

' | Y

Figure 3.12: Rule for longitudinal speed with membership functions
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Mamdani rule for lateral velocity

The rules used to compute desired values for roll are of the form:
IF e,, is Neg anck,,, is NegTHEN ¢ is Neg

wheree,, is the lateral velocity-error ané,, is the lateral acceleration and the desired roll angle. The
“heuristic” interpretation of this particular rule is as follows: if the current lateral velocity is higher than the
desired one and we are accelerating, i.e., we are moving further away from the desired velocity which is
caused by a positive roll angle. In order to bring the current velocity back to the desired one we have to slow
down the lateral motion and reverse the acceleration. This is done by bringing the roll from a positive to a
negative angle. Furthermore, Neg and Pos are linguistic labels for the magnitudes @f, , and the roll.

Fig. 3.13 illustrates the above rule in terms of membership functions corresponding to these linguistic labels.

All'in all there are 9 rules describing the relationship betwegné,, and the roll.

ely= -12.5 ehyz 6.2 i
fi~ = —0.454

| N B

Figure 3.13: Rule for lateral speed with membership functions

Mamdani rule related to the heading

The desired value for the yaw is computed by rules as:

IF e, is Pos anct, is NegTHEN v is Zera

wheree, is the heading-error ang, is its rate of change angd” the desired yaw. The “heuristic” interpre-

tation of this particular rule is as follows: if the current heading is higher than the desired one and we are
reducing it, i.e., we are moving closer to the desired heading which is caused by certain orientation of the
horizontal velocity. In this case we maintain the current yaw. Furthermore, Neg, Pos, and Zero are linguis-

tic labels for the magnitudes ef,, ¢,, and the current yaw. Fig. 3.14 illustrates the above rule in terms
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of membership functions corresponding to these linguistic labels. All in all there are 9 rules describing the

relationship betweea,, ¢, and the yaw.

=291 dey = 265 d
yo=01

Figure 3.14: Rule for heading with membership functions

The first two types of rules neglect the cross-couplings between pitch and roll angles in the dynamics of
longitudinal and lateral motions. However, these couplings are taken care by the heading rules that in addition
also prevent side-slip by restricting the yaw to be always equal to the heading. Furthermore, the pitch and roll
angles affect the dynamics of vertical motion so that they cause a drop in altitude. Preventing this is taken
care of at the level of the TS controller. The control scheme computing desired attitude angles given desired

horizontal velocities at a given altitude is presented in Fig. 3.15.

altitucle desired

desired wvalues

[z.rall, piteh yaw]

error rate

heading

yaw desired

yaw rate

Figure 3.15: The Mamdani controller

3.5.4 Related work

The work by Sugeno [20] reports a hierarchical, Mamdani-type of a controller for the unmanned helicopter
Yamaha R-50 by Yamaha Motors. The lower layer contains a number of Mamdani-type control modules:
longitudinal (pitch control), lateral (roll control), collective (vertical control), rudder (yaw control), and cou-
pling compensation modules. Furthermore, within each such module there is a number of sub-modules only

some of which correspond directly to our Mamdani-type controller from Section 3.4. These are as follows:
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e Longitudinal: this module includes & Mamdani-type controller. The controller infers a desired
pitch angle using a velocity-error and its derivative and is identical to the one used by us. However, in
our case the desired pitch angle is sent to the TS controller from Section 3.3 while in Sugeno’s case it

is send to yet another controller from the same module;

e Lateral: this module includesiaMamdani-type controller. Thé controller infers a desired roll angle
using a velocity-error and its derivative and is identical to the one used by us. However, in our case the
desired roll angle is sent to the FGS controller while in Sugeno’s case it is send to yet another controller

from the same module;

e Collective: this module includesaMamdani-type controller. The controller infers a control value
for the main collective using altitude, velocity-error and its derivative. In our case, the control value

for the main collective is obtained by the FGS controller given a desired altitude;

e Rudder: this module, given a desired heading, infers a control input for the tail collective using yaw
angle error and its rate of change. In our case we infer a desired yaw angle given a desired heading,
yaw angle error and its rate of change. The desired yaw angle is sent to the FGS controller which in

turn gives a control input for the tail collective.

e Coupling compensation: the use of this module is twofold: i) it takes into account cross-couplings
between longitudinal/lateral and vertical motion; ii) it takes into account cross-couplings between yaw
and roll during a turn. In our case the first type of cross-couplings are taken care of by the FGS
controller. The second type are partially solved by guaranteeing that a turn is always performed in a

directional manner.

3.6 The Gradient-Descent Flight Controller

The design consists of two steps:

1. agradient descent optimization method is used to compute for each desired horizontal velocity/position
—at desired altitude— the corresponding desired values for the attitude angles and the main rotor collec-

tive pitch.

2. alinear control scheme is used to regulate the attitude angles so that the helicopter achieves its desired

horizontal velocity/position at the desired altitude.
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3.6.1 The open loop model

The mathematical model, used for the control of APID-MK3 and defined in the inertial frame, is of the form:

i o= %(Xw — K Q2%,011(cos ¢sin 6 cos i + sin ¢ sin 1))

= %(Yw — K Q3,0 (cos ¢sin @ sin ) — sin ¢ cos 1))

;= %(Zw + Zy — K Q3,01 cos ¢ cos 6) (3.48)
¢ = —ap+dKyQ3 b0y

0 = —bd—eKyQ2a1.00

Vo=~ + f(Or +vr)

where the state vector s, y, z, ¢, 0,¢, ¢, 9, 2, 6,0, 1/}), i.e., horizontal position, altitude, attitude angles and
their rates. The control inputs af& ;, a1s, 0ar, 07), 1.€., these are the usual control inputs in terms of lateral

and longitudinal cyclics and collective angles for the main and tail rotors.

3.6.2 The inner loop attitude controller

The equations below describe the dynamic behavior of the attitude iaghes)):

¢ = —ad+ dKyQ2,0nbis,
é = —b9 — eKMQ?uHMals, (349)
v = —c+ f(Or —r),

wheref,, is derived from the translational equations &bd , a1, 07) acts as a control inputs.

The control problem for the outer-loop is to calculate andled), ) and6,; so that given desired
velocities (¢4, ¢4) and altitudez,; are reached in a certain amount of time. This requires specific angles
(¢4, 04,v%4) and a corresponding collectiva,. The control problem for the inner-loop is to regulate the
angles(¢q, 04,14) calculated by the outer-loop. Given a desired collective pitch— determined by the outer-
loop, the control in the inner-loop is trivially decoupled into three separate channels. The yaw channel is
linear with respect to the tail collectivy- with an off-set term) compensating for the anti-torque induced
by the main rotor around its shaft.

The control law design for the inner-loop is straightforward: we require the inner-loop to follow a behavior
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that is determined by three decoupled second order linear equations. These are given as follows:

¢ = kyo+ks(d— da)
kg + ko(6 — 64) (3.50)

b=kt + k(¥ —a)

:
Il

where the proportional gainé(, kg, andk,), and derivative gainsk(;, k4, andk,;) have to fulfill a desired
performance. These gains are designed in a classical way by a robust pole placement or other appropriate
methods. Comparing the right-hand sides of Egs.(3.49) and (3.50) the corresponding control inputs can then

be calculated as:

1 )
bis = m@(k@ +a) + ky(¢ — ¢a))
a1 = g (608 + 8) + ka(60 — 00)) (351)
M
Or = Z(blhy+0)+ koY —6a)) +r

f

3.6.3 The outer loop velocity controller

The design of the outer-loop controller proceeds as follows: given desired horizontal velocities/position for
a desired altitude, a gradient descent optimization method, applied to the equations of translational motion
computes desired values for attitude angles and the main rotor collective pitch. The equations at the outer-

loop describe the dynamic behavior of the system in the inertial frame:

(X — KarQ3,011(cos ¢psin @ cos ) + sin ¢ sin 1)),
(Y, — K2rQ32,00(cos ¢ sin fsin vy — sin ¢ cos 1)), (3.52)

(Zw + Zs — K Q23,011 cos ¢ cos 0),

33 =3=

In contrast to the inner-loop, the outer-loop control problem cannot be solved in a straightforward manner
because of: (i) the nonlinearities in the right-hand sides of Eqg. (3.52); and (i) the fact that the system is
over-determined which means that there are more control inputs than outputs. Similar to the design of the

inner-loop controller, we introduce desired dynamics in the right-hand side of the translation equations as
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follows
& = ki(d— q),
g = ky(y—1a), (3.53)
z = kéé"‘rkz(Z*Zd),

wherek;, ky, k;, andk, are gains designed according to a required performance in terms of time responses.
In order to meet this performance, the right-hand sides of Egs. (3.52) and (3.53) have to be forced to become
equal by adjusting, 9, v, andé,,. For this purpose, we use an optimization approach. Let both Egs. (3.52)

and (3.53) be written in a compact way

;
i | = Ff(6.0,9,0um), (3.54)

3

where the components of the vector functibare given by the right-hand sides of Eq. (3.52) and

u(z,y,2z) = ky(9 — 9a) . (3.55)
k:z+k.(z — zq)

Now, we calculate the vectgr= (¢, 0,+)” and the scala;; by an GDM procedure for each time step

using the quadratic cost function

V= S F(E0n)" (0~ F(E.0u). (3.56)

Minimizing Eg. (3.56) is done by computing a changéd/in
AV = —(@ — f(&0m))" (BIAE + ByAbyr) <0, (3.57)

whereB; = %ﬁm € N33 and B, = af((j%m € R3*L, This requires the computation of appropriate
A& andA#,, that makeAV < 0. These are given as:
Ag
Ag=| A0 | =Bla(a— f(&0m), (3.58)
Ay
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and
NGy = B3 B(a — f(£,0m))- (3.59)
In the above equations,
(651 0 0 ﬁl 0 0
a=|[ 0 a2 0 |; B=| 0 B 0 (3.60)
0 0 Qs 0 0 53

define the widths of the optimization steps in each componentyang > 0,7 = 1,2, 3. The optimization
process stops either if the nori — f(¢,6,,)|| falls below a defined threshold> 0, or if the number

of optimization steps exceeds a certain limit. The proper choice of both the widths of the optimization steps
andq;, 5; is so far achieved by trial-and-error. One can use here a learning procedure in order to avoid the

current tedious trial-and-error process.
3.6.4 The outer-loop position control

The position controller is designed in the same manner as the velocity/altitude controller. The only changes

that have to be introduced to the design procedure presented in the previous section are:
e Eq. (3.53) is replaced by:
& = kp(x—xq)+ ki /(:1: —xq)dt + ki,

i = kyly—wya)+ ki, /(y —ya)dt + kyy,

2 = kiz+k.(2—z),

wherek,, k,, k. are proportional gainsi,, ki, integral gains and;, k; andk; derivative gains.

They are designed according to a required performance in terms of time responses. Contrarily to the
velocity controller, the position controller is limited by its step response behavior to reasonable and

bounded amplitude. This has a direct impact of how a trajectory tracking routine has to be fed to the

controller, with respect to the sampling period, for new reference values of the position to be tracked.

e EQ.(3.55) is accordingly replaced by:

ky(z — xq) + kiy [(x — zq)dt + k@
=\ ky(y—ya)+kiy [(y—ya)dt + kyy
k:z4+ k(2 — 2zq)
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3.7 Summary

In this chapter the design of two different types of flight controllers was presented in detail. Common to both
flight controllers is a model-based design, the use of nonlinear control approaches, and an inner-/outer-loop
control scheme. The main contribution is the use of novel nonlinear control techniques: fuzzy control and
GDM optimization.

The fuzzy control approach utilizes both heuristic fuzzy control and model-based fuzzy control combined
in an outer- and inner-loop control scheme. The heuristic fuzzy control part of the overall flight controller is
used in the outer loop for the generation of desired velocities and heading. The fuzzy model-based part is used
in the inner-loop of the overall flight controller for the simultaneous regulation of attitude angles and altitude.
The combination of the two results in a horizontal velocity controller that maintains desired velocities at a
given altitude. The use of LMI-basdd,,, design provides for global stability and robust behavior in the face
of external disturbances. The main disadvantage of the fuzzy model-based design is its conservativeness.
However, this is an intrinsic property of all designs based on a global quadratic Lyapunov function and recent
results on piece-wise quadratic Lyapunov functions can be used instead.

The GDM-based flight controller design results in a position or velocity flight controller. GDM optimiza-
tion is used in the outer-loop to obtain desired attitude angles given desired horizontal velocities or positions.
As a by-product of the GDM optimization one also obtains a desired value for the main rotor collective pitch.
The availability of the latter has as a consequence that the inner-loop rotational dynamics becomes linear. In
turn, powerful linear robust design techniques can be utilized for the design of the inner-loop attitude con-
troller. The main disadvantage of the GDM approach is the tedious process of trial-and-error tuning of the

width of the optimization steps. This can be circumvented by the use of learning techniques.



Chapter 4

Simulation results

4.1 Introduction

The purpose with this chapter on numerical experimentation is to demonstrate the following two features of

the the flight controllers developed in Chapter 3.

e First, their robustness w.r.t. external disturbances such as wind and mass change, and noise on the

attitude control signals.

e Second, the stability to perform aggressive flying defined by fast acceleration/deceleration, climb/descent,

and curvilinear trajectory tracking at high speed.

The experimental results reported here are derived in simulation using the nonlinear model described in
Chapter 2. However, this model is a simplification (see Section 2.4.1) of the original nonlinear model. The
control performance of both models is verified through simulation. The experiments on robustness solely
relate to the robustness of the inner-loop control. The reason for this is as follows: the control of VTOL is
done by changing the attitude angles for a desired altitude. The experiments on “aggressive” flight relate to
the flight controller as a whole, i.e., both the inner- and outer-loop controllers.

The structure of this chapter is a follows: Section 4.2 presents the experiments performed with the fuzzy
flight controller, where attitude and altitude robustness are addressed in Sections 4.2.2 and 4.2.3 respec-
tively. In Section 4.2.4, aggressive flight experiments in term of fast acceleration/deceleration, turns based
on heading control, and curvilinear motion at high speed are presented. Section 4.3 presents the experiments
performed with the GDM controller concerning velocity, altitude and position control. The experiments per-

formed consider external disturbances such as wind, body mass change and noise on control inputs at the
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attitude level. An approach to damp the wind effect on horizontal control will be presented in Section 4.2.4.

4.2 Simulation with the fuzzy flight controller
4.2.1 Robustness

To illustrate robustness we consider in this section

e the FGS attitude controller where the control input $(a1 s, 67) to the attitude angles are subject to

noise.

e the FGS altitude controller subject to external disturbances in terms of mass change and wind change.

4.2.2 Attitude control robustness

The numerical experiments are performed with the FGS controller from Section 3.3. This controller is used
on the original and the simplified nonlinear models presented in Chapter 2 Section 2.4. The aim here is to

compare control results for both the models in order to:
¢ verify that the simplified model is a good enough substitute for the original one.

¢ verify that the controller —designed for the simplified model- can also be used for the original one.

Experiment 1 The task is to regulate the attitude angles around certain desired values (set-point control),
given that the control inputs for the attitude angles are affected by white noise. The experiment is performed
with a constant mass of 50 Kg and a constant wind speed of 10 m/s.

In the context of this experiment (see Fig. 4.1), we:

e compare the simplified and original models’ response to set-point control of attitude angles,
e compare the controller performance with and without noise on the control inputs for the attitude angles.

In the experiment illustrated in Figure 4.1, the attitude angles are subject to set-point control at their
extreme value$[¢; 0;v] = [+7;+%;£7]). The left side of the figure presents results for the simplified
model, and the right side for the original one. The middle part of the figure illustrates the injection of a 5
to 10% white noise to the attitude control signals. As one can see, this does not affect the performance of
the controller. The settling time for the pitch and the roll is 6 sec. each, and it is 3 sec. for the yaw. The
bottom part of the figure illustrates the magnitude of the control inputs to the attitude angles. After scale

transformation, these control inputs are the same for the simplified and original models.
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Figure 4.1: Exp.1: Attitude set-point regulation

We should be able to perform attitude control within the above-specified ranges without saturating the
servo-actuators. Figure 4.2 (upper-left part) shows a comparison between the outputs from simplified and
original servo-actuators. The lower-left part of the figure illustrates the impact of the outputs from the servo-
actuators on the trust force: A slight drift of the collective pitch has a direct influence on the trust force of
+5N. The right-side of the figure illustrates the difference between the regulated attitude angles from the

simplified and original models.

The need for the results presented in Fig. 4.2 is as follows. The output of the servo-actuators causes a
change in the main rotor force. So it is necessary to verify that the simplifications made both at the level of
both the servo-actuators and at the attitude dynamics approximate as close as possible their counterparts from

the original model. We can see from Fig. 4.2 that this is indeed the case.

It has to be stressed here that the white noise model provided with the original model is of lower frequency
than the one presented in our experiments. Thus a noise with a higher frequency may affect the control inputs
to the attitude angles by overloading the servo-actuators. In order to avoid this we introduce a 3rd-order filter

to cut the high-frequencies of the white noise, see Fig. 4.3.
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with a mean-value 0 and variance 2 to 5 (see Fig. 4.3). It models roughly the noise that can be introduced by
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Figure 4.2: Input signals and main rotor force (left), and attitude angles (right) comparisons

noise gain

Figure 4.3: Filter for the noise on the input signals for the attitude angles

noise effect is simulated as white noise with a used in the experiments is simulated as white noise

vibrations on the servo-actuators.

Experiment 2 The task is to track desired trajectories for the attitude angles given that the control inputs to
these angles are affected with noise. The experiment is performed with a constant mass of the helicopter of

50 Kg and a constant wind speed of 10 m/s.

Figure 4.4 (left-side) shows the tracking errors for the attitude angles in the case of the simplified model
and on the right-side we have the tracking errors for the original model. The attitude trajectory tracked is a
sinusoidal one, and there is 5 to 10 % white noise added to the control inputs for the attitude angles. As one
can see, the noise does not affect the performance of the controller. The settling time is approximately 3 sec.
for the pitch and roll, and about 2 sec. for the yaw. The bottom part of the figure illustrates the control inputs

to the attitude angles for the simplified and the original models. Here again, after a scale transformation,

these turn out to be the same.
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Figure 4.4: Exp.2: Attitude tracking

Figure 4.5 (left-bottom) compares the main rotor force associated with the simplified and original models.
The main rotor force error does not in this case exceed’, which is the equivalent of a fluctuation of the
body mass ofz 0.4 Kg. This force is induced by the control inputs to the attitude angles illustrated by the
left-top part of the figure. The right part of the figure presents the error between the attitude angles resulting
from the simplified and original models.

One should point out here that the control inputs to the attitude angles do not exceed the limits, im-
posed by the servo-actuators of the original moglell(+1]). Thus the simplified servo-actuators’ model
—represented as 1st-order transfer function— with time constan20msec. and a saturation bounds [-1,+1]

does approximate well enough the original servo-actuators’ model.

4.2.3 Altitude control robustness

We present here altitude set-point and tracking control by taking into account external disturbances such as
wind and mass change. The simulations are performed on both the simplified and original models. Four cases

are covered:
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Figure 4.5: Input signals and main rotor force (left), and attitude angles (right) comparisons

constant wind speed and body mass (Exp. 3)

wind change and constant body mass (Exp. 4)

e constant wind and body mass change (Exp. 5)

varying wind and body mass change (Exp. 6)

We will close this section by mentioning the limitations related to altitude control and the technical solution

opted for in order to enhance its capabilities.

Altitude control with constant wind and mass
Experiment 3 The task is to regulate around desired altitude set-points for the simplified and original mod-
els, body mass of 50 Kg and a wind speed of 10 m/s.

Figure 4.6 (left side) shows results for the simplified model and on the right side are th results from the
original model. The top of the figure illustrates a climb from 0 to 20m and then a descent from 20 to 0 meter.
The settling time —in the case of both models— is 3 sec. The second from the top part of the figure illustrates
the control signals delivered from the FGS controller for the simplified and original models. As one can see
these are identical.

Figure 4.7 (bottom) presents the error between the main rotor forces delivered by the two models. The
top part shows the error between the control signals (collectives and cyclics) for the two models that produce

these main rotor forces. The force error between real and simple model does not in this caserégééed
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Figure 4.6: Exp.3: altitude control with constant wind and body mass

Time offset: 0

Figure 4.7: Input signals and main rotor force comparisons

which is the equivalent to a fluctuation of the body masszof K'g. All this point out that the FGS-based

attitude/altitude controller has the same performance in the case of the simplified and original models.

Figure 4.8 top illustrates the performance of the controller when tracking a sinusoidal altitude trajectory:

top-left for the simplified model and top-right for the original model. The bottom part of the figure shows

the control signals needed to achieve the tracking in the case of the simplified (bottom-left) and original

(bottom-right) models. As one can see these signals are identical.

Wind effect on altitude control

Experiment 4 The task is to track a desired altitude trajectory given a wind variation and constant mass of
50 Kg. The experiments are performed for both the simplified and original models. The wind variation is

presented in two main ways:
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Time offset: 0 Time offset: 0

Figure 4.8: Altitude-tracking with constant wind and body mass

The wind model takes as input the wind spéggd (in 3 directions), and is described by the following formula
S 1 .
Fw = Nu(0,2) + §CdACVV2V; with (Ac = 4nR%)

whereN,,(0,2) is a stochastic process defined by a white noise of amplitudé—2, a mean-value 0, and
a variance of 2 and represents the wind turbulerg@dAVVQV is the cabin reaction to its motion and wind
force (cabin drag force)4¢ is the area of the cabin in each direction, @ngdis a given drag coefficient. The
model of the wind is shown in Fig. 4.9 (top). Second from top, we have the wind turbulence. Third from top
represents the cabin drag force profile, and at the bottom we have the sum of wind turbulence and cabin drag
force.

A variation of the wind speed within the ranfe10, 10]m/s for both horizontal and vertical directions
will produce the signal shown in Fig. 4.10. This signal represents the external disturbance due to variations
in the wind speed.

Figure 4.11 (top-left) shows altitude tracking for sinusoidal altitude trajectory for the simplified and the
original models. The wind speed follows a sinusoidal trajectory as well, see Fig 4.11 (bottom). The middle
part of the figure shows the control inputs (collectives and cyclics) needed to track the desired altitude. Again

after a scale transformation these are identical for the simplified and original models.
Mass effect on altitude control

A change of mass has an effect on the acceleration of the solid body. In the VTOL case, the force provided by
its rotor counteract the effect of gravity by its lift component. The total force of the rotor has to be big enough

to : 1) afford the lift necessary to maintain the heave of the helicopter; and/or 2) perform ascend motion,
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Figure 4.10: Wind disturbance signal

and/or 3) produce a trust for horizontal motion enough large to counteract the drag due to wind action on the
body.

The mass of the helicopter may change for different reasons. One is that the helicopter is loaded with
a sensory platform, which is equivalent to a mass increase 0 to 20 Kg. The other reason is the gas volume
decrease, which varies the mass of the helicopter from 50 Kg (without payload) to 45 Kg —for a fuel reservoir
of 5 liters and a fuel consumption constant along time.

Experiment 5 The task is to track for a desired altitude trajectory given varying body mass. The experiment
is performed both for the simplified and original models, constant win speed of 10 m/s, and the mass varying

between 45 and 75 Kg.

Figure 4.12 top shows the results from tracking a sinusoidal altitude trajectory for the simplified and
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Figure 4.11: Exp.4: Altitude-tracking with varying wind speed

Figure 4.12: Exp.5: Altitude-tracking with decreasing body mass

original models. The middle part of the figure presents the control signals (cyclics and collectives) needed to

achieve the tracking. The bottom part of the figure illustrates the varying mass profile during tracking.

Wind and mass effects on altitude control

Experiment 6 The task is to track an altitude trajectory tracking in to account the accumulated effect of
wind and body mass changes.

Figure 4.13 (top) shows the tracking of a sinusoidal altitude trajectory, given a varying wind speed (Fig.
4.13, bottom) and a decreasing mass (Fig. 4.13, 3rd from top). Second from top, we present the control inputs
(collectives and cyclics) needed to achieve the tracking. The left part of the figure present the results for the
simplified model and the right part for the original one. After a scale transformation, the performance of the

altitude controller for the simplified and original models turns out to be identical.
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Figure 4.13: Exp.6: Altitude-tracking with wind and body mass changes

Limitation on the altitude controller
There are two limitations imposed on the action of the altitude controller.

1. a limit on the control output that is, all of the control signals producing the cyclics (pitch and roll)
and collectives (main and tail) are in the interyall, +1]. This is due to limitations on the signals

affordable by the servo-actuators.

2. alimit w.r.t the magnitude of change in reference value for th altitude. It turns out that a new reference

value can be set max 10 m away from the previous one.

To cope with the second limitation, we adopt a simple 1st-order integrator with saturation. It is similar to
the one used for the actuator, but with a time constaat20msec and a first order filter with time constant

7 = 9sec. The integrator shapes the altitude reference value from step to ramp, and in this way, allows
for a change of reference values for up to 300m. This is achieved still with the control inputs (cyclics and
collectives) being within the range pf£1, +1]. It has to be noted here that all the following experiments are

performed with the original model using the controller derived on the basis of the simplified model.
4.2.4 Aggressive flying
To illustrate aggressive flying, we consider:

e set-point velocity control for the purpose of fast acceleration/deceleration,

e set-point and tracking control for heading, with the purpose of performing turns and curvilinear motion

patterns.
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Fast acceleration/deceleration

Experiment 7 The task is to accelerate/decelerate by set-point control of reference velocities, and with a
constant headingy( = 0).

The experiment is performed with body mass of 50 Kg and a wind speed of 10 m/s. The initial velocity
reference i/ (t) = 15m/s and the helicopter should switch 16(t) = 5m/s, i.e., we have the case of

deceleration.
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Figure 4.14: Exp.7z(left) andy(right) set-point regulation

Figure 4.14 (left-side) illustrates the x-velocity channel, and the right-side illustrates the y-velocity chan-
nel. The top part of the figure presents the velocity components as a result of change of velocity reference
while keeping the heading (= 0). Second from top, we have the corresponding accelerations for the x- and
y-velocity channels. Third from top, we illustrate the behavior of the pitch and roll respectively needed to
perform this change of reference velocity. At the bottom part of the figure, one sees the behavior of the yaw
as a result of keeping the above mentioned heading. The settling time, i.e., the time for which the system
settles froml’ = 15m/s to bm/s is approximatively sec. At the top part of the same figure, one can see the

behavior of the x- and y-velocity channels when the reference speed changF¥ frofiin/s to 15m/s, i.e.,
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the case of acceleration.
Turns via heading control

In the following experiments, we will illustrate two types of turns: 1) a sharp turn is defined as a change of
the reference value for heading, 2) a smooth turn is defined as the tracking of a given heading trajectory. The
angle of a turn4), is a function of the heading. The experiments are performed with a body mass of 50

Kg and a wind speed of 10 m/s.

Experiment 8 The task is to perform sharp turns by changing the reference heading while keeping constant
velocity (V(t) = 17m/s).The reference heading should take successively the following reference values
(x(t) = 0,7/2, 7, 37 /2) where each of these reference values is keptifer 20sec.).
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Figure 4.15: Exp.8: Sharp turns

Figure 4.15 (top-part) presents changes in reference and actual heading. The bottom part describes the turn
angles corresponding to the above changes in heading. The settling time for the yaw is about 3 sec, while the
heading settling time is about 8 sec.

Experiment 9 The task is to perform smooth turns by tracking a reference heading trajectory while keeping
constant velocity( (t) = 15m/s). The reference heading trajectory is given gt = ¢/10, x € [0, 27|
modulor).

Figure 4.16 (top) presents changes in reference and actual heading. The bottom part describes the smooth

turns corresponding to the above reference trajectory. The settling time for the heading/yaw is about 3 sec.
Curvilinear motion patterns at high speed

Executing curvilinear motion patterns can be done in two ways: 1) specifying a desired pattern in terms of

Cartesian coordinates, 2) using heading, yaw and speed control. In the first case, one would need a position
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Time offset: 0

Figure 4.16: Exp.9: Smooth turns

controller. However, the fuzzy flight controller is not a position controller. So in this case we will resort to
the second option, where the desired curvilinear motion pattern or trajectory is defined in terms of desired
velocity magnitude/ <, and its orientationy®. Another issue here is the way in which the helicopter flies
along a desired pattern or curvilinear trajectory, defined in the above terms)‘Let yaw be the angle
between the nose of the helicopter and the x-axis of the inertial frame. Given a desired trajectory in the body

frame, the desired valug? is a function ofi: andy transformed from the body to the inertial frame.
1. flying nose-on-the-trajectory means tracking/dt
2. flying nose-off-the-trajectory means that we maintain the yaw angjleonstant.

In the next experiments, we will perform nose-on-the-trajectory type of flights.

Experiment 10 The task is to follow a predefined rectangular motion pattern. This pattern is defined by
successive changes of desired headiit) = 0,7/2,7,37/2. The desired magnitude of the velocity is
V(t) = 17m/s where each of these reference values is kepttfer £5sec.).

Figure 4.17 (right-side) describes the rectangular pattern flown. In the left-side (top-part) of the figure,
we have the behavior of thechannel. Second from top, we have the behavior ofjtseannel. Third from

top, we have the yaw profile during the execution of the rectangular motion.

Experiment 11 The task is to follow a predefined circular motion pattern. This pattern is defined by desired
heading trajectoryy(t) = ¢/10,x € [0,2xr] modulow. The desired magnitude of the velocityligt) =
17m/s.

Figure 4.18 (right-side) describes the circular pattern flown. In the left-side (top-part) of the figure, we
have the behavior of the-channel. Second from top we have the behavior ofjtisbannel. Third from top,

we have the yaw profile during the execution of the rectangular motion.
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Figure 4.17: Exp.10: Rectangular pattern
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Figure 4.18: Exp.11: Circular pattern

Compensation strategies for wind/mass variations

So far, we have shown the robustness of the inner-loop controller (altitude/attitude controller) with respect
to wind and body mass changes. However, flying curvilinear trajectories requires the use of the outer-loop
controller, which should also be robust w.r.t the above two factors. In the inner-loop control, the robustness is
achieved via the use df, control principles. In what follows, we will describe how robustness is achieved
in the outer-loop control level.

One method could be to design the compensation in the form of Mamdani type of fuzzy controller with a
proportional gain generating off-sets to the desired attitude adglesnd A¢. These offsets will be added

to the desired attitude angles already provided by the outer-loop velocity contédliand¢®). Figure 4.19
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shows a scheme for the design of such a compensator.

dy  yaw-rate filter  Heading
contro

Figure 4.19: Fuzzy compensator scheme

The rules for the compensator may depend on the ratio body-acceleration/wind-acceleration. The first
depends on the body mass and the other can be obtained by sensing of wind speed. The following example-
rule illustrates a part of this compensator.

IF wind — speed is Small andnass is MediumTHEN Ag is Neg

In what follows, we will describe the method actually used to compensate for wind changes. We map the
desired attitude angles —computed by the Mamdani fuzzy controller— to different ranges of wind speed. This
mapping is done for a horizontal velocityand heading, both set to zero. The action of the controller under

different wind speeds shows a different behavior and delivers non-zero roll and pitch angles.
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Figure 4.20: Drift effect of wind changes on horizontal velocities

On the left-side of Fig. 4.20, we see the changing wind speed and its acceleration. The right side illustrates

from top to bottom the steady state errors for longitudinal velocity, pitch angle, lateral velocity and roll angle
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respectively.
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Figure 4.21: Wind action on the attitude angles: roll (left) and pitch (right)

Figure 4.21 illustrates the mapping between the wind speed change and the roll (left) and pitch (right)
angles responses respectively. We use a spline function to determine values of the offsets for the attitude
angles for each given wind speed. These offsets are subtracted from the desired attitude angles (pitch and
roll), and then the so obtained new desired attitude angles are regulated by the controller. Figure 4.22 shows

the spline function extracted from the mapping between wind speeds and attitude angles.

roll angle (rad)

pitch:angle (rad) |\

wind speed (m/s) wind speed (m/s)
i i i i i i

i I i -02 i i I i
-15 -10 -5 0 5 10 15 20 ~-15 -10 -5 0 5 10 15 20

Figure 4.22: Wind mapping for the roll (left) and pitch (right)

Figure 4.23 shows the alternative wind compensator effectively implemented and used in the fuzzy flight
controller.

Figure 4.24 illustrates the behavior of the horizontal velocities and their associated attitude angles under
the action of different wind speeds. This behavior is represented with and without compensation for the wind
action. At the top of the figure we have the comparisonifavith and without compensation for the wind
action. Right bellow it, we have the same comparison for the associated pitch angle. Third from top of the
figure we have the comparison fpwith and without compensation for the wind action. Right bellow it, we
have the same comparison for the associated roll angle.

From the figure, we can see the following two aspects:

1. the velocities obtained with compensation are closer to the desired velocity, which is equivalent to say
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Figure 4.23: Wind mapping compensator scheme
that the helicopter “resists” the drift induced by the wind action. The steady-state error induced by the
wind action is reduced.

2. the compensator has an effect also on the time response. Indeed, for the horizontal velocities to settle

to their desired value, the attitude angles has to rise “fast” enough to their desired values.

Change of the body mass has the same effect as the one resulting from changes in wind speed (gusts).
A loss of mass produces an increase of the body accelerations. This, we can have an equivalent mapping to
the one presented above: mapping the attitude angle ranges of mass change, and then use this mapping to
compensate in the same manner as in the case of wind changes. This suggests the introduction of body mass

as an additional input to the velocity controller.

4.3 Simulation results for GDM controller

The numerical experiments are performed with the GDM controller presented in Section 3.6. We use here a

simplified version of the nonlinear model and illustrate:
1. horizontal velocity control (Section 4.3.1)
2. vertical motion control (Section 4.3.2)
3. position control (Section 4.3.3).

The body mass of the helicopter is kept unchanged at 50 Kg for all experiments.
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Figure 4.24: Wind action with and without compensation

4.3.1 Horizontal velocity control

Experiment 12 The task is set-point regulation of horizontal velocity under strong (10 m/s) and weak (3 m/s)
winds.
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Figure 4.25: Exp.12: Low and highi: set-point regulation

Figure 4.25 (left-side) shows the results from set-point regulation around a desired lateral \Xégbcity
—10m/s. The right-side of the figure illustrates regulation of high desired longitudinal velocity around a

set-pointV¢ = 20m/s. The upper-left part shows loyrvelocity set-point regulation with strong and weak
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wind action where: desired velocity —; velocity under strong wind -.—; and velocity under weak wind . ..are
represented. The lower-left part illustrates the control inguts €,,) for strong and weak wind respectively.

The response is oscillatory-damped and settles to its reference value after a time narrow to 40 sec. We can
notice a similar response to strong and weak wind action for the lateral velocity control. The upper-right part
shows highi-velocity set-point regulation with strong and weak wind action. The lower-right part illustrates
the control inputsd; s, 85,) for strong and weak wind respectively. The settling time for longitudinal velocity

is about 20 sec.

Experiment 13 The task is tracking a desired velocity trajectory under strong (10 m/s) and weak (3 m/s)
winds.

0 1000 2000 4000 5000 6000 0 1000 2000 4000 5000 6000

3000 3000
Time (samples of .015) Time (samples of .01s)

L L L L L L L L L
0 1000 2000 3000 4000 5000 6000 0 1000 2000 4000 5000 6000

3000
Time (samples of .01s) Time (samples of .01s)

Figure 4.26: Exp.13: Velocity tracking with strong and weak wind

In the left-side of fig 4.26, we see the tracking results under the strong wind forlofip) andV,
(down). In the left part we illustrate the tracking of these velocities under weak wind. The figures show
desired versus actual trajectories. The time delay present when tracking a sinusoidal velocity reference along
both the x- and y-channels is about 2 to 3 sec. for each channel and there is an overshoot Sftabbut

better tuning of the control coefficients would give a better speed profile and a smaller tracking error.

Experiment 14 The task is a regulation under a set-point change, given a strong (10 m/s) and weak (3 m/s)
wind.

Figure 4.27 (Left-top) presents the behavior of the lateral velocity during set-point change and left-bottom
part of the figure represents the associated control signals (collective pitch and cyclic roll). The right-top part

of the figure shows of the behavior of the longitudinal velocity during set-point change and left-bottom part
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Figure 4.27: Exp.14y and# set-point change with strong and weak wind

of the figure represents the associated control signals (collective pitch and cyclic pitch). Both results are

obtained for strong and weak wind. The settling time for the x-channel is about 20 sec. but itis longer for the

y-channel because of its oscillatory profile.

Unlike the case of velocity tracking, the change in the velocity reference values shows a behavior that
is affected by the wind. This behavior is more damped in the case of x-channel and oscillatory in the y-
channel. Furthermore, and the effect of the wind on the collective pitch is clearly distinguishable in the case
of longitudinal speed control. The effect of the wind on the y-channel shows that stronger wind leads to an

over-shoot, and weak wind leads to an under-shoot. Here again , tuning the controller parameters can help

improving the performance.

4.3.2 \ertical motion control

Experiment 15 The task here is altitude set-point regulation and altitude trajectory tracking in strong and
weak wind.

Figure 4.28 (Top-left) illustrates altitude set-point regulation for strong and weak wind. As one can see,
the effect of wind is negligible. A climb of 50m takes about 5 sec. This corresponds to a fast rise time, and
thus demands a collective pitch which grows nearly to its saturation limits. This can be seen in the left-bottom
part of the figure. The right side of the figure shows in the top part attitude trajectory tracking. Here again,

we see atime delay of 3 sec. In right-bottom part of the figure shows the corresponding control signals.
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Figure 4.28: Exp.15: Altitude set-point regulation and trajectory tracking.

4.3.3 Position control

Experiment 16 The task is to perform hover at a certain position (X,y,z)=(50,50,50)m under strong (20 m/s)
and weak (3 m/s) wind.
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Figure 4.29: Exp.16: Hovering control with strong and weak wind

Figure 4.29 illustrates the results of the experiment. We can see an undamped oscillatory behavior in the
x- and y-channels. These are about 0.5 m for x-channel and about 1 m for the y-channel. The oscillations
are more pronounced in the case of a wind of 20m/s speed. Notice also that the wind action affects also the

z-channel: there is an over-shoot of about 1 m. and steady-state is achieved after 12 sec.

Experiment 17 The task is to position the helicopter at desired coordinates (X,y,z)=(50,50,50)m starting
from another position, under strong (20 m/s) and weak (3 m/s) wind.
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Figure 4.30: Exp.17: Positioning with strong and weak wind

Figure 4.30 illustrates the results of this simulation. As one can see the wind action, either weak or strong,
has a negligible effect in terms of error w.r.t the desired position. However the rise time on all three channels
seem to be rather slow(20 sec.), which is not due to the wind action, but rather to some peculiarities of the

optimization procedure.

4.4 Summary

In this chapter we presented results from experiments which aim was two-fold:

1. toillustrate the robustness (in the face of external disturbances) of the fuzzy and GDM flight controllers

proposed in Chapter 3; and

2. to illustrate the ability of the above mentioned controllers to perform aggressive flying.

The above two aims are fully achieved in the case of the fuzzy flight controller, while in the case of the
GDM flight controller, they are partially fulfilled. For example, the fuzzy flight controller was exposed to
external disturbances like, wind, mass change and noise, while the GDM based flight controller only to wind
and noise.

An important feature of the experiments with the FGS controller is that they were performed on both the
simplified and original APID-MKS3 helicopter models and despite of this, the flight controller has shown very

similar performance.
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The results for the GDM based controller can be further improved if more advanced linear robust control
methods are used. Only in this case, change of mass can be taken as yet another disturbance. Also, aggressive

flying can be performed if robust tracking control methods are used.



Chapter 5

Summary and future work

This thesis presented two novel methods for the design of flight controllers for the unmanned APID-MK3
helicopter.

The flight controllers developed were based on a nonlinear model of APID-MK3 and tested in extensive
simulation, showing their robustness in the face of external disturbances and also their ability to perform
aggressive flying.

In Chapter 2, we presented in detail the mathematical model of APID-MK3 used for the design of flight
controllers. The model is a simplified version of the original APID-MK3 model and is obtained from it
under a number of realistic assumptions. Furthermore, we performed comparisons between the simplified
APID-MK3 model on one side and two different models of an APID-MK3-like unmanned platform, namely
Yamaha R50, on the other. The comparisons show that the APID-MK3 model is realistic enough both from
the point of view of a generic VTOL aircraft and a different unmanned platform.

In Chapter 3, we presented the design of two different types of flight controllers: 1) a velocity controller
based on FGS and heuristic fuzzy control; and 2) a velocity and position GDM-based controller. Common to
both flight controllers is a model-based design, the use of nonlinear control approaches, and an inner-outer
loop control scheme.

In Chapter 4, we presented results from experiments which illustrate the robustness of the fuzzy flight
controller and illustrate its ability to perform aggressive flying. An important feature of the experiments with
the FGS controller is that they were performed on both the simplified and original APID-MK3 helicopter
models and despite of this, the flight controller has shown very similar performance.

In this context, the subject of this thesis has been achidairtgcal autonomy for an unmanned helicopter.

101
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This type of autonomy addresses the execution of basic flight modes such as “take off”, “landing ”, “cruise
flight” as well as more aggressive flight patterns. Here the major concern is twofold: 1) use and reliability of
proprioceptive sensors (compass, GPS, gyros, etc.) to monitor the internal state of the UAV; and 2) robust and
stable position/velocity control based on inputs from the UAV’s proprioceptive sensors. Thus this concern is
related to the air-worthiness of an UAV in unmanned flight and unmanned landing/take-off. In our case, we
were concerned with autonomy for achieving aggressive flying. Also, we assumed the proprioceptive sensors

given, and our major concern was robust and stable velocity/position control.

One can address the functional type of UAV autonomy only when the air-worthiness of the vehicle has
been verified. The tactical type of autonomy addresses mission execution in a safe and reliable manner.
Typical mission examples include “track ground vehicle”, “follow coast line”, “deliver load” and autonomy
requires making as few assumptions as possible about the environment encountered during mission execution;
and that execution should be sensitive to the environment, and adapt to the contingencies encountered. A
major concern in achieving functional autonomy is the use of exteroceptive sensors, like a camera or a laser
range finder, to acquire information about the state of the environment as it is at the moment and based on

this information to react instantly to it by adopting a behavior that complies with this state alone.

One sensor of interest in the WITAS project is a daylight video camera. Given such a sensor, a crucial
issue is how to make it an integral part of the UAV’s control loop so that behaviors for tactical autonomy can
be implemented in a robust and safe manner, and made to work under hard real-time constraints. In most
cases, this would mean that behaviors are not designed according to the principle “look-then-move” but,
according to a totally different “look-and-move” principle. The difference is roughly speaking the following:
in the first case, the visual sensor is used to determine set-points as inputs for say, UAV’s attitude (roll, pitch
and yaw) controller -thus, roll/pitch/yaw feedback is used to internally stabilize the UAV around the set-points
in question; in the second case, a “visual controller” computes directly the roll/pitch/yaw inputs, thus using

visual information alone to stabilize the UAV.

The type of control based on the “look-and-move” principle is known as visual servoing and has its origins
in robotics, in particular in the area of manipulator control based on the use of exteroceptive sensors such as
mono/stereo cameras. As for using visual servoing for the control of airborne vehicles there are only few
studies available, and none of these answers some questions related to the fundamental aspects of the nature

of visual servoing for UAV’s. The important issue here is: which concepts, principles, architectures, tasks,



103

and associated techniques, from visual servoing for robotics are applicable to the case of UAVS? After having
studied the literature on visual control of UAVs we came to the conclusion that there was no systematic study
that could provide the answer. The term “visual servoing” has been applied in a number of cases concerning
particular autonomous capabilities of UAVs (fixed-wing and rotor aircraft), but there was no attempt to define:
1) what visual servoing for UAVs actually is?; 2) what are the restrictions on the applicability of existing
visual servoing methods to the case of UAVs?; 3) what can be possibly new solutions when existing methods
cannot be applied or are too restrictive.

In this context, our future work will aim at providing systematic answers to the above three questions.
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