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AbstractThe task of monitoring the execution of a software-based controller in order todetect, classify, and recover from discrepancies between the actual e�ects of controlactions and the e�ects predicted by a model, is the topic of this thesis. Model-based execution monitoring is proposed as a technique for increasing the safety andoptimality of operation of large and complex industrial process controllers, and ofcontrollers operating in complex and unpredictable environments (such as unmannedaerial vehicles).In this thesis we study various aspects of model-based execution monitoring,including the following:The relation between previous approaches to execution monitoring in ControlTheory, Arti�cial Intelligence and Computer Science is studied and a common con-ceptual framework for design and analysis is proposed.An existing execution monitoring paradigm, ontological control, is generalizedand extended. We also present a prototype implementation of ontological controlwith a �rst set of experimental results where the prototype is applied to an actualindustrial process control system: The ABB STRESSOMETER cold mill atnesscontrol system.A second execution monitoring paradigm, stability-based execution monitoring, isintroduced, inspired by the vast amount of work on the \stability" notion in ControlTheory and Computer Science.Finally, the two paradigms are applied in two di�erent frameworks. First, in the\hybrid automata" framework, which is a state-of-the-art formal modeling frame-work for hybrid (that is, discrete+continuous) systems. Secondly, in the logicalframework of Golog and the Situation Calculus.
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Chapter 1IntroductionThe topic of this thesis is the task of monitoring the execution of software-basedcontrollers in order to detect, classify, and recover from discrepancies between theactual (measured) e�ects of control actions and the e�ects predicted by a model.Model-based execution monitoring is proposed as a technique for increasing thesafety and optimality of operation of large and complex industrial process controllersand for controllers operating in complex and upredictable environments (such asunmanned aerial vehicles).We are interested in discrete or hybrid software-based control systems. Such sys-tems can be found in applications ranging from microwave ovens to nuclear powerplants and paper mills. However, we limit ourselves to two important classes ofapplications: Autonomous Systems and Industrial Process Controllers. By \Au-tonomous Systems" we, in this thesis, mean control systems that operate in highlyunpredictable environments, such as control systems for mobile robots or unmannedaerial vehicles. An industrial process controller, on the other hand, may operate invery \well-engineered" environments, that is, environments where e�ects of actuatorinvocations may be predicted with high precision. One complicating factor for suchsystems is that they typically are very large. We will argue that these two typesof systems exhibit similar kinds of problems, and we will address those problemswithin the same framework.Another conceptual dimension of control systems that is important to this thesisis the type of control performed by the control systems in question. We are interestedin two types of control: Stabilizing and Sequential control1.A stabilizing controller is assigned to maintain a certain property in its operatingenvironment. A trivial example is a thermostat that measures the temperature insidea room and then turns a heater on or o� to maintain a predetermined temperature.A sequential controller ensures that a sequence of actions are executed properlyin an environment, until the system has reached some goal. An example of such asystem is a chemical process plant where, for example, a tank must have a certain1In control theory a third type, tracking control, is often studied. We will not consider this type.� 9 �



Chapter 1. Introductiontemperature and pressure before a chemical is inserted into the tank. That is, �rstthe temperature and pressure have to be set, then the chemical can be inserted. Wewill argue that, from the perspective of this thesis, that stabilizing and sequentialcontrol are fundamentally di�erent, and that solutions to problems of control systemsdescribed in the next section, need to be di�erent for the two types of control.1.1 ProblemAs more safety critical systems are automated, designers of control systems are ex-periencing an increasing demand for safe and optimal operation of their systems.This can ideally be handled by precise mathematical modeling of the control sys-tem, formal veri�cation of safety and optimality criteria and extensive (exhaustive)testing of the system. However, for the types of applications that are in the focusof this thesis such methods can only be used with di�culty, if they can be used atall. The reason for this is complexity. For autonomous systems this means that theoperating environments are too complex for mathematical modeling. It is also lit-erally impossible to formally verify safe and optimal operation in every conceivablecontingency, for example, for an unmanned aerial vehicle. For industrial processcontrollers a major problem is size. No formal veri�cation techniques available canhandle programs consisting of 1'000'000 lines of code, yet such controllers are con-sidered to be small by control engineers in industry. An argument for the use offormal methods is that if the controller is designed in a modular way, every mod-ule could be veri�ed by itself, and the integration of the modules veri�ed as a laststep. Unfortunately, as argued by Dr. Kevin Passino in the preface of [Fodor, 1998],there are no systematic approaches to design of discrete/hybrid systems availablethat would facilitate this kind of modeling and analysis, as there are (an abundanceof) for continuous systems. Moreover, it is hard to economically justify the verytime-consuming (re-) modeling process. This is, in particular, a problem for legacysystems, that is, large well-functioning systems that perhaps have been developedincrementally over decades. It is hard to motivate expensive re-design of systemsthat are working well (but perhaps not optimally or maximally safe), and that evenare market leading (see Chapter 4 for an example of such a system). The typicalsolution to this in industry is to tweak subsystems, to make them perform better,and to extend the existing control program. \Veri�cation" is then typically done bysimulation.The problems addressed in this thesis can be summarized with the following twoquestions:� How can control engineers handle the increasing demands for safety and op-timality of control systems, in settings where the systems themselves or theiroperating environments severely restricts the possibility of precise mathemat-ical modeling?� How can the problem above be solved with minimal introduction cost, that is,minimal cost for introducing new technology?� 10 �



1.2. Execution monitoring1.2 Execution monitoringThe topic of this thesis is execution monitoring which is a technique that addressesthe two problems stated above. The basic idea is that a device (the execution mon-itor) has access to the environment in the same way as the controller, and that themonitor tracks the execution of the controller and its e�ect on the environment. Thisidea is not at all new, for example, the idea of feedback control in Control Theory(which predates the area itself) is a step in this direction. In Computer Science asimilar �rst step was taken with the advent of debuggers in the early '60s. In Arti-�cial Intelligence (AI) the idea was �rst applied to the control system of the mobilerobot \Shakey" at SRI around 1970. Today, the idea has evolved into a sophisti-cated set of techniques which include \Fault-Tolerant Control" in Control Theory[Blanke et al., 2000], \On-Line Steering" in Computer Science [Gu et al., 1997], and\Mode Identi�cation and Recon�guration" in AI [Williams and Nayak, 1996] (theseparticular techniques will be discussed at more length in Chapter 3).We adopt the (abstract) view that an execution monitor is an entity in a systemthat observes the execution of the system (we will be more precise in Chapter 2).In Schroeder [1995] the following seven areas of functionality of execution monitors(or, on-line monitors) are identi�ed:� Dependability includes monitoring fault tolerance and safety.� Performance enhancement includes dynamic system con�guration, dy-namic program tuning, and on-line steering.� Correctness checking is the monitoring of an application to ensure consis-tency with a formal speci�cation.� Security monitoring to detect attempts of security violations such as illegallogin or attempted �le access.� Control includes cases where the monitor system is a part of the environment,possibly to provide computational functionality.� Debugging and testing employs monitoring techniques to extract data froman application being tested.� Performance evaluation uses monitoring to extract data from a system thatis later analyzed to assess the system.This framework will be discussed at more length in Chapter 3.1.3 Model-based execution monitoringIn the AI-sub-area of \Model-Based Reasoning" (see e.g. [Hamscher et al., 1992])the fundamental idea is to develop domain-independent devices for, e.g., diagnosisand simulation. Such devices are used in a particular domain by giving them a� 11 �



Chapter 1. Introductionmodel of the domain. We adopt this methodology in this thesis and aim at thedevelopment and study of domain-independent execution monitoring engines con-structed to work properly if a model with certain properties is given as input. Theexecution monitoring task is performed by comparing measurements from the en-vironment with predictions made by the model. We are concerned with detectingdiscrepancies between the measurements and the predictions, in a �rst step. Thenext step is then to �nd a cause for a detected discrepancy. In model-based diagnosisthis would typically involve identifying a physical component of the system that hasfailed and is a potential cause of the discrepancy. In execution monitoring, however,we are interested in discrepancies between the actual and predicted execution of thecontroller, and, thus, the causes are often more easily described on a more abstractlevel than on the component-level of the system. For example, in Chapter 5 we willdiscuss how various stability criteria of systems may be monitored. Finally, as astep towards increasing autonomy of a system, we study principles for automaticrecovery from detected and classi�ed discrepancies.From the standpoint of Schroeder's framework we are interested in dependabil-ity, performance enhancement and correctness checking.1.4 Overview of the thesisOne of the ambitions of this thesis is to structure and describe the problem ofexecution monitoring which is of interest to computer scientists, control theorists andengineers, and AI researchers and practitioners. In addition we propose methods fordesign and analysis of execution monitors. Thus, in Chapter 2 a detailed account ofthe concepts used in the rest of the thesis is presented. The concepts are put into aframework that could serve as a design methodology for execution monitors. Therewe also consider the research issues involved in this thesis. The framework is alsoused in Chapter 3 where the related work is presented.As mentioned above we separate stabilizing and sequential control systems. Theexecution monitoring schema for sequential control, ontological control, is describedin Chapter 4. An implementation and a �rst set of experiments on a real industrialprocess controller is also described there. In Chapter 5 the schema for stabilizingcontrollers, stability-based execution monitoring, is presented. As \stability" is awell-studied subject in both control theory and computer science, we review thatwork. However, we will argue that for autonomous systems, the existing approachesare not su�cient. We introduce a new notion \maintainability" that relaxes theprevious notions, and develop algorithms for analysis, controller synthesis, and exe-cution monitoring of maintainability.Chapters 4 and 5 are central to this thesis, as the techniques introduced thereare also applied in various settings in the subsequent chapters.In Chapter 6 we study how a wide-spread modeling and veri�cation formalism,Hybrid Automata can be used for execution monitoring. We construct an executionmonitoring engine and show how a hybrid-automata domain model can be translatedinto a representation suitable for that engine. That is, how a model useful for� 12 �



1.5. Contributionsexecution monitoring can be synthesized from a speci�cation. We also show howontological control and stability-based execution monitoring can be applied in thissetting.In Chapter 7 we present a well-studied formal control framework, the Situa-tion Calculus/Golog framework, which is a logical framework, and describe howexecution monitoring can be applied there. Again, both ontological control andstability-based execution monitoring are used. Presentations of some technical de-tails of this chapter, that are not directly relevant to the presentation are postponedto Appendices A and B.In Chapter 8 we draw some conclusions and present some ideas for future work.In brief summary, we will go through the following steps in this thesis:1. Construct a conceptual framework and a design methodology for executionmonitoring, as well as discuss research issues involved (Chapter 2).2. Review existing work on execution monitoring in the light of the conceptualframework (Chapter 3).3. Develop and study two di�erent \paradigms" of execution monitoring: Onto-logical control (Chapter 4) and Stability-based execution monitoring (Chapter5).4. Apply the two paradigms in two formal frameworks: In the Hybrid Automataframework (Chapter 6) and in the Situation Calculus/Golog framework (InChapter 7 and the Appendices).1.5 ContributionsTo the best of our knowledge, there are no systematic accounts of execution moni-toring spanning computer science, control theory, and AI. In fact, there are very fewexamples where researchers reference work in other areas than their own. The at-tempt to bridge the gaps between research disciplines studying execution monitoringis one of the main contribution of this thesis. The idea that execution monitoringcan be regarded as a research area per se, is not very common in the literature. Exe-cution monitors are more often entities that are added to a system as a link betweena reactive control-program execution mechanism and more deliberative mechanismssuch as planners, learning devices etc. However, the success of the model-based exe-cution monitoring system \Livingstone" [Williams and Nayak, 1996] in AI providesan argument that this is a research issue that should be explored to a greater extent.Briey, Livingstone is a model-based execution monitoring system used in NASA'sDeep Space probes (see an account of this and other sophisticated approaches inChapter 3).Below, we discuss the contributions of each chapter of the thesis on a more de-tailed level: � 13 �



Chapter 1. IntroductionChapter 2: Although all the concepts presented in this chapter have been studiedin detail by various research communities, there has been no attempt to �nd generalconstituting principles for execution monitors. We present a number of dimensionsof execution monitoring and propose a design and analysis methodology.Chapter 3: In this chapter, we attempt to discuss and compare approaches to ex-ecution monitoring in computer science, control theory, and AI.Chapter 4: Ontological control was introduced by George Fodor in [Fodor, 1995,Fodor, 1998]. In this chapter we formalize, generalize and extend his work. Wealso present an implementation and a �rst set of experimental results on an actualindustrial process system.Chapter 5: The stability notion has received a large amount of attention both bythe control theory community and the distributed-systems sub-area of computer sci-ence. However, it is not clear how their approaches should be applied to autonomoussystems, where the disturbances of the operating environment are common phenom-ena. In this chapter we introduce a new stability-like notion, maintainability, suitablefor these systems. We formally relate this notion to the existing ones, and providealgorithms for analysis, synthesis and execution monitoring.Chapter 6: There is a problematic gap between the speci�cation of a system, andthe implementation and execution of the same system. In this chapter we attempt anovel approach of bridging this gap by taking a wide-spread speci�cation formalismand transforming it into a formalism that can be used for both ontological controland stability-based execution monitoring.Chapter 7: We believe that logic-based approaches to modeling systems providemany insights that can be used when applying other modeling techniques. Wespend this chapter applying ideas and techniques introduced in earlier chapters tothe Situation Calculus/Golog framework, a well-known logic-based modeling tech-nique used in the area of \Cognitive Robotics". This framework was not designedto accommodate a number of techniques discussed in this thesis, so we extend theframework to be able to model stability, to give a logical account of detection ofdiscrepancies, and to implement a general recovery mechanism.Chapter 8: In this chapter we conclude the thesis and sketch a number of futurepaths that seem to be feasible, interesting and important.1.6 PapersThe work presented in this thesis is based on a set of papers, consisting of pub-lished, refereed material, and unpublished manuscripts intended for publication inthe future. We organize these by the Chapters in which they are used followed by acomplete bibliography:Chapter 2: The functional view of execution monitoring was introduced and ana-lyzed in Bj�areland [1999a].Chapter 4: The theory in this chapter is loosely based on the paper Bj�areland andFodor [1998]. The implementation was done by Per Lewau for his Master's Thesis� 14 �



1.6. Papers[1999]. The application and the results are reported in [Bj�areland and Fodor, 2000].Chapter 5: This work is an extension of the paper [Nakamura et al., 2000].Chapter 6: Preliminary work on execution monitor synthesis was reported in[Bj�areland, 1999a]. Closely related work on controller synthesis can be found in[Bj�areland and Driankov, 1999].Chapter 7: The work on stability is to a large extent based on work by Bj�arelandand Haslum [1999] and [Nakamura et al., 2000] (the presentation in this thesis is anextension of that paper, with new examples, a clari�ed theory and new proofs). Theextension of Pinto's framework to handle surprises was reported by Bj�areland andPinto [2000]. The execution monitoring architecture was introduced by Pinto andBj�areland [2001] and the recovery strategy (MT) in [Bj�areland, 1999b].1.6.1 Bibliography[ Bj�areland and Driankov, 1999 ] M. Bj�areland and D. Driankov. Synthesizing dis-crete controllers from hybrid automata - preliminary report. In Working Papers ofthe AAAI Spring Symposium on Hybrid Systems and AI, Stanford, CA, USA, March1999.[ Bj�areland and Fodor, 1998 ] M. Bj�areland and G. Fodor. Ontological control.In Working Papers of the Ninth International Workshop on Principles of Diagnosis(Dx'98), Sea Crest Resort, N. Falmouth, MA, USA, May 1998.[ Bj�areland and Fodor, 2000 ] M. Bj�areland and G. Fodor. Execution monitoring ofindustrial process controllers: An application of ontological control. In SAFEPRO-CESS 2000 [2000].[ Bj�areland and Haslum, 1999 ] M. Bj�areland and P. Haslum. Stability, stabi-lizability, and Golog. Unpublished, August 1999.[ Bj�areland and Pinto, 2000 ] M. Bj�areland and J. Pinto. Handling surprises inlogics of action and change. Unpublished manuscript, 2000.[ Bj�areland, 1999a ] M. Bj�areland. Execution monitor synthesis for hybrid sys-tems { preliminary report. In Proceedings of the Fourteenth IEEE InternationalSymposium on Intelligent Control (ISIC'99), Boston, USA, September 1999.[ Bj�areland, 1999b ] M. Bj�areland. Recovering from modeling faults in Golog.In Proceedings of the IJCAI'99 Workshop: Scheduling and Planning meet Real-timeMonitoring in a Dynamic and Uncertain World, Stockholm, Sweden, August 1999.[ Lewau, 1999 ] P. Lewau. A prototype of an ontological controller. Master'sthesis, Link�oping Studies in Science and Technology, Link�opings universitet, April1999. No. LiTH{IDA{Ex{9949. � 15 �
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Chapter 2Conceptual framework2.1 IntroductionIn this Chapter a conceptual framework for execution monitoring is described. Thisframework will be used both as a guideline for design of execution monitors usedin subsequent Chapters, and as a framework for facilitating comparisons betweenvarious approaches to execution monitoring. The core of the framework is an ex-traction of �ve functions that constitute an execution monitor: Situation Assess-ment, where the execution monitor computes the current state of the system, giventhe measured inputs, Expectation Assessment which concerns computing thepredicted current state, Discrepancy Detection where the actual and predictedstates are compared and discrepancies between the two are identi�ed, DiscrepancyClassi�cation where detected discrepancies are classi�ed by what caused them,and Recovery where the execution monitor try to force the controlled system backto normal operation.2.1.1 OverviewIn Section 2.2, a glossary for concepts used in this thesis is provided. Di�erentsystems, types of control actions, and properties of model representation formalismsthat inuence the possibilities of performing execution monitoring are discussed. InSection 2.3 we explore various de�nitions of execution monitoring proposed in theliterature. A de�nition inspired by these de�nitions is proposed and examined. Wealso distinguish between meta- and object-level execution monitoring. In Section2.4 we discuss interesting research issues involving execution monitoring, primarilyto place the contributions in Chapters 4, 5, 6, and 7 into a proper research context.Finally, in Section 2.5 we present a systems-theory view of execution monitoring,which is used as a common formal framework for the results in Chapters 4, 6, and7. � 17 �



Chapter 2. Conceptual framework2.2 Closed-loop control systemsExtActions
Controller

PlantAct Sense
Figure 2.1: A closed-loop control system.The systems of interest in this thesis are discrete closed-loop control systemsdepicted in Figure 2.1. Such systems consist of a mechanism called a controllerwhich, given some input, generates an actuator invocation signal or control action.The control action is executed by actuators that are in direct contact with the plant.There is also a possibility of observing the behavior of the plant via sensors, whichsend signals back to the controller.Typically in control theory, there is a distinction between two di�erent types ofcontrol: stabilization and tracking. Stabilization concerns maintaining the outputsof the plant within a given set of states (the reference \point"). For tracking, thegiven set of states may vary (the reference point is time variant). Tracking controlis not considered in this thesis.In this thesis we focus on stabilizing control as well as sequential control, whichcould be viewed as a third type of control. In sequential control the control goalis to force the plant into a goal state with the highest priority possible. This cancorrespond to plan execution systems, where the execution is successful if the givengoal is reached. However, in industrial process control it is common that the goalstate is trivially satis�ed during the entire execution of the sequence of actions andthat the important issue is to successfully execute the actions in the given order. Forexample, in a chemical process system there may be a sequence where a tank musthave a certain temperature before a chemical is introduced and then the pressure inthe tank has to have a certain level before a second chemical is added. The goal isthat the system should be ready for \normal" execution. This is also the case in theapplication described in Chapter 4.In Section 2.4 we will discuss di�erences between stabilizing and sequential con-trol and argue that they require di�erent execution monitoring strategies.We assume that control is governed by control programs, which are instructionsthat are executed by the controller. Formally, we view a control program as a relation� 18 �



2.2. Closed-loop control systemsbetween sensor inputs and control actions. A system where there is no feedback tothe controller is called an open-loop control system.This generic view of a control system in its abstract form is common in bothcontrol theory and AI. In AI, a control system often contains a planner which is asystem that synthesizes a control program (or, plan). Conventional AI planners, suchas Fikes and Nilsson's [1971] STRIPS , Chapman's [1987] TWEAK, and Blum andFurst's [1997] GRAPHPLAN, can be viewed as control-program synthesis programs.For execution, it is possible that the plans may be used for open-loop control, if theyare executed without any sensor feedback. If the intended use of the plans are closed-loop control, it is necessary to add some monitoring mechanism to handle feedbackto the controller. For such systems, the controller in Figure 2.1 can correspond toa plan execution mechanism. There are other AI systems where the synthesizedcontrol program or the planner itself considers sensor information while controlling,and for those cases the controller in Figure 2.1 may depict the entire planning system.This issue will be discussed in Chapter 3.In control theory the well-studied feedback control systems, for example PIDcontrollers [Faurre and Depeyrot, 1977], provide an instance of the class of closed-loop systems.Plant states are assumed to be sampled with a certain time interval. There area number of problems associated with sampling intervals of too long a duration, butwe bypass such problems in this thesis by assuming that the sampling intervals canbe set to be su�ciently short. This may appear as an unrealistic assumption, but inour experience (from the application described in Section 4.5), discrete state changescan be captured within sampling frequencies of 50-100 Hz.From the perspective of the controller, the plant can, statically, be de�ned as thespace of possible sensor value vectors. That is, the world to the controller is exactlyde�ned in terms of what it can sense. It is, however, possible that control programsdepending on the sensor value vectors can be constructed only with di�culty, that is,it is easier to construct the control program from more intuitively appealing aspectsof the plant than from the input signals. Thus, for many sensory systems, forexample systems with vision sensors (e.g. cameras), the control programs use someabstraction of the sensor inputs. For example, instead of using the large amount ofdata a vision system produces every sampling instance, the control may only be basedon changes between frames. It is also possible that the control program is de�nedin terms of particular objects such as blocks or cars on roads. It is then necessary tomap sensor inputs to such objects before the controller can be invoked. In controltheory, such mappings may be trivial, if the control is de�ned directly in terms ofthe sensor signals. If the system is de�ned in terms of its \state-space" the mappingsmay not be as straight-forward. The current trend in process control is to use anobject-oriented software architecture (see for example [Carpanzano et al., 1999]. Forsuch systems the sensor-to-representation mapping may be non-trivial. In AI theremay be a considerable leap between sensor signals and the internal representationused by the controller. We henceforth use the term state variable to denote anaspect used by the controller. Examples of such aspects are temperature, pressure,� 19 �



Chapter 2. Conceptual frameworkand position or color of an object. Thus, the value of a state variable may directlycorrespond to a sensor value (as for temperature and pressure), or can be the resultof a non-trivial computation on sensor value vectors (as for the position of an objecton a map computed from sonar readings).2.2.1 Control actionsIn this thesis, we will be concerned with actual and expected e�ects of control ac-tions to the extent that it is necessary to discuss the concept and to expose some ofthe intricate issues that it involves. From our perspective a control action is an invo-cation signal from a controller to an actuator. Thus, we use the phrases \executingthe control action A" and \sending the action invocation A to the actuators" inter-changeably. It is possible that in the control program a control action is guardedby a condition, that is, that the control action is only executed if the correspondingcondition is satis�ed.A control action may be an invocation of a toggle action that can be assumedto be instantaneous (for example, icking a switch), or invocation signals that aretemporally extended (for example, invocation of a PID controller or throwing a rockup in the air where the e�ect of the control action, that is, that the rock hits theground, can be sensed only after some time period). For the latter we distinguishbetween energized and ballistic control actions (this distinction is due to Nilsson[1994b]). By an energized control action we mean an action whose guarding conditionmust be true for the action to be executed, that is, an energized action is executedas long, and only as long as its condition is satis�ed. A ballistic action invocation isinstantaneous while the action itself is temporally extended. For example, the actionof throwing a rock into the air may be seen as an instantaneous action invocation,but the action itself continues after the invocation. It has been argued that energizedactions are special cases of ballistic actions [Lee and Durfee, 1994], and even if thisis the case, the distinction is of importance for prediction of e�ects of control actions,which is central to execution monitoring: If every controller action is energized, thenstate transitions occur exactly when some actions stop being executed and some newones are started. This does not hold in general for ballistic actions.2.2.2 RepresentationThe concept of models has rendered a fair amount of attention in many di�erentscienti�c disciplines, and a number of di�erent meanings are associated with theconcept. We equate models with prediction mechanisms, and thus, will adopt thefollowing generic de�nition:De�nition 2.2.1 (Model)A model is an entity that enables predictions of e�ects of a control system.2In the context of Figure 2.1, this de�nition implies that a model is a predictivemechanism of the whole closed-loop system. Examples of modeling \formalisms"satisfying the de�nition include � 20 �



2.2. Closed-loop control systems� di�erential/di�erence equations,� state transition diagrams,� �nite automata of various kinds,� temporal logics,� planning operators, and� stochastic processes.This de�nition may be criticized for various reasons, but for the purpose of executionmonitoring we argue (in Section 2.3) that it is su�cient.SituationCalculusStatetransitiondiagrams AutomataHybridStrength of CWAmodelexplicitNo
Figure 2.2: The Closed World Assumption dimension of modeling formalisms.Clearly, there is a model underlying the design of every control program, sincea control system designer necessarily has some expectations on the e�ects of actionexecutions. The question is how \well" the model is represented. By \well" we meanhow precise the modeling formalism enforces the models to be, with respect to thepossible predictions from the model. We call this dimension \Strength of ClosedWorld Assumption" (SCWA)1, depicted in Figure 2.2, and it is one of the centralissues of this thesis. The SCWA dimension has been introduced independently in[Falkenroth, 2000] as one of the three dimensions of the functionality of simulationdata systems. The reader should note that SCWA does not measure the relationbetween a model and the plant that it models. It is a measure on formalisms, andthe precision a formalism enforces when it is used for modeling. We will say thatthat the SCWA increases (decreases) as we move to the right (left) on the SCWAaxis. Formalisms on the far right (left) end on the axis are said to have high (low)SCWA.It should be noted that the term \representation" is intended to encompass bothsyntax and execution semantics of a modeling formalism. Execution semantics isthe description of how the evolution of a system manifests itself in terms of thesyntax, that is, precise notions on when the system is in a particular state, whenactions are executed, and when state transitions occur. For some formalisms, suchas some versions of di�erential/di�erence equations and the situation calculus, theexecution semantics is clear, since it is assumed that the system dynamics is perfectly1We are using the notion CWA in a more abstract way than in the original work by Reiter[1978], or any of the extensions (see [ Lukaszewicz, 1990] for a survey).� 21 �



Chapter 2. Conceptual frameworkmodeled2. For other formalisms, such as hybrid automata, a \simulation semantics"is speci�ed, which does not specify how sensor signals from outside the simulatorare to be handled. For state transition diagrams there are numerous ways in whichexecution semantics can be de�ned. If we look at the state transition diagram inx = v y = v0aS1 S2
Figure 2.3: A small state transition diagram.Figure 2.3 it will be interpreted as \if x = v (we are in state S1) and we executethe control action a, we will eventually end up in a state where y = v0 (S2)". Twosemantic questions that immediately arise are what the value of y is in S1 and whatthe value of x is in S2, since neither of the variables are explicitly represented inthose states. If we, for example, assume that nothing changes unless the changeis explicitly represented3 we would have a semantics where the value of y in S1is unknown but that x = v in S2. Another assumption could be that nothing isexplicitly represented unless it changes which would imply that y 6= v0 in S1 andthat x = v in S2. However, in this thesis neither of the two last assumptions areused for state transition diagrams. The consequence of this is, in our example, thatthe values of y at S1 and of x at S2 are unknown. We state the assumption we douse as follows:Assumption 2.2.2 For a transition due to a control action in a state transitiondiagram the control action is started when all explicitly represented propositions inthe starting state are true, and eventually ended in a state where all the explicitlyrepresented proposition in the ending state are true.2Assumption 2.2.2 does not restrict the length of a control action, or give a precisemeaning of when state transitions occur. These are problematic issues that arediscussed in Chapter 4. In Reiter's terminology [Reiter, 1978], Assumption 2.2.2 isan instance of the Open World Assumption.In the \low" end of the SCWA axis we �nd \no explicit model" and the higherthe SCWA gets, the more precision the modeling formalism enforce, as depictedin Figure 2.2. Examples of \no explicit model" are Brooks subsumption architec-ture [Brooks, 1991] and PENGI [Agre and Chapman, 1987]. Note that underlyingthese \reactive" control architectures, there certainly are models, but not explicitlyrepresented models that can be used and manipulated as \1st class citizens". This2By \perfectly modeled" we mean that the dynamics of the system as well as all potentialdisturbances and faults are incorporated in the model.3This is an assumption used in many approaches to Logics of Action and Change and is discussedin Chapter 7. � 22 �



2.2. Closed-loop control systemsmeans that no predictions about the behavior of the closed-loop system can be made.These systems are of no immediate interest to us, but in Chapter 4 we will describeexperiences from a project where a model was (semi-automatically) extracted froma (data-ow based) control program that lacked an explicit model. The modelingformalism used in that Chapter is based on state transition diagrams which enforcespredictions only on the expected next state of a control action executed in a particu-lar state, and not on the evolution of state variables over time, following Assumption2.2.2.If we now look at the high end of the SCWA in Figure 2.2, we �nd \complete"modeling formalisms, that is, formalisms that enforce precise modeling of how statevariables change over time due to control actions. This means that we can predictthe value of every state variable at any time point. In Chapter 7 we use Gologand underlying theories in the Situation Calculus to represent this other extreme.Other examples of very precise formalisms are planning formalisms (such as STRIPS[Fikes and Nilsson, 1971]), where the exact e�ects on every state variable are mod-eled.A �nal example of precise formalisms is di�erential/di�erence equations, whichare the main modeling tool for conventional continuous systems.From the de�nition of a \model" it is clear that our purpose for using modelsat all is to make predictions about e�ects of control actions. We have informallyde�ned the SCWA as a measure on the precision of the predictions than can be madefrom the formalism. This measure is also interesting from other perspectives, andhere we list some of them:Procedural/Declarative representationWith a slight simpli�cation it is possible to argue that industrial-type controllersbasically consist of production rules.4 This implies that if there is no explicit model(the far left on the SCWA axis) the production rules constitute all the knowledgerepresentation we have. This can be called a purely procedural representation ofknowledge, in the sense that the only kind of reasoning that can be performed is\what do I do, given this input?". For example, consider the following controller(that actually could be the controller for the state transition diagram in Figure 2.3):x = v ) ay = v0 ) a0We assume that the control actions (a and a0) are executed whenever the corre-sponding preconditions (x = v and y = v0, respectively) are satis�ed by inputs tothe controller. Obviously, there is no information about the expected e�ects of thecontrol actions a and a0. The only thing we can say is that whenever x = v issatis�ed then a is executed, and whenever y = v0 is satis�ed, a0 is executed.4Industrial-type controllers necessarily need to react very rapidly to sensor inputs and thisplaces strong limitations on the potential use of memory or more intelligent control mechanismsthan those used by productions rules. For example, all the PLC languages in the IEC 1131-3standard [Lewis, 1997] are of this kind. � 23 �



Chapter 2. Conceptual frameworkHowever, in some cases it is possible to do somewhat better: In Chapter 4 we willextract a richer representation from a control program. The extraction algorithmis based on engineering intuitions, that is, an assumption that the programs arewritten according to good engineering practice. Thus, there is information aboutexpected e�ects of actions implicit in the control program. In terms of SCWA suchprograms are a little higher on the score than the lowest possible SCWA.At the high end of the SCWA axis we have declarative formalisms, where knowl-edge about the dynamics of the modeled system is given independent of any speci�creasoning system. This does not mean that the controller there is di�erent fromthe controllers to the far left, but that there exists explicitly represented knowledgeabout the controlled system that the controller or an execution monitoring systemcan use.There has been a discussion between advocates of procedural and declarativeknowledge representation in AI almost for as long as the area has existed (see for ex-ample [Rich and Knight, 1991]). We do not believe that these two concepts providea dichotomy. Instead the SCWA dimension shows that, for a given control system,the representation used is procedural (or declarative) to a certain degree.Explicit plant representationAnother aspect, related to the previous, is the precision with which the controlledsystem (the plant) is modeled. In conventional control theory (see for example Fau-rre and Depeyrot [1977]) the standard approach for controller design (and automaticsynthesis of controllers) is begun by modeling the open loop system, that is, �nd-ing the di�erential equations governing the input/output behavior of the plant. Byintroducing some desired property (such as a reference value for stabilizing control,or a goal), mathematical methods are then used to construct the controller (suchas the Ziegler-Nichols rules for PID controllers). In the context of this Section, theinput/output behavior precisely represents the plant.On the low end of the axis, there is an approach that is not uncommon in indus-trial process control: A control program is written by an engineer with good domainknowledge, and the program is then simulated and/or tested until a certain levelof reliability is reached. In this case the plant dynamics is taken into considerationduring controller design, but is never explicitly represented.If the representation of the plant is done using state transition diagrams, followingAssumption 2.2.2, we do not have as high precision as in the conventional controltheory case, but higher than in the industrial process control case.Action type expressivityAnother aspect of the SCWA dimension is the expressivity of representation of actiontypes. For the \no explicit model" end of the dimension, there is no real notion ofan action type; actions are executed when their preconditions are satis�ed by inputsto the controller. There is no point in distinguishing between, for example, context-dependent actions, nondeterministic actions, concurrent actions, actions with side-e�ects, instantaneous actions, actions with duration, and so on.As the SCWA increases, it is possible to see that such distinctions do becomepossible, and interesting. For example, for hybrid automata, the same action can� 24 �



2.3. Execution monitoringswitch the system into di�erent continuous behaviors, depending on the context inwhich it is executed.At the high end of the axis, the notion of action types is important. The complex-ity of the action types and their possible interaction greatly inuences the robustness(and complicates the modeling) of the prediction mechanisms associated with sys-tems that use such actions. The logical mechanisms necessary to model, for example,concurrent actions are quite di�erent from those required to handle sequential (non-concurrent) actions (see Chapter 7 and Appendix B).Modeling pragmaticsThe task of using the formalisms becomes increasingly di�cult as the SCWA is in-creased. It is, for many reasons, desirable to have as complete a model as possible,but when the complexity of the control system increases, the feasibility of modelingit precisely decreases radically. This implies that a control designer must handle adi�cult trade-o�: The model should be as rich as possible, but the modeling taskshould not be too time consuming. The intermediate formalisms in Figure 2.2 (statetransition diagrams and hybrid automata) do not enforce complete models, eventhough it is possible to construct such models in them. This means that a designerhas the possibility of adding as much information as he or she can.2.3 Execution monitoringThere is no consensus in the literature on how to de�ne execution monitoring. Forexample, Dean & Wellman in their book "Planning and Control" [1991] choose thefollowing de�nition:"In robot planning, the process of sensing the state to inuence subse-quent action is called execution monitoring."Another, more unorthodox, de�nition is due to Sa�otti [1998]:\Thus, monitoring does not consist in matching the observed executionagainst some \expected" course; rather, it should distinguish situationsfor which the information in the plan is relevant from situations for whichit is not."Sa�otti's de�nition is motivated by the fact that there is no crisp notion of \nextstate" that can be generated from his representation. His approach will be discussedat more length in Chapter 3.In this thesis we turn to a de�nition that will be of more use to us as a method-ology for designing execution monitors as well as for comparing existing approachesto each other.Following De Giacomo et al. [1998] we choose the following augmented de�ni-tion5:5The original de�nition by De Giacomo et al. excludes the classi�cation of discrepancies.� 25 �



Chapter 2. Conceptual frameworkDe�nition 2.3.1 (Execution monitoring)Execution monitoring is an agent's process of identifying discrepancies between ob-servations of the actual world and the predictions and expectations derived fromits representation of the world, classifying such discrepancies, and recovering fromthem.2The de�nition of \model" (De�nition 2.2.1) is motivated by this de�nition of exe-cution monitoring. It should also be noted that \the execution of control actions"is not mentioned in de�nition 2.3.1. The reason for this is so that other techniquesfrom related areas such as Estimation Theory, System Identi�cation, and Model-Based Reasoning, that not necessarily directly concern controller execution, remainconsistent with the de�nition we propose, and can provide valuable insights andperspectives to execution monitoring.2.3.1 Meta- vs. Object-level execution monitoringIn the early seventies, the distinction between meta-level and object-level execu-tion monitoring appeared in the AI literature. The ground breaking work on theSTRIPS planner by Fikes and Nilsson [1971] at SRI was applied to their robotShakey. In [Fikes et al., 1972] they proposed a special plan execution mechanism,PLANEX, with the purpose of executing and monitoring STRIPS plans. PLANEXwas a separate architectural entity in the robot control system that detected dis-crepancies and performed plan repair using Nilsson's triangle tables (see for example[Nilsson, 1982]).At the same time, also at SRI, Munson [1971] suggested that monitoring shouldbe incorporated in the plan, that is, that the robot plan should be interleaved withmonitor formulas. The monitor formulas should detect, and possibly classify, dis-crepancies, and alert a re-planning mechanism if necessary.Meta-level execution monitors, as we choose to name execution monitors that areseparate entities connected to the controller of a system, with access to the inputs andoutputs of the controller are represented in the literature by the work of Sacerdoti[1977], Broverman and Croft [1988], Ambros-Ingerson and Steel [1988], Hammond[1990], Beetz and McDermott [1994], Lyons and Hendriks [1995], Simmons et al.[1997], and by Earl and Firby [1997]. A body of work on object-level executionmonitoring, where execution monitoring is interleaved with the control program, andhandled by the control language constructs, can be found in work by Munson [1971],Doyle et al. [1986], Abramson [1991], Musliner et al. [1995], and by DeGiacomo andLevesque [1999].It is di�cult to �nd a crisp distinction between meta- and object-level executionmonitoring. Tentatively, we propose that the distinction can be made in terms ofhow the model relates to the execution monitor. That is, if execution monitoringmechanisms are included in the model of the closed-loop system, we have object-level execution monitoring, and if the the execution monitoring mechanisms canmanipulate and reason about the model, we have meta-level execution monitoring.One can imagine a system that cannot be distinctly classi�ed as being either meta-� 26 �



2.3. Execution monitoringor object-level according to this criterion. However, the distinction above su�ces asa basis for the subsequent discussions of this thesis.There are advantages and disadvantages to the two approaches. Object-levelexecution monitoring follows, in a sense, a control theoretic tradition where a majorgoal is to describe the entire control system within one theoretical framework. Con-ventional control systems can be described as systems of di�erential equations, whichincorporate various forms of execution monitoring and diagnosis in itself. In simi-lar spirit, if monitoring information is included in plans, we have planning systemswhere only the plans generated by the planner have to be analyzed. The system isindependent of the architecture, which supposedly implies easier and more coherentpossibilities of modeling, design and analysis.Meta-level execution monitoring, on the other hand, solves the problem of planexecution more in line with traditional applied AI and robotics. A major goalthere is generality and modularity (and not necessarily coherent theories). How-ever, there does exist theoretically oriented AI research on combining di�erent for-malisms: For example in the area Hybrid Knowledge Representation. See for example[Chittaro et al., 1993].) An execution monitoring system should be applicable in awide variety of domains, and therefore computations should be organized so that aminimal number of changes are necessary when switching domains.The distinction between object- and meta-level execution monitoring is madefrom a modeling (or, knowledge representation) point of view. In this thesis we arein favor of meta-level execution monitoring, though we will discuss approaches toobject-level execution monitoring in some detail.2.3.2 A functional view of execution monitoring
SituationAssessment ExpectationDiscrepancyDetectionClassi�cationRecovery

Assessment
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Figure 2.4: The functional view of execution monitoring.It is possible to extract �ve distinct functions that constitute an execution mon-itor from De�nition 2.3.1 (see Figure 2.4).� Situation Assessment: A (partial) function from inputs to the controller,� 27 �



Chapter 2. Conceptual frameworkto states in the model. Answers the questions: \In what state is the systemright now, w.r.t. the model"?� Expectation Assessment: A (partial) function from states and control ac-tions to new states according to the model. Embodies the expected e�ects ofcontrol actions. Answers \In what state is the system expected to be"?� Discrepancy Detection: A function that from situation and expectationassessments decides whether a discrepancy has occurred. Answers \Did some-thing not go as expected"?� Discrepancy Classi�cation: A function that yields an explanation (or pos-sibly, a cause) of a detected discrepancy. Answers \What went wrong"?� Recovery: A function that returns a sequence of control actions to be exe-cuted. As side-e�ects the recovery function may change the model, the controlprogram, or it may simply start an alarm to alert an operator. Answers \Howdo we continue the execution"?These �ve functions have been addressed in the AI literature since the emergenceof the �eld in the 1950's and each function still contains open problems. Below, wewill briey explain the functions, but postpone more detailed discussions on relatedwork to Chapter 3.Situation assessment is about mapping the sensory signals to states in the model,given a model at a di�erent conceptual level than the sensory signals. In ControlTheory an example of situation assessment would be mappings between the mea-surement space and the state space of a system. In AI and Robotics, an importantpart of a situation assessment mechanism could be anchoring, for example studiedby Coradeschi and Sa�otti [2000], which is de�ned as the process of creating andmaintaining the correspondence between symbols and sensor signals that refer tothe same physical object.In control theory, as in many AI type execution systems, situation assessment isoccasionally not addressed as a particular problem. Then, it is common to assumethat the mapping from inputs to states in the model is straightforward. The problemof handling, e.g., noisy sensors is not de�ned as a situation assessment problem, butrather as a discrepancy detection problem, where the noise needs to be �ltered foran accurate detection of \real" discrepancies.By expectation assessment we mean temporal prediction, that is, a mechanismthat can predict the next state (or, sequence of states) of the system given theprevious state(s) and (possibly) a control action. In certain systems expectationassessment and situation assessment are indiscernible functions, where the inputsand the predictions are both used to compute the most probable current state (thisis for example done with observers [O'Reilly, 1983, Misawa and Hedrick, 1989] andKalman �lters [Kalman, 1960, Sorensen, 1985] in control theory).Discrepancy detection is the task of �nding discrepancies between the currentstate and the expected state, and in its simplest form it consists of comparing the� 28 �



2.4. Research issuesinput signals to a reference vector which may yield a residual (a description ofthe possible discrepancy). We would like to view it as the task of comparing theresult from the situation assessment to the result of the expectation assessment.For example, discrepancy detection could be the logical task of �nding out if thelogical formula describing the assessed situation is simultaneously satis�able with theformula generated by the expectation assessment (this approach is used in Chapters4, 6, and 7).By discrepancy classi�cation we mean the task of �nding a cause for a detecteddiscrepancy. This could imply identifying faulty components, actions (or plan seg-ments) that failed, or, as we do in Chapters 4 and 7, distinguishing between distur-bances and inadequate models (faulty expectations).Finally, we turn our attention to recovery, which is the most di�cult function tocharacterize. Recovery may be interpreted as meaning a number of di�erent things,but the most important is to ensure that a system that has experienced a discrepancycontinues to control the plant in a satisfactorily manner. That is, the most importantoutput of a recovery function is a new (sequence of) control action(s). This may,however, not be enough. For example, in a setting of component-based diagnosis, ifthe classi�cation function has identi�ed a faulty component, let's say a valve thatis stuck closed, it is necessary to take that information into consideration duringcontinued control. This may imply that the controller needs to use some other valveto achieve the same e�ects as before the valve broke. In this case the controller(control program or plan) needs to be changed, as a side-e�ect of the task of �ndinga new appropriate control action. If the classi�cation has identi�ed that the currentmodel is inadequate, on the other hand, it may be necessary to recover by updatingthe model.2.4 Research issuesIn this Section we will look a some of the research issues that arise in the context ofexecution monitoring of discrete closed-loop systems. The issues we examine are� Purpose: The purpose of execution monitoring may, at a low level of gran-ularity, be one of the areas of functionality presented in Chapter 1. In moredetail, the research issue here is to identify di�erent types of discrepancy clas-si�cations that may be of interest, and examine the circumstances under whichthey can be used. We will look at two types: Ontological Control and Stability-Based execution monitoring.� Design/Synthesis: Following the tradition of model-based reasoning, we areinterested in developing domain-independent engines for execution monitoring.The engines then take the domain-dependent model of the closed-loop systemas an input. The research issue of interest here is how to design such enginesand how to synthesize models (from scratch or from already existing modelsin other formalisms) appropriate for certain types of execution monitoring.� 29 �



Chapter 2. Conceptual framework� Analysis: For complex systems we cannot expect to �nd a general solutionto the problems posed in Chapter 1. It is clear that only subclasses of systemscan be subject to any type of execution monitoring. An important researchissue is therefore to analyze and �nd tools for analysis of the applicability ofgiven execution monitoring paradigms.� Application: Even though a user-friendly set of generic synthesis and analysistools may be available, it is typically non-trivial to apply the theories to anactual system. It is, thus, of importance to apply the theories to systems insystematical ways and to document and discuss the application in detail.We will now more closely discuss how the four research issues are addressed in therest of this thesis.2.4.1 PurposeA natural question that arises for execution monitoring is: What should be moni-tored?. A coarse set of possible answers to that question can be found in Chapter 1,in the list of the seven areas of functionalities. But even if we state that we wouldlike to detect deviations from predictions by a model, there are still questions to beanswered. First, as mentioned in Chapter 1, we have assumed that the operatingdomains are too complex or uncertain for precise mathematical modeling. This im-plies that there always will be discrepancies between predictions by the model andplant signals. However, not all such discrepancies require action. As an example wecan take a UAV where a certain trajectory is predicted by a model and where a gustof wind suddenly moves the UAV away from that trajectory. Within certain boundsthe system should be able to recover from such a discrepancy itself, while an abruptchange of location outside the bounds should be treated more seriously.The particular type of classi�cation and recovery schema we will investigate isBenign/Malignant (BM) classi�cation and Model Tuning (MT) recovery. The basicidea is that every detected discrepancy should be classi�ed as either being benign (inthe sense \harmless") or malignant (in the sense \possibly harmful"). For benigndiscrepancies we then recover by using the current model, perhaps with re-planningto get the system back on track. For malignant discrepancies we also need to rely onsome form of re-planning, but we will also modify the model to make sure that thesame discrepancy will not appear again. This modi�cation technique will be calledmodel tuning.In this thesis we will look at two particular instantiations of BM classi�cation:Ontological Control and Stability-Based execution monitoring.Ontological controlOntological control is an execution monitoring paradigm developed for sequentialcontrol, primarily for industrial process controllers. In such controllers a sequenceof states has to be traversed. If an expected state does not materialize when itshould, the controller typically invokes a recovery action to force the system to redo� 30 �



2.4. Research issuesearlier steps of the sequence. For example, if it is important that a tank has a cer-tain pressure before a chemical is introduced in a chemical process plant, and thepressure suddenly drops, the controller will force the system to an earlier state inthe system where the pressure is re-established. Ontological control emerged fromthe need to detect and handle in�nite recovery cycles, that is, in�nite sequences ofstates where the controller is trying to recover from a discrepancy. One cause ofsuch cycles is violations of ontological assumptions. That is, all su�ciently complexcontrol systems rely on some underlying unmodeled assumptions that are necessaryfor the validity of the controller. Such assumptions (ontological assumptions) maybe violated. By introducing the notion \perfect sub-model" we are able to detectsuch violations and distinguish them from benign discrepancies.In Chapter 4 we will develop a theory of Ontological Control and report a set ofexperimental results from an application of the theory. In Chapter 7 we will refor-mulate ontological control in the Situation Calculus framework.Stability-based execution monitoringFor stabilizing controllers we have an almost completely di�erent situation than forsequential controllers. Cycles of states are not a problem; it is in fact the goal ofthe control, in the sense that the controller is forcing the plant to remain within acertain set of states, call it S. Now, any discrepancy will either make the systemremain within S, or take it outside. In the �rst case we have a benign discrepancy(since the control goal is still achieved), and in the second the stability is violatedand we have a malignant discrepancy.In Chapter 5 we investigate the stability notion and present a weaker notion:\maintainability" that appears to be more applicable to robotics applications than\stabilizability". These notions are applied in Chapters 6 and 7.2.4.2 Design and synthesisWe are interested in designing generic engines for execution monitoring that areable to handle models in formalisms with a certain form. For ontological control theprinciples behind this are studied in Chapter 4, and for stability-based executionmonitoring the principles are studied in Chapter 5.A problem we have discussed earlier in this Chapter is how to handle proceduralmodels. For industrial sequential controllers it is not uncommon that the onlymodel available is the control program itself. For control programs in general, itis impossible to generate a model with a higher SCWA (as argued above) thanthe program itself. But, for real process controllers more systematic program designschemas are used, that is, for well-engineered systems it is possible to extract modelswith more predictive power than the program has itself. We show how this can bedone semi-automatically in Chapter 4.Another problem arises when we have a speci�cation of the closed-loop system.There are typically a number of di�erent ways in which a speci�cation can be im-plemented, so the goal is then to synthesize a model of the closed-loop system that� 31 �



Chapter 2. Conceptual frameworkcan handle any control program implementation. In Chapter 6 we show how astate-transition model can be synthesized from a Hybrid Automata speci�cation.2.4.3 AnalysisNeither ontological control nor stability-based execution monitoring apply to allcontrollers. This means that an important research issue is to investigate underwhat conditions the theories can be applied.For ontological control we (in Chapter 4) identify a set of restrictions on se-quential controllers that are necessary for successful application of the theory. Therestrictions are� Perfect sub-model : Violations of ontological assumptions imply that the cur-rent model of the system is inadequate. To detect this we cannot, of course,use the model itself as a reference point. The solution to this is to assumethat some sub-system is working perfectly (such as the actuators), and thatthe model contains a sub-model of this sub-system. This sub-model is thenused as the reference.� Non-logging : In the model, there may be state transitions that only are used fortracking the execution of one particular action. This is called logging. Loggingprevents precise distinction between states during execution, and thereforemakes prediction very di�cult. In ontological control we assume that thesystem is non-logging.� Energized actions : To be able to precisely predict when state changes occurwe require that all actions are energized (which are de�ned above).For stabilility-based execution monitoring we have a slightly di�erent problem. Inprinciple we can apply this paradigm to any controller; the form of the models arenot very important. However, we require that the system is stable with respect tosome set of states, S. This is the analysis problem of the paradigm. In Chapter 5we de�ne \stability" and a new, more general, concept, \maintainability", that ismore applicable for active databases and robotics than \stability". We also presentsome algorithms for the analysis of maintainability.2.4.4 ApplicationOntological control is applied to an industrial process controller in Chapter 4, wherewe discuss an implementation and some experimental results. In Chapter 7 we letmost issues discussed earlier be placed in a single framework: Golog. Golog is ahigh-level agent programming language that uses an explicit model of the operatingenvironment. One of the most useful properties of Golog is that it is based onformal logic which provides a formal semantic theory and a formal modeling language(the Situation Calculus, SitCalc). Thus, correctness proofs of Golog programs forparticular environments can be constructed deductively. In Chapter 7 and the twoAppendices A and B we address the following issues:� 32 �



2.5. Abstract formal framework� Restrictions for ontological control : We show how a SitCalc model can beanalyzed to guarantee successful application of ontological control.� Stability analysis : We are interested in deductively proving that a SitCalctheory is stable. We therefore develop a formulation of the stability conceptintroduced in Chapter 5 in the logic itself, which is presented in Appendix A� Controller synthesis : We show how a stabilizing Golog program can be auto-matically synthesized from an unstable (Markovian) SitCalc theory, that is, theclosed-loop system involving the SitCalc theory and the synthesized controlleris stable.� Situation and expectation assessment : These two functions are already imple-mented in the Situation Calculus and Golog. The �rst is assumed and thesecond is handled by goal regression [Reiter, 1991].� Discrepancy detection: Both ontological control and stability-based executionmonitoring perform discrepancy detection on states of the system. In theSituation Calculus it is often convenient to reason with sequences of executedactions (situations), similar to the Ramadge-Wonham theory of Discrete EventSystems (see for example [Kumar and Garg, 1995]). We address the problemsof execution monitoring both with the state view and the situation view andimplement ontological control and stability-based execution monitoring.We are interested in deductively proving that a discrepancy occurs. The prob-lem with SitCalc is that it is to the very far right of the SCWA axis, and thatdiscrepancies entail an inconsistent logical theory. We solve this problem byrelaxing the SCWA (technically we relax the inertia assumption of SitCalc) toallow for discrepancies. In the terminology of the Logics of Action and Changearea, we handle surprises. We extend SitCalc to handle surprises in AppendixB.� Discrepancy classi�cation: This is not particularly problematic for either on-tological control or stability-based execution monitoring.� Recovery : we develop a technique for changing the SitCalc model with respectto detected malignant discrepancies. The idea is to make the change parsimo-nious, that is, we want to ensure that exactly the same discrepancy does notoccur again.2.5 Abstract formal frameworkIn this Section we will present a summary of an abstract theory of execution moni-toring, a theory that will be expanded upon in Chapters 4, 6, and 7.An execution monitor system is a twelve-tuplehP;A;Cont; S;M; Sit; Exp;D;Det; L; Classi;� 33 �



Chapter 2. Conceptual frameworkwith the following interpretation:� We assume that we have a set of plant states, P , that represent vectors of sensorreadings as well as vectors of other signals that are inputs to the controller.6� The possible control actions belong to a set A.� A controller is a relation Cont, possibly between plant states or sequences ofplant states (depending on how much of the history the controller takes intoaccount) and control actions. A sequence of plant states, in this context, isassumed to correspond to one dynamical development of the controlled system.A controller de�ned as Cont : P ! A is said to be deterministic.� The set of possible models of the closed-loop system is denoted M with M 2M.� We assume that we have a set of internal states (or, simply, states), S.� A function Sit from sequences of plant states, internal states and models to in-ternal states is called a situation assessment function. Intuitively, the sequenceof plant states represent the development of the system including the currentsensor reading and the sequence of internal states the previously \visited"internal states.� An expectation assessment function, Exp, is function that predicts the stategiven a sequence of previous states, a control action, and a model.� We assume that we have a set of discrepancies, D (this set may for examplecontain states or sequences of states).� A discrepancy detection function Det maps the current situation (perhaps interms of the previous state, the executed action, the actual current state,and the predicted state) to discrepancies or to null if there is no discrepancybetween the two states.� We assume a set of discrepancy classi�cations, L and that L always contains asymbol none that marks cases where no known explanation for a discrepancyexists.� A discrepancy classi�cation function, Class maps discrepancies to discrepancyclasses.A recovery function can be de�ned to map the current situation and executionmonitoring system to a new execution monitoring system and a control action.6From a control theoretic perspective, we thus assume that only the output from the plant iswhat is modeled, that is, that we do not assume to know anything about the internal state of theplant. This implies that the observable/unobservable dichotomy is meaningless in our setting.� 34 �



Chapter 3Related work3.1 IntroductionWork on execution monitoring can be found in the AI, Computer Science, andControl Theory literature. The amount of papers concerning execution monitoringas a particular problem in its own right is fairly low. Instead, it is more common to�nd either papers describing entire control architectures, where execution monitoringis one component, or papers on particular techniques that may be used for thepurpose of execution monitoring. This poses a problem when surveying the \area"of execution monitoring. In this chapter we have chosen to present a number ofrepresentative approaches to execution monitoring in Control Theory, ComputerScience and AI. After that we discuss techniques developed in various subareas ofAI and control theory that can be adapted to the framework described in Chapter2.3.2 Control theoryIn this section we intend to convey some of the basic ideas, as well as some recentapproaches, of monitoring, supervision and diagnosis from the control theory com-munity. Although the amount of existing work on these topics is huge, the focusis typically di�erent from ours. As described in the previous chapter we assumethat the controller is given and we wish to add an execution monitor engine to thecontroller, and then feed the engine with a model of the closed-loop system. In con-trol theory the problem would usually be to start by modeling a plant in terms ofconstraints (typically as di�erential/di�erence equations) and synthesize a controllerfrom the model and a control goal, where the goal should contain the aspects thatshould be monitored. However, below we will present a control theoretic frameworkwhere it is assumed that the architecture contains meta-level reasoning mechanismsfor diagnosis and supervision. � 35 �



Chapter 3. Related work3.2.1 Fault detection and identi�cation (FDI)Fault detection and identi�cation (FDI) is a problem that has been studied quiteextensively by control theorists for the past thirty years1(see e.g. Basseville andNikiforov [1993], Frank [1990], or Chen and Patton [1999]). A di�erence betweenthat work and the approaches discussed above is that FDI has mainly focused oncontinuous systems, while the mainstream approaches in AI have been concernedwith discrete systems (Sa�otti's work [1998] being an example of an exception).Situation assessment is, typically, not considered a particular problem, whileexpectation assessment would correspond to (the prediction part of) state estimationwith observers, e.g. O'Reilly [1983], and Misawa and Hedrick [1989] or Kalman �lters[Kalman, 1960, Sorensen, 1985], that yield an estimated current state x̂. In a simpleversion of FDI the estimated current state is compared to a reference value, r, andgenerates a residual, �, for example by computing � = jr � x̂j. Fault detection isthen a comparison between the residual and some threshold where, for example,�� � � � � could indicate that no discrepancy has occurred, for a suitable �, andthat �� > � and � > � indicates two distinct classes of discrepancies. There is anabundance of variants on this theme (see the recent survey [Chen and Patton, 1999]for details).The large amount of work on FDI for continuous systems has almost exclusivelyaddressed fault detection in the open-loop part of the systems, that is, the controllerhas not been considered in the FDI process2. Due to this the work on FDI in generaldoes not apply to the problems addressed in this thesis.3.2.2 Fault-tolerant controlIn a recent paper, Blanke et al. [2000] presented the novel control paradigm Fault-Tolerant Control. This term denotes a set of techniques that were developed toincrease plant availability and reduce the risk of safety hazards. We will not gointo the details of these techniques in this thesis, instead we present an abstractframework of control (introduced in [Blanke et al., 2000]) that demonstrates therelation between classical control, robust and adaptive control and fault-tolerantcontrol.Constraints of a dynamical system are functional relations that describe thebehavior of the system. In our terminology, a set of constraints is an open-loop modelof the system. In control theory the most common way of describing constraints iswith di�erential/di�erence equations. A set of constraints, C, for a plant de�nes astructure S and parameters � of the system. For example, for the constraint_x = Ax + Buthe parameters are the matrices A and B, and the structure is a �rst-order linearsystem. A distinguished set of constraints are called control objectives, and are de-noted O. A function from plant output to a control order u (which is one of the1The origin of model-based FDI is usually credited to Beard's PhD thesis [1971].2There are, of course, exceptions to this. See for example [Jacobson and Nett, 1991].� 36 �



3.2. Control theoryinputs to the plant) is called a control law. The class of plausible control laws isdenoted by U. We can now de�ne the control problem:Control: Solve hO;S; �;Ui, that is, �nd a control law in U that achieves O whilesatisfying C (i.e. while not violating the constraints).If we now assume that we do not know the parameters precisely, for example dueto uncertainty, but only a set, �, of plausible parameter values. the problem isthen to achieve O under constraints with structure S and whose parameters belongto �. Two approaches to this problem can be de�ned: Robust control where thediscrepancies over � are minimized, and Adaptive control where a parameter �̂ isestimated before the control problem is solved. Formally,Robust control: Solve hO;S;�;Ui, that is, �nd parameters in � and a controllaw in U.Adaptive control: Solve hO;S; �̂;Ui where �̂ 2 � is estimated.Next, faults are taken into consideration. From the point of view of this frame-work, a fault is a change in the given constraints. This means that given a fault,a diagnosis computation should yield estimated sets of possible structures, Ŝ, andparameters, �̂. Formally, the task of Fault-tolerant control can then be described asFault-tolerant control: Solve hO; Ŝ; �̂;Ui.In our functional framework from Chapter 2, fault-tolerant control involves situ-ation and expectation assessment as well as discrepancy detection and classi�cation.The former can be handled with state estimation techniques such as Kalman �lters,while the latter involves diagnosis techniques. However, the work on fault-tolerantcontrol has yielded two distinct specializations for discrepancy classi�cation that �tnicely into our BM (Benign/Malignant) framework.In the benign case a diagnosis system estimates the actual constraints, that is,generates Ŝ and �̂ and then solves the control problem. We call this fault accommo-dation and formally we haveFault accommodation: Solve hO; Ŝ; �̂;Ui.If it is not possible to do fault accommodation, we cannot hope to handle the problemby estimations that take the entire plant (including parts that have been diagnosedto be faulty) into consideration. Then we have a malignant case and try to solve thecontrol problem by using constraints not involving faulty parts. Formally,Recon�guration: Find � 2 S and � 2 � (where S and � are restricted to non-faulty parts of the system) such that hO;�; �;Ui has a solution.� 37 �



Chapter 3. Related workThe di�erence between fault accommodation and recon�guration is that for the lat-ter the input-output relations between the controller and the plant have not changed,while this is a possibility in the second case.The most general problem in this framework involves monitoring of the controlobjectives. If neither fault accommodation nor recon�guration is possible, we canstill relax the control objectives. This is called supervision and is described asSupervision: Monitor the triple hO;S; �i to determine whether the control ob-jective is achieved. If this is not the case, and the fault-tolerant control problemdoes not have a solution, then �nd a relaxed objective � 2 O and � 2 S and � 2 �such that the relaxed problem h�;�; �;Ui has a solution.Blanke et al. suggest that a fault-tolerant system with supervision should be im-plemented as a hybrid (discrete/continuous) system where diagnosis and controllersynthesis is done within the continuous loop and fault accommodation, recon�gu-ration, and supervision is handled by meta-level mechanisms using automata repre-sentations. This is natural since those three tasks normally produce discontinuitiesin the state trajectory of the system.3.3 Computer scienceThe idea of adding probes to a computer program to monitor its execution probablyoriginates with the advent of debuggers in the early 1960's. Today, advances in highperformance computing, communications, and user interfaces are enabling develop-ers to construct increasingly interactive applications. This implies a large increase inthe complexity of such systems, and a lot of work has been put into development oftools that can support the management of large-scale parallel codes. In this sectionwe will examine a sophisticated tool for on-line monitoring and steering of suchsoftware systems: Falcon [Gu et al., 1997].The notion program steering can be de�ned as \the capacity to control the execu-tion of long-running, resource-intensive programs" ([Gu et al., 1994]). The controlof the execution may involve control over parameters of the program, usage of mod-ules (it may for example be of interest to be able to switch between di�erent algo-rithms at run time), and usage of hardware resources (for example load balancing ofprocessors). Program steering is in [Gu et al., 1994] described as consisting of twodistinct tasks: monitoring program or system state and enacting program changesmade in response to observed state changes. From our point of view the monitor-ing task is equivalent to situation assessment, while steering involves expectationassessment, discrepancy detection and classi�cation, as well as recovery. However,program steering may be used for other purposes than handling discrepancies, forexample, managing data output in an e�cient manner. The reader is encouraged toread the survey [Gu et al., 1994] for a more detailed account of the vast literaturein the area. � 38 �



3.3. Computer scienceAnother related concept from Computer science is self-stabilization (introducedby Dijkstra [1974]) which has been thoroughly investigated by the distributed sys-tems community. A self-stabilizing system can achieve its goals from any initialstate and under the inuence of any transient fault (unexpected state change). Thisnotion is strongly related to the work on maintainability, in Chapter 5, and will bediscussed below.3.3.1 FalconThe Falcon project [Gu et al., 1997] was initiated as a step towards distributed labo-ratories, where multiple and distributed end users can collaborate with each other asif they were co-located in a single laboratory setting. In this distributed setting, theusers can solve complex scienti�c or engineering problems by jointly experimentingwith multiple coupled and distributed simulations all of which may be monitoredand steered by the users and with algorithms.Falcon is a step in this direction, which consists of a set of tools that jointlysupport three tasks: The �rst task is on-line capture, collection and analysis ofthe application-level program and performance information required for programsteering and for display to end users. The second task is the analysis, manipulation,and inspection of such on-line information, by human users and/or programs, basedon which decisions concerning program steering may be made. The third task is thesupport of steering decisions and actions, which typically result in on-line changesto the program's execution. In our functional framework, the �rst task correspondsto situation assessment, the second task to expectation assessment and discrepancydetection and classi�cation, and the third to recovery.In the implementation of Falcon, the original application source code is compiledtogether with a sensor and steering speci�cation. This corresponds to object-levelmonitoring since the extra information is added directly to the source code. Duringrun-time, the instrumented application program is running with a trace data collec-tor and analyzer and a user interaction controller. The analyzed trace data is sentto a �lter mechanism and then displayed to the user. The user has the possibilityof steering the execution of the program via the interface which controls a steer-ing server that can control the execution of the running application. The runningapplication can also access the steering server for algorithmic steering actions.3.3.2 Self-stabilizationIn his seminal paper [Dijkstra, 1974] Dijkstra introduced the notion self-stabilizationof distributed systems. The problem posed was whether it was possible to constructa protocol for a set of interconnected processors that would maintain a certain setof global states. Dijkstra proposed a solution for a class of systems3. The problemwas intensively studied during the 80's as a part of the development of fault tolerant3The class was token rings of non-prime length. In the CACM paper he did not provide proofsof his suggestion, stating that they where left as an exercise for the reader. 11 years later the proofswere published in [Dijkstra, 1986]. � 39 �



Chapter 3. Related worksystems. It was clear already to Dijkstra that self-stabilization was a di�cult prob-lem, but the fact that the problem is undecidable was not shown before 1994 (see[Abello and Dolev, 1997] for the full length paper).The formal de�nition of self-stabilization can be stated as follows:De�nition 3.3.1 Let P be a set of states for a system S. S is self-stabilizing to Pi� the following two conditions hold:� P is closed in S, i.e. every state in a computation of S that starts at a statein P , belongs to P .� Every computation of S has a �nite pre�x such that the following states belongto P .2The �rst condition is called Closure and the second Convergence. In control theorythe notion of \stability" is a core concept, and it comes in many avors. One avorof particular interest to us, from [ �Ozveren et al., 1991], will be presented in detailin Chapter 5. That approach coincides only with the convergence condition of self-stabilization, thus relaxing the concept.3.4 Arti�cial intelligenceThe �rst application of execution monitors in the AI literature appear, as mentionedin Section 2.3.1, with the application of the STRIPS planner to Shakey the robot[Fikes et al., 1972]. The planning community has strongly focused on developingplanners that, given a \plant model" (in terms of planning operators) an initialstate, and a goal, generates a sequence that, according to the model, will lead theplant from the initial state to the goal. When such planners have been put to usein applications, it has been necessary to develop execution monitors to handle con-tingencies not predicted by the model. Two examples of such systems are IPEM[Ambros-Ingerson and Steel, 1988] and GRIPE [Doyle et al., 1986], where the �rstcontains a meta-level execution monitor, and the second represents object-level ex-ecution monitoring. These systems will be presented below in sections 3.4.1 and3.4.2.There are other approaches to robot control where the formalisms used lack anyadequate notion of \predicted next state". This is clearly problematic from ourpoint of view, so instead of relying on predictions other means have to be developedto assess the execution of such system. In Section 3.4.3 we review a robot controlsystem based on fuzzy logic ([Sa�otti, 1998]).The last, and most recent, approach to execution monitoring developed in theAI community has inspired a lot of ideas in this thesis. The system, Livingstone([Williams and Nayak, 1996]), was developed at NASA AMES as a central compo-nent in the \New Millennium Remote Agent" (NMRA) architecture, and it was� 40 �



3.4. Arti�cial intelligencetested on a space probe in July 1999. Livingstone is a model-based execution moni-toring system which acts as a low-level situation assessment and recovery mechanismwith no direct connections to the planning/scheduling system in the NMRA archi-tecture. This approach is discussed in Section 3.4.5.3.4.1 IPEMIntegrated Planning, Execution and Monitoring (IPEM) is a framework developed byAmbros-Ingerson and reported in [Ambros-Ingerson and Steel, 1988]. The idea is touse techniques similar to those of the partial-order planner tweak [Chapman, 1987]to generate a plan which is then executed. One di�erence in the planning process,compared to tweak is that actions (planning operators) may be complex, that is,they may in themselves be plans. This relates to one important body of work onplanning: Hierarchical Task Nets [Sacerdoti, 1977].Initially, a partial plan is provided consisting only of the initial state and thegoal. Planning is then performed by identifying aws and transforming the planaccording to the corresponding �xes :Flaw FixUnsupported Precondition: Aprecondition of an action in the planis not supported by (or, does notlogically imply) a postcondition ofan earlier action. Reduce: Establish a support froman action already in the plan, or adda new action.Unresolved Conict: A precon-dition of an action is clobbered by apostcondition of an earlier action. Linearize: Place the clobberer inthe plan where it does no harm.Unexpanded Action: An actionthat is not primitive, that is, repre-sents a plan, exists in the plan. Expand: Replace occurrences ofthe action with the plan it repre-sents.During execution the plan is then elaborated (�xed) if a monitor detects errors(aws). For monitoring we have the following examples of aws and �xes:Flaw FixUnexecuted Action: An action isready to be executed. Execute: Execute the action.Timed Out Action: No further ef-fects are expected to come about asconsequence of an execution of anaction. Excise Action: Remove the actionfrom the plan.Redundant Action: There existsan action whose postcondition doesnot support the goal or any precon-dition of other actions in the plan. Excise Action: Remove the redun-dant action from the plan.
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Chapter 3. Related workThere are two more aws that can be detected during execution: UnsupportedRange and Unextended Range. The �rst occurs when support by a postconditionfor a precondition is broken, that is, when that support is no longer a consequenceof the current observations. The �x suggested is to re-instantiate the preconditionby some other part of the postcondition. For example, assume that a preconditionclear(x) is initially supported by a postcondition clear(a) in action A and A is ex-ecuted. Now, if clear(a) is not true after the execution, we have an unsupportedrange aw. If A also has clear(b) as a postcondition, then by re-instantiating xto b we have �xed the aw. The second occurs when there exists a support by apostcondition in action A for a precondition, but some other action occurs beforeA in the plan and also provides the same support. In this case the �x is to let theearlier action provide the support, possibly making A redundant.From the perspective introduced in Chapter 2, it is possible to view IPEM as ameta-level execution monitor, since the aws-and-�xes system is separate from theactual planning and plan execution system. Moreover, we can see that the problemsof situation and expectation assessment are not addressed. The aws and �xes de-�ned for plan generation are not particularly interesting to us; they are supposed tobe invoked prior to execution. Discrepancy detection in IPEM consists of checkingwhether any of the aws has occurred, which will require a detection function thatis di�erent from the abstract function Det de�ned in Section 2.5, since it dependson the current plan and the current set of support instantiations, as well as on thecurrent and expected state. It is unclear from [Ambros-Ingerson and Steel, 1988]how the Timed Out Action aw is detected. It is hinted that there is notion ofexecution completion time for actions, but how that notion is used in the frameworkis not discussed. Clearly, discrepancy classi�cation is integrated in the detectionmechanism (IPEM detects particular classes of discrepancies), which in the abstracttheory means that the set of discrepancies D is equal to the set of classi�cations L,and, thus, that Class can be the identity function.If we view the currently executing plan as a controller and the set of support in-stantiations (and possibly the execution completion time information) as the model,recovery corresponds to �xes, where the controller may be changed for certain aws(like Excise Action) and the model may be changed for others (such as UnsupportedRange).The ideas from IPEM have been extended by Knoblock [1995] to include sensingand concurrent execution of non-conicting actions.3.4.2 GRIPEAs an example of an object-level execution monitor we choose GRIPE (Generatorof Requests Involving Perceptions and Expectations) [Doyle et al., 1986]. From theobject-level point-of-view the authors argue that there are four tasks that must beaccomplished by an execution monitor:� 42 �



3.4. Arti�cial intelligence� Selection: The task of determining which actions (or which e�ects of actions)in the plan require monitoring.� Generation: The task of determining which sensors to employ to verify as-sertions, and the expected sensor values.� Detection/Comparison: The task of recognizing signi�cant events on sen-sors and comparing those events to the corresponding expectations.� Interpretation: The task of explaining failed expectations.The basic idea behind GRIPE is to use a special set of plan operators, veri�cationoperators, that are interleaved with the plan to perform run-time plan veri�cation.The veri�cation operators are automatically generated by using a sensor model andthe plan. An important part of the generation and interleaving of veri�cation opera-tors is context (or, intent-) analysis. For example, if a robot arm is holding an objectand is supposed to move the object to a particular position, the move action needsto be carefully monitored, while if the arm is not holding anything and is supposedto move to a resting position, the move action does not have to be as precise asin the previous case. Thus, the veri�cation operators in the two cases should bedi�erent. The authors do not provide any general principle of analysis of context;that task is viewed as being domain-dependent.It is easy to see the resemblance between the �ve functions in Chapter 2 andthe four tasks described in [Doyle et al., 1986]. GRIPE's notion of Generation cor-responds to expectation assessment, and Detection/Comparison is a combination ofsituation assessment and discrepancy detection. Interpretation clearly correspondsto discrepancy classi�cation. The di�erences between GRIPE and the framework isthat GRIPE does not address recovery, and that the framework does not considersensor selection. Sensor selection is important whenever sensing is a limited resourcein a system, which we do not assume in this thesis. The intended application domainfor GRIPE was the NASA/JPL Telerobot servicing the US space station, that is, adomain where basically everything is a limited resource.3.4.3 Sa�otti's approachAn approach that is di�cult to compare to many others in this thesis is the workby Sa�otti [1998]. He is interested in the problem of robot navigation and haschosen fuzzy logic as the basic framework. The system consists of a planner, andan execution system, where the planner uses behavior templates to produce plans.The behavior templates are planning operators with some extra slots, especially aslot that states the goodness of the particular behavior (a real number between 0and 1) that quanti�es the con�dence of the expectation on the e�ects of the action.The planner is a simple regression-based planner that �nds a plan and then gathersthe operators into a set of fuzzy rules, that is, the operators are transformed to ifprecondition then action rules. The execution system then interprets the rules asfuzzy rules, so that the precondition of a rule is satis�ed to a certain degree (degree� 43 �



Chapter 3. Related workof desirability). The goodness of an invocation of an action is then a function of thedegree of desirability of the precondition and the goodness of the operator. Since it ispossible that a number of fuzzy rules are all satis�ed to some degree simultaneously,action blending is performed, which basically is concurrent execution of all actionswith satis�ed preconditions but to a degree proportional to the degree of desirabilityof the particular precondition.In Sa�otti's system the following adequacy measures are monitored:� The degree of goodness of the current goal, i.e. how well the current plan willachieve the current goal. For example, if a robot is in idle mode and receivesa new goal, e.g. to move into room R5, the goodness of the plan of being idleshould be very low, which the monitor should detect.� The degree of conict between behaviors, i.e. how well the involved behaviorsinteract. For example, a plan consisting of behavior moveRight and moveLeftto be executed concurrently, should have a high degree of conict.� The degree of competence of the plan in the current situation, i.e. to whatdegree the involved behaviors are active in the current situation. For example,if the preconditions of the involved behaviors are all satis�ed to a low degree,then the activation level of all the actions is low, which is a sign of a low degreeof competence.One of the reasons why comparisons to other approaches are di�cult for thisapproach is that there is no crisp notion of state in a fuzzy setting. However,the framework discussed in Chapter 2 does not have a problem characterizing theapproach.Situation assessment in fuzzy systems is de�ned in terms of membership func-tions, that is, functions that map sensor inputs to the degree of membership ina particular state. Expectation assessment is more complicated, and in Sa�otti'sapproach one can say that it is missing; there is no mechanism that predicts thenext state of the system. As in IPEM (Section 3.4.1) discrepancy detection andclassi�cation is done simultaneously. Low degrees of goodness and competence, andhigh degrees of conict are detected by computing the three degrees and comparingthem to prede�ned threshold values. Recovery (or, repair in Sa�otti's terminology)is performed by representing a plan (a set of fuzzy rules) as a tree, and detectingproblems with goodness, conict, or competence in subtrees, and thereafter onlyreplace \bad" subtrees.3.4.4 Action-based diagnosisIn the AI sub-area \Model-based diagnosis" various diagnosis problems have beenstudied following the ground breaking work of Reiter [1987] and de Kleer andWilliams [1987]. Most of this work is fairly recent, and can be di�erentiated with re-spect to the expressive power of the language used to model the domain (in the samesense as our SCWA dimension), how the notion of diagnosis is de�ned (e.g. in terms� 44 �



3.4. Arti�cial intelligenceof fault models, sequences of actions, sets of abnormal components, or probabilisticcriteria), how observations (measurements) are expressed, whether the diagnosis ison-line or o�-line, and what aspects of diagnostic problem solving, beyond diagnosis,are addressed (e.g. recovery).The work most strongly related to the topic of this thesis is \Action-Based Di-agnosis" where the aim is to compute a sequence of actions (controllable or uncon-trollable) than can explain a discrepancy (or, fault). In our terminology, this meansthat discrepancy classi�cation is de�ned as �nding a sequence of actions that explains(that is, is logically consistent with) an observed discrepancy. The most compre-hensive account of this work can be found in [McIlraith, 1997, McIlraith, 1998], andsimilar work in [Thielscher, 1997, Baral et al., 2000].3.4.5 LivingstoneA fairly recent example of a model-based execution monitor is Livingstone, byWilliams and Nayak, [1996], which is an important part of the New MillenniumRemote Agent (NMRA) architecture developed at NASA Ames (see for example[Muscettola et al., 2000]) for the purpose of spacecraft control. Livingstone's sens-ing component, Mode Identi�cation (MI), uses a model to identify the most likely (ina probabilistic sense) spacecraft states and reports all inferred state changes to thecontroller (or execution mechanism, EXEC), enabling the EXEC to reason purelyin terms of spacecraft states. Input to MI is sensor values and commands sent byEXEC to the real-time system. For example, a particular combination of attitudeerrors may allow MI to infer that a particular thruster has failed. EXEC is onlyinformed about the failed state of the thruster, and not about the observed low-levelsensor values.The command component of Livingstone, Mode Recon�guration (MR), uses amodel of the spacecraft to �nd a least-cost command sequence that establishes orrestores desired functionality by recon�guring hardware or repairing failed compo-nents. MR is invoked by EXEC with a recovery request that speci�es a set ofconstraints to be established and maintained. In response, MR produces a recoverplan that, when executed by EXEC, moves the spacecraft from the current state (asinferred by MI) to a new state in which all the constraints are satis�ed.There is no real distinction in the MI component between situation and expecta-tion assessment, and discrepancy detection, since mode identi�cation is performedbased on a normal-behavior model and a fault model. That is, the set of possiblecurrent states is chosen as the most likely one according to the normal-behaviormodel with a minimal number of faults. It is then up to EXEC to decide whetherany reported faults call for special purpose (hard-coded) recovery actions, or for aninvocation of MR (which performs recovery actions in a model-based manner). Inour terminology, EXEC performs discrepancy classi�cation and some recovery, andMR performs model-based recovery.
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Chapter 3. Related work3.4.6 Other examplesAn interesting approach to execution monitoring in the AI community is the workby De Giacomo et. al. That approach will be analyzed and extended in Chapter 7.In the AuRA architecture [Arkin, 1990] a homeostatic control subsystem is con-nected to a robot's hardware interface, and monitors the internal conditions of therobot (which we will call the con�guration of the control system in subsequent chap-ters). This is, in fact the only execution monitoring that occurs in AuRA, andmotivation stems from an analogy to mammalian control systems that allows fordynamic re-planning in hazardous environments.In Ferguson's Touring Machines [Ferguson, 1992] execution monitoring, in our sense,is the principle reasoning mechanism. A Touring Machine consists of three layers: Areactive layer, a planning layer, and a model layer. The reactive layer provides thesystem with fast, reactive capabilities for coping with events its higher level havenot planned for or modeled. Whenever such an event occurs a rule is triggered,some action is executed and the model layer is alerted. The purpose of the planninglayer is to generate and execute plans. This layer has some capabilities to detectplan failures, but decisions regarding recovery are taken by the modeling layer. Inthe modeling layer capabilities for reection and prediction reside. The basic idea isthat the modeling layer gets input from sensors, resource monitors and other layersand uses this input to construct a new model from a library of model templates.Reasoning from a model is then discrepancy detection, in our terminology, wherethe chosen model is used for expectation assessment. Recovery may then mean or-ders to the planning level to re-plan to the old goal, or planning from scratch to anew goal.3.5 Techniques for execution monitoringFrom the viewpoint of the framework presented in Chapter 2, we will now exam-ine contributions of techniques, not necessarily designed for execution monitoringpurposes, that can be used for the �ve constituting functions.3.5.1 Situation and Expectation assessmentSuccessful approaches to expectation assessment have been developed in the frame-work of Partially-Observable Markov Decision Processes [Cassandra et al., 1994],where the domain is modeled with partially observable stochastic processes, andprobabilistic techniques are used to predict the behavior of the controlled system.The Qualitative Reasoning (QR) community has focused on qualitative model-ing, analysis, and simulation of physical systems. For example, a model of a systemmay only consist of the sign of the derivatives at particular time points (see e.g.[Dvorak and Kuipers, 1989, Dvorak and Kuipers, 1991]). Such information can be� 46 �



3.5. Techniques for execution monitoringused to monitor a physical system, and an interesting recent approach to qualitativemonitoring can be found in [Rinner and Kuipers, 1999], where a simulator producesan expectation assessment, and where a tracking system re�nes the model wheneverthe observations allow bounds on variables to be decreased. In this setting a dis-crepancy is an observation of a value of a variable outside its bounds, and this is nothandled by the system.Similarly to the work on FDI (Section 3.2.1) the work on monitoring in QR hasfocused on open-loop systems.Another example is planning operators consisting of preconditions and e�ects,where estimation of the expected current state is performed in terms of plan projec-tion or regression [Fikes et al., 1972, Sacerdoti, 1977, Bj�areland and Karlsson, 1997].3.5.2 Discrepancy Detection and Classi�cationThere exists sophisticated discrepancy classi�cation approaches for simulation pur-poses, for example [Hammond, 1990, Beetz and McDermott, 1994], which are semi-domain independent. Other examples of discrepancy classi�cation approaches forplanning systems are [Ambros-Ingerson and Steel, 1988, Knoblock, 1995]. In ourgroup we have investigated the problem of classifying discrepancies distinctly as be-ing due to external disturbances, or due to model inadequacies (faulty expectations)[Bj�areland and Fodor, 1998, Bj�areland, 1999b].For classi�cation of discrepancies a body of work exists in the area of Model-BasedDiagnosis [Reiter, 1987, Struss, 1997] where, typically, a model of the components ofa system is assumed, and a diagnosis is a subset of the set of components, which arepresumably faulty. For execution monitoring purposes, the value of a component-based model is not clear, since it is the state transitions that are subject to diagnosisfor EM.3.5.3 RecoveryRecovery from discrepancies is often mentioned as an important component of con-trol systems. It can for example mean plan repair as for Hammond [1990], Beetzand McDermott [1994], Ambros-Ingerson and Steel [1988], and Knoblock [1995],re-planning as for Fikes et al. [1972], and Sacerdoti [1977], or control program elab-oration as for [Lyons and Hendriks, 1995].A part of the Machine Learning community has studied the problem of \LearningPlanning Operators" [Benson, 1996, Gil, 1992, Shen, 1989, Wang, 1994] where thebasic idea is to observe the e�ects of executing planning operators and then uselearning techniques to improve them. This is an interesting idea, but since thecurrent approaches rely on multiple failures or experimentation, they are of limitedinterest outside a laboratory environment.
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Chapter 4Ontological controlIn chapter 2 we introduced the notion \benign/malignant classi�cation" and dis-cussed its applications. In this chapter we will present one particular instance ofBM classi�cation named ontological control. Ontological control relies heavily onengineering intuitions about sequential process controllers and was introduced byGeorge Fodor [Fodor, 1995, Fodor, 1998].In modern industrial process controllers it is very di�cult to construct completemathematical models of the closed-loop system. This is due to complexity that arisesas there typically are hundreds of programmable controllers (PCs) that inuenceeach other, actuators, databases, and Ethernets. These entities are generally runas asynchronous concurrent processes. The set of PCs is often modularized so thata subset of PCs is responsible, for example, for one actuator system, and everyPC in the subset has its own responsibilities, such as numerical computations orcontinuous control. It is not uncommon that such a subset of PCs is organized ina hierarchy. For such systems the term \sequential control" should be understoodas the high-level task of forcing the system through a sequence of discrete statetransitions. A state can, for example, represent the normal continuous control ofthe system, where previous states must materialize to ful�ll conditions necessaryfor the continuous control. States occurring after that state in the sequence shouldmaterialize to safely stop the process. So, the primary role of the sequential controllermay not be to achieve the \real" control goal (the quality goal of the process), butto ensure that the con�guration of the closed-loop system permits that the \real"control can be performed.The strong dependencies between modules and PCs in modules need to be con-sidered by the PC programmer. This means that the sequential controller should beable to produce a control action in whatever state the system may be in, as well as itshould ensure that the control sequence is promptly executed. Usually, contingenciesare taken care of within the program and discrepancies are detected and recoveredfrom by specialized hard-coded procedures in the program. However, in su�cientlycomplex systems the problem of in�nite recovery cycles occurs. That is, the exe-cution runs through the sequence as expected up to a point where a discrepancy� 49 �



Chapter 4. Ontological controloccurs and the hard-coded recovery strategy sets in and forces the system to a stateearlier in the sequence. Then the execution runs as expected again until the samediscrepancy occurs again, and the recovery mechanism again is invoked, etc. Wethen have a cycle of states that is materialized ad in�nitum. Ontological control wasinvented for the purpose of detecting and classifying such systematic discrepancies,as opposed to temporary disturbances.When do these systematic discrepancies occur? Before we go into detail, thequestion can briey be answered as follows: When an expected state transition shouldhave occurred but did not. That is, if a control action is interrupted prematurely,and the plant state does not satisfy the expected next state, we have a disturbance.In the terminology of Ontological Control we have a discrepancy due to an ExternalAction (EA). Such control situations (that is, when control actions are interrupted)are not at all uncommon in process control, and their occurrences can normally beexplained with some other PC overriding the invoked control action (hence the termExternal Action). These discrepancies do not necessarily (or even usually) entailthat something is wrong with the control system.The more problematic case occurs when a control action is completely executed,but the expected next state does not materialize. This may imply that the problemis not in the closed-loop system, but in the expectations of the e�ects of the controlactions. This holds when it is possible to precisely keep track of actual and expectedstate transitions, as well as a precise notion of action execution. That is, if weknow that an action was executed as expected and a state transition occurred asexpected, but the expected next state did not materialize, then it is very unlikelythat an external action has occurred (since we will assume that the sampling intervalis short enough for us to able to detect every state transition). Such discrepancieswill be called Violations of Ontological Assumptions.In this chapter we will begin by presenting the intuitions of violations of on-tological assumptions more carefully, and then exemplify ontological control andproblems related to it. Then we informally present the limiting assumptions of thetheory in Section 4.4. The theory itself is developed along the lines of the abstracttheory in Section 2.5. We formally show that the assumptions make it possible todistinctly classify any discrepancy as either being an external action or a violationof ontological assumption. In Section 4.5 we will describe how the theory was imple-mented and applied to a real process control system, ABB's STRESSOMETER. Asit turned out the semi-automatically generated model used there did not satisfy theassumptions of ontological control, so an important issue addressed in that sectionis how to extract information from the model to make ontological control possible.In Section 4.6 we compare the original work by Fodor to the work presented here.4.1 Violations of ontological assumptionsIn any su�ciently complex control system there are always assumptions that arenot checked by the controller, but that are necessary for the validity of the controlsystem. We call such assumptions ontological assumptions. A simple example of this� 50 �



4.2. Two examplesis a controller that invokes actions based on measurements of a voltage computedfrom a current under the assumption that the resistance is constant (according toOhm's law). However, under varying temperature conditions, this assumption doesnot hold. Thus, the ontological assumptions may be violated. The detection andcorrect classi�cation of violations of ontological assumptions, VOAs, and especiallythe distinction between disturbances and VOAs (or, the disturbance decoupling prob-lem in FDI terminology) is important for industrial process control. It is a distinctpossibility that VOAs cannot be detected by assessing output quality of the processonly. Industrial process control systems are normally very robust, and even thoughthe execution of the controller does not comply with the designer's intentions, itmay still achieve its control goals. However, this means that undetected VOAs maymake the system behave sub-optimally, such as in the case of in�nite recovery loops,and that the life-span of the system is considerably shortened.The fundamental question of ontological control isGiven a discrepancy, when can we distinguish between the cases when thediscrepancy is caused by an external action (disturbance) and caused bya VOA (model inadequacies)?This chapter is devoted to giving a formal answer to this question. The readershould note that in the terminology introduced in 2.4, external actions correspondto benign discrepancies, and VOAs to malignant discrepancies. The next obviousquestion, \How do we recover from these classes of discrepancies?", is not addressedin detail in this chapter. The issue is discussed in Section 4.4.10, but mainly to arguethat to �nd general principles of recovery we need to employ modeling formalismwith a higher SCWA than what is used in this chapter. Such a formalism (thesituation calculus) is introduced and applied in Chapter 7.4.2 Two examplesIn this section we will attempt to convey the basic intuitions behind ontologicalcontrol by giving two examples. The �rst example is a diesel engine controller wherewe establish an informal account of VOAs, and the second example is a formal blocks-world example where a robot arm moves blocks from a store to two trolleys, whichcan represent sequential control, that is, achieving a goal by executing a sequenceof control actions.4.2.1 Diesel engineThe following example was introduced in [Fodor, 1995]. In �gure 4.1 a closed-loopcontrol system for a diesel engine is depicted. The speed controller determinesthe engine speed using two physical principles: When the engine has low speed, aproximity sensor reads the rotation speed from a teeth wheel placed on the engineshaft. The variableN1 (in rpm) represents this value. This is an inaccurate measure,so when the diesel engine rotates with a speed larger than a speci�ed limit Nlim,� 51 �



Chapter 4. Ontological control
Diesel Engine Clutch Generator
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Controller

Speed Ref.

ActionN� N1 N2
Figure 4.1: The diesel engine examplethe speed is measured more precisely using the frequency of the generated electricalcurrent1. The variable N2 represents this value.The goal for the sequential controller is to bring the engine to speed where\normal" continuous control can be used. This requires two distinct modes:1. At start-up, the speed controller accelerates the diesel engine according to aprede�ned start-up trajectory, using the speed value N1. This mode is usedfor speed values N1 < Nlim.2. When the diesel engine reaches the speed value Nlim the controller enterscontrol mode 2, where N2 is used. In this mode the goal is to maintain thereference speed N�.One ontological assumption present in this application is that the diesel engine shaftand the generator shaft have the same rotation speed, since they are linked. If thisassumption is violated and the speeds of the two shafts are di�erent, then the controlschema presented above is invalid.So, let us assume that this ontological assumption is violated, for example byassuming that the clutch is slippery. This implies that N1 > N2. Let us follow acontrol sequence for the diesel engine.The controller starts the diesel engine in mode 1 using the prede�ned speedtrajectory. When the controller observes that N1 = Nlim it switches to mode 2.However, at this moment, the controller starts using N2 and observes that N2 <N1 = Nlim which causes a switch back to mode 1. In mode 1 the controller againobserves N1 = Nlim and consequently switches to mode 2, etc. The system isstuck in an in�nite recovery loop.1This is done according to the formula N2 = 2�60�fp where f is the frequency and p is thenumber of magnetic poles of the generator.
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4.2. Two examples4.2.2 TrolleysThe following pedagogical example has been used in both [Bj�areland and Fodor, 1998]and [Bj�areland, 1999b] to illustrate ontological control.
l1 l2pos = s t1 t2

Figure 4.2: The trolley example domain.In Figure 4.2 the plant with one actuator (the robot arm) and three sensors(the position of the robot arm and the two pressure sensors on the trolleys) isdepicted. We control the robot arm that is supposed to move boxes from s to thetrolleys t1 and t2. The variable pos (for the position of the robot arm) takes valuesfrom the domain Dpos = fs; t1; t2g, and the other two variables (that measurethe number of boxes on each trolley), l1 and l2, that take values from domainsDl1 = Dl2 = f0; 1; 2g. We have three control actions, MS for the action of movingthe arm to the store, M1 for the action of gripping a block and moving it to positiont1, and M2 for gripping and moving a block to position t2. We choose to trustthe actuator completely in this example, that is, the execution of control actionswill serve as the reference point which we use to classify discrepancies. This meansthat we can construct a sub-model induced by only looking at sub-states involvingthe variable pos. Since we completely trust the actuator, this sub-model gives theprecise means of tracking the execution of the system. Formulas belonging to suchsub-states are called control con�gurations. Formulas not belonging to such sub-states are called plant formulas. If it is a physical fact that no more than two blocksare in the system simultaneously, the relevant states can be found in Table 4.1. Forreadability, the indices of the states denote the values of the variables, e.g.y211 = c2z }| {pos = t2 ^ z11z }| {l1 = 1 ^ l2 = 1The �rst state is the initial state of the system, and the three last states are thegoal states. The remaining states (for example y220) represent \non-relevant" states.As this is an example of sequential control, we have three sequences of states andcontrol actions (goal paths) that are desirable (we consider all other paths to be� 53 �



Chapter 4. Ontological controlState pos = l1 = l2 =ys00 s 0 0ys10 s 1 0ys01 s 0 1y110 t1 1 0y120 t1 2 0y201 t2 0 1y202 t2 0 2y211 t2 1 1yg20 s 2 0yg11 s 1 1yg02 s 0 2Table 4.1: The relevant states.non-desirable): ys00 M1=) y110 MS=) ys10 M1=) y120 MS=) yg20ys00 M1=) y110 MS=) ys10 M2=) y211 MS=) yg11ys00 M2=) y201 MS=) ys01 M2=) y202 MS=) yg02By merging the goal paths we can construct a model of the closed-loop system,
ys00 y110 ys10 y120 yg20yg11y211 yg02y202ys01y201Figure 4.3: The model of the trolley example.depicted in Figure 4.3. It is not necessarily clear that the control actions in thisexample are energized, but if we assume that the variable pos maintains its valueuntil it reaches a new position, they are. Moreover, the system is non-logging sincecon�gurations of consecutive states are mutually exclusive. This would imply thatdiscrepancy classi�cation should be possible.� 54 �



4.3. Summary of assumptionsAssume that the current goal is yg11 and that the state ys10 has materialized.According to the model the action M2 should be invoked and the expected nextstate is y211.EA: If an operator would move the box on the �rst trolley to the second, the stateys01 would materialize. Since the states have the same control con�guration (pos = s)it is clear that the execution of the control action did not perform as expected andthe conclusion is that the discrepancy is due to an EA. That is, the control actionwas disturbed during its execution and did not complete, but the state is di�erentfrom the state the action was executed in.VOA: One of the ontological assumptions in our examples is that the sensors l1and l2 on the trolleys correspond to the positions t1 and t2, respectively. If thetrolleys would change places while executing M2, the resulting state would be y220(since the arm would put a block in position t2, where, now, the sensor l1 is sit-uated), which is not explicitly represented in the model. But, since the expectedcontrol con�guration pos = 2 has materialized, but the expected plant formula (thepart of the state not concerning pos) did not, the conclusion is that a VOA hasoccurred. That is, the control action was completely executed, but the resultingstate di�ered from the expected state.In this example there are no recovery actions, and thus no in�nite recovery loops. Ifwe would add more actions to the example, such as actions that can move objectsbetween the trolleys, and from the trolleys to the store, the system could get stuckin in�nite loops, in the case of the VOA presented above.4.3 Summary of assumptionsAs discussed above, the idea of detecting and classifying faults due to inadequatemodels requires some assumptions on both the model and the plant. The main ideais that contrary to, for example, the work on model-based diagnosis, we do not usethe entire model as the reference point of the monitor system. Instead, if we trusta part of the model that marks the complete execution of control actions, we thenneed to know exactly when state transitions occur, and we have chosen to achievethis by assuming that actions are energized (as argued in Chapter 2. Finally, theclassi�cation scheme requires that the con�guration parts (which intuitively is thepart of the states concerning variables that are completely trusted) of all consecutivestates are mutually exclusive. Below we will discuss the assumptions in more generalterms.4.3.1 Perfect sub-modelIn the original work on ontological control [Fodor, 1995, Fodor, 1998] it was assumedthat the execution monitor had access to the con�guration of the actuators of the� 55 �



Chapter 4. Ontological controlcontrolled system. The sub-model (that is, that model induced by the con�gurationparts of the states) only regarding the actuator sensor was then assumed to beperfect, that is, if the actuator sensor values changed state, that state change wascompletely trusted.In this thesis we use a slight generalization of Fodor's assumption of trusted ac-tuator sensors. We construct the models in such a way that we easily can extracta perfect (or, completely trusted) sub-model, but without any assumption of thephysical realization of it. The reason for this is that in actual industrial processcontrol systems, the inputs to the controller do not necessarily correspond to sen-sor readings, and outputs do not necessarily correspond to actuator invocations. Acontroller in such an environment is typically reading data from various sources,such as databases, Ethernets, sensors, and many other controllers. The controllerthen sends output to various receivers, such as databases, Ethernets, actuators, andmany other controllers. A complicating factor is that both the internal componentsof a controller and all processes in its environment are run concurrently and asyn-chronously. This means that the models cannot only be con�ned to the input/outputbehaviors of the controller, but also have to consider internal computations, and ac-tually consider such computations as providing inputs and outputs to the controlleritself.A perfect sub-model is, thus, not necessarily a model of the input/output behav-ior of the actuators, but a model of the system that can be trusted. An examplemay be a sub-model that only reects computations performed by the controller. Infact, such a sub-model is constructed for the application described in Section 4.5.4.3.2 Non-loggingIt is not uncommon that parts of a control program are constructed for the purposeof logging, that is, that state changes are recognized, but that they do not triggernew control actions. An example could be robot arm, where there is a state whenthe angle from some plane is < 30�, and a distinct consecutive state checking thatthe angle now is � 45�.This is somewhat problematic from an execution monitoringperspective. To do execution monitoring in the state-based manner of this thesis,it is necessary to be able to distinctly recognize state changes. That is, with avector of input values to the controller we need to be able to uniquely determine theinternal state of the controller. For stabilization controllers we have no assumptionson exactly how the model is constructed, but for sequential controllers we assumethe following:The model is organized in sequences of states, goal paths, where transitions areassumed to occur due to control actions. The goal paths have di�erent priorities,and we assume that the controller will try to follow the highest prioritized goal pathpossible. Next, we assume that consecutive states on the goal paths are mutuallyexclusive (that they cannot be materialized simultaneously), and this assumption isenforced by assuming that consecutive states in the perfect sub-model are mutuallyexclusive (see Section 4.4.2 for the details).This is not a particularly restrictive assumption from a practical point of view,� 56 �



4.4. Theorysince the controllers we are interested in typically are reactive, and thus states trig-gering certain control actions are mutually exclusive to states triggering di�erentactions.4.3.3 Energized actionsThe last assumption we need to make is how the execution of actions can be modeled.As discussed in Section 2.2.1, we will assume that actions are energized, that is, weassume that our models are constructed in such a way that actions are executedexactly as long as the state in which they were invoked is materialized.4.4 TheoryFrom Section 2.5 we recall the de�nition of an execution monitoring system: Atwelve-tuple hP;A;Cont; S;M; Sit; Exp;D;Det; L; Class;Recoveri;where P is a set of plant states, A a set of control actions, Cont a function represent-ing the controller, S a set of internal states, M a model, Sit the situation assessmentfunction, Exp the expectation assessment function, D a set of discrepancies, Detthe discrepancy detection function, L a set of discrepancy classi�cations, Class thediscrepancy classi�cation function, and Recover the recovery function.In this section we will concretize the abstract theory and give a simple example.4.4.1 Plant states, control actions, and internal statesWe assume a �nite set X = fx1; : : : ; xng of variables, representing input signals,and a set of domains � = f�1; : : : ; �ng representing the possible readings of the cor-responding input signals. We assume a �xed ordering, hx1; : : : ; xni, on the variables(where �i is the domain of xi).The set of plant states is de�ned as the set P = �1 � �2 � : : : � �n, that is, alln-tuples of values from the variable domains according to the ordering.We assume a set A = fa1; a2; : : : g of control actions.An expression xi � d, with xi 2 X , � 2 f<;=; >g, and d 2 �i, is called aconstraint. A boolean combination of constraints2 will be called a formula. The setof all formulas over X and � is denoted by F . The set of internal states is S � F�F ,and for sequential control we denote the distinguished set of goal states by Sg � S.For an element hc; zi 2 S the �rst component, c, is called the con�guration, and thesecond, z, is called the plant formula. For states y = hc; zi we de�ne the projectionsconf(y) = c and plant(y) = z.2That is, a combinations of constraints constructed : (negation), ^ (conjunction), and _ (dis-junction) � 57 �



Chapter 4. Ontological control4.4.2 ModelsWe assume that models are constructed from goal paths, in the following manner:A goal path is a directed graph G = hV;Ei with labeled edges, where V � S,E � V � A � V (where the control action is the label on the edge), and where thefollowing holds:� There exists a unique internal state in V , s, such that no edge hs0; a; si 2 Eexists, for any internal state s0 and control action a 2 A. This internal stateis called the initial state of the goal path.� There exists a unique internal state in V , s 2 Sg, such that no edge hs; a; s0i 2E exists, for any internal state s0 and control action a 2 A. This internal stateis thus the goal state of the goal path.� For any internal state s 2 V , except for the goal state, there is exactly oneedge hs; a; s0i 2 E for some control action a and internal state s0.Thus, a goal path is a total ordering of a subset of internal states, and the lengthof a goal path, G, (that is, the number of internal states in the ordering) is denotedlength(G).A model is a tuple M = hG; oi where G is a set of goal paths, and o is a totalordering (the priority ordering) of G. Since all goal paths are totally ordered wede�ne the function index : V � G ! N such that index(s;G) = k i� s is the kthinternal state in the goal path G. If s is the initial state in G, then index(s;G) = 1.Moreover, we de�ne functions initial(G) and goal(G) to return the initial and goalstates, respectively, of a given goal path G.Clearly, it is possible to view the �rst component of a model (the set of goalpaths) as one single graph if we look at the union of the vertices and edges in thegoal paths. This graph will be referred to as the control graph. The control graph isuseful for recovery, which will be discussed below. We say that two internal states,y and y0, are consecutive if one of the the edges hy; a; y0i or hy0; a; yi exist in thecontrol graph.By restricting a control graph to con�gurations, that is, by restricting all goalpaths to con�gurations, we construct a sub-model. A perfect sub-model is a sub-model where all consecutive states are mutually exclusive (this concept will be prop-erly de�ned in Section 4.4.3.). In �gure 4.4 the perfect sub-model of the trolleyexample is depicted.4.4.3 InterpretationsA plant state, � 2 P can be viewed as a projection from variables to the correspond-ing domains, where �(xi) = di i� � = hd1; : : : ; di; : : : ; dni.The interpretation, �, is a function from plant states and formulas to f0; 1g, andit is de�ned as follows: For xi 2 X , � 2 f<;=; >g, di 2 �i, and formulas � and �,� 58 �



4.4. Theorypos = s pos = t1pos = t2M2MS M1MS
Figure 4.4: The perfect sub-model of the trolley example.we have �(�; xi � di) = 1 i� �(xi)� vi holds�(�; � ^ �) = 1 i� �(�; �) = 1 and �(�; �) = 1�(�; � _ �) = 1 i� �(�; �) = 1 or �(�; �) = 1�(�;:�) = 1 i� �(�; �) = 0We say that a formula, �, is consistent i� there exists a � 2 P such that �(�; �) = 1.The plant state � is then said to satisfy �.We overload � to apply to internal states, so that �(�; hc; zi) = 1, i� �(�; c) = 1and �(�; z) = 1. Consistency and satisfaction is similarly de�ned for internal statesas for formulas.If we have a plant state � such that for an internal state y, �(�t; y) = 1, we saythat y materializes by �.Two internal states, y and y0, are said to be logically equivalent i�, for everyplant state �, we have �(�; y) = �(�; y0). Two states are mutually exclusive i� theyare not simultaneously satis�ed by any plant state.4.4.4 ControllerA controller is a function from a current internal state and a goal state to a controlaction. Formally, a controller is a function Cont : S � Sg ! A. The goal state isnecessary to distinguish between the goal paths.4.4.5 EmbeddingsAs we will need to put restrictions on the actual plant we need to simulate it some-how. We do this by introducing the concept embedding, E : P �A! P , a functionfrom plant states and control actions to plant states. Intuitively, E models thebehavior of the plant under the inuence of control actions.Every embedding de�nes a set of traces �E = �0a0�1a1�2 : : : such that E(�i; ai) =�i+1. We drop the subscript of �E whenever no ambiguity can arise. We use thesymbol 2 to denote the substring relation.� 59 �



Chapter 4. Ontological controlDe�nition 4.4.1 (Non-logging systems)We say that a system is non-logging w.r.t. an embedding E and a correspondingtrace � i�, for every triple �a�0 2 � andc; c0 2 fc00 j hc00; zi 2 Sg;�(�; c) = �(�0; c0) = 1 holds exactly when c and c0 are mutually exclusive.2Intuitively, for all subtraces �a�0 in a trace, any pair of con�gurations c; c0 that aresatis�ed by �; �0 respectively, must be mutually exclusive. Thus, we ensure thatstate changes can be detected by looking at materializations of con�gurations only.4.4.6 Situation assessmentThe situation assessment function is, in this chapter, a function from a plant state,a model, and a goal state to an internal state, that is, Sit : P �M� Sg ! S.Here, we exploit the goal path structure. As discussed in Chapter 2, the impor-tant issue is not to satisfy a goal state as quickly as possible, but to ensure that allcontrol actions in the sequence are properly executed. The idea is that the situationassessment function picks out the internal state with the lowest index on the highestprioritized goal path that is satis�ed by the given plant state. Formally, for a set ofgoal paths G = fGigmi=1 and a state y = hc; zi, we have Sit(�; hG; oi) = y, for someordering o, by the following algorithm:1. Let Y = fy0 2 S j �(�; y0) = 1g. If Y = ; then return the dummy statey = nosat.2. Let G0 = fGi 2 G j 9y0 2 Y: y0 2 Gig. G0 cannot be empty by the de�nition of\model".3. Pick out the highest prioritized member of G0, that is, take G 2 G0 such thato(G) = maxfo(G0) jG0 2 G0g.4. Set y to be the state in Y with the lowest index on G, that is index(y) =minfindex(y0) j y0 2 Gg.It is now possible to de�ne the notion of energized actions.De�nition 4.4.2 (Energized actions)We say that an action a is energized w.r.t. an embedding E and a controller Conti� E(�; a) is de�ned exactly when Cont(Sit(�;M); g) = a, for some goal state g. Asystem is energized if all control actions of the system are.24.4.7 Expectation assessmentExpectation assessment is function Exp : S � A �M ! S from an internal state,control action, and a model to an internal state, the expected state. The computationof an expected state is done from a plant state and a control action in an embedding,that is, for �a 2 � , Exp(Sit(�;M); a;M) = y where the edge hSit(�;M); a; yi is anedge on the highest prioritized goal path possible.� 60 �



4.5. Experiments4.4.8 Discrepancy detectionLet � be trace of an embedding and pick �a�0 2 � , such thatExp(Sit(�;M); a) 6= Sit(�0;M):Then we say that the discrepancy �a�0 has been detected.4.4.9 Discrepancy classi�cationThe main goal for ontological control is to detect and classify discrepancies due tomodel inadequacies and disturbances. With the concepts con�guration, non-loggingand energized systems this is not particularly di�cult.Theorem 4.4.3 We assume a given model, controller, and embedding, such thatthe system is non-logging and energized. Let �a�0 be a detected discrepancy. Then,exactly one of the following statements hold:1. conf(Exp(Sit(�;M); a)) is logically equivalent to conf(Sit(�0;M)).2. conf(Exp(Sit(�;M); a)) is mutually exclusive with conf(Sit(�0;M))..Proof: Since �a�0 is a discrepancy we havehc; zi = Exp(Sit(�;M); a) 6= Sit(�0;M) = hc0; z0i:As the system is energized, a change of internal state must have occurred due tothe discrepancy, that is, � and �0 must be mapped to di�erent states by Sit. Thenon-logging property then gives us that either �(�; c) = �(�0; c0) = 1 holds, or it doesnot. When it holds, we have case 2, otherwise we have case 1.2Case 1 in Theorem 4.4.3 will be referred to as a discrepancy due to EA, and case 2as a discrepancy due to VOA.4.4.10 Recovery from discrepanciesWhen a discrepancy is detected during execution we need to do two things. First,we need to �gure out what state we have come to and �nd an appropriate controlaction from that state, in line with the purpose of the control system. Secondly,we may have to adjust the model to make it more appropriate for our particularapplication.We address neither of these issues in this chapter. The low SCWA of our repre-sentation makes it very di�cult to predict the e�ects of any changes of the model.In chapter 7, however, the issues will be discussed in detail.
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Chapter 4. Ontological control

Figure 4.5: The STRESSOMETER atness control system. Drawing by Lasse Wid-lund.
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4.5. Experiments4.5 ExperimentsThe theory described above has been applied to a real industrial process controlsystem. In this section, we will describe the application, the implementation, theexperimental setup, and some of the results. This is an extension of the paper[Bj�areland and Fodor, 2000].4.5.1 Application: ABB STRESSOMETERThe application is the market leading atness control system for cold steel mills,the ABB STRESSOMETER (see Figure 4.5). In cold-rolling mills, a metal stripthat is subject to di�erent degrees of reduction across its width will be elongatedin varying length over di�erent sections. A special measuring roll (in this case, aSTRESSOMETER System [ABB, 1999]) can gauge the atness error of the strip.Several di�erent methods have been developed to correct the atness error; all ofthem are based upon local modi�cations of the gap between rolls. We consider herea system with two actuators. The �rst one is a roll bending actuator that performs acourse-granularity symmetrical compensation of the error by applying bending forceson the rolls. The second one is a so-called multi-step cooling actuator. This producessmall changes of the rolling diameter in well-de�ned zones of the rolls, where coolingliquid is applied such that the atness error is reduced. The cooling unit performsa �ne-granularity, possibly asymmetrical, compensation. Normally the e�ect of thebending actuator on the strip is known in advance (given by a so-called evaluationcurve). To eliminate the error, a control algorithm is implemented as a two-stepcontrol loop: First, the expected e�ect of the bending actuator is subtracted fromthe measured error. Secondly, the error that is left over is further reduced by themulti-step cooling unit.A discrete state set for this type of control is a sequence S0; : : : ; S3 as follows:S0 The controller computes the atness error as a multi-variable distance (norm)along the strip width, between the measured and the reference strip pro�le.S1 The controller predicts what will be the e�ect of the bending force on the error.S2 The error input for the cooling input is computed and other discrete conditionsare considered (e.g. manual cooling zones are excluded).S3 The actuator commands for the cooling unit are determined.Some of the commonly expected external actions (disturbances) that may occur andchange the state transition sequence described above are the following.� The error to be compensated by the cooling unit is too high (the roll has beencooled down too much and cannot act anymore).� One or several cooling nozzles deliver less coolant liquid than speci�ed, forexample due to sediments. � 63 �



Chapter 4. Ontological control� The bending actuator has changed its last characteristics since its maintenanceand acts in a lesser, or higher, degree.In industrial applications, it is essential that trends for such expected external actionsare detected early. Ontological control can be applied both for slow continuous trendsas well as for discrete, abrupt changes such as to detect a sudden cross connectionof nozzles.It should be noted that this system is non-linear and that the vast complexityprohibits the construction of a mathematical model of it, from an economical pointof view. This implies that attempts to model the system and then formally verify itscorrectness are futile (as are any attempts to verify industrial-scale control systems).The control algorithms are implemented in \ABB Master Piece Language" (AMPL)

Figure 4.6: A small FBD program.that is an instance of \Function Block Diagrams" (as described in the standard IEC1131-3 [Lewis, 1997]). AMPL is thus data-ow based, and a program consists of anumber of elements with input and output ports connected to each other (see Figure4.6 for a small example of a FBD program). To receive input, an AMPL programrelies on a number of communication elements and database query elements. Itis seldom the case that a program receives sensor readings directly; it is far morecommon that the source of input is another controller or a database. The sameholds for output, where it is far more common for a program to send computationresults to other programs than to actuators. This means that the theoretical notions\input variable" and \actuator invocation" should be viewed as inputs and outputsto a control program without attaching any physical realization to them.It is also the case that the programs are not I/O switching, that is, all computa-tions within a program are not necessarily performed during one sampling interval.33I/O switching systems run in a read-compute-write loop, and �nishes the loop at every samplinginstance. � 64 �



4.5. ExperimentsThis implies that the states of a model cannot only reect variable changes outsidethe program, but also need to model the internal execution. In fact, in the pro-gram we studied there are 22 sequential processes running concurrently (and partlyasynchronously).In this experiment we looked at one program, program 9 (of 25), for the coolingunit. Program 9 was chosen since it is fairly small (7000 - 8000 lines of code), andsince it is a \true" legacy program, in the sense that it was coded a number of yearsago, and it is not entirely clear how it executes.4.5.2 Goal path and control graph generationThe input for the goal path and control graph generation is an AMPL programsource code listing in ASCII text format. For program 9, the generation was doneby hand, but it can be semi-automated. After a number of unsuccessful attemptsat �nding suitable parsing rules, the following \algorithm" was invented:1. Each element of the program is associated with one of the following four types:� t1 Control actions: Elements that inuence devices outside the program,such as elements producing external actions, communication elements,database storage elements etc. Can be viewed as output elements.� t2 Logical: Logical gates.� t3 Input plant formula: Input elements.� t4 Data-ow: All other elements.Only boolean signals are considered.2. A restricted program is generated, in terms of t1; : : : ; t4 and boolean variablesonly. For program 9 we identi�ed 94 variables.3. For every control action element the corresponding precondition con�gurationis determined, using the t2 elements. This gives us the �rst two members ofthe hc; a; c0i triplets, and the number of states. The plant formula part of thestates comes from the t3 elements. In program 9 we identi�ed 125 states.4. The preconditions and the data-ow elements are then used to determine thepostconditions of the actions, which yields the goal paths. In program 9 thereare 46 goal paths.5. The goal paths are then merged into the control graph.The structure of the control graph is depicted in Figure 4.7, to show the complexity ofthe application. The vertices in the picture represent states and the edges representtransitions due to control actions.
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Chapter 4. Ontological control

Figure 4.7: The control graph generated from program 9.
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4.6. Comparison to Fodor's original work4.5.3 ImplementationBased on the theory above, a prototype implementation was developed by Lewau[Lewau, 1999]. The main part of the system is a domain-independent executionmonitoring engine that given a list of variables, a list of goal paths, and the controlgraph, can monitor the execution of the corresponding controller. The prototype isobject-oriented and implemented in JAVA and is thus easy to move between plat-forms. This also ensures that di�erent means of communication with the executionmonitor are easy to implement (whether it is through sockets, Internet, RMI, orCorba).Below we refer to the prototype as the \OC system".4.5.4 Experimental setup and resultsThe experimental setup consists of an industrial-grade STRESSOMETER systemwith a simulated process, which is normally used for factory acceptance tests. Byprobing relevant variables during execution, we recorded 11 traces (sequences ofsamples), with various faults, and stored them into text �les.The experiments have been done as follows: �les with variable lists, goal paths(with priorities), and the control graph were given to the OC system. The systemwas tested with the 11 traces, of which one was sampled during optimal executionof the STRESSOMETER, and the rest sampled with some fault introduced. Weanalyzed the following relevant traces:Trace 5: Cooling did not have e�ect due to high compensation.Trace 6: Exception 1, data invalid at initiation phase.Trace 7: Exception 1, communication error at initiation phase.Trace 8: Exception 2, data invalid during processing.Trace 9: Connection fault.Trace 10: Internal communication error.Trace 11: One cooling zone failure.Except for the faults in trace 11, all other faults were detected, and none of thefaults had previously been explicitly detected. The granularity of the model prohib-ited detection of the fault in trace 11.The faults were also classi�ed correctly, but since the system did not obey thenon-logging property, it is hard to say anything about the distinction between EAsand VOAs for the given traces.4.6 Comparison to Fodor's original workIn previous sections there are claims that the presentation of ontological control inthis thesis is more general, more formal, and extended compared to the original workof Fodor [1995, 1998]. In this section we will present the main di�erences betweenthe work in this thesis and Fodor's work, and discuss them.� 67 �



Chapter 4. Ontological control4.6.1 Discrepancy classesIn this chapter we have considered only two causes for discrepancies: EA and VOA.Fodor, on the other hand, distinguishes between the following four:� VOA,� Expected External Action (EEA),� Unexpected External Action (UEA), and� Timing Errors (TE).Fodor de�nes VOAs in a similar way as we, but chooses a more re�ned de�nitionof EA. He assumes that there is a second kind of actions, expected external actions,in the model, that may change the state when they are executed, but that areuncontrollable by the monitored controller. In this way it is possible to modelknown possible interferences with other controllers. Without the presence of suchexpected external actions, the classes EEA and UEA coincide, and since they aredetected, classi�ed and recovered from in exactly the same way, we have chosen toview them as the same class.Timing errors occur when the sampling time is too long, that is, when the exe-cution monitor fails to notice a state change as it happened between two samplinginstances. This means that the execution monitor may erroneously detect a discrep-ancy. It is di�cult (probably impossible within this framework) to devise a theorythat can distinguish between VOAs and TEs, and since the experiences show thatnormal sampling frequencies of 50 - 100 Hz su�ces to detect all state transitions,we assume that the frequencies can be set to be su�ciently high. Thus, we do notneed to to consider TEs.4.6.2 States, goal paths, and control graphsA fundamental di�erence is the notion of states. In Fodor's work a controller state isa tuple hy; ui where y is a pair hz; ci exactly corresponding to our notion of internalstate, and where u is a control action. A goal path in this setting is a path withcontroller states as nodes and with unlabeled edges, while in our setting the internalstates are connected by edges corresponding to control actions. The advantage tohaving control actions within the states is that then the \energized action property"is built into the system (the system is in a state as long as the internal state issatis�ed and the control action is executed). However, there certainly are situationswhere an action is more naturally modeled as being ballistic, and these cases cannotbe handled in a straightforward way in Fodor's setting. Another di�erence is howdi�erent actions with the same precondition are modeled. In our version this canbe handled by letting two control actions lead from the same state to two di�erentstates, as shown in Figure 4.8. In Fodor's setting Figure 4.8 must be interpreted asnondeterministic e�ect of an action, which traditionally is avoided in process control� 68 �



4.6. Comparison to Fodor's original work
Figure 4.8: A state with two outgoing edges.systems4. Instead, di�erent actions with the same precondition must be modeledwith two di�erent states, one for each action, and subsequently, two di�erent pathsleading up to those.4.6.3 Execution monitoringAnother di�erence lies in how situation assessment is assumed to work. We representstates as formulas and use samples to satisfy states on the way to determine thecurrent state. In Fodor's work the job of �nding the current state is achieved by thecontroller, that is, the controller decides the current state and then sends the name ofthe state to the ontological controller. This implies that the execution monitor doesnot have access to the vector of variable values. The reason for this is computational:Fodor argues that it is unnecessary to perform the situation assessment computationin the ontological controller since it is already done in the controller. In our settingthe value vectors are used to detect and to classify discrepancies, so Fodor usesa di�erent strategy: Discrepancy detection is done by comparing the name of thestate sent by the controller to the name of the expected state, and if these are notthe same a discrepancy is detected. For classi�cation, Fodor relies on sets of statesrelated to every state in the model, the collateral states. The collateral states of astate, y = hc; zi, are all states that have the same c component. Thus, for a detecteddiscrepancy it su�ces to check whether it belongs to the collateral set of the previousstate or to the collateral set of the expected state to determine whether it is due toan EA or a VOA, respectively. This idea is simpler than ours. However, it relies onthe assumption that all physically possible states are represented in the model, thatis, that for any possible sample there is a state that is materialized by the sample.We consider this assumption to be both inconvenient for the model designer andunnecessarily restrictive.4.6.4 Well-determined state setsIn Fodor's work a state transition diagram model can only be used for ontologicalcontrol if it is well-determined, that is, if the following four restrictions are met:4This is a possibility that we have not considered in this thesis. We acknowledge the need formodeling uncertainty, but believe that there are other (and perhaps better) ways of doing this thanto have nondeterministic actions. For example, since we are only interested in using the models forprediction, there is a perfect duality between uncertainty of the e�ects of control actions, and theuncertainty of sensor readings (see e.g. [Sandewall, 1994, Lin, 1996] for discussions on this duality).The latter �ts nicely into our framework. � 69 �



Chapter 4. Ontological control� Control action integrity: No state can be reached by both a control action andan expected external action.� Speci�city of con�gurations: There cannot be two di�erent control actionswhose e�ects satis�es the same con�guration formula.� Speci�city of control actions: Control actions are deterministic.� Syntactically complete state sets: There is a control action for every output ofthe plant.Fodor shows that these four restrictions enable solutions to the fundamental problemof ontological control. The reader should note that it is di�cult to compare Fodor'srestrictions to the restrictions in this chapter. Fodor's restrictions heavily rely onhis de�nition of \state" and the fact that his ontological controller does not performsituation assessment by attempting to satisfy a logical formula, but instead receivesa pointer to the currently materialized state. However, we claim that our restrictionsare weaker, in the sense that more systems can satisfy our restrictions.Clearly, the control-action-integrity restriction is not relevant to the work inthis chapter, since we have no explicit notion of \external action". The speci�city-of-con�guration restriction has been removed, while the speci�city-of-control-actionsrestriction remains, but more as a desired property of control systems in general thanas an explicit restriction. Finally, the syntactically-complete-state-sets restriction isvery strong, since it assumes that there exists an explicitly represented state forevery possible sample, and that the controller can handle every such state. Thisassumption has been relaxed, because it has more to do with the design of robustcontrollers then with execution monitoring of controllers.
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Chapter 5Stability-based executionmonitoringIn section 2.4 we discussed various research issues involved in execution monitoring,one of which was \purpose". As mentioned there we investigate two purposes ofexecution monitoring in this thesis: ontological control and stability-based executionmonitoring. The former concerns sequential control systems and was developed tohedge in�nite recovery cycles in such systems (as presented in chapter 4). If weinstead consider control systems with the control task of making a plant stable, thatis, to ensure that the actual plant state always belongs to a predetermined set ofstates, we have a di�erent situation. It may be interesting to detect in�nite cyclesfor such systems as well, but as such controllers typically are continuously runningthrough a cycle of states, it is far more important to ensure that the system doesnot jump out of that cycle, and if it does, that it is possible to get back into thecycle again, in a safe manner.In this chapter we will formally present the standard notions \stability" and\stabilizability" for discrete system. We will argue that these notion may be veryrestrictive for a number of domains, such as autonomous systems and robotics, andpropose the notion \maintainability". The di�erence between these concepts liein the explicit representation of exogenous (uncontrollable) events that appear formaintainability but not for stabilizability. A system is stabilizable w.r.t. a set ofstates E if we can guarantee that we by control actions only can reach E from anystate in the system in �nite time. We say that a system is k-maintainable w.r.t. Eif we during a time interval of length k with no occurrences of exogenous actions,can reach E with control actions only. It is easy to see that maintainability andstabilizability are incomparable (neither property implies the other), so we proposea more general notion, (k; l)-maintainability, meaning that any state trajectory oflength k with at most l occurrences of exogenous actions will take the system toE. We show that stabilizability is equivalent to the existence of an m such that thesystem is (m;m)-maintainable, and that k-maintainability is equivalent to (k; 0)-� 71 �



Chapter 5. Stability-based execution monitoringmaintainability.We formally compare these notions in a framework of discrete �nite automata.We then present algorithms to verify maintainability, and to construct controllersto make a system maintain a set of states. Finally we discuss how these notions canbe monitored.The theory developed in this chapter will be applied in chapters 6 and 7.5.1 IntroductionThe concept of stability has undergone extensive investigation in both the Com-puter Science (see Section 3.3.2 and the on-line bibliography [Herman, 1999]) and theControl Theory community (see [Passino and Burgess, 1998]), both for continuoussystems (e.g. Lyapunov stability and asymptotic stability) and Discrete Event Dy-namic Systems (DEDS) [Ramadge and Wonham, 1989], [ �Ozveren et al., 1991]. Allthese notions can be summarized as in [Passino and Burgess, 1998]:We say that a system is stable if when it begins in a good state and isperturbed into any other state it will always return to a good state.The appropriate stability notion in a particular case depends on how the notions\system", \begins", \state", \good", and \perturbed" are de�ned. For DEDS themainstream de�nition can be found in [ �Ozveren et al., 1991] (see De�nition 5.3.3,and that de�nition is the one we use in this chapter. A related, more generalnotion which we call maintainability is introduced in this chapter, and we argue itsimportance, particularly for high level control of agents.Intuitively, we can view stabilizability as a hard constraint on the system whilemaintainability is a softer constraint. In both maintainability and stabilizability ourgoal is that the system should be among a given set of states E as much as possible.In stabilizability, we want a control such that regardless of where the system is nowand what exogenous actions may occur, the system will reach one of the states in Ewithin a �nite number of transitions and keep visiting it in�nitely often after that. Inmaintainability, we have a weaker requirement where the system reaches a state in Ewithin a �nite number of transitions, provided it is not interfered with during thosetransitions. Thus in maintainability, we admit that if there is continuous interference(by exogenous actions) we can not get to E in a �nite number of transitions. Such asystem will not satisfy the condition of stabilizability, but may satisfy the conditionof maintainability.Many practical closed-loop systems are not stabilizable, but they still serve apurpose and we believe that such systems can be speci�ed by using the weakernotion of maintainability. An example is a mobile robot [Brooks, 1986] which isasked to `maintain' a state where there are no obstacles in front it. Here, if thereis a belligerent adversary that keeps on placing an obstacle in front of the robot,then the robot can not get to a state with no obstacle in front of it. But often wewill be satis�ed if the robot avoids obstacles in front of it when it is not continuallyharassed. Of course, we would rather have the robot take a path that does not have� 72 �



5.2. Running example: Two �nite bu�erssuch an adversary, but in the absence of such a path, it would be acceptable if ittakes an available path and `maintains' states where there are no obstacles in front.Other examples include agents that perform tasks based on commands. Here, thecorrectness of the agent's behavior can be formalized as `maintaining' states wherethere are no commands in the queue. We can not use the notion of stability becauseif there is a continuous stream of commands, then there is no guarantee that theagent would get to a state with no commands in its queue within a �nite number oftransitions.Another important aspect of maintainability is that in reactive software systems,if we know that our system is k-maintainable, and each transition takes say t timeunits, then we can implement a transaction mechanism that will regulate the numberof exogenous actions allowed per unit time to be 1k�t . This will also be useful inweb-based transaction software where exogenous actions are external interactionsand the internal service mechanism is modeled as control laws. On the other hand,given a requirement that we must allow m requests (exogenous actions) per unittime, we can work backwards to determine the value of k, and then �nd a controllerto make the system k-maintainable. In general, since in high level control we mayhave the opportunity to limit (say through a transaction mechanism) the exogenousactions, we think `maintainability' is an important notion for high level control.5.2 Running example: Two �nite bu�ersWe imagine a system with two �nite bu�ers, b1 and b2, where objects are addedto b1 in an uncontrollable way. An agent then moves objects from b1 to b2 andprocesses them there. When an object has been processed it is automaticallyremoved from b2. This is a slight modi�cation of a �nite bu�er example from[Passino and Burgess, 1998] and generalizes problems such as ftp agents maintain-ing a clean ftp area by moving submitted �les to other directories, or robots movingphysical objects from one location to another.For simplicity, we assume that the agent has three control actions M12 thatmoves an object from b1 to b2 (if such an object exists), the opposite action, M21that moves an object from b2 to b1, and Pro that processes and removes an objectin b2. There is one exogenous action, Ins that inserts an object into bu�er b1. Thecapacities of b1 and b2 are assumed to be equal.If the control goal of this system is to keep b1 empty, the system is not stabilizable,since an object can always be inserted and violate the goal. However, if no insertionsare performed for a certain window of non-interference, the agent can always emptyb1. This implies that the system is maintainable but not stabilizable.We will formalize this example below.
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Chapter 5. Stability-based execution monitoring5.3 Reviewing stability and stabilizabilityIn this section we review the notions of stability and stabilizability adapted fromthe de�nitions in [ �Ozveren et al., 1991].5.3.1 Stability and alivenessDe�nition 5.3.1 A system A is a 4-tuple (X;�; f; d), where X is a �nite set ofstates, � is a �nite set of actions, d : X ! 2� a function listing what actions mayoccur (or are executable) in what state, and f : X ��! 2X the non-deterministictransition function. We overload the transition function to handle sequences ofactions as well, that is, for a sequence of actions A = [a0; a1; : : : ; an] we de�nef(x;A) f(x; [a0; a1; : : : ; an]) = [x02f(x;a0) f(x0; [a1; : : : ; an]):2Running Example, Cont'dThe transition diagram of the bu�er example is depicted in �gure 5.1. We assume00 10 20 30InsInsIns Pro
02 12 22 32InsIns InsPro Pro Pro01 11 21 31InsIns InsPro Pro Pro

M2M1M2M1 M2M1 M2M1
M2M1 M2M1

03 13 23 33InsIns InsPro Pro ProM2M1 M2M1 M2M1 ProPro
Figure 5.1: The transition diagram of the system for the bu�er example.that the maximum capacity of the bu�ers is 3, and model the state space by lettingevery state in X represent the number of objects in b1 and in b2, that is, a stateis identi�ed by a pair of integers hi; ji (ij for short) where i denotes the numberof objects in b1 and j the number of objects in b2. With the maximum capacity� 74 �



5.3. Reviewing stability and stabilizabilityassumed to be 3, the state space consists of 4� 4 = 16 states. That isXb = f0; 1; 2; 3g� f0; 1; 2; 3g:The set of actions is �b = fM12;M21;Pro; Insg.We assume that the transition function is deterministic (that is fb : Xb � �b !�b) and is de�ned as follows:fb(hi; ji;M12) = hi� 1; j + 1ifb(hi; ji;M21) = hi + 1; j � 1ifb(hi; ji;Pro) = hi; j � 1ifb(hi; ji; Ins) = hi + 1; jiThe enabling function, db, is de�ned asM12 2 db(hi; ji) i� i � 1 and j � 2M21 2 db(hi; ji) i� i � 2 and j � 1Pro 2 db(hi; ji) i� j � 1Ins 2 db(hi; ji) i� i � 2The system Ab is then de�ned as Ab = hXb;�b; fb; dbiDe�nition 5.3.2 An alternating sequence of states and actionsx0; a1; x1; a2; : : : ; xk; ak+1; xk+1; : : :is said to be a trajectory consistent with a system A if:� xk+1 2 f(xk; ak+1), and� ak+1 2 d(xk).2De�nition 5.3.3 Given a system A and a set of states E, a state x is said to bestable in A w.r.t. E if all trajectories consistent with A and starting from x gothrough a state in E in a �nite number of transitions and they visit E in�nitelyoften afterwards.We say A = (X;�; f; d) is a stable system if all states in X are stable in A w.r.t. E.2Alternatively, A is stable w.r.t. E if, for any state x 62 E, every in�nite trajectorystarting with x will lead to E in a �nite number of steps. This alternative de�nitionwill be used in chapter 7.It is not possible to pick any strict subsets S and E of Xb such that S is stablew.r.t. E. Thus, Ab is only trivially stable, that is, any set of states S is only stablew.r.t. Xb. � 75 �



Chapter 5. Stability-based execution monitoringDe�nition 5.3.4 R(A; x) denotes the set of states that can be reached from x bysome trajectory consistent with A.A state x is said to be alive if d(y) 6= ;, for all y 2 R(A; x). (That is, we can notreach a state y from x, where no action is possible.)We say A = (X;�; f; d) is alive if all states in X are alive.2As an aid in future proofs we state the following characterization of stability:Lemma 5.3.5 Let A be a system and S and E sets of states. S is stable w.r.t.E i� there exists a natural number n such that every trajectory consistent with Astarting from x meets E in at most n transitions, for every x 2 S.Proof: () Straightforward from the de�nitions.)). Assume that S is stable w.r.t. E and that there is trajectory consistent withA starting in a state x 2 S with length > jX j where no member of the trajectorybelongs to E. Then some state in X must occur more than once on the trajectory,that is, there is a cycle on the trajectory not meeting E. But then there is an in�nitetrajectory starting from x not meeting E at all, which contradicts the assumptionthat S was stable w.r.t. E. Therefore, no trajectory starting in S can be longerthan jX j, which proves the lemma.2It should be noted that Lemma 5.3.5 depends heavily on the �niteness of the set ofstates. If X is in�nite the Lemma fails.5.3.2 StabilizabilityWe now consider control and exogenous actions. The set of control actions U is asubset of �, that can be performed by the agent. A particular control law1 K :X ! U is function from states to control actions, such that K(x) 2 d(x). The setof exogenous actions that can occur in a state (and that are beyond the control ofthe agent) is given by a function e : X ! 2�, such that e(x) � d(x). We assumethat K(x) 62 e(x) for any state x.For our running example we have assumed that the only exogenous action is Ins.De�nition 5.3.6 Let A = (X;�; f; d) be a system. In presence of e, U , and K,the closed loop system of A, denoted AK , is de�ned as the four-tuple (X;�; f; dK),where dK(x) = (d(x) \ fK(x)g) [ e(x). 2De�nition 5.3.7 Given a system A, a function e, and a set of states E, we sayS � X is stabilizable with respect to E if there exists a control law K such that forall x in S, x is alive and stable with respect to E in the closed loop system Ak. IfS = X , we say A is stabilizable with respect to E. 21It is also referred to as `feedback law', `feedback control' or `state feedback' in the literature.
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5.4. MaintainabilityRunning Example, Cont'dIt is easy to see that for S = f00g (no objects in the bu�ers) and E = f00; 01; 02; 03g(that is, we want to keep b1 empty) S is not stabilizable w.r.t. E, since the exogenousaction Ins can always interfere the task of bringing the system back to E.On the other hand, S = f00g is in fact stabilizable w.r.t. E = f0; 1; 2g�f0; 1; 2; 3g(that is, we allow at most two objects in b1 at any time), since we can go from any ofthe states in f30; 31; 32; 33g to E with the execution of at most two control actions,while the exogenous action is not de�ned for those states. If we would introduce afailure state, for example for the case when b1 is full and Ins is executed, S would nolonger be stabilizable w.r.t. E. In that case Ab would be only trivially stabilizable.5.4 MaintainabilityOur intuition behind maintainability is that we would like our system to `maintain' aformula (or a set of states where the formula is satis�ed) in the presence of exogenousactions. By `maintain' we mean a weaker requirement than the temporal operatoralways (2) where 2f means that f should be true in all the states in the trajectory.The weaker requirement is that our system needs to get to a desired state withina �nite number of transitions provided it is not interfered in between by exogenousactions. The question then is what role the exogenous actions play.Our de�nition of maintainability relates a set of initial states S, that the systemmay be initially in, a set of desired states E, that we want to maintain, a system Aand a control law K. Our goal is to formulate when the control law K maintains Eassuming that the system is initially in one of the states in S. We account for theexogenous actions by de�ning the notion Closure(S;A) of a closure of S with respectto A. This closure is the set of states that the system may get into starting from S.Then we de�ne maintainability by requiring that the control law be such that if thesystem is in any state in the closure and is given a window of non-interference fromexogenous actions then it gets into a desired state.Suppose the above condition of maintainability is satis�ed, and while the controllaw is leading the system towards a desired state an exogenous action happens andtakes the system o� that path. What then? The answer is that the state that thesystem will reach after the exogenous action will be a state from the closure. Thus, ifthe system is then left alone (without interference from exogenous actions) it will beagain on its way to a desired state. So in our notion of maintainability, the controlis always taking the system towards a desired state, and after any disturbance froman exogenous action, the control again puts the system on a path to a desired state.We now formally de�ne the notions of closure and maintainability.De�nition 5.4.1 (Closure)Let A = (X;�; f; d) be a system and S be a set of states. The closure of A w.r.t.S, denoted Closure(S;A), is de�ned asClosure(S;A) = [x2SR(A; x);� 77 �



Chapter 5. Stability-based execution monitoringthat is, the set of all states reachable from any member of S in the system A.2De�nition 5.4.2 With Closure(S;AK) and a set of states E we associate the setSeq(S;AK ; E) of sequences x = x0; x1; : : : ; xjXj, one for each x 2 Closure(S;AK),where xk+1 = xk if xk 2 E, and xk+1 2 f(xk;K(xk)) otherwise. We also de�neSeq[(S;AK ; E) = ffx0; : : : ; xjXjg jx0; : : : ; xjXj 2 Seq(S;AK ; E)g:2De�nition 5.4.3 Let A be a system, x a state, and E a set of states. We call thesequence of control actions a1; : : : ; an a plan from x to E i� f(x; [a1; : : : ; an]) � E.2We note that the possible sequences of states that can occur between actions in aplan are members of Seq(fxg; AK ; E), for some control law K, if we repeat the laststate (which is in E) su�ciently many times.De�nition 5.4.4 Given a system A = (X;�; f; d), a set of control action U � �, aspeci�cation of exogenous actions e, and a set of states E, we say a set of states S isk-maintainable with respect to E if there exists a control law K such that from eachstate x in Closure(S;AK), we can get to a state in E with at most k transitions,where each transition is dictated by the control K.If there exists an n such that S is n-maintainable with respect to E, we say S ismaintainable with respect to E.If S = X , then we say A is maintainable with respect to E.2Running Example, Cont'dAbove we showed that in Ab, S = f00g is not stabilizable w.r.t. E = f00; 01; 02; 03g.Is then S maintainable w.r.t. E? Yes, since for the worst case system state, 33, acontrol law can move the system to 30 (by three transitions due to Pos) without therisk of interfering occurrences of exogenous actions. If there then is three transitionswithout interference the control law can apply M12 three times and be in 03. Thisimplies that S is 6-maintainable w.r.t. E. We can with a similar argument showthat S is 9-maintainable w.r.t. f00g. However, we have that S is not maintainablew.r.t., for example, f03g (Since we cannot go from, for example, f00g, to f03g withcontrol actions only).5.5 AlgorithmsIn this section we provide two algorithms to verify maintainability, and to generatecontrol for maintainability, with correctness proofs.
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5.5. Algorithms5.5.1 Testing maintainabilityInput: A system A = (X;�; f; d), a set of states E, a set of states S, and a controlK.Output: To �nd out if S is maintainable with respect to E, using the control K.Algorithm:Step 1: Compute Closure(S;AK).Step 2: Compute Seq(S;AK ; E).Step 3: If for all Y 2 Seq[(S;AK ; E), Y \ E 6= ; then S is maintainable withrespect to E, using the control K; Otherwise it is not maintainable with respect toE, using the control K. 2For the correctness of this algorithm we show the following characterization of main-tainability.Proposition 5.5.1 Let A be a system, E a set of states, and K a control law. Forevery Y 2 Seq[(S;AK ; E), Y \ E 6= ; i� S is maintainable w.r.t. E, using thecontrol law K.Proof: )) Straightforward, since the control law can move the system from anystate in Closure(S;AK) to a state in E in at most jX j transitions.() If S is maintainable w.r.t. E using K, there is a natural number n such that fromevery state in Closure(S;AK) there exist a sequence of states ending in E of lengthat most n, where every transition between states is due to K. Clearly, n � jX j sowe repeat the last state in all sequences so that all sequences are of length jX j andgather all such sequences into one set. This set is clearly equal to Seq(S;AK ; E).Since every such sequence contains a member of E the proposition holds.2The complexity of this algorithm depends on the computations in steps 1 and 2. Letn = jX j and S = X (this maximizes Closure(S;AK) and is, thus, the worst case).Clearly, we can compute R(AK ; x), for every x 2 S, in polynomial time (e.g. bybuilding the depth-�rst search tree, and simply collecting the vertices), and since weonly need to do this n times, the computation is polynomial. In the same mannerwe can compute Seq(S;AK ; E) by recording the sequences that reach E during thedepth-�rst search.5.5.2 Generating a control law for maintainability of a set ofstatesInput: A system A = (X;�; f; d), a set of states E, and a set of states S.Output: Find a control K such that S is maintainable with respect to E, using thecontrol K.Algorithm:Step 0: Sin := S, Sout = ;.Step 1: While Sin 6= Sout Do.Pick an x from Sin n Sout. Find a plan of minimal length from x to a state in Eusing only control actions. � 79 �



Chapter 5. Stability-based execution monitoringIf no such plan exists then EXIT and return(FAIL).Let a be the �rst action of that plan.Assign K(x) = a.Sout := Sout [ fxgSin := Sin [ f(x; a) [ fy : y 2 f(x; b); for some b 2 e(X)g.Step 2: If Sin = Sout, return(Sout;K).Proposition 5.5.2 If the above algorithm terminates by returning S0 and K, then:(i) S0 = Closure(S;AK), and (ii) S is maintainable with respect to E, using thecontrol K.Proof: We assume that for a particular S the algorithm has returned S0 and K.(i) We start by showing that Sout � Closure(S;AK) is an invariant of the algo-rithm by induction over the number of iterations, n, of the algorithm, and writeSnout and Snin to denote the corresponding sets of states after n iterations. Trivially,S0out � Closure(S;AK), and S1out � Closure(S;AK) holds since a member of S1outnecessarily is a member of S. We assume that Skout � Closure(S;AK) and inspecta state x 2 Sk+1out such that x 62 Skout . Again, if x 2 S we have x 2 Closure(S;AK)by the de�nition of closure. Otherwise, there exists a state x0 2 Skin and an actiona such that x 2 f(x0; a), from the construction of Skin. By the induction hypotheseswe have that x0 2 Closure(S;AK) and since x is reachable from x0 we also havex 2 Closure(S;AK).For the other inclusion we take a state x 2 Closure(S;AK). By the de�nitionof closure there exists a state x0 2 S such that x is reachable from x0 which impliesthat there is a trajectory consistent with AK : x0 = x0; a1; x1; : : : ; an; xn = x wherexk+1 2 f(xk; ak+1) and ak+1 2 dK(xk). We prove that x 2 S0 by induction over thelength of the trajectory.For n = 0 we have x 2 S � S0. We assume that xk belongs to S0 for all k < n. Bythe de�nition of trajectories consistent with AK we have that ak+1 2 dK(xk) whichimplies either that K(xk) = ak+1 (1) or ak+1 2 e(xk) (2). By the induction hypothe-ses, xk is added to Sout at some iteration of the algorithm, and in the same iterationall members of the set L = f(xk; ak+1) [ fy : y 2 f(x; b); for some b 2 e(X)g areadded to Sin. From (1) or (2) we get that xk+1 belongs to L, which means thatit will be picked by the algorithm in a later iteration, and added to Sout and thusbelongs to S0. Therefore, S0 = Closure(S;AK).(ii) From (i) we know that S0 = Closure(S;AK), so we may construct Seq(S;AK ; E).Since the algorithm selects states reached by (sub-) plans of minimal length, the samestate (except for the last that belongs to E) cannot occur more than once in ev-ery sequence in Seq(S;AK ; E). It is also clear that in every such sequence thereis a state belonging to E. Thus, we can apply proposition 5.5.1, which proves thisproposition. 2For the complexity of this algorithm, we begin by observing that our systems easilytranslates into generalized B�uchi automata, and that such automata can be trans-� 80 �



5.6. Generalization: (k; l)-Maintainabilitylated into our systems. This implies that we can exploit the following result by DeGiacomo and Vardi [2000]:Theorem 5.5.3 Planning in generalized B�uchi automata is PSPACE-complete2.2This means that the algorithm has to solve a PSPACE-complete problem in everyiteration. However, if we would restrict systems to only allow deterministic transitionfunctions (that is, f : X � � ! X) the phrase in italics in step 1 of the algorithmcould be replaced by \a minimal length trajectory consistent with A". The correctnessand completeness proofs are easily adaptable to accommodate this change. In thiscase, the systems could be reduced to \standard" B�uchi automata, and vice versa.Then we can exploit the following result by De Giacomo and Vardi:Theorem 5.5.4 Planning in standard B�uchi automata is NLOGSPACE-complete.2At this point we would like to point out the relation between our work here andsome research on reactive and situated agents [Kaelbling and Rosenschein, 1991].In [Kaelbling and Rosenschein, 1991], they state that in a control rule `if c thena', the action a, must be the action that leads to the goal from any situation thatsatis�es the condition c. The above algorithm interprets the notion of `leading to'as the �rst action of a minimal cost plan.5.6 Generalization: (k; l)-MaintainabilityIn this section we generalize the notion of maintainability and show that the notionof stabilizability is a special case of this generalization. Our generalization is basedon the intuition that perhaps, we can allow a limited number, l, of exogenous actionsduring our so called `window of non-interference', k, and still be able to get back toa state in E. We refer to this general notion as (k; l)-maintainability.De�nition 5.6.1 Given a system A = (X;�; f; d), a set of agents action U � �, aspeci�cation of exogenous actions e, and a set of states E, we say a set of states S is(k,l)-maintainable (l � k) with respect to E if there exists a control law K such thatfor each state x in Closure(S;AK), all trajectories { consistent with AK { from xwhose next k transitions contain at most l transitions due to exogenous actions andthe rest is dictated by the control K, reach a state in E by the k-th transition. 2Proposition 5.6.2 (k; 0)-maintainable is equivalent to k-maintainable. (A set ofstates S is (k; 0)-maintainable with respect to a set of states E if and only if S isk-maintainable with respect to E.)Proof: Since we will have some time that we do not allow any exogenous actions tointerfere the system so that all trajectories which are consistent with AK from x inClosure(S;A) whose next k actions contain at most 0 transitions due to exogenous2The reader should note that this, in fact, is good news, since planning in general with non-deterministic operators is EXPSPACE-complete. The reason for the low complexity classi�cationis that the automata provide a sparse representation of the problem.� 81 �



Chapter 5. Stability-based execution monitoringactions, reach a state in E within k transitions. And a control law K guaranteesthat there is at least one (and exactly one) action to be taken at each state ofClosure(S;A), thus guarantees an existence of at least one trajectory from eachstate x of Closure(S;A). So S is k-maintainable.(() Suppose that S is k-maintainable with respect to E. Then there exists acontrol law K such that for each state x in Closure(S;A), we can get to a state in Ewithin k transitions, where each transition is dictated by the control K, and is notan exogenous action. I.e. at most 0 transition is due to exogenous actions. Since kactions which do not contains any exogenous actions determine only one trajectoryfrom a state x to a state in E (since the control law has only one feasible action ateach state), we can say that all trajectories (actually there is only one in this case)which are consistent with AK = (X;�; f; dK) from a state x whose next k actionscontain at most 0 exogenous action reach a state E within k transitions. Thus S is(k; 0)-maintainable with respect to E.Therefore (k; 0)-maintainable is equivalent to k-maintainable. 2Proposition 5.6.3 A set of states S is stabilizable i� S is alive and there exists aninteger m such that S is (m,m)-maintainable with respect to E.Proof: ()) Suppose a set S is stabilizable with respect to E. So there is a controllaw K such that S is alive and stable with respect to E in the closed loop systemAK . Thus all trajectories consistent with AK and starting from x go through a statein E in a �nite number of transitions and they visit E in�nitely often afterwards.Case 1. Let x 2 S. Then by assumption, all trajectories from x go through a statein E within �nite transition. Since there is a �nite number of such trajectories, takenx to be the maximum number of transition of the trajectories from x to a state E.This includes some actions due to exogenous actions, but at most nx of them.Case 2. If x 2 Closure(S;AK)nS, then the state x is in a trajectory T from a state,say y, in S. Since all trajectories consistent with AK reach from a state y in S to astate in E with �nite number of transitions and visit E in�nitely often afterwards,this partial trajectory T 0 which starts from a state x and follow the trajectory Tafterwards will visit E in�nitely often. So through this trajectory T 0, we can reachfrom x to a state in E within �nite transitions, say nx. This includes at most nxtransitions which are due to exogenous actions.Then take m = maxfnxjx 2 Closure(S;A)g. Since Closure(S;A) is �nite, mexists (m < 1). From each state x in Closure(S;AK), all trajectories, consistentwith AK , whose next m transitions contain at most m transitions due to exogenousactions and the rest is dictated by the control K reach a state in E within m tran-sitions. Thus S is (m;m)-maintainable with respect to E. 2.(() Suppose that S is alive and there exists an integer m such that S is (m;m)-maintainable with respect to E. Thus there exists a control law K such that fromeach state x in Closure(S;AK), all trajectories, consistent with AK , from x whose� 82 �



5.7. Stability-based execution monitoringnext m actions contain at most m transitions due to exogenous actions reach a statein E within m transition. Thus all trajectories, consistent with A, starting from xgo though a state y in E, any state, say z, which we can reach from that state y inE belongs to Closure(S;A) since that state z can be reached from a state x in Sthough a state y in E. And with assumption, all trajectories which are consistentwith AK from a state z whose next m actions contain at most m transitions dueto exogenous actions reach a state in E within m transitions again. Hence thosetrajectories visit E within m transitions every time it leaves E to a state outside ofE afterwards. I.e. they visit E in�nitely often afterwards. Thus S is stable withrespect to E in the closed loop system AK . Since S is alive by assumption, S isstabilizable with respect to E.Therefore a set of states S is stabilizable with respect to a set of states E if and onlyif S is alive and there exists an integer m such that S is (m;m)-maintainable withrespect to E.25.7 Stability-based execution monitoringThe obvious monitoring task for a stabilizing controller is to detect whether thesystem is stable or not after a detected discrepancy. By viewing a discrepancy asa new exogenous action, can the controller still stabilize the system? Dependingon the answer to that question we again have the benign/malignant classi�cation,where a discrepancy that leads to a state within the range of the current controlleris benign, and all other discrepancies are malignant. For malignant discrepancies werecover applying the following three steps, if possible.1. Incorporate the discrepancy in the plant model as a new e�ect of the executedaction (model tuning recovery), then,2. construct a new controller from the new plant model, and �nally,3. apply the new controller to the current state.We assume that we have a closed-loop system AK = hX;�; f; dKi for a controllerK. Let x be a state in which the control action a was executed, and let x0 be themeasured state after the execution. Clearly, if x0 62 f(x; a) we have a discrepancy,since f is the prediction function. However, for the current set of initial states S andgoal states E, if x0 2 Closure(S;AK) we know that the controller will be able toforce the system to a state in E. This is a benign discrepancy, and we take no furtheraction. Instead, if x0 62 Closure(S;AK), we do not know whether E is reachableanymore, so perform the following:1. Set f 0 = (f�hx; a; f(x; a)i)[hx; a; (f(x; a) [ fx0g)i, that is, add the new e�ectto the transition function. Construct A0 = hX;�; f 0; di and S0 = S[fx0g, thatis, add the new state as a possible initial state.� 83 �



Chapter 5. Stability-based execution monitoring2. For A0, S0, and E, construct a new controller K 0, for example by using Al-gorithm 5.5.2. If there is no such controller, we have a fatal error and theexecution should be stopped.3. Otherwise, execute action K 0(x0).This algorithm performs a parsimonous model-tuning recovery, in the sense that thesame discrepancy with the same classi�cation cannot occur again.
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Chapter 6Execution monitoring ofhybrid-systems controllers6.1 IntroductionIn Chapter 2 it was noted that the idea of automated generation of a state transitionmodel from a rule-based control program is impossible in the general case, and verydi�cult even under the limiting assumptions given by control designers. In thischapter we will present work that remedies some of those problems: We will insteadof a control program begin with a speci�cation of a closed-loop system written in alanguage that will enable us to generate a state transition diagram more easily.As mentioned in Chapter 2 there are numerous modeling formalisms for controlsystems. On one hand we have purely discrete formalisms such as �nite automata(e.g. [Ramadge and Wonham, 1989]) or planning formalisms (e.g. Fikes and Nilsson[1971]), and on the other we have the purely continuous di�erential equations (e.g.Faurre and Depeyrot [1977]). However, it is clear that most actual control systemsare hybrid, that is, that they contain both discrete and continuous elements.There is a large body of work on the problem of hybrid controller synthesisbeing pursued in AI research (e.g. [Bj�areland and Driankov, 1999]), hybrid sys-tems (e.g. [Zhang and Mackworth, 1995, Henzinger and Kopke, 1997]), and controltheory (e.g. [Lennartsson et al., 1996]) communities. Typically the synthesis for-malisms are designed for veri�cation purposes, and the synthesized controllers areoften speci�cations of controllers rather than actual implementations of these. Oneof the reasons for this gap between veri�cation and use is that controllers in use nec-essarily need to be able to handle many more cases than what normally is coveredby the veri�cation. According to the folklore of process control, more than 70% ofa medium sized PLC program is devoted to fault detection, isolation and recovery.The remaining 30% is taking care of the actual control, and is the part that is suitedfor veri�cation. The veri�cation-use gap is unfortunate, to say the least, since thepurpose of veri�cation is to show that the veri�ed systems can be used in a safe way.� 85 �



Chapter 6. Execution monitoring of hybrid-systems controllersWe believe that we are taking one step in closing the veri�cation-use gap by, inthis chapter, proposing not only that controller programs should be synthesized fromspeci�cations, but also that representations useful for execution monitors should besynthesized from the same speci�cations. We do this by utilizing closed-loop HybridAutomata (HA) speci�cations [Alur et al., 1992], assuming that a (reactive) controlprogram has been synthesized, and constructing a rich model where it is possible toreason about the expected e�ects of control actions.Rectangular hybrid automaton (RHA) is a modeling formalisms where the con-tinuous behavior is modeled by di�erential inequalities (e.g. 0 � _x � 1), and thediscrete behavior in terms of (instantaneous) mode switches. We will assume thatthe RHAs we study are speci�cations of controllers, and that every mode switch isdue to an invoked control action. Moreover, we will restrict ourselves to handlingcontrollers for which the control goal can be formulated as safety requirements (thatsome condition should, or should not, be maintained during the control).6.2 PreliminariesIn this section we will present the formal de�nitions of rectangular hybrid automata.The following de�nitions are taken verbatim from [Henzinger and Kopke, 1997].6.2.1 Rectangular hybrid automataDe�nition 6.2.1 Let X = fx1; : : : ; xng be a set of real-valued variables. A rect-angular inequality over X is an expression of the form xi � c, where c is an integerconstant, and �2 f<;�;�; >g. A rectangular predicate over X is a conjunction ofrectangular inequalities. We denote the set of all rectangular predicates over X withRect(X). The set of vectors ~z 2 Rn that satis�es a rectangular predicate is calleda rectangle. For a particular rectangular predicate �, we denote the correspondingrectangle with [[�]]. By writing �i, for a rectangular predicate �, and a variable indexi, we denote the conjunction of all rectangular inequalities in � only involving thevariable xi. For a set of indices, I , we de�ne �I = Vi2I �i.2De�nition 6.2.2 (Rectangular automaton)A rectangular automaton A consist of the following components.Variables. The �nite set X = fx1; : : : ; xng of real-valued variables representingthe continuous part of the system. We write _X = f _xi jxi 2 Xg for the set of dottedvariables, representing the �rst derivatives. For convenience, we write X 0 to denotethe set fx0i jxi 2 Xg (which we will use to connect variable values before and aftermode switches).Control Graph. The �nite directed multi-graph hV;Ei represents the discrete partof the system. The vertices in V are called control modes which we also will referto as locations. The edges in E are called control switches. The switches will some-times be viewed as functions, i.e. we can say that e(v) = v0 i� e = hv; v0i. In agraphical representation of an automaton the locations correspond to the boxes and� 86 �



6.2. Preliminariesthe switches to the arrows between boxes.Initial Conditions. The function init : V ! Rect(X) maps each control mode toits initial condition, a rectangular predicate. When the automaton control starts inmode v, the variables have initial values inside the rectangle [[init(v)]].Invariant Conditions. The function inv : V ! Rect(X) maps each control modeto its invariant condition, a rectangular predicate. The automaton control may re-side in mode v only as long as the values of the variables stay inside the rectangle[[inv(v)]]. We de�ne inv(A) as inv(A) = Vv2V inv(v). Below, we will apply onto-logical control in this setting and will need to distinguish between the con�gurationand plant formula parts of the invariants. Thus, invconf maps a control mode toits con�guration invariant, and we let invplant = inv � invconf (in a set theoreticunderstanding of the functions).Jump Conditions. The function jump maps each control switch e 2 E to a(non-rectangular) predicate jump(e) of the form �^�0 ^Vi62update(e) xi = x0i, where� 2 Rect(X), �0 2 Rect(X 0), and update(e) � f1; : : : ; ng. The jump conditionjump(e) speci�es the e�ect of the change in control mode on the values of the vari-ables: each unprimed variable xi refer to the corresponding value before the controlswitch e, and each primed variable x0i to a corresponding value after the switch. Sothe automaton may switch across e if1. the values of the variables are inside [[�]], and2. the value of every variable xi with i 62 update(e) is in the rectangle [[�0i]].Then, the value of every variable xi with i 62 update(e) remains unchanged by theswitch. The value of every xi with i 2 update(e) is assumed to be updated non-deterministically to an arbitrary value in the rectangle [[�0i]]. For a jump conditionjump(e) � �e ^ �0e ^ Vi62update(e) xi = x0i, we de�ne jump0(e) � �e, to denote theactual condition that forces the switch e. Below, we will apply ontological controlin this setting and will need to distinguish between the con�guration and plant for-mula parts of the jump conditions. Thus, jump0conf maps a control switch to itscon�guration jump condition, and we let jump0plant = jump0 � jump0conf (in a settheoretic understanding of the functions).Flow Conditions. the function flow : V ! Rect( _X) maps each control modev to a ow condition, a rectangular predicate that constrains the behavior of the�rst derivatives of the variables. While time passes with the automaton control inmode v, the values of the variables are assumed to follow nondeterministically anydi�erentiable trajectory whose �rst derivative stays inside the rectangle [[flow(v)]].Events. Given a �nite set � of events, the function event : E ! � maps eachcontrol switch to an event.Thus, a rectangular automaton A is a nine-tuplehX;V;E; init; inv; jump; flow;�; eventi2 � 87 �



Chapter 6. Execution monitoring of hybrid-systems controllers6.2.2 Example { Railroad crossing nearx � 0_x 2[�50;�30]x � 2000farx � 1000_x 2[�50;�40] app!
_x 2pastx � 100 x = 0[30; 50]exit!x = 100! x = 1000

x := [2000;1)
Figure 6.1: Hybrid automaton modeling the train in the train-and-gate example.Our running example is a HA model of a railroad crossing presented by Alur et al.[1993]. The model consists of three sub-models, a train, a gate, and a controller. In[Alur et al., 1993] the model was used to verify that the controller guaranteed certainsafety properties for the overall system. Our use of this example is to illustratehow execution monitoring of the controller can be performed by using informationembedded in the HA sub-model for the train.The HA model of the train (Fig. 6.1) has three locations: far, near, and past,de�ned as the distance, x, between the train and the gate. That is, x � 1000 is theinvariant for the location far, x � 0 for near, and x � 100 for past. Furthermore,when the jump condition x = 1000 is satis�ed in location far, the train HA switchesfrom far to near, and sets the boolean variable app to true. This variable (and thevariable exit) occur with exclamation marks in this HA to denote that they are setto true during one sampling interval (and reset afterwards) as a result of an actionin this part of the system. In the HA model of the controller we will see the sametwo variables with question marks to denote that switches are caused by changesin their values.1 When the HA is in near and x = 0 is satis�ed, the HA switchesfrom near to past. Finally, when the current location is past and x = 100, then xis reassigned to an arbitrary value in [2000;1), and the variable exit is set to true.The HA model of the gate (Fig. 6.2) has four location: up, open, down, and closed.Initially, the gate is open and the angle of the gate to the ground is 90� (the angleis measured by g). Whenever the variable lower is set to true (by the controller)the automaton switches to down where the gate is lowered a rate of 9� per second.1The exclamation and question marks are in fact Hytech syntax [Henzinger et al., 1997], andare used to denote that the automatons are synchronized by such variables.� 88 �



6.2. Preliminaries
g = 90_g = 9 _g = 0

_g = 0
up g = 90open

g � 0
g � 90
_g = �9 g = 0g = 0

raise?lower?down closed
raise?
lower?

Figure 6.2: Hybrid automaton modeling the gate in the train-and-gate example.When the angle is 0� a switch to closed occurs. If the gate is in location down orclosed and the variable lower is set to true (by the controller), the location will bethe same. If raise is set to true, a switch to up will occur, and the gate will start toraise by 9� per second until it reaches 90� where a switch to open occurs.
idle app?abouttolowert � �_t = 1

exit?t := 0app? abouttoraiseexit?_t = 0 t � �_t = 1t := 0lower! raise!app?t := 0 t := 0exit?t = � t = �Figure 6.3: Hybrid automaton modeling the controller in the train-and-gate example.The HA model of the controller is given in Fig. 6.3. The idea is that the controllerobtains information from the train automaton whether the train is approaching orexiting (i.e. from the variables app and exit), then waits for a period of time, �, andsets lower or raise to true, respectively, which is then handled by the gate.The system with the three automata has been veri�ed in Hytech by Henzingeret al. [1997] to prove that for � < 49=5, when the train is within 10 meters from thegate, the gate is always fully closed.
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Chapter 6. Execution monitoring of hybrid-systems controllers6.3 Automatic generation of models for executionmonitoringWe will now demonstrate how a model for execution monitoring can be generatedfor a particular example: A train-and-gate example from [Alur et al., 1993].To be able to formally describe the translation of an HA to a state transitiondiagram, and to formally de�ne execution monitoring on that representation, we willformally de�ne state transition diagrams.De�nition 6.3.1 (State Transition Diagram)A state transition diagram is a digraph G = hV;Ei with labeled vertices and edges.For a vertice v 2 V we de�ne a function formula(v) that maps the vertice to aboolean formula. Similar to the con�guration and plant formula versions of the jumpconditions of control modes, we de�ne formulaconf and formulaplant. Moreover,there is a relation Idle(v) that holds i� the vertice denotes an idle state. For anedge e 2 E we de�ne start(e) to be the starting vertex of the edge, end(e) to be theending vertex, and action(e) to be a conjunction of control actions, or the dummylabel nop.2De�nition 6.3.2 (Transformed hybrid automata)Let A = hX;VA; EA; init; inv; jump; flow;�; eventi be rectangular automaton. Be-low, we de�ne a state transition diagram T (A) = hVT (A); ET (A)i.1. For every v 2 VA there is a vertice T (v) 2 VT (A) such that� formula(T (v)) = inv(v) (formulaconf (T (v)) = invconf (v)), and� Idle(T (v)) holds.2. For every e 2 EA there is a vertice T (e) 2 VT (A) such that� formula(T (e)) = jump0(e), (formulaconf (T (e)) = jump0conf (e)) and� :Idle(T (e)) holds.3. No other elements exist in VT (A) or ET (A) than the ones described above.4. For v 2 VT (A) such that Idle(v) holds, we know by construction that thereexists a v0 2 VA where v = T (v0). For every such v, there are edges e 2 ET (A)such that action(e) = nop, start(e) = v and end(e) = T (eA) for every eA 2EA where eA(v0) is de�ned.5. For v 2 VT (A) such that :Idle(v) holds, we know by construction that thereexists a eA 2 EA where v = T (eA). For every such v, there are edges e 2 ET (A)such that action(e) = event(eA), start(e) = v, and end(e) = T (vA), for everyvA 2 VA where there exists a vertice v0A 2 VA for which eA(v0A) = vA.2 � 90 �



6.3. Automatic generation of models for execution monitoringThe basic assumption governing the transformation in De�nition 6.3.2 is that dis-crete change is controlled change, and vice versa. Thus, for the purpose of executionmonitoring of hybrid systems in this thesis, we only monitor the discrete state tran-sitions.6.3.1 Railroad crossing cont'dWe will now construct a state transition diagram for the railroad crossing example.The problem is that it is impossible to clearly distinguish between the locationsidle, about to lower, and about to raise by only looking at the invariants of thelocations. That is, the \names" of the locations play an important role in the model.As we have argued in previous chapters, situation assessment relies on some kind of\uniqueness" of materialized states, which, for example, can be achieved by forcingstates to be mutually exclusive. We will do this for this example too, as follows: Webegin by constructing a set of production rules that could be a control program forthe HA in Figure 6.3, where control actions are executed if a jump condition froma location is satis�ed while the system is in that location. That controller will nothave mutually exclusive conditions for the control actions. Then by exploiting thesynchronization information in the controller HA, the train HA (Figure 6.1), andthe gate HA (Figure 6.2), and by viewing the locations in the train and the gateHAs as sensor signals to the controller, we can construct a control program withmutually exclusive conditions. It is then possible to add those conditions to theoriginal controller HA as jump conditions, add more information to the invariants,and then to construct the state transition diagram as in De�nition 6.3.2.We de�ne an HA-state of a HA to be a tuple hl; invi, where l is a location (asymbol) and inv(l) is the invariant of l.A control rule is an expression S ^ j ) a, where S is an HA- state, j a jumpcondition, and a a control action. The conjunction S ^ j is the precondition of acontrol rule. A control program is a set of control rules.The control program for the controller in Fig. 6.3 will then be as follows:hidle; truei ^ exit) start clockhidle; truei ^ app) start clockhabout to lower; t � �i ^ exit) start clockhabout to lower; t � �i ^ t = �)lower ^ stop clock (6.1)habout to raise; t � �i ^ app) start clockhabout to raise; t � �i ^ t = �)raise ^ stop clock (6.2)In the example (Fig. 6.3) we choose to view every resetting of the clock, t, to be acontrol action, start clock, which is assumed to reset and start the clock. Moreover,we introduce the control action stop clock that is assumed to stop the clock. The� 91 �



Chapter 6. Execution monitoring of hybrid-systems controllersaction start clock replaces t := 0 as an action on edges, and stop clock is introducedfor every edge where the resulting location includes _t = 0. 2It is clear that the control program above is valid if it is started in the idle loca-tion, the train is started in far, and the gate in open, i.e. the control program willbehave well under the exact circumstances the automata are veri�ed for. However,in engineering practice it is unrealistic to assume anything about the initial state.Thus, it is necessary to base the execution monitoring on external information (suchas sensor or actuator information), rather than an assumption on the current stateof the controller. Also, we can see that the preconditions of control rules (6.1) and(6.2) cannot be distinguished logically based on their invariants. Thus, we requirethe control rules to be \physically" mutually exclusive, i.e. that it is physicallyimpossible for two preconditions to be satis�ed simultaneously.3Now, we will take advantage of two assumptions: First, that we know whetherthe clock is running or not (the truth-value of a variable clock on). Secondly, thatwe can sense the current location of the train (that the controller has access to thetruth-values of the variables far, near and past).To characterize the controller locations we begin in the veri�ed initial locationidle and note that the clock is o�, and that the corresponding initial location inthe train HA is far. For about to lower we can see that the previous train locationmay have been far, and that a switch in the train HA, from far to near must haveoccurred, that is, when the controller is in about to lower it is possible that thetrain is in near. It is also possible that the train switches to past before t = � issatis�ed. Thus, for about to lower we know that the clock is on, and that the trainis in either near or past. If the condition t = � eventually is satis�ed the controllerswitches to idle which implies that the train is in far (from the initialization), nearor past when the controller is in idle. Similarly, we note that about to raise can becharacterized by clock on ^ far. To summarize, we can characterize the locationidle with the formula :clock on ^ (far _ near _ past) which we may translate to:clock on, about to lower with clock on^(near_past). But these characterizationsonly consider the activations of control actions, and to perform execution monitoringwe also need to represent the states in which the controller is waiting in a location.For example, when the train is approaching, and the clock is running, there is a timeinterval when no control action is invoked by the controller.By replacing the HA-states in the control program above by the characterizationswe obtain the set of rules below.2To be able to verify a system with this change, we would have to model the clock too with HA.However, this fairly simple modeling task is not included here.3One way of constructing physically mutually exclusive preconditions is to ensure that they arelogically mutually exclusive. However, this may be very inconvenient for the control designer.
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6.4. Execution monitoring
(S1) :clock on ^ exit) start clock(S2) :clock on ^ app) start clock(S3) clock on ^ (near _ past) ^ exit)start clock(S4) clock on ^ (near _ past) ^ t = �)lower ^ stop clock(S5) clock on ^ far ^ app) start clock(S6) clock on ^ far ^ t = �)raise ^ stop clockThe preconditions of the rules above can now be added to as jump conditions tothe automata, in the obvious way. Below, we will use the labels S1 { S6 to denotethe edges in the HA. For example, jump0(S1) = :clock on ^ exit and event(S1) =start clock.The characterizations is also used to construct new invariants for the locations,with the following result.(IS1) :clock on(IS2) clock on ^ (near _ past) ^ t � �(IS3) clock on ^ far ^ t � �These three rules model the cases where the controller is waiting in a location idle,about to lower, and about to raise, respectively, and we will use the labels IS1 {IS3 to denote the locations in the HA. For example, inv(IS1) = :clock on.By performing the transformation in De�nition 6.3.2 we obtain a state transitiondiagram resembling that in Figure 6.4, where the formulas of the states are inv(Sx)and inv(ISx), respectively, and where the unlabeled edges should be marked bynop.In general, we can note that if the control program has n rules, and the originalHA has m locations, the state transition diagram will have n + m states (m is thenumber of idle states).6.4 Execution monitoringWe begin by de�ning the execution semantics of the particular control programsused in this chapter. If V = fv1; : : : ; vng is the set of variables of (or inputs to)the controller (in our example we have V = fclock on; exit; app; near; past; far; t =�; t � �g.4) a vector � = hb1; : : : ; bni, with bi 2 f0; 1g, is called a sample. The set4Since t only is used in two particular comparisons to � we choose to view the comparisons asa boolean variable. We could easily extend the semantics to handle real-valued variables, as well.� 93 �



Chapter 6. Execution monitoring of hybrid-systems controllers
S4 S6

S5S3 start clock
start clock

start clock
start clockstop clock stop clock^lower ^raiseIS2 IS1 IS3S1

S2
Figure 6.4: A state transition diagram representing the controller.of all samples for an application is denoted �. We determine the truth-value of astate in a given sample as usual in propositional logic. During the execution of acontroller, it will receive a stream of samples.Now, we de�ne how the four �rst functions of execution monitoring are imple-mented in this work.Situation assessment: When a sample is received by the controller, there are onlythree distinct possibilities:1. either exactly one idle state, is, (that is Idle(is) holds) and no other state issatis�ed, or2. one idle state, is, and a state, s, where there exists an unlabeled edge from isto s, is satis�ed, or3. no state is satis�ed.The reason why no other cases can occur is that we have physically mutually ex-clusive jump conditions and invariants. The �rst case corresponds to when thecontroller is inactive waiting for something to happen), the second to when the con-dition of a control rule is materialized (note that in this case an idle state and annon-idle state are simultaneously satis�ed, since the invariant of a location and ajump condition from that location are not physically mutually exclusive. However,two di�erent jump conditions from the same location are physically mutually exclu-sive.) Since we do not assume that all conceivable samples can be handled by thecontroller, the third case is possible.
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6.4. Execution monitoringThe situation assessment function Sit : �! VT (A) is de�ned asSit(�) =8><>:is for case 1,s for case 2, andsfault for case 3,where sfault is a dummy state. The motivation for cases 1 and 3 should be clear,and for case 2 we set the current state to s since we know that then the controllerwill invoke a control action.Expectation assessment: When the initial sample is received by the controllerthe expectation assessment mechanism is idle.We de�ne the function Exp : S �A! 2S , where S is the set of states, and A isthe set of control actions. The set of states in our example is the set of S1�S6 andIS1� IS3, the set of control actions is A = fstart clock; raise^ stop clock; lower ^stop clockg. From the generated state transition diagram (in our example, Fig. 6.4)we can obtain the de�nition of Exp. If the controller executed an action a in thestate s, there are two possibilities:� a = nop which means that s is an idle state. Let M = fs01; : : : ; s0mg be the setof all states such that there is an edge from s to s0i labeled nop, for 1 � i � m.Then Exp(s; a) = M [fsg, that is, we expect that any of the states connectedto s, and s can be satis�ed next.� a 6= nop which means that a \real" control action is executed, and that s is anon-idle state. If M = fs01; : : : ; s0mg is the set of all states such that there isan edge labeled with a from s to s0i, then Exp(s; a) = M .Discrepancy detection: This is not particularly problematic: If the controllerperforms action a in state s, and the controller reads a sample � such that Sit(�) 6= s,we say that we have a discrepancy i� Sit(�) 62 Exp(s; a).The assumption that Sit(�) 6= s encodes a precise notion of when state transi-tions occur. That is, if s is an idle state, then a state transition occurs exactly whena non-idle state materializes, and when s is non-idle a state transition occurs exactlywhen an idle state materializes.Discrepancy classi�cation: The two classi�cation methods introduced in Chap-ters 4 (ontological control) and 5 (stability-based execution monitoring) can (fairlyeasily) be adopted to the HA framework. Below we address the two methods sepa-rately.In Chapter 4 the classi�cation scheme of ontological control required energizedactions. In that setting this meant that an action always was active, which coincideswith the execution semantics of rule-based control languages. The reason for thisrestriction was that we needed precise knowledge about when state changes occurred.Here, we have distinguished between states that trigger actions and idle states whichmeans that we can model a broader class of controllers. However, we still needthe \non-logging" assumption, which in our case means that if there is an edgefrom a non-idle state, s, to an idle state is, we have that formulaconf (s) and� 95 �



Chapter 6. Execution monitoring of hybrid-systems controllersformulaconf (is) are mutually exclusive (or that their respective rectangles have anempty intersection).Assume that a discrepancy has occurred, that is Sit(�) 62 Exp(s; a). Recall thatthe distinction between EA and VOA was made based on whether the con�gurationhad changed or not. That is, ifformulaconf (Sit(�)) � ^s02Exp(s;a) formulaconf (s0)is satis�able (that is, that the respective rectangles of the two formulas are equal)then we have an EA. Otherwise a VOA has occurred.For stability-based execution monitoring we begin by noting that there is nonotion of \exogenous action" in the HA framework. But, in the state transitiondiagrams generated above, there are \unlabeled" transitions which cannot be con-trolled. If we analyze the diagram in Figure 6.4, and view the idle transitions asexogenous actions, we can note that the system is only trivially maintainable (thatis, that it is only maintainable w.r.t. the entire state set). This is a general featureof such systems, since every transition from every non-idle state goes to an idle state(via a controlled transition), and every transition from an idle state is unlabeled.The interesting monitoring task is, thus, to ensure that the system does not vio-late a given stability criterion (a set of states E). For this purpose, the algorithmin Section 5.7 can be adapted to the setting of this Chapter in a straightforwardmanner.
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Chapter 7The SituationCalculus/Golog frameworkIn this chapter we will apply most of the topics, concepts and techniques introducedin earlier chapters of this thesis to one formal framework: the Situation Calculus(SitCalc) and Golog.7.1 IntroductionWe believe that logic-based approaches to modeling systems provide many insightsthat can be used when applying other modeling techniques. This is especially truefor the SitCalc/Golog framework which has been described as a model-based pro-gramming language in [McIlraith, 1999]. The basic idea behind model-based pro-gramming is that a programmer provides not only a control program in the language,but also a model of the system which is to be controlled. The interpretation of theprograms can then exploit the model in various ways, such as for disambiguation ofnon-deterministic constructs in the language by predicting the outcome of the pos-sibilities and choosing the \best"one. Clearly, model-based programming languagesare interesting from an execution monitoring point of view, due to the explicit accessto models and prediction mechanisms.A reason for choosing the SitCalc/Golog framework is that it has a well-de�nedlogical semantics, that is, the programming languageGolog has a transition seman-tics that is described as a logical theory and the modeling language, SitCalc, is alogical language for reasoning about action and change. Thus, the analysis taskscan easily be viewed as logical reasoning tasks.The �rst approach to execution monitoring in the SitCalc/Golog frameworkwas presented in [De Giacomo et al., 1998] (see Section 7.4 for a review). Thatwork can be seen as a starting point for the work in this Chapter (Section 7.5) andin Appendix B, where we generalize some of their ideas and develop issues that they� 97 �



Chapter 7. The Situation Calculus/Golog frameworkonly sketched.7.1.1 OverviewThe purpose of this chapter is to present the SitCalc/Golog framework and analyzeit from an execution monitoring perspective. We are interested in ensuring thatwe can �nd SitCalc implementations of the �ve constituting functions of executionmonitoring (from section 2.3.2), that we can formulate the restrictions of ontologicalcontrol in SitCalc (from Chapter 4), and that the notion \stability" (from Chapter5) is applied to SitCalc/Golog.In Section 7.2 we will present Reiter's version of SitCalc and in Section 7.3 theprogramming language Golog is presented. Golog uses a SitCalc theory as anexplicit domain model.Both ontological control and stability-based execution monitoring perform dis-crepancy detection on states of the system. In the Situation Calculus it is oftenconvenient to reason with sequences of executed actions (situations) instead, sim-ilar to the Ramadge-Wonham theory of Discrete Event Systems (see for example[Kumar and Garg, 1995]). We address the problems of execution monitoring bothwith the situation view, in Section 7.5, and the state view and implement ontologicalcontrol and stability-based execution monitoring in Sections 7.6, 7.7, and 7.8.In Appendix A we develop a SitCalc formulation of \stability" (and sketch aformulation of \maintainability"). We also show how a stabilizing Golog programcan be synthesized from an unstable SitCalc theory and prove the correctness of thesynthesis.As discussed before, SitCalc belongs to the very high end of the SCWA axis, whichis problematic from our point of view. In Appendix B, we show that discrepanciesin this framework causes inconsistencies (due to the strong SCWA) which makesit di�cult to use for real applications. This problem is addressed in Appendix Bwhere Pinto's SitCalc framework for concurrency and explicit situation preferencerelations is presented and extended to handle discrepancies.7.2 Reiter's SitCalcSitCalc [McCarthy and Hayes, 1969, Reiter, 1991, Levesque et al., 1998] is arguablythe most widespread logical formalism for reasoning about action and change to-day. The motivation behind the choice of using Reiter's SitCalc in this thesis oversome competing formalism such as TAL [Doherty et al., 1998], Action Languages[Gelfond and Lifschitz, 1998], and the Fluent calculus [Thielscher, 1998] is due toSitCalc's tight connection to Golog (neither of the competing formalisms has aprogramming language associated to it).
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7.2. Reiter's SitCalc7.2.1 LanguageThe situation calculus (SitCalc) is a sorted second-order language with equality anduses at least four sorts: primitive actions, situations, uents, and objects. A uentis a term whose value might vary in di�erent situations. We have a special predicateH , where H(f(~o); s) denotes that the uent f(~o) is true in situation s, for a vector,~o, of object constants. We sometimes write this as f(~o; s) to denote H(f(~o); s), and:f(~o; s) to denote :H(f(~o); s).The set of all primitive actions for a particular theory will be denoted A =fA1; A2; : : : ; Ang, the set of uents F = ff1; f2; : : : ; fmg, where every uent has aparticular arity, and the set of objects O = fo1; o2; : : : ; okg. The set of backgroundaxioms of SitCalc is denoted � and we refer interested readers to the SItCalc ref-erence document (by Levesque et al. [1998]) for further details about the logic.However, three of the foundational axioms are of crucial importance to the rest ofthis thesis. First, the second-order induction axiom:8P: P (S0) ^ 8a; s: (P (s) ^ Poss(a; s) � P (do(a; s))) � 8s:P (s):We also require the de�nition of the reachability predicate <, where, for two situa-tions s, s0, s < s0 is intended to hold whenever the is a \legal" sequence of actionsleading from s to s0, i.e. 8s::(s < S0)8a; s; s0: s < do(a; s0) � s v s0:Here, s v s0 is an abbreviation for s < s0 _ s = s0:For a particular axiomatization, the following axioms must be provided:� Action precondition axioms, one for each primitive action A(~x), havingthe syntactic form Poss(A(~x); s) � �A(~x; s);where �A(~x; s) is a formula with free variables among ~x, s, and whose onlysituation term is s. Intuitively, Poss(A(~x); s) denotes the exact conditionunder which it is possible to execute the primitive action A.� E�ect axioms, two for each uent F , having the syntactic form:Poss(a; s) ^ +F (a; s)! H(F; do(a; s))Poss(a; s) ^ �F (a; s)! :H(F; do(a; s))where �F (a; s) (for � 2 f+;�g) is of the form_��F (a; s) ^ a = A(~x)with one disjunct for every action A.� 99 �



Chapter 7. The Situation Calculus/Golog frameworkTo characterize the possible changes of all uents the following explanation closureassumption [Schubert, 1990] is introduced.Assumption 1 (Explanation Closure Assumption (ECA)) The formulas+F (a; s) and �F (a; s) characterize the positive and negative change, respectively, ofthe uent F .2By combining the ECA and the e�ect axioms we get the following set of axioms:� Successor state axioms, one for each uent F , having the syntactic form:Poss(a; s) � (H(F (~x); do(a; s)) �+F (~x; a; s) _ (H(F (~x); s) ^ :�F (~x; a; s)));Intuitively, the successor state axioms for uent F says that F is true after ex-ecuting the action A in situation s i� it has changed to true (due to +F (~x; a; s))or it was true already in s and did not change to false (due to �F (~x; a; s)).� Initial situation axioms { what is true initially, before any actions haveoccurred. This is any �nite set of sentences that mention only the situationterm S0, or that are situation independent.Thus, an application axiomatization is a set � = � [ �AP [ �SSA [ �S0 , where �is the set of background axioms, �AP is a set of action precondition axioms, �SSAis a set of successor state axioms, and �S0 is a set of initial situation axioms andall situation independent axioms. We will write a0a1 : : : al to denote the situationdo(al; do(: : : do(a1; do(a0; S0)) : : : )).One slight departure from Reiter's style of speci�cation, is that we now partitionthe uent sort in disjoint sub-sorts.First, we assume a �nite and �xed sort of observable world uents Fw, alongwith a set Fw1; : : : ; FwN of constants of type Fw; the value N is a �xed positiveinteger, which is de�ned by the application. We apply the unique name and domainclosure assumption to world uents where the constants Fw1; : : : ; FwN are assumedto denote di�erent individuals in Fw. Furthermore, every element in Fw is denotedby some constant in Fw1; : : : ; FwN . Also, we have Fw � F . The world is fullyobservable when Fw = F . At any given situation, if we assume a completely knowninitial state, then the theory of action will predict the value of any uent in thetheory, including those in Fw. The exact role that is played by these uents will beclari�ed in Section 7.5.Second, we introduce a set of status uents Fs. These uents will be used inorder to describe the execution status of high level processes that the agent mightbe performing. For instance, if the agent is delivering mail, then we could have thestatus uent deliveringMail that would hold in those situations in which the agentis indeed delivering mail, and it would be false otherwise. As explained later, weassume a program structure in which these uents have appropriate values.Moreover, all uents not in Fs nor in Fw are assumed to be regular domainuents. � 100 �



7.3. GologSimilarly, we assume that we have a �nite and �xed sort of observable worldactions Aw, along with a set Aw1; : : : ; AwM of constants of type Aw; the valueM is a �xed positive integer, which is de�ned by the application. The constantsAw1; : : : ; AwM are assumed to denote di�erent individuals in Aw. Furthermore, ev-ery element in Aw is denoted by some constant in Aw1; : : : ; AwM . Also, we haveAw � A. The set Aw, corresponds to the exogenous actions of the domain (exoge-nous from the point of view of the agent).We make use of the notion of history. A history is a sequence of actionsA1; : : : ; An.If we assume theories of action without non-determinism and a complete speci�cationof the initial situation, then a history uniquely identi�es a situation. For convenience,we will use ; as a sequence operator. Thus, if h is the history A1; : : : ; An, then h;Ais the history A1; : : : ; An; A, Also, we say that h0 is an expansion of h whenever his a pre�x of h0. Formally, h0 is an expansion of h whenever do(h; S0) < do(h0; S0).We de�ne an observation in situation s, Os, to be the set of all ground observableworld uents that are true in situation s. Since there are no other function symbolsbesides do, and observations are always �nite we can, for an observation Os, writeVOs to denote the formula (VF2Os H(F; s)) ^ (VFw3F 62Os :H(F; s)). By VOs=s0we denote the observation obtained by replacing the situation argument, s. in VOsby s0.7.3 GologThe originalGolog language was �rst reported in [Levesque et al., 1997]. One veryimportant feature of the language is that its semantics was de�ned in terms of theSituation Calculus . The language has been extended in several ways: To incorpo-rate explicit time [Reiter, 1998], interleaved accounts of concurrency [Reiter, 1998,De Giacomo et al., 1997, de Giacomo et al., 1999a, de Giacomo et al., 1999b], trueconcurrency [Baier and Pinto, 1998], sensing [de Giacomo and Levesque, 1998], etc.In this thesis, we will not propose a new variant of Golog. Rather, we willassume that the programs to be monitored have a speci�c structure, which we callself recovery. This structure is discussed in Section 7.5.4.Golog is a high-level logic programming language used for agent-based program-ming. A detailed discussion of Golog can be found in [De Giacomo et al., 1998],so we will only describe the constructs of the Golog language and the principlesbehind the interpretation process. For Golog programs �, �1, �2, and � a pseudouent1, we have the following constructs:1A pseudo uent is a SitCalc uent with all its situation arguments suppressed. �[s] denotespseudo uent � \instantiated" with situation argument s.
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Chapter 7. The Situation Calculus/Golog frameworknil, the empty programa, primitive action�?, test truth of condition �(�1; �2), sequence(�1 j �2), nondeterministic choicebetween two actions�v:�, nondeterministic choiceof argument to an action��, nondeterministic iterationproc P (~v)� endProc procedure with formalparameters ~v and body �.For convenience we introduce conditionals and while-loops as:if � then �1 else �2 endIf def= (�?; �1)j(:�?; �2)while � do � endWhile def= ((�?; �)�;:�?)The semantics of Golog is a transition semantics [De Giacomo et al., 1997] basedon the two predicates Trans and Final. Here, we will only de�ne the cases of thosepredicates that are necessary for our presentation. The formal de�nitions of Transand Final can be found in [De Giacomo et al., 1997] or [De Giacomo et al., 1998].Trans(�; s; �0; s0) holds if a program � is executed in situation s then the remain-der of this program will be �0 which is up for execution in situation s0. The resultingsituation s0 will be di�erent from s only if the next part in � to be executed is aprimitive action. Formally,1. The empty program: Trans(nil; s; �0; s0) � False:2. Primitive actions:Trans(a; s; �0; s0) � Poss(a; s) ^ �0 = nil ^ s0 = do(a; s):3. Test actions:2 Trans(�?; s; �0; s0) � �[s] ^ �0 = nil ^ s0 = s:4. Sequence: Trans(�1; �2; s; �0; s0) �9: T rans(�1; s; ; s0) ^ �0 = ; �2 _Final(�1; s) ^ Trans(�2; s; �0; s0):2The formula � is assumed to not contain any situation arguments. By writing  [s] we restoreall situation arguments in the formula. � 102 �



7.3. Golog5. Nondeterministic choice:Trans(�1j�2; s; �0; s0) � Trans(�1; s; �0; s0) _ Trans(�2; s; �0; s0):6. Iteration: Trans(��; s; �0; s0) � 9: T rans(�; s; ; s0) ^ �0 = ; ��:F inal(�; s) holds if the execution of � can be considered complete in situation s. SinceGolog contains nondeterministic constructs, it is possible for both Final(�; s) andTrans(�; s; �0; s) to hold for some programs in some situations. Formally,1. Empty program: Final(nil; s) � True.2. Primitive action: Final(a; s) � False.3. Test action: Final(�?; s) � False.4. Sequence: Finals(�1; �2; s) � Final(�1; s) ^ Final(�2; s).5. Nondeterministic choice: Final(�1j�2; s) � Final(�1; s) _ Final(�2; s).6. Iteration: Final(��; s) � True.The predicate TransCl(�; s; �0; s0) denotes the reexive transitive closure of theTrans predicate. Formally,TransCl(�; s; �0; s0) �8T:(T (�; s; �; s)^(Trans(�; s; �00; s00) ^ T (�00; s00; �0; s0) � T (�; s; �0; s0))) �T (�; s; �0; s0)The Golog transition semantics allows us to de�ne a step function, which, givena program and a history, returns an action and a continuation. If � is a programwhose �rst action is A, then a continuation is what remains of � after A. Thus,given a history h, and a continuation (a program) �, step(h; �) is a function thatreturns a tuple hA; �0i, where A is a primitive action (primitive in the sense of theunderlying theory of action) and �' is a continuation, if A is ?, then the action isfailure. step's implementation is the Golog interpreter. For a particular realization,consult [Reiter, 1999]. The step function uses the history h in order to determinethe situation in which the next action is going to be executed. This is necessary, forinstance, in order to evaluate conditional execution of actions.
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Chapter 7. The Situation Calculus/Golog framework7.4 The De Giacomo et al. approach toexecution monitoring of GologIn the original version, Golog was basically a planner where a user had the possi-bility of representing more of the domain structure than just the planning operatorsand the initial and goal states. The output of an interpretation of a Golog programwas a sequence of primitive actions. In the e�orts to use Golog for high-level con-trol of robots, a reactive version was developed, in [De Giacomo et al., 1998], wherethe interpreter generates one primitive action at a time, and processes \sensor read-ings" in between. In that paper the �rst attempt to add execution monitoring tothe framework was presented.Execution Monitoring is handled by the predicate Monitor (�; s; �0; s0), where thecurrent continuation is � and the current situation is s. Monitor checks for the oc-currence of an exogenous program in situation s, determines the situation s0 reachedby this program, and if the monitored program � terminates o�-line, the monitorreturns �, else it invokes a recovery mechanism that determines a new program �0.The suggested recovery mechanism tries to �nd a sequence of primitive actions pthat would move the system into a situation where the original program � can besuccessfully executed, i.e. it generates a program p; � if such a program exists.In the current implementation of execution monitoring (EM) for Golog, theEM senses occurrences of \exogenous" actions. In fact the actions themselves arenot exogenous, it is the occurrences that are, i.e. the EM senses the occurrence of aGolog program which is not the program Golog is currently executing. As arguedin [De Giacomo et al., 1998], this \seems dubious in practice", since it is more likelythat an EM would detect e�ects of actions, rather than the occurrences. In thepaper, the authors claim to reconcile this point by proposing new, �ctitious actions,one for each uent, whose e�ects are to alter their corresponding uents' truth value.The authors only sketch how such a reconciliation could be made, and in Appendix Bof this thesis we give a formal account of this idea, and we will show how this can beutilized as a mechanism for discrepancy detection. However, even with such �ctitiousactions it is not clear how measurements from sensors should be handled within theirapproach. In Section 7.5 we propose a more general execution monitoring frameworkwhere the interaction between the controller and the environment is handled.7.5 General (Situation-based) executionmonitoringWe want to provide a general characterization of what an execution monitor is,assuming that the execution monitor is monitoring the situation histories ratherthan the trajectory of states (which has been considered previously in this thesis).An execution monitor is a program interpreter that acts with a model of the world(environment), this is a logical theory of action �; a program �, whose execution ismonitored; a world or environment W (which is modeled by the theory of action),� 104 �



7.5. General (Situation-based) execution monitoringand a monitoring boolean condition . In the rest of this section, we describe thesecomponents. We assume all along that there is one agent that executes � under thecontrol of the execution monitor. Also, this agent has � and  at its disposal.7.5.1 The world modelAssume that � is a logical theory of action. It is a model of the world inhabitedby the agent, possibly along with other agents. This is a Situation Calculus theoryof action. The theory describes the world and the changes that are a�ected afteractions are performed.The SitCalc theories considered here are an extension of the theories in the styleproposed by Reiter (see Section 7.2). The world model is a theory of action writtenas the union of several sets of axioms: action precondition axioms, successor stateaxioms, exogenous action speci�cations, unique names axioms, etc.7.5.2 The worldThe world W is the actual environment. In our model of an execution monitor, wetake the world as being a history indexed observation structure. What this means isthat given a history from some initial point, the structure tells us what is observedin the world.Our intention is to model the interaction between the agent and the world in amanner similar to what Sandewall calls ego-world interaction in [Sandewall, 1995].Thus, given a history, the world tells us what is observed (uents and exogenousactions).We assume that we have a set FO of faithful uent observations3. Furthermore,we assume that we have exactly N uent observations (the value of N is the samevalue mentioned in the previous subsection). Analogously, we have a set AO of actionobservations (exogenous actions). For simplicity, we assume that at any point only asingle exogenous action can occur, and that there are exactly M possible exogenousactions.We make the simplifying assumption that time is discrete. Furthermore, weassume that every situation has a unique time (as in, for instance, [Pinto, 1994]).However, we will not concern ourselves with explicit time. Instead, we will take timeto be represented by histories. Thus, if h and h0 are histories and h is a pre�x of h0,then the time of h is less than the time of h0.The world is modeled as a tuple h!F ; !Ai. The �rst element, !F , is a mappingfrom histories and actions in A to a state, i.e. a mapping of observations (from FO)to f>;?g (true, false). The second element, !A, is a mapping from histories andactions in A to AO [ hnili, where nil is interpreted as no action.The sets FO and AO are in a one to one correspondence with the elements of Fwand Aw (more precisely, with the names for the elements in each set). Furthermore,3By faithful, we mean that what is observed is true; in other words, the sensor readings arealways accurate. � 105 �



Chapter 7. The Situation Calculus/Golog frameworkwe assume that we have a meta-level function map, that given an element fO 2 FO,map(fO) yields the constant that denotes the uent in Fw corresponding to fO.Analogously, if aO 2 AO, map(aO) yields the constant that denotes the action in Awcorresponding to aO (we are overloading the function map).7.5.3 The execution monitorThe execution monitor can be seen as a computational process. As such, at anypoint in time one can view the execution monitor's state, which, given a world,will determine a transition to the next state. The initial state of the monitor ischaracterized by a tuple h�; �0; W ; FO; AO; mapi, where we assume that � is aSituation Calculus theory of action that incorporates a complete speci�cation ofthe initial state. �0 is the program to be monitored, and the rest is as before. Atany point during the monitoring process, the state of the execution monitor can becharacterized with:1. h: The current history h. It corresponds to a sequence of actions (agent actionsor exogenous actions), which, given an initial situation, lets us keep track ofthe current situation. Initially, the history is empty.2. �: The current continuation; i.e., what is left of the program to be executed(after successive applications of the step function). Initially, � is the same as�0.In order to decide what to do, the execution monitor uses:1. �, the theory of action. Given the history, it tells the monitor what to expect.2. A prescription on what to do next. This is the �rst action A prescribed bythe program � (obtained with the step function). If the program cannot becontinued, then we assume that A is the action ? (which we interpret as anabort action). A program might not be able to continue for several reasons:it may have been completely executed, or it may have encountered a situationthat does not satisfy the preconditions to carry on with the program.3. Situation assessment. Given a situation characterized by the history h, theaction A, the world view h!F(h;A); !A(h;A)i, we obtain the new history h0,which is an expansion of h. In the trivial case, in which everything develops ac-cording to expectations (no exogenous actions and uent values as predicted),we'll have h0 = h;A. Thus, h0 will be the history h expanded with actionA. In other cases, h0 would be an expansion consistent with the exogenousactions that might have occurred and the uents that were observed (i.e.,h!F (h;A); !A(h;A)i).4. Monitoring formula: This is a logical formula whose truth value (assigned by�) would tell the monitor what to do. The formula will check discrepanciesbetween what is expected (i.e., what is true after h;A) and what actually� 106 �



7.5. General (Situation-based) execution monitoringhappened (i.e., what is true after h0). We'll assume that the monitor willentertain two options: Stop the execution of the program and restart it. Donothing, allowing the program to continue. The �rst condition is characterizedby a formula 1(h; h0), the second condition is the default condition.The monitoring speci�ed in the last bullet might appear unsophisticated. Indeed,one could conceive a much more intrusive monitor. For instance, a monitor mightdecide to abort execution of the program on its own accord, or restart the programat some arbitrary entry point (if such were identi�able by some means). What wepropose is that the programmer should write programs that would specify how toproceed from some arbitrary state obtained after interruption. For example, if ouragent is delivering co�ee and it drops the co�ee on the oor, then the program maybe restarted and the resulting situation { dirty oor and no co�ee { is evaluated asa starting situation for the program (not to confuse with S0. An actual programarchitecture that does this is presented below.Given the above information structure, available to the monitor, an algorithmthat implements an execution monitor is described below:� Let h empty. Initialize the current history as empty.� Let hA; �i  step(h; �0).� Do forever:1. If A = ?, abort.2. Execute A, obtain h!F(h;A); !A(h;A)i.3. h0  assess(h;A; h!F (h;A); !A(h;A)i).4. If h0 = h;A then hA; �i  step(h0; �):5. else hA; �i  recover(h; h0; �0; �):6. h h0. Figure 7.1: A possible monitorSituation assessmentIn the Algorithm of �gure 7.1, there is a reference to the function assess , whoserole we now explain. The function assess takes a history h, an action A, and anobservation tuple, and returns a history h0 which is an expansion of h.The execution monitor is in a situation that results from executing history hin the initial situation. The observation tuple tells us how the world reacts. Thislatter information comes in the form of a tuple. The �rst element of the tuple is atruth assignment to all the uent constants in FO, and the second is either nil or� 107 �



Chapter 7. The Situation Calculus/Golog frameworkan exogenous action4.Given this information, the function assesses the current situation, i.e., it deter-mines a true history h0, that is consistent with the action A and the observationtuple. In the most trivial case, !A(h;A) would be nil, and the observation tuplewould be exactly as predicted by �; that is, for every constant F 2 FO:� j= H(map(F); do(h;A;S0))if and only if !F(h;A)(F) = >. Under those circumstances h0 = h;A.Another simple case is obtained if !A(h;A) is not ?, and the observation tupleis such that for every constant F 2 FO� j= H(map(F); do(h;A;!A(h;A); S0))if and only if !F(h;A)(F) = >. Under those circumstances h0 = h;A;!A(h;A).Any other situation corresponds to a surprise, in the sense that the availableinformation (i.e., current history h and exogenous action !A(h;A)) is not enoughto explain the uent observations. In this case, there are several ways in which theassessment can be handled, and the two alternatives we consider are:Alt. 1 Perform a diagnostic procedure (e.g. in the sense of McIlraith [1998]). Thismay lead to deriving a hypothesis h0, such that for every constant F 2 FO� j= H(map(F); do(h0; S0))if and only if !F(h;A)(F) = >. Recall that map(F) is not a term in the languageof the situation calculus; rather, it is a term outside the logical language thathas to be replaced by the uent to which F is mapped.We require h0 to be an expansion of h. Thus, we need the diagnosis to becategorical (i.e., no disjunctive hypotheses). For this alternative to be viable,we need � to be rich enough to incorporate exogenous actions that might ormight not be observable, and that would explain the surprises.Alt. 2 Simply accept the new state and let h0 be h;A;!A(h;A);AFO (assuming that!A(h;A) is not equal to ?). Here, we assume that � contains one action AFOfor every possible assignment of truth values to elements of FO. These actions(�ctitious action) will simply set the observational uents to the correspondingvalues. We'll call these actions uent setting �ctitious actions. Note thatthese �ctitious actions carry no explanatory power, and simply help make thetheory consistent. As long as we are dealing with �nite object domains, thisalternative can, equivalently, be phrased in a state-based setting. We explorethis in Appendix B.4We require a single exogenous action to avoid dealing with true concurrency. This is not aproblem (see [Baier and Pinto, 1998]), however introducing true concurrency would simply distractus from our objective. � 108 �



7.5. General (Situation-based) execution monitoringRecoveryWhenever h;A 6= h0 a recovery ensues. Recovery is necessary whenever there is adiscrepancy between expectations (i.e., the state resulting from history h;A) andthe actual situation (resulting from history h0).If the discrepancy between the expected situation and the actual situation isdeemed to be irrelevant, then it is ignored. Otherwise, recovery will ultimatelydepend upon domain speci�c information that is made available to the system (eitherthe actual monitor, or the monitored program). We will take the point of view thatthe program contains its own recovery mechanisms, as will be explained in thefollowing section.7.5.4 Self-recovery program structureWe consider a program structure similar to that of a production system, that is:'0 ! �0; : : : ;'n ! �nWe assume that this program, when invoked, treats the set of production rules ina fashion similar to that of a Lisp cond statement. That is, the conditions areevaluated in order, and the smallest i such that 'i holds leads to the execution of�1. We assume that 'n is a catch all identically true condition, and that �n is anabort statement or a planning from scratch procedure.Notice that the program structure that is suggested is directly allowed by theGolog language (in all its incarnations), since it is simply a set of nested if{then{else statements. Some important points to keep in mind. First the 'i conditionsare all evaluated at the situation in which the program is restarted. This situationis identi�ed by the current history, which is kept by the monitor.In [Nilsson, 1994a], Nilsson proposed the notion of Teleo{Reactive (TR) pro-grams. A teleo{reactive program is also similar to a set of production rules. Thereare several aspects of TR{programs that on the surface appear to make these pro-grams more suitable for agent control. For instance, TR actions can be durative5rather than discrete. Also, the conditions have to be continuously evaluated, andthe corresponding action is executed as long as the condition is the �rst one to hold(in the order de�ned by the production rules). This behavior can be easily simulatedby a self{recovery program by constructing a suitable 1 condition.ExampleIn this example, we consider a robot that inhabits an o�ce environment. The robotcan walk through corridors to get from o�ce to o�ce, it can pick up and delivermail, it can obtain co�ee and deliver co�ee, and it can also clean areas it �ndsdirty. A similar scenario was modeled in detail in [Reiter, 1998]. Thus, we excludecluttering details here and refer to that paper. The theory of action � will includein its vocabulary the following uents:5I.e., they can continue inde�nitely; e.g. moving forward.� 109 �



Chapter 7. The Situation Calculus/Golog framework1. carryingCo�ee holds if the robot is carrying co�ee. Formally,Poss(a; s) � [holds(carryingCo�ee ; do(a; s)) �a = pickupCo�ee _holds(carryingCo�ee ; s) ^:(a = putdownCo�ee _ a = droppedCo�ee)]The action droppedCo�ee is assumed to be exogenous.2. carryingMail (x) holds if the robot is carrying mail destined for o�ce x.3. deliveringCo�ee(x) holds if the robot is delivering co�ee to o�ce x. Formally,Poss(a; s) � [holds(deliveringCo�ee(x); do(a; s)) �a = goingTo(x) ^ holds(carryingCo�ee ; s) ^holds(wantsCo�ee(x); s) _holds(deliveringCo�ee(x); s) ^:(holds(At(x); s) ^ a = giveCo�ee(x)]4. deliveringMail (x) holds if the robot is delivering mail to o�ce x.5. batteryLow holds if the batteries are low. recharging if the robot is recharg-ing its batteries. in this example we assume that batteriesTurnedLow is anexogenous action.Aside from these uents, the robot can execute a number of complex actions(Golog procedures), which are built on top of some more basic primitive actions.Informally, these procedures are: deliverCo�ee(x), to deliver co�ee to o�ce x, anddeliverMail to deliver mail to o�ce x; recharge , which recharges the robot's batteries;clean , which cleans a mess caused by accidentally dropping the co�ee; Interrupt ,which interrupts the execution of whatever it is that the robot is doing.The basic top-loop Golog program can have the following structure (again ex-cluding a number of details):proc TopLoopwhile > do(� x)fif hasMail (x) then deliverMail (x)else if wantsCo�ee(x) then deliverCo�ee(x)gNote that we in this program only specify the main tasks of the robot, and leaveabnormal contingencies to the monitor.� 110 �



7.6. State-based execution monitoring, BM classi�cation and MT recoveryA self recovery program could be:batteryLow ! recharge ;messy ! clean ;carryingMail (x)! deliverMail (x);carryingCo�ee ^ wantsCo�ee(x)! deliverCo�ee(x);> ! recharge ;Now, we need to specify the conditions under which the execution monitor hasto intervene. Thus, we need to specify the 1 condition which tells the executionmonitor to restart the program. In this case, this condition might be:6batteryLow (s0) _ :carryingCo�ee(s0) ^ deliveringCo�ee(s0)We assume that the procedure TopLoop is executing and that the current his-tory is h. Someone, say r, wants co�ee and the robot invokes the proceduredeliverCo�ee(r). If the co�ee suddenly slips from the robot gripper before the robot�nishes its task, the situation assessment function will return h0 = h; droppedCo�eewhich di�ers from the expected h; deliverCo�ee(r) (assuming that there is a de�nedaction deliverCo�ee(x) in �). The assessment will also report that the formula:carryingCo�ee(h0; S0) ^ deliveringCo�ee(h0; S0) holds which will trigger the moni-tor to invoke the self-recovery program. Unless the batteries are low in this situation,the robot will note the mess it created and start to clean up. When the cleaningaction has �nished the monitor will give control back to the continuation of thecurrent Golog program.7.6 State-based execution monitoring,BM classi�cation and MT recoveryApart from the previous few sections, we have considered state-based execution mon-itoring in this thesis. This means that detection and classi�cation of discrepancies inontological control and stability-based execution monitoring is based on the trajec-tory of states, rather than on the sequence of executed actions. In this section andthe following, we will examine how ontological control and stability-based executionmonitoring can be handled within the SitCalc/Golog framework.In this section we will describe the recovery technique employed in the two sub-sequent sections. In certain situations it is a feasible idea to change the underlyingSitCalc model for a Golog program in order to, e.g., make it reect the actual sys-tem more adequately (as in ontological control), or to ensure that certain unwantedcontrol situations do not occur again. For Golog we can note that any discrepancymakes the theory inconsistent. This is somewhat unintuitive, since the real worldcertainly does not disappear whenever it does not behave as we expect it to.6here s0 is do(h0; S0) � 111 �



Chapter 7. The Situation Calculus/Golog frameworkType Oprev Oexp Omat RevisionA F F :F Add more informa-tion to �FB :F :F F Add more informa-tion to +FC F :F F Remove informa-tion from �FD :F F :F Remove informa-tion from +FTable 7.1: The four kinds of discrepancies.Instead of sensing uent values, as in de Giacomo et al.'s work (Section 7.4)suggest that the execution monitor should sense uent values instead of action oc-currences. The Trans function makes it possible to compute the expected result ofa primitive action, so it is easy to determine whether there is a discrepancy betweenthe sensed values and the expected ones. Next, if a discrepancy is detected we knowthat the observation is not a consequence of the axiomatization, since the initialstate is completely speci�ed and the actions are deterministic. To proceed, we sug-gest that the model (the underlying SitCalc axiomatization) should be changed incase of a discrepancy. We can classify the possible causes of the discrepancy as eitherbeing malignant, which implies that the successor state axioms do not reect theenvironment adequately, or benign, which implies that the successor state axiomsare corroborated, but that the system is in a di�erent state than what was expected.The changes of the model that we propose are:Benign discrepancy: Replace the initial situation axioms with the new and un-expected observation, where the situation argument of the uents are relativized tosituation S0, and restart the execution. Invoke the recovery mechanism if necessary.Malignant discrepancy: Let Oprev be the state of the previous situation, A theprimitive action invoked in the previous situation, Oexp the expected state after in-voking A in a situation with state Oprev , and Omat the observed current state. Fora particular uent F with successor state axiomPoss(a; s) � (H(F; do(a; s)) �+F (a; s) _ (H(F; s) ^ :�F (a; s)));we have four types of discrepancies described in Table 7.1. Types A and B describethe cases where the uent F is modeled to be inert (i.e. to not change its value) bythe action A, but that the value is sensed to have changed. This means that, in thecase of a VOA, we need to add the particular case to +F or �F , to make sure that theobserved change is considered by the model. For cases C and D, changes are modeledbut do not occur. This means that the changes assumed by the model should beremoved. When the changes have been performed, we replace all initial situationaxioms with the materialized observation and continue (possibly with recovery).� 112 �



7.6. State-based execution monitoring, BM classi�cation and MT recovery7.6.1 Formalization of the ideaAssume that for an application axiomatization � = � [ �AP [ �SSA [ �S0 we havean observation Os and that we perform the action A in s to take us to situationdo(A; s), and that we expect to sense the observation Odo(A;s), but that we insteadsense an observation O0do(A;s), where Odo(A;s) 6= O0do(A;s) (i.e. we have detected adiscrepancy).Next, we need to discriminate between the four types of discrepancies describedin Table 7.1. We begin by constructing the sets Spos = Odo(A;s) � O0do(A;s) andSneg = O0do(A;s) �Odo(A;s). Spos contains all uents that where expected to be truebut where observed to be false, thus being type A or D discrepancies, and Snegcontains all uents expected to be false but that where observed to be true, thusbeing type B or C discrepancies. Now, we check if the members of Spos and Snegbelong to Os:� If F (~o) 2 Spos and F (~o) 2 Os, F (~o) is of type A .� If F (~o) 2 Spos and F (~o) 62 Os, F (~o) is of type D.� If F (~o) 2 Sneg and F (~o) 2 Os, F (~o) is of type B.� If F (~o) 2 Sneg and F (~o) 62 Os, F (~o) is of type C.Given the three observations Os, Odo(A;s), and O0do(A;s), we can easily classify everydiscrepancy as being of type A, B, C, or D.Let F (~o) be a discrepancy in situation do(A; s), and H(F (~x); do(a; s)) � : : :the corresponding successor state axiom, where the length of ~x is n. To constructthe formula needed for model repair, as in the �fth column in table 7.1, we needthe formula describing the sensed observation in situation s (the precondition of thedetected VOA), i.e. VOs, and the instantiation formula, inst~o~x of the variables in~x, which is inst~o~x � x1 = o1 ^ : : : ^ xn = on. The instantiation formula describesthe variable bindings materialized in situation do(A; s). For each discrepancy F (~o)in situation s we construct the formula �sF (~o) � VOs=s ^ inst~o~x:We assume that the successor state axiom for F is on the formH(F (~x); do(a; s)) �_i �+i (~x; s) ^ a = Ai (7.1)_ (H(F (~x); s) ^:_i ��i (~x; s) ^ a = Ai): (7.2)We formalize the repair actions mentioned in the �fth column in table 7.1 as follows:Type A: Replace the disjunct ��(~x; s) ^ a = A in (7.2) by(��(~x; s) _ �sF (~o)) ^ a = A:� 113 �



Chapter 7. The Situation Calculus/Golog frameworkType B: Replace the disjunct �+(~x; s) ^ a = A in (7.1) by(�+(~x; s) _ �sF (~o)) ^ a = A:Type C: Replace the disjunct ��(~x; s) ^ a = A in (7.2) by��(~x; s) ^ :�sF (~o) ^ a = A:Type D: Replace the disjunct �+(~x; s) ^ a = A in (7.1) by�+(~x; s) ^ :�sF (~o) ^ a = A:Observe that the structure of (7.2) and (7.1) remains unchanged after the the repairactions. To make sure that the application order of the repair actions does notmatter, we need the following lemma.Lemma 7.6.1 For two discrepancies, F (~o) of type A and F (~o0) of type C, the orderin which we apply the revision actions is irrelevant.Proof: We can see that the repair actions give syntactically di�erent resulting for-mulae depending on the order of the repairs, i.e. if we use the type A repair beforetype C, the result will be(��(~x; s) _ �sF (~o)) ^ :�sF (~o0) ^ a = A;and if we start with type C repair we get((��(~x; s) ^ :�F (~o0)) _ �sF (~o)) ^ a = A:The only case when their respective truth values di�er is when �F (~b) and �F (~c) areboth true, which would imply that inst~o~x^ inst~o0~x is satis�able. This can only occur if~o = ~o0, which means that both F (~o) and :F (~o) have materialized (since we had onetype A and one type C discrepancy). This is obviously false, so the two formulasare equivalent.2For discrepancies of type B and D, the proof is analogous.When a discrepancy is detected, and it is classi�ed as being malignant, the dis-crepancy type is determined. This is done for all discrepancies. Based on the typeinformation we perform revision on the successor state axioms of the discrepancies.When all discrepancies have been dealt with, we have a new set of successor stateaxioms �0SSA. We replace the previous set �SSA in � with �0SSA and replace the ini-tial situation axioms in � with the materialized observation, i.e. the new applicationaxiomatization is de�ned as�0 = ((�� �S0) [ O0S0do(A;s)) [ ((� � �SSA) [ �0SSA):� 114 �



7.7. Stability-based execution monitoring7.7 Stability-based execution monitoringThe �rst instance of BM classi�cation for Golog is what we call stability-basedexecution monitoring. The basic idea is that there is a set of states, described by aproperty , that represents the desired behavior of the system. If a SitCalc theory,� is stable w.r.t , or that there exists a Golog program that stabilizes � w.r.t., then we know that if no discrepancies occur the system will always return to thedesired set of states in �nite time. Stability-based execution monitoring means thatwe want to maintain stability even in the presence of discrepancies. We can do thisby distinguishing between two types of discrepancies: Discrepancies that moves thesystem into a state described by  and discrepancies that move the system outsideof .7.7.1 Discrepancy detection and classi�cationThe general idea behind stability-based execution monitoring was introduced insection 5.7. In that framework, discrepancy detection is straightforward; if thecurrent predicted state is di�erent from the current actual state, then there is adiscrepancy. In SitCalc the detection consists of computing whether� j= Osholds or not, where � is the application axiomatization, s is the current situation,and Os is the current actual observation.Discrepancy classi�cation requires somewhat more sophistication, where it isnecessary to �nd out whether a given discrepancy belongs to the closure of thesystem or not. In SitCalc the \closure" notion translates to the set of states that canbe reached by control actions from the initial situation, and this can be formalizedas follows: InClosure(s) �s = S0 _(do(a; s0) v s � Poss(a; s0) ^ InClosure(s0)):The classi�cation process is then to compute� j= 9s0: Os=s0 ^ InClosure(s0); (7.3)which intuitively means that the current actual observation holds in some situationreachable from the initial situation by actions. If relation 7.3 holds, we have a benigndiscrepancy, otherwise it is malignant.7.8 Ontological controlFrom chapter 4 we recall the three restrictions su�cient for ontological control: theexistence of a perfect sub-model, non-logging and energized actions. In this section� 115 �



Chapter 7. The Situation Calculus/Golog frameworkwe will suggest a way to encode this in a SitCalc theory. In the next Section we willthen show how ontological control can be performed in the SitCalc/Golog frame-work.Perfect sub-modelSimilar to the theory in chapter 4 we partition the set of uents, F into con�gurationuents and plant uents. We introduce a new predicate symbol, Conf , for this, sothat Conf(F ) holds i� F is a con�guration uent. Since observations are assumedto be conjunctions of ground uents we can always partition an observation into acon�guration and a plant formula part.Non-loggingWe de�ned a system to be non-logging i� the con�gurations of consecutive statesare mutually exclusive. In SitCalc we will translate this to the following� j=9f: Conf(f) ^ (H(f; s) 6� H(f; do(a; s)):Intuitively this means that some con�guration uent changes value between twoconsecutive situations.Energized ActionsActions in a SitCalc theory are not necessarily energized, but the common assump-tion that formulas in a SitCalc theory are \simple", that is, that they only mentionone particular situation term, makes the theories Markovian. By Markovian wemean that the entire history is encoded in the current situation and, thus, that thecurrent state contains all information necessary to �nd the next action to execute.Ballistic actions in general, cannot exist in a Markovian system, since their e�ectsmay not be measurable at every sampling instance. We can safely assume that allactions are energized.7.8.1 Discrepancy detection and classi�cationThere is no di�erence between the detection process for stability-based executionmonitoring and for ontological control.For classi�cation, there are two possible causes for the discrepancy, EA (a benigndiscrepancy) or VOA (a malignant discrepancy).EANow, if fF (~o) jF 2 Conf and F (~o) 2 Os g=fF (~o) jF 2 Conf and F (~o) 2 O0do(A;s)g; (7.4)we know that the actuator sensors have not changed from situation s to do(A; s),and we explain the the discrepancy with EA. We then change the application ax-� 116 �



7.8. Ontological controliomatization to �0 = (� � �S0) [ fVO0do(A;s)=S0g. That is, we replace the initialsituation axioms by the latest observation.VOAWe detect a VOA by noticing thatfF (~o) jF 2 Conf and F (~o) 2 Odo(A;s) g=fF (~o) jF 2 Conf and F (~o) 2 O0do(A;s) g; (7.5)i.e. that the actuator sensors have changed exactly as expected, but other changeshave not followed our expectations.7.8.2 Trolley example
t1store t2
l1 l2

Figure 7.2: The plant.We will now look at an example of a plant depicted in Figure 7.2, which wasintroduced in Chapter 4. We control a robot arm (our actuator) that is supposed tomove boxes from store to the trolleys at positions t1 and t2. The actuator outputis the value of a uent Position(p; s) (for the position of the robot arm) p can takethe values store, t1, or t2, representing the depicted possible positions. The plantsignals give values to a uent Load(l; n), where l denotes the sensor (l1 or l2), andn denotes the number of boxes on the respective trolley, i.e. 0, 1, or 2. We haveone control action, Move(x; y), where x and y are two di�erent positions, and weassume that when x is store, y is t1 or t2, and there are less than 2 boxes on thetrolleys, Move(x; y) invokes the robot arm to grab one box at store and move tot1 or t2 and to drop the box at that position. We choose the following SitCalcaxiomatization: Poss(Move(x; y); s) �x 6= y ^ (y = store _ (x = store^8n; n0: (H(Load(l1; n); s) ^H(Load(l2; n0); s)! n + n0 < 2)));� 117 �



Chapter 7. The Situation Calculus/Golog frameworkWe de�ne the successor state axiom for our only member of Conf , Position, asH(Position(p); do(a; s)) �9x:a = Move(x; p) _(H(Position(p); s) ^ : a = Move(p; x)):The successor state axiom for Load is somewhat larger:H(Load(l; n); do(a; s)) �( (l = l1 ^ n = 0 ^ F) _( ((l = l1 ^ n = 1 ^H(Load(l; 0); s)) _(l = l1 ^ n = 2 ^H(Load(l; 1); s))) ^a = Move(store; t1) ) _(l = l2 ^ n = 0 ^F) _( ((l = l2 ^ n = 1 ^H(Load(l; 0); s)) _(l = l2 ^ n = 2 ^H(Load(l; 2); s))) ^a = Move(store; t2) )) _(H(Load(l; n); s) ^: ((l = l1 ^ a = Move(store; t1)) _(l = l2 ^ a = Move(store; t2)))):Initially, the arm is at position store and there are no boxes on the trolleys, i.e.�S0 =fH(Position(store); S0); H(Load(l1; 0); S0);H(Load(l2; 0); S0)gNow, assume that we execute Move(store; t1) in S0. Let s = do(Move(store; t1); S0).We then expect the observationOs = fPosition(t1); Load(l1; 1); Load(l2; 0)g:to be sensed. We will now illustrate the two causes of discrepancies:EAAssume that somebody moves a box from the store to the trolley with load sensorl1 when the robot arm has begun executing Move(store; t1). Since actions areenergized, and the exogenous move will make the precondition of the action false(i.e. the state in which the action was invoked), the action will stop, and we willsense O0s = fPosition(store); Load(l1; 1); Load(l2; 0)g:� 118 �



7.8. Ontological controlWe detect the discrepancy by noting that Os 6= O0s, and classify the cause of thediscrepancy as EA with Equation (7.4). To continue, we replace �S0 byf^O0s=S0g =fH(Position(store); S0) ^H(Load(l1; 1); S0) ^H(Load(l2; 0); S0)gand try to recover the Golog program.VOAAn unmodeled ontological assumption of the system is that position t1 correspondsto load sensor l1, and that t2 corresponds to l2. If this is false the model is not validfor control. Thus, we assume that the position of the trolleys has been changed,which means that the sensed observation after performing Move(store; t1) in S0will be O0s = fPosition(t1); Load(l1; 0); Load(l2; 1)gAgain, we detect the discrepancy by noticing that Os 6= O0s, and classify it as causedby VOA with Equation (7.5). We have four discrepancies, where Load(l1; 1) is oftype D, Load(l2; 0) is of type A, Load(l1; 0) is of type B, and Load(l2; 1) is of typeC. The precondition of the VOA is in this case^OS0=s �H(Position(store); s) ^H(Load(l1; 0); s) ^H(Load(l2; 0); s):Thus, we have �S0Load(l1;1) �^OS0=s ^ l = l1 ^ n = 1| {z }instl1;1l;n :Similarly, we can construct the �sF for each discrepancy F .When we repair the successor state axiom for Load we get the following result:H(Load(l; n); do(a; s)) �((l = l1 ^ n = 0 ^ F) _( ((l = l1 ^ n = 1 ^H(Load(l; 0); s)) _(l = l1 ^ n = 2 ^H(Load(l; 1); s)) _ �S0Load(l1;0)) ^:�S0Load(l1;1) ^ a = Move(store; t1) ) _: : :(H(Load(l; n); s) ^: (((l = l1 _ �S0Load(l2;0)) ^ :�S0Load(l2;1) ^a = Move(store; t1)) _(l = l2 ^ a = Move(store; t2)))):� 119 �



Chapter 7. The Situation Calculus/Golog frameworkIt is easy to see that this particular VOA cannot occur again. It will be handledproperly by the new successor state axiom. However, if we perform the actionMove(store; t2) a similar VOA will occur.
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Chapter 8Conclusions and future workIn this Chapter we will conclude and summarize the work presented in this thesis,as well as present some pontentially fruitful future research paths.8.1 ConclusionsIn Chapter 1 two problems that have guided this work were posed. They were:� How can control engineers handle the increasing demands for safety and op-timality of control systems, in settings where the systems themselves or theiroperating environments severely restrict the possibility of precise mathematicalmodeling?� How can the problem above be solved with minimal introduction cost, that is,minimal cost for introducing new technology?The hypothesis of this dissertation is that a feasible answer to the questions is:Use model-based execution monitors.An execution monitor is, in this thesis, a separate architectural entity that shouldbe mounted on a controller with access to the controllers inputs and outputs (andpossibly with access to internal control structures of the controller). Then, givena model of the closed-loop system, the the execution of the controller is monitoredwith a particular focus on the detection of discrepancies between the actual andpredicted e�ects of action invocations.In arguing for the hypothesis, we have had to clarify some methodological issuessuch as what execution monitoring is (by specifying an appropriate working de�ni-tion), the impact that a particular choice of modeling formalism has on executionmonitoring, and the identi�cation of the central research issues. This work was pre-sented in Chapter 2. The idea of employing a model-based execution monitor isnot new, nor does it belong to one speci�c academic discipline, so in Chapter 3 we� 121 �



Chapter 8. Conclusions and future workprovided an attempt to review, and compare, some representative work on execu-tion monitoring in Control Theory, Computer Science, and AI. As a result of thediscussion in Chapter 2, a set of �ve constituting functions of execution monitorswas identi�ed. These were situation assessment (mapping the current sensor mea-surements to a state, or situation, in the model), expectation assessment (computingthe predicted current state, or situation), discrepancy detection (comparing the ac-tual and predicted current state, and determining whether there is a discrepancybetween the two), discrepancy classi�cation (explaining a detected discrepancy, orassessing its potential harmfulness), and recovery (taking some action to make thesystem behave as wanted after a discrepancy, if possible).This thesis has focused on discrepancy classi�cation, and in Chapters 4 and5 two classi�cation paradigms were presented: Ontological Control and Stability-Based execution monitoring. Ontological control concerns execution monitoring ofsoftware-based industrial process controllers, and was originally (by Fodor [1995])developed to handle in�nite recovery loops. Stability-based execution monitoringconcerns the insurance that a closed-loop system is stable throughout its execution,that is, that a given criterion always holds, or can be made to hold, whatever statethe system currently is in.For ontological control, we have presented an implementation of the theory, and a�rst set of experimental results, where the implementation was tested on a subsystemof a real industrial process controller. The results are promising (but inconclusive).In Chapters 6 and 7 the two paradigms were applied in two di�erent modelingformalisms: Hybrid Automata and the Situation Calculus/Golog framework. Forboth these formalisms a number of extensions were developed to cope with therequirements of execution monitoring.Five of the most important contributions of this thesis are the following:� Reviewing and comparing a number of previously proposed approaches to ex-ecution monitoring in Control Theory, Computer Science, and AI (in Chapter3). A major part of this work consists in the construction of a conceptualframework that enables such comparisons (Chapter 2).� The formalization, generalization, extension, and implementation of Ontolog-ical Control (Chapter 4). This includes our proposal as to how to (semi-)automatically generate a model of a closed-loop system by analyzing the con-trol program.� The development and analysis of the notion of \maintainability", and its ap-plication to an execution monitoring setting (Chapter 5).� The attempt to bridge the gap between system veri�cation and system execu-tion monitoring (Chapter 6). This was demostrated by transforming closed-loop models in a formalism designed for veri�cation to a formalism that couldbe utilized by an execution monitor engine.� The analysis of the feasibility and utility of using a logical framework for thetypes of execution monitoring presented in this thesis (Chapter 7).� 122 �



8.2. Future work8.2 Future workGuided by the �ve contributions above, we will in this section state some of themore interesting prospects for future work on model-based execution monitoring.� We are pleased to see that steps to bridge the gap between FDI and model-based diagnosis now are occurring more commonly in the literature (see e.g.Cordier et al. [2000]). However, there is still a need for more work that linksconcepts and techniques from AI, Control Theory and Computer Science, froman execution monitoring point of view. As the importance of critical andcomplex software-based control systems increases in society, there are largebene�ts to be gained by a closer integration of the three areas.� In its present form, ontological control places quite strict restrictions on sys-tems in order to be applicable. An idea that has not been investigated is\partial classi�ability", where even though the entire system does not satisfythe restrictions, parts of it does, and guarantees of correct classi�cation extendonly to those parts.The problem of automatically generating models from a control program isan interesting and complex problem with potential import. In the approachtaken in Chapter 4 we only consider the logical structure of the given program,which su�ces to semi-automatically generate a model. A problem that weexperienced with the generated model during the experiments was that forevery sensor reading the execution monitor recieved as input, there were many(20-30) states that materialized, and it was not easy to perform situationassessment even with the help of the goal paths. However, there is moreinformation available that could be utilized to automate more of the translationprocess, and potentially would give us richer models. The next step we haveconsidered is to use temporal information from the program, that is, the logicalcomputations in the program are necessarily made in a partial temporal order.This information could be used to limit the number of candidate states in thesituation assessment process.� As shown in Chapter 5 the notions \stability" and \maintainability" are in-comparable, while the notion \(k; l)-maintainability" generalizes both of them.This interesting notion has not yet recieved the attention it deserves, but willbe analyzed more deeply in the future.� Chapter 6 concerns the translation of hybrid automata to a state transitiondiagram that can be used for execution monitoring. On the other hand, howone generates an executable controller program from a hybrid automata isan open question. Is it, for instance, possible to simultaneously generate acontroller program and a state transition digram of the new closed-loop systemfor execution monitoring, and could this be a feasible way to automaticallyproceed from a veri�ed speci�cation to a safe implemented control system?� 123 �



Chapter 8. Conclusions and future workIn conclusion, the topic of execution monitoring is an exciting research area withmuch left to be done. As autonomous systems are becoming more common, and willcontinue to be, execution monitoring will be even more important. In some sense, itprovides a limited form of machine introspection and a potential basis for self-repairof autonomous systems that will become increasingly more important in the future.We have shown in this thesis that parts of the puzzle can be solved for lesschallenging, but still complex software systems, and we look forward to new advancesin execution monitoring in the future.

� 124 �



Bibliography[AAAI '00, 2000] R. Dechter and R. Sutton, editors. Proceedings of the SeventeenthNational Conference on Arti�cial Intelligence, Austin, Texas, August 2000. Amer-ican Association for Arti�cial Intelligence, AAAI Press/MIT Press.[AAAI '87, 1987] American Association for Arti�cial Intelligence. Proceedings of theSixth National Conference on Arti�cial Intelligence (AAAI '87), Seattle, Wash-ington, July 1987. AAAI Press/MIT Press.[AAAI '94, 1994] American Association for Arti�cial Intelligence. Proceedings ofthe Twelfth National Conference on Arti�cial Intelligence, Seattle, Washington,August 1994. AAAI Press/MIT Press.[AAAI '96, 1996] American Association for Arti�cial Intelligence. Proceedings ofthe Thirteenth National Conference on Arti�cial Intelligence, Portland, Oregon,August 1996. AAAI Press/MIT Press.[ABB, 1999] ABB Industrial Systems. Stressometer: Application overview and andprinciples., 1999. 4/6 High Mill Application, Version 5.0.[Abello and Dolev, 1997] J. Abello and S. Dolev. On the computational power ofself-stabilizing systems. Theoretical Computer Science, 183:159 { 170, 1997.[Abramson, 1991] B. Abramson. An analysis of error recovery and sensory inte-gration for dynamic planners. In Proceedings of the Ninth National Conferenceon Arti�cial Intelligence (AAAI'91), Anaheim, California, July 1991. AmericanAssociation for Arti�cial Intelligence, AAAI Press.[Agre and Chapman, 1987] P. Agre and D. Chapman. Pengi: An implementationof a theory of activity. In AAAI '87 [1987].[AIPS '94, 1994] Kristian Hammond, editor. Proceedings of the Second InternationalConference on Arti�cial Intelligence Planning Systems, Chicago, Illinois, 1994.AAAI Press.[Alur et al., 1992] R. Alur, C. Courcoubetis, T. Henzinger, and P.-H. Ho. Hybridautomata: An algorithmic approach to the speci�cation and and veri�cation ofhybrid systems. In Workshop on Theory of Hybrid Systems, volume 736 of Lecture� 125 �



BIBLIOGRAPHYNotes in Computer Science, pages 209{229. Springer Verlag, Lyngby, Denmark,October 1992.[Alur et al., 1993] R. Alur, T. Henzinger, and P. Ho. Automatic symbolic veri�ca-tion of embedded systems. In Proceedings of IEEE Real-Time Systems Symposium,Raleigh-Durham, NC, December 1993.[Ambros-Ingerson and Steel, 1988] J. Ambros-Ingerson and S. Steel. Intergratingplanning, execution and monitoring. In Proceedings of the Seventh National Con-ference on Arti�cial Intelligence (AAAI'88), Saint Paul, Minnesota, August 1988.American Association for Arti�cial Intelligence, AAAI Press/The MIT Press.[Arkin, 1990] R.C. Arkin. Intergrating behavioral, perceptual and world knowledgein reactive navigation. Robotics and Autonomous Systems, 6:105{122, 1990.[Baier and Pinto, 1998] Jorge Baier and Javier Pinto. Non-instantaneous Actionsand Concurrency in the Situation Calculus (Extended Abstract). In Giuseppede Giacomo and Daniele Nardi, editors, 10th European Summer School in Logic,Language and Information, 1998.[Baker, 1989] A. Baker. A simple solution to the Yale shooting problem. In R.J.Brachman, H.J. Levesque, and R. Reiter, editors, Proceedings of the First Inter-national Conference on Principles of Knowledge Representation and Reasoning(KR '89), Toronto, Canada, May 1989. Morgan Kaufmann.[Baral et al., 2000] C. Baral, S. McIlraith, and T.C. Son. Formulating diagnos-tic problemsolving using an action language with narratives and sensing. InF. Giunchiglia and B. Selman, editors, Proceedings of the Seventh InternationalConference on Principles of Knowledge Representation and Reasoning (KR'00),Breckenridge, CO, US, April 2000. Morgan Kaufmann, San Francisco.[Basseville and Nikiforov, 1993] M. Basseville and I. Nikiforov. Detection of AbruptChanges: Theory and Applications. Prentice Hall, Englewood Cli�s, NJ, USA,1993.[Beard, 1971] R.V. Beard. Failure accomodation in linear systems through self reor-ganization. Phd thesis, Massachusetts Institute of Technology, Cambridge, MA,USA, 1971.[Beetz and McDermott, 1994] M. Beetz and D. McDermott. Improving robot plansduring their execution. In AIPS '94 [1994].[Benson, 1996] S. Benson. Learning Action Models for Reactive Autonomous Agents.Phd thesis, Department of Computer Science, Stanford University, 1996.[Bj�areland and Driankov, 1999] M. Bj�areland and D. Driankov. Synthesizing dis-crete controllers from hybrid automata - preliminary report. In Working Papersof the AAAI Spring Symposium on Hybrid Systems and AI, Stanford, CA, USA,March 1999. � 126 �



BIBLIOGRAPHY[Bj�areland and Fodor, 1998] M. Bj�areland and G. Fodor. Ontological control. InWorking Papers of the Ninth International Workshop on Principles of Diagnosis(Dx'98), Sea Crest Resort, N. Falmouth, MA, USA, May 1998.[Bj�areland and Fodor, 2000] M. Bj�areland and G. Fodor. Execution monitoring ofindustrial process controllers: An application of ontological control. In SAFE-PROCESS 2000 [2000].[Bj�areland and Haslum, 1999] M. Bj�areland and P. Haslum. Stability, stabilizability,and golog. Unpublished, August 1999.[Bj�areland and Karlsson, 1997] M. Bj�areland and L. Karlsson. Reasoning by re-gression: Pre- and postdiction procedures for logics of action and change withnondeterminism. In IJCAI '97 [1997].[Bj�areland and Pinto, 2000] M. Bj�areland and J. Pinto. Handling surprises in logicsof action and change. Unpublished manuscript, 2000.[Bj�areland, 1999a] M. Bj�areland. Execution monitor synthesis for hybrid systems {preliminary report. In Proceedings of the Fourteenth IEEE International Sympo-sium on Intelligent Control (ISIC'99), Boston, USA, September 1999.[Bj�areland, 1999b] M. Bj�areland. Recovering from modelling faults in GOLOG. InProceedings of the IJCAI'99 Workshop: Scheduling and Planning meet Real-timeMonitoring in a Dynamic and Uncertain World, Stockholm, Sweden, August 1999.[Blanke et al., 2000] M. Blanke, C.W. Frei, F. Kraus, R.J. Patton, andM. Staroswiecki. What is fault-tolerant control ? In SAFEPROCESS 2000 [2000].[Blum and Furst, 1997] A. Blum and M. Furst. Fast planning through planninggraph analysis. Arti�cial Intelligence, 90:981, 1997.[Brooks, 1986] R. Brooks. A robust layered control system for a mobile robot. IEEEJournal of Robotics and Automation, page 14..23, April 1986.[Brooks, 1991] R. Brooks. Intelligence without representation. Arti�cial Intelli-gence, 47(1 { 3):139 { 159, 1991.[Broverman and Croft, 1988] C. Broverman and B. Croft. Reasoning about excep-tions during plan execution monitoring. In AAAI '87 [1987].[Carpanzano et al., 1999] E. Carpanzano, L. Ferrarini, and C. Ma�ezzoni. Anobject-oriented model for hybrid control systems. In Proceedings of the 1999IEEE International Symposium on Computer Aided Control System Design, Ko-hala Coast-Island of Hawai'i, Hawai'i, USA, August 1999.[Cassandra et al., 1994] A.R. Cassandra, L.P. Kaelbling, and M.L. Littman. Actingoptimally in partially observable stochastic domains. In AAAI '94 [1994].� 127 �



BIBLIOGRAPHY[Chapman, 1987] D. Chapman. Planning for conjunctive goals. Arti�cial Intelli-gence, 32:333 { 377, 1987.[Chen and Patton, 1999] J. Chen and R.J. Patton. Robust model-based fault diag-nosis for dynamic systems. Kluwer Academic Publishers, 1999.[Chittaro et al., 1993] L. Chittaro, G. Guida, C. Tasso, and E. Toppano. Functionaland teleological knowledge in the multimodeling approach for reasoning aboutphysical systems: A case study in diagnosis. IEEE Transactions on Systems,Man and Cybernetics, 23(6):1781{1751, November 1993.[Coradeschi and Sa�otti, 2000] S. Coradeschi and A. Sa�otti. Anchoring symbolsto sensor data: Preliminary report. In AAAI '00 [2000].[Cordier et al., 2000] M-O. Cordier, P Dague, M. Dumas, F. L�evy, J. Montmain,M. Staroswiecki, and L.nd Tr Trav�e-Massuy�es. AI and automatic control ap-proaches to model-based diagnosis: Links and underlying hypotheses. In SAFE-PROCESS 2000 [2000].[de Giacomo and Levesque, 1998] G. de Giacomo and H. Levesque. An IncrementalInterpreter for High-Level Programs with Sensing. Technical report, University ofToronto, 1998. URL = http://www.cs.toronto.edu/cogrobo/incr-exe.ps.Z.[De Giacomo and Levesque, 1999] G. De Giacomo and H. Levesque. Projection us-ing regression and sensors. In IJCAI '99 [1999].[De Giacomo and Vardi, 2000] G. De Giacomo and M. Vardi. Automata-theoreticapproach to planning for temporally extended goals. In S. Biundo and M. Fox,editors, Recent advances in AI Planning, volume 1809 of LNCS. Springer-Verlag,2000. Proceedings of the 5th European Conference on Planning (ECP'99) inDurham, UK, September 1999.[De Giacomo et al., 1997] G. De Giacomo, Y. Lesperance, and H.J. Levesque. Rea-soning about concurrent execution, prioritized interrupts, and exogenous actionsin the situation calculus. In IJCAI '97 [1997].[De Giacomo et al., 1998] G. De Giacomo, R. Reiter, and M. Soutchanski. Execu-tion monitoring of high-level robot programs. In KR'98 [1998].[de Giacomo et al., 1999a] G. de Giacomo, Y. Lesprance, and H.J. Levesque. Con-golog, a concurrent programming language based on the situation calculus: foun-dations. Submitted for publication, February 1999.[de Giacomo et al., 1999b] G. de Giacomo, Y. Lesprance, and H.J. Levesque. Con-golog, a concurrent programming language based on the situation calculus: lan-guage and implementation. Submitted for publication, February 1999.[de Kleer and Williams, 1987] J. de Kleer and B. Williams. Diagnosing multiplefaults. Arti�cial Intelligence, 32:97{130, 1987.� 128 �



BIBLIOGRAPHY[Dean and Wellman, 1991] T.L. Dean and M.P. Wellman. Planning and Control.Morgan Kaufmann, San Mateo, CA, USA, 1991.[Dijkstra, 1974] E. W. Dijkstra. Self-stabilizing systems in spite of distributed con-trol. Communications of the ACM, 17:643 { 644, 1974.[Dijkstra, 1986] E.W. Dijkstra. A belated proof of self-stabilization. DistributedComputing, 1:5 { 6, 1986.[Doherty et al., 1998] P. Doherty, J. Gustafsson, L. Karlsson, and J. Kvarnstr�om.TAL: Temporal action logics language speci�cation and tutorial. Link�opingElectronic Articles in Computer and Information Science, 3(015), 1998. URL:http://www.ep.liu.se/ea/cis/1998/015/.[Doyle et al., 1986] R. Doyle, D. Atkinson, and R. Doshi. Generating perceptionrequests and expectations to verify the execution of plans. In Proceedings ofthe Fifth National Conference on Arti�cial Intelligence (AAAI'86), Philadelphia,Pennsylvania, August 1986. American Association for Arti�cial Intelligence, AAAIPress/MIT Press.[Dvorak and Kuipers, 1989] D. Dvorak and B. Kuipers. Model-based monitoring ofdynamic systems. In Proceedings of the Eleventh International Joint Conferenceon Arti�cial Intelligence, Los Altos, CA, USA, 1989. Morgan Kaufmann.[Dvorak and Kuipers, 1991] D. Dvorak and B. Kuipers. Process monitoring anddiagnosis: A model-based approach. IEEE Expert, 5(3):67 { 74, 1991.[Earl and Firby, 1997] C. Earl and J. Firby. Combined execution and monitoring forcontrol of autonomous agents. In Proceedings of the First International Conferenceon Autonomous Agents (AGENTS'97), Marina Del Rey, CA, USA, February 1997.ACM.[Falkenroth, 2000] E. Falkenroth. Database Technology for Control and Simulation.Phd thesis, Link�oping Studies in Science and Technology no. 637, Link�opingsuniversitet, Sweden, 2000.[Faurre and Depeyrot, 1977] P. Faurre and M. Depeyrot. Elements of System The-ory. North-Holland, 1977.[Ferguson, 1992] I. Ferguson. TouringMachines: Autonomous agents with attitudes.IEEE Computer, 25(5), 1992.[Fikes and Nilsson, 1971] R. Fikes and N. Nilsson. STRIPS: A new approach to theapplication of theorem proving to problem solving. Arti�cial Intelligence, 2:189 {208, 1971.[Fikes et al., 1972] R. Fikes, P. Hart, and N. Nilsson. Learning and executing gen-eralized robot plans. Arti�cial Intelligence, 3(4):251{288, 1972.� 129 �



BIBLIOGRAPHY[Fodor, 1995] G. Fodor. Ontological Control { Description, Identi�cation, and Re-covery from Problematic Control Situations. PhD thesis, Department of Computerand Information Science, Link�opings universitet, Sweden, 1995.[Fodor, 1998] G. Fodor. Ontologically Controlled Autonomous Systems: Principles,Operations and Architecture. Kluwer Academic, 1998.[Frank, 1990] P. Frank. Fault diagnosis: A survey and some new results. Automatica:IFAC Journal, 26(3):459 { 474, 1990.[Gelfond and Lifschitz, 1998] M. Gelfond and V. Lifschitz. Action languages.Link�oping Electronic Articles in Computer and Information Science, 3(016), 1998.URL: http://www.ep.liu.se/ea/cis/1998/016/.[Gil, 1992] Y. Gil. Acquiring Domain Knowledge for Planning by Experimentation.PhD thesis, Carnegie Mellon University, 1992.[Gu et al., 1994] W. Gu, J. Vetter, and K. Schwan. An annotated bibliographyof interactive program steering. Technical Report GIT{CC{94{15, College ofComputing, Georgia Institute of Technology, Atlanta, USA, 1994. Available athttp://www.cc.gatech.edu/systems/projects/FALCON/.[Gu et al., 1997] W. Gu, G. Eisenhauer, and K. Schwan. Falcon: On-line monitoringand steering of parallel programs. In Procfeedings of the Ninth International Con-ference on Parallel and Distributed Computing and Systems (PDCS'97), Wash-ington D.C., USA, October 1997.[Hammond, 1990] K. Hammond. Explaining and repairing plans that fail. Arti�cialIntelligence, 45:173{228, 1990.[Hamscher et al., 1992] W. Hamscher, L. Console, and J. de Kleer, editors. Readingsin Model-Based Diagnosis. Morgan Kaufmann, 1992.[Henzinger and Kopke, 1997] T. Henzinger and P. Kopke. Discrete-time controlfor rectangular hybrid automata. In Proceedings of the Twentyfourth Interna-tional Colloquium on Automata, Languages, and Programming (ICALP'97), vol-ume 1256 of Lecture Notes in Computer Science, pages 582{593. Springer-Verlag,1997.[Henzinger et al., 1997] T. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: Amodel checker for hybrid systems. In Proceedings of the Ninth International Con-ference on Computer-Aided Veri�cation (CAV'97), volume 1254 of Lecture Notesin Computer Science, pages 460{463. Springer-Verlag, 1997.[Herman, 1999] T. Herman. Self-stabilization bibliography: Access guide.http://www.cs.uiowa.edu/ftp/selfstab/bibliography/access.html,September 1999. Available only via www.� 130 �



BIBLIOGRAPHY[IJCAI '97, 1997] M.E. Pollack, editor. Proceedings of the Fifteenth InternationalJoint Conference on Arti�cial Intelligence (IJCAI '97), Nagoya, Japan, August1997. Morgan Kaufmann.[IJCAI '99, 1999] T. Dean, editor. Prooceedings of the Sixteenth International JointConference on Arti�cial Intelligence, Stockholm, Sweden, August 1999. MorganKaufmann.[Jacobson and Nett, 1991] C.A. Jacobson and C.N. Nett. An integrated approach tocontrols and diagnostics using the four parameter control. IEEE Control SystemsMagazine, 11(6):22{29, 1991.[Kaelbling and Rosenschein, 1991] L. Kaelbling and S. Rosenschein. Action andplanning in embedded agents. In P. Maes, editor, Designing Autonomous Agents,pages 35{48. MIT Press, 1991.[Kalman, 1960] R.E. Kalman. A new approach to linear �ltering and predictionproblems. Journal of Basic Engineering, pages 35 { 46, 1960.[Knoblock, 1995] C. Knoblock. Planning, executing, sensing, and replanning for in-formation gathering. In C. Mellish, editor, Proceedings of the Fourteenth Interna-tional joint Conference on Arti�cial Intelligence (IJCAI'95), Montreal, Canada,August 1995. Morgan Kaufmann.[KR'98, 1998] A. Cohn, L. Schubert, and S. Shapiro, editors. Principles of Knowl-edge Representation and Reasoning: Proceedings of the Sixth International Con-ference (KR'98), Trento, Italy, June 1998. Morgan Kaufmann, San Francisco.[Kumar and Garg, 1995] R. Kumar and V. Garg. Modeling and Control of LogicalDiscrete Event Systems. Kluwer Academic Publishers, Boston, MA, USA, 1995.[Lee and Durfee, 1994] J. Lee and E. Durfee. Structured circuit semantics for reac-tive plan execution systems. In AAAI '94 [1994].[Lennartsson et al., 1996] B. Lennartsson, M. Tittus, B. Egardt, and S. Pettersson.Hybrid systems in process control. IEEE Control Magazine, October 1996.[Levesque et al., 1997] Hector J. Levesque, Raymond Reiter, Yves Lesp�erance,Fangzhen Lin, and Richard B. Scherl. GOLOG: A Logic Programming Languagefor Dynamic Domains. The Journal of Logic Programming, 31:59{84, 1997.[Levesque et al., 1998] H. Levesque, F. Pirri, and R. Reiter. Foundations for thesituation calculus. Link�oping Electronic Articles in Computer and InformationScience, 3(018), 1998. URL: http://www.ep.liu.se/ea/cis/1998/018/.[Lewau, 1999] P. Lewau. A prototype of an ontological controller. Master's thesis,Link�oping Studies in Science and Technology, Link�opings universitet, April 1999.No. LiTH{IDA{Ex{9949. � 131 �



BIBLIOGRAPHY[Lewis, 1997] R.W. Lewis. Programming industrial control systems using IEC 1131-3. Number 50 in IEE Control Engineering Series. The Institution of ElectricalEngineers, London, United Kingdom, 1997.[Lin, 1996] F. Lin. Embracing Causality in Specifying the Indeterminate E�ects ofActions. In AAAI '96 [1996].[ Lukaszewicz, 1990] W.  Lukaszewicz. Non-Monotonic reasoning: formalization ofcommonsense reasoning. Ellis Horwood, 1990.[Lyons and Hendriks, 1995] D. Lyons and A. Hendriks. Planning as incrementaladaption of a reactive system. Robotics and Autonomous Systems, 14:255{288,1995.[McCarthy and Hayes, 1969] J. McCarthy and P. Hayes. Some philosophical prob-lems from the standpoint of arti�cial intelligence. In B. Meltzer and D. Michie,editors, Machine Intelligence 4, pages 463{502. Edinburgh University Press, 1969.[McIlraith, 1997] S. McIlraith. Towards a formal account diagnostic problem solving.Phd thesis, University of Toronto, 1997.[McIlraith, 1998] S. McIlraith. Explanatory diagnosis: Conjecturing actions to ex-plain observations. In KR'98 [1998].[McIlraith, 1999] S. McIlraith. Model-based programming using golog and the situ-ation calculus. In Working Papers of the Tenth International Workshop on Prin-ciples of Diagnosis (Dx99), Loch Awe, Scotland, June 1999.[Misawa and Hedrick, 1989] E.A. Misawa and J.K. Hedrick. Nonlinear observers { Astate-of-the-art survey. Journal of Dynamic Systems, Measurement, and Control,111:344 { 352, 1989.[Munson, 1971] J. Munson. Robot planning, execution, and monitoring in an un-certain environment. In Proceedings of the Second International Joint Conferenceon Arti�cial Intelligence (IJCAI'71), London, England, 1971. Morgan Kaufmann.[Muscettola et al., 2000] N. Muscettola, P. Nayak, B. Pell, and B. Williams. Remoteagent: To boldly go where no AI system has gone before. Arti�cial Intelligence,2000. To Appear.[Musliner et al., 1995] D.J. Musliner, E.H. Durfee, and K.G. Shin. CIRCA: A coop-erative intelligent real-time control architecture. IEEE Transactions on Systems,Man and Cybernetics, 23(6):1561 { 1574, 1995.[Nakamura et al., 2000] M. Nakamura, C. Baral, and M. Bj�areland. Maintainability:a weaker stabilizability-like notion for high-level control agents. In AAAI '00[2000].[Nilsson, 1982] N. Nilsson. Principles of Arti�cial Intelligence. Springer-Verlag,1982. � 132 �



BIBLIOGRAPHY[Nilsson, 1994a] Nils J. Nilsson. Teleo-Reactive Programs for Agent Control. Journalof Arti�cial Intelligence Research, 1:139{158, 1994.[Nilsson, 1994b] N.J. Nilsson. Teleo-reactive programs for agent control. Journal ofArti�cial Intelligence Research, 1:139{158, 1994.[O'Reilly, 1983] J. O'Reilly. Observers for linear systems. Academic Press, London,1983.[ �Ozveren et al., 1991] C. �Ozveren, A. Willsky, and P. Antsaklis. Stability and stabi-lizability of discrete event dynamic systems. Journal of the ACM, 38(3):730{752,July 1991.[Passino and Burgess, 1998] K. Passino and K. Burgess. Stability Analysis of Dis-crete Event Systems. Adaptive and Learning Systems for Signal Processing, Com-munications, and Control. John Wiley and Sons, Inc., New York, 1998.[Pinto and Bj�areland, 2001] J. Pinto and M. Bj�areland. An architecture for execu-tion monitoring. Submitted to the Seventeenth International Joint Conference onArti�cial Intelligence (IJCAI '01), August 2001.[Pinto, 1994] Javier Pinto. Temporal Reasoning in the Situation Calculus. PhDthesis, Department of Computer Science, University of Toronto, Toronto, Ontario,Canada, February 1994. URL = ftp://ftp.cs.toronto.edu/~cogrobo/jpThesis.ps.Z.[Pinto, 1998a] J. Pinto. Concurrent actions and interacting e�ects. In KR'98 [1998].[Pinto, 1998b] J. Pinto. Occurrences and narratives as constraints in the branchingstructure of the situation calculus. Journal of Logic and Computation, 8(6):777{808, December 1998.[Ramadge and Wonham, 1989] P. Ramadge and W. Wonham. The control of dis-crete event systems. Proceedings of the IEEE: Special Issue on Discrete EventSystems., 77:81{98, 1989.[Reiter, 1978] R. Reiter. On closed-world data bases. In H. Gallaire and J. Minker,editors, Logic and Data Bases, pages 55{76. Plenum Press, New York, 1978.[Reiter, 1987] R. Reiter. A theory of diagnosis from �rst principles. Arti�cial Intel-ligence, 32(1):57 { 95, 1987.[Reiter, 1991] R. Reiter. The frame problem in the situation calculus: a simplesolution (sometimes) and a completeness result for goal regression. In V. Lifschitz,editor, Arti�cial Intelligence and Mathematical Theory of Computation: Papersin Honor of John McCarthy. Academic Press, San Diego, 1991.[Reiter, 1998] Ray Reiter. Sequential, Temporal GOLOG. In A. Cohn, L. Schubert,and S. Shapiro, editors, Principles of Knowledge Representation and Reasoning:Proceedings of the Sixth International Conference (KR'98), pages 547{556. Mor-gan Kaufmann, June 1998. � 133 �



BIBLIOGRAPHY[Reiter, 1999] Raymond Reiter. KNOWLEDGE IN ACTION: Logical Foundationsfor Describing and Implementing Dynamical Systems. Book Draft, available fromhttp://www.cs.utoronto.ca/~cogrobo, 1999.[Rich and Knight, 1991] E. Rich and K. Knight. Art�cial Intelligence. McGraw-Hill,Inc., 2nd edition, 1991.[Rinner and Kuipers, 1999] B. Rinner and B. Kuipers. Monitoring piecewise con-tinuous behaviours by re�ning semi-quantitative trackers. In IJCAI '99 [1999].[Sacerdoti, 1977] E. Sacerdoti. A Structure for Plans and Behaviour. Arti�cialIntelligence series. Elsevier North-Holland, New York, 1977.[SAFEPROCESS 2000, 2000] A.M. Edelmayer, editor. Proceedings of the FourthIFAC Symposium on Fault Detection, Supervision, and Safety for Technical Pro-cesses (SAFEPROCESS 2000), Budapest, Hungary, June 2000. IFAC.[Sa�otti, 1998] A. Sa�otti. Autonomous Robot Navigation: A Fuzzy Logic Ap-proach. PhD Thesis, Facult�e de Science Appliqu�ees, IRIDIA, Universit�e Libre deBruxelles, 1998.[Sandewall and Shoham, 1994] E. Sandewall and Y. Shoham. Nonmonotonic tem-poral reasoning. In D. Gabbay, editor, Handbook of logic in arti�cial intelligenceand logic programming, volume 2. Oxford University Press, 1994.[Sandewall, 1994] E. Sandewall. Features and Fluents. The Representation ofKnowledge about Dynamical Systems, volume I. Oxford University Press, 1994.ISBN 0-19-853845-6.[Sandewall, 1995] Erik Sandewall. Features and Fluents, A Systematic Approach tothe Representation of Knowledge about Dynamical Systems. Oxford UniversityPress, 1995.[Schroeder, 1995] B. Schroeder. On-line monitoring: A tutorial. Computer, pages72{78, June 1995.[Schubert, 1990] L.K Schubert. Monotonic solution to the frame problem in thesituation calculus: an e�cient method for worlds with fully speci�ed actions. InKnowledge Representation and Defeasible Reasoning, pages 23{67. Kluwer Aca-demic Press, 1990.[Shen, 1989] W.-M. Shen. Learning from the Environment Based on Actions andPercepts. PhD thesis, Carnegie Mellon University, 1989.[Simmons et al., 1997] R. Simmons, R. Goodwin, K. Haigh, S. Koenig,J. O'Sullivan, and M. Veloso. XAVIER: Experience with a layered robot ar-chitecture. SIGART Bulletin, 8(1-4):22{33, 1997.[Sorensen, 1985] H.W. Sorensen, editor. Kalman Filtering: Theory and Applica-tions. IEEE Press, New York, 1985.� 134 �



BIBLIOGRAPHY[Struss, 1997] P. Struss. Fundamentals of model-based diagnosis. In IJCAI '97[1997].[Thielscher, 1997] M. Thielscher. A theory of dynamic diagnosis. Electronic Trans-actions of AI, 1997. Available at http://www.ep.liu.se/ea/cis/1997/011.[Thielscher, 1998] M. Thielscher. Introduction to the uent calculus. Link�opingElectronic Articles in Computer and Information Science, 3(014), 1998. URL:http://www.ep.liu.se/ea/cis/1998/014/.[Wang, 1994] X. Wang. Learning planning operators by observation and practice.In AIPS '94 [1994].[Williams and Nayak, 1996] B.C. Williams and P.P. Nayak. A model-based ap-proach to reactive self-con�guring systems. In AAAI '96 [1996].[Zhang and Mackworth, 1995] Y. Zhang and A. Mackworth. Synthesis of hybridconstraint-based controllers. In Hybrid Systems II, number 999 in Lecture Notesin Computer Science. Springer-Verlag, 1995.

� 135 �



BIBLIOGRAPHY

� 136 �



Appendix AStability and stabilizingGolog programsIn this appendix we will translate \stability" from chapter 5 to SitCalc. Stabilityis not a �rst-order property, since it requires quanti�cation over in�nite situationtrajectories. Therefore, we represent an in�nite situation trajectories with a partialtrajectory function T : S ! A. We intend T (s) = a to mean that action a isexecuted in situation s, if the speci�c situation trajectory de�ned by T is followed.Formally,De�nition A.0.1 (Trajectory Function)For a SitCalc theory �, T is a trajectory function if� j= T (s) = a � Poss(a; s):2We need our trajectory functions to be somewhat more restricted.De�nition A.0.2 (Trajectory Pre�x)Let s be a situation, and T be a trajectory function. We then say that s is a pre�xof T , denoted Prefix(s; T ) i�, s = S0 or s = do(a; s0) such that T (s0) = a andPrefix(s0; T ) holds, for some s0 and a. Formally,Prefix(s; T ) �s = S0 _ 9s0; a: s = do(a; s0) ^ T (s0) = a ^ Prefix(s0; T ):2Intuitively, Prefix(s; T ), where s is a situation and T a trajectory function, meansthat either s = S0 or s is constructed exactly according to T .� 137 �



Appendix A. Stability and stabilizing Golog programsDe�nition A.0.3 (Alive Trajectory)Let T be a trajectory function. We say that T is alive, denoted Alive(T ), i� forevery pre�x s of T , there exists an action a such that T (s) = a holds, and for everysuch action a it is possible to execute a in s. Formally,Alive(T ) �Prefix(s; T ) � 9a: T (s) = a2Intuitively, a trajectory function T is alive i� there exists a continuation to everypre�x of T . Clearly, an alive trajectory function de�nes an in�nite sequence ofsituations. The fact that every continuation starts by a possible action follows fromthe de�nition of trajectory functions. Let (s) be a boolean combination of groundatoms, i.e. of expressions of the type H(f(~o); s) or :H(f(~o); s). Such a formuladescribes a set of situations in which a particular property holds, the setS = fs j (s)gand we will refer to such a formula as a property. Clearly, stability is not a �rst-orderproperty, so we will employ second-order quanti�cation over trajectory functions.De�nition A.0.4 (Stable Theory)Let � be a SitCalc theory and (s) a property. We say that � is stable w.r.t.  i�� j=8s::(s) �8T : P refix(s; T ) ^ Alive(T ) �9s0: s v s0 ^ Prefix(s0; T ) ^ (s0):2In general, it is a distinct possibility that a system is not stable, and that we wantto construct a stabilizing controller. In the next section we will construct a Gologprogram that does exactly this.A.1 Stabilizing Golog programsThe main goal of this section is to de�ne the notion of stabilizing Golog programs,i.e. Golog programs that make an unstable SitCalc theory stable, and show howsuch programs can be synthesized. Our main tool for this will be trajectory functions.We begin by connecting the semantics of a Golog program to trajectory func-tions by de�ning the notion program trace.� 138 �



A.2. Synthesis of stabilizing controllersDe�nition A.1.1 (Program Trace)Let T be a trajectory function and � a Golog program. We say that T is a traceof program �, denoted Trace(T ; �), i�8s: P refix(s; T ) �(9�0: T ransCl(�; S0; �0; s)) _(9�09s0: s0 v s ^ TransCl(�; S0; �0; s0) ^ Final(�0; s0))2Intuitively, T being a trace of � means that every pre�x of T is a situation that couldbe arrived at by executing program � in the initial situation. The second disjuncthandles the case where � has halted in an earlier situation s0.Clearly, if every alive trajectory function for a theory that is a trace of the sameprogram stabilizes the theory, we can say that the program stabilizes the theory.Formally, we haveDe�nition A.1.2 (Stable Under Control)Let � be a SitCalc theory, (s) a property, and let � be a Golog program. We saythat � is stable w.r.t.  under control of �, or that � stabilizes � w.r.t.  , i�� j=8s::(s) �8T : P refix(s; T ) ^ Alive(T ) ^ Trace(T ; �) �9s0: s v s0 ^ Prefix(s0; T ) ^ (s0):2The controller stabilizes � by limiting the set of possible trajectories to only thosethat are execution traces of �, and by ensuring those trajectories satisfy the stabilitycriterion.A.2 Synthesis of stabilizing controllersA necessary condition for the existence of a stabilizing controller is the existenceof at least one trajectory function T that satis�es the stability criterion w.r.t. thedesired property . However, the function T is an in�nite object. In order to expressit as a �nite Golog program, some further restriction is necessary.De�nition A.2.1 (Markovian Trajectory)Let T be a trajectory function. We say that T is Markovian i�� j=8s8s0: (8f:H(f; s) � H(f; s0)) � T (s) = T (s0))2 � 139 �



Appendix A. Stability and stabilizing Golog programsIntuitively, T having the Markov property means that in two situations that sat-isfy the same set of uents, i.e. the same state, the trajectory function behavesidentically; it is history-independent.Let  be a property and suppose � is a SitCalc theory that is not stable w.r.t.. Suppose further that there exists a alive trajectory function T that satis�es thestability criterion, i.e.� j=8s::(s) ^ Prefix(s; T ) � (A.1)9s0: s v s0 ^ Prefix(s0; T ) ^ (s0)and that T is Markovian. We now show how to construct a stabilizing Gologcontroller, starting from T .Let FGr be the set of ground uents. We call a subset ! = ff(~o)1; : : : ; f(~o)mgof FGr an observation and de�ne an observation test as the formula!(s) � ^f(~o)2FGr� f(~o) f(~o) 2 !:f(~o) f(~o) 62 !For each observation !, construct the program fragment !?; a i� there exists somesituation s such that !(s) hold and T (s) = a. The sought controller is then con-structed as �T = (!1?; a1j : : : j!m?; am)�;??;where ? denotes any contradiction. We now set out to prove that �T , constructedfrom T , does stabilize �. The basic idea is to show that every trace of �T impliesT . We start with a Lemma:Lemma A.2.2 Let �T be de�ned as above, then, for any situation s and someprogram � TransCl(�T ; S0; �; s) implies TransCl(�T ; S0; �T ; s)andTransCl(�T ; S0; �; s) implies Prefix(s; T ):Proof: We use induction over s.TransCl(�T ; S0; �T ; S0) and Prefix(S0; T ) holds by de�nition.We assume that the proposition holds and prove thatTransCl(�T ; s; �; do(ai; s)) implies TransCl(�T ; s; �T ; do(ai; s));for some i. We compute the applications of Trans.� 140 �



A.2. Synthesis of stabilizing controllersBy de�nition of the Trans for nondeterministic iteration we have,Trans(�T ; s; �; s0) �(9�: T rans((!1?; a1j : : : j!m?; am); s; �; s0) ^ � = �; �T ) _(Final((!1?; a1j : : : j!m?; am)�) ^ Trans(??; s; �; s0)) (A.2)which is the �rst application of Trans.Trans(??; s; �; s0) �? ^� = nil ^ s0 = s, which can not possibly hold, whichmakes the second disjunct in (A.2) false. Thus, we need to computeTrans((!1?; a1j : : : j!m?; am); s; �; s0) �Trans(!1?; a1; s; �; s0) _ : : : _ Trans(!m?; am; s; �; s0)for some program �, by de�nition of Trans for nondeterministic choice. For each iwe have Trans(!i?; ai; s; �; s0) � 9�: T rans(!i?; s; �; s0) ^ � = �; ai (A.3)by de�nition of Trans for sequences. FurthermoreTrans(!i?; s; �; s0) � !i[s] ^ � = nil ^ s0 = sby de�nition of Trans for conditions. This second application of Trans yields thatTrans((!1?; a1j : : : j!m?; am); s; nil; ai; s) i� !i[s]. In the third application of Transwe move from the program nil; ai in situation s to a new program � and a newsituation s00. Trans(nil; ai; s; �; s00) �Final(nil; s)^ Trans(ai; s; �; s00)� Trans(ai; s; �; s00)which by de�nition of Trans for primitive actions givesTrans(ai; s; �; s00) �Poss(ai; s) ^ � = nil ^ s00 = do(ai; s)By means of Trans we went from �T in situation s, to nil; ai in s i� !i[s], andfrom that to nil in do(ai; s). Thus, we have TransCl(�T ; s; �; do(ai; s)) i� !i[s], forsome i, and � = nil; �T . Since the action nil has no e�ects whatsoever it is clearthat TransCl(�T ; s; �T ; do(ai; s)) i� !i[s]. Moreover, the construction of �T ensuresthat some !i[s] will hold and since we have a completely speci�ed initial state andall primitive actions are deterministic, !i[s] is unique. From the hypothesis and bytransitivity we have that TransCl(�T ; S0; �T ; do(ai; s))By the de�nition of Prefix (de�nition A.0.2) we know that:Prefix(do(ai; s); T ) � T (s) = ai ^ Prefix(s; T );� 141 �



Appendix A. Stability and stabilizing Golog programsfor some i. Now, since !i[s] determines the value of every uent, and T is Marko-vian, T (s) = ai, which implies Prefix(do(ai; s); T ) (as Prefix(s; T ) holds by thehypothesis).2Theorem A.2.3 (Correctness of �T ) Let � be a SitCalc theory,  a property, Ta Markovian trajectory function satisfying condition (A.1), and �T de�ned as above.Then � is stable w.r.t.  under control of �T .Proof: We show that for any trajectory function T 0 which is a trace of �T ,� j= 8s: P refix(s; T 0) ^ T 0(s) = a � T (s) = aStability then follows from the fact that T satis�es condition (A.1).Let s be an arbitrary situation such that Prefix(s; T 0) holds and T 0(s) = a.Then do(a; s) is also a pre�x of T 0 by the de�nition of pre�x, and since T 0 is atrace of �T , there exists, by the de�nition of program trace, a program � such thatTransCl(�T ; S0; �; do(a; s)) (and since we know from Lemma A.2.2 that �T neverhalts, we ignore the second disjunct in the de�nition of program trace). By LemmaA.2.2, we have Prefix(do(a; s); t) which implies that T (s) = a.2It should be noted that the Markov property is a su�cient condition for trans-lation of a trajectory function into a Golog program. It may very well be the casethat there are other, less restrictive, conditions that will enable such a translationtoo.
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Appendix BHandling discrepancies inPinto's concurrent SitCalcIn this appendix we will show how surprises may be handled in SitCalc.B.1 Surprises in Reiter's SitCalcWith a state-based view on execution monitoring, a natural de�nition of a discrep-ancy in SitCalc could be the following:De�nition B.1.1 (Discrepancy (Surprise))Let � be an application axiomatization and Odo(A;s) an observation with s being aground situation term. If � 6j= Odo(A;s)we say that Odo(A;s) is a discrepancy (or, surprise1).2In Chapter 2 the notion \Strength of Closed World Assumption" of a modelingformalism was discussed. We claimed that SitCalc belonged to the far right end ofthe scale, since it enforces precise predictions on the values of state variables (or,uents as they will be called in this chapter and the next) over time, where changesare due to control actions. To solve the frame problem2 SitCalc relies on action-based inertia, that is, uents changes exactly when an action makes them change.This is the mechanism that enforces precision. Action-based inertia is a fairly strongassumption and from our perspective, it is too strong. In fact, adding an observation1The terminology of the Reasoning about Action and Change research areas is partial to theterm \surprise".2The frame problem is a representational problem for declarative formalisms for knowledgerepresentation. The problem is that it is desirable to only have to explicitly represent things thatchange in dynamic environment, without having to bother with all the things that do not change.� 143 �



Appendix B. Handling discrepancies in Pinto's concurrent SitCalcto the theory that does not satisfy an expected observation yields an inconsistenttheory.Example B.1.2 As a simple example of this, we can reuse an example that waspopular in the 80's: the Stolen Car Scenario [Baker, 1989]. In the scenario I leavemy car in a parking lot and return after three days. I expect to �nd the car whereI left it, but instead it is stolen. We can model this scenario in a simple fashion inSitCalc as follows: there is only one action wait, and only one uent parked, whereH(parked; s) denotes that the car is parked in situation s. the action wait does notchange the truth value of the uent. As we assume that it always is possible to wait,Poss is always true. We have the following successor state axiom3:Poss(a; s) �(H(parked; do(a; s)) � H(parked; s));that is, I assume that that nothing may change the fact that the car is parked. Wealso have the initial situation axiomH(parked; S0):After three days observe that the car is stolen, that is, that:H(parked; do(wait; do(wait; do(wait; S0))))holds. With the successor state axiom we see that this observation is equivalent with:H(parked; S0) which contradicts the initial situation axiom, thus, the observation isa discrepancy. In the terminology of [Sandewall and Shoham, 1994], Reiter's SitCalcis not consistency preserving. The problem from an execution monitoring perspectiveis that we cannot reason about the discrepancy as it contradicts the applicationaxiomatization.2In section B.2 we will solve the problem of Example B.1.2 by relaxing ECA toallow for �ctitious actions to occur concurrently with the primitive actions. Theoccurrences of such �ctitious actions is then minimized.Above we showed that the strong inertia assumption made theories with dis-crepancies inconsistent. In that case we cannot reason about discrepancies, nordistinguish between discrepancies and an inconsistent original application axiomati-zation.B.2 Surprises with �ctitious actions in Pinto's Sit-CalcIn this section we will address these problems by introducing �ctitious actions, thatis, two actions for every uent that change the uent value to true or false respec-tively. When we encounter a discrepancy, the theory will no longer be inconsistent,instead it will be possible to show that at least one �ctitious action was executed.3The -formulas are empty in this example, and since they are disjunctions they have the valueF. � 144 �



B.2. Surprises with �ctitious actions in Pinto's SitCalcThe most natural way to model this, in our mind, is to allow for �ctitious actionsto be executed concurrently with the primitive actions. Moreover, since �ctitiouscould explain any change we need to ensure that �ctitious actions only occur when itis absolutely necessary. Thus, our starting point will be Pinto's concurrent avor ofSitCalc [Pinto, 1998a]. We will also exploit his work on explicit situation preferencerelations to minimize the occurrences of �ctitious actions [Pinto, 1998b].B.2.1 LanguageThe concurrent SitCalc (CSitCalc) is a second-order sorted language with sorts F ,A, Afict, C, S, and S for uents, primitive actions, �ctitious actions, concurrentactions, situations and domain objects. There are two �ctitious actions, A+F andA�F , for every F 2 F , and the concurrent actions are sets of primitive and �ctitiousactions, that is C = 2A[Afict . Fluents may take arguments from the set of domainobjects.We have the following function and predicate symbols:do : C �S ! S: The term do(c; s) denotes situation resulting from the concur-rent execution of all actions in c in situation s.Poss � C � S. The atomic formula Poss(c; s) denotes that it is possible toexecute the actions in c concurrently in situation s.H � F�S. For a uent F and situation s, H(F (~(d)); s) denotes that the uentF (~d), for a sequence of domain objects ~d = d1; : : : ; dn, holds in situation s.Prim = A, Fict = Afict. These predicates are used when we explicitly needto distinguish between the two types of actions.B.2.2 Basic axiomatizationA number of basic axioms for CSitCalc builds the structure of the models andare very similar to the basic axioms of SitCalc (section 7.2.1). For a completepresentation, see e.g. [Pinto, 1998b]. For concurrent actions, we de�ne Poss asfollows4: Poss(c; s) � 8a: a 2 c � Poss(fag; s) (B.1)Axiom (B.1) states that a concurrent action is possible to execute in a situation i�every member of the concurrent action can be executed on its own.B.2.3 Domain axiomatizationA domain axiomatization is divided into several sets of axioms. We say that a for-mula is simple on a situation term s if it does not mention any situation terms other4Note that free occurrences of variables are assumed to be universally quanti�ed.� 145 �



Appendix B. Handling discrepancies in Pinto's concurrent SitCalcthan s, and does not quantify over s.Action Precondition AxiomsThe set Tprec of action precondition axioms for primitive actions, each on the form:Poss(fa(~x)g; s) � 	a(s) (B.2)where 	a(s) is a formula simple on s. In principle, it should be possible to restrictthe possibility of executing �ctitious actions in the same way as for any action, i.e. byde�ning a non-trivial 	a(s) for �ctitious actions a. This could, for example, be usedto prefer one �ctitious action over another in cases of non-determinism. However,in this thesis make the simplifying assumption that �ctitious actions always can beexecuted. Formally, Fict(a) � Poss(fag; s):If we assume that 	a(s) characterizes the set of states in which a is possible toexecute, we can apply Clark's completion to all formulas of form (B.2), and thus geta characterization of the predicate Poss.E�ect AxiomsThe set Teff of e�ect axioms. For every uent F and primitive action A, we canhave the following two axioms:Poss(c; s) ^ A 2 c ^G+F (A; s) � H(F; do(c; s)) (B.3)Poss(c; s) ^ A 2 c ^G�F (A; s) � :H(F; do(c; s)) (B.4)Intuitively, formula (B.3) ((B.4)) says that if c is possible to execute in situations, where the action A is a member of c and the quali�cation G+F (A; s) (G�F (A; s))for the e�ects of actions on F holds, then F will be true (false) after the execution.The close relation between this formulation and Reiter's (from section 7.2.1) shouldbe obvious. The only syntactical di�erence is that we have substitutes the termequivalence for term inclusion.By simple logical rewriting all axioms on the form of (B.3) and (B.4) can becompiled to one axiom for positive e�ects of actions on F and one for all negativee�ects: Poss(c; s) ^ +F (c; s) � H(F; do(c; s)) (B.5)Poss(c; s) ^ �F (c; s) � :H(F; do(c; s)) (B.6)If there are no positive (or negative) e�ect axioms a uent F , then the formula+F (c; s) (or �F (c; s)) is the atom F. Note that � (for � 2 f+;�g) is on the form_A 2 c ^G�(A; s):This implies that if there are no positive or negative quali�cations for a uent, the� 146 �



B.2. Surprises with �ctitious actions in Pinto's SitCalccorresponding  is equivalent to F5, as it can be seen as an empty disjunction.Successor State AxiomsThe set Tssa of formulas. Recall that in SitCalc the e�ect axioms and ECA, that isthat +F (c; s) (�F (c; s)) characterizes all positive (negative) change of F , yields thesuccessor state axioms. To accommodate for occurrences of �ctitious actions, weneed to relax the explanation closure assumption to the following:Assumption 2 (Relaxed Explanation Closure Assumption (RECA)) Theformula +F (c; s)^A�F 62 c (�F (c; s)^A+F 62 c) or the execution of the �ctitious action,that is A+F 2 c (A�F 2 c) characterizes positive (negative) change of the uent F .2RECA and the e�ect axioms combine to the successor state axioms:Poss(c; s) � (H(F; do(c; s)) �((+F (c; s) ^ A�F 62 c) _ A+F 2 c) _(H(F; s) ^ :((�F (c; s) ^ A+F 62 c) _ A�F 2 c)) (B.7)A transformation of Reiter's SitCalc to CSitCalc is clearly straightforward. Theother direction is in the general case not possible.Initial situation axiomsThe set TS0 . This is any �nite set of sentences that mention only the situationterm S0, or that are situation independent. The initial situation necessarily has tocompletely speci�ed, i.e. every ground atom is either true or false in S0.Thus, an application axiomatization is a set � = � [ Tprec [ Tssa [ TS0 , where� is the set of background axioms (including unique names axioms that we haveomitted in the presentation above), Tprec is a set of action precondition axioms, Tssais a set of successor state axioms, and TS0 is a set of initial situation axioms and allsituation independent axioms. We have the following useful lemma:Lemma B.2.1 Let � be an application axiomatization and F a uent of the theory.Then � j= Poss(c; s) � :(+F (c; s) ^ �F (c; s))Proof: An immediate consequence of the construction of the s, see formulas (B.5)and (B.6).2We de�ne an observation in situation s, Os, completely analogous to before.Example B.2.2 (Stolen Car Scenario Cont'd)We revisit the Stolen Car Scenario, this time with the successor state axiom:Poss(c; s) � (H(parked; do(c; s)) �A+parked 2 c _H(parked; s) ^ A�parked 62 c);5That is, the truth value false. The truth value true is denoted T.� 147 �



Appendix B. Handling discrepancies in Pinto's concurrent SitCalcAgain we have the initial situation axiomH(parked; S0);and the observation :H(parked; do(c00; do(c0; do(c; S0)))) ^wait 2 c ^ wait 2 c0 ^ wait 2 c00:By applying the successor state axiom (or performing goal regression in Reiter'sterminology) three times to the observation, we get the following equivalent formula:(A+parked 62 c00 ^((A+parked 62 c0 ^((A+parked 62 c ^(:H(parked; S0) _A�parked 2 c)) _A�parked 2 c0)) _A�parked 2 c00)) ^wait 2 c ^ wait 2 c0 ^ wait 2 c00The conjunction of the �rst conjunct of this formula and the initial situation axiomyields the following formula on conjunctive normal form:(A�parked 2 c _ A�parked 2 c0 _ A�parked 2 c00) ^(A+parked 62 c0 _ A�parked 2 c00) ^A+parked 62 c00 (B.8)This formula is clearly satis�able and we have therefore hedged the inconsistencies.2However, there are a number of unintuitive models of the theory in example B.1.2.For example, in one model the �ctitious action A�parked is a member of c, c0, and c00.In another model both A�parked and A+parked are members of c. To handle this we willneed to de�ne a preference policy on situations to �lter out unwanted models. Inthe next section we will formally de�ne the notion \surprise" and show that RECAhedges inconsistencies in the general case.B.2.4 Reasoning about surprisesWe again assume that an observation Odo(c;s) represents some sensor inputs. Asurprise is then an observation that is not entailed by the SitCalc theory if onlyprimitive actions have been executed. Formally,� 148 �



B.2. Surprises with �ctitious actions in Pinto's SitCalcDe�nition B.2.3 (Surprise)Let � be an application axiomatization and Odo(cn+1;s) and observation with s =do(cn; do(cn�1; : : : do(c2; do(c1; S0)) : : : )). If� 6j= ^Odo(cn+1;s) ^ n+1̂i=1 8a: a 2 ci � :Fict(a)then we say that Odo(cn+1;s) is a surprise.2The reasoning task can, thus, be described as, for a systemh�; s; Oi;where � is a CSitCalc theory, s is a situation, and O an observation, to �nd an\adequate" set of �ctitious actions c, such that� j=^Odo(cn+1;s):We will formally de�ne the adequacy notion below.We start by showing that our CSitCalc theory does handle surprises in the generalcase.Proposition B.2.4 Let � be an application axiomatization, and assume that Odo(c;s)is a surprise. Then, � j= ^Odo(c;s):Proof: We show that � entails VOdo(c;s) where all �ctitious actions that occur inthe situation do(c; s), are members of c. That is, no �ctitious actions have occurredin s.Since Odo(c;s) is a surprise, there must be at least one uent, F , too much ortoo little in Odo(c;s). There are four cases to consider for every such F ; When Fshould have changed from true to false (C1) or from false to true (C2) due to c, butdid not, and when F should have remained true (S1) or false (S2) but did not, thatis, it should not have been a�ected by the execution of A. We will only show theproposition for cases C1 and S1. The other two cases can be proven analogously.Forreadability we omit the object arguments of the actions and uents.C1: Failed change from true to false: We assume that H(F; s) andPoss(c; s) holds and that the execution of the primitive actions in c in swould make :H(F; do(c; s)) hold, that is that �F (c; s) holds. Moreover, weassume that H(F; do(c; s) holds, contrary to our expectations. Thus, we areinterested in the formula((+F (c; s) ^A�F 62 c) _ A+F 2 c) _(H(F; s) ^ :((�F (c; s) ^ A+F 62 c) _ A�F 2 c))� 149 �



Appendix B. Handling discrepancies in Pinto's concurrent SitCalcFrom Lemma B.2.1 +F (c; s) cannot hold. This together with the other as-sumptions above yields A+F 2 c _ (A+F 2 c ^ A�F 62 c);which is equivalent to A+F 2 c ^ A�F 62 c.S1: Failed persistence of a true uent: We assume that H(F; s) andPoss(c; s) holds and that the execution of the primitive actions in c in swould make H(F; do(c; s)) hold, that is that +F (c; s) holds. Moreover, weassume that :H(F; do(c; s) holds, contrary to our expectations. Thus, we areinterested in the formula((:+F (c; s) _ A�F 2 c) ^ A+F 62 c) ^(:H(F; s) _ ((�F (c; s) ^ A+F 62 c) _ A�F 2 c))From Lemma B.2.1 �F (c; s) cannot hold. This together with the other as-sumptions above yields (A�F 2 c ^ A+F 62 c) _ A�F 2 c;which is equivalent to A�F 2 c ^ A+F 62 c.2By adding the �ctitious actions in this way we have allowed for many models that areunwanted. Especially, when no surprises exist it is desirable that we can prove thatonly primitive actions are executed, since we then have exactly the type of theoryutilized by a Golog interpreter. To achieve this we propose that the occurrencesof �ctitious actions are minimized, that is, that we try to explain any change withas few �ctitious actions as possible.Following [Pinto, 1998b] we introduce two predicates proper and legal on situa-tions, for technical reasons: Basically, actions that are not possible do not lead to aproper situation. Formally,proper(s) � (s = S0 _ 8c; s0: do(a + c; s0) v s � Poss(c; s0)):A legal situation is a situation such that there exists a proper continuation of thehistory.6 Formally, legal(s) � 9s0: s v s0 ^ proper(s0): (B.9)Now, we can de�ne a preference relation on situations:6Note that Pinto's legality predicate is a specialization of the Aliveness predicate in de�nitionA.0.3. � 150 �



B.2. Surprises with �ctitious actions in Pinto's SitCalcDe�nition B.2.5 (Fictitious-Action Preferred Situation)We de�ne a preference relation, �, on situations, as followslegal(s1) ^ legal(s2) � s1 � s2 �s1 = s2 = S0 _9s3; s4: s1 = do(c; s3) ^ s2 = do(c0; s4) ^(H(f; s1) � H(f; s2)) ^ (8a: F ict(a) ^ a 2 c � a 2 c0) ^ (B.10)s3 � s4 (B.11)If s� s0 we say that s is preferred over s0.2Basically, this preference relation compares situations that reach equivalent states.De�nition B.2.6 (Minimal situation)A situation s is minimal if no situation exists that is preferred over s and that isdi�erent from s. Formally,minimal(s) � legal(s) ^ 8s0: legal(s0) ^ s0 � s � s = s0: (B.12)2Let Tm be the set with the formulas (B.9) , (B.11) and (B.12).We rede�ne the reasoning task to incorporate the minimality criterion as follows:� [ Tm j= ^Odo(c;s) ^minimal(do(c; s)):Example B.2.7 (Stolen Car Scenario Cont'd)We denote the four situation s0, s1 = do(c; s0), s2 = do(c0; s1), and s3 = do(c00; s2),respectively. We know that H(parked; s0) and we progress to �nd the minimalsituations. In s1 we have two cases1. H(parked; do(c; s0)): The minimal choice of c is that no �ctitious actionsbelong to c. In the next step we get(a) H(parked; do(c0; do(c; s0))): The minimal choice of c0 is again that no�ctitious actions have occurred. Finally, since we know that the literal:H(parked; do(c00; s2)) holds we must have A�parked 2 c00. In this situationtrajectory a �ctitious action only occurred in the last situation.(b) :H(parked; do(c0; do(c; s0)))): The minimal choice of c0 is here that themembership A�parked 2 c0 holds. In the next step the minimal choice isthat no �ctitious action belongs to c00. In this situation trajectory theonly occurrence of a �ctitious action is in c0.2. :H(parked; do(c; s0)). Clearly A�parked is the only member of c. In the nextstep we get:(a) H(parked; do(c0; do(c; s0))): If A+parked is member of c0 we do not have aminimal situation, since H(parked; s2) holds by case (1a) above.� 151 �



Appendix B. Handling discrepancies in Pinto's concurrent SitCalc(b) :H(parked; do(c0; do(c; s0)))): The minimal choice of c0 is that no �cti-tious actions have occurred, and as above, no �ctitious action belongs toc00. In this situation trajectory the only occurrence of �ctitious actions isin c.Thus, in each of the three minimal situations the �ctitious action A�parked occursexactly once, and A+parked does not occur at all.2
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