
Linköping Studies in Science and Technology

Department of Computer and Information Science
Linköpings universitet

SE-581 83 Linköping, Sweden

Fuzzy Control for an Unmanned Helicopter

by

Bourhane Kadmiry

Linköping 2002

Thesis No. 938

Submitted to the School of Engineering at Linköping University in partial
fulfilment of the requiremens for degree of Licentiate of Engineering.



Tryckt av Unitryck, Linköping, Sverige, 2002 

ISSN 0280-7971

ISBN 91-7373-313-X



Department of Computer and Information Science
Linköpings universitet

SE-581 83 Linköping, Sweden

Fuzzy Control for an Unmanned Helicopter

by

Bourhane Kadmiry

March 2002
ISBN 91-7373-313-X

Linköping Studies in Science and Technology
Thesis No. 938

ISSN 0280-7971
LiU-Tek-Lic-2002:11

ABSTRACT

The overall objective of the Wallenberg Laboratory for Information Technology and Auton-
omous Systems (WITAS) at Linköping University is the development of an intelligent com-
mand and control system, containing vision sensors, which supports the operation of a
unmanned air vehicle (UAV) in both semi- and full-autonomy modes. One of the UAV plat-
forms of choice is the APID-MK3 unmanned helicopter, by Scandicraft Systems AB. The
intended operational environment is over widely varying geographical terrain with traffic
networks and vehicle interaction of variable complexity, speed, and density.

The present version of APID-MK3 is capable of autonomous take-off, landing, and
hovering as well as of autonomously executing pre-defined, point-to-point flight where the
latter is executed at low-speed.  This is enough for performing missions like site mapping
and surveillance, and communications, but for the above mentioned operational
environment higher speeds are desired. In this context, the goal of this thesis is to explore
the possibilities for achieving stable ‘‘aggressive’’ manoeuvrability at high-speeds, and test
a variety of control solutions in the  APID-MK3 simulation environment.

The objective of achieving ‘‘aggressive’’ manoeuvrability concerns the design of attitude/
velocity/position controllers which act on much larger ranges of the body attitude angles, by
utilizing the full range of the rotor attitude angles. In this context, a flight controller should
achieve tracking of curvilinear trajectories at relatively high speeds in a robust, w.r.t.
external disturbances, manner. Take-off and landing are not considered here since APID-
MK3 has already have dedicated control modules that realize these flight modes.

With this goal in mind, we present the design of two different types of flight controllers: a
fuzzy controller and a gradient descent method based controller. Common to both are model
based design, the use of nonlinear control approaches, and an inner- and outer-loop control
scheme. The performance of these controllers is tested in simulation using the nonlinear
model of APID-MK3.

This work was supported by a research grant provided by the Knut and Alice Wallenberg
Foundation in Sweden.
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Abstract

The overall objective of the Wallenberg Laboratory for Information Technology and Autonomous Systems

(WITAS) at Linköping University is the development of an intelligent command and control system, con-

taining vision sensors, which supports the operation of a unmanned air vehicle (UAV) in both semi- and

full-autonomy modes. One of the UAV platforms of choice is the APID-MK3 unmanned helicopter, by Scan-

dicraft Systems AB. The intended operational environment is over widely varying geographical terrain with

traffic networks and vehicle interaction of variable complexity, speed, and density.

The present version of APID MK-3 is capable of autonomous take-off, landing, and hovering as well as

of autonomously executing pre-defined, point-to-point flight where the latter is executed at low-speed. This

is enough for performing missions like site mapping and surveillance, and communications, but for the above

mentioned operational environment higher speeds are desired. In this context, the goal of this thesis is to

explore the possibilities for achieving stable “aggressive” manoeuvrability at high-speeds, and test a variety

of control solutions in the APID-MK3 simulation environment.

The objective of achieving “aggressive” manoeuvrability concerns the design of a attitude/velocity/ po-

sition controllers which act on much larger ranges of the body attitude angles, by utilizing the full range of

the rotor attitude angles. In this context, a flight controller should achieve tracking of curvilinear trajecto-

ries at relatively high speeds in a robust, w.r.t. external disturbances, manner. Take-off and landing are not

considered here since APID MK-3 has already have dedicated control modules that realize these flight modes.

With this goal in mind, we present the design of two different types of flight controllers: a fuzzy controller

and a gradient descent method based controller. Common to both are model based design the use of nonlinear

control approaches and an inner- and outer-loop control scheme. The performance of these controllers is

tested in simulation using the nonlinear model of APID-MK3.

This work was supported by a research grant provided by the Knut and alice Wallenberg Foundation in

Sweden.
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Linköping, Sweden Bourhane KADMIRY
April 20, 2002

v



To ’my’ Susanne

vi



Table of Contents

Abstract iii

Acknowledgments v

Table of Contents vii

List of Figures ix

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Why aggressive manoeuvrability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Why fuzzy gain scheduling ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Why not conventional gain scheduling ? . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.1 The Berkeley Aerorobot Team . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 The Georgia Tech Aerial Robotics Mission . . . . . . . . . . . . . . . . . . . . . . 7
1.2.3 The MIT Backstepping Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.4 The Compiegne University Controller . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.5 The Fuzzy Unmanned Helicopter . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 The Purpose of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 The helicopter model 13
2.1 Helicopter basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 A general model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 General kinematics and dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Nature of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Equations of motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.1 Translational motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 Rotational motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Mathematical model of APID-MK3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.1 APID-MK3 general model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.2 Longitudinal motion model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.3 Lateral motion model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

vii



2.4.4 Vertical motion model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.5 Roll model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.6 Pitch model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4.7 Yaw model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Comparison with other helicopter models . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5.1 The Berkeley model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5.2 The CMU model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Flight Controller Design 41
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 The control scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3 Fuzzy Gain-Scheduled Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.1 Structure of the Takagi-Sugeno model . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.2 TS models for dynamical systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.3 Obtaining TS fuzzy models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.4 Takagi-Sugeno controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Mamdani-type controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.4.1 The fuzzy rule base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.4.2 The Mamdani PD-controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5 The Fuzzy Flight Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.5.1 The FGS controller for the inner-loop . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.5.2 Linearization of the inner-loop model . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.5.3 Mamdani fuzzy controller for the outer-loop . . . . . . . . . . . . . . . . . . . . . . 67
3.5.4 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.6 The Gradient-Descent Flight Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.6.1 The open loop model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.6.2 The inner loop attitude controller . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.6.3 The outer loop velocity controller . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.6.4 The outer-loop position control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4 Simulation results 77
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2 Simulation with the fuzzy flight controller . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2.1 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.2.2 Attitude control robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.2.3 Altitude control robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2.4 Aggressive flying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3 Simulation results for GDM controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.3.1 Horizontal velocity control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.3.2 Vertical motion control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.3.3 Position control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5 Summary and future work 101

viii



List of Figures

3.1 Overall flight control scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Control scheme for the fuzzy gain scheduling method . . . . . . . . . . . . . . . . . . . . . 43
3.3 Control scheme for the gradient descent method . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4 Real function (solid), 3-mf approximation (dashed), 5-mf approximation(dotted) . . . . . . . 50
3.5 Membership functions to approximate sin(x) . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.6 Closed loop with an affine term as a “measurable” disturbance . . . . . . . . . . . . . . . . 56
3.7 Servo-actuator diagram including the Bell-Hiller mixer . . . . . . . . . . . . . . . . . . . . 61
3.8 Bode diagram and step response for the servo-actuator . . . . . . . . . . . . . . . . . . . . 61
3.9 Boundaries of inputs, and outputs for the servo-actuators . . . . . . . . . . . . . . . . . . . 62
3.10 Membership functionsF (.)

1 andF
(.)
2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.11 Fuzzy gain scheduler for the inner-loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.12 Rule for longitudinal speed with membership functions . . . . . . . . . . . . . . . . . . . . 68
3.13 Rule for lateral speed with membership functions . . . . . . . . . . . . . . . . . . . . . . . 69
3.14 Rule for heading with membership functions . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.15 The Mamdani controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1 Exp.1: Attitude set-point regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2 Input signals and main rotor force (left), and attitude angles (right) comparisons . . . . . . . 80
4.3 Filter for the noise on the input signals for the attitude angles . . . . . . . . . . . . . . . . . 80
4.4 Exp.2: Attitude tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.5 Input signals and main rotor force (left), and attitude angles (right) comparisons . . . . . . . 82
4.6 Exp.3: altitude control with constant wind and body mass . . . . . . . . . . . . . . . . . . . 83
4.7 Input signals and main rotor force comparisons . . . . . . . . . . . . . . . . . . . . . . . . 83
4.8 Altitude-tracking with constant wind and body mass . . . . . . . . . . . . . . . . . . . . . . 84
4.9 Wind model and wind force components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.10 Wind disturbance signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.11 Exp.4: Altitude-tracking with varying wind speed . . . . . . . . . . . . . . . . . . . . . . . 86
4.12 Exp.5: Altitude-tracking with decreasing body mass . . . . . . . . . . . . . . . . . . . . . . 86
4.13 Exp.6: Altitude-tracking with wind and body mass changes . . . . . . . . . . . . . . . . . . 87
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Chapter 1

Introduction

The central problem addressed in this thesis is the design of a control system that achievesstable “aggressive”

manoeuvrability for an unmanned helicopter.

While almost all existing work in this area uses various modifications offeedback linearizationwe employ

a gain-scheduling approach based on the use of Takagi-Sugeno fuzzy models [1], i.e.,fuzzy gain-scheduling.

However, here, we differ significantly from the conventional two-step gain-scheduling by proposing a one-

step design – simultaneous synthesis of linear controllers and a gain scheduler with guaranteed global stability

and robustness properties.

The experimental results showing the feasibility of the proposed fuzzy gain-scheduling approach are

obtained via simulation using a mathematical model of the APID-MK3 unmanned helicopter, by Scandicraft

Systems AB (www.scandicraft.se).

1.1 Motivation

Basically, there are two types of UAV autonomy:functionalandtactical. The first type of autonomy addresses

the execution of basic flight modes such as “take off”, “landing ”, “cruise flight” as well as more aggressive

flight patterns. Here, the major concern is twofold: 1) use and reliability of proprioceptive sensors (compass,

GPS, gyros, etc.) to monitor the internal state of the UAV; and 2) robust and stable position/velocity control

based on inputs from the UAV’s proprioceptive sensors. Thus, this concern is related to the air-worthiness

of an UAV in unmanned flight and unmanned landing/take-off. The subject of this thesis is this type of

tactical autonomy, and in particular, increasing the “aggressiveness” with which it is performed. We assume

here the availability of reliable –within certain noise characteristics– proprioceptive sensors and focus on the

1
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robustness and stability of attitude/altitude/velocity control via the use of fuzzy gain-scheduling.

The tactical type of autonomy addresses mission execution in a safe and reliable manner. Typical mission

examples include “track ground vehicle”, “follow coast line”, “deliver load” and autonomy requires making as

few assumptions as possible about the environment encountered during mission execution; and that execution

should be sensitive to the environment, and adapt to the contingencies encountered. A typical example of a

safety-related UAV behavior during mission execution is ”sense and avoid”: it makes sure that collisions

with elevated ground formations do not occur. Thus a major concern in achieving mission autonomy is

the use of exteroceptive sensors, like a camera or a laser range finder, to acquire information about the

state of the environment as it is at the moment and based on this information to react instantly to it by

adopting a behavior that complies with this state alone. Therefore the success of the mission and the safety

of an UAV is not dependent on delays in communication with a ground-station operator during which the

possibility of a communication failure cannot be neglected. This type of autonomy is not of concern here.

However one necessary condition for achieving it is for example, the ability to fly at varying speed and fast

acceleration/deceleration capability.

1.1.1 Why aggressive manoeuvrability

The work reported in this thesis is a contribution to the overall objective of theWallenberg Laboratory for In-

formation Technology and Autonomous Systems(WITAS, www.ida.liu.se/ext/witas) at Link̈oping University:

the development of an intelligent, deliberative/reactive command and control system, containing active-vision

sensors, which supports the operation of a unmanned air vehicle (UAV) in both semi- and full-autonomy

modes.

One of the UAV platforms of choice is the APID MK-III unmanned helicopter. The intended operational

environment for APID MK-III is over widely varying geographical terrain with traffic networks and vehicle

interaction of variable complexity, speed, and density. The present version of APID MK-III is capable of

unmanned take-off, landing, hovering, and motion along linear trajectories with a constant low-speed. This

is enough for performing missions like site mapping and surveillance, and electronic warfare and communi-

cations where the predominant flight modes used are hovering at predefined points and slowly moving, along

a predefined straight-line, from one hovering point to another.

Other type of missions, e.g., tracking a ground vehicle, require the execution of curvilinear trajectories

with a varying speed profile. However, the current control system for APID MK-III does not utilize large



3

ranges of the rotor attitude angles. As a consequence this produces lower rate-of-change of the body attitude

angles. Consequently, the control is done on rather small ranges for these and this restricts the magnitude of

the curvature of the trajectory which these angles can follow at a given relatively high speed. Furthermore,

control within small ranges for the body attitude angles implies small acceleration rate – a shortcoming when

a ground object is capable of accelerating at higher rates. Last but not least, the ability to decelerate fast

is necessary for safe navigation when sudden unknown terrain elevations are encountered and have to be

avoided as fast as possible.

In this context, the objective of achieving “aggressive” manoeuvrability concerns the design of a atti-

tude/velocity/position controllers which act on much larger ranges of the body attitude angles, i.e.,−π/4 ≤
φ ≤ +π/4,−π/4 ≤ θ ≤ +π/4,−π ≤ ψ ≤ +π, by utilizing the full range of the rotor attitude angles. The

latter are approximated to the interval[−0.25, +0.25] rad. These controllers should achieve robust and stable

tracking of trajectories with varying curvature magnitude at relatively high speed. Take-off and landing are

not considered here since APID MK-III has already have dedicated control modules that realize these flight

modes.

It has to be noted here that the above interpretation of “aggressive manoeuvrability” agrees with the one

given in [2], that is “ the ability to trackfast trajectories”. A principally different reading of “aggressive

manoeuvrability” is provided in [3] in: “the finite time transition between twotrim trajectories”. Trim

trajectories are defined as those trajectories along which the velocities in body axes (the twist) and the control

input are constant.

1.1.2 Why fuzzy gain scheduling ?

A study of the relevant literature on unmanned helicopter control reveals very few well-documented case

when a nonlinear model of an unmanned helicopter is deployed for the controller design. In all other cases the

design is based on linear models and the linear control techniques used areµ-synthesis [4],H∞ [5], or Linear

Quadratic Gaussian LQG [6]. Examples include: a linear robust controller implemented on the Yamaha R-50

at Carnegie Mellon University. The controller consists of one MIMO loop for attitude stabilization and four

separate SISO loops for velocity and position control. The speed of motion achieved is 4 m/s. Recent flight

test can be found atwww − 2.cs.cmu.edu/ marcol/research/flight tests/html/flight tests.html;

2) MIMO linear controller, based onµ-synthesis, is implemented on the Yamaha R-50 at the University

of California at Berkeley for control during hover and way-point navigation. Recent flight test at speeds up to
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6m/s can be found at http://robotics.eecs.berkeley.edu/bear/; 3) MIMOH∞ and LQG hovering controllers [7]

are implemented on the Caltech’s Kyosho EP Concept electric model helicopter. It is important to emphasize

on the fact that all linear designs are implemented and tested on the real platforms, while almost all nonlinear

designs only are evaluated in simulation with the exception of the Georgia Tech controller implemented on

the Yamaha-50 platform.

The predominant nonlinear controller designs are based on the notion of feedback linearization [8] of the

original nonlinear helicopter model. The idea here is to transform the nonlinear dynamics into a linear form

by using state feedback, with input-state linearization corresponding to complete linearization, and input-

output linearization to partial linearization. It is the latter type of feedback linearization that is normally used

for controller design in the case of unmanned helicopters.

Input-output linearization means the generation of a linear differential relation between the output and

a new input. By means of this the dynamics of the original nonlinear system is decomposed into external

(input-output) part and internal (unobservable) part. Since the external part consists of a linear relation

between the output and the new input it is easy to design the input so that the output behaves as desired. Then

the question is whether the internal part will also behave well, i.e., whether the internal states will remain

bounded. The answer to this question is provided by studying the so-called zero-dynamics of the internal

part, i.e., the dynamics when the control input is such that the output is maintained at zero. If an input-output

linearized system has stable zero dynamics it is called minimum phase, and if it has unstable dynamics then

it is a non-minimum phase. The control law for a minimum phase system can simply be obtained by model

inversion. However this type of control law cannot be applied to non-minimum phase systems since they

are not invertible. Thus the major focus in all reported controller designs for unmanned helicopters that are

based on input-output linearization is: the generation of such input-output relation for the original nonlinear

system so that the internal dynamics of the input-output linearized system is either minimum phase or it has

no internal (zero-) dynamics. An input-output linearized system with no internal dynamics can be obtained as

follows [9]: when performing successive differentiations of the selected output, to simply neglect the terms

containing the input and keep differentiating the output a number of times equal to the system’s order, so

that there is “approximately” no internal dynamics. Of course this approach is only meaningful if the input

coefficients at the intermediate steps are “small”, i.e., the system is “weakly non-minimum phase”, i.e., “fast

” right-half plane zeros are neglected.
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Controller designs based on input-output linearization have a number of important limitations amongst

which the most important one, in the context of control of unmanned helicopters, is that no robustness is

guaranteed in the presence of parameter uncertainties, unmodeled dynamics, or external disturbances [8]. In

this context, the dynamic output fuzzy gain-scheduling controller [10] designed within theH∞ framework

and presented in this thesis allows to: 1) shape the closed loop transient dynamics so that it conforms to

performance specifications; and 2) design a robust controller that rejects the influence of bounded model

uncertainties and external disturbances. Yet another principal difference between fuzzy gain-scheduling and

input-output linearization is that: fuzzy gain-scheduling design is a technique for transforming the origi-

nal nonlinear system into another nonlinear system while input-output linearization transforms the original

nonlinear system into a (fully or partially) linear system.

1.1.3 Why not conventional gain scheduling ?

The design of gain scheduled controllers [11] has, for a very long time, followed a two-step approach: first, the

nonlinear model under control is linearized at a number of different operating points These operating points

may be different velocities, angles of attack, and altitudes. As a result one obtains a grid of working points

according to the previously mentioned parameters and a linear model for each point in the grid. Then a linear

controller is designed for each of the linear models in this set. When the flight conditions (altitude, velocity,

angle of attack) change, the general control strategy should determine the working point in the grid to which

these new conditions (approximately) correspond. The control action is performed by the linear controller

which corresponds to this working point. Second, for points in the grid that do not have a corresponding

linear controller a so-calledgain-scheduleris designed via interpolation of the linear controllers in their

neighborhood. The gain-scheduler is then used to perform the change from one linear controller to another

that is, to control the system during the transition from one flight condition to another. This is calledgain-

scheduling. The weak part here is that each linear controller is only effective in a small neighborhood of its

corresponding grid point (flight condition). Therefore one needs to verify that the change from one controller

to another is smooth enough and doesn’t cause instabilities. The most common approach is to leave this

evaluation for the simulation stage.

In contrast to the above, fuzzy gain scheduling [12] is a one-step approach to the design of gain-schedulers:

it provides for the simultaneous synthesis of linear controllers and a gain scheduler with guaranteed global
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stability and robustness properties, thus avoiding the need for extensive simulation. It uses an approxima-

tion of the original nonlinear model in terms of a Takagi-Sugeno fuzzy system where the latter is a convex

nonlinear combination of a set of linear models, hence the similarity with conventional gain-scheduling.

1.2 Related Work

In recent years, the design and implementation of control algorithms for unmanned helicopters has been the

object of quite a number of studies. This is due to the recognized need for maneuverable autonomous air

vehicles, for both military and civil applications. While slower and less efficient than airplanes, helicopters

are capable of vertical take-off and landing, hover, and in general are more maneuverable in tight spaces than

airplanes. As a consequence, helicopters are one of the best platforms for operations in urban or otherwise

cluttered environments. However, in many respects the dynamics of a helicopter are more complicated than

those of a fixed wing aircraft: a helicopter is inherently unstable at hover, and the flight characteristics change

dramatically over the entire flight envelope.

In order to provide a proper framework within which the contributions of this thesis can be meaningfully

evaluated we will only consider here studies that report in significant level of detail:

1. control algorithms that make use of nonlinear models and control techniques and their performance is

evaluated either on the real platform or in simulation based on a mathematical model close enough to

the real platform.

1.2.1 The Berkeley Aerorobot Team

The controller design [13] is based on a nonlinear model of the Ursa-Minor unmanned helicopter and its

performance has so far been evaluated in simulation. In particular, the design is based onapproximate input-

output linearizationof the original nonlinear helicopter model. “Approximate” here means that the input-

output linearization is performed on the original nonlinear model only after the coupling effect between

rolling moment and lateral force on one side and pitching moment and longitudinal force on the other are

neglected. Then by choosing positions and heading as outputs and applying a dynamic decoupling algorithm

[14] a linearized helicopter model which does not contain any unobservable zero-dynamics, and hence is

minimum phase, is obtained. Finally, a tracking control law for this linearized model is designed and applied

to the original nonlinear helicopter model so that a bounded tracking error is guaranteed. However, as noticed
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in [15], the so-obtained tracking control law is sensitive to model disparities such as changes in the payload

or the thrust-torque model, or external disturbances such as side-winds. Though, as mentioned in [10], the

tracking error can be reduced by placing the poles further away from the origin in the left-half plane, this

comes with a price – higher control input magnitude which may not be physically feasible. As already

mentioned, this type of robustness limitations is inherent to all controller designs based on input-output

linearization.

1.2.2 The Georgia Tech Aerial Robotics Mission

The design of an attitude controller is done on approximate linear model of the rotational dynamics and im-

plemented on the Yamaha R-50 unmanned helicopter (see www.ae.gatech.edu/research/controls /labs/uavrf/).

The controller design [16] uses linear model inversion. However, since the linear model is only approxima-

tion of the real dynamics of the helicopter it is subject to modeling errors arising from flight conditions and

inaccurate modeling. Hence, an adaptive unit in the form of a neural network, is used to cancel the inversion

errors using feedback and a stable update law based on Lyapunov stability theory. This same structure is used

in all three channels, roll, pitch, and yaw. The adaptive unit also adjusts to changing atmospheric conditions

and dynamics. Thus, the controller can be used at different points in the flight envelope without tuning.

1.2.3 The MIT Backstepping Controller

The backstepping controller design [17] is performed on the Berkeley UAV model and experimental results

based on simulation are performed.

The major motivation is avoiding artificial singularities due to attitude dynamics representation via the use

of Euler angles. These singularities arise when maneuvers like loops, barrel rolls, and split-ups are executed.

The helicopter model is approximated in the same manner as in [13]. Thus the approximated model

is feedback linearizable or has differential flatness. On the basis of this model a non-trivial extension of

backstepping ideas [18] is proposed. In its basic form backstepping is carried out on a chain of integrators

(integrator backstepping). In this particular case backstepping is done on the group of rotations in the 3-D

space rather in 2-D space. The design procedure avoids the introduction of artificial singularities through

over parameterization of the outputs: full specification of the reference attitude is required. The so obtained

backstepping controller is capable of tracking trim trajectories, e.g, climbing turn, and transitions between

trim trajectories, e.g., a transition to inverted flight. The latter is the authors’ interpretation of aggressive
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maneuvering.

1.2.4 The Compiegne University Controller

The controller design [19] is done on a model valid for slow maneuvers (e.g., take-off and landing) close to

hover and the control task is to track a trajectory given in position coordinates. The model describes a model

helicopter (mass= 16kg) used in the unmanned helicopter project at Compiegne University of Technology,

France. However the controller performance is evaluated in simulation.

The major effort is the derivation of a helicopter model in block pure feedback form so that backstepping

or input-output linearization techniques can be used. In order to achieve this the helicopter is considered as

a rigid body consisting of two parts: the helicopter airframe and additional load associated with the sensing

and computer systems. The additional load is then distributed in such a way so that the moments of inertia of

the helicopter around the first two principal axis corresponding to pitch and roll are equal. Using the tail rotor

input to put to zero the rotation around the third principal axis, the reduced rigid body dynamics are simplified.

Due to a specific structure of the inertia matrix, diagonal with the first two entries equal, this only requires

an input sufficient to cancel the torques due to rotor drag and fully decouples the rotational dynamics of the

system.The reduced dynamics obtained after this allows to define a point that acts as a center of oscillation

for the airframe. The coordinates of this center of oscillation are are not differentially flat outputs due to

the presence of the parasitic torques associated with the rotor drag. However, taking these coordinates as

the position of the airframe, the reduced dynamics can be rewritten in block pure feedback form with four

integrations corresponding first to the translational dynamics and then to the rotational dynamics. From here

a control law for almost exact tracking of the center of oscillations can be derived using backstepping or

input-output linearization.

1.2.5 The Fuzzy Unmanned Helicopter

The work by Sugeno [20] reports a hierarchical, Mamdani-type of a controller for the unmanned helicopter

Yamaha R-50 by Yamaha Motors. The lower layer contains a number of Mamdani-type control modules:

longitudinal (pitch control), lateral (roll control), collective (vertical control), rudder (yaw control), and cou-

pling compensation modules. Furthermore, within each such module there is a number of sub-modules only

some of which correspond directly to our Mamdani-type controller from Sect. 4. These are as follows:

• Longitudinal: this module includes ȧx Mamdani-type controller. Thėx controller infers a desired
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pitch angle using a velocity-error and its derivative and is identical to the one used by us;

• Lateral: this module includes ȧy Mamdani-type controller. Thėy controller infers a desired roll angle

using a velocity-error and its derivative and is identical to the one used by us;

• Collective: this module includes ȧz Mamdani-type controller. Thėz controller infers a control value

for the main collective using altitude, velocity-error and its derivative;

• Rudder: this module, given a desired heading, infers a control input for the tail collective using yaw

angle error and its rate of change;

• Coupling compensation: the use of this module is twofold: i) it takes into account cross-couplings

between longitudinal/lateral and vertical motion; ii) it takes into account cross-couplings between yaw

and roll during a turn.

In Section 3.5.4, we make a detailed comparison between our outer-loop Mamdani-type controller and

the one proposed by Sugeno, and point out important differences.

1.3 The Purpose of the Thesis

The purpose of this thesis is three-fold.

First, we aim at showing that the current limited number of flight modes that APID-MK3 is capable of can

be extended to include “aggressive manoeuvrability”capabilities defined in terms of: 1) tracking curvilinear

trajectories at high speed; and 2) fast acceleration/deceleration.

Second, we aim at showing the feasibility of controller design that is directly based on the nonlinear

unmanned helicopter model and at the same time its stability can be guaranteed in a formal way. Furthermore,

this design should be preferably done in a modern robust control framework, sayH∞, which can be used for

limiting the effect of model uncertainties and external disturbances.

Third, we aim at identifying the major limitations of fuzzy gain scheduling for the control of multiple-

input multiple-output (MIMO) models of nonlinear dynamic systems by using it on a very realistic MIMO

model of an intrinsically unstable unmanned helicopter. In addition, we illustrate how a fuzzy gain-scheduler

can be used for performing aggressive flying.

We are completely aware that the “realism” of the results reported in this thesis w.r.t. the above aims is

limited by the fact that all the work is performed in simulation. However, since the mathematical model used
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in simulation is close enough, from control point of view, to the real APID-MK3 system we have all reasons

to believe in the realism of these results. We can also mention here that for example, the reported results

on work in advanced controller design for “aggressive” manoeuvrability in the BEAR project are also only

tested and evaluated in simulation.

1.4 Publications

Parts of this thesis have been presented at international conferences. These are as follows:

1. Autonomous helicopter control using fuzzy gain scheduling; Kadmiry, B.; Bergsten, P.; Driankov, D.

In: Proc. of the IEEE Int. Conf. on Robotic and Automation( ICRA ), 3: pp. 2980–2985, May 2001,

Seoul, Korea.

2. Autonomous Helicopter Control Using Gradient Descent Optimization Method; Kadmiry, B.; Palm R;

Driankov, D. In: Proc. of the Asian Conf. on Robotic and Automation (ACRA), pp: 193–198; June

2001, Singapore.

3. Fuzzy control of an autonomous helicopter; Kadmiry, B.; Driankov, D. In: Proc. of the 9th IEEE

Int. Fuzzy Systems Association (IFSA/NAFIPS) World Congress, 5: pp. 2797–2802; July 2001,

Vancouver-Canada.

4. Autonomous Helicopter Control Using Linguistic and Model-based Fuzzy Control; Kadmiry, B.; Dri-

ankov, D. In: Proc. of the IEEE Int. Symposium on Intelligent Control (CCA / ISIC), pp: 348–352;

Sept. 2001, Mexico-city-Mexico.

The last publication was awarded a second best student paper award.

1.5 Contributions

The major contributions in this thesis are as follows:

1. deriving the simplified version of the APID-MK3 model and comparing it to a general VTOL model,

and the Berkeley and CMU unmanned helicopter models;

2. developing two novel nonlinear control methods for the design of a stable and robust -with respect to

external disturbances- flight controllers for achieving aggressive manoeuvrability; and
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3. performing extensive simulation in order to verify the previously mentioned properties of the flight

controllers.

1.6 Outline of the thesis

The thesis is structured as follows. Chapter 2 is devoted to the mathematical model of APID-MK3. It

presents this mathematical model and the assumptions under which it is derived. It also compares it to

a general VTOL model and to the mathematical models developed in Berkeley and Carnegie-Mellon for

similar unmanned platforms. In Chapter 3, we present the design of two different flight controllers. The

fuzzy flight controller uses a combination of fuzzy gain scheduling (FGS) and heuristic fuzzy control in an

inner- outer- control loops scheme. The gradient descent method (GDM) uses a combination of a gradient

descent optimization and linear control. Both controllers are intended to realize aggressive flying subject

to external disturbances. Chapter 4 presents results from extensive simulation and aimed at showing the

robustness of the flight controllers and their capability to realize aggressive flying. The robustness properties

are verified in simulations of the inner-loop controllers while aggressive flying is simulated via the use of the

full inner- outer- control loops. In chapter 5, we summarize the thesis and present directions for future work.
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Chapter 2

The helicopter model

The major aim of this chapter is to introduce the reader to the mathematical model of APID-MK3. The quality

of the control algorithms, described in later chapters, as well as the validity of the simulation results depend

heavily on how much the mathematical model reflects the real APID-MK3 platform. For this purpose, it is

important to highlight the assumptions under which this model is derived, and also the simplifications made

in order to facilitate the design of the flight controllers proposed here.

Yet another aim is to present comparisons between the APID-MK3 mathematical model, and the math-

ematical models for similar platforms in order –one more time– to assess the model’s quality. The other

mathematical models considered here describe platforms that have actually been used in a unmanned flight

mode.

In Section 2.1 we introduce in an informal manner the basic concepts related to the motion and control

of a VTOL aircraft. Then in Section 2.2, we introduce the reader to the mathematical representation of the

kinematics and dynamics of a general VTOL. Then in Section 2.3, the general kinematics and dynamics are

further developed in order to obtain the mathematical models of motion that can be used for the purpose

of control. Section 2.4 presents the mathematical model of APID-MK3 and compares it, where possible,

to the general equations of motion developed in the previous sections. Finally, in Section 2.5, we compare

the APID-MK3 mathematical model with models developed in Berkeley and Carnegie-Mellon for similar

unmanned platforms.

13
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2.1 Helicopter basic concepts

Helicopters are vertical take off and landing aircraft. They use rotating blades in order to create forces

necessary to lift and move the helicopter body (VTOL). The helicopter has 6 D.O.F. which contribute to

maintain the aircraft in normal flight position.

• Longitudinal motion: motion along the x-axis, described by the positionx and the velocitẏx;

• Lateral motion: motion along the y-axis and described by the positiony and the velocitẏy;

• Heave: vertical motion along the z-axis and described by the positionz and the velocitẏz;

• Roll: obtained by rotation around the x-axis and described by the Euler angleφ and its rateφ̇;

• Pitch: obtained by rotation around the y-axis and described by the Euler angleθ and its rateθ̇; and

• Yaw: obtained by rotation around the z-axis and described by the Euler angleψ and its rateψ̇.

The positions (x, y, z) and their time derivatives (ẋ, ẏ, ż) determine the helicopter’s translational motion (lon-

gitudinal , lateral and heave motions) along the x-,y- and z-axis and are described in the inertial frame (RI ).

The angles (φ, θ, ψ) and their time derivatives (φ̇, θ̇, ψ̇) determine the helicopter’s attitude, defined as the ori-

entation of the helicopter body frame (RB) w.r.t. the vehicle-carried vertical frame (RV ). The latter frame,

whose origin is the C.O.G. of the helicopter body, is oriented in the same way as the inertial frame (RI ).

Thus, we will call (RV ) the inertial frame.

To perform the different types of motion, the helicopter depends on the main and tail rotor’s forces and

moments which relate to cabin aerodynamics~FA, main rotor aerodynamics~FM and tail rotor aerodynamics

~FT , as well as vertical~FV and horizontal~FH stabilizers. The previous defined forces are controlled as

follows:

• main rotor collective pitch or “collective”, increases the main rotor force (~FM ), which gives the heli-

copter the possibility to perform ascend/descend (vertical) motion;

• cyclic pitch or “longitudinal cyclic”, directs the main rotor force along the x-axis, which induces a

longitudinal motion by inclining the main rotor force in the x-direction;

• cyclic roll or “lateral cyclic”, directs on the main rotor force along the y-axis, which induces a lateral

motion by inclining the main rotor force in the y-direction; and
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• tail rotor collective pitch or “tail”, acts on the tail rotor force (~FT ) to turn the helicopter around its main

rotor axis (azimuthal turn).

Due to the construction characteristics of a helicopter, some of these control commands result in undesired

motion, distinguishing the existence of cross-couplings. We list in the following some of these:

• the inclination of the main rotor force (~FM ) from its vertical position reduces the lift force to the benefit

of the trust force. Thus, the result is a loss of altitude. The lift force is the vertical component of the

main rotor force while the trust is the horizontal component;

• due to transverse airflow (~FW ), additional forces induce a tendency of the helicopter to pitch when in

longitudinal motion, and roll when in lateral motion;

• the tail rotor force (~FT ) may cause a lateral motion and a rolling moment -this induces a drift in the

helicopter’s horizontal and vertical motions.

The cross-couplings mentioned above should be foreseen when designing a motion controller, it should

be able to counterbalance the undesired motions caused by the cross-couplings.

The pilot action only refers to the action of the main and tail rotor force on the motion of the helicopter. In

order to model this motion we have to consider the totality of forces and moments that apply to the helicopter

body. These forces are mainly expressed in terms of wind action, gravity force, aerodynamics, and main and

tail rotor force.

2.2 A general model

2.2.1 General kinematics and dynamics

In this section we will describe the kinematics and dynamics of a general VTOL. These two components are

necessary to determine the motion of the helicopter in terms of position, velocity, and attitude through the

knowledge of forces and moments.
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Kinematics

The kinematic equations relate the descriptions of velocities and angular speeds (the rates of roll, pitch and

yaw). These descriptions are done in both inertial (RI ) and body (RB) frame as follows:

~̇η = J(Θ)~Vwith ~Θ =




φ

θ

ψ


 and J(Θ) =

[
RIB 03

03 RΩ

]
(2.1)

~̇η =

[
~VI

~ΩI

]
with, ~VI =




ẋ

ẏ

ż


 and ~ΩI =




φ̇

θ̇

ψ̇




~V =

[
~VB

~ΩB

]
with, ~VB =




u

v

w


 and ~ΩB =




p

q

r




where

• ~η is a vector of state-variables expressed in terms of position (x, y, z) and attitude (φ, θ, ψ). ~̇η is its

derivative w.r.t. the inertial frame;

• ~V is the vector of state-variables expressed in terms of velocity (u, v, w) and attitude rate (p, q, r). ~V is

the time derivative of~η described w.r.t. to the body frame; and

• J(Θ) is the operator which transforms the state-variables from body frame to the inertial frame.

• RIB andRΩ are the transformation matrices for both the translation and rotation vectors respectively,

between inertial and body frames.

The advantage of this parameterization is that it allows for a direct measurement of the angular speeds (p, q, r)

and their accelerations (ṗ, q̇, ṙ). This is done by using on-board sensors such as magnetic compass, inclinome-

ters, and gyros. The velocities and positions are given by accelerometers, GPS, and altimeter.
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Helicopter dynamics

The dynamics of the helicopter body are related to the forces acting on it. These forces generate accelerations

according to the general rules of forces and moments defined as follows:

~̇V = λ
∑

~T with (2.2)

~̇V =


 ~̇VB

~̇ΩB


 with ~̇VB =




u̇

v̇

ẇ


 and ~̇ΩB =




ṗ

q̇

ṙ


 ,

∑
~T =

[
~F
~M

]
with ~F =




X

Y

Z


 and ~M =




R

M

N


 .

where

• ~̇V represents the state-variables in terms of the time derivative of the vector speedV̇B = (u̇, v̇, ẇ) and

angular rateṡΩB = (ṗ, q̇, ṙ) both derived and represented in the body frame;

• ∑ ~T is a sum of forces (X, Y, Z) and moments (R, M, N ) describing system inputs that produce

motion; and

• λ is an intrinsic constant related to the helicopter characteristics (inertia) in terms of mass (m) and

angular moments (I).

The parameterization described above is frame dependent. The state-variables are provided by the sensors.

Relation between kinematics and dynamics

The model including both kinematics and dynamics is given by a sum of the forces, and a sum of the moments,

w.r.t. the body frame. Thus the helicopter’s translational and angular motion equations are given as follows:

VI = RIBVB ; ΩI = RΩΩB

~F|B =
d

dt
|I(m~VB) and ~M|B =

d

dt
|I(I~ΩB) (2.3)

where~F|B is the sum of forces and~M|B is the sum of moments acting on the helicopter body, both described

in the body frame.m is the mass of the helicopter including fuel and sensory platform, andI the moment of
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inertia of the helicopter body. Eq. (2.3) can be rewritten as

VI |I = RIBVB |I ; ΩI |I = RΩΩB |I

V̇B |I = V̇B |B + ΩB ×mVB ; Ω̇B |I = Ω̇B |B + ΩB ×mΩB = Ω̇B |B (2.4)

~F|B = mV̇B |I and ~M|B = IΩ̇B |I

whereV̇B |I is the derivative of the velocity “defined” in the body frame and “derived” in the inertial frame.

2.2.2 Nature of the model

Basically, there exist two flight modes:

• The hover mode: steady positioning of the helicopter at a certain position.

• The free flight mode: consisting of the fore/aft (longitudinal), side-ward (lateral) and up/downward

(vertical) motions.

The mathematical model that can be used to stabilize a VTOL in a hover mode is obtained from Eq. (2.4)

by neglecting the CoriolisΩB × mVB and gyroscopicΩB × IΩB components, because the attitude rates

(p, q, r) and the translational speed(u, v, w) are very small in the hover mode.

~F|B = mV̇B |I = mV̇B |B ; and

~M|B = IΩ̇B |I = IΩ̇B |B (2.5)

As it can be seen from above, only the translational accelerationV̇B |B = (u̇, v̇, ẇ) and rotational acceleration

Ω̇B |B = (ṗ, q̇, ṙ) w.r.t. the body frame are considered.

In order to be able to perform free flight, then the full model in Eq. (2.4) should be considered. The

APID-MK3 model to be presented in later sections corresponds to the one given by Eq. (2.5). That is, it can

be used for stabilization in hover mode. However, we use Eq. (2.5) also to design motion controllers for free

flight. Then the question is: Is this correct, since Eq. (2.5) lacks the Coriolis and gyroscopic components

? The answer is yes, because when Eq. (2.5) is transformed from the body to the inertial frame, then the

previously mentioned components are recovered as illustrated below. From the hover model we have that

mV̇B |B = ~F|B ;
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the equivalent expression in the inertial frame will be

mV̇I |I = ~F|I ; (2.6)

where, from the use of the kinematic relation (see Eq. (2.1)

VI |I = RIBVB |I =⇒ V̇I |I = ṘIBVB |I +RIBV̇B |I (2.7)

Furthermore, the derivative of the transformation matrixṘIB is given as the operator

ṘIB(·) = RIBΩB × (·) (2.8)

where(·) is any vector. WhenṘIB(·) is injected in Eq. (2.7), this gives

V̇I |I = RIBΩB × VB |I +RIBV̇B |I (2.9)

The law of composition of accelerations states that

V̇B |I = V̇B |B + ΩB × VB |B (2.10)

Thus, we obtain

V̇I |I = RIBΩB × VB |I +RIB(V̇B |B + ΩB × VB |B) (2.11)

The last term in this equation contains the Coriolis componentΩB × mVB |B that was missing from the

expression of forces w.r.t. the body frame in the hover model. The missing gyroscopic componentΩB×IΩB

in the expression of moments for the hover model can be recovered in the same manner once this expression

is transformed in the inertial frame.

2.3 Equations of motion

2.3.1 Translational motion

We introduce here the equations that produce translational motion. The forces producing this motion consti-

tute the term~F|B in Eq. (2.4): are respectively. These are:

• the gravity ~FG, acting on the body mass with a constant gravity accelerationg, described w.r.t. the

inertial frameRI as ~FG|I = (0, 0,mg);
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• the wind action~FW in terms of wind disturbancesNW in the north, east and downward directions,

thus expressed w.r.t.RI as ~FW |I = (WN ,WE ,WD);

• the aerodynamic~FA resulting from the action of the wind on the cabin produces: cabin dragDC ,

cabin side forceYC and cabin lift forceLC . All of these are given w.r.t. the airframeRA as ~FA|A =

(−DC , YC ,−LC).

• the main rotor force~FM results from the lift forceLM , side forceYM and drag forceDM generated

by the main rotor blades, described w.r.t. the main rotor frameRR as ~FM |R = (DM , YM , LM ).

• the tail rotor force~FT results from the lift forceLT , side forceTT and drag forceDT generated by the

tail rotor blades, described w.r.t. the tail rotor frameRT as ~FT |T = (DM , YM , LT ).

Summing these forces, after a transformation to the body frame, we obtain

~F|B = ~FW |B + ~FG|B + ~FA|B + ~FM |B + ~FT |B + ~FC |B with

~FC |B =




XC

YC

ZC


 ; ~FT |B = RBT




DT

YT

LT




~FG|B = RBI




0

0

mg


 ; ~FA|B = RBA



−DC

YC

−LC


 (2.12)

~FW |B = RBI




WN

WE

WD


 and ~FM |B = RBR




DM

YM

LM




The above expression represented in the inertial frame reads as

~F|I = ~FG|I + ~FW |I + ~FA|I + ~FM |I with

~FG|I =




0

0

mg


 ; ~FA|I = RIBRBA



−DC

YC

−LC


 (2.13)

~FW |I =




WN

WE

WD


 and ~FM |I = RIBRBR




DM

YM

LM




In the case of the mathematical model of APID-MK3, we have the following assumptions regarding Eqs.

(2.12) and (2.13):
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1. The main rotor rotation speedΩM is assumed constant for the sake of simplicity (the main rotor force

is a function ofΩ2
M ).

2. The wind action is simply expressed as a white noiseNw(0, VW ). It is considered as a perturbation for

the control to compensate for.

3. The gravityg is supposed constant and depends slightly on the altitudez ∈ [0, 200]m in the case of

our platform.

4. We consider the body mass constant and concentrated in the C.O.G. of the helicopter, assumed fixed.

The body mass change in time is considered as an external disturbance.

5. The cabin is assumed of spherical shape. The aerodynamic force~FA is computed from this character-

istic and the airspeedVA. Thus its action is equal in all directions, and its description w.r.t. any frame

is then the same.

6. Generally, the rotor is approximated as a rigid disc. The aerodynamics of the rotor depend on the

aerodynamics of each of its blades. Because of the symmetry, the drag forceDM (and side forceYM )

of each blade eliminate the one generated by the other blade.

7. For the same reason, the components of the lift forceLM in the rotor disc plane eliminate each other,

and only the component on the rotor z-axis (orthogonal to the disc plane) remains.

8. Since the tail rotor is also approximated as a rigid disc. The tail rotor~FT is described in the same

manner as~FM .

9. The action of the tail rotor~FT is not represented in the equation of lateral motion, though it is respon-

sible for a lateral drift of the helicopter when it rolls.

10. The Coriolis force~FC is neglected in the description of the hover model of motion, due to small attitude

rates and speeds.
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Taking assumption 2 into account, the expression of the wind force in both the inertial and body frames

is given as

~FW |I =




Nw(0, VN )

Nw(0, VE)

Nw(0, VD)


 and

~FW |B = RBI
~FW |I ⇐⇒




XW

YW

ZW


 = RBI




Nw(0, VN )

Nw(0, VE)

Nw(0, VD)


 (2.14)

Taking assumptions 3 and 4 into account, the expression of the gravity in both inertial and body frames is

given as

~FG|I =




0

0

mg


 and ~FG|B = RBI

~FG|I

~FG|B =




XG

YG

ZG


 = mg




− sin θ

sin φ cos θ

cosφ cos θ


 (2.15)

Taking into account assumption 5, that is−DC = YC = −LC , the cabin aerodynamics~FA are given as

follows

DC =
1
2
CdAV 2

A = KdV
2
A =⇒ ~FA|A = KdV

2
A



−1

1

−1


 ; and ~FA|B = RAB

~FA|A

⇐⇒ ~FA|B =




XA

YA

ZA


 = KdV

2
A



−1

1

−1


 and ~FA|I = RIB

~FA|B = KdV
2
W



−1

1

−1




whereCd is the drag coefficient,A = 4πR2
C is the area of the cabin,RC is the radius of the cabin and

Kd = 2CdπR2
C is a constant depending on the previously mentioned parameters.VA|B = VB |B +RBIVW |I

is the airspeed of the helicopter. Because of the model of motion is in hover mode, the assumption of small

velocities impliesVA ≈ VW ,

From assumption 6 and 7, we conclude that it follows that~FM |R = (0, 0, LM ). Furthermore, taking also

into account the tilt of the main rotor, the cyclic pitch and roll enter into the description of the main rotor
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forces as follows:

LM = KMΩ2
MθM =⇒ ~FM |R =




0

0

LM


 and ~FM |B = RBR

~FM |R

=⇒ ~FM |B =




XM

YM

ZM


 = KMΩ2

MθM




− sin a1s

sin b1s

− cos a1s cos b1s


 (2.16)

whereθM is the collective pitch andKM is a constant involving aerodynamic parameters of the main ro-

tor. The effect of (XM , YM ) is neglected in the equations of translational motion because of small cyclics

(a1s, b1s). However, it will be used in the attitude equations since as the moments induced by them cannot

be neglected. Thus we have that

~FM |B ≈




0

0

−KMΩ2
MθM


 and ~FM |I = RIB

~FM |B

=⇒ ~FM |I = −KMΩ2
MθM




cos φ sin θ cos ψ + sin φ sin ψ

cos φ sin θ sin ψ − sin φ cos ψ

cos φ cos θ


 (2.17)

Assumption 8 results in

LT = Kψ(θT − ψT ) =⇒ ~FT |T =




0

0

LT


 and ~FT |B = RBT

~FT |T

=⇒ ~FT |B =




XT

YT

ZT


 =




0

−LT

0


 (2.18)

Assumption 9 states the use of~FT |B to counteract the effect of cabin spin due to the main rotor rotation.

This force is neglected in the force equations, but will be considered in the equations of moments.

Finally the expression of Coriolis force~FC |B is given w.r.t. the body frame as

~FC |B = ΩB ×mVB =⇒ ~FC |B =




XC

YC

ZC


 = m




vr − wq

wp− ur

uq − pv


 (2.19)

Assumption 10 neglects the Coriolis force in the description of the hover model of motion. Thus, summing

up Eqs. (2.14) to (2.17), we obtain the model of translational motion for APID-MK3 in the inertial frame.
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Couplings between translational motions

From Eqs. (2.14) to (2.17), the only existing cross-coupling is the one between longitudinal and lateral

motions. This is due to cross-coupling between attitude angles throught the use of the transformation matrix

RIB in Eq. (2.17).

2.3.2 Rotational motion

We introduce here the equations that describe rotational motion. The moments producing this motion and

involved in ~M|B in Eq. (2.4) are:

• The anti-torque~MD|B resists the cabin rotation and is expressed in the inertial frame.

• The rotor aerodynamics moment~MM |B is produced by the main rotor force and is given in the main

rotor frame.

• The tail rotor moment~MT |B is created in the C.O.G. of the cabin by the tail rotor force~FT , and is

given in the tail rotor frame.

Thus, ~M|B can be expressed w.r.t. the body frame as follows

~M|B = ~MW |B + ~MG|B + ~MA|B + ~MM |B + ~MT |B + ~MC |B (2.20)

The equivalent expression in the inertial frame is

~M|I = ~MW |I + ~MG|I + ~MA|I + ~MM |I + ~MT |I + ~MC |I (2.21)

In the case of the mathematical model of APID-MK3, we have the following assumptions regarding Eqs.

(2.20) and (2.21):

1. The moment of inertiaI is represented as a diagonal matrix, which implies that no coupling between

the attitude angles is assumed.

2. Generally, the C.O.G. is always assumed to be in a fixed position, and this permits a computation of

the moments of all the forces involved in the model.

3. Generally, the gravity force acts on the C.O.G., it does not generate any rotational moment and thus,

its has no impact on the rotational motion.
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4. The aerodynamics~FA|B applied on the helicopter cabin are located in its C.O.G. and because of this,

it has no impact on the rotational motion.

5. The action of the wind force on the tail boom is neglected, thus no moment is generated.

6. When the main rotor tilts, its force~FM |B generates the moment~MM |B . This moment is function of

~FM |B and the distance between the rotor hinge and the C.O.G. of the bodyHM .

7. The tail rotor center position is supposed to be axial to the x-axis, and of distance−hT from the C.O.G.

(HT = (−lT , 0, 0)). The main rotor center position is axial to the z-axis and of distance−hM from

the C.O.G. (HM = (0, 0,−hM )).

8. The main rotor spin creates an anti-torque which induces yaw turns. This anti-torqueQM is damped by

an off-set on the yaw (ψT ) in order to balance the helicopter’s directional turn. Thus, this anti-torque

will not be represented in the APID model of motionQM = 0.

9. The tail rotor spin creates an anti-torque which induces roll turns, because directed in the y-axis only.

This anti-torqueQT is not damped generally. We will not consider this anti-torque in our equations

QT = 0.

10. There exists centrifugal forces on the main rotor blades, which create centrifugal moments. This is due

to the rotor hinge configuration. Because of our assumption on the rotor geometry, we will not consider

these centrifugal forces/moments.

11. Besides the geometry of the main rotor, we assume that the hinge radius is very small (e ≈ 0).

12. The gyroscopic moment~MC is neglected in the description of the hover model of motion, due to small

attitude rates.

13. Eq. (2.4) stresses the fact that the rotational accelerations derived w.r.t. the inertial frame are equal to

the ones derived in the body frame.

Assumptions 2 and 3 imply that~MG|B = 0. Assumptions 2 and 4 imply that~MA|B = 0. Assumptions 2

and 5 imply that ~MW |B = 0.

Assumption 2 is used to determine the moments created by both the main and tail rotors’ forces. This is

done using the distance between C.O.G. and the main hinge centerHM , and between C.O.G. and tail hinge
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centerHT . Thus in the case of the main rotor we have

~MM |B = HM × ~FM |B ; with HM =




0

0

−hM


 and (2.22)

~FM |B = KMΩ2
MθM




− sin a1s

sin b1s

− cos a1s cos b1s


 =⇒ ~MM |B =




RM

MM

NM


 =




KMΩ2
MθM sin b1shM

−KMΩ2
MθM sin a1shM

0




As to the tail rotor, using the assumption 7, we obtain

~MT |B = HT × ~FT |B ; with HT =



−lT

0

0


 and (2.23)

~FT |B = Kψ(θM − ψT )




0

−1

0


 =⇒ ToT |B =




RT

MT

NT


 =




0

0

Kψ(θM − ψT )lT




Assumption 1 is used to describe the moment, due to inertia, on the attitude rates as a linear function on

theses. That is

~MD|B =




RM

MM

NM


 =




dφφ̇

dθ θ̇

dψψ̇


 (2.24)

where(dφ, dθ, dψ) depend on the matrix of inertia of the cabin and given drag moment coefficients.

Finally, based on assumption 1, we can express the gyroscopic moment w.r.t. the body frame as

~MC |B = Ω(ΩI) =⇒ ~MC |B =




qr(Iy − Iz)

pr(Iz − Ix)

pq(−Ix − Iy)


 (2.25)

Assumption 12 neglects the effect of this moment in the equations of rotational motion. Assumption 13 will

be used to support an approximation by which Euler angles rates and attitude angle rates are made equal

(φ̇, θ̇, ψ̇) ≈ (ṗ, q̇, ṙ). Thus, this allows the equations for rotational motion in the body frame to be changed

for those in the inertial frame. Summing up the terms w.r.t. the inertial frame in Eqs. (2.22),(2.23) and (2.24),

we obtain the model for rotational motion for APID-MK3.
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Couplings between rotational motions

From Eqs. (2.22) to (2.23), it is obvious that we do not consider any coupling between the attitude angles or

their rates. However there a coupling between main-collective and the longitudinal cyclic. See Eq. (2.22).

This in turn causes a coupling between rotational and translational motion, in particular pitch may cause a

loss of altitude. Similarly, we have the same effect of roll angle on the altitude, because of the couplings

between the main collective and the lateral cyclic.

2.4 Mathematical model of APID-MK3

2.4.1 APID-MK3 general model

The model for APID-MK3, derived w.r.t. the inertial frame is as follows

ẍ =
1
m

(Nw(0, VN )−KdV
2
W −KMΩ2

MθM (cos φ sin θ cos ψ + sin φ sin ψ))

ÿ =
1
m

(Nw(0, VE) + KdV
2
W −KMΩ2

MθM (cos φ sin θ sin ψ − sin φ cosψ))

z̈ =
1
m

(Nw(0, VD) + g −KdV
2
W −KMΩ2

M (θM cos φ cos θ)) (2.26)

φ̈ =
1
Ix

(dφφ̇ + KMΩ2
MhMθMb1s)

θ̈ =
1
Iy

(dθ θ̇ −KMΩ2
MhMθMa1s)

ψ̈ =
1
Iz

(dψψ̇ + Kψ(θT − ψT )

It has to be noticed that this model is a simplified version of the original model of APID-MK3. The latter

is given as

ẍ =
1
m

(Nw(0, VN )−KdV
2
W − TM (cos φ sin θ cosψ + sin φ sin ψ))

ÿ =
1
m

(Nw(0, VE) + KdV
2
W − TM (cos φ sin θ sin ψ − sin φ cos ψ))

z̈ =
1
m

(Nw(0, VD) + g −KdV
2
W − TM (θM cosφ cos θ)) (2.27)

φ̈ =
1
Ix

(dφφ̇ + FφhM )

θ̈ =
1
Iy

(dθ θ̇ + FφhM )

ψ̈ =
1
Iz

(dψψ̇ + Kψ(θT − ψT )
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whereTM is the rotor trust,Tφ andTθ are the forces obtained by rotation of the main rotor, and are given by

TM = cos(arcsin b1s) cos(arcsin a1s)FM

Tφ = sin(arcsin b1s) cos(arcsin a1s)FM (2.28)

Tθ = − sin(arcsin a1s)FM

andFM = KMΩ2
MθM . The assumption of small angles (≈ [−0.25, 0.25]rad) applied to the cyclicsa1s and

b1s implies a simplification as follows:

TM ≈ cos(b1s) cos(a1s)FM ⇐ TM ≈ KMΩ2
MθM

Tφ ≈ sin(b1s) cos(a1s)FM ⇐ Tφ ≈ KMΩ2
MθMb1s

Tθ ≈ − sin(a1s)FM ⇐ Tθ ≈ −KMΩ2
MθMa1s

(2.29)

which leads to the expressions presented in Eq. (2.26). Furthermore, the control inputs are given as

ȧ1s = KSa1s + KCua1s

ḃ1s = KSb1s + KCub1s (2.30)

θ̇M = KSθM + KCuθM

θ̇T = KSθT + KCuθT

whereKS = 300 is the damping coefficient for the cyclics(a1s, b1s) and collectives(θM , θT ), andKC = 300

is the sensitivity of the control inputsu(·).

2.4.2 Longitudinal motion model

First , we will have to transform Eqs. (2.26) in the body frame.Then, the equation used for longitudinal

acceleration in the body frame, for APID-MK3, is derived from (2.12) as follows:

u̇ =
1
m

(Nw(0, V wF )−mg sin θ −KdV
2
W −KMΩ2

MθM sin a1s) (2.31)

whereXW = Nw(0, V wR) is the wind term (in front direction);XG = −mg sin θ is the gravity term;

XA = −KdV
2
W is the aerodynamic term, andXM = KMΩ2

MθM sin a1s is the main rotor force term. Now,

in the case of a general VTOL, we have

u̇ =
1
m

(−mg sin θ − ρ

2
CDACxV 2

A − LM sin a1s −DH −DV ) (2.32)
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also, whereXG = −mg sin θ; XA = −ρ
2CDACxV 2

A; XM = −LM sin a1s; XH = −DH is the drag of

the horizontal stabilizer, andXV = −DV is the drag of the vertical stabilizer.ACx is the frontal area of the

cabin andCD is its drag coefficient.

Now, one can see the differences between Eq. (2.31) and (2.32)

• the lack ofXW in Eq. (2.32) is not important since it is just a disturbance which can easily be intro-

duced in Eq. (2.32) for the purpose of control design;

• the lack of the termsXV andXH in Eq. (2.31) is not significant at all since they represent stabilizers

which are not present in APID-MK3 platform model; and

• the difference between the termsZA in Eqs. (2.31) and (2.32) is not significant sinceVA|B ≈ VW |B
in hover mode.

2.4.3 Lateral motion model

The equation used for lateral acceleration in the body frame, for APID-MK3, is derived from (2.12) as follows

v̇ =
1
m

(Nw(0, V wR) + mg sinφ cos θ + KdV
2
W + KMΩ2

MθM sin b1s) (2.33)

whereYW = Nw(0, V wR) is the wind term (in right direction);YG = mg sin φ cos θ is the gravity term;

YA = KdV
2
W is the aerodynamic term, andYM = KMΩ2

MθM sin b1s is the main rotor force term. Now, in

the case of a general VTOL, we have

v̇ =
1
m

(mg sin φ cos θ +
ρ

2
CY ACyV 2

W + LM sin b1s − LT + YH − LV ) (2.34)

also, whereYG = mg cos φ cos θ; YA = ρ
2CLACzV

2
A; YM = LM sin b1s; YT = −LT is the tail rotor force

term;YH is the side force of the horizontal stabilizer, andYV = −LV is the lift force of the vertical stabilizer.

ACy is the side area of the cabin andCY is its side force coefficient.

Now, one can see the differences between Eq. (2.33) and (2.34)

• the lack ofYW in Eq. (2.34) is not important since it is just a disturbance which can easily be introduced

in Eq. (2.34) for the purpose of control design;

• the lack of the termsYV andYH in Eq. (2.33) is not significant at all since they represent stabilizers

which are not present in APID-MK3 platform model;
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• the difference between the termsYA in Eqs. (2.33) and (2.34) is not significant sinceVA ≈ VW in

hover mode.

• the lack of the tail rotor termYT in Eq. (2.33) means that this is an unmodeled dynamics in this

equation, due to assumption 9 in Section 2.3.1. Normally this is taken care of by the design of a robust

controller.

2.4.4 Vertical motion model

The equation used for vertical acceleration in the body frame, for APID-MK3, is derived from (2.12) as

follows:

ẇ =
1
m

(Nw(0, V wD) + mg cosφ cos θ −KdV
2
W −KMΩ2

MθM cos a1s cos b1s) (2.35)

whereZW = Nw(0, V wD) is the wind term (in downward direction);XG = mg sin θ is the gravity term;

ZA = −KdV
2
W is the aerodynamic term, andZM = −KMΩ2

MθM cos a1s cos b1s is the main rotor force

term. Now, in the case of a general VTOL, we have

ẇ =
1
m

(mg cosφ cos θ − ρ

2
CLACzV

2
A − LM cos a1s cos b1s − LH − YV ) (2.36)

also, whereZG = mg cosφ cos θ; ZA = −ρ
2CLACzV

2
A; ZM = −LM cos a1s cos b1s; ZH = −LH is the lift

of the horizontal stabilizer, andZV = −YV is the side force of the vertical stabilizer.ACz is the bottom area

of the cabin andCL is its lift coefficient.

Now, one can see the differences between Eq. (2.35) and (2.36)

• the lack ofZW in Eq. (2.36) is not important since it is just a disturbance which can easily be introduced

in Eq. (2.36) for the purpose of control design;

• the lack of the termsZV andZH in Eq. (2.35) is not significant at all since they represent stabilizers

which are not present in APID-MK3 platform model; and

• the difference between the termsZA in Eqs. (2.35) and (2.36) is not significant sinceVA|B ≈ VW |B
in hover mode.

In conclusion, we can see that the APID-MK3 model has all the necessary components of a general VTOL

model. The only important component that lacks in the APID-MK3 model is the tail rotor force contribution
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in lateral motion. This is the element of unmodeled dynamics in the APID-MK3 model which should be

taken into account in the flight controller design.

2.4.5 Roll model

The equation used for roll acceleration in the body frame is, for APID-MK3, derived from (2.26) as follows:

ṗ =
1
Ix

(dpṗ + KMΩ2
MhMθM sin b1s) (2.37)

whereRC = dpṗ is the moment created by the cabin roll due to the action of the main rotor tilt, and

RM = YMhM = KMΩ2
MhMθM sin b1s is the moment created by the main rotor force. Now, in the case of

a general VTOL, we have

ṗ =
1
Ix

( −(
dR

db1s
)b1s −QM sin a1s + LMhM sin b1s

−LMyM cos a1s cos b1s − LT hT + YV hV ) (2.38)

whereRMs = −( dR
db1s

)b1s is the longitudinal stiffness of the main rotor when tilting;RQM
= −QM sin a1s

is the anti-torque generated by the main rotor rotation;RM = YMhM − ZMyM = LMhM sin b1s −
LMyM cos a1s cos b1s is the moment generated by the main rotor force;RT = −LT hT is the moment

generated by the tail rotor force, andRV = YV hV is the moment due to the vertical stabilizer side force.

dR
db1s

= enbmbRM (RMΩM )2

4RM
is the stiffness term, given as a function of the hinge radiuse, the main rotor radius

RM , the mass of the bladesmb, the number of bladesnb, and the rotor speed of rotationΩM .

Now, one can see the differences between Eq. (2.37) and (2.38)

• the lack ofZMyM in Eq. (2.37) can be explained as follows. Due to assumption 7 in Section 2.3.2,

we have the position of the tail rotor at the coordinatesHM = (0, 0,−hM ) instead of the position

HM = (lM , yM ,−hT ), where the latter is valid in the VTOL case. Thus, in the case of APID-MK3,

ZMyM = 0;

• the lack ofRT in Eq. (2.37) can be explained as follows. Due to assumption 7 in Section 2.3.2,

we have the position of the tail rotor at the coordinatesHT = (−lT , 0, 0) instead of the position

HT = (−lT , 0,−hT ), where the latter is valid in the VTOL case. Thus, in the case of APID-MK3, the

tail rotor force does not generate a moment. This is again the case of unmodeled dynamics;

• the lack ofRV in Eq. (2.37) is due to the fact that APID-MK3 does not have a vertical stabilizer;
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• the lack of the main rotor stiffnessRMs
in Eq. (2.37) is due to assumption 11 in Section 2.3.2 which

states that e = 0. Thus,dR
db1s

= 0;

• the lack of the main rotor anti-torqueRQM in Eq. (2.37) is due to the assumption 8 in Section 2.3.2.

This assumption states thatQM = 0 in APID-MK3 platform. However, the termRC in Eq. (2.37),

representing the moment of rotation of the body due the main rotor tilt can be used as a substitute for

the stiffness and anti-torque terms.

2.4.6 Pitch model

The equation used for pitch acceleration in the body frame is, for APID-MK3, as follows

q̇ =
1
Iy

(dq q̇ −KMΩ2
MhMθM sin a1s) (2.39)

whereMC = dq q̇ is the moment created by the cabin pitch due to the action of the main rotor tilt, and

MM = −XMhM = −KMΩ2
MhMθM sin b1s is the main rotor moment. Now, in the case of a general

VTOL, we have

q̇ = I−1( −(
dM

da1s
)a1s + QM sin b1s + LM lM cos a1s cos b1s

+LMhM sin a1s + ZH lH −QT + ZH lH −XHhH −XV hV ) (2.40)

where MMs = ( dM
da1s

)a1s is the lateral stiffness of the main rotor when tilting;MQM
= QM sin b1s

is the anti-torque generated by the main rotor rotation;MM = ZM lM − XMhM = LMhM sin a1s +

LM lM cos a1s cos b1s is the moment generated by the main rotor force;MV = −XV hV is the moment gen-

erated by the vertical stabilizer drag, andMH = ZH lH −XHhH is the moment generated by the horizontal

stabilizer lift and drag.dM
da1s

= enbmbRM (RMΩM )2

4RM
is the stiffness term.

Now, one can see the differences between Eq. (2.39) and (2.40)

• the lack ofZM lM in Eq. (2.39) can be explained as follows. Due to assumption 7 in Section 2.3.2,

we have the position of the tail rotor at the coordinatesHM = (0, 0,−hM ) instead of the position

HM = (lM , yM ,−hT ), where the latter is valid in the VTOL case. Thus, in the case of APID-MK3,

ZM lM = 0;

• the lack of the tail rotor anti-torque−QT in Eq. (2.39) is due to assumption 9 in Section 2.3.2 which

states thatQT = 0. This is yet another case of unmodeled dynamics present in the APID-MK3 model;
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• the lack ofMV andMH in Eq. (2.37) is due to the fact that APID-MK3 does not have a vertical and a

horizontal stabilizers.

• the lack of the main rotor stiffnessRMs
in Eq. (2.39) is due to assumption 11 in Section 2.3.2 which

states that e = 0. Thus,dM
da1s

= 0;

• the lack of the main rotor anti-torqueMQM
in Eq. (2.39) is due to the assumption 8 in Section 2.3.2.

This assumption states thatQM = 0 in APID-MK3 platform. However, the termMC in Eq. (2.39),

representing the moment of rotation of the body due the main rotor tilt can be used as a substitute for

the stiffness and anti-torque terms.

2.4.7 Yaw model

The equation used for yaw acceleration in the body frame is, for APID-MK3, as follows

ṙ =
1
Iz

(dr ṙ + Kψ(θT − ψT )) (2.41)

whereNC = dr ṙ is the moment created by the cabin yaw due to the main rotor rotation, andNT = YT lT =

Kψ(θT ) is moment generated by the tail rotor force, andNQT = −KψψT is a compensation for the anti-

torque of the main rotor. Now, in the case of a general VTOL, we have

ṙ =
1
Iz

(−QM cos a1s cos b1s + LM lM sin b1s + LMyM sin a1s + LT lT − YV lV ) (2.42)

whereNQM = −QM cos a1s cos b1s is the anti-torque generated by the main rotor rotation;NM = YM lM −
XMyM = LM lM sin b1s + LMyM sin a1s is the moment generated by the main rotor force;NT = LT lT

is the moment generated by the tail rotor force, andNV = −YV lV is the moment generated by the vertical

stabilizer side force.

Now, one can see the differences between Eq. (2.41) and (2.42)

• the lack ofNM in Eq. (2.41) can be explained as follows. Due to assumption 7 in Section 2.3.2,

we have the position of the tail rotor at the coordinatesHM = (0, 0,−hM ) instead of the position

HM = (lM , yM ,−hT ), where the latter is valid in the VTOL case. Thus, in the case of APID-MK3,

NM = 0;

• the lack ofNT in Eq. (2.41) can be explained as follows. Due to assumption 7 in Section 2.3.2,

we have the position of the tail rotor at the coordinatesHT = (−lT , 0, 0) instead of the position
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HT = (−lT , 0,−hT ), where the latter is valid in the VTOL case. Thus, in the case of APID-MK3, the

tail rotor force does not generate a moment. This is again the case of unmodeled dynamics;

• the lack ofMV in Eq. (2.41) is due to the fact that APID-MK3 does not have a vertical stabilizer.

• the lack of the main rotor anti-torqueNQM
in Eq. (2.41) is due to the assumption 8 in Section 2.3.2.

This assumption states thatQM = 0 in APID-MK3 platform. However, the termNQT
in Eq. (2.41) is

used as a substitute for the main rotor anti-torque term.

In conclusion, we can see that the terms in the APID-MK3 model are due to simplifications on the main

and tail rotors’ configurations. These simplifications are reflected in assumptions from Sections 2.3.1 and

2.3.2.

2.5 Comparison with other helicopter models

This section describes the models developed in Carnegie Mellon and Berkeley for their UAV platforms.

Both are based on a Yamaha R-50 unmanned helicopter. Section 2.5.1 introduces the Berkeley model of the

Yamaha -R50, which is a hover model in the sense of Section 2.2.2. Section 2.5.2 presents the CMU platform,

which is similar to the Berkeley one but with two additional equations. These two models are compared to

the APID-MK3 model in the body frame.

2.5.1 The Berkeley model

The Berkeley model is of the hover type, (see Section 2.2.2), and is derived under a number of assumptions:

1. velocity and attitude are assumed to be very small so that the simplifications (sin x ≈ x, cos x ≈ 1) are

valid

2. the helicopter body has small velocity and attitude angles in every direction, the Coriolis and gyroscopic

terms are ignored (Ω×mVB = 0, andΩ× IΩ = 0)

3. only the vertical drag force will be considered as it counteracts the gravity~FA = (0; 0; ZF )

4. the vertical stabilizer does not generate any force on the system in hover~FV = (0; 0; 0)

5. only the vertical drag force is generated by the horizontal stabilizer~FH = (0; 0; ZH)
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6. the tail rotor shaft is aligned along the y axis and it does not generate any significant forces in other

directions it generates only the lateral thrust~FT = (0;−LT ; 0), and yaw moment and anti-torque in

pitch axis ~MT = (0;−QT ; 0)

7. the rotor is equated as a rigid disc which can tilt about the longitudinal and lateral axis. The resulting

rotor equations of motions are two first order differential equations, for the lateral and longitudinal

cyclics. ~FM = (−TMa1s, TMb1s,−TM )

The main rotor is the source of vertical lift, horizontal force, and anti-torque. It also generates the rotor

stiffness, that is rolling and pitching moments by flapping. This flapping of the blades described by the rotor

equations of motions for the lateral and longitudinal flapping (cyclics) as follows:

ȧ1s = −a1s

τf
− q + Ab1sb1s + Aua1s

ua1s + Aub1s
ub1s

ḃ1s = −b1s

τf
− p + Ba1sa1s + Bua1s

ua1s + Bub1s
ub1s (2.43)

Then the Berkeley model is given as:

u̇ = − 1
m

LMa1s − gθ

v̇ =
1
m

(LMb1s − LT ) + gφ

ẇ =
1
m

(−LM + ZH + ZF ) + g

ṗ =
1
Ix

(RMs −QMa1s + LMhMb1s − LMyM − LT hT ) (2.44)

q̇ =
1
Iy

(MMs + QMb1s + LMhMa1s + LM lM −QT + ZH)

ṙ =
1
Iz

(−QM + LM lMb1s + LT lT )

ȧ1s = −q − a1s

τf
+ Ab1sb1s + Aua1s

ua1s + Aub1s
ub1s

ḃ1s = −p− b1s

τf
+ Ba1sa1s + Bua1s

ua1s + Bub1s
ub1s

We will compare the model above with the one describing APID-MK3.

The longitudinal motion for APID-MK3(u̇A) and Berkley(u̇B) is given as

u̇A =
1
m

(Nw(0, VF )−KdV
2
W −mgθ −KMΩ2

MθMa1s) (2.45)

u̇B =
1
m

(−mgθ − LMa1s)
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The APID-MK3 equation of longitudinal motion is “richer” since it has the wind term and cabin drag

force. Though the wind in the APID-MK3 case is an external disturbance and can be also introduced as such

in the Berkeley model. Also the drag term has been considered in the Berkeley model to be zero because of

their assumption 3. Also, the termKMΩ2
MθMa1s in the APID-MK3 model correspond to the termLMa1s

in the case of Berkeley model and represents the main rotor force.

The lateral motion for APID-MK3(v̇A) and Berkley(v̇B) is given as

v̇A =
1
m

(Nw(0, V wR) + KdV
2
W + mgφ + KMΩ2

MθMb1s) (2.46)

v̇B =
1
m

(mgθ + LMb1s + LT )

The APID-MK3 equation of lateral motion is again “richer” in terms of wind action and cabin side force,

but it is lacking the term of tail rotor force. The latter is due to assumption 8 in Section (2.3.2). Also, the

termKMΩ2
MθMb1s in the APID-MK3 model correspond to the termLMb1s in the case of Berkeley model

and represents the main rotor force.

The vertical motion for APID-MK3(ẇA) and Berkley(ẇB)is given as

ẇA =
1
m

(Nw(0, V wD)−KdV
2
W + mg −KMΩ2

MθM ) (2.47)

ẇB =
1
m

(mg − LM + ZH + ZF )

The APID-MK3 equation of vertical motion is again “richer” in terms of wind action and cabin. Fur-

thermore, the the termKdV
2
w in the APID-MK3 model correspond to the termZF in the case of Berkeley

model and represents the cabin lift force. Also, the termKMΩ2
MθM in the APID-MK3 model correspond to

the termLM in the case of Berkeley model and represents the main rotor force. The lack of the termZH in

APID-MK3 model is due to the absence of horizontal stabilizer.

The roll acceleration for APID-MK3(ṗA) and Berkley(ṗB) is given as

ṗA =
1
Ix

(dφφ̇ + KMΩ2
MθMb1shM ) (2.48)

ṗB =
1
Ix

(RMs −QMa1s + LMhMb1s − LMyM − LT hT )

The rotor stiffnessRMs and anti-torqueQMa1s due to the main rotor are present in the Berkeley model.

These terms are corresponding to the termdφφ̇ in the APID-MK3 model. Furthermore, the the term−LT lT

is lacking in the APID-MK3 model. This due to assumption 7 (lM = 0) in Section 2.3.2. Also, the term
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KMhMΩ2
MθMb1s in the APID-MK3 model corresponds to the termLMhmb1s in the case of Berkeley model

and represents the moment generated by the main rotor force. Because of the assumption 7 in Section 2.3.2,

yM = 0. This eliminates the termLMyM representing part of the moment due to the main rotor force in the

APID-MK3 model of motion, when it exists in the case of Berkeley model.

The pitch acceleration for APID-MK3(q̇A) and Berkley(q̇B) is given as

q̇A =
1
Iy

(dθ θ̇ −KMΩ2
MθMa1shM ) (2.49)

q̇B =
1
Iy

(MMs
+ QMb1s + LMhMa1s − LM lM −QT + ZH lH)

The terms representing the rotor stiffnessMMs
and anti-torqueQMb1s due to the main rotor are present

in the Berkeley model. Their action is covered by the termdθ θ̇ in the APID-MK3 model. Furthermore, the

term LMhMa1s in Berkeley model corresponds to the termKMΩ2
MθMhMa1s in the APID-MK3 model.

The stabilizer termZH lH lacks in the case of APID.-MK3 model because the platform does not have a

horizontal stabilizer. Because of the assumption 7 in Section 2.3.2,lM = 0. This eliminates the termLM lM

representing part of the moment due to the main rotor force in the APID-MK3 model of motion, when it exists

in the case of Berkeley model. Finally, the termQT in Berkeley model is not represented in the APID-MK3

model due to assumption 9 in Section 2.3.2.

The yaw acceleration for APID-MK3(ṙA) and Berkley(ṙB) is given as

ṙA =
1
Iz

(dψψ̇ + Kψ(θM − ψT )) (2.50)

ṙB =
1
Iz

(−QM + LM lMb1s + TT lT )

The term representing the anti-torqueQM is present in the Berkeley model and its action is covered by

the termdψψ̇ in the APID-MK3 model. The tail rotor force creates a moment represented in both models in

terms ofTT lT for Berkeley andKψθM for APID-MK3.

Because of the assumption the assumption 7 in Section 2.3.2,lM = 0. This eliminates the main rotor

termLM lMb1s in the APID-MK3 model of motion, when it exists in the case of a VTOL model.

The remaining two equations represent the the dynamics related to the lateralb1s and longitudinala1s

cyclics given in Eq. (2.43). We compare here the Berkeley model of the rotor actuation with the one related

to the APID-MK3 model given in Eq. (2.30).
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For the longitudinal cyclica1s
the equations for APID-MK3(a1sA

) and the Berkeley platform(a1sB
) are

given as

ȧ1sA = KSa1s + KCua1s (2.51)

ȧ1sA
= −q − a1s

τf
+ Ab1s

b1s + Aua1s
ua1s

+ Aub1s
ub1s

We can see that all the terms in the Berkeley model of rotor dynamics for the longitudinal cyclica1s
are

not present in the case of APID-MK3 model: The damping termKSa1s for APID-MK3 corresponds to−a1s

τf

in the Berkeley model. The sensitivity to control inputsKCua1s for APID-MK3 corresponds toAua1s
ua1s

in the Berkeley model. However a cross-coupling termAb1sb1s in the Berkeley model is not present in the

APID-MK3 model. Moreover, the pitch rateq is also present in the the Berkeley model and lacks in the case

of APID-MK3. These terms are mainly due to the action of centrifugal forces in the main rotor, which are

not taken into account in the case of APID-MK3 model. Similarly, for the lateral cyclicb1s the equations for

APID-MK3 (b1sA
) and the Berkeley platform(b1sB

) are given as

ḃ1sA = KSb1s + KCub1s (2.52)

ḃ1sA
= −p− b1s

τf
+ Ba1sa1s + Bua1s

ua1s + Bub1s
ub1s

Again, we see that all the terms in the Berkeley model of rotor dynamics for the lateral cyclicb1s are not

present in the case of APID-MK3 model: The damping termKSb1s for APID-MK3 corresponds to− b1s

τf

in the Berkeley model. The sensitivity to control inputsKCub1s for APID-MK3 corresponds toBub1s
ub1s

in the Berkeley model. However a cross-coupling termBa1sa1s in the Berkeley model is not present in the

APID-MK3 model. Moreover, the roll ratep is also present in the the Berkeley model and lacks in the case

of APID-MK3. These terms are mainly due to the action of centrifugal forces in the main rotor, which are

not taken into account in the case of APID-MK3 model.

2.5.2 The CMU model

The CMU model is identical to the Berkeley one regarding the equations of translational and rotational

motion. Furthermore, the CMU model has also the two equations describing the main rotor flapping in terms

of the lateralb1s and longitudinala1s cyclics. The difference is that the system is augmented with two
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additional equations for the Bell-Hiller stabilization. These are given as follows:

ċ = − c

τs
− q + Cua1s (2.53)

ḋ = − d

τs
− p + Dub1s

wherec andd are respectively the longitudinal and lateral stabilizer angles.C andD are input derivatives and

τs is the stabilizer bar’s time constant. The dynamicsċ andḋ are not represented in the case of APID-MK3

model.

Furthermore, the yaw dynamics of CMU model can be modeled as a simple first order, for practical

purposes, namely to simplify the yaw general equation given in (2.44) as follows:

ṙ =
1
Iz

(−QM + LM lMb1s + LT lT ) (2.54)

The yaw acceleration simplified equation is given as

ṙ = Nrr + NθT (θT − rfb) (2.55)

whereNr is the yaw damping coefficient;NθT is the sensitivity of the pedal controlθT , andrfb is a yaw

feedback term given as as low-pass filter. Its expression is given as follows:

ṙf = Krr −Krfb
rfb (2.56)

We can see now a similarity between the equation of yaw dynamics presented for APID-MK3 and the

CMU model, given as

ṙ =
1
Iz

(dr ṙ + Kψ(θT − ψT )) (2.57)

The term representing the yaw dampingNrr in the CMU model corresponds to the term1Iz
dr ṙ in the APID-

MK3 model; the sensitivity termNθT (θT −rfb) in the CMU model corresponds to the term1Iz
Kψ(θT −ψT ).

The only difference between them is that, in APID-MK3 model, the termψT is a constant offset, and in the

case of CMU model, this term is represented by a low-pass filter expression.

2.6 Summary

This chapter presented in detail the mathematical model of APID-MK3 used for the design of flight con-

trollers. The model is a simplified version of the original APID-MK3 model and is obtained from it under a
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number of realistic assumptions. The viability of the simplified model is demonstrated later on in the thesis

by using the same controllers on both models with very similar control performance results.

The main contributions of this chapter are as follows:

1. a comparison between a general VTOL model on one side and the simplified and original APID-MK3

models on the other;

2. a comparison between the simplified APID-MK3 model on one side and two different models of an

APID-MK3-like unmanned platform, namely Yamaha R50, on the other.

The comparisons show that the APID-MK3 model is realistic enough both from the point of view of a

generic VTOL aircraft and a different unmanned platform. The comparisons with the models of Yamaha

R-50 show enough similarities to allow the conclusion that the flight controllers developed in Chapter 3 can

also be used for the control of this type of unmanned platform as well.



Chapter 3

Flight Controller Design

3.1 Introduction

The subject of this chapter is the design of a flight controller that executes, in a stable and robust manner,

• tracking of trajectories describing curvilinear translational (or horizontal) motion at relatively high

speed and

• set-point regulation for fast acceleration/deceleration, hovering and climb.

We do not deal here with the problem of automatically generating the motion trajectories and set-point

values – these are assumed given. Furthermore, the robustness of the flight controller is defined as its ability

to compensate for:

• external disturbances in terms of wind gusts;

• model parameter uncertainties in terms of changing payload; and

• sensor noise for attitude control signals.

The chapter is organized as follows. Section 3.2 presents the overall cascaded control scheme for the

flight controller and defines the control tasks to be executed by its inner- and outer-loop controllers. Section

3.3 introduces fuzzy gain-scheduled (FGS) controller design and Section 3.4 the so-called Mamdani fuzzy

controllers. Section 3.5 presents the design of the inner- and outer-loop controllers respectively: the outer-

loop uses Mamdani controllers to determine desired attitude angles that can achieve desired velocity at a

given altitude. Then the inner-loop takes these desired attitude angles as inputs and generates the actuator

41



42

deflections that will result in that attitude. Section 3.6 describes an alternative design where the outer-loop can

determine not only desired attitude angles but, also a desired collective main rotor collective pitch. Providing

these as inputs to the inner-loop causes the nonlinear attitude dynamics to be transformed into a linear one and

thus provides for a linear attitude controller design. However the overall flight controller remains nonlinear

because of the nonlinear optimization – gradient descent method (GDM) - used to produce the desired attitude

angles and main rotor collective.

3.2 The control scheme

Having in mind that VTOL vehicles of any kind are maneuvered by controlling their attitude angles, i.e., roll,

pitch, and yaw, it is only natural to design the flight controller as consisting of two cascaded controllers: a

translational controller and an attitude controller. This cascaded structure implies two control loops:

• the inner loop, that has the fastest dynamics, is the attitude controller. It takes desired attitude angles

as inputs and generates the actuator commands that will result in the desired attitude;

• the outer-loop controls the slower translational rate variables. It takes desired velocity/position as input

and generates desired attitude angles that will produce the desired velocity/position.

Figure 3.1: Overall flight control scheme

The above scheme for the overall flight controller is presented in Fig. 3.1 and it has to be mentioned

here that it is common for all flight controller designs considered in the introductory chapter. However, we

differ somewhat from this general control scheme. In the case of the Mamdani plus FGS controller design,

the inputs to the inner-loop are not only desired attitude angles but also a desired altitude, see Fig. 3.2. In the
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case of the GDM controller design, the inputs to the inner-loop are desired attitude angles and a desired value

for the main rotor collective, see Fig. 3.3. This leads to the fact that in the first case we do not have a pure

attitude controller but an altitude-and-attitude controller. In the second case though we have a pure attitude

controller.

Fig. 3.1 presents the overall flight control scheme, where,V d or P d stand for desired velocity or position

respectively, that isV d = (Vx, Vy, Vz)d or P d = (x, y, z)d. The outer-loop regulates these reference values

and outputs desired attitude angles. The inner-loop control is designed to regulate desired values of the

attitude angles(φ, θ, ψ)d and feeds the model with control inputs for the cyclic angles(φc, θc) and collective

angles(θM , θT ) to control the main and tail rotors respectively.

Figure 3.2: Control scheme for the fuzzy gain scheduling method

Fig. 3.2 presents Mamdani plus FGS controllers which inputs are desired horizontal velocityV d =

(Vx, Vy)d and the desired headingχd. The Mamdani controller computes the desired attitude angles(φ, θ, ψ)d.

These values –plus a desired altitude– are fed to the FGS controller which outputs the values for the control

of the model in term of cyclic(φc, θc)and collective angles(θM , θT ) for the main and tail rotors respectively.

One important reason for having altitude-and-attitude controller is as follows. The vertical motion of the

helicopter depends on the relation between its weight and the lift force generated by the main rotor blades. If

the lift force is greater than the weight, the helicopter accelerates upwards (climb); if it is less than the weight,

the helicopter accelerates downwards (descent); and if it is equal to the weight, the helicopter remains at a

constant altitude (hover). The horizontal motion of the helicopter (longitudinal – along thex-axis; and lateral

– along they-axis) occurs when there is a horizontal force component. Such a force is generated by inclining

the lift force in the desired direction, inducing by that the trust force. However, because of the coupling
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between the different types of motion, the following effect is observed: when the lift force is inclined, creating

a horizontal motion (trust/drag), the magnitude of the vertical component is decreased under the action of the

weight, thus, causing loss of altitude. That is why we would like to control the attitude angles in such a way

that a desired horizontal motion is produced but, without loss of altitude. This obviously can be achieved by

a controller that is able to simultaneously regulate both the attitude angles and the altitude.

Figure 3.3: Control scheme for the gradient descent method

In Fig. 3.3 the inputs to the model are the control inputs for the cyclics(φc, θc) and the collectives

(θM , θT ) for the main and tail rotors respectively. They are computed in the inner-loop by solving the

attitude equations in the model using a model-inversion method from desired attitude angles. The outer-

loop controller uses a GDM to derive the main collectiveθM and the desired attitude angles(φ, θ, ψ)d given

desired velocitiesV d or positionP d.

The collective pitchθM in the case of the Mamdani plus FGS controller is obtained by providing the FGS

controller with a desired altitudezd, and then a desired collective pitch is computed. That is,θM is derived

in the inner-loop. In the case of the GDM controller,θM is derived in the outer-loop and is then injected in

the inner-loop. Another difference between the two controllers is the way the control of the yaw is done. To

understand this, one has to keep in mind the following: The air- and body-frames can be assumed the same.

The GDM controller is based on this assumption while the Mamdani plus FGS controller is not.



45

3.3 Fuzzy Gain-Scheduled Control

During the past decade two principally different approaches to the design of fuzzy controllers have emerged:

heuristics-based and model-based designs.The latter are known under the name of Takagi-Sugeno (TS) fuzzy

models and controllers or fuzzy gain schedulers.

The main applications of the heuristics-based design are in cases when a given plant is subject to well-

known and understood manual control strategy by an experienced operator. In this case it is enough to

translate the operator’s manual control strategy into a set of fuzzy if-then rules in order to obtain an equally

good, or even better, wholly automatic fuzzy control system. However, the complexity of the fuzzy control

system is normally confined to this of P- or PD-controllers and can rarely be applied to the control of MIMO

plants. In our case, the heuristic-based design is applied to the outer-control loop of the flight controller.

Since a set of well-known heuristics describing the relationship between horizontal velocities and attitude

angles is readily available, these heuristics can be translated into a set of fuzzy if-then rules.

The main applications of the model-based design are in cases when there is an available open-loop plant

model, normally a nonlinear one of the MIMO type. For this type of models, of central interest are the

issues of stability and robustness of the closed loop system as well as the ease with which one can automate

the controller design. The attitude-and-altitude dynamics of a helicopter are a typical example of such a

nonlinear MIMO plant. However, there is no general method for designing nonlinear controllers. What

is available today, is a collection of alternative and complementary techniques, each best applicable to a

particular class of nonlinear systems. This explains why the helicopter’s original nonlinear model has to

be “modified” in one way or another in order a particular design technique to be used. In this context, the

advantage of using Takagi-Sugeno models is that a large class of nonlinear plants, including the attitude

dynamics of a helicopter, can be well represented by these models, without the need to modify the original

nonlinear dynamics in any significant way.

Our goal in this chapter is to integrate the above two types of fuzzy controller designs in an overall flight

controller, by taking advantage of easily available heuristics for its outer-loop and a MIMO nonlinear model

for its inner-loop. In the following section, we present the Takagi-Sugeno (TS) fuzzy model in some detail.

Although the TS fuzzy models are based on fuzzy logic we will not go deeper into the fuzzy logic theories.

Interested readers are directed to [21] for a comprehensive reading. We will simply use the TS fuzzy model as

a tool to approximate/represent nonlinear functions and systems. Section 3.3.1 presents the general structure
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of the TS fuzzy model. The TS model used in the context of dynamical systems is outlined in Section 3.3.2.

The problem of how to obtain a TS model as a representation or approximation of nonlinear functions is

given in Section 3.3.3. Section 3.3.4 presents TS fuzzy controllers. In Section 3.4 the Mamdani type of

controllers are discussed. In Section 3.5 the design of the fuzzy flight controller is presented. Finally Section

3.6 introduces the GDM flight controller.

3.3.1 Structure of the Takagi-Sugeno model

The TS fuzzy model, originally proposed in [1], is composed of a fuzzy if-then rule base that partitions a

space – usually called theuniverse of discourse– into fuzzy regions described by therule antecedents. The

consequentof each rulei is usually a functional expressionyi = fi(x). A common format of a rulei is as

follows:

Rule i : IF θ1 is F i
1 AND θ2 is F i

2 AND . . . AND θq is F i
q THEN yi = fi(x).

The vectorθ ∈ Rq contains thepremise variablesand may be a subset of the independent variablesx ∈ Rn.

Each premise variableθj has its own universe of discourse that is partitioned into fuzzy regions by the fuzzy

sets describing thelinguistic variableFjk. The premise variableθj belongs to a fuzzy setk with a truth value

given by themembership functionµjk(θj) : R → [0, 1] for k = 1, 2, . . . , sj wheresj is the number of fuzzy

sets for premise variablej. The notationF i
j andµi

j refers to the specific linguistic variable and its membership

function respectively that correspond to the premise variableθj in rule i. That is,F i
j ∈ {Fj1, Fj2, . . . , Fjsj}

andµi
j(θj) ∈ {µj1(θj), µj2(θj), . . . , µjsj (θj)}.

The truth value (or activation degree)hi for the complete rulei is computed using the aggregation operator

AND, also called at-norm, which is often denoted by⊗ : [0, 1]× [0, 1] → [0, 1],

hi(θ) = µi
1(θ1)⊗ µi

2(θ2)⊗ . . .⊗ µi
q(θq). (3.1)

There is a number of different t-norms available, see [21]. However, in this work we will use the simple

algebraic product, thus Eq. (3.1) reads

hi(θ) =
q∏

j=1

µi
j(θj). (3.2)

The degree of activation for rulei is then normalized as

wi(θ) =
hi(θ)∑l

r=1 hr(θ)
, (3.3)
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wherel is the number of rules. This normalization implies that

l∑

i=1

wi(θ) = 1. (3.4)

In conclusion, the response of the TS model, for a givenx and θ, is a weighted sum of the consequent

functions,fi, which reads

y =
l∑

i=1

wi(θ)fi(x). (3.5)

Note thaty in Eq. (3.5) is a convex combination of the local functions (models)fi, a fact that facilitates

stability analysis.

3.3.2 TS models for dynamical systems

This section presents the TS model described in Section 3.3.1 in the context of dynamical systems. A general

continuous dynamical system may be given as

ẋ = f(x, u, ϑ)

y = g(x, u, ϑ),
(3.6)

wheref : Rn×Rm×Rs → Rn andg : Rn×Rm×Rs → Rp. ϑ ∈ Rs is a vector of possibly time varying

parameters. The functionsf andg may very well be represented by a TS fuzzy system. Lettingθ be a subset

of x, u andϑ we can write rulei in a fuzzy rule base as

Rule i :IF θ1 is F i
1 AND θ2 is F i

2 AND . . . AND θq is F i
q

THEN

{
ẋ = f̂i(x, u, ϑ)

y = ĝi(x, u, ϑ)
,

wheref̂i : Rn ×Rm ×Rs → Rn andĝi : Rn ×Rm ×Rs → Rp. The TS fuzzy system is then written

ẋ =
l∑

i=1

wi(θ)f̂i(x, u, ϑ)

y =
l∑

i=1

wi(θ)ĝi(x, u, ϑ),

(3.7)

and the weightswi(θ) are computed as described in Eq. (3.3). The choice of the consequent functionsf̂i and

ĝi depends on the application. We will confine ourselves to the following case:

ẋ =
l∑

i=1

wi(θ)(Aix + Biu) = A(θ)x + B(θ)u

y =
l∑

i=1

wi(θ)Cix = C(θ)x,

(3.8)
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or the more general form, derived from the Taylor expansion

ẋ =
l∑

i=1

wi(θ)(Aix + Biu + ai) = A(θ)x + B(θ)u + a(θ)

y =
l∑

i=1

wi(θ)(Cix + ci) = C(θ)x + c(θ),

(3.9)

whereAi ∈ Rn×n, Bi ∈ Rn×m, ai ∈ Rn, Ci ∈ Rp×n andci ∈ Rp. If it is not clear from the context, we

will in the following label (3.8) as ahomogeneousTS fuzzy system while we denote (3.9) as anaffineTS

fuzzy system.

3.3.3 Obtaining TS fuzzy models

There are basically two principal ways to obtain a TS fuzzy model: nonlinear identification from experimental

data or using linearization of some kind. A good exposure of different methods for TS fuzzy model identifi-

cation is given in the collection [22]. A comprehensive description of a method for automatic identification

of TS models for control purposes is also presented in [23]. The purpose of this section is to discuss how

a TS fuzzy model of the form (3.8) or (3.9) can be obtained from the general nonlinear system description

in Eq.(3.6). Thus, a nonlinear system is already given and we will not deal with identification, and thereby

redirecting interested readers to the references mentioned above. It has been shown that a TS model of type

(3.8) can approximate any smooth nonlinear function and its first order derivative [24]. Furthermore, in [25]

it is shown that an affine TS system may also be able to approximate the second order derivatives of a smooth

nonlinear function.

Although the universal approximation capabilities are of a considerable theoretical interest we will only

confine ourselves with the mechanism of how to approximate a nonlinear function by a TS model in this

section. Two approaches are presented: the first one is based on approximation, using Taylor expansion of

the nonlinear function in a number of points. The second one tries to find a linearizing transformation such

that the nonlinear function is exactly represented by the fuzzy system over a specified domain. The two

techniques have one thing in common: they strive to capture the nonlinearity of the original nonlinear system

into the rule base.

Approximation by Taylor expansion

The idea of this method is to do a first-order Taylor expansion in different pointsθi and let the rule base

describe the validity of the obtained linear model in each point. First, one has to decide which variables
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in x, u andϑ, i.e., the premise variablesθ, capture the nonlinearities in Eq. (3.6). A reasonable number of

linearization points together with a partition of the universe of discourse must also be chosen. The consequent

system parameters are then obtained by

Ai =
∂f

∂x
(x, u, ϑ)

∣∣∣∣
xi,ui,ϑi

, Bi =
∂f

∂u
(x, u, ϑ)

∣∣∣∣
xi,ui,ϑi

, Ci =
∂g

∂x
(x, u, ϑ)

∣∣∣∣
xi,ui,ϑi

(3.10)

with the affine terms

ai = f(xi, ui, ϑi)−Aixi −Biui (3.11)

and

ci = g(xi, ui, ϑi)− Cixi. (3.12)

Obviously, a TS model obtained by this method is an extension of a linear system obtained through lineariza-

tion in an equilibrium point. As a parallel, in classical gain scheduling one does often approximate a nonlinear

system with a number of linear systems obtained through linearization over the equilibrium manifoldε of the

nonlinear system in Eq. (3.6), as

ε = {(x, u, ϑ) | f(x, u, ϑ) = 0}. (3.13)

See [26] for a discussion about linearization and classical gain scheduling. When linearizing outside the

equilibrium manifold we obtain an affine term as in (3.9), see also the discussion in [27] and [28]. This

implies that our approximation may resemble the original nonlinear system even outside the equilibrium

manifold. We may also say that the fuzzy system approximates the flow of the vector field represented by

Eq. (3.6) as discussed in [27]. The example below shows how to approximate a simple function using

linearization, in terms of first-order Taylor expansion.

Example 1 Consider the approximation of the functionf(x) = sin(x) over the domain[−π, π]. Fig. 3.4
show the original function together with approximations using three (-2.6, 0 and 2.6) respectively five (-2.6,
-1.57, 0, 1.57, 2.6) linearization points. Fig. 3.5 shows the chosen membership functions.

From Example (1) we can immediately see that more linearization points – i.e., an increased granularity

in the fuzzy partition – the better approximation accuracy.

Approximation by a linearizing transformation

Here we describe how a TS fuzzy model (without affine terms) may be represented by using sector bounded

nonlinearities. This approach is thoroughly described in [29] and [30] and only an outline is given here. This

technique can at least be used for continuously differentiable systems withf(0, 0) = 0. The idea is to bound
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Figure 3.4: Real function (solid), 3-mf approximation (dashed), 5-mf approximation(dotted)

nonlinearities by sectors described by linear subsystems. The resulting system is then written as a convex

combination of these subsystem by transforming the original nonlinearities into fuzzy membership functions.

Example 2 Consider the same function as in Example 1,f(x) = sin(x). We would like to express this
function as a convex combination of linear functionals as follows

µ1(x)a1x + (1− µ1(x))a2x = sin(x) (3.14)

with µ1(x) ≥ 0 andµ1(x) + (1− µ1(x)) = 1. Solving forµ1(x) gives

µ1(x) =
{

sin(x)−a2x
a1x−a2x x 6= 0

0 x = 0
(3.15)

If we letx ∈ [xmin, xmax] = [−π, π] we seta1 = minx sin(x) = −1 anda2 = maxx sin(x) = 1. Hence
Eq. (3.15) becomes

µ1(x) =
{

x−sin(x)
2x x 6= 0
0 x = 0

(3.16)

Inserting Eq. (3.16) in to Eq. (3.14) we obtain equality for allx ∈ [xmin, xmax]. Hence, it is possible to
exactly representsin(x) over an interval using a convex combination with the weightsw1(x) = µ1(x) and
w2(x) = 1− µ1(x).
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Figure 3.5: Membership functions to approximate sin(x)

The reasoning used in this example is easily extended to a wide variety of nonlinear functions and in particular

to nonlinear systems of the form

f(x, u) =




a11(x, u) a12(x, u) . . . a1n(x, u)
...

...
. ..

...

an1(x, u) an2(x, u) . . . ann(x, u)







x1

...

xn




+




b11(x, u) b12(x, u) . . . b1m(x, u)
...

...
. . .

...

bn1(x, u) bn2(x, u) . . . bnm(x, u)







u1

...

um


 .

(3.17)

Each nonlinearity is taken care of separately. The nonlinearities are assumed to be bounded as in Example

(2): aij ∈ [minx,u aij(x, u), maxx,u aij(x, u)] for x, u belonging to the universe of discourse. The result

from Example (2) shows that this technique is likely to be more powerful than the Taylor expansion approach

described in the previous section: both with respect to the number of rules required and with the respect to

the absence of an affine term. However, one problem that may arise -in the context of control design for the

obtained TS system- is that the linear subsystems may be uncontrollable and/or unobservable respectively.

The reason is that the relationships between states and inputs may be hidden in the membership functions

and will not show up in the linear subsystems. Another issue is that the resulting sub-models, in general, do

not represent local system dynamics, but only sector boundaries. Sometimes it may be desirable to have the

intuitive feeling for the local system behavior encoded explicitly in the fuzzy model.
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3.3.4 Takagi-Sugeno controllers

We will concentrate here on output feedback controllers that do not depend on an explicit observer scheme,

and we will constrain the model with certain assumptions when necessary. It it is also assumed that the

varying parameters inθ are measurable.

ẋ =
l∑

i=1

wi(θ)(Aix + Biu + ai) = A(θ)x + B(θ)u + a(θ)

y =
l∑

i=1

wi(θ)(Cix + ci) = C(θ)x + c(θ)

(3.18)

Static output feedback fuzzy control

Consider the problem of how to construct a static output feedback stabilizing fuzzy controller for a fuzzy

system with linear consequents

ẋ =
l∑

i=1

wi(θ)(Aix + Biu) = A(θ)x + B(θ)u

y =
l∑

i=1

wi(θ)Cix = C(θ)x.

(3.19)

A fuzzy controller may be formed as

u =
l∑

i=1

wi(θ)Kiy = K(θ)y. (3.20)

The closed loop system then becomes

ẋ = A(θ)x + B(θ)K(θ)y = (A(θ)−B(θ)K(θ)C(θ))x

=
l∑

i=1

l∑

j=1

l∑

k=1

wi(θ)wj(θ)wk(θ)(Ai + BiKjCk)x.
(3.21)

To simplify the presentation, assume for a moment thatBi = B andCi = C for i = 1, 2, . . . , l. Then Eq.

(3.21) simplifies to

ẋ =
l∑

i=1

wi(θ)(Ai + BKiC)x. (3.22)

Now using a quadratic Lyapunov function,V (x) = xT Px, the following stability theorem for Eq. (3.22) can

be verified

Theorem 1 [10] If there exists a symmetric positive definite matrixP such that

(Ai + BKiC)T P + P (Ai + BKiC) < 0 (3.23)

then the system in Eq. (3.22) is asymptotically stable.
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One attempt to formulate the design is to form the feasibility problem

Find P,Ki s.t.(Ai + BKiC)T P + P (Ai + BKiC) < 0 (3.24)

i = 1, 2, . . . , l.

The problem (3.24) is indeed very difficult to solve, because it is not convex inP andKi. Furthermore, there

does not exist a linearizing variable substitution in this case. Heuristic approaches have been proposed for

solving (3.24), for example, the so-calledV −K iteration [31]. However, using these kind of methods one

can only hope to achieve convergence to a local minimum.

The discussion above shows that static output feedback fuzzy controllers may be hard to find. However,

in the next section it is shown how it may be possible to obtain full order dynamic output feedback controllers

by solving a convex programming problem.

Dynamic output feedback fuzzy controllers

In this section it is shown how a dynamic output feedback fuzzy controller can be designed.

Consider the system

ẋ =
l∑

i=1

wi(θ)(Aix + Biu + ai) = A(θ)x + B(θ)u + a(θ)

y =
l∑

i=1

wi(θ)(Cix + ci) = C(θ)x + c(θ)

(3.25)

System (3.25) can be thought of as a polytopic linear parameter varying system subjected to certain

disturbances, stemming from the affine terms. The idea here is to make use of the framework for gain

scheduledH∞ controllers in order to: 1) Shape the closed loop transient dynamics so that it conforms to the

performance specifications and 2) Design the controller to reject the influence of the affine terms. We will

concentrate on the first step for the moment. In [10] it is shown how to design a gain scheduled controller

with guaranteedH∞ performanceγ for the following general LPV system

ẋ = A(θ)x + B1(θ)w + B2(θ)u

z = C1(θ)x + D11(θ)w + D12(θ)u

y = C2(θ)x + D21(θ)w + D22(θ)u

(3.26)

whereA ∈ Rn×n, B1 ∈ Rn×m1 , B2 ∈ Rn×m2 , C1 ∈ Rp1×n andC2 ∈ Rp2×n. θ is allowed to vary

in a parameter boxΘ with l extreme points and the LPV matrices depend affinely onθ. The system (3.26)
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is therefore constrained to vary in a polytope with vertices given by the extreme points inΘ. Thus, setting

a(θ) = 0 andc(θ) = 0 in (3.18) yields to a system that can be written in the form of (3.26). In addition, the

following assumptions must hold:

Assumption 1 D22(θ) = 0 or D22i = 0 for i = 1, . . . , l.

Assumption 2 B2(θ), C2(θ), D12(θ) and D21(θ) are parameter independent orB2i = B2, C2i = C2,
D12i = D12 andD21i = D21 for i = 1, . . . , l.

Assumptions (1) and (2) may seem to be restrictive in practice. However, it is often possible to augment

the plant with linear filters representing the actuator and sensor dynamics and thereby make the input and

output matrices parameter independent. The objective is to find an internally stabilizing parameter-dependent

dynamic output feedback controller, with the infinity norm of the transfer function fromw to z less thanγ,

‖Tzw‖∞ ≤ γ, of the form

ẋc = AK(θ)xc + BK(θ)y

u = CK(θ)xc + DK(θ)y
(3.27)

with the controller parameters

Ω(θ) :=

[
AK(θ) BK(θ)

CK(θ) DK(θ)

]
(3.28)

∈ Co

{[
AKi BKi

CKi DKi

]
, i = 1, . . . , l

}
.

From the convex solvability condition theorem [10], there exists a LPV controller that guarantees quadratic

H∞ performanceγ overΘ if and only if there exist symmetric matricesR, S ∈ Rn×n satisfying the2r + 1

linear matrix inequalities

Ñ T
R




AiR + RAT
i RCT

1i B1i

C1iR −γI D11i

BT
1i DT

11i −γI


 ÑR < 0

i = 1, . . . , l (3.29)

Ñ T
S




AT
i S + SAi SB1i CT

1i

BT
1iS −γI DT

11i

C1i D11i −γI


 ÑS < 0

i = 1, . . . , l (3.30)[
R I

I S

]
≥ 0 (3.31)
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with

ÑR =

[
NR 0

0 I

]
and ÑS =

[
NS 0

0 I

]
,

whereNR andNS denote the null space of(BT
2 , DT

12) and(C2, D21) respectively. If a feasible solution is

found, a closed loop Lyapunov matrixXcl can be obtained by computing (via singular value decomposition)

two matricesM andN such that

MNT = I −RS (3.32)

and solve the following matrix equation forXcl

[
S I

NT 0

]
= Xcl

[
I R

0 MT

]
(3.33)

Now, given a closed loop Lyapunov matrixXcl the vertice controllers

Ωi =

[
AKi BKi

CKi DKi

]
(3.34)

can be found (from the use of the bounded real lemma, see e.g. [32], extended to polytopic systems) by

solving the following system of LMIs



AT
cliXcl + XclAcli XclBcli CT

cli

BT
cliXcl −γI DT

cli

Ccli Dcli −γI


 < 0

i = 1, . . . , l (3.35)

with

Acli =

[
Ai + B2DKiC2 B2CKi

BKiC2 AKi

]

Bcli =

[
B1i + B2DKiD21

BKiD21

]

Ccli =
[
C1i + D12DKiC2 D12CKi

]

Dcli =
[
D11i + D12DKiD12

]

Thus, a LPV controller can be designed for the linear part of (3.18). The controller is then parameterized

on-line by using measurements ofθ and the convex decomposition given by the fuzzy rule base, i.e., the

convex combination: [
AK(θ) BK(θ)

CK(θ) DK(θ)

]
=

l∑

i=1

wi(θ)

[
AKi BKi

CKi DKi

]
(3.36)
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Due to assumptions (1) and (2), the affine termc(θ) disappears and attention must only be given toa(θ). The

approach taken here is to considera(θ) as a “measurable” disturbance. That is, given a particularθ from

measurements, it is always possible to compute the disturbancea(θ) acting on the model. By feed-forward

of the computeda(θ) to the controller it is possible to make the controller compensate for it, see Fig. 3.6.

Modeling the disturbance and its measurement is easily done by adding entries inB1 andD21 respectively.

The controller is then synthesized according to the steps outlined above.

LPVΚ(θ)

a(θ)

r
y

-
+

Figure 3.6: Closed loop with an affine term as a “measurable” disturbance

3.4 Mamdani-type controllers

A Mamdani fuzzy model/controller is a static MIMO system. It is formed by the following components: a

fuzzy rule base, a fuzzy inference engine, a fuzzifier operator, and a defuzzifier operator. In what follows we

will briefly describe each of these components and for the sake of simplicity we will consider a Mamdani

SISO model/controller. The results easily can be extended to the MIMO case and for a detailed description

the reader is referred to [33].

3.4.1 The fuzzy rule base

The fuzzy rule base consists of a set ofn fuzzy if-thenrules each one of the form:

if X is A(k) thenY is B(k), k = 1, . . . , n,

where
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• A(k) is the linguistic value of the input variableX in thekth rule. For example,X can represent the

error between desired longititudinal velocity and the actual one andA(k) may express “small negative

error”. “x is A(k)” is interpreted by a given membership function
∫
X µA(k)(x)/x; and

• B(k) is the linguistic value of the outputY in the ith rule. For example,Y can represent the desired

pitch that is required to correct the above error andB(k) may express “small positive pitch”. “y is

B(k)” is interpreted by a given membership function
∫
Y µB(k)(y)/y

The “meaning” of asingle ruleis represented as a fuzzy relation defined as:

∀i : R̃
(k)
i =

∫

X×Y
min (µA(k)(x), µB(k)(y)) /(x, y).

Then the meaning of thewhole set of rulesis defined as:

R̃m =
n⋃

k=1

R̃(k)
m ,

which means that

∀x, y : µRm(x, y) = max
k

µ
R

(k)
m

(x, y)

= max
k

min (µA(k)(x), µB(k)(y)) .

The fuzzifier operator

Given a crisp inputx∗, i.e., a specific value of the input variableX, this crisp input isfuzzifiedin the following

manner:

∀e : µ∗(x) =

{
1 if x = x∗

0 otherwise

The fuzzy inference engine

After the crisp inputx∗ is fuzzified the inference with the set of rules is performed via the use of the operation

compositionbetween the fuzzified crisp input and̃Rm as:

Ỹout = µ∗ ◦ R̃m, i.e., ∀y : µY (y) = max
k

min (µA(k)(x∗), µB(k)(y))

The fuzzy set̃Yout is the output that corresponds to the given fuzzy inputx∗ and is denoted as̃Yout =
∫
Y µ∗

B(k)(y)/y
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The defuzzifier operator

The defuzzifier operator is applied on the fuzzy output given by the membership functionỸout, for example

by finding its center-of-gravityy∗. That is, the center of the area covered by the membership functionỸ =
∫
Y µ∗

B(k)(y)/y

y∗ =

∫
Y yµ∗

B(k)(y)∫
Y µ∗

B(k)(y)

3.4.2 The Mamdani PD-controller

A Mamdani model can be instantiated as a Mamdani PD-controller in the following manner. Lete denote the

error, that is the difference between the desired and the actual system state at sample timek, e(k) = xd−x(k).

Let also∆e denote the change-of-error, that is∆e(k) = e(k)− e(k − 1), andu be the control output that is

to be produced given particular values fore(k) and∆e(k). Then a Mamdani PD-controller consists of a set

of fuzzy i-f-thenrules of the form:

if e is E(k) and∆e is ∆E(k)thenu is U (k), k = 1, . . . , n,

where

• E(k) is the linguistic value of the errore in thekth rule. For example,A(k) may express “small negative

error”. “x is E(k)” is interpreted by a given membership function
∫
E µE(k)(e)/e; and

• U (k) is the linguistic value of the control inputu in theith rule. For example,U (k) may express “small

positive pitch”. “u is U (k)” is interpreted by a given membership function
∫
U µU(k)(u)/u

The linguistic values taken bye and∆e are normally classified as “positive”, “negative”, and “zero”

and represented as appropriate fuzzy sets on the universes of discourse of these two variables. For example,

“positive small error” expresses the fact that the statex is below its desired valuexd, and the difference

betweenx andxd is rather small. Furthermore, a “a positive big change-of-error” means that the statex at

timek is significantly smaller thanxd at timek − 1.

Whene and∆e are considered together this expresses the “dynamics” of the system. For example, the

combination (“positivee” and “negative∆e”) means that the current process state is below its desired value,

and increasing since the change-of-error is negative. Thus, the current state shows a tendency of approaching

the desired value from below.
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The linguistic values for the control inputu are similarly divided in “positive”, “negative”, and “zero”.

For example, a “small positive u” means that the currentu should be changed to a rather small value. Such a

course of action only depends on the current values ofe and∆e. For example, consider the case (“positive

big e” and “positive big∆e”). This means that the current state is at a large distance below its desired value

and it has settled at this position after having made a large step in the direction of the desired value. Thus,

since the state is moving in the direction of the desired value with a large step, the appropriate control input

would be “small positiveu” so that the state is moved further up in the direction of the desired value without

overshooting it.

In this thesis we utilize the structure of the above Mamdani PD-controller in the outer control loop of the

flight controller. In our case the control input is a desired value for either pitch, roll, or yaw which has to be

maintained in order to achieve a desired velocity.

3.5 The Fuzzy Flight Controller

The two-step synthesis for the fuzzy flight controller proceeds as follows:

1. given desired horizontal velocity at certain altitude, a set of Mamdani-type of linguistic rules computes

desired attitude angles that help achieve this desired velocity at the given altitude. The rules are heuris-

tic in nature and reflect the experience of a human “pilot” who is an expert in remotely controlling the

vehicle;

2. on the basis of TS model for the dynamics of both vertical motion and attitude angles, TS control laws

(FGS controller) that achieve the desired attitude angles at a given altitude are designed.

The current control system for APID-MK3 does not utilize the full range of the rotor attitude angles. As

a consequence, this produces lower rate-of-change of the attitude anglesφ, θ andψ, and consequently the

control is done on rather small ranges for these – all this reduces manoeuvrability w.r.t. these angles. In this

context, the objective of our study is to design an attitude controller which acts on much larger ranges of the

attitude angles, i.e.,−π/4 ≤ φ ≤ +π/4,−π/4 ≤ θ ≤ +π/4,−π ≤ ψ ≤ +π, by utilizing the full range of

the rotor attitude angles. The latter, for the purpose of this study, are in the intervalapprox.[−0.25, 0.25] rad.

3.5.1 The FGS controller for the inner-loop

The design approach used here consists of the following steps:
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• Decoupling the nonlinearities in the control inputs by adding first-order actuator transfer functions – as

a result, the nonlinearities are moved into the state;

• The new model is linearized either using Taylor series expansion around appropriately chosen points

in the state space, or by bounding the nonlinearities in the state by linear functions – in this way the

nonlinear model is approximated by a TS fuzzy model, which boils down to convex combination of

linear sub-models;

• A gain scheduled output feedbackH∞ controller for the so-obtained approximated model is designed.

In what follows we will describe in more detail the above three steps of the design. The mathematical

model used for the attitude/altitude control of APID MK-III, defined in the inertial frame, is of the form:

z̈ =
1
m

(Zw + Zs −KMΩ2
MθM cos φ cos θ)

φ̈ = −aφ̇ + dKMΩ2
M (b1s + Nφ)θM (3.37)

θ̈ = −bθ̇ − eKMΩ2
M (a1s + Nθ)θM

ψ̈ = −cψ̇ + f((θT + Nψ) + ψT )

where the state vector is(z, φ, θ, ψ, ż, φ̇, θ̇, ψ̇), i.e., altitude, attitude angles and their respective rates. The

control inputs are(b1s, a1s, θM , θT ), i.e., these are the usual control inputs in terms of lateral and longitudinal

cyclics, and collective angles for the main and tail rotors. The first equation describes the dynamics of altitude

motion whereZw is a wind force in the z-axis, andZs is the gravity force on the cabin.(Nφ, Nθ, Nψ)T rep-

resents the noise associated with the attitude angles.a, b, c, d, e, f,KM , ΩM , andψT are model parameters,

and their specific values have been introduced in Chapter 2 together with the full model description.

The above model has to be transformed in the form of Eq. (3.18), with the vectora(θ) being the affine

term representing wind accelerations and attitude angles noisea(θ) = (Zw

m , Nφ, Nθ, Nψ)T . All the outputs of

the model are directly measurable (attitude angles and their rates, position and velocity). Thus the expression

in 3.18 is reduced to the identity matrix andc(θ) = 0.

In the above model, the control inputs are produced by servo-actuators and that is why we will introduce

the transfer functions that relate the outputs from these servo-actuators to the control inputs. The servo-

actuators used in APID-MK3 are first-order transfer functions with saturation, augmented with a linear model

for the Bell-Hiller mixer and angles-to-signals plus signals-to-angles transformations, as shown in Fig. 3.7.
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Figure 3.7: Servo-actuator diagram including the Bell-Hiller mixer
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Figure 3.8: Bode diagram and step response for the servo-actuator

The servo-actuator presented in Fig. 3.7 is simplified in the form of a first-order function which still

obeys the constraints for the actuated signals to be within the range [-1.8, +1.8] for(b1s, a1s) and [-1, +1] for

(θM , θT ). The Bode diagram for the simplified servo-actuator is given in Fig. 3.8. We verify that the outputs

produced from the original (see Fig. 3.9 middle) and simplified servo-actuators (see Fig. 3.9 bottom)–once

proportionally amplified– are very similar and are still within the range [-1, +1]. This in turn implies that

the rotor angles produced by the servo-actuators’ outputs are realistic, that is they are within their admissible

ranges (approx. [-0.25, +0.25] rad).
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Figure 3.9: Boundaries of inputs, and outputs for the servo-actuators

The simplified expression for the servo-actuators transfert functions are as follows

ḃ1s = −300 b1s + 300 ub1s ,

ȧ1s = −300 a1s + 300 ua1s , (3.38)

θ̇M = −300 θM + 300 uθM ,

θ̇T = −300 θT + 300 uθT ,

Now, we can expend the model with the above actuators whose outputs are the cyclic angles(b1s, a1s) and

the collective angles(θM , θT ), and whose inputs are the signals(ub1s , ua1s , uθM
, uθT

). As a result, this will

shift the nonlinearities –due to couplings between the control inputs– into nonlinearities between the state

variables, as mentioned in Section 3.3.4.
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As a result, the model from Eq. (3.37) becomes as follows:

ẋ3 = x9

ẋ4 = x10

ẋ5 = x11

ẋ6 = x12

ẋ9 =
1
m

(Zw + Zs −KMΩ2
Mx15(cos x10 cos x11))

ẋ10 = −a x10 + dKMΩ2
M x15(x13 + Nφ)

ẋ11 = −b x11 − eKMΩ2
M x15(x14 + Nθ) (3.39)

ẋ12 = −c x12 + f ((x16 + Nψ) + ψT ),

ẋ13 = −300 x13 + 300 ub1s ,

ẋ14 = −300 x14 + 300 ua1s ,

ẋ15 = −300 x15 + 300 uθM ,

ẋ16 = −300 x16 + 300 uθT ,

where the(x3, ...x6, x9, ...x12) corresponds to(z, φ, θ, ψ, ż, φ̇, θ̇, ψ̇), i.e., altitude, attitude angles and their

respective rates.(x13, ..., x16) are(b1s, a1s, θM , θT ), i.e., these are the usual control inputs in terms of lateral

and longitudinal cyclics, and collective angles for the main and tail rotors. Furthermore,ub1s , ua1s , uθM
, and

uθT
are the commanded cyclic roll and pitch together with the main and tail rotor collective angles. Note that

b1s, a1s, θM andθT are now pseudo state variables.

3.5.2 Linearization of the inner-loop model

Consider again the model described in Eq. (3.39). For each of the nonlinear terms in this model we choose

a linear bounding such that the fuzzy system obtained represents exactly the nonlinear system. Now, we

considercos(x10) cos(x11)x15, x13x15 andx14x15 to be the nonlinear terms subject to linear bounding –

these reside in the attitude equations associated withẋ9, ẋ10 andẋ11 respectively. The state variables involved

in these nonlinear terms satisfy:

x10, x11 ∈ [−π/4, π/4],

x15 ∈ [π/18, 5π/18].
(3.40)
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The state variablex15 is trivially bounded by

.1745 < x15 < .8727. (3.41)

cos(x10) andcos(x11), taking into account the bounds from Eq. (3.40), can be bounded by the two constant

functions:

0.7071 < cos(x10) < 1 , 0.7071 < cos(x11) < 1. (3.42)

The above bounds result in

0.5 < cos(x10) cos(x11) < 1. (3.43)

Then the above three nonlinear terms can be represented via the use of the derived upper and lower bounds

–as described in Example (2)– by Eq. (3.14), and in the following manner:

x13x15 = F 1
1 0.8727x13 + F 2

1 0.1745x13,

x14x15 = F 1
1 0.8727x14 + F 2

1 0.1745x14,

cos(x10) cos(x11)x15 = F 1
2 x15 + F 2

2 0.5x15,

whereF 1
1 , F 1

2 ∈ [0, 1], F 2
1 = 1− F 1

1 andF 2
2 = 1− F 1

2 . By solving the above equations forF 1
1 , F 2

1 , F 1
2 and

F 2
2 , see Example (2) Eq. (3.15), we obtain the following membership functions:

F 1
1 (x15) = (x15 − 0.1745)/0.6981,

F 2
1 (x15) = (0.8727− x15)/0.6981,

F 1
2 (x10, x11) = 2 cos(x10) cos(x11)− 1,

F 2
2 (x10, x11) = 2− 2 cos(x10) cos(x11).

The graphs of the membership functionsF 1
1 andF 2

1 related to the roll and pitch angles are shown in Fig.

3.10 left part, and the graphs ofF 1
2 andF 2

2 related to the collective pitch are shown in Fig. 3.10 right part.
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2

Takagi-Sugeno Controller for the inner-loop

The fuzzy model, with regard to the results established in Section 3.7, is then expressed as the following set

of only four rules:

1 : IF x15 is F 1
1 and cos(x10) cos(x11) is F 1

2 THEN ẋ = A1x + Bu + a(θ),

2 : IF x15 is F 1
1 and cos(x10) cos(x11) is F 2

2 THEN ẋ = A2x + Bu + a(θ),

3 : IF x15 is F 2
1 and cos(x10) cos(x11) is F 1

2 THEN ẋ = A3x + Bu + a(θ),

4 : IF x15 is F 2
1 and cos(x10) cos(x11) is F 2

2 THEN ẋ = A4x + Bu + a(θ).

In the above rules the matrixA1 is obtained from of Eq. (3.39) in the following manner. First, values ofx10,

x11, andx15 are chosen such thatF 1
1 (x15) = 1, andF 1

2 (x10, x11) = 1, namely, these arex10 = x11 = −π/4

andx15 = 5π/18. Second, we replace the previous values in Eq. (3.39) whereA1 is given by the equations

associated with (̇x3, ...ẋ12). The matrix B is represented by the equations associated with (ẋ13, ...ẋ16) and is

thus the same for all the rules.

For illustration, we give the expression of the state-space representation for the first rule. Ifx15 = 5π/18
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andcos x10 cosx11 = 0.5 then

A1 =




04 14 04

04 G4 H4

04 04 S4


 ; B =




04

04

−S4


 ; a(θ) =




04

N

04




C =

[
14 04 04

04 14 04

]
; and D =

[
04

04

]

where “0i” is a zero matrix of rank i, “1i” identity matrix of rank i, andG4,H4 andS4 given by:

G4 =




0 0 −0.5KMΩ2
M 0

0.8727dKMΩ2
M 0 0 0

0 −0.8727eKMΩ2
M 0 0

0 0 0 f




;

H4 =




0 0 0 0

0 −a 0 0

0 0 −b 0

0 0 0 −c




; N =




Zw + Zs

Nφ

Nθ

Nψ + fψT




and S4 = 300 · 14

The rest ofA2, A3, andA4 are obtained in the same manner. The global model resulting from the fuzzy

rules corresponds to the one from the system described by Eq. (3.25), where the entries ofC related to

altitude/attitude angles and their rates are equal to 1 and furthermore,C is identical for all rules (Ci = C).

Also, Di = D = 0. Thus the global TS model corresponding to 3.39 is given as:

ẋ =
4∑

i=1

wi(x10, x11, x15)(Aix + Bu) + a(θ)

y =
4∑

i=1

wi(x10, x11, x15)(Cix) = Cx (3.44)

In the above,wi is the degree to which a rule is activated given some values forx10, x11 andx15. Then,

according to Eqs. (3.1–3.4) in Section 3.3.1, we have that

w1 = F 1
1 (x15) · F 1

2 (x10, x11) w2 = F 1
1 (x15) · F 2

2 (x10, x11)

w3 = F 2
1 (x15) · F 1

2 (x10, x11) w4 = F 2
1 (x15) · F 2

2 (x10, x11)

and
∑4

i=1 wi = 1 (3.45)

Given the TS fuzzy model in Eq. (3.44), a FGS dynamic output feedbackH∞ controller can be designed
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as described in Section 3.3.4. In particular, using Eqs. (3.27) and (3.36) the controller is then of the form:
[

ẋc

u

]
=

4∑

i=1

wi

[
Ai

c Bi
c

Ci
c Di

c

][
xc

y

]
, (3.46)

The controller is designed so that it can track desired altitude and attitude angles. Integral action is

introduced to avoid steady state errors in the inner-loop control as shown in Fig. 3.11.

Figure 3.11: Fuzzy gain scheduler for the inner-loop

The integral action is a first-order integrator of time constantτ = 1sec. and it permits the synthesis of

region-wiseH∞ controllers verifying the Lyapunov global stability conditions.(x13, ...x16) are in the range

[-1, +1] and this is accounted for in the controller design. The servo statex15 must of course be measured

because of its use in the scheduling.

3.5.3 Mamdani fuzzy controller for the outer-loop

The state space representation of the horizontal motion is as follow:

ẋ1 = x7

ẋ2 = x8 (3.47)

ẋ7 =
1
m

(Xw −KMΩ2
Mx15(cosx10 sin x11 cos x12 + sin x10 sin x12))

ẋ8 =
1
m

(Yw −KMΩ2
Mx15(cosx10 sinx11 sin x12 − sinx10 cosx12))

The Mamdani-type of linguistic controller is used to generate desired values for attitude angles given

desired horizontal velocities at a given altitude. This type of controller has a heuristic nature which reflects

the experience of a human “pilot” who is an expert in remotely controlling the vehicle. The motivation for

resorting to such a heuristic approach is as follows:
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• The available equations describing the dynamics of horizontal motion do not take into account aerody-

namic effects related to the main rotor.

• Also the contributions of the tail rotor torque and force are neglected.

Thus, using the Eq. (3.47) to derive desired attitude angles, given desired horizontal velocities, is not be

a reliable option. Instead, the Mamdani-type of linguistic controller uses the magnitude of acceleration and

velocity-error to infer attitude angles that if achieved will reduce the velocity error to zero. Thus they “mimic

” a human pilot’s behavior when trying to achieve certain desired velocities via manual control.

Mamdani rule for longitudinal velocity

In this context, the rules used to compute desired values for pitch are according to Section 3.4 of the form:

IF evx is Neg andėvx is NegTHEN θd is Pos,

whereevx is the longitudinal velocity-error anḋevx is the longitudinal acceleration andθd the desired pitch

angle. The “heuristic” interpretation of this particular rule is as follows: if the current longitudinal velocity

is higher than the desired one and we are accelerating, i.e., we are moving further away from the desired

velocity which is caused by a negative pitch angle. In order to bring the current velocity back to the desired

one we have to slow down the longitudinal motion and reverse the acceleration. This is done by bringing the

pitch from a negative to a positive angle. Furthermore, Neg and Pos are linguistic labels for the magnitudes of

evx , ėvx , and the pitch. The meaning of these linguistic labels is given by fuzzy sets defined on the physical

domains ofevx , ėvx , and the pitch. Fig. 3.12 illustrates the above rule in terms of these membership functions.

All in all there are 9 rules describing the relationship betweenevx , ėvx and the pitch.

Figure 3.12: Rule for longitudinal speed with membership functions
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Mamdani rule for lateral velocity

The rules used to compute desired values for roll are of the form:

IF evy
is Neg andėvy

is NegTHEN φd is Neg,

whereevy is the lateral velocity-error anḋevx is the lateral acceleration andφd the desired roll angle. The

“heuristic” interpretation of this particular rule is as follows: if the current lateral velocity is higher than the

desired one and we are accelerating, i.e., we are moving further away from the desired velocity which is

caused by a positive roll angle. In order to bring the current velocity back to the desired one we have to slow

down the lateral motion and reverse the acceleration. This is done by bringing the roll from a positive to a

negative angle. Furthermore, Neg and Pos are linguistic labels for the magnitudes ofevy , ėvy , and the roll.

Fig. 3.13 illustrates the above rule in terms of membership functions corresponding to these linguistic labels.

All in all there are 9 rules describing the relationship betweenevy , ėvy and the roll.

Figure 3.13: Rule for lateral speed with membership functions

Mamdani rule related to the heading

The desired value for the yaw is computed by rules as:

IF eχ is Pos andėχ is NegTHEN ψd is Zero.

whereeχ is the heading-error anḋeχ is its rate of change andψd the desired yaw. The “heuristic” interpre-

tation of this particular rule is as follows: if the current heading is higher than the desired one and we are

reducing it, i.e., we are moving closer to the desired heading which is caused by certain orientation of the

horizontal velocity. In this case we maintain the current yaw. Furthermore, Neg, Pos, and Zero are linguis-

tic labels for the magnitudes ofeχ, ėχ, and the current yaw. Fig. 3.14 illustrates the above rule in terms
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of membership functions corresponding to these linguistic labels. All in all there are 9 rules describing the

relationship betweeneχ, ėχ and the yaw.

Figure 3.14: Rule for heading with membership functions

The first two types of rules neglect the cross-couplings between pitch and roll angles in the dynamics of

longitudinal and lateral motions. However, these couplings are taken care by the heading rules that in addition

also prevent side-slip by restricting the yaw to be always equal to the heading. Furthermore, the pitch and roll

angles affect the dynamics of vertical motion so that they cause a drop in altitude. Preventing this is taken

care of at the level of the TS controller. The control scheme computing desired attitude angles given desired

horizontal velocities at a given altitude is presented in Fig. 3.15.

Figure 3.15: The Mamdani controller

3.5.4 Related work

The work by Sugeno [20] reports a hierarchical, Mamdani-type of a controller for the unmanned helicopter

Yamaha R-50 by Yamaha Motors. The lower layer contains a number of Mamdani-type control modules:

longitudinal (pitch control), lateral (roll control), collective (vertical control), rudder (yaw control), and cou-

pling compensation modules. Furthermore, within each such module there is a number of sub-modules only

some of which correspond directly to our Mamdani-type controller from Section 3.4. These are as follows:
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• Longitudinal: this module includes ȧx Mamdani-type controller. Thėx controller infers a desired

pitch angle using a velocity-error and its derivative and is identical to the one used by us. However, in

our case the desired pitch angle is sent to the TS controller from Section 3.3 while in Sugeno’s case it

is send to yet another controller from the same module;

• Lateral: this module includes ȧy Mamdani-type controller. Thėy controller infers a desired roll angle

using a velocity-error and its derivative and is identical to the one used by us. However, in our case the

desired roll angle is sent to the FGS controller while in Sugeno’s case it is send to yet another controller

from the same module;

• Collective: this module includes ȧz Mamdani-type controller. Thėz controller infers a control value

for the main collective using altitude, velocity-error and its derivative. In our case, the control value

for the main collective is obtained by the FGS controller given a desired altitude;

• Rudder: this module, given a desired heading, infers a control input for the tail collective using yaw

angle error and its rate of change. In our case we infer a desired yaw angle given a desired heading,

yaw angle error and its rate of change. The desired yaw angle is sent to the FGS controller which in

turn gives a control input for the tail collective.

• Coupling compensation: the use of this module is twofold: i) it takes into account cross-couplings

between longitudinal/lateral and vertical motion; ii) it takes into account cross-couplings between yaw

and roll during a turn. In our case the first type of cross-couplings are taken care of by the FGS

controller. The second type are partially solved by guaranteeing that a turn is always performed in a

directional manner.

3.6 The Gradient-Descent Flight Controller

The design consists of two steps:

1. a gradient descent optimization method is used to compute for each desired horizontal velocity/position

–at desired altitude– the corresponding desired values for the attitude angles and the main rotor collec-

tive pitch.

2. a linear control scheme is used to regulate the attitude angles so that the helicopter achieves its desired

horizontal velocity/position at the desired altitude.



72

3.6.1 The open loop model

The mathematical model, used for the control of APID-MK3 and defined in the inertial frame, is of the form:

ẍ =
1
m

(Xw −KMΩ2
MθM (cos φ sin θ cos ψ + sin φ sin ψ))

ÿ =
1
m

(Yw −KMΩ2
MθM (cos φ sin θ sinψ − sin φ cosψ))

z̈ =
1
m

(Zw + Zs −KMΩ2
MθM cosφ cos θ) (3.48)

φ̈ = −aφ̇ + dKMΩ2
Mb1sθM

θ̈ = −bθ̇ − eKMΩ2
Ma1sθM

ψ̈ = −cψ̇ + f(θT + ψT )

where the state vector is(x, y, z, φ, θ, ψ, ẋ, ẏ, ż, φ̇, θ̇, ψ̇), i.e., horizontal position, altitude, attitude angles and

their rates. The control inputs are(b1s, a1s, θM , θT ), i.e., these are the usual control inputs in terms of lateral

and longitudinal cyclics and collective angles for the main and tail rotors.

3.6.2 The inner loop attitude controller

The equations below describe the dynamic behavior of the attitude angles(φ, θ, ψ):

φ̈ = −aφ̇ + dKMΩ2
MθMb1s,

θ̈ = −bθ̇ − eKMΩ2
MθMa1s, (3.49)

ψ̈ = −cψ̇ + f(θT − ψT ),

whereθM is derived from the translational equations and(b1s, a1s, θT ) acts as a control inputs.

The control problem for the outer-loop is to calculate angles(φ, θ, ψ) and θM so that given desired

velocities(ẋd, ẏd) and altitudezd are reached in a certain amount of time. This requires specific angles

(φd, θd, ψd) and a corresponding collectiveθM . The control problem for the inner-loop is to regulate the

angles(φd, θd, ψd) calculated by the outer-loop. Given a desired collective pitch– determined by the outer-

loop, the control in the inner-loop is trivially decoupled into three separate channels. The yaw channel is

linear with respect to the tail collectiveθT with an off-set termψT compensating for the anti-torque induced

by the main rotor around its shaft.

The control law design for the inner-loop is straightforward: we require the inner-loop to follow a behavior
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that is determined by three decoupled second order linear equations. These are given as follows:

φ̈ = kφ̇φ̇ + kφ(φ− φd)

θ̈ = kθ̇ θ̇ + kθ(θ − θd) (3.50)

ψ̈ = kψ̇ψ̇ + kψ(ψ − ψd)

where the proportional gains (kφ, kθ, andkψ), and derivative gains (kφ̇, kθ̇, andkψ̇) have to fulfill a desired

performance. These gains are designed in a classical way by a robust pole placement or other appropriate

methods. Comparing the right-hand sides of Eqs.(3.49) and (3.50) the corresponding control inputs can then

be calculated as:

b1s =
1

dKMΩ2
MθM

(φ̇(kφ̇ + a) + kφ(φ− φd))

a1s =
−1

eKMΩ2
MθM

(θ̇(kθ̇ + b) + kθ(θ − θd)) (3.51)

θT =
1
f

(ψ̇(kψ̇ + c) + kψ(ψ − ψd)) + ψT

3.6.3 The outer loop velocity controller

The design of the outer-loop controller proceeds as follows: given desired horizontal velocities/position for

a desired altitude, a gradient descent optimization method, applied to the equations of translational motion

computes desired values for attitude angles and the main rotor collective pitch. The equations at the outer-

loop describe the dynamic behavior of the system in the inertial frame:

ẍ =
1
m

(Xw −KMΩ2
MθM (cos φ sin θ cosψ + sin φ sin ψ)),

ÿ =
1
m

(Yw −KMΩ2
MθM (cos φ sin θ sinψ − sin φ cosψ)), (3.52)

z̈ =
1
m

(Zw + Zs −KMΩ2
MθM cosφ cos θ),

In contrast to the inner-loop, the outer-loop control problem cannot be solved in a straightforward manner

because of: (i) the nonlinearities in the right-hand sides of Eq. (3.52); and (ii) the fact that the system is

over-determined which means that there are more control inputs than outputs. Similar to the design of the

inner-loop controller, we introduce desired dynamics in the right-hand side of the translation equations as
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follows

ẍ = kẋ(ẋ− ẋd),

ÿ = kẏ(ẏ − ẏd), (3.53)

z̈ = kż ż + kz(z − zd),

wherekẋ, kẏ, kż, andkz are gains designed according to a required performance in terms of time responses.

In order to meet this performance, the right-hand sides of Eqs. (3.52) and (3.53) have to be forced to become

equal by adjustingφ, θ, ψ, andθM . For this purpose, we use an optimization approach. Let both Eqs. (3.52)

and (3.53) be written in a compact way




ẍ

ÿ

z̈


 = f̃(φ, θ, ψ, θM ), (3.54)

where the components of the vector functionf̃ are given by the right-hand sides of Eq. (3.52) and

ũ(x, y, z) =




kẋ(ẋ− ẋd)

kẏ(ẏ − ẏd)

kż ż + kz(z − zd)


 . (3.55)

Now, we calculate the vectorξ = (φ, θ, ψ)T and the scalarθM by an GDM procedure for each time step

using the quadratic cost function

V =
1
2
(ũ− f̃(ξ, θM ))T (ũ− f̃(ξ, θM )). (3.56)

Minimizing Eq. (3.56) is done by computing a change inV

∆V = −(ũ− f̃(ξ, θM ))T (B̃1∆ξ + B̃2∆θM ) < 0, (3.57)

whereB̃1 = ∂f̃(ξ,θM )
∂ξ ∈ <3×3 andB̃2 = ∂f̃(ξ,θM )

∂θM
∈ <3×1. This requires the computation of appropriate

∆ξ and∆θM that make∆V < 0. These are given as:

∆ξ =




∆φ

∆θ

∆ψ


 = B̃T

1 α(ũ− f̃(ξ, θM )), (3.58)
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and

∆θM = B̃T
2 β(ũ− f̃(ξ, θM )). (3.59)

In the above equations,

α =




α1 0 0

0 α2 0

0 0 α3


 ; β =




β1 0 0

0 β2 0

0 0 β3


 (3.60)

define the widths of the optimization steps in each component, andαi, βi > 0, i = 1, 2, 3. The optimization

process stops either if the norm||ũ − f̃(ξ, θM )|| falls below a defined thresholdε > 0, or if the numberi

of optimization steps exceeds a certain limit. The proper choice of both the widths of the optimization steps

andαi, βi is so far achieved by trial-and-error. One can use here a learning procedure in order to avoid the

current tedious trial-and-error process.

3.6.4 The outer-loop position control

The position controller is designed in the same manner as the velocity/altitude controller. The only changes

that have to be introduced to the design procedure presented in the previous section are:

• Eq. (3.53) is replaced by:

ẍ = kx(x− xd) + kix

∫
(x− xd)dt + kẋẋ,

ÿ = ky(y − yd) + kiy

∫
(y − yd)dt + kẏ ẏ,

z̈ = kż ż + kz(z − zd),

wherekx, ky, kz are proportional gains;kix, kiy integral gains andkẋ, kẏ andkż derivative gains.

They are designed according to a required performance in terms of time responses. Contrarily to the

velocity controller, the position controller is limited by its step response behavior to reasonable and

bounded amplitude. This has a direct impact of how a trajectory tracking routine has to be fed to the

controller, with respect to the sampling period, for new reference values of the position to be tracked.

• Eq.(3.55) is accordingly replaced by:

ũ =




kx(x− xd) + kix
∫

(x− xd)dt + kẋẋ

ky(y − yd) + kiy
∫

(y − yd)dt + kẏ ẏ

kż ż + kz(z − zd)


 .
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3.7 Summary

In this chapter the design of two different types of flight controllers was presented in detail. Common to both

flight controllers is a model-based design, the use of nonlinear control approaches, and an inner-/outer-loop

control scheme. The main contribution is the use of novel nonlinear control techniques: fuzzy control and

GDM optimization.

The fuzzy control approach utilizes both heuristic fuzzy control and model-based fuzzy control combined

in an outer- and inner-loop control scheme. The heuristic fuzzy control part of the overall flight controller is

used in the outer loop for the generation of desired velocities and heading. The fuzzy model-based part is used

in the inner-loop of the overall flight controller for the simultaneous regulation of attitude angles and altitude.

The combination of the two results in a horizontal velocity controller that maintains desired velocities at a

given altitude. The use of LMI-basedH∞ design provides for global stability and robust behavior in the face

of external disturbances. The main disadvantage of the fuzzy model-based design is its conservativeness.

However, this is an intrinsic property of all designs based on a global quadratic Lyapunov function and recent

results on piece-wise quadratic Lyapunov functions can be used instead.

The GDM-based flight controller design results in a position or velocity flight controller. GDM optimiza-

tion is used in the outer-loop to obtain desired attitude angles given desired horizontal velocities or positions.

As a by-product of the GDM optimization one also obtains a desired value for the main rotor collective pitch.

The availability of the latter has as a consequence that the inner-loop rotational dynamics becomes linear. In

turn, powerful linear robust design techniques can be utilized for the design of the inner-loop attitude con-

troller. The main disadvantage of the GDM approach is the tedious process of trial-and-error tuning of the

width of the optimization steps. This can be circumvented by the use of learning techniques.



Chapter 4

Simulation results

4.1 Introduction

The purpose with this chapter on numerical experimentation is to demonstrate the following two features of

the the flight controllers developed in Chapter 3.

• First, their robustness w.r.t. external disturbances such as wind and mass change, and noise on the

attitude control signals.

• Second, the stability to perform aggressive flying defined by fast acceleration/deceleration, climb/descent,

and curvilinear trajectory tracking at high speed.

The experimental results reported here are derived in simulation using the nonlinear model described in

Chapter 2. However, this model is a simplification (see Section 2.4.1) of the original nonlinear model. The

control performance of both models is verified through simulation. The experiments on robustness solely

relate to the robustness of the inner-loop control. The reason for this is as follows: the control of VTOL is

done by changing the attitude angles for a desired altitude. The experiments on “aggressive” flight relate to

the flight controller as a whole, i.e., both the inner- and outer-loop controllers.

The structure of this chapter is a follows: Section 4.2 presents the experiments performed with the fuzzy

flight controller, where attitude and altitude robustness are addressed in Sections 4.2.2 and 4.2.3 respec-

tively. In Section 4.2.4, aggressive flight experiments in term of fast acceleration/deceleration, turns based

on heading control, and curvilinear motion at high speed are presented. Section 4.3 presents the experiments

performed with the GDM controller concerning velocity, altitude and position control. The experiments per-

formed consider external disturbances such as wind, body mass change and noise on control inputs at the

77
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attitude level. An approach to damp the wind effect on horizontal control will be presented in Section 4.2.4.

4.2 Simulation with the fuzzy flight controller

4.2.1 Robustness

To illustrate robustness we consider in this section

• the FGS attitude controller where the control input s(b1s, a1s, θT ) to the attitude angles are subject to

noise.

• the FGS altitude controller subject to external disturbances in terms of mass change and wind change.

4.2.2 Attitude control robustness

The numerical experiments are performed with the FGS controller from Section 3.3. This controller is used

on the original and the simplified nonlinear models presented in Chapter 2 Section 2.4. The aim here is to

compare control results for both the models in order to:

• verify that the simplified model is a good enough substitute for the original one.

• verify that the controller –designed for the simplified model– can also be used for the original one.

Experiment 1 The task is to regulate the attitude angles around certain desired values (set-point control),
given that the control inputs for the attitude angles are affected by white noise. The experiment is performed
with a constant mass of 50 Kg and a constant wind speed of 10 m/s.

In the context of this experiment (see Fig. 4.1), we:

• compare the simplified and original models’ response to set-point control of attitude angles,

• compare the controller performance with and without noise on the control inputs for the attitude angles.

In the experiment illustrated in Figure 4.1, the attitude angles are subject to set-point control at their

extreme values([φ; θ; ψ] = [±π
4 ;±π

4 ;±π]). The left side of the figure presents results for the simplified

model, and the right side for the original one. The middle part of the figure illustrates the injection of a 5

to 10% white noise to the attitude control signals. As one can see, this does not affect the performance of

the controller. The settling time for the pitch and the roll is 6 sec. each, and it is 3 sec. for the yaw. The

bottom part of the figure illustrates the magnitude of the control inputs to the attitude angles. After scale

transformation, these control inputs are the same for the simplified and original models.
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Figure 4.1: Exp.1: Attitude set-point regulation

We should be able to perform attitude control within the above-specified ranges without saturating the

servo-actuators. Figure 4.2 (upper-left part) shows a comparison between the outputs from simplified and

original servo-actuators. The lower-left part of the figure illustrates the impact of the outputs from the servo-

actuators on the trust force: A slight drift of the collective pitch has a direct influence on the trust force of

±5N . The right-side of the figure illustrates the difference between the regulated attitude angles from the

simplified and original models.

The need for the results presented in Fig. 4.2 is as follows. The output of the servo-actuators causes a

change in the main rotor force. So it is necessary to verify that the simplifications made both at the level of

both the servo-actuators and at the attitude dynamics approximate as close as possible their counterparts from

the original model. We can see from Fig. 4.2 that this is indeed the case.

It has to be stressed here that the white noise model provided with the original model is of lower frequency

than the one presented in our experiments. Thus a noise with a higher frequency may affect the control inputs

to the attitude angles by overloading the servo-actuators. In order to avoid this we introduce a 3rd-order filter

to cut the high-frequencies of the white noise, see Fig. 4.3.
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Figure 4.2: Input signals and main rotor force (left), and attitude angles (right) comparisons
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Figure 4.3: Filter for the noise on the input signals for the attitude angles

The noise effect is simulated as white noise with a used in the experiments is simulated as white noise

with a mean-value 0 and variance 2 to 5 (see Fig. 4.3). It models roughly the noise that can be introduced by

vibrations on the servo-actuators.

Experiment 2 The task is to track desired trajectories for the attitude angles given that the control inputs to
these angles are affected with noise. The experiment is performed with a constant mass of the helicopter of
50 Kg and a constant wind speed of 10 m/s.

Figure 4.4 (left-side) shows the tracking errors for the attitude angles in the case of the simplified model

and on the right-side we have the tracking errors for the original model. The attitude trajectory tracked is a

sinusoidal one, and there is 5 to 10 % white noise added to the control inputs for the attitude angles. As one

can see, the noise does not affect the performance of the controller. The settling time is approximately 3 sec.

for the pitch and roll, and about 2 sec. for the yaw. The bottom part of the figure illustrates the control inputs

to the attitude angles for the simplified and the original models. Here again, after a scale transformation,

these turn out to be the same.



81

−4

−2

0

2

4

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0 20 40 60 80 100 120 140 160
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Time offset: 0

−4

−2

0

2

4

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0 20 40 60 80 100 120 140 160

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time offset: 0

Figure 4.4: Exp.2: Attitude tracking

Figure 4.5 (left-bottom) compares the main rotor force associated with the simplified and original models.

The main rotor force error does not in this case exceed±4N , which is the equivalent of a fluctuation of the

body mass of≈ 0.4 Kg. This force is induced by the control inputs to the attitude angles illustrated by the

left-top part of the figure. The right part of the figure presents the error between the attitude angles resulting

from the simplified and original models.

One should point out here that the control inputs to the attitude angles do not exceed the limits, im-

posed by the servo-actuators of the original model ([−1, +1]). Thus the simplified servo-actuators’ model

–represented as 1st-order transfer function– with time constantτ = 20msec. and a saturation bounds [-1,+1]

does approximate well enough the original servo-actuators’ model.

4.2.3 Altitude control robustness

We present here altitude set-point and tracking control by taking into account external disturbances such as

wind and mass change. The simulations are performed on both the simplified and original models. Four cases

are covered:
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Figure 4.5: Input signals and main rotor force (left), and attitude angles (right) comparisons

• constant wind speed and body mass (Exp. 3)

• wind change and constant body mass (Exp. 4)

• constant wind and body mass change (Exp. 5)

• varying wind and body mass change (Exp. 6)

We will close this section by mentioning the limitations related to altitude control and the technical solution

opted for in order to enhance its capabilities.

Altitude control with constant wind and mass

Experiment 3 The task is to regulate around desired altitude set-points for the simplified and original mod-
els, body mass of 50 Kg and a wind speed of 10 m/s.

Figure 4.6 (left side) shows results for the simplified model and on the right side are th results from the

original model. The top of the figure illustrates a climb from 0 to 20m and then a descent from 20 to 0 meter.

The settling time –in the case of both models– is 3 sec. The second from the top part of the figure illustrates

the control signals delivered from the FGS controller for the simplified and original models. As one can see

these are identical.

Figure 4.7 (bottom) presents the error between the main rotor forces delivered by the two models. The

top part shows the error between the control signals (collectives and cyclics) for the two models that produce

these main rotor forces. The force error between real and simple model does not in this case exceed±10N
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Figure 4.6: Exp.3: altitude control with constant wind and body mass
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Figure 4.7: Input signals and main rotor force comparisons

which is the equivalent to a fluctuation of the body mass of≈ 1Kg. All this point out that the FGS-based

attitude/altitude controller has the same performance in the case of the simplified and original models.

Figure 4.8 top illustrates the performance of the controller when tracking a sinusoidal altitude trajectory:

top-left for the simplified model and top-right for the original model. The bottom part of the figure shows

the control signals needed to achieve the tracking in the case of the simplified (bottom-left) and original

(bottom-right) models. As one can see these signals are identical.

Wind effect on altitude control

Experiment 4 The task is to track a desired altitude trajectory given a wind variation and constant mass of
50 Kg. The experiments are performed for both the simplified and original models. The wind variation is
presented in two main ways:
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Figure 4.8: Altitude-tracking with constant wind and body mass

The wind model takes as input the wind speedVW (in 3 directions), and is described by the following formula

~FW = Nw(0, 2) +
1
2
CdACV 2

W ; with (AC = 4πR2
C)

whereNw(0, 2) is a stochastic process defined by a white noise of amplitude1m/s−2, a mean-value 0, and

a variance of 2 and represents the wind turbulence.1
2CdAV 2

W is the cabin reaction to its motion and wind

force (cabin drag force).AC is the area of the cabin in each direction, andCd is a given drag coefficient. The

model of the wind is shown in Fig. 4.9 (top). Second from top, we have the wind turbulence. Third from top

represents the cabin drag force profile, and at the bottom we have the sum of wind turbulence and cabin drag

force.

A variation of the wind speed within the range[−10, 10]m/s for both horizontal and vertical directions

will produce the signal shown in Fig. 4.10. This signal represents the external disturbance due to variations

in the wind speed.

Figure 4.11 (top-left) shows altitude tracking for sinusoidal altitude trajectory for the simplified and the

original models. The wind speed follows a sinusoidal trajectory as well, see Fig 4.11 (bottom). The middle

part of the figure shows the control inputs (collectives and cyclics) needed to track the desired altitude. Again

after a scale transformation these are identical for the simplified and original models.

Mass effect on altitude control

A change of mass has an effect on the acceleration of the solid body. In the VTOL case, the force provided by

its rotor counteract the effect of gravity by its lift component. The total force of the rotor has to be big enough

to : 1) afford the lift necessary to maintain the heave of the helicopter; and/or 2) perform ascend motion,
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Figure 4.9: Wind model and wind force components
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Figure 4.10: Wind disturbance signal

and/or 3) produce a trust for horizontal motion enough large to counteract the drag due to wind action on the

body.

The mass of the helicopter may change for different reasons. One is that the helicopter is loaded with

a sensory platform, which is equivalent to a mass increase 0 to 20 Kg. The other reason is the gas volume

decrease, which varies the mass of the helicopter from 50 Kg (without payload) to 45 Kg –for a fuel reservoir

of 5 liters and a fuel consumption constant along time.

Experiment 5 The task is to track for a desired altitude trajectory given varying body mass. The experiment
is performed both for the simplified and original models, constant win speed of 10 m/s, and the mass varying
between 45 and 75 Kg.

Figure 4.12 top shows the results from tracking a sinusoidal altitude trajectory for the simplified and
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Figure 4.11: Exp.4: Altitude-tracking with varying wind speed
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Figure 4.12: Exp.5: Altitude-tracking with decreasing body mass

original models. The middle part of the figure presents the control signals (cyclics and collectives) needed to

achieve the tracking. The bottom part of the figure illustrates the varying mass profile during tracking.

Wind and mass effects on altitude control

Experiment 6 The task is to track an altitude trajectory tracking in to account the accumulated effect of
wind and body mass changes.

Figure 4.13 (top) shows the tracking of a sinusoidal altitude trajectory, given a varying wind speed (Fig.

4.13, bottom) and a decreasing mass (Fig. 4.13, 3rd from top). Second from top, we present the control inputs

(collectives and cyclics) needed to achieve the tracking. The left part of the figure present the results for the

simplified model and the right part for the original one. After a scale transformation, the performance of the

altitude controller for the simplified and original models turns out to be identical.
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Figure 4.13: Exp.6: Altitude-tracking with wind and body mass changes

Limitation on the altitude controller

There are two limitations imposed on the action of the altitude controller.

1. a limit on the control output that is, all of the control signals producing the cyclics (pitch and roll)

and collectives (main and tail) are in the interval[−1, +1]. This is due to limitations on the signals

affordable by the servo-actuators.

2. a limit w.r.t the magnitude of change in reference value for th altitude. It turns out that a new reference

value can be set max 10 m away from the previous one.

To cope with the second limitation, we adopt a simple 1st-order integrator with saturation. It is similar to

the one used for the actuator, but with a time constantτ = 20msec and a first order filter with time constant

τ = 9sec. The integrator shapes the altitude reference value from step to ramp, and in this way, allows

for a change of reference values for up to 300m. This is achieved still with the control inputs (cyclics and

collectives) being within the range of[−1,+1]. It has to be noted here that all the following experiments are

performed with the original model using the controller derived on the basis of the simplified model.

4.2.4 Aggressive flying

To illustrate aggressive flying, we consider:

• set-point velocity control for the purpose of fast acceleration/deceleration,

• set-point and tracking control for heading, with the purpose of performing turns and curvilinear motion

patterns.
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Fast acceleration/deceleration

Experiment 7 The task is to accelerate/decelerate by set-point control of reference velocities, and with a
constant heading (χ = 0).

The experiment is performed with body mass of 50 Kg and a wind speed of 10 m/s. The initial velocity

reference isV (t) = 15m/s and the helicopter should switch toV (t) = 5m/s, i.e., we have the case of

deceleration.
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Figure 4.14: Exp.7:̇x(left) andẏ(right) set-point regulation

Figure 4.14 (left-side) illustrates the x-velocity channel, and the right-side illustrates the y-velocity chan-

nel. The top part of the figure presents the velocity components as a result of change of velocity reference

while keeping the heading (χ = 0). Second from top, we have the corresponding accelerations for the x- and

y-velocity channels. Third from top, we illustrate the behavior of the pitch and roll respectively needed to

perform this change of reference velocity. At the bottom part of the figure, one sees the behavior of the yaw

as a result of keeping the above mentioned heading. The settling time, i.e., the time for which the system

settles fromV = 15m/s to 5m/s is approximatively sec. At the top part of the same figure, one can see the

behavior of the x- and y-velocity channels when the reference speed change fromV = 0m/s to 15m/s, i.e.,
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the case of acceleration.

Turns via heading control

In the following experiments, we will illustrate two types of turns: 1) a sharp turn is defined as a change of

the reference value for heading, 2) a smooth turn is defined as the tracking of a given heading trajectory. The

angle of a turn (ψ), is a function of the heading (χ). The experiments are performed with a body mass of 50

Kg and a wind speed of 10 m/s.

Experiment 8 The task is to perform sharp turns by changing the reference heading while keeping constant
velocity (V (t) = 17m/s).The reference heading should take successively the following reference values
(χ(t) = 0, π/2, π, 3π/2) where each of these reference values is kept for (t = 20sec.).
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Figure 4.15: Exp.8: Sharp turns

Figure 4.15 (top-part) presents changes in reference and actual heading. The bottom part describes the turn

angles corresponding to the above changes in heading. The settling time for the yaw is about 3 sec, while the

heading settling time is about 8 sec.

Experiment 9 The task is to perform smooth turns by tracking a reference heading trajectory while keeping
constant velocity (V (t) = 15m/s). The reference heading trajectory is given as (χ(t) = t/10, χ ∈ [0, 2π]
moduloπ).

Figure 4.16 (top) presents changes in reference and actual heading. The bottom part describes the smooth

turns corresponding to the above reference trajectory. The settling time for the heading/yaw is about 3 sec.

Curvilinear motion patterns at high speed

Executing curvilinear motion patterns can be done in two ways: 1) specifying a desired pattern in terms of

Cartesian coordinates, 2) using heading, yaw and speed control. In the first case, one would need a position
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Figure 4.16: Exp.9: Smooth turns

controller. However, the fuzzy flight controller is not a position controller. So in this case we will resort to

the second option, where the desired curvilinear motion pattern or trajectory is defined in terms of desired

velocity magnitudeV d, and its orientationχd. Another issue here is the way in which the helicopter flies

along a desired pattern or curvilinear trajectory, defined in the above terms. Letψd or yaw be the angle

between the nose of the helicopter and the x-axis of the inertial frame. Given a desired trajectory in the body

frame, the desired valueψd is a function ofẋ andẏ transformed from the body to the inertial frame.

1. flying nose-on-the-trajectory means tracking ofψd.

2. flying nose-off-the-trajectory means that we maintain the yaw angleψd constant.

In the next experiments, we will perform nose-on-the-trajectory type of flights.

Experiment 10 The task is to follow a predefined rectangular motion pattern. This pattern is defined by
successive changes of desired headingχ(t) = 0, π/2, π, 3π/2. The desired magnitude of the velocity is
V (t) = 17m/s where each of these reference values is kept for (t = 25sec.).

Figure 4.17 (right-side) describes the rectangular pattern flown. In the left-side (top-part) of the figure,

we have the behavior of thėx-channel. Second from top, we have the behavior of theẏ-channel. Third from

top, we have the yaw profile during the execution of the rectangular motion.

Experiment 11 The task is to follow a predefined circular motion pattern. This pattern is defined by desired
heading trajectoryχ(t) = t/10, χ ∈ [0, 2π] moduloπ. The desired magnitude of the velocity isV (t) =
17m/s.

Figure 4.18 (right-side) describes the circular pattern flown. In the left-side (top-part) of the figure, we

have the behavior of thėx-channel. Second from top we have the behavior of theẏ-channel. Third from top,

we have the yaw profile during the execution of the rectangular motion.
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Figure 4.17: Exp.10: Rectangular pattern
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Figure 4.18: Exp.11: Circular pattern

Compensation strategies for wind/mass variations

So far, we have shown the robustness of the inner-loop controller (altitude/attitude controller) with respect

to wind and body mass changes. However, flying curvilinear trajectories requires the use of the outer-loop

controller, which should also be robust w.r.t the above two factors. In the inner-loop control, the robustness is

achieved via the use ofH∞ control principles. In what follows, we will describe how robustness is achieved

in the outer-loop control level.

One method could be to design the compensation in the form of Mamdani type of fuzzy controller with a

proportional gain generating off-sets to the desired attitude angles∆θ and∆φ. These offsets will be added

to the desired attitude angles already provided by the outer-loop velocity controller (θd andφd). Figure 4.19
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shows a scheme for the design of such a compensator.
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Figure 4.19: Fuzzy compensator scheme

The rules for the compensator may depend on the ratio body-acceleration/wind-acceleration. The first

depends on the body mass and the other can be obtained by sensing of wind speed. The following example-

rule illustrates a part of this compensator.

IF wind− speed is Small andmass is MediumTHEN ∆φ is Neg

In what follows, we will describe the method actually used to compensate for wind changes. We map the

desired attitude angles –computed by the Mamdani fuzzy controller– to different ranges of wind speed. This

mapping is done for a horizontal velocityV and headingχ both set to zero. The action of the controller under

different wind speeds shows a different behavior and delivers non-zero roll and pitch angles.
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Figure 4.20: Drift effect of wind changes on horizontal velocities

On the left-side of Fig. 4.20, we see the changing wind speed and its acceleration. The right side illustrates

from top to bottom the steady state errors for longitudinal velocity, pitch angle, lateral velocity and roll angle
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respectively.
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Figure 4.21: Wind action on the attitude angles: roll (left) and pitch (right)

Figure 4.21 illustrates the mapping between the wind speed change and the roll (left) and pitch (right)

angles responses respectively. We use a spline function to determine values of the offsets for the attitude

angles for each given wind speed. These offsets are subtracted from the desired attitude angles (pitch and

roll), and then the so obtained new desired attitude angles are regulated by the controller. Figure 4.22 shows

the spline function extracted from the mapping between wind speeds and attitude angles.
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Figure 4.22: Wind mapping for the roll (left) and pitch (right)

Figure 4.23 shows the alternative wind compensator effectively implemented and used in the fuzzy flight

controller.

Figure 4.24 illustrates the behavior of the horizontal velocities and their associated attitude angles under

the action of different wind speeds. This behavior is represented with and without compensation for the wind

action. At the top of the figure we have the comparison forẋ with and without compensation for the wind

action. Right bellow it, we have the same comparison for the associated pitch angle. Third from top of the

figure we have the comparison forẏ with and without compensation for the wind action. Right bellow it, we

have the same comparison for the associated roll angle.

From the figure, we can see the following two aspects:

1. the velocities obtained with compensation are closer to the desired velocity, which is equivalent to say
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Figure 4.23: Wind mapping compensator scheme

that the helicopter “resists” the drift induced by the wind action. The steady-state error induced by the

wind action is reduced.

2. the compensator has an effect also on the time response. Indeed, for the horizontal velocities to settle

to their desired value, the attitude angles has to rise “fast” enough to their desired values.

Change of the body mass has the same effect as the one resulting from changes in wind speed (gusts).

A loss of mass produces an increase of the body accelerations. This, we can have an equivalent mapping to

the one presented above: mapping the attitude angle ranges of mass change, and then use this mapping to

compensate in the same manner as in the case of wind changes. This suggests the introduction of body mass

as an additional input to the velocity controller.

4.3 Simulation results for GDM controller

The numerical experiments are performed with the GDM controller presented in Section 3.6. We use here a

simplified version of the nonlinear model and illustrate:

1. horizontal velocity control (Section 4.3.1)

2. vertical motion control (Section 4.3.2)

3. position control (Section 4.3.3).

The body mass of the helicopter is kept unchanged at 50 Kg for all experiments.
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Figure 4.24: Wind action with and without compensation

4.3.1 Horizontal velocity control

Experiment 12 The task is set-point regulation of horizontal velocity under strong (10 m/s) and weak (3 m/s)
winds.
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Figure 4.25: Exp.12: Loẇy and highẋ set-point regulation

Figure 4.25 (left-side) shows the results from set-point regulation around a desired lateral velocityV d
y =

−10m/s. The right-side of the figure illustrates regulation of high desired longitudinal velocity around a

set-pointV d
x = 20m/s. The upper-left part shows loẇy-velocity set-point regulation with strong and weak
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wind action where: desired velocity –; velocity under strong wind -.–; and velocity under weak wind . . . are

represented. The lower-left part illustrates the control inputs (b1s, θM ) for strong and weak wind respectively.

The response is oscillatory-damped and settles to its reference value after a time narrow to 40 sec. We can

notice a similar response to strong and weak wind action for the lateral velocity control. The upper-right part

shows highẋ-velocity set-point regulation with strong and weak wind action. The lower-right part illustrates

the control inputs (a1s, θM ) for strong and weak wind respectively. The settling time for longitudinal velocity

is about 20 sec.

Experiment 13 The task is tracking a desired velocity trajectory under strong (10 m/s) and weak (3 m/s)
winds.
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Figure 4.26: Exp.13: Velocity tracking with strong and weak wind

In the left-side of fig 4.26, we see the tracking results under the strong wind for bothVx (up) andVy

(down). In the left part we illustrate the tracking of these velocities under weak wind. The figures show

desired versus actual trajectories. The time delay present when tracking a sinusoidal velocity reference along

both the x- and y-channels is about 2 to 3 sec. for each channel and there is an overshoot of about5%. A

better tuning of the control coefficients would give a better speed profile and a smaller tracking error.

Experiment 14 The task is a regulation under a set-point change, given a strong (10 m/s) and weak (3 m/s)
wind.

Figure 4.27 (Left-top) presents the behavior of the lateral velocity during set-point change and left-bottom

part of the figure represents the associated control signals (collective pitch and cyclic roll). The right-top part

of the figure shows of the behavior of the longitudinal velocity during set-point change and left-bottom part
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Figure 4.27: Exp.14:̇y andẋ set-point change with strong and weak wind

of the figure represents the associated control signals (collective pitch and cyclic pitch). Both results are

obtained for strong and weak wind. The settling time for the x-channel is about 20 sec. but it is longer for the

y-channel because of its oscillatory profile.

Unlike the case of velocity tracking, the change in the velocity reference values shows a behavior that

is affected by the wind. This behavior is more damped in the case of x-channel and oscillatory in the y-

channel. Furthermore, and the effect of the wind on the collective pitch is clearly distinguishable in the case

of longitudinal speed control. The effect of the wind on the y-channel shows that stronger wind leads to an

over-shoot, and weak wind leads to an under-shoot. Here again , tuning the controller parameters can help

improving the performance.

4.3.2 Vertical motion control

Experiment 15 The task here is altitude set-point regulation and altitude trajectory tracking in strong and
weak wind.

Figure 4.28 (Top-left) illustrates altitude set-point regulation for strong and weak wind. As one can see,

the effect of wind is negligible. A climb of 50m takes about 5 sec. This corresponds to a fast rise time, and

thus demands a collective pitch which grows nearly to its saturation limits. This can be seen in the left-bottom

part of the figure. The right side of the figure shows in the top part attitude trajectory tracking. Here again,

we see a time delay of 3 sec. In right-bottom part of the figure shows the corresponding control signals.
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Figure 4.28: Exp.15: Altitude set-point regulation and trajectory tracking.

4.3.3 Position control

Experiment 16 The task is to perform hover at a certain position (x,y,z)=(50,50,50)m under strong (20 m/s)
and weak (3 m/s) wind.
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Figure 4.29: Exp.16: Hovering control with strong and weak wind

Figure 4.29 illustrates the results of the experiment. We can see an undamped oscillatory behavior in the

x- and y-channels. These are about 0.5 m for x-channel and about 1 m for the y-channel. The oscillations

are more pronounced in the case of a wind of 20m/s speed. Notice also that the wind action affects also the

z-channel: there is an over-shoot of about 1 m. and steady-state is achieved after 12 sec.

Experiment 17 The task is to position the helicopter at desired coordinates (x,y,z)=(50,50,50)m starting
from another position, under strong (20 m/s) and weak (3 m/s) wind.
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Figure 4.30: Exp.17: Positioning with strong and weak wind

Figure 4.30 illustrates the results of this simulation. As one can see the wind action, either weak or strong,

has a negligible effect in terms of error w.r.t the desired position. However the rise time on all three channels

seem to be rather slow (≈ 20 sec.), which is not due to the wind action, but rather to some peculiarities of the

optimization procedure.

4.4 Summary

In this chapter we presented results from experiments which aim was two-fold:

1. to illustrate the robustness (in the face of external disturbances) of the fuzzy and GDM flight controllers

proposed in Chapter 3; and

2. to illustrate the ability of the above mentioned controllers to perform aggressive flying.

The above two aims are fully achieved in the case of the fuzzy flight controller, while in the case of the

GDM flight controller, they are partially fulfilled. For example, the fuzzy flight controller was exposed to

external disturbances like, wind, mass change and noise, while the GDM based flight controller only to wind

and noise.

An important feature of the experiments with the FGS controller is that they were performed on both the

simplified and original APID-MK3 helicopter models and despite of this, the flight controller has shown very

similar performance.
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The results for the GDM based controller can be further improved if more advanced linear robust control

methods are used. Only in this case, change of mass can be taken as yet another disturbance. Also, aggressive

flying can be performed if robust tracking control methods are used.



Chapter 5

Summary and future work

This thesis presented two novel methods for the design of flight controllers for the unmanned APID-MK3

helicopter.

The flight controllers developed were based on a nonlinear model of APID-MK3 and tested in extensive

simulation, showing their robustness in the face of external disturbances and also their ability to perform

aggressive flying.

In Chapter 2, we presented in detail the mathematical model of APID-MK3 used for the design of flight

controllers. The model is a simplified version of the original APID-MK3 model and is obtained from it

under a number of realistic assumptions. Furthermore, we performed comparisons between the simplified

APID-MK3 model on one side and two different models of an APID-MK3-like unmanned platform, namely

Yamaha R50, on the other. The comparisons show that the APID-MK3 model is realistic enough both from

the point of view of a generic VTOL aircraft and a different unmanned platform.

In Chapter 3, we presented the design of two different types of flight controllers: 1) a velocity controller

based on FGS and heuristic fuzzy control; and 2) a velocity and position GDM-based controller. Common to

both flight controllers is a model-based design, the use of nonlinear control approaches, and an inner-outer

loop control scheme.

In Chapter 4, we presented results from experiments which illustrate the robustness of the fuzzy flight

controller and illustrate its ability to perform aggressive flying. An important feature of the experiments with

the FGS controller is that they were performed on both the simplified and original APID-MK3 helicopter

models and despite of this, the flight controller has shown very similar performance.

In this context, the subject of this thesis has been achievingtacticalautonomy for an unmanned helicopter.

101
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This type of autonomy addresses the execution of basic flight modes such as “take off”, “landing ”, “cruise

flight” as well as more aggressive flight patterns. Here the major concern is twofold: 1) use and reliability of

proprioceptive sensors (compass, GPS, gyros, etc.) to monitor the internal state of the UAV; and 2) robust and

stable position/velocity control based on inputs from the UAV’s proprioceptive sensors. Thus this concern is

related to the air-worthiness of an UAV in unmanned flight and unmanned landing/take-off. In our case, we

were concerned with autonomy for achieving aggressive flying. Also, we assumed the proprioceptive sensors

given, and our major concern was robust and stable velocity/position control.

One can address the functional type of UAV autonomy only when the air-worthiness of the vehicle has

been verified. The tactical type of autonomy addresses mission execution in a safe and reliable manner.

Typical mission examples include “track ground vehicle”, “follow coast line”, “deliver load” and autonomy

requires making as few assumptions as possible about the environment encountered during mission execution;

and that execution should be sensitive to the environment, and adapt to the contingencies encountered. A

major concern in achieving functional autonomy is the use of exteroceptive sensors, like a camera or a laser

range finder, to acquire information about the state of the environment as it is at the moment and based on

this information to react instantly to it by adopting a behavior that complies with this state alone.

One sensor of interest in the WITAS project is a daylight video camera. Given such a sensor, a crucial

issue is how to make it an integral part of the UAV’s control loop so that behaviors for tactical autonomy can

be implemented in a robust and safe manner, and made to work under hard real-time constraints. In most

cases, this would mean that behaviors are not designed according to the principle “look-then-move” but,

according to a totally different “look-and-move” principle. The difference is roughly speaking the following:

in the first case, the visual sensor is used to determine set-points as inputs for say, UAV’s attitude (roll, pitch

and yaw) controller -thus, roll/pitch/yaw feedback is used to internally stabilize the UAV around the set-points

in question; in the second case, a “visual controller” computes directly the roll/pitch/yaw inputs, thus using

visual information alone to stabilize the UAV.

The type of control based on the “look-and-move” principle is known as visual servoing and has its origins

in robotics, in particular in the area of manipulator control based on the use of exteroceptive sensors such as

mono/stereo cameras. As for using visual servoing for the control of airborne vehicles there are only few

studies available, and none of these answers some questions related to the fundamental aspects of the nature

of visual servoing for UAV’s. The important issue here is: which concepts, principles, architectures, tasks,
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and associated techniques, from visual servoing for robotics are applicable to the case of UAVs? After having

studied the literature on visual control of UAVs we came to the conclusion that there was no systematic study

that could provide the answer. The term “visual servoing” has been applied in a number of cases concerning

particular autonomous capabilities of UAVs (fixed-wing and rotor aircraft), but there was no attempt to define:

1) what visual servoing for UAVs actually is?; 2) what are the restrictions on the applicability of existing

visual servoing methods to the case of UAVs?; 3) what can be possibly new solutions when existing methods

cannot be applied or are too restrictive.

In this context, our future work will aim at providing systematic answers to the above three questions.
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