Model-Based Execution Monitoring

Marcus Bjareland

April 24, 2001

Abstract

The task of monitoring the execution of a software-based controller in order to
detect, classify, and recover from discrepancies between the actual effects of control
actions and the effects predicted by a model, is the topic of this thesis. Model-
based execution monitoring is proposed as a technique for increasing the safety and
optimality of operation of large and complex industrial process controllers, and of
controllers operating in complex and unpredictable environments (such as unmanned
aerial vehicles).

In this thesis we study various aspects of model-based execution monitoring,
including the following:

The relation between previous approaches to execution monitoring in Control
Theory, Artificial Intelligence and Computer Science is studied and a common con-
ceptual framework for design and analysis is proposed.

An existing execution monitoring paradigm, ontological control, is generalized
and extended. We also present a prototype implementation of ontological control
with a first set of experimental results where the prototype is applied to an actual
industrial process control system: The ABB STRESSOMETER cold mill flatness
control system.

A second execution monitoring paradigm, stability-based execution monitoring, is
introduced, inspired by the vast amount of work on the “stability” notion in Control
Theory and Computer Science.

Finally, the two paradigms are applied in two different frameworks. First, in the
“hybrid automata” framework, which is a state-of-the-art formal modeling frame-
work for hybrid (that is, discrete+continuous) systems. Secondly, in the logical
framework of GOLOG and the Situation Calculus.

Acknowledgments

There are numerous people that (more or less voluntarily) have contributed to this
thesis with help, suggestions, criticism and support:

First and foremost, I would like to thank my main advisor, Prof. Patrick Doherty,
for challenging and inspiring discussions and input, which have, without exception,
led to significant improvements of my many drafts and versions of this thesis.

Next, I want to thank my secondary advisor, Dr. Dimiter Driankov, for his
patience and for the many intense technical discussions we have had. Having two
knowledgeable and strong (American and Bulgarian) advisors does not make thesis
writing easier, but a lot more interesting.

Without the support of Dr. George Fodor, large parts of this thesis would not
have been written. His help in making me understand his own work, in facilitat-
ing experiments on data from ABB, and in teaching me everything I know about
practical control engineering, has had an immense impact on this thesis.

I have enjoyed cooperating with those co-authoring the papers on which parts of
this thesis are based: Javier Pinto, Chitta Baral, Mutsumi Nakamura, and Patrik
Haslum.

The experimental investigations of this thesis were done using a software sys-
tem implemented by Per Lewau as part of his MSc thesis. I am greatful for his
contributions and his patience with me as his advisor.

The working environment at IDA, and the AIICS division in particular, has been
inspiring. I would like to thank all of you.

Finally, I want to thank my parents, Thorsten and Hillevi, for all the support,
understanding, and encouragement they have given me throughout this period. This
thesis is for you.

Marcus Bjareland
Linkoping, April 2001

Contents

Introduction
1.1 Problem
1.2 Execution monitoring oL oL
1.3 Model-based execution monitoring
1.4 Overviewof thethesis
1.5 Contributions L o
1.6 Papers e
1.6.1 Bibliography
Conceptual framework
2.1 Introduction.
2.1.1 Overview
2.2 Closed-loop control systems
2.2.1 Controlactions o o
2.2.2 Representation oo
2.3 Execution monitoringo Lo
2.3.1 Meta- vs. Object-level execution monitoring
2.3.2 A functional view of execution monitoring
2.4 Researchissues
2.4.1 Purposeo e e e e
2.4.2 Design and synthesis 0oL,
243 Analysis
2.44 Applicationo
2.5 Abstract formal framework

Related work

3.1 Introduction.
3.2 Controltheory
3.2.1 Fault detection and identification (FDI)
3.2.2 Fault-tolerant control
3.3 Computer science e e
3.31 Falcon
3.3.2 Self-stabilization

10
11
11
12
13
14
15

17
17
17
18
20
20
25
26
27
29
30
31
32
32
33

CONTENTS

3.4 Artificial intelligenceo Lo oo 40
341 IPEM e 41
342 GRIPE 42
3.4.3 Saffiotti’sapproach oo oo 43
3.4.4 Action-based diagnosis oL 44
3.4.5 Livingstone o 45
346 Otherexamples., 46

3.5 Techniques for execution monitoring 46
3.5.1 Situation and Expectation assessment 46
3.5.2 Discrepancy Detection and Classification 47
3.5.3 Recovery 47

Ontological control 49

4.1 Violations of ontological assumptions 50

42 Twoexamples. L 51
421 Dieselengine 51
422 Trolleys e 53

4.3 Summary of assumptionso oL oL 55
4.3.1 Perfect sub-model oL 55
4.3.2 Non-logging o 56
4.3.3 Energized actionso 57

4.4 Theory« o v i i e e 57
4.4.1 Plant states, control actions, and internal states 57
442 Models e 58
4.4.3 Interpretations 58
444 Controller 59
445 Embeddings. o oo 59
4.4.6 Situation assessment 60
4.4.7 Expectation assessment 60
4.4.8 Discrepancy detection o0 61
4.4.9 Discrepancy classification L. 61
4.4.10 Recovery from discrepancies 61

4.5 Experiments. e 63
4.5.1 Application: ABB STRESSOMETER 63
4.5.2 Goal path and control graph generation 65
4.5.3 Implementation L. 67
4.5.4 Experimental setup and results 67

4.6 Comparison to Fodor’s original work 67
4.6.1 Discrepancy classes. o o 68
4.6.2 States, goal paths, and control graphs 68
4.6.3 Execution monitoring o0 69
4.6.4 Well-determined statesets 69

CONTENTS

5 Stability-based execution monitoring

5.1 Introduction.
5.2 Running example: Two finite buffers
5.3 Reviewing stability and stabilizability
5.3.1 Stability and aliveness
5.3.2 Stabilizabilityo
5.4 Maintainability o oo
5.5 Algorithms
5.5.1 Testing maintainability
5.5.2 Generating a control law for maintainability of a set of states
5.6 Generalization: (k,l)-Maintainability
5.7 Stability-based execution monitoring

Execution monitoring of hybrid-systems controllers

6.1 Introduction.

6.2 Preliminaries Lo
6.2.1 Rectangular hybrid automata
6.2.2 Example — Railroad crossing

6.3 Automatic generation of models for execution monitoring
6.3.1 Railroad crossingcont’d

6.4 Execution monitoring00

The Situation Calculus/Golog framework
7.1 Introduction.
7.1.1 Overview
7.2 Reiter’sSitCalc
7.2.1 Language
7.3 GOLOG oo e e
7.4 The De Giacomo et al. approach to
execution monitoring of GOLOG.
7.5 General (Situation-based) execution
monitoring Lo e e
7.5.1 Theworldmodel
7.5.2 Theworld L
7.5.3 The execution monitor
7.5.4 Self-recovery program structure
7.6 State-based execution monitoring,
BM classification and MT recovery
7.6.1 Formalization of theidea
7.7 Stability-based execution monitoringo L.
7.7.1 Discrepancy detection and classification
7.8 Ontological control o
7.8.1 Discrepancy detection and classification
7.8.2 Trolleyexample.

CONTENTS

8 Conclusions and future work

81 Conclusions e e
82 Futurework oo

A Stability and stabilizing Golog programs

A1 Stabilizing GOLOG programs,
A.2 Synthesis of stabilizing controllers.

B Handling discrepancies in Pinto’s concurrent SitCalc

B.1 Surprises in Reiter’s SitCale
B.2 Surprises with fictitious actions in Pinto’s SitCalc
B.2.1 Language
B.2.2 Basic axiomatization00
B.2.3 Domain axiomatization,
B.2.4 Reasoning about surprises

121
121
123

137
138
139

Chapter 1

Introduction

The topic of this thesis is the task of monitoring the execution of software-based
controllers in order to detect, classify, and recover from discrepancies between the
actual (measured) effects of control actions and the effects predicted by a model.
Model-based execution monitoring is proposed as a technique for increasing the
safety and optimality of operation of large and complex industrial process controllers
and for controllers operating in complex and upredictable environments (such as
unmanned aerial vehicles).

We are interested in discrete or hybrid software-based control systems. Such sys-
tems can be found in applications ranging from microwave ovens to nuclear power
plants and paper mills. However, we limit ourselves to two important classes of
applications: Awutonomous Systems and Industrial Process Controllers. By “Au-
tonomous Systems” we, in this thesis, mean control systems that operate in highly
unpredictable environments, such as control systems for mobile robots or unmanned
aerial vehicles. An industrial process controller, on the other hand, may operate in
very “well-engineered” environments, that is, environments where effects of actuator
invocations may be predicted with high precision. One complicating factor for such
systems is that they typically are very large. We will argue that these two types
of systems exhibit similar kinds of problems, and we will address those problems
within the same framework.

Another conceptual dimension of control systems that is important to this thesis
is the type of control performed by the control systems in question. We are interested
in two types of control: Stabilizing and Sequential control®.

A stabilizing controller is assigned to maintain a certain property in its operating
environment. A trivial example is a thermostat that measures the temperature inside
a room and then turns a heater on or off to maintain a predetermined temperature.

A sequential controller ensures that a sequence of actions are executed properly
in an environment, until the system has reached some goal. An example of such a
system is a chemical process plant where, for example, a tank must have a certain

In control theory a third type, tracking control, is often studied. We will not consider this type.

Chapter 1. Introduction

temperature and pressure before a chemical is inserted into the tank. That is, first
the temperature and pressure have to be set, then the chemical can be inserted. We
will argue that, from the perspective of this thesis, that stabilizing and sequential
control are fundamentally different, and that solutions to problems of control systems
described in the next section, need to be different for the two types of control.

1.1 Problem

As more safety critical systems are automated, designers of control systems are ex-
periencing an increasing demand for safe and optimal operation of their systems.
This can ideally be handled by precise mathematical modeling of the control sys-
tem, formal verification of safety and optimality criteria and extensive (exhaustive)
testing of the system. However, for the types of applications that are in the focus
of this thesis such methods can only be used with difficulty, if they can be used at
all. The reason for this is complezity. For autonomous systems this means that the
operating environments are too complex for mathematical modeling. It is also lit-
erally impossible to formally verify safe and optimal operation in every conceivable
contingency, for example, for an unmanned aerial vehicle. For industrial process
controllers a major problem is size. No formal verification techniques available can
handle programs consisting of 1’000°000 lines of code, yet such controllers are con-
sidered to be small by control engineers in industry. An argument for the use of
formal methods is that if the controller is designed in a modular way, every mod-
ule could be verified by itself, and the integration of the modules verified as a last
step. Unfortunately, as argued by Dr. Kevin Passino in the preface of [Fodor, 1998],
there are no systematic approaches to design of discrete/hybrid systems available
that would facilitate this kind of modeling and analysis, as there are (an abundance
of) for continuous systems. Moreover, it is hard to economically justify the very
time-consuming (re-) modeling process. This is, in particular, a problem for legacy
systems, that is; large well-functioning systems that perhaps have been developed
incrementally over decades. It is hard to motivate expensive re-design of systems
that are working well (but perhaps not optimally or maximally safe), and that even
are market leading (see Chapter 4 for an example of such a system). The typical
solution to this in industry is to tweak subsystems, to make them perform better,
and to extend the existing control program. “Verification” is then typically done by
simulation.

The problems addressed in this thesis can be summarized with the following two
questions:

e How can control engineers handle the increasing demands for safety and op-
timality of control systems, in settings where the systems themselves or their
operating environments severely restricts the possibility of precise mathemat-
ical modeling?

e How can the problem above be solved with minimal introduction cost, that is,
minimal cost for introducing new technology?

— 10 —

1.2. Ezecution monitoring

1.2 Execution monitoring

The topic of this thesis is execution monitoring which is a technique that addresses
the two problems stated above. The basic idea is that a device (the execution mon-
itor) has access to the environment in the same way as the controller, and that the
monitor tracks the execution of the controller and its effect on the environment. This
idea is not at all new, for example, the idea of feedback control in Control Theory
(which predates the area itself) is a step in this direction. In Computer Science a
similar first step was taken with the advent of debuggers in the early '60s. In Arti-
ficial Intelligence (AI) the idea was first applied to the control system of the mobile
robot “Shakey” at SRI around 1970. Today, the idea has evolved into a sophisti-
cated set of techniques which include “Fault-Tolerant Control” in Control Theory
[Blanke et al., 2000], “On-Line Steering” in Computer Science [Gu et al., 1997], and
“Mode Identification and Reconfiguration” in AT [Williams and Nayak, 1996] (these
particular techniques will be discussed at more length in Chapter 3).

We adopt the (abstract) view that an execution monitor is an entity in a system
that observes the execution of the system (we will be more precise in Chapter 2).
In Schroeder [1995] the following seven areas of functionality of execution monitors
(or, on-line monitors) are identified:

¢ Dependability includes monitoring fault tolerance and safety.

e Performance enhancement includes dynamic system configuration, dy-
namic program tuning, and on-line steering.

e Correctness checking is the monitoring of an application to ensure consis-
tency with a formal specification.

e Security monitoring to detect attempts of security violations such as illegal
login or attempted file access.

e Control includes cases where the monitor system is a part of the environment,
possibly to provide computational functionality.

¢ Debugging and testing employs monitoring techniques to extract data from
an application being tested.

¢ Performance evaluation uses monitoring to extract data from a system that
is later analyzed to assess the system.

This framework will be discussed at more length in Chapter 3.

1.3 Model-based execution monitoring

In the Al-sub-area of “Model-Based Reasoning” (see e.g. [Hamscher et al., 1992])
the fundamental idea is to develop domain-independent devices for, e.g., diagnosis
and simulation. Such devices are used in a particular domain by giving them a

— 11 —

Chapter 1. Introduction

model of the domain. We adopt this methodology in this thesis and aim at the
development and study of domain-independent execution monitoring engines con-
structed to work properly if a model with certain properties is given as input. The
execution monitoring task is performed by comparing measurements from the en-
vironment with predictions made by the model. We are concerned with detecting
discrepancies between the measurements and the predictions, in a first step. The
next step is then to find a cause for a detected discrepancy. In model-based diagnosis
this would typically involve identifying a physical component of the system that has
failed and is a potential cause of the discrepancy. In execution monitoring, however,
we are interested in discrepancies between the actual and predicted ezecution of the
controller, and, thus, the causes are often more easily described on a more abstract
level than on the component-level of the system. For example, in Chapter 5 we will
discuss how various stability criteria of systems may be monitored. Finally, as a
step towards increasing autonomy of a system, we study principles for automatic
recovery from detected and classified discrepancies.

From the standpoint of Schroeder’s framework we are interested in dependabil-
ity, performance enhancement and correctness checking.

1.4 Overview of the thesis

One of the ambitions of this thesis is to structure and describe the problem of
execution monitoring which is of interest to computer scientists, control theorists and
engineers, and Al researchers and practitioners. In addition we propose methods for
design and analysis of execution monitors. Thus, in Chapter 2 a detailed account of
the concepts used in the rest of the thesis is presented. The concepts are put into a
framework that could serve as a design methodology for execution monitors. There
we also consider the research issues involved in this thesis. The framework is also
used in Chapter 3 where the related work is presented.

As mentioned above we separate stabilizing and sequential control systems. The
execution monitoring schema for sequential control, ontological control, is described
in Chapter 4. An implementation and a first set of experiments on a real industrial
process controller is also described there. In Chapter 5 the schema for stabilizing
controllers, stability-based execution monitoring, is presented. As “stability” is a
well-studied subject in both control theory and computer science, we review that
work. However, we will argue that for autonomous systems, the existing approaches
are not sufficient. We introduce a new notion “maintainability” that relaxes the
previous notions, and develop algorithms for analysis, controller synthesis, and exe-
cution monitoring of maintainability.

Chapters 4 and 5 are central to this thesis, as the techniques introduced there
are also applied in various settings in the subsequent chapters.

In Chapter 6 we study how a wide-spread modeling and verification formalism,
Hybrid Automata can be used for execution monitoring. We construct an execution
monitoring engine and show how a hybrid-automata domain model can be translated
into a representation suitable for that engine. That is, how a model useful for

— 12 —

1.5. Contributions

execution monitoring can be synthesized from a specification. We also show how
ontological control and stability-based execution monitoring can be applied in this
setting.

In Chapter 7 we present a well-studied formal control framework, the Situa-
tion Calculus/GOLOG framework, which is a logical framework, and describe how
execution monitoring can be applied there. Again, both ontological control and
stability-based execution monitoring are used. Presentations of some technical de-
tails of this chapter, that are not directly relevant to the presentation are postponed
to Appendices A and B.

In Chapter 8 we draw some conclusions and present some ideas for future work.
In brief summary, we will go through the following steps in this thesis:

1. Construct a conceptual framework and a design methodology for execution
monitoring, as well as discuss research issues involved (Chapter 2).

2. Review existing work on execution monitoring in the light of the conceptual
framework (Chapter 3).

3. Develop and study two different “paradigms” of execution monitoring: Onto-
logical control (Chapter 4) and Stability-based execution monitoring (Chapter
5).

4. Apply the two paradigms in two formal frameworks: In the Hybrid Automata
framework (Chapter 6) and in the Situation Calculus/GoLOG framework (In
Chapter 7 and the Appendices).

1.5 Contributions

To the best of our knowledge, there are no systematic accounts of execution moni-
toring spanning computer science, control theory, and Al In fact, there are very few
examples where researchers reference work in other areas than their own. The at-
tempt to bridge the gaps between research disciplines studying execution monitoring
is one of the main contribution of this thesis. The idea that execution monitoring
can be regarded as a research area per se, is not very common in the literature. Exe-
cution monitors are more often entities that are added to a system as a link between
a reactive control-program execution mechanism and more deliberative mechanisms
such as planners, learning devices etc. However, the success of the model-based exe-
cution monitoring system “Livingstone” [Williams and Nayak, 1996] in AI provides
an argument that this is a research issue that should be explored to a greater extent.
Briefly, Livingstone is a model-based execution monitoring system used in NASA’s
Deep Space probes (see an account of this and other sophisticated approaches in
Chapter 3).

Below, we discuss the contributions of each chapter of the thesis on a more de-
tailed level:

— 13 —

Chapter 1. Introduction

Chapter 2: Although all the concepts presented in this chapter have been studied
in detail by various research communities, there has been no attempt to find general
constituting principles for execution monitors. We present a number of dimensions
of execution monitoring and propose a design and analysis methodology.

Chapter 3: In this chapter, we attempt to discuss and compare approaches to ex-
ecution monitoring in computer science, control theory, and Al

Chapter 4: Ontological control was introduced by George Fodor in [Fodor, 1995,
Fodor, 1998]. In this chapter we formalize, generalize and extend his work. We
also present an implementation and a first set of experimental results on an actual
industrial process system.

Chapter 5: The stability notion has received a large amount of attention both by
the control theory community and the distributed-systems sub-area of computer sci-
ence. However, it is not clear how their approaches should be applied to autonomous
systems, where the disturbances of the operating environment are common phenom-
ena. In this chapter we introduce a new stability-like notion, maintainability, suitable
for these systems. We formally relate this notion to the existing ones, and provide
algorithms for analysis, synthesis and execution monitoring.

Chapter 6: There is a problematic gap between the specification of a system, and
the implementation and exzecution of the same system. In this chapter we attempt a
novel approach of bridging this gap by taking a wide-spread specification formalism
and transforming it into a formalism that can be used for both ontological control
and stability-based execution monitoring.

Chapter 7: We believe that logic-based approaches to modeling systems provide
many insights that can be used when applying other modeling techniques. We
spend this chapter applying ideas and techniques introduced in earlier chapters to
the Situation Calculus/GoLOG framework, a well-known logic-based modeling tech-
nique used in the area of “Cognitive Robotics”. This framework was not designed
to accommodate a number of techniques discussed in this thesis, so we extend the
framework to be able to model stability, to give a logical account of detection of
discrepancies, and to implement a general recovery mechanism.

Chapter 8: In this chapter we conclude the thesis and sketch a number of future
paths that seem to be feasible, interesting and important.

1.6 Papers

The work presented in this thesis is based on a set of papers, consisting of pub-
lished, refereed material, and unpublished manuscripts intended for publication in
the future. We organize these by the Chapters in which they are used followed by a
complete bibliography:

Chapter 2: The functional view of execution monitoring was introduced and ana-
lyzed in Bjireland [1999a].

Chapter 4: The theory in this chapter is loosely based on the paper Bjareland and
Fodor [1998]. The implementation was done by Per Lewau for his Master’s Thesis

14

1.6. Papers

[1999]. The application and the results are reported in [Bjireland and Fodor, 2000].
Chapter 5: This work is an extension of the paper [Nakamura et al., 2000].
Chapter 6: Preliminary work on execution monitor synthesis was reported in
[Bjdreland, 1999a]. Closely related work on controller synthesis can be found in
[Bjireland and Driankov, 1999].

Chapter 7: The work on stability is to a large extent based on work by Bjireland
and Haslum [1999] and [Nakamura et al., 2000] (the presentation in this thesis is an
extension of that paper, with new examples, a clarified theory and new proofs). The
extension of Pinto’s framework to handle surprises was reported by Bjareland and
Pinto [2000]. The execution monitoring architecture was introduced by Pinto and
Bjareland [2001] and the recovery strategy (MT) in [Bjireland, 1999b].

1.6.1 Bibliography

[Bjareland and Driankov, 1999 | M. Bjareland and D. Driankov. Synthesizing dis-
crete controllers from hybrid automata - preliminary report. In Working Papers of
the AAAI Spring Symposium on Hybrid Systems and AI Stanford, CA, USA, March
1999.

[Bjareland and Fodor, 1998 | M. Bjireland and G. Fodor. Ontological control.
In Working Papers of the Ninth International Workshop on Principles of Diagnosis
(Dz’98), Sea Crest Resort, N. Falmouth, MA, USA, May 1998.

[Bjareland and Fodor, 2000 | M. Bjireland and G. Fodor. Execution monitoring of
industrial process controllers: An application of ontological control. In SAFEPRO-
CESS 2000 [2000].

[Bjdreland and Haslum, 1999 | M. Bjireland and P. Haslum. Stability, stabi-
lizability, and GOLOG. Unpublished, August 1999.

[Bjareland and Pinto, 2000 | M. Bjireland and J. Pinto. Handling surprises in
logics of action and change. Unpublished manuscript, 2000.

[Bjareland, 1999a | M. Bjireland. Execution monitor synthesis for hybrid sys-
tems — preliminary report. In Proceedings of the Fourteenth IEEE International
Symposium on Intelligent Control (ISIC’99), Boston, USA, September 1999.

[Bjareland, 1999b | M. Bjireland. Recovering from modeling faults in GOLOG.
In Proceedings of the IJCAI’99 Workshop: Scheduling and Planning meet Real-time
Monitoring in o Dynamic and Uncertain World, Stockholm, Sweden, August 1999.

[Lewau, 1999] P. Lewau. A prototype of an ontological controller. Master’s

thesis, Link6ping Studies in Science and Technology, Linkdpings universitet, April
1999. No. LiTH-IDA-Ex—9949.

— 15 —

Chapter 1. Introduction

[Pinto and Bjareland, 2001] J. Pinto and M. Bjireland. An architecture for
execution monitoring. Submitted to the Seventeenth International Joint Confer-
ence on Artificial Intelligence (IJCAI ’01), Seattle, US, August 2001.

[Nakamura et al., 2000] M. Nakamura, C. Baral, and M. Bjireland. Maintainabil-
ity: a weaker stabilizability-like notion for high-level control agents. In AAAI 00

[2000].

— 16 —

Chapter 2

Conceptual framework

2.1 Introduction

In this Chapter a conceptual framework for execution monitoring is described. This
framework will be used both as a guideline for design of execution monitors used
in subsequent Chapters, and as a framework for facilitating comparisons between
various approaches to execution monitoring. The core of the framework is an ex-
traction of five functions that constitute an execution monitor: Situation Assess-
ment, where the execution monitor computes the current state of the system, given
the measured inputs, Expectation Assessment which concerns computing the
predicted current state, Discrepancy Detection where the actual and predicted
states are compared and discrepancies between the two are identified, Discrepancy
Classification where detected discrepancies are classified by what caused them,
and Recovery where the execution monitor try to force the controlled system back
to normal operation.

2.1.1 Overview

In Section 2.2, a glossary for concepts used in this thesis is provided. Different
systems, types of control actions, and properties of model representation formalisms
that influence the possibilities of performing execution monitoring are discussed. In
Section 2.3 we explore various definitions of execution monitoring proposed in the
literature. A definition inspired by these definitions is proposed and examined. We
also distinguish between meta- and object-level execution monitoring. In Section
2.4 we discuss interesting research issues involving execution monitoring, primarily
to place the contributions in Chapters 4, 5, 6, and 7 into a proper research context.
Finally, in Section 2.5 we present a systems-theory view of execution monitoring,
which is used as a common formal framework for the results in Chapters 4, 6, and
7.

17

Chapter 2. Conceptual framework

2.2 Closed-loop control systems

,E?F.‘P.A.‘E?_i???_i‘t ___
! bibpy DA

—
Act =/ Sense
\

v

Controller

Figure 2.1: A closed-loop control system.

The systems of interest in this thesis are discrete closed-loop control systems
depicted in Figure 2.1. Such systems consist of a mechanism called a controller
which, given some input, generates an actuator invocation signal or control action.
The control action is executed by actuators that are in direct contact with the plant.
There is also a possibility of observing the behavior of the plant via sensors, which
send signals back to the controller.

Typically in control theory, there is a distinction between two different types of
control: stabilization and tracking. Stabilization concerns maintaining the outputs
of the plant within a given set of states (the reference “point”). For tracking, the
given set of states may vary (the reference point is time variant). Tracking control
is not considered in this thesis.

In this thesis we focus on stabilizing control as well as sequential control, which
could be viewed as a third type of control. In sequential control the control goal
is to force the plant into a goal state with the highest priority possible. This can
correspond to plan execution systems, where the execution is successful if the given
goal is reached. However, in industrial process control it is common that the goal
state is trivially satisfied during the entire execution of the sequence of actions and
that the important issue is to successfully execute the actions in the given order. For
example, in a chemical process system there may be a sequence where a tank must
have a certain temperature before a chemical is introduced and then the pressure in
the tank has to have a certain level before a second chemical is added. The goal is
that the system should be ready for “normal” execution. This is also the case in the
application described in Chapter 4.

In Section 2.4 we will discuss differences between stabilizing and sequential con-
trol and argue that they require different execution monitoring strategies.

We assume that control is governed by control programs, which are instructions
that are executed by the controller. Formally, we view a control program as a relation

— 18 —

2.2. Closed-loop control systems

between sensor inputs and control actions. A system where there is no feedback to
the controller is called an open-loop control system.

This generic view of a control system in its abstract form is common in both
control theory and AI In AI, a control system often contains a planner which is a
system that synthesizes a control program (or, plan). Conventional Al planners, such
as Fikes and Nilsson’s [1971] STRIPS , Chapman’s [1987] TWEAK, and Blum and
Furst’s [1997) GRAPHPLAN, can be viewed as control-program synthesis programs.
For execution, it is possible that the plans may be used for open-loop control, if they
are executed without any sensor feedback. If the intended use of the plans are closed-
loop control, it is necessary to add some monitoring mechanism to handle feedback
to the controller. For such systems, the controller in Figure 2.1 can correspond to
a plan execution mechanism. There are other AI systems where the synthesized
control program or the planner itself considers sensor information while controlling,
and for those cases the controller in Figure 2.1 may depict the entire planning system.
This issue will be discussed in Chapter 3.

In control theory the well-studied feedback control systems, for example PID
controllers [Faurre and Depeyrot, 1977], provide an instance of the class of closed-
loop systems.

Plant states are assumed to be sampled with a certain time interval. There are
a number of problems associated with sampling intervals of too long a duration, but
we bypass such problems in this thesis by assuming that the sampling intervals can
be set to be sufficiently short. This may appear as an unrealistic assumption, but in
our experience (from the application described in Section 4.5), discrete state changes
can be captured within sampling frequencies of 50-100 Hz.

From the perspective of the controller, the plant can, statically, be defined as the
space of possible sensor value vectors. That is, the world to the controller is exactly
defined in terms of what it can sense. It is, however, possible that control programs
depending on the sensor value vectors can be constructed only with difficulty, that is,
it is easier to construct the control program from more intuitively appealing aspects
of the plant than from the input signals. Thus, for many sensory systems, for
example systems with vision sensors (e.g. cameras), the control programs use some
abstraction of the sensor inputs. For example, instead of using the large amount of
data a vision system produces every sampling instance, the control may only be based
on changes between frames. It is also possible that the control program is defined
in terms of particular objects such as blocks or cars on roads. It is then necessary to
map sensor inputs to such objects before the controller can be invoked. In control
theory, such mappings may be trivial, if the control is defined directly in terms of
the sensor signals. If the system is defined in terms of its “state-space” the mappings
may not be as straight-forward. The current trend in process control is to use an
object-oriented software architecture (see for example [Carpanzano et al., 1999]. For
such systems the sensor-to-representation mapping may be non-trivial. In AI there
may be a considerable leap between sensor signals and the internal representation
used by the controller. We henceforth use the term state variable to denote an
aspect used by the controller. Examples of such aspects are temperature, pressure,

— 19 —

Chapter 2. Conceptual framework

and position or color of an object. Thus, the value of a state variable may directly
correspond to a sensor value (as for temperature and pressure), or can be the result
of a non-trivial computation on sensor value vectors (as for the position of an object
on a map computed from sonar readings).

2.2.1 Control actions

In this thesis, we will be concerned with actual and expected effects of control ac-
tions to the extent that it is necessary to discuss the concept and to expose some of
the intricate issues that it involves. From our perspective a control action is an invo-
cation signal from a controller to an actuator. Thus, we use the phrases “executing
the control action A” and “sending the action invocation A to the actuators” inter-
changeably. It is possible that in the control program a control action is guarded
by a condition, that is, that the control action is only executed if the corresponding
condition is satisfied.

A control action may be an invocation of a toggle action that can be assumed
to be instantaneous (for example, flicking a switch), or invocation signals that are
temporally extended (for example, invocation of a PID controller or throwing a rock
up in the air where the effect of the control action, that is, that the rock hits the
ground, can be sensed only after some time period). For the latter we distinguish
between energized and ballistic control actions (this distinction is due to Nilsson
[1994b]). By an energized control action we mean an action whose guarding condition
must be true for the action to be executed, that is, an energized action is executed
as long, and only as long as its condition is satisfied. A ballistic action invocation is
instantaneous while the action itself is temporally extended. For example, the action
of throwing a rock into the air may be seen as an instantaneous action invocation,
but the action itself continues after the invocation. It has been argued that energized
actions are special cases of ballistic actions [Lee and Durfee, 1994], and even if this
is the case, the distinction is of importance for prediction of effects of control actions,
which is central to execution monitoring: If every controller action is energized, then
state transitions occur exactly when some actions stop being executed and some new
ones are started. This does not hold in general for ballistic actions.

2.2.2 Representation

The concept of models has rendered a fair amount of attention in many different
scientific disciplines, and a number of different meanings are associated with the
concept. We equate models with prediction mechanisms, and thus, will adopt the
following generic definition:

Definition 2.2.1 (Model)
A model is an entity that enables predictions of effects of a control system.O

In the context of Figure 2.1, this definition implies that a model is a predictive
mechanism of the whole closed-loop system. Examples of modeling “formalisms”
satisfying the definition include

— 20 —

2.2. Closed-loop control systems

differential /difference equations,

state transition diagrams,

finite automata of various kinds,

temporal logics,
e planning operators, and
e stochastic processes.

This definition may be criticized for various reasons, but for the purpose of execution
monitoring we argue (in Section 2.3) that it is sufficient.

No State
explicit transition Hybrid Situation
model diagrams Automata Calculus

-

Strength of CWA

Figure 2.2: The Closed World Assumption dimension of modeling formalisms.

Clearly, there is a model underlying the design of every control program, since
a control system designer necessarily has some expectations on the effects of action
executions. The question is how “well” the model is represented. By “well” we mean
how precise the modeling formalism enforces the models to be, with respect to the
possible predictions from the model. We call this dimension “Strength of Closed
World Assumption” (SCWA)?!, depicted in Figure 2.2, and it is one of the central
issues of this thesis. The SCWA dimension has been introduced independently in
[Falkenroth, 2000] as one of the three dimensions of the functionality of simulation
data systems. The reader should note that SCWA does not measure the relation
between a model and the plant that it models. It is a measure on formalisms, and
the precision a formalism enforces when it is used for modeling. We will say that
that the SCWA increases (decreases) as we move to the right (left) on the SCWA
axis. Formalisms on the far right (left) end on the axis are said to have high (low)
SCWA.

It should be noted that the term “representation” is intended to encompass both
syntax and ezecution semantics of a modeling formalism. Execution semantics is
the description of how the evolution of a system manifests itself in terms of the
syntax, that is, precise notions on when the system is in a particular state, when
actions are executed, and when state transitions occur. For some formalisms, such
as some versions of differential/difference equations and the situation calculus, the
execution semantics is clear, since it is assumed that the system dynamics is perfectly

IWe are using the notion CWA in a more abstract way than in the original work by Reiter
[1978], or any of the extensions (see [Lukaszewicz, 1990] for a survey).

— 21 —

Chapter 2. Conceptual framework

modeled?. For other formalisms, such as hybrid automata, a “simulation semantics”
is specified, which does not specify how sensor signals from outside the simulator
are to be handled. For state transition diagrams there are numerous ways in which
execution semantics can be defined. If we look at the state transition diagram in

S1 Sa

Figure 2.3: A small state transition diagram.

Figure 2.3 it will be interpreted as “if z = v (we are in state S7) and we execute
the control action a, we will eventually end up in a state where y = v’ (Sz)”. Two
semantic questions that immediately arise are what the value of y is in S; and what
the value of z is in S5, since neither of the variables are explicitly represented in
those states. If we, for example, assume that nothing changes unless the change
is explicitly represented® we would have a semantics where the value of y in S
is unknown but that z = v in S3. Another assumption could be that nothing is
explicitly represented unless it changes which would imply that y # v’ in S; and
that £ = v in Sy. However, in this thesis neither of the two last assumptions are
used for state transition diagrams. The consequence of this is, in our example, that
the values of y at S; and of z at Sy are unknown. We state the assumption we do
use as follows:

Assumption 2.2.2 For a transition due to a control action in a state transition
diagram the control action is started when all explicitly represented propositions in
the starting state are true, and eventually ended in a state where all the explicitly
represented proposition in the ending state are true.O

Assumption 2.2.2 does not restrict the length of a control action, or give a precise
meaning of when state transitions occur. These are problematic issues that are
discussed in Chapter 4. In Reiter’s terminology [Reiter, 1978], Assumption 2.2.2 is
an instance of the Open World Assumption.

In the “low” end of the SCWA axis we find “no explicit model” and the higher
the SCWA gets, the more precision the modeling formalism enforce, as depicted
in Figure 2.2. Examples of “no explicit model” are Brooks subsumption architec-
ture [Brooks, 1991] and PENGI [Agre and Chapman, 1987]. Note that underlying
these “reactive” control architectures, there certainly are models, but not ezplicitly
represented models that can be used and manipulated as “lst class citizens”. This

2By “perfectly modeled” we mean that the dynamics of the system as well as all potential
disturbances and faults are incorporated in the model.

3This is an assumption used in many approaches to Logics of Action and Change and is discussed
in Chapter 7.

— 292 —

2.2. Closed-loop control systems

means that no predictions about the behavior of the closed-loop system can be made.
These systems are of no immediate interest to us, but in Chapter 4 we will describe
experiences from a project where a model was (semi-automatically) extracted from
a (data-flow based) control program that lacked an explicit model. The modeling
formalism used in that Chapter is based on state transition diagrams which enforces
predictions only on the expected next state of a control action executed in a particu-
lar state, and not on the evolution of state variables over time, following Assumption
2.2.2.

If we now look at the high end of the SCWA in Figure 2.2, we find “complete”
modeling formalisms, that is, formalisms that enforce precise modeling of how state
variables change over time due to control actions. This means that we can predict
the value of every state variable at any time point. In Chapter 7 we use GOLOG
and underlying theories in the Situation Calculus to represent this other extreme.
Other examples of very precise formalisms are planning formalisms (such as STRIPS
[Fikes and Nilsson, 1971]), where the exact effects on every state variable are mod-
eled.

A final example of precise formalisms is differential/difference equations, which
are the main modeling tool for conventional continuous systems.

From the definition of a “model” it is clear that our purpose for using models
at all is to make predictions about effects of control actions. We have informally
defined the SCWA as a measure on the precision of the predictions than can be made
from the formalism. This measure is also interesting from other perspectives, and
here we list some of them:

Procedural/Declarative representation

With a slight simplification it is possible to argue that industrial-type controllers
basically consist of production rules.* This implies that if there is no explicit model
(the far left on the SCWA axis) the production rules constitute all the knowledge
representation we have. This can be called a purely procedural representation of
knowledge, in the sense that the only kind of reasoning that can be performed is
“what do I do, given this input?”. For example, consider the following controller
(that actually could be the controller for the state transition diagram in Figure 2.3):

r=v=a

y:v':>a'

We assume that the control actions (a and a') are executed whenever the corre-
sponding preconditions (z = v and y = v', respectively) are satisfied by inputs to
the controller. Obviously, there is no information about the expected effects of the
control actions a and a’. The only thing we can say is that whenever z = v is
satisfied then a is executed, and whenever y = v’ is satisfied, a’ is executed.

4Industrial-type controllers necessarily need to react very rapidly to sensor inputs and this
places strong limitations on the potential use of memory or more intelligent control mechanisms
than those used by productions rules. For example, all the PLC languages in the IEC 1131-3
standard [Lewis, 1997] are of this kind.

— 23 —

Chapter 2. Conceptual framework

However, in some cases it is possible to do somewhat better: In Chapter 4 we will
extract a richer representation from a control program. The extraction algorithm
is based on engineering intuitions, that is, an assumption that the programs are
written according to good engineering practice. Thus, there is information about
expected effects of actions implicit in the control program. In terms of SCWA such
programs are a little higher on the score than the lowest possible SCWA.

At the high end of the SCWA axis we have declarative formalisms, where knowl-
edge about the dynamics of the modeled system is given independent of any specific
reasoning system. This does not mean that the controller there is different from
the controllers to the far left, but that there exists explicitly represented knowledge
about the controlled system that the controller or an execution monitoring system
can use.

There has been a discussion between advocates of procedural and declarative
knowledge representation in AI almost for as long as the area has existed (see for ex-
ample [Rich and Knight, 1991]). We do not believe that these two concepts provide
a dichotomy. Instead the SCWA dimension shows that, for a given control system,
the representation used is procedural (or declarative) to a certain degree.

Explicit plant representation

Another aspect, related to the previous, is the precision with which the controlled
system (the plant) is modeled. In conventional control theory (see for example Fau-
rre and Depeyrot [1977]) the standard approach for controller design (and automatic
synthesis of controllers) is begun by modeling the open loop system, that is, find-
ing the differential equations governing the input/output behavior of the plant. By
introducing some desired property (such as a reference value for stabilizing control,
or a goal), mathematical methods are then used to construct the controller (such
as the Ziegler-Nichols rules for PID controllers). In the context of this Section, the
input/output behavior precisely represents the plant.

On the low end of the axis, there is an approach that is not uncommon in indus-
trial process control: A control program is written by an engineer with good domain
knowledge, and the program is then simulated and/or tested until a certain level
of reliability is reached. In this case the plant dynamics is taken into consideration
during controller design, but is never explicitly represented.

If the representation of the plant is done using state transition diagrams, following
Assumption 2.2.2, we do not have as high precision as in the conventional control
theory case, but higher than in the industrial process control case.

Action type expressivity

Another aspect of the SCWA dimension is the expressivity of representation of action
types. For the “no explicit model” end of the dimension, there is no real notion of
an action type; actions are executed when their preconditions are satisfied by inputs
to the controller. There is no point in distinguishing between, for example, context-
dependent actions, nondeterministic actions, concurrent actions, actions with side-
effects, instantaneous actions, actions with duration, and so on.

As the SCWA increases, it is possible to see that such distinctions do become
possible, and interesting. For example, for hybrid automata, the same action can

24

2.3. Ezecution monitoring

switch the system into different continuous behaviors, depending on the context in
which it is executed.

At the high end of the axis, the notion of action types is important. The complex-
ity of the action types and their possible interaction greatly influences the robustness
(and complicates the modeling) of the prediction mechanisms associated with sys-
tems that use such actions. The logical mechanisms necessary to model, for example,
concurrent actions are quite different from those required to handle sequential (non-
concurrent) actions (see Chapter 7 and Appendix B).

Modeling pragmatics

The task of using the formalisms becomes increasingly difficult as the SCWA is in-
creased. It is, for many reasons, desirable to have as complete a model as possible,
but when the complexity of the control system increases, the feasibility of modeling
it precisely decreases radically. This implies that a control designer must handle a
difficult trade-off: The model should be as rich as possible, but the modeling task
should not be too time consuming. The intermediate formalisms in Figure 2.2 (state
transition diagrams and hybrid automata) do not enforce complete models, even
though it is possible to construct such models in them. This means that a designer
has the possibility of adding as much information as he or she can.

2.3 Execution monitoring

There is no consensus in the literature on how to define execution monitoring. For
example, Dean & Wellman in their book ”Planning and Control” [1991] choose the
following definition:

”In robot planning, the process of sensing the state to influence subse-
quent action is called execution monitoring.”

Another, more unorthodox, definition is due to Saffiotti [1998]:

“Thus, monitoring does not consist in matching the observed execution
against some “expected” course; rather, it should distinguish situations
for which the information in the plan is relevant from situations for which
it is not.”

Saffiotti’s definition is motivated by the fact that there is no crisp notion of “next
state” that can be generated from his representation. His approach will be discussed
at more length in Chapter 3.

In this thesis we turn to a definition that will be of more use to us as a method-
ology for designing execution monitors as well as for comparing existing approaches
to each other.

Following De Giacomo et al. [1998] we choose the following augmented defini-
tion®:

5The original definition by De Giacomo et al. excludes the classification of discrepancies.

— 25 —

Chapter 2. Conceptual framework

Definition 2.3.1 (Execution monitoring)

Ezecution monitoring is an agent’s process of identifying discrepancies between ob-
servations of the actual world and the predictions and expectations derived from
its representation of the world, classifying such discrepancies, and recovering from
them.O

The definition of “model” (Definition 2.2.1) is motivated by this definition of exe-
cution monitoring. It should also be noted that “the execution of control actions”
is not mentioned in definition 2.3.1. The reason for this is so that other techniques
from related areas such as Estimation Theory, System Identification, and Model-
Based Reasoning, that not necessarily directly concern controller execution, remain
consistent with the definition we propose, and can provide valuable insights and
perspectives to execution monitoring.

2.3.1 Meta- vs. Object-level execution monitoring

In the early seventies, the distinction between meta-level and object-level execu-
tion monitoring appeared in the AI literature. The ground breaking work on the
STRIPS planner by Fikes and Nilsson [1971] at SRI was applied to their robot
Shakey. In [Fikes et al., 1972] they proposed a special plan ezecution mechanism,
PLANEX, with the purpose of executing and monitoring STRIPS plans. PLANEX
was a separate architectural entity in the robot control system that detected dis-
crepancies and performed plan repair using Nilsson’s triangle tables (see for example
[Nilsson, 1982]).

At the same time, also at SRI, Munson [1971] suggested that monitoring should
be incorporated in the plan, that is, that the robot plan should be interleaved with
monitor formulas. The monitor formulas should detect, and possibly classify, dis-
crepancies, and alert a re-planning mechanism if necessary.

Meta-level execution monitors, as we choose to name execution monitors that are
separate entities connected to the controller of a system, with access to the inputs and
outputs of the controller are represented in the literature by the work of Sacerdoti
[1977], Broverman and Croft [1988], Ambros-Ingerson and Steel [1988], Hammond
[1990], Beetz and McDermott [1994], Lyons and Hendriks [1995], Simmons et al.
[1997], and by Earl and Firby [1997]. A body of work on object-level execution
monitoring, where execution monitoring is interleaved with the control program, and
handled by the control language constructs, can be found in work by Munson [1971],
Doyle et al. [1986], Abramson [1991], Musliner et al. [1995], and by DeGiacomo and
Levesque [1999].

It is difficult to find a crisp distinction between meta- and object-level execution
monitoring. Tentatively, we propose that the distinction can be made in terms of
how the model relates to the execution monitor. That is, if execution monitoring
mechanisms are included in the model of the closed-loop system, we have object-
level execution monitoring, and if the the execution monitoring mechanisms can
manipulate and reason about the model, we have meta-level execution monitoring.
One can imagine a system that cannot be distinctly classified as being either meta-

— 26 —

2.3. Ezecution monitoring

or object-level according to this criterion. However, the distinction above suffices as
a basis for the subsequent discussions of this thesis.

There are advantages and disadvantages to the two approaches. Object-level
execution monitoring follows, in a sense, a control theoretic tradition where a major
goal is to describe the entire control system within one theoretical framework. Con-
ventional control systems can be described as systems of differential equations, which
incorporate various forms of execution monitoring and diagnosis in itself. In simi-
lar spirit, if monitoring information is included in plans, we have planning systems
where only the plans generated by the planner have to be analyzed. The system is
independent of the architecture, which supposedly implies easier and more coherent
possibilities of modeling, design and analysis.

Meta-level execution monitoring, on the other hand, solves the problem of plan
execution more in line with traditional applied AI and robotics. A major goal
there is generality and modularity (and not necessarily coherent theories). How-
ever, there does exist theoretically oriented Al research on combining different for-
malisms: For example in the area Hybrid Knowledge Representation. See for example
[Chittaro et al., 1993].) An execution monitoring system should be applicable in a
wide variety of domains, and therefore computations should be organized so that a
minimal number of changes are necessary when switching domains.

The distinction between object- and meta-level execution monitoring is made
from a modeling (or, knowledge representation) point of view. In this thesis we are
in favor of meta-level execution monitoring, though we will discuss approaches to
object-level execution monitoring in some detail.

2.3.2 A functional view of execution monitoring

Recovery

}

Discrepancy
Classification

A

Discrepancy
Detection

SN

Situation Expectation
Assessment Assessment

Figure 2.4: The functional view of execution monitoring.

It is possible to extract five distinct functions that constitute an execution mon-
itor from Definition 2.3.1 (see Figure 2.4).

e Situation Assessment: A (partial) function from inputs to the controller,

27

Chapter 2. Conceptual framework

to states in the model. Answers the questions: “In what state is the system
right now, w.r.t. the model”?

e Expectation Assessment: A (partial) function from states and control ac-
tions to new states according to the model. Embodies the expected effects of
control actions. Answers “In what state is the system expected to be”?

e Discrepancy Detection: A function that from situation and expectation
assessments decides whether a discrepancy has occurred. Answers “Did some-
thing not go as expected”?

e Discrepancy Classification: A function that yields an explanation (or pos-
sibly, a cause) of a detected discrepancy. Answers “What went wrong”?

e Recovery: A function that returns a sequence of control actions to be exe-
cuted. As side-effects the recovery function may change the model, the control
program, or it may simply start an alarm to alert an operator. Answers “How
do we continue the execution”?

These five functions have been addressed in the AI literature since the emergence
of the field in the 1950’s and each function still contains open problems. Below, we
will briefly explain the functions, but postpone more detailed discussions on related
work to Chapter 3.

Situation assessment is about mapping the sensory signals to states in the model,
given a model at a different conceptual level than the sensory signals. In Control
Theory an example of situation assessment would be mappings between the mea-
surement space and the state space of a system. In Al and Robotics, an important
part of a situation assessment mechanism could be anchoring, for example studied
by Coradeschi and Saffiotti [2000], which is defined as the process of creating and
maintaining the correspondence between symbols and sensor signals that refer to
the same physical object.

In control theory, as in many Al type execution systems, situation assessment is
occasionally not addressed as a particular problem. Then, it is common to assume
that the mapping from inputs to states in the model is straightforward. The problem
of handling, e.g., noisy sensors is not defined as a situation assessment problem, but
rather as a discrepancy detection problem, where the noise needs to be filtered for
an accurate detection of “real” discrepancies.

By expectation assessment we mean temporal prediction, that is, a mechanism
that can predict the next state (or, sequence of states) of the system given the
previous state(s) and (possibly) a control action. In certain systems expectation
assessment and situation assessment are indiscernible functions, where the inputs
and the predictions are both used to compute the most probable current state (this
is for example done with observers [O’Reilly, 1983, Misawa and Hedrick, 1989] and
Kalman filters [Kalman, 1960, Sorensen, 1985] in control theory).

Discrepancy detection is the task of finding discrepancies between the current
state and the expected state, and in its simplest form it consists of comparing the

— 28 —

2.4. Research issues

input signals to a reference vector which may yield a residual (a description of
the possible discrepancy). We would like to view it as the task of comparing the
result from the situation assessment to the result of the expectation assessment.
For example, discrepancy detection could be the logical task of finding out if the
logical formula describing the assessed situation is simultaneously satisfiable with the
formula generated by the expectation assessment (this approach is used in Chapters
4,6, and 7).

By discrepancy classification we mean the task of finding a cause for a detected
discrepancy. This could imply identifying faulty components, actions (or plan seg-
ments) that failed, or, as we do in Chapters 4 and 7, distinguishing between distur-
bances and inadequate models (faulty expectations).

Finally, we turn our attention to recovery, which is the most difficult function to
characterize. Recovery may be interpreted as meaning a number of different things,
but the most important is to ensure that a system that has experienced a discrepancy
continues to control the plant in a satisfactorily manner. That is, the most important
output of a recovery function is a new (sequence of) control action(s). This may,
however, not be enough. For example, in a setting of component-based diagnosis, if
the classification function has identified a faulty component, let’s say a valve that
is stuck closed, it is necessary to take that information into consideration during
continued control. This may imply that the controller needs to use some other valve
to achieve the same effects as before the valve broke. In this case the controller
(control program or plan) needs to be changed, as a side-effect of the task of finding
a new appropriate control action. If the classification has identified that the current
model is inadequate, on the other hand, it may be necessary to recover by updating
the model.

2.4 Research issues

In this Section we will look a some of the research issues that arise in the context of
execution monitoring of discrete closed-loop systems. The issues we examine are

e Purpose: The purpose of execution monitoring may, at a low level of gran-
ularity, be one of the areas of functionality presented in Chapter 1. In more
detail, the research issue here is to identify different types of discrepancy clas-
sifications that may be of interest, and examine the circumstances under which
they can be used. We will look at two types: Ontological Control and Stability-
Based execution monitoring.

e Design/Synthesis: Following the tradition of model-based reasoning, we are
interested in developing domain-independent engines for execution monitoring.
The engines then take the domain-dependent model of the closed-loop system
as an input. The research issue of interest here is how to design such engines
and how to synthesize models (from scratch or from already existing models
in other formalisms) appropriate for certain types of execution monitoring.

— 29 —

Chapter 2. Conceptual framework

e Analysis: For complex systems we cannot expect to find a general solution
to the problems posed in Chapter 1. It is clear that only subclasses of systems
can be subject to any type of execution monitoring. An important research
issue is therefore to analyze and find tools for analysis of the applicability of
given execution monitoring paradigms.

e Application: Even though a user-friendly set of generic synthesis and analysis
tools may be available, it is typically non-trivial to apply the theories to an
actual system. It is, thus, of importance to apply the theories to systems in
systematical ways and to document and discuss the application in detail.

We will now more closely discuss how the four research issues are addressed in the
rest of this thesis.

2.4.1 Purpose

A natural question that arises for execution monitoring is: What should be moni-
tored?. A coarse set of possible answers to that question can be found in Chapter 1,
in the list of the seven areas of functionalities. But even if we state that we would
like to detect deviations from predictions by a model, there are still questions to be
answered. First, as mentioned in Chapter 1, we have assumed that the operating
domains are too complex or uncertain for precise mathematical modeling. This im-
plies that there always will be discrepancies between predictions by the model and
plant signals. However, not all such discrepancies require action. As an example we
can take a UAV where a certain trajectory is predicted by a model and where a gust
of wind suddenly moves the UAV away from that trajectory. Within certain bounds
the system should be able to recover from such a discrepancy itself, while an abrupt
change of location outside the bounds should be treated more seriously.

The particular type of classification and recovery schema we will investigate is
Benign/Malignant (BM) classification and Model Tuning (MT) recovery. The basic
idea is that every detected discrepancy should be classified as either being benign (in
the sense “harmless”) or malignant (in the sense “possibly harmful”). For benign
discrepancies we then recover by using the current model, perhaps with re-planning
to get the system back on track. For malignant discrepancies we also need to rely on
some form of re-planning, but we will also modify the model to make sure that the
same discrepancy will not appear again. This modification technique will be called
model tuning.

In this thesis we will look at two particular instantiations of BM classification:
Ontological Control and Stability-Based execution monitoring.

Ontological control

Ontological control is an execution monitoring paradigm developed for sequential
control, primarily for industrial process controllers. In such controllers a sequence
of states has to be traversed. If an expected state does not materialize when it
should, the controller typically invokes a recovery action to force the system to redo

— 30 —

2.4. Research issues

earlier steps of the sequence. For example, if it is important that a tank has a cer-
tain pressure before a chemical is introduced in a chemical process plant, and the
pressure suddenly drops, the controller will force the system to an earlier state in
the system where the pressure is re-established. Ontological control emerged from
the need to detect and handle infinite recovery cycles, that is, infinite sequences of
states where the controller is trying to recover from a discrepancy. One cause of
such cycles is violations of ontological assumptions. That is, all sufficiently complex
control systems rely on some underlying unmodeled assumptions that are necessary
for the validity of the controller. Such assumptions (ontological assumptions) may
be violated. By introducing the notion “perfect sub-model” we are able to detect
such violations and distinguish them from benign discrepancies.

In Chapter 4 we will develop a theory of Ontological Control and report a set of
experimental results from an application of the theory. In Chapter 7 we will refor-
mulate ontological control in the Situation Calculus framework.

Stability-based execution monitoring
For stabilizing controllers we have an almost completely different situation than for
sequential controllers. Cycles of states are not a problem; it is in fact the goal of
the control, in the sense that the controller is forcing the plant to remain within a
certain set of states, call it S. Now, any discrepancy will either make the system
remain within S, or take it outside. In the first case we have a benign discrepancy
(since the control goal is still achieved), and in the second the stability is violated
and we have a malignant discrepancy.

In Chapter 5 we investigate the stability notion and present a weaker notion:
“maintainability” that appears to be more applicable to robotics applications than
“stabilizability”. These notions are applied in Chapters 6 and 7.

2.4.2 Design and synthesis

We are interested in designing generic engines for execution monitoring that are
able to handle models in formalisms with a certain form. For ontological control the
principles behind this are studied in Chapter 4, and for stability-based execution
monitoring the principles are studied in Chapter 5.

A problem we have discussed earlier in this Chapter is how to handle procedural
models. For industrial sequential controllers it is not uncommon that the only
model available is the control program itself. For control programs in general, it
is impossible to generate a model with a higher SCWA (as argued above) than
the program itself. But, for real process controllers more systematic program design
schemas are used, that is, for well-engineered systems it is possible to extract models
with more predictive power than the program has itself. We show how this can be
done semi-automatically in Chapter 4.

Another problem arises when we have a specification of the closed-loop system.
There are typically a number of different ways in which a specification can be im-
plemented, so the goal is then to synthesize a model of the closed-loop system that

— 31—

Chapter 2. Conceptual framework

can handle any control program implementation. In Chapter 6 we show how a
state-transition model can be synthesized from a Hybrid Automata specification.

2.4.3 Analysis

Neither ontological control nor stability-based execution monitoring apply to all
controllers. This means that an important research issue is to investigate under
what conditions the theories can be applied.

For ontological control we (in Chapter 4) identify a set of restrictions on se-
quential controllers that are necessary for successful application of the theory. The
restrictions are

e Perfect sub-model: Violations of ontological assumptions imply that the cur-
rent model of the system is inadequate. To detect this we cannot, of course,
use the model itself as a reference point. The solution to this is to assume
that some sub-system is working perfectly (such as the actuators), and that
the model contains a sub-model of this sub-system. This sub-model is then
used as the reference.

e Non-logging: In the model, there may be state transitions that only are used for
tracking the execution of one particular action. This is called logging. Logging
prevents precise distinction between states during execution, and therefore
makes prediction very difficult. In ontological control we assume that the
system is non-logging.

e Energized actions: To be able to precisely predict when state changes occur
we require that all actions are energized (which are defined above).

For stabilility-based execution monitoring we have a slightly different problem. In
principle we can apply this paradigm to any controller; the form of the models are
not very important. However, we require that the system is stable with respect to
some set of states, S. This is the analysis problem of the paradigm. In Chapter 5
we define “stability” and a new, more general, concept, “maintainability”, that is
more applicable for active databases and robotics than “stability”. We also present
some algorithms for the analysis of maintainability.

2.4.4 Application

Ontological control is applied to an industrial process controller in Chapter 4, where
we discuss an implementation and some experimental results. In Chapter 7 we let
most issues discussed earlier be placed in a single framework: GOLOG. GOLOG is a
high-level agent programming language that uses an explicit model of the operating
environment. One of the most useful properties of GOLOG is that it is based on
formal logic which provides a formal semantic theory and a formal modeling language
(the Situation Calculus, SitCalc). Thus, correctness proofs of GOLOG programs for
particular environments can be constructed deductively. In Chapter 7 and the two
Appendices A and B we address the following issues:

— 32 —

2.5. Abstract formal framework

Restrictions for ontological control: We show how a SitCalc model can be
analyzed to guarantee successful application of ontological control.

Stability analysis: We are interested in deductively proving that a SitCalc
theory is stable. We therefore develop a formulation of the stability concept
introduced in Chapter 5 in the logic itself, which is presented in Appendix A

Controller synthesis: We show how a stabilizing GOLOG program can be auto-
matically synthesized from an unstable (Markovian) SitCalc theory, that is, the
closed-loop system involving the SitCalc theory and the synthesized controller
is stable.

Situation and expectation assessment: These two functions are already imple-
mented in the Situation Calculus and GOLOG. The first is assumed and the
second is handled by goal regression [Reiter, 1991].

e Discrepancy detection: Both ontological control and stability-based execution
monitoring perform discrepancy detection on states of the system. In the
Situation Calculus it is often convenient to reason with sequences of executed
actions (situations), similar to the Ramadge-Wonham theory of Discrete Event
Systems (see for example [Kumar and Garg, 1995]). We address the problems
of execution monitoring both with the state view and the situation view and
implement ontological control and stability-based execution monitoring.

We are interested in deductively proving that a discrepancy occurs. The prob-
lem with SitCalc is that it is to the very far right of the SCWA axis, and that
discrepancies entail an inconsistent logical theory. We solve this problem by
relaxing the SCWA (technically we relax the inertia assumption of SitCalc) to
allow for discrepancies. In the terminology of the Logics of Action and Change
area, we handle surprises. We extend SitCalc to handle surprises in Appendix
B.

e Discrepancy classification: This is not particularly problematic for either on-
tological control or stability-based execution monitoring.

e Recovery: we develop a technique for changing the SitCalc model with respect
to detected malignant discrepancies. The idea is to make the change parsimo-
nious, that is, we want to ensure that exactly the same discrepancy does not
occur again.

2.5 Abstract formal framework

In this Section we will present a summary of an abstract theory of execution moni-
toring, a theory that will be expanded upon in Chapters 4, 6, and 7.
An execution monitor system is a twelve-tuple

(P,A,Cont,S, M, Sit, Exp, D, Det, L, Class),

— 33 —

Chapter 2. Conceptual framework

with the following interpretation:

e We assume that we have a set of plant states, P, that represent vectors of sensor
readings as well as vectors of other signals that are inputs to the controller.®

e The possible control actions belong to a set A.

e A controller is a relation Cont, possibly between plant states or sequences of
plant states (depending on how much of the history the controller takes into
account) and control actions. A sequence of plant states, in this context, is
assumed to correspond to one dynamical development of the controlled system.
A controller defined as Cont : P — A is said to be deterministic.

e The set of possible models of the closed-loop system is denoted M with M €
M.

e We assume that we have a set of internal states (or, simply, states), S.

e A function Sit from sequences of plant states, internal states and models to in-
ternal states is called a situation assessment function. Intuitively, the sequence
of plant states represent the development of the system including the current
sensor reading and the sequence of internal states the previously “visited”
internal states.

e An ezpectation assessment function, Ezp, is function that predicts the state
given a sequence of previous states, a control action, and a model.

e We assume that we have a set of discrepancies, D (this set may for example
contain states or sequences of states).

e A discrepancy detection function Det maps the current situation (perhaps in
terms of the previous state, the executed action, the actual current state,
and the predicted state) to discrepancies or to null if there is no discrepancy
between the two states.

e We assume a set of discrepancy classifications, L and that L always contains a
symbol none that marks cases where no known explanation for a discrepancy
exists.

e A discrepancy classification function, Class maps discrepancies to discrepancy
classes.

A recovery function can be defined to map the current situation and execution
monitoring system to a new execution monitoring system and a control action.

6From a control theoretic perspective, we thus assume that only the output from the plant is
what is modeled, that is, that we do not assume to know anything about the internal state of the
plant. This implies that the observable/unobservable dichotomy is meaningless in our setting.

Chapter 3

Related work

3.1 Introduction

Work on execution monitoring can be found in the AI, Computer Science, and
Control Theory literature. The amount of papers concerning execution monitoring
as a particular problem in its own right is fairly low. Instead, it is more common to
find either papers describing entire control architectures, where execution monitoring
is one component, or papers on particular techniques that may be used for the
purpose of execution monitoring. This poses a problem when surveying the “area”
of execution monitoring. In this chapter we have chosen to present a number of
representative approaches to execution monitoring in Control Theory, Computer
Science and AI. After that we discuss techniques developed in various subareas of
AT and control theory that can be adapted to the framework described in Chapter
2.

3.2 Control theory

In this section we intend to convey some of the basic ideas, as well as some recent
approaches, of monitoring, supervision and diagnosis from the control theory com-
munity. Although the amount of existing work on these topics is huge, the focus
is typically different from ours. As described in the previous chapter we assume
that the controller is given and we wish to add an execution monitor engine to the
controller, and then feed the engine with a model of the closed-loop system. In con-
trol theory the problem would usually be to start by modeling a plant in terms of
constraints (typically as differential /difference equations) and synthesize a controller
from the model and a control goal, where the goal should contain the aspects that
should be monitored. However, below we will present a control theoretic framework
where it is assumed that the architecture contains meta-level reasoning mechanisms
for diagnosis and supervision.

— 35 —

Chapter 8. Related work

3.2.1 Fault detection and identification (FDI)

Fault detection and identification (FDI) is a problem that has been studied quite
extensively by control theorists for the past thirty years'(see e.g. Basseville and
Nikiforov [1993], Frank [1990], or Chen and Patton [1999]). A difference between
that work and the approaches discussed above is that FDI has mainly focused on
continuous systems, while the mainstream approaches in AI have been concerned
with discrete systems (Saffiotti’s work [1998] being an example of an exception).

Situation assessment is, typically, not considered a particular problem, while
expectation assessment would correspond to (the prediction part of) state estimation
with observers, e.g. O’Reilly [1983], and Misawa and Hedrick [1989] or Kalman filters
[Kalman, 1960, Sorensen, 1985], that yield an estimated current state Z. In a simple
version of FDI the estimated current state is compared to a reference value, r, and
generates a residual, p, for example by computing p = |r — z|. Fault detection is
then a comparison between the residual and some threshold where, for example,
—e < p < € could indicate that no discrepancy has occurred, for a suitable €, and
that —e > p and p > € indicates two distinct classes of discrepancies. There is an
abundance of variants on this theme (see the recent survey [Chen and Patton, 1999]
for details).

The large amount of work on FDI for continuous systems has almost exclusively
addressed fault detection in the open-loop part of the systems, that is, the controller
has not been considered in the FDI process?. Due to this the work on FDI in general
does not apply to the problems addressed in this thesis.

3.2.2 Fault-tolerant control

In a recent paper, Blanke et al. [2000] presented the novel control paradigm Fault-
Tolerant Control. This term denotes a set of techniques that were developed to
increase plant availability and reduce the risk of safety hazards. We will not go
into the details of these techniques in this thesis, instead we present an abstract
framework of control (introduced in [Blanke et al., 2000]) that demonstrates the
relation between classical control, robust and adaptive control and fault-tolerant
control.

Constraints of a dynamical system are functional relations that describe the
behavior of the system. In our terminology, a set of constraints is an open-loop model
of the system. In control theory the most common way of describing constraints is
with differential /difference equations. A set of constraints, C, for a plant defines a
structure S and parameters 6 of the system. For example, for the constraint

z = Az + Bu

the parameters are the matrices A and B, and the structure is a first-order linear
system. A distinguished set of constraints are called control objectives, and are de-
noted O. A function from plant output to a control order w (which is one of the

IThe origin of model-based FDI is usually credited to Beard’s PhD thesis [1971].
2There are, of course, exceptions to this. See for example [Jacobson and Nett, 1991].

— 36 —

3.2. Control theory

inputs to the plant) is called a control law. The class of plausible control laws is
denoted by U. We can now define the control problem:

Control: Solve (0, S,0,U), that is, find a control law in U that achieves O while
satisfying C' (i.e. while not violating the constraints).

If we now assume that we do not know the parameters precisely, for example due
to uncertainty, but only a set, ©, of plausible parameter values. the problem is
then to achieve O under constraints with structure S and whose parameters belong
to ©. Two approaches to this problem can be defined: Robust control where the
discrepancies over ® are minimized, and Adaptive control where a parameter 6 is
estimated before the control problem is solved. Formally,

Robust control: Solve (0,S,0,U), that is, find parameters in © and a control
law in U.

Adaptive control: Solve (O, S, 6, U) where 6 € O is estimated.

Next, faults are taken into consideration. From the point of view of this frame-
work, a fault is a change in the given constraints. This means that given a fault,
a diagnosis computation should yield estimated sets of possible structures, S, and
parameters, 0. Formally, the task of Fault-tolerant control can then be described as

Fault-tolerant control: Solve (O,S, (:),[U).

In our functional framework from Chapter 2, fault-tolerant control involves situ-
ation and expectation assessment as well as discrepancy detection and classification.
The former can be handled with state estimation techniques such as Kalman filters,
while the latter involves diagnosis techniques. However, the work on fault-tolerant
control has yielded two distinct specializations for discrepancy classification that fit
nicely into our BM (Benign/Malignant) framework.

In the benign case a diagnosis system estimates the actual constraints, that is,
generates S and 6 and then solves the control problem. We call this fault accommo-
dation and formally we have

Fault accommodation: Solve (O, S',H,[U).

If it is not possible to do fault accommodation, we cannot hope to handle the problem
by estimations that take the entire plant (including parts that have been diagnosed
to be faulty) into consideration. Then we have a malignant case and try to solve the
control problem by using constraints not involving faulty parts. Formally,

Reconfiguration: Find ¥ € S and 7 € © (where S and © are restricted to non-
faulty parts of the system) such that (O, X, 7, U) has a solution.

Chapter 8. Related work

The difference between fault accommodation and reconfiguration is that for the lat-
ter the input-output relations between the controller and the plant have not changed,
while this is a possibility in the second case.

The most general problem in this framework involves monitoring of the control
objectives. If neither fault accommodation nor reconfiguration is possible, we can
still relax the control objectives. This is called supervision and is described as

Supervision: Monitor the triple (0, S,0) to determine whether the control ob-
jective is achieved. If this is not the case, and the fault-tolerant control problem
does not have a solution, then find a relaxed objective 7 € Q and X € Sand 7 € O
such that the relaxed problem (7,3, 7, U) has a solution.

Blanke et al. suggest that a fault-tolerant system with supervision should be im-
plemented as a hybrid (discrete/continuous) system where diagnosis and controller
synthesis is done within the continuous loop and fault accommodation, reconfigu-
ration, and supervision is handled by meta-level mechanisms using automata repre-
sentations. This is natural since those three tasks normally produce discontinuities
in the state trajectory of the system.

3.3 Computer science

The idea of adding probes to a computer program to monitor its execution probably
originates with the advent of debuggers in the early 1960’s. Today, advances in high
performance computing, communications, and user interfaces are enabling develop-
ers to construct increasingly interactive applications. This implies a large increase in
the complexity of such systems, and a lot of work has been put into development of
tools that can support the management of large-scale parallel codes. In this section
we will examine a sophisticated tool for on-line monitoring and steering of such
software systems: Falcon [Gu et al., 1997].

The notion program steering can be defined as “the capacity to control the execu-
tion of long-running, resource-intensive programs” ([Gu et al., 1994]). The control
of the execution may involve control over parameters of the program, usage of mod-
ules (it may for example be of interest to be able to switch between different algo-
rithms at run time), and usage of hardware resources (for example load balancing of
processors). Program steering is in [Gu et al., 1994] described as consisting of two
distinct tasks: monitoring program or system state and enacting program changes
made in response to observed state changes. From our point of view the monitor-
ing task is equivalent to situation assessment, while steering involves expectation
assessment, discrepancy detection and classification, as well as recovery. However,
program steering may be used for other purposes than handling discrepancies, for
example, managing data output in an efficient manner. The reader is encouraged to
read the survey [Gu et al., 1994] for a more detailed account of the vast literature
in the area.

— 38 —

3.3. Computer science

Another related concept from Computer science is self-stabilization (introduced
by Dijkstra [1974]) which has been thoroughly investigated by the distributed sys-
tems community. A self-stabilizing system can achieve its goals from any initial
state and under the influence of any transient fault (unexpected state change). This
notion is strongly related to the work on maintainability, in Chapter 5, and will be
discussed below.

3.3.1 Falcon

The Falcon project [Gu et al., 1997] was initiated as a step towards distributed labo-
ratories, where multiple and distributed end users can collaborate with each other as
if they were co-located in a single laboratory setting. In this distributed setting, the
users can solve complex scientific or engineering problems by jointly experimenting
with multiple coupled and distributed simulations all of which may be monitored
and steered by the users and with algorithms.

Falcon is a step in this direction, which consists of a set of tools that jointly
support three tasks: The first task is on-line capture, collection and analysis of
the application-level program and performance information required for program
steering and for display to end users. The second task is the analysis, manipulation,
and inspection of such on-line information, by human users and/or programs, based
on which decisions concerning program steering may be made. The third task is the
support of steering decisions and actions, which typically result in on-line changes
to the program’s execution. In our functional framework, the first task corresponds
to situation assessment, the second task to expectation assessment and discrepancy
detection and classification, and the third to recovery.

In the implementation of Falcon, the original application source code is compiled
together with a sensor and steering specification. This corresponds to object-level
monitoring since the extra information is added directly to the source code. During
run-time, the instrumented application program is running with a trace data collec-
tor and analyzer and a user interaction controller. The analyzed trace data is sent
to a filter mechanism and then displayed to the user. The user has the possibility
of steering the execution of the program via the interface which controls a steer-
ing server that can control the execution of the running application. The running
application can also access the steering server for algorithmic steering actions.

3.3.2 Self-stabilization

In his seminal paper [Dijkstra, 1974] Dijkstra introduced the notion self-stabilization
of distributed systems. The problem posed was whether it was possible to construct
a protocol for a set of interconnected processors that would maintain a certain set
of global states. Dijkstra proposed a solution for a class of systems®. The problem
was intensively studied during the 80’s as a part of the development of fault tolerant

3The class was token rings of non-prime length. In the CACM paper he did not provide proofs
of his suggestion, stating that they where left as an exercise for the reader. 11 years later the proofs
were published in [Dijkstra, 1986].

— 39 —

Chapter 8. Related work

systems. It was clear already to Dijkstra that self-stabilization was a difficult prob-
lem, but the fact that the problem is undecidable was not shown before 1994 (see
[Abello and Dolev, 1997] for the full length paper).

The formal definition of self-stabilization can be stated as follows:

Definition 3.3.1 Let P be a set of states for a system S. S is self-stabilizing to P
iff the following two conditions hold:

e P isclosed in S, i.e. every state in a computation of S that starts at a state
in P, belongs to P.

e Every computation of S has a finite prefix such that the following states belong
to P.

O

The first condition is called Closure and the second Convergence. In control theory
the notion of “stability” is a core concept, and it comes in many flavors. One flavor
of particular interest to us, from [Ozveren et al., 1991], will be presented in detail
in Chapter 5. That approach coincides only with the convergence condition of self-
stabilization, thus relaxing the concept.

3.4 Artificial intelligence

The first application of execution monitors in the Al literature appear, as mentioned
in Section 2.3.1, with the application of the STRIPS planner to Shakey the robot
[Fikes et al., 1972]. The planning community has strongly focused on developing
planners that, given a “plant model” (in terms of planning operators) an initial
state, and a goal, generates a sequence that, according to the model, will lead the
plant from the initial state to the goal. When such planners have been put to use
in applications, it has been necessary to develop execution monitors to handle con-
tingencies not predicted by the model. Two examples of such systems are IPEM
[Ambros-Ingerson and Steel, 1988] and GRIPE [Doyle et al., 1986], where the first
contains a meta-level execution monitor, and the second represents object-level ex-
ecution monitoring. These systems will be presented below in sections 3.4.1 and
3.4.2.

There are other approaches to robot control where the formalisms used lack any
adequate notion of “predicted next state”. This is clearly problematic from our
point of view, so instead of relying on predictions other means have to be developed
to assess the execution of such system. In Section 3.4.3 we review a robot control
system based on fuzzy logic ([Saffiotti, 1998]).

The last, and most recent, approach to execution monitoring developed in the
AT community has inspired a lot of ideas in this thesis. The system, Livingstone
([Williams and Nayak, 1996]), was developed at NASA AMES as a central compo-
nent in the “New Millennium Remote Agent” (NMRA) architecture, and it was

40

3.4. Artificial intelligence

tested on a space probe in July 1999. Livingstone is a model-based execution moni-
toring system which acts as a low-level situation assessment and recovery mechanism
with no direct connections to the planning/scheduling system in the NMRA archi-
tecture. This approach is discussed in Section 3.4.5.

IPEM

Integrated Planning, Execution and Monitoring (IPEM) is a framework developed by
Ambros-Ingerson and reported in [Ambros-Ingerson and Steel, 1988]. The idea is to
use techniques similar to those of the partial-order planner TWEAK [Chapman, 1987
to generate a plan which is then executed. One difference in the planning process,
compared to TWEAK is that actions (planning operators) may be complex, that is,
they may in themselves be plans. This relates to one important body of work on
planning: Hierarchical Task Nets [Sacerdoti, 1977].

Initially, a partial plan is provided consisting only of the initial state and the
goal. Planning is then performed by identifying flows and transforming the plan
according to the corresponding fizes:

3.4.1

FLAaw | Fix

Unsupported Precondition: A
precondition of an action in the plan
is not supported by (or, does not
logically imply) a postcondition of
an earlier action.

Reduce: Establish a support from
an action already in the plan, or add
a new action.

Unresolved Conflict: A precon-
dition of an action is clobbered by a
postcondition of an earlier action.

Linearize: Place the clobberer in
the plan where it does no harm.

Unexpanded Action: An action
that is not primitive, that is, repre-
sents a plan, exists in the plan.

Expand: Replace occurrences of
the action with the plan it repre-
sents.

During execution the plan is then elaborated (fixed) if a monitor detects errors

(flaws). For monitoring we have the following examples of flaws and fixes:

Fraw

| Fix

Unexecuted Action: An action is
ready to be executed.

Execute: Execute the action.

Timed Out Action: No further ef-
fects are expected to come about as
consequence of an execution of an
action.

Excise Action: Remove the action
from the plan.

Redundant Action: There exists
an action whose postcondition does
not support the goal or any precon-
dition of other actions in the plan.

Excise Action: Remove the redun-
dant action from the plan.

41

Chapter 8. Related work

There are two more flaws that can be detected during execution: Unsupported
Range and Unextended Range. The first occurs when support by a postcondition
for a precondition is broken, that is, when that support is no longer a consequence
of the current observations. The fix suggested is to re-instantiate the precondition
by some other part of the postcondition. For example, assume that a precondition
clear(z) is initially supported by a postcondition clear(a) in action A and A is ex-
ecuted. Now, if clear(a) is not true after the execution, we have an unsupported
range flaw. If A also has clear(b) as a postcondition, then by re-instantiating z
to b we have fixed the flaw. The second occurs when there exists a support by a
postcondition in action A for a precondition, but some other action occurs before
A in the plan and also provides the same support. In this case the fix is to let the
earlier action provide the support, possibly making A redundant.

From the perspective introduced in Chapter 2, it is possible to view IPEM as a
meta-level execution monitor, since the flaws-and-fixes system is separate from the
actual planning and plan execution system. Moreover, we can see that the problems
of situation and expectation assessment are not addressed. The flaws and fixes de-
fined for plan generation are not particularly interesting to us; they are supposed to
be invoked prior to execution. Discrepancy detection in IPEM consists of checking
whether any of the flaws has occurred, which will require a detection function that
is different from the abstract function Det defined in Section 2.5, since it depends
on the current plan and the current set of support instantiations, as well as on the
current and expected state. It is unclear from [Ambros-Ingerson and Steel, 1988]
how the Timed Out Action flaw is detected. It is hinted that there is notion of
execution completion time for actions, but how that notion is used in the framework
is not discussed. Clearly, discrepancy classification is integrated in the detection
mechanism (IPEM detects particular classes of discrepancies), which in the abstract
theory means that the set of discrepancies D is equal to the set of classifications L,
and, thus, that Class can be the identity function.

If we view the currently executing plan as a controller and the set of support in-
stantiations (and possibly the execution completion time information) as the model,
recovery corresponds to fixes, where the controller may be changed for certain flaws
(like Excise Action) and the model may be changed for others (such as Unsupported
Range).

The ideas from IPEM have been extended by Knoblock [1995] to include sensing
and concurrent execution of non-conflicting actions.

3.4.2 GRIPE

As an example of an object-level execution monitor we choose GRIPE (Generator
of Requests Involving Perceptions and Expectations) [Doyle et al., 1986]. From the
object-level point-of-view the authors argue that there are four tasks that must be
accomplished by an execution monitor:

42

3.4. Artificial intelligence

e Selection: The task of determining which actions (or which effects of actions)
in the plan require monitoring.

e Generation: The task of determining which sensors to employ to verify as-
sertions, and the expected sensor values.

e Detection/Comparison: The task of recognizing significant events on sen-
sors and comparing those events to the corresponding expectations.

e Interpretation: The task of explaining failed expectations.

The basic idea behind GRIPE is to use a special set of plan operators, verification
operators, that are interleaved with the plan to perform run-time plan verification.
The verification operators are automatically generated by using a sensor model and
the plan. An important part of the generation and interleaving of verification opera-
tors is context (or, intent-) analysis. For example, if a robot arm is holding an object
and is supposed to move the object to a particular position, the move action needs
to be carefully monitored, while if the arm is not holding anything and is supposed
to move to a resting position, the move action does not have to be as precise as
in the previous case. Thus, the verification operators in the two cases should be
different. The authors do not provide any general principle of analysis of context;
that task is viewed as being domain-dependent.

It is easy to see the resemblance between the five functions in Chapter 2 and
the four tasks described in [Doyle et al., 1986]. GRIPE’s notion of Generation cor-
responds to expectation assessment, and Detection/Comparison is a combination of
situation assessment and discrepancy detection. Interpretation clearly corresponds
to discrepancy classification. The differences between GRIPE and the framework is
that GRIPE does not address recovery, and that the framework does not consider
sensor selection. Sensor selection is important whenever sensing is a limited resource
in a system, which we do not assume in this thesis. The intended application domain
for GRIPE was the NASA /JPL Telerobot servicing the US space station, that is, a
domain where basically everything is a limited resource.

3.4.3 Saffiotti’s approach

An approach that is difficult to compare to many others in this thesis is the work
by Saffiotti [1998]. He is interested in the problem of robot navigation and has
chosen fuzzy logic as the basic framework. The system consists of a planner, and
an execution system, where the planner uses behavior templates to produce plans.
The behavior templates are planning operators with some extra slots, especially a
slot that states the goodness of the particular behavior (a real number between 0
and 1) that quantifies the confidence of the expectation on the effects of the action.
The planner is a simple regression-based planner that finds a plan and then gathers
the operators into a set of fuzzy rules, that is, the operators are transformed to if
precondition then action rules. The execution system then interprets the rules as
fuzzy rules, so that the precondition of a rule is satisfied to a certain degree (degree

Chapter 8. Related work

of desirability). The goodness of an invocation of an action is then a function of the
degree of desirability of the precondition and the goodness of the operator. Since it is
possible that a number of fuzzy rules are all satisfied to some degree simultaneously,
action blending is performed, which basically is concurrent execution of all actions
with satisfied preconditions but to a degree proportional to the degree of desirability
of the particular precondition.

In Saffiotti’s system the following adequacy measures are monitored:

e The degree of goodness of the current goal, i.e. how well the current plan will
achieve the current goal. For example, if a robot is in idle mode and receives
a new goal, e.g. to move into room R5, the goodness of the plan of being idle
should be very low, which the monitor should detect.

e The degree of conflict between behaviors, i.e. how well the involved behaviors
interact. For example, a plan consisting of behavior moveRight and moveLeft
to be executed concurrently, should have a high degree of conflict.

e The degree of competence of the plan in the current situation, i.e. to what
degree the involved behaviors are active in the current situation. For example,
if the preconditions of the involved behaviors are all satisfied to a low degree,
then the activation level of all the actions is low, which is a sign of a low degree
of competence.

One of the reasons why comparisons to other approaches are difficult for this
approach is that there is no crisp notion of state in a fuzzy setting. However,
the framework discussed in Chapter 2 does not have a problem characterizing the
approach.

Situation assessment in fuzzy systems is defined in terms of membership func-
tions, that is, functions that map sensor inputs to the degree of membership in
a particular state. Expectation assessment is more complicated, and in Saffiotti’s
approach one can say that it is missing; there is no mechanism that predicts the
next state of the system. As in IPEM (Section 3.4.1) discrepancy detection and
classification is done simultaneously. Low degrees of goodness and competence, and
high degrees of conflict are detected by computing the three degrees and comparing
them to predefined threshold values. Recovery (or, repair in Saffiotti’s terminology)
is performed by representing a plan (a set of fuzzy rules) as a tree, and detecting
problems with goodness, conflict, or competence in subtrees, and thereafter only
replace “bad” subtrees.

3.4.4 Action-based diagnosis

In the AI sub-area “Model-based diagnosis” various diagnosis problems have been
studied following the ground breaking work of Reiter [1987] and de Kleer and
Williams [1987]. Most of this work is fairly recent, and can be differentiated with re-
spect to the expressive power of the language used to model the domain (in the same
sense as our SCWA dimension), how the notion of diagnosis is defined (e.g. in terms

3.4. Artificial intelligence

of fault models, sequences of actions, sets of abnormal components, or probabilistic
criteria), how observations (measurements) are expressed, whether the diagnosis is
on-line or off-line, and what aspects of diagnostic problem solving, beyond diagnosis,
are addressed (e.g. recovery).

The work most strongly related to the topic of this thesis is “Action-Based Di-
agnosis” where the aim is to compute a sequence of actions (controllable or uncon-
trollable) than can explain a discrepancy (or, fault). In our terminology, this means
that discrepancy classification is defined as finding a sequence of actions that explains
(that is, is logically consistent with) an observed discrepancy. The most compre-
hensive account of this work can be found in [MclIlraith, 1997, Mcllraith, 1998], and
similar work in [Thielscher, 1997, Baral et al., 2000].

3.4.5 Livingstone

A fairly recent example of a model-based execution monitor is Livingstone, by
Williams and Nayak, [1996], which is an important part of the New Millennium
Remote Agent (NMRA) architecture developed at NASA Ames (see for example
[Muscettola et al., 2000]) for the purpose of spacecraft control. Livingstone’s sens-
ing component, Mode Identification (MI), uses a model to identify the most likely (in
a probabilistic sense) spacecraft states and reports all inferred state changes to the
controller (or execution mechanism, EXEC), enabling the EXEC to reason purely
in terms of spacecraft states. Input to MI is sensor values and commands sent by
EXEC to the real-time system. For example, a particular combination of attitude
errors may allow MI to infer that a particular thruster has failed. EXEC is only
informed about the failed state of the thruster, and not about the observed low-level
sensor values.

The command component of Livingstone, Mode Reconfiguration (MR), uses a
model of the spacecraft to find a least-cost command sequence that establishes or
restores desired functionality by reconfiguring hardware or repairing failed compo-
nents. MR is invoked by EXEC with a recovery request that specifies a set of
constraints to be established and maintained. In response, MR produces a recover
plan that, when executed by EXEC, moves the spacecraft from the current state (as
inferred by MI) to a new state in which all the constraints are satisfied.

There is no real distinction in the MI component between situation and expecta-
tion assessment, and discrepancy detection, since mode identification is performed
based on a normal-behavior model and a fault model. That is, the set of possible
current states is chosen as the most likely one according to the normal-behavior
model with a minimal number of faults. It is then up to EXEC to decide whether
any reported faults call for special purpose (hard-coded) recovery actions, or for an
invocation of MR (which performs recovery actions in a model-based manner). In
our terminology, EXEC performs discrepancy classification and some recovery, and
MR performs model-based recovery.

Chapter 8. Related work

3.4.6 Other examples

An interesting approach to execution monitoring in the Al community is the work
by De Giacomo et. al. That approach will be analyzed and extended in Chapter 7.

In the AuRA architecture [Arkin, 1990] a homeostatic control subsystem is con-
nected to a robot’s hardware interface, and monitors the internal conditions of the
robot (which we will call the configuration of the control system in subsequent chap-
ters). This is, in fact the only execution monitoring that occurs in AuRA, and
motivation stems from an analogy to mammalian control systems that allows for
dynamic re-planning in hazardous environments.

In Ferguson’s Touring Machines [Ferguson, 1992] execution monitoring, in our sense,
is the principle reasoning mechanism. A Touring Machine consists of three layers: A
reactive layer, a planning layer, and a model layer. The reactive layer provides the
system with fast, reactive capabilities for coping with events its higher level have
not planned for or modeled. Whenever such an event occurs a rule is triggered,
some action is executed and the model layer is alerted. The purpose of the planning
layer is to generate and execute plans. This layer has some capabilities to detect
plan failures, but decisions regarding recovery are taken by the modeling layer. In
the modeling layer capabilities for reflection and prediction reside. The basic idea is
that the modeling layer gets input from sensors, resource monitors and other layers
and uses this input to construct a new model from a library of model templates.
Reasoning from a model is then discrepancy detection, in our terminology, where
the chosen model is used for expectation assessment. Recovery may then mean or-
ders to the planning level to re-plan to the old goal, or planning from scratch to a
new goal.

3.5 Techniques for execution monitoring

From the viewpoint of the framework presented in Chapter 2, we will now exam-
ine contributions of techniques, not necessarily designed for execution monitoring
purposes, that can be used for the five constituting functions.

3.5.1 Situation and Expectation assessment

Successful approaches to expectation assessment have been developed in the frame-
work of Partially-Observable Markov Decision Processes [Cassandra et al., 1994],
where the domain is modeled with partially observable stochastic processes, and
probabilistic techniques are used to predict the behavior of the controlled system.
The Qualitative Reasoning (QR) community has focused on qualitative model-
ing, analysis, and simulation of physical systems. For example, a model of a system
may only consist of the sign of the derivatives at particular time points (see e.g.
[Dvorak and Kuipers, 1989, Dvorak and Kuipers, 1991]). Such information can be

3.5. Techniques for execution monitoring

used to monitor a physical system, and an interesting recent approach to qualitative
monitoring can be found in [Rinner and Kuipers, 1999], where a simulator produces
an expectation assessment, and where a tracking system refines the model whenever
the observations allow bounds on variables to be decreased. In this setting a dis-
crepancy is an observation of a value of a variable outside its bounds, and this is not
handled by the system.

Similarly to the work on FDI (Section 3.2.1) the work on monitoring in QR has
focused on open-loop systems.

Another example is planning operators consisting of preconditions and effects,
where estimation of the expected current state is performed in terms of plan projec-
tion or regression [Fikes et al., 1972, Sacerdoti, 1977, Bjareland and Karlsson, 1997].

3.5.2 Discrepancy Detection and Classification

There exists sophisticated discrepancy classification approaches for simulation pur-
poses, for example [Hammond, 1990, Beetz and McDermott, 1994], which are semi-
domain independent. Other examples of discrepancy classification approaches for
planning systems are [Ambros-Ingerson and Steel, 1988, Knoblock, 1995]. In our
group we have investigated the problem of classifying discrepancies distinctly as be-
ing due to external disturbances, or due to model inadequacies (faulty expectations)
[Bjdreland and Fodor, 1998, Bjireland, 1999b].

For classification of discrepancies a body of work exists in the area of Model-Based
Diagnosis [Reiter, 1987, Struss, 1997] where, typically, a model of the components of
a system is assumed, and a diagnosis is a subset of the set of components, which are
presumably faulty. For execution monitoring purposes, the value of a component-
based model is not clear, since it is the state transitions that are subject to diagnosis
for EM.

3.5.3 Recovery

Recovery from discrepancies is often mentioned as an important component of con-
trol systems. It can for example mean plan repair as for Hammond [1990], Beetz
and McDermott [1994], Ambros-Ingerson and Steel [1988], and Knoblock [1995],
re-planning as for Fikes et al. [1972], and Sacerdoti [1977], or control program elab-
oration as for [Lyons and Hendriks, 1995].

A part of the Machine Learning community has studied the problem of “Learning
Planning Operators” [Benson, 1996, Gil, 1992, Shen, 1989, Wang, 1994] where the
basic idea is to observe the effects of executing planning operators and then use
learning techniques to improve them. This is an interesting idea, but since the
current approaches rely on multiple failures or experimentation, they are of limited
interest outside a laboratory environment.

Chapter 8. Related work

Chapter 4

Ontological control

In chapter 2 we introduced the notion “benign/malignant classification” and dis-
cussed its applications. In this chapter we will present one particular instance of
BM classification named ontological control. Ontological control relies heavily on
engineering intuitions about sequential process controllers and was introduced by
George Fodor [Fodor, 1995, Fodor, 1998].

In modern industrial process controllers it is very difficult to construct complete
mathematical models of the closed-loop system. This is due to complexity that arises
as there typically are hundreds of programmable controllers (PCs) that influence
each other, actuators, databases, and Ethernets. These entities are generally run
as asynchronous concurrent processes. The set of PCs is often modularized so that
a subset of PCs is responsible, for example, for one actuator system, and every
PC in the subset has its own responsibilities, such as numerical computations or
continuous control. It is not uncommon that such a subset of PCs is organized in
a hierarchy. For such systems the term “sequential control” should be understood
as the high-level task of forcing the system through a sequence of discrete state
transitions. A state can, for example, represent the normal continuous control of
the system, where previous states must materialize to fulfill conditions necessary
for the continuous control. States occurring after that state in the sequence should
materialize to safely stop the process. So, the primary role of the sequential controller
may not be to achieve the “real” control goal (the quality goal of the process), but
to ensure that the configuration of the closed-loop system permits that the “real”
control can be performed.

The strong dependencies between modules and PCs in modules need to be con-
sidered by the PC programmer. This means that the sequential controller should be
able to produce a control action in whatever state the system may be in, as well as it
should ensure that the control sequence is promptly executed. Usually, contingencies
are taken care of within the program and discrepancies are detected and recovered
from by specialized hard-coded procedures in the program. However, in sufficiently
complex systems the problem of infinite recovery cycles occurs. That is, the exe-
cution runs through the sequence as expected up to a point where a discrepancy

Chapter 4. Ontological control

occurs and the hard-coded recovery strategy sets in and forces the system to a state
earlier in the sequence. Then the execution runs as expected again until the same
discrepancy occurs again, and the recovery mechanism again is invoked, etc. We
then have a cycle of states that is materialized ad infinitum. Ontological control was
invented for the purpose of detecting and classifying such systematic discrepancies,
as opposed to temporary disturbances.

When do these systematic discrepancies occur? Before we go into detail, the
question can briefly be answered as follows: When an expected state transition should
have occurred but did not. That is, if a control action is interrupted prematurely,
and the plant state does not satisfy the expected next state, we have a disturbance.
In the terminology of Ontological Control we have a discrepancy due to an Ezternal
Action (EA). Such control situations (that is, when control actions are interrupted)
are not at all uncommon in process control, and their occurrences can normally be
explained with some other PC overriding the invoked control action (hence the term
External Action). These discrepancies do not necessarily (or even usually) entail
that something is wrong with the control system.

The more problematic case occurs when a control action is completely executed,
but the expected next state does not materialize. This may imply that the problem
is not in the closed-loop system, but in the ezpectations of the effects of the control
actions. This holds when it is possible to precisely keep track of actual and expected
state transitions, as well as a precise notion of action execution. That is, if we
know that an action was executed as expected and a state transition occurred as
expected, but the expected next state did not materialize, then it is very unlikely
that an external action has occurred (since we will assume that the sampling interval
is short enough for us to able to detect every state transition). Such discrepancies
will be called Violations of Ontological Assumptions.

In this chapter we will begin by presenting the intuitions of violations of on-
tological assumptions more carefully, and then exemplify ontological control and
problems related to it. Then we informally present the limiting assumptions of the
theory in Section 4.4. The theory itself is developed along the lines of the abstract
theory in Section 2.5. We formally show that the assumptions make it possible to
distinctly classify any discrepancy as either being an external action or a violation
of ontological assumption. In Section 4.5 we will describe how the theory was imple-
mented and applied to a real process control system, ABB’s STRESSOMETER. As
it turned out the semi-automatically generated model used there did not satisfy the
assumptions of ontological control, so an important issue addressed in that section
is how to extract information from the model to make ontological control possible.
In Section 4.6 we compare the original work by Fodor to the work presented here.

4.1 Violations of ontological assumptions
In any sufficiently complex control system there are always assumptions that are

not checked by the controller, but that are necessary for the validity of the control
system. We call such assumptions ontological assumptions. A simple example of this

— 50 —

4.2. Two examples

is a controller that invokes actions based on measurements of a voltage computed
from a current under the assumption that the resistance is constant (according to
Ohm’s law). However, under varying temperature conditions, this assumption does
not hold. Thus, the ontological assumptions may be violated. The detection and
correct classification of violations of ontological assumptions, VOAs, and especially
the distinction between disturbances and VOAs (or, the disturbance decoupling prob-
lem in FDI terminology) is important for industrial process control. It is a distinct
possibility that VOAs cannot be detected by assessing output quality of the process
only. Industrial process control systems are normally very robust, and even though
the execution of the controller does not comply with the designer’s intentions, it
may still achieve its control goals. However, this means that undetected VOAs may
make the system behave sub-optimally, such as in the case of infinite recovery loops,
and that the life-span of the system is considerably shortened.
The fundamental question of ontological control is

Given a discrepancy, when can we distinguish between the cases when the
discrepancy is caused by an external action (disturbance) and caused by
a VOA (model inadequacies)?

This chapter is devoted to giving a formal answer to this question. The reader
should note that in the terminology introduced in 2.4, external actions correspond
to benign discrepancies, and VOAs to malignant discrepancies. The next obvious
question, “How do we recover from these classes of discrepancies?”, is not addressed
in detail in this chapter. The issue is discussed in Section 4.4.10, but mainly to argue
that to find general principles of recovery we need to employ modeling formalism
with a higher SCWA than what is used in this chapter. Such a formalism (the
situation calculus) is introduced and applied in Chapter 7.

4.2 Two examples

In this section we will attempt to convey the basic intuitions behind ontological
control by giving two examples. The first example is a diesel engine controller where
we establish an informal account of VOAs, and the second example is a formal blocks-
world example where a robot arm moves blocks from a store to two trolleys, which
can represent sequential control, that is, achieving a goal by executing a sequence
of control actions.

4.2.1 Diesel engine

The following example was introduced in [Fodor, 1995]. In figure 4.1 a closed-loop
control system for a diesel engine is depicted. The speed controller determines
the engine speed using two physical principles: When the engine has low speed, a
proximity sensor reads the rotation speed from a teeth wheel placed on the engine
shaft. The variable Ny (in rpm) represents this value. This is an inaccurate measure,
so when the diesel engine rotates with a speed larger than a specified limit Ny,

— 51 —

Chapter 4. Ontological control

Diesel Engine Clutch Generator

)

Action} ? N

Speed Ref. N,
— -
N*
eed
CcS)errol ler

Figure 4.1: The diesel engine example

the speed is measured more precisely using the frequency of the generated electrical
current!. The variable N, represents this value.

The goal for the sequential controller is to bring the engine to speed where
“normal” continuous control can be used. This requires two distinct modes:

1. At start-up, the speed controller accelerates the diesel engine according to a
predefined start-up trajectory, using the speed value N;. This mode is used
for speed values Ny < Nyim,.

2. When the diesel engine reaches the speed value Nj;,, the controller enters
control mode 2, where N5 is used. In this mode the goal is to maintain the
reference speed N*.

One ontological assumption present in this application is that the diesel engine shaft
and the generator shaft have the same rotation speed, since they are linked. If this
assumption is violated and the speeds of the two shafts are different, then the control
schema presented above is invalid.

So, let us assume that this ontological assumption is violated, for example by
assuming that the clutch is slippery. This implies that N; > Ns. Let us follow a
control sequence for the diesel engine.

The controller starts the diesel engine in mode 1 using the predefined speed
trajectory. When the controller observes that Ny = Ny, it switches to mode 2.
However, at this moment, the controller starts using N, and observes that Ny <
N1 = Ny;m which causes a switch back to mode 1. In mode 1 the controller again
observes N; = Nj;,, and consequently switches to mode 2, etc. The system is
stuck in an infinite recovery loop.

where f is the frequency and p is the

1This is done according to the formula Ny = %

number of magnetic poles of the generator.

— 52 —

4.2. Two examples

4.2.2 Trolleys

The following pedagogical example has been used in both [Bjareland and Fodor, 1998]
and [Bjireland, 1999b] to illustrate ontological control.

pos = S t1 t2

[S

1 12
\ /

: :
O O O O

Figure 4.2: The trolley example domain.

In Figure 4.2 the plant with one actuator (the robot arm) and three sensors
(the position of the robot arm and the two pressure sensors on the trolleys) is
depicted. We control the robot arm that is supposed to move boxes from s to the
trolleys t1 and t2. The variable pos (for the position of the robot arm) takes values
from the domain D,,s = {s,t1,t2}, and the other two variables (that measure
the number of boxes on each trolley), I1 and [2, that take values from domains
D;; = D;s = {0,1,2}. We have three control actions, M S for the action of moving
the arm to the store, M1 for the action of gripping a block and moving it to position
t1, and M2 for gripping and moving a block to position t2. We choose to trust
the actuator completely in this example, that is, the execution of control actions
will serve as the reference point which we use to classify discrepancies. This means
that we can construct a sub-model induced by only looking at sub-states involving
the variable pos. Since we completely trust the actuator, this sub-model gives the
precise means of tracking the execution of the system. Formulas belonging to such
sub-states are called control configurations. Formulas not belonging to such sub-
states are called plant formulas. If it is a physical fact that no more than two blocks
are in the system simultaneously, the relevant states can be found in Table 4.1. For
readability, the indices of the states denote the values of the variables, e.g.

c? 211

9 P e e e

yip =pos =t2AIll=1AI12=1
The first state is the initial state of the system, and the three last states are the
goal states. The remaining states (for example y2,) represent “non-relevant” states.

As this is an example of sequential control, we have three sequences of states and
control actions (goal paths) that are desirable (we consider all other paths to be

— 53 —

Chapter 4. Ontological control

State | pos = | 11 = |12 =
Yoo s 0 0
Yio s 1 0
Yo s 0 1
Yio t1 1 0
Yo t1 2 0
yh t2 0 1
Y2, t2 0 2
vh t2 1 1
Yg20 2 0
Y911 1 1
y902 0 2

Table 4.1: The relevant states.

non-desirable):

s M1 1 MS 4 Ml 1 MS

Yoo = Y10 = Y10 = Y20 — Yg=0
1 MS 2 MS

Yoo = Y10 = Y10 = Y11 = Ygu

M2 o M2 o MS
Yoo = Yo1 :>y01 = Yo2 = Ygo2

By merging the goal paths we can construct a model of the closed-loop system,

Figure 4.3: The model of the trolley example.

depicted in Figure 4.3. It is not necessarily clear that the control actions in this
example are energized, but if we assume that the variable pos maintains its value
until it reaches a new position, they are. Moreover, the system is non-logging since
configurations of consecutive states are mutually exclusive. This would imply that
discrepancy classification should be possible.

4.8. Summary of assumptions

Assume that the current goal is y4,, and that the state y§, has materialized.
According to the model the action M2 should be invoked and the expected next
iq 02
state 1s yi;.

EA: If an operator would move the box on the first trolley to the second, the state
y§; would materialize. Since the states have the same control configuration (pos = s)
it is clear that the execution of the control action did not perform as expected and
the conclusion is that the discrepancy is due to an EA. That is, the control action
was disturbed during its execution and did not complete, but the state is different
from the state the action was executed in.

VOA: One of the ontological assumptions in our examples is that the sensors /1
and [2 on the trolleys correspond to the positions t1 and t2, respectively. If the
trolleys would change places while executing M2, the resulting state would be y3,
(since the arm would put a block in position t2, where, now, the sensor [1 is sit-
uated), which is not explicitly represented in the model. But, since the expected
control configuration pos = 2 has materialized, but the expected plant formula (the
part of the state not concerning pos) did not, the conclusion is that a VOA has
occurred. That is, the control action was completely executed, but the resulting
state differed from the expected state.

In this example there are no recovery actions, and thus no infinite recovery loops. If
we would add more actions to the example, such as actions that can move objects
between the trolleys, and from the trolleys to the store, the system could get stuck
in infinite loops, in the case of the VOA presented above.

4.3 Summary of assumptions

As discussed above, the idea of detecting and classifying faults due to inadequate
models requires some assumptions on both the model and the plant. The main idea
is that contrary to, for example, the work on model-based diagnosis, we do not use
the entire model as the reference point of the monitor system. Instead, if we trust
a part of the model that marks the complete execution of control actions, we then
need to know exactly when state transitions occur, and we have chosen to achieve
this by assuming that actions are energized (as argued in Chapter 2. Finally, the
classification scheme requires that the configuration parts (which intuitively is the
part of the states concerning variables that are completely trusted) of all consecutive
states are mutually exclusive. Below we will discuss the assumptions in more general
terms.

4.3.1 Perfect sub-model

In the original work on ontological control [Fodor, 1995, Fodor, 1998] it was assumed
that the execution monitor had access to the configuration of the actuators of the

— 55 —

Chapter 4. Ontological control

controlled system. The sub-model (that is, that model induced by the configuration
parts of the states) only regarding the actuator sensor was then assumed to be
perfect, that is, if the actuator sensor values changed state, that state change was
completely trusted.

In this thesis we use a slight generalization of Fodor’s assumption of trusted ac-
tuator sensors. We construct the models in such a way that we easily can extract
a perfect (or, completely trusted) sub-model, but without any assumption of the
physical realization of it. The reason for this is that in actual industrial process
control systems, the inputs to the controller do not necessarily correspond to sen-
sor readings, and outputs do not necessarily correspond to actuator invocations. A
controller in such an environment is typically reading data from various sources,
such as databases, Ethernets, sensors, and many other controllers. The controller
then sends output to various receivers, such as databases, Ethernets, actuators, and
many other controllers. A complicating factor is that both the internal components
of a controller and all processes in its environment are run concurrently and asyn-
chronously. This means that the models cannot only be confined to the input/output
behaviors of the controller, but also have to consider internal computations, and ac-
tually consider such computations as providing inputs and outputs to the controller
itself.

A perfect sub-model is, thus, not necessarily a model of the input/output behav-
ior of the actuators, but a model of the system that can be trusted. An example
may be a sub-model that only reflects computations performed by the controller. In
fact, such a sub-model is constructed for the application described in Section 4.5.

4.3.2 Non-logging

It is not uncommon that parts of a control program are constructed for the purpose
of logging, that is, that state changes are recognized, but that they do not trigger
new control actions. An example could be robot arm, where there is a state when
the angle from some plane is < 30°, and a distinct consecutive state checking that
the angle now is < 45°.This is somewhat problematic from an execution monitoring
perspective. To do execution monitoring in the state-based manner of this thesis,
it is necessary to be able to distinctly recognize state changes. That is, with a
vector of input values to the controller we need to be able to uniquely determine the
internal state of the controller. For stabilization controllers we have no assumptions
on exactly how the model is constructed, but for sequential controllers we assume
the following:

The model is organized in sequences of states, goal paths, where transitions are
assumed to occur due to control actions. The goal paths have different priorities,
and we assume that the controller will try to follow the highest prioritized goal path
possible. Next, we assume that consecutive states on the goal paths are mutually
exclusive (that they cannot be materialized simultaneously), and this assumption is
enforced by assuming that consecutive states in the perfect sub-model are mutually
exclusive (see Section 4.4.2 for the details).

This is not a particularly restrictive assumption from a practical point of view,

— 56 —

4.4. Theory

since the controllers we are interested in typically are reactive, and thus states trig-
gering certain control actions are mutually exclusive to states triggering different
actions.

4.3.3 Energized actions

The last assumption we need to make is how the execution of actions can be modeled.
As discussed in Section 2.2.1, we will assume that actions are energized, that is, we
assume that our models are constructed in such a way that actions are executed
exactly as long as the state in which they were invoked is materialized.

4.4 Theory

From Section 2.5 we recall the definition of an execution monitoring system: A
twelve-tuple

(P,A,Cont,S, M, Sit, Exp, D, Det, L, Class, Recover),

where P is a set of plant states, A a set of control actions, Cont a function represent-
ing the controller, S a set of internal states, M a model, Sit the situation assessment
function, Ezp the expectation assessment function, D a set of discrepancies, Det
the discrepancy detection function, L a set of discrepancy classifications, Class the
discrepancy classification function, and Recover the recovery function.

In this section we will concretize the abstract theory and give a simple example.

4.4.1 Plant states, control actions, and internal states

We assume a finite set X = {z;,...,z,} of variables, representing input signals,
and a set of domains A = {éy,...,d,} representing the possible readings of the cor-
responding input signals. We assume a fixed ordering, (z1,... ,Z,), on the variables

(where §; is the domain of z;).

The set of plant states is defined as the set P = §; X §3 x ... X §,, that is, all
n-tuples of values from the variable domains according to the ordering.
We assume a set A = {aj,as,...} of control actions.

An expression z; ® d, with z; € X, ® € {<,=,>}, and d € ¢, is called a
constraint. A boolean combination of constraints® will be called a formula. The set
of all formulas over X and A is denoted by F'. The set of internal states is S C F'x F',
and for sequential control we denote the distinguished set of goal states by S9 C S.
For an element (c, z) € S the first component, ¢, is called the configuration, and the
second, z, is called the plant formula. For states y = (c, z) we define the projections
conf(y) = c and plant(y) = z.

2That is, a combinations of constraints constructed — (negation), A (conjunction), and Vv (dis-
junction)

Chapter 4. Ontological control

4.4.2 Models

We assume that models are constructed from goal paths, in the following manner:

A goal path is a directed graph G = (V, E) with labeled edges, where V C S,
E CV x A xV (where the control action is the label on the edge), and where the
following holds:

e There exists a unique internal state in V', s, such that no edge (s',a,s) € E
exists, for any internal state s’ and control action a € A. This internal state
is called the initial state of the goal path.

e There exists a unique internal state in V, s € S9, such that no edge (s, a,s’) €
E exists, for any internal state s’ and control action a € A. This internal state
is thus the goal state of the goal path.

e For any internal state s € V, except for the goal state, there is exactly one
edge (s,a,s') € E for some control action a and internal state s'.

Thus, a goal path is a total ordering of a subset of internal states, and the length
of a goal path, G, (that is, the number of internal states in the ordering) is denoted
length(G).

A model is a tuple M = (G,0) where G is a set of goal paths, and o is a total
ordering (the priority ordering) of G. Since all goal paths are totally ordered we
define the function indez : V X G — N such that index(s,G) = k iff s is the kth
internal state in the goal path G. If s is the initial state in G, then indez(s,G) = 1.
Moreover, we define functions initial(G) and goal(G) to return the initial and goal
states, respectively, of a given goal path G.

Clearly, it is possible to view the first component of a model (the set of goal
paths) as one single graph if we look at the union of the vertices and edges in the
goal paths. This graph will be referred to as the control graph. The control graph is
useful for recovery, which will be discussed below. We say that two internal states,
y and y', are consecutive if one of the the edges (y,a,y') or (y',a,y) exist in the
control graph.

By restricting a control graph to configurations, that is, by restricting all goal
paths to configurations, we construct a sub-model. A perfect sub-model is a sub-
model where all consecutive states are mutually exclusive (this concept will be prop-
erly defined in Section 4.4.3.). In figure 4.4 the perfect sub-model of the trolley
example is depicted.

4.4.3 Interpretations

A plant state, 0 € P can be viewed as a projection from variables to the correspond-
ing domains, where o(z;) = d; iff 0 = (d1,... ,d;,... ,dy).

The interpretation, ¢, is a function from plant states and formulas to {0, 1}, and
it is defined as follows: For z; € X, ® € {<,=,>}, d; € §;, and formulas a and g,

— 58 —

4.4. Theory

M1
pos = s pos = t1l
MS
MS M?2
pos = t2

Figure 4.4: The perfect sub-model of the trolley example.

we have

y=1 iff o(z;)

((o,anpB)=1 iff ((o,a

((o,avpB)=1 iff ((6,0) =1or ((c,8) =1
(o,—a) =1 iff ((o,a

We say that a formula, «, is consistent iff there exists a o € P such that {(o,a) = 1.
The plant state o is then said to satisfy a.

We overload ¢ to apply to internal states, so that {(o,{(c, 2)) =1, iff {(5,¢) =1
and ((o,2) = 1. Consistency and satisfaction is similarly defined for internal states
as for formulas.

If we have a plant state o such that for an internal state y, {(o:,y) = 1, we say
that y materializes by o.

Two internal states, y and y’, are said to be logically equivalent iff, for every
plant state o, we have ((0,y) = ((0,y'). Two states are mutually ezclusive iff they
are not simultaneously satisfied by any plant state.

4.4.4 Controller

A controller is a function from a current internal state and a goal state to a control
action. Formally, a controller is a function Cont : S x S9 — A. The goal state is
necessary to distinguish between the goal paths.

4.4.5 Embeddings

As we will need to put restrictions on the actual plant we need to simulate it some-
how. We do this by introducing the concept embedding, £ : P x A — P, a function
from plant states and control actions to plant states. Intuitively, £ models the
behavior of the plant under the influence of control actions.

Every embedding defines a set of traces 7¢ = ggago1a10s ... such that £(o;,a;) =
0i+1. We drop the subscript of 7z whenever no ambiguity can arise. We use the
symbol € to denote the substring relation.

— 59 —

Chapter 4. Ontological control

Definition 4.4.1 (Non-logging systems)
We say that a system is mon-logging w.r.t. an embedding £ and a corresponding
trace 7 iff, for every triple cac’ € T and

c,c e {d"|({", z) € S},
¢(a,¢) = ((a',") = 1 holds exactly when ¢ and ¢’ are mutually exclusive.d

Intuitively, for all subtraces ocac’ in a trace, any pair of configurations c, ¢’ that are
satisfied by 0,0’ respectively, must be mutually exclusive. Thus, we ensure that
state changes can be detected by looking at materializations of configurations only.

4.4.6 Situation assessment

The situation assessment function is, in this chapter, a function from a plant state,
a model, and a goal state to an internal state, that is, Sit : P x M x §9 —» S.

Here, we exploit the goal path structure. As discussed in Chapter 2, the impor-
tant issue is not to satisfy a goal state as quickly as possible, but to ensure that all
control actions in the sequence are properly executed. The idea is that the situation
assessment function picks out the internal state with the lowest index on the highest
prioritized goal path that is satisfied by the given plant state. Formally, for a set of
goal paths G = {G,;}"; and a state y = (c, z), we have Sit(o, (G, 0)) = y, for some
ordering o, by the following algorithm:

1. Let Y = {y € S|{(o,y') = 1}. If Y = (then return the dummy state
y = nosat.

2. Let ¢' ={G; € G|Ty € Y.y € G;}. G' cannot be empty by the definition of
“model”.

3. Pick out the highest prioritized member of G', that is, take G € G' such that
o(@) = maz{o(G') |G’ € G'}.

4. Set y to be the state in Y with the lowest index on G, that is indez(y) =
min{indez(y') |y’ € G}.

It is now possible to define the notion of energized actions.

Definition 4.4.2 (Energized actions)

We say that an action a is energized w.r.t. an embedding £ and a controller Cont
iff £(o, a) is defined exactly when Cont(Sit(o, M), g) = a, for some goal state g. A
system is energized if all control actions of the system are.C]

4.4.7 Expectation assessment

Expectation assessment is function Exp : S x A x M — S from an internal state,
control action, and a model to an internal state, the expected state. The computation
of an expected state is done from a plant state and a control action in an embedding,
that is, for oa € 7, Exp(Sit(o, M),a, M) = y where the edge (Sit(o, M), a,y) is an
edge on the highest prioritized goal path possible.

— 60 —

4.5. Ezperiments

4.4.8 Discrepancy detection

Let 7 be trace of an embedding and pick ocac’ € 7, such that
Ezp(Sit(o, M), a) # Sit(c', M).

Then we say that the discrepancy oac’ has been detected.

4.4.9 Discrepancy classification

The main goal for ontological control is to detect and classify discrepancies due to
model inadequacies and disturbances. With the concepts configuration, non-logging
and energized systems this is not particularly difficult.

Theorem 4.4.3 We assume a given model, controller, and embedding, such that
the system is non-logging and energized. Let oac’ be a detected discrepancy. Then,
exactly one of the following statements hold:

1. conf(Ezp(Sit(c, M), a)) is logically equivalent to conf(Sit(c', M)).

2. conf(Ezp(Sit(o, M), a)) is mutually exclusive with con f(Sit(s', M)).

Proof: Since oao’ is a discrepancy we have
(¢, z) = Ezp(Sit(o, M), a) # Sit(c', M) = (¢, 2').

As the system is energized, a change of internal state must have occurred due to
the discrepancy, that is, o and ¢’ must be mapped to different states by Sit. The
non-logging property then gives us that either (o, c) = {(o',¢') = 1 holds, or it does
not. When it holds, we have case 2, otherwise we have case 1.0

Case 1 in Theorem 4.4.3 will be referred to as a discrepancy due to EA, and case 2
as a discrepancy due to VOA.

4.4.10 Recovery from discrepancies

When a discrepancy is detected during execution we need to do two things. First,
we need to figure out what state we have come to and find an appropriate control
action from that state, in line with the purpose of the control system. Secondly,
we may have to adjust the model to make it more appropriate for our particular
application.

We address neither of these issues in this chapter. The low SCWA of our repre-
sentation makes it very difficult to predict the effects of any changes of the model.
In chapter 7, however, the issues will be discussed in detail.

— 61 —

Chapter 4. Ontological control

contro || |
systerm|
|

stegl

foll

Figure 4.5: The STRESSOMETER flatness control system. Drawing by Lasse Wid-
lund.

— 62 —

4.5. Ezperiments

4.5 Experiments

The theory described above has been applied to a real industrial process control
system. In this section, we will describe the application, the implementation, the
experimental setup, and some of the results. This is an extension of the paper
[Bjéreland and Fodor, 2000].

4.5.1 Application: ABB STRESSOMETER

The application is the market leading flatness control system for cold steel mills,
the ABB STRESSOMETER (see Figure 4.5). In cold-rolling mills, a metal strip
that is subject to different degrees of reduction across its width will be elongated
in varying length over different sections. A special measuring roll (in this case, a
STRESSOMETER System [ABB, 1999]) can gauge the flatness error of the strip.
Several different methods have been developed to correct the flatness error; all of
them are based upon local modifications of the gap between rolls. We consider here
a system with two actuators. The first one is a roll bending actuator that performs a
course-granularity symmetrical compensation of the error by applying bending forces
on the rolls. The second one is a so-called multi-step cooling actuator. This produces
small changes of the rolling diameter in well-defined zones of the rolls, where cooling
liquid is applied such that the flatness error is reduced. The cooling unit performs
a fine-granularity, possibly asymmetrical, compensation. Normally the effect of the
bending actuator on the strip is known in advance (given by a so-called evaluation
curve). To eliminate the error, a control algorithm is implemented as a two-step
control loop: First, the expected effect of the bending actuator is subtracted from
the measured error. Secondly, the error that is left over is further reduced by the
multi-step cooling unit.
A discrete state set for this type of control is a sequence Sy, ... ,S3 as follows:

So The controller computes the flatness error as a multi-variable distance (norm)
along the strip width, between the measured and the reference strip profile.

S1 The controller predicts what will be the effect of the bending force on the error.

Ss The error input for the cooling input is computed and other discrete conditions
are considered (e.g. manual cooling zones are excluded).

S3 The actuator commands for the cooling unit are determined.

Some of the commonly expected external actions (disturbances) that may occur and
change the state transition sequence described above are the following.

e The error to be compensated by the cooling unit is too high (the roll has been
cooled down too much and cannot act anymore).

e One or several cooling nozzles deliver less coolant liquid than specified, for
example due to sediments.

— 63 —

Chapter 4. Ontological control

e The bending actuator has changed its last characteristics since its maintenance
and acts in a lesser, or higher, degree.

In industrial applications, it is essential that trends for such expected external actions
are detected early. Ontological control can be applied both for slow continuous trends
as well as for discrete, abrupt changes such as to detect a sudden cross connection
of nozzles.

It should be noted that this system is non-linear and that the vast complexity
prohibits the construction of a mathematical model of it, from an economical point
of view. This implies that attempts to model the system and then formally verify its
correctness are futile (as are any attempts to verify industrial-scale control systems).
The control algorithms are implemented in “ABB Master Piece Language” (AMPL)

- Swatch

Actusl Vsl =l = R
Minirnumn —m————— — RS.TL
T
— e SET ol
RESET1
Masirnumn——7m7- —— 0

Figure 4.6: A small FBD program.

that is an instance of “Function Block Diagrams” (as described in the standard IEC
1131-3 [Lewis, 1997]). AMPL is thus data-flow based, and a program consists of a
number of elements with input and output ports connected to each other (see Figure
4.6 for a small example of a FBD program). To receive input, an AMPL program
relies on a number of communication elements and database query elements. It
is seldom the case that a program receives sensor readings directly; it is far more
common that the source of input is another controller or a database. The same
holds for output, where it is far more common for a program to send computation
results to other programs than to actuators. This means that the theoretical notions
“input variable” and “actuator invocation” should be viewed as inputs and outputs
to a control program without attaching any physical realization to them.

It is also the case that the programs are not I/0O switching, that is, all computa-
tions within a program are not necessarily performed during one sampling interval.?

31/0 switching systems run in a read-compute-write loop, and finishes the loop at every sampling
instance.

4.5. Ezperiments

This implies that the states of a model cannot only reflect variable changes outside
the program, but also need to model the internal execution. In fact, in the pro-
gram we studied there are 22 sequential processes running concurrently (and partly
asynchronously).

In this experiment we looked at one program, program 9 (of 25), for the cooling
unit. Program 9 was chosen since it is fairly small (7000 - 8000 lines of code), and
since it is a “true” legacy program, in the sense that it was coded a number of years
ago, and it is not entirely clear how it executes.

4.5.2 Goal path and control graph generation

The input for the goal path and control graph generation is an AMPL program
source code listing in ASCII text format. For program 9, the generation was done
by hand, but it can be semi-automated. After a number of unsuccessful attempts
at finding suitable parsing rules, the following “algorithm” was invented:

1. FEach element of the program is associated with one of the following four types:

e t; Control actions: Elements that influence devices outside the program,
such as elements producing external actions, communication elements,
database storage elements etc. Can be viewed as output elements.

e ¢y Logical: Logical gates.
e t3 Input plant formula: Input elements.

e t4 Data-flow: All other elements.
Only boolean signals are considered.

2. A restricted program is generated, in terms of t1, ... ,t4 and boolean variables
only. For program 9 we identified 94 variables.

3. For every control action element the corresponding precondition configuration
is determined, using the ¢ elements. This gives us the first two members of
the (c, a, ') triplets, and the number of states. The plant formula part of the
states comes from the t3 elements. In program 9 we identified 125 states.

4. The preconditions and the data-flow elements are then used to determine the
postconditions of the actions, which yields the goal paths. In program 9 there
are 46 goal paths.

5. The goal paths are then merged into the control graph.

The structure of the control graph is depicted in Figure 4.7, to show the complexity of
the application. The vertices in the picture represent states and the edges represent
transitions due to control actions.

— 65 —

Chapter 4. Ontological control

trol graph generated from program 9.

Figure 4.7: The con

— 66 —

4.6. Comparison to Fodor’s original work

4.5.3 Implementation

Based on the theory above, a prototype implementation was developed by Lewau
[Lewau, 1999]. The main part of the system is a domain-independent execution
monitoring engine that given a list of variables, a list of goal paths, and the control
graph, can monitor the execution of the corresponding controller. The prototype is
object-oriented and implemented in JAVA and is thus easy to move between plat-
forms. This also ensures that different means of communication with the execution
monitor are easy to implement (whether it is through sockets, Internet, RMI, or
Corba).

Below we refer to the prototype as the “OC system”.

4.5.4 Experimental setup and results

The experimental setup consists of an industrial-grade STRESSOMETER system
with a simulated process, which is normally used for factory acceptance tests. By
probing relevant variables during execution, we recorded 11 traces (sequences of
samples), with various faults, and stored them into text files.

The experiments have been done as follows: files with variable lists, goal paths
(with priorities), and the control graph were given to the OC system. The system
was tested with the 11 traces, of which one was sampled during optimal execution
of the STRESSOMETER, and the rest sampled with some fault introduced. We
analyzed the following relevant traces:

Trace 5: Cooling did not have effect due to high compensation.
Trace 6: Exception 1, data invalid at initiation phase.
Trace 7: Exception 1, communication error at initiation phase.
Trace 8: Exception 2, data invalid during processing.

Trace 9: Connection fault.
Trace 10: Internal communication error.
Trace 11: One cooling zone failure.
Except for the faults in trace 11, all other faults were detected, and none of the
faults had previously been explicitly detected. The granularity of the model prohib-
ited detection of the fault in trace 11.

The faults were also classified correctly, but since the system did not obey the
non-logging property, it is hard to say anything about the distinction between EAs
and VOAs for the given traces.

4.6 Comparison to Fodor’s original work
In previous sections there are claims that the presentation of ontological control in
this thesis is more general, more formal, and extended compared to the original work

of Fodor [1995, 1998]. In this section we will present the main differences between
the work in this thesis and Fodor’s work, and discuss them.

Chapter 4. Ontological control

4.6.1 Discrepancy classes

In this chapter we have considered only two causes for discrepancies: EA and VOA.
Fodor, on the other hand, distinguishes between the following four:

e VOA,

e Expected External Action (EEA),

e Unexpected External Action (UEA), and
e Timing Errors (TE).

Fodor defines VOAs in a similar way as we, but chooses a more refined definition
of EA. He assumes that there is a second kind of actions, expected external actions,
in the model, that may change the state when they are executed, but that are
uncontrollable by the monitored controller. In this way it is possible to model
known possible interferences with other controllers. Without the presence of such
expected external actions, the classes EEA and UEA coincide, and since they are
detected, classified and recovered from in exactly the same way, we have chosen to
view them as the same class.

Timing errors occur when the sampling time is too long, that is, when the exe-
cution monitor fails to notice a state change as it happened between two sampling
instances. This means that the execution monitor may erroneously detect a discrep-
ancy. It is difficult (probably impossible within this framework) to devise a theory
that can distinguish between VOAs and TEs, and since the experiences show that
normal sampling frequencies of 50 - 100 Hz suffices to detect all state transitions,
we assume that the frequencies can be set to be sufficiently high. Thus, we do not
need to to consider TEs.

4.6.2 States, goal paths, and control graphs

A fundamental difference is the notion of states. In Fodor’s work a controller state is
a tuple (y,u) where y is a pair (z, ¢) exactly corresponding to our notion of internal
state, and where u is a control action. A goal path in this setting is a path with
controller states as nodes and with unlabeled edges, while in our setting the internal
states are connected by edges corresponding to control actions. The advantage to
having control actions within the states is that then the “energized action property”
is built into the system (the system is in a state as long as the internal state is
satisfied and the control action is executed). However, there certainly are situations
where an action is more naturally modeled as being ballistic, and these cases cannot
be handled in a straightforward way in Fodor’s setting. Another difference is how
different actions with the same precondition are modeled. In our version this can
be handled by letting two control actions lead from the same state to two different
states, as shown in Figure 4.8. In Fodor’s setting Figure 4.8 must be interpreted as
nondeterministic effect of an action, which traditionally is avoided in process control

— 68 —

4.6. Comparison to Fodor’s original work

Figure 4.8: A state with two outgoing edges.

systems?. Instead, different actions with the same precondition must be modeled

with two different states, one for each action, and subsequently, two different paths
leading up to those.

4.6.3 Execution monitoring

Another difference lies in how situation assessment is assumed to work. We represent
states as formulas and use samples to satisfy states on the way to determine the
current state. In Fodor’s work the job of finding the current state is achieved by the
controller, that is, the controller decides the current state and then sends the name of
the state to the ontological controller. This implies that the execution monitor does
not have access to the vector of variable values. The reason for this is computational:
Fodor argues that it is unnecessary to perform the situation assessment computation
in the ontological controller since it is already done in the controller. In our setting
the value vectors are used to detect and to classify discrepancies, so Fodor uses
a different strategy: Discrepancy detection is done by comparing the name of the
state sent by the controller to the name of the expected state, and if these are not
the same a discrepancy is detected. For classification, Fodor relies on sets of states
related to every state in the model, the collateral states. The collateral states of a
state, y = (c, z), are all states that have the same ¢ component. Thus, for a detected
discrepancy it suffices to check whether it belongs to the collateral set of the previous
state or to the collateral set of the expected state to determine whether it is due to
an EA or a VOA, respectively. This idea is simpler than ours. However, it relies on
the assumption that all physically possible states are represented in the model, that
is, that for any possible sample there is a state that is materialized by the sample.
We consider this assumption to be both inconvenient for the model designer and
unnecessarily restrictive.

4.6.4 Well-determined state sets

In Fodor’s work a state transition diagram model can only be used for ontological
control if it is well-determined, that is, if the following four restrictions are met:

4This is a possibility that we have not considered in this thesis. We acknowledge the need for
modeling uncertainty, but believe that there are other (and perhaps better) ways of doing this than
to have nondeterministic actions. For example, since we are only interested in using the models for
prediction, there is a perfect duality between uncertainty of the effects of control actions, and the
uncertainty of sensor readings (see e.g. [Sandewall, 1994, Lin, 1996] for discussions on this duality).
The latter fits nicely into our framework.

— 69 —

Chapter 4. Ontological control

e Control action integrity: No state can be reached by both a control action and
an expected external action.

e Specificity of configurations: There cannot be two different control actions
whose effects satisfies the same configuration formula.

e Specificity of control actions: Control actions are deterministic.

e Syntactically complete state sets: There is a control action for every output of
the plant.

Fodor shows that these four restrictions enable solutions to the fundamental problem
of ontological control. The reader should note that it is difficult to compare Fodor’s
restrictions to the restrictions in this chapter. Fodor’s restrictions heavily rely on
his definition of “state” and the fact that his ontological controller does not perform
situation assessment by attempting to satisfy a logical formula, but instead receives
a pointer to the currently materialized state. However, we claim that our restrictions
are weaker, in the sense that more systems can satisfy our restrictions.

Clearly, the control-action-integrity restriction is not relevant to the work in
this chapter, since we have no explicit notion of “external action”. The specificity-
of-configuration restriction has been removed, while the specificity-of-control-actions
restriction remains, but more as a desired property of control systems in general than
as an explicit restriction. Finally, the syntactically-complete-state-sets restriction is
very strong, since it assumes that there exists an explicitly represented state for
every possible sample, and that the controller can handle every such state. This
assumption has been relaxed, because it has more to do with the design of robust
controllers then with execution monitoring of controllers.

70

Chapter 5

Stability-based execution
monitoring

In section 2.4 we discussed various research issues involved in execution monitoring,
one of which was “purpose”. As mentioned there we investigate two purposes of
execution monitoring in this thesis: ontological control and stability-based execution
monitoring. The former concerns sequential control systems and was developed to
hedge infinite recovery cycles in such systems (as presented in chapter 4). If we
instead consider control systems with the control task of making a plant stable, that
is, to ensure that the actual plant state always belongs to a predetermined set of
states, we have a different situation. It may be interesting to detect infinite cycles
for such systems as well, but as such controllers typically are continuously running
through a cycle of states, it is far more important to ensure that the system does
not jump out of that cycle, and if it does, that it is possible to get back into the
cycle again, in a safe manner.

In this chapter we will formally present the standard notions “stability” and
“stabilizability” for discrete system. We will argue that these notion may be very
restrictive for a number of domains, such as autonomous systems and robotics, and
propose the notion “maintainability”. The difference between these concepts lie
in the explicit representation of exogenous (uncontrollable) events that appear for
maintainability but not for stabilizability. A system is stabilizable w.r.t. a set of
states E if we can guarantee that we by control actions only can reach F from any
state in the system in finite time. We say that a system is k-maintainable w.r.t. E
if we during a time interval of length k& with no occurrences of exogenous actions,
can reach E with control actions only. It is easy to see that maintainability and
stabilizability are incomparable (neither property implies the other), so we propose
a more general notion, (k,!)-maintainability, meaning that any state trajectory of
length k£ with at most [occurrences of exogenous actions will take the system to
E. We show that stabilizability is equivalent to the existence of an m such that the
system is (m,m)-maintainable, and that k-maintainability is equivalent to (k,0)-

71

Chapter 5. Stability-based ezecution monitoring

maintainability.

We formally compare these notions in a framework of discrete finite automata.
We then present algorithms to verify maintainability, and to construct controllers
to make a system maintain a set of states. Finally we discuss how these notions can
be monitored.

The theory developed in this chapter will be applied in chapters 6 and 7.

5.1 Introduction

The concept of stability has undergone extensive investigation in both the Com-
puter Science (see Section 3.3.2 and the on-line bibliography [Herman, 1999]) and the
Control Theory community (see [Passino and Burgess, 1998]), both for continuous
systems (e.g. Lyapunov stability and asymptotic stability) and Discrete Event Dy-
namic Systems (DEDS) [Ramadge and Wonham, 1989], [ézveren et al., 1991]. All
these notions can be summarized as in [Passino and Burgess, 1998]:

We say that a system is stable if when it begins in a good state and is
perturbed into any other state it will always return to a good state.

The appropriate stability notion in a particular case depends on how the notions
“system”, “begins”, “state”, “good”, and “perturbed” are defined. For DEDS the
mainstream definition can be found in [Ozveren et al., 1991] (see Definition 5.3.3,
and that definition is the one we use in this chapter. A related, more general
notion which we call maintainability is introduced in this chapter, and we argue its
importance, particularly for high level control of agents.

Intuitively, we can view stabilizability as a hard constraint on the system while
maintainability is a softer constraint. In both maintainability and stabilizability our
goal is that the system should be among a given set of states E as much as possible.
In stabilizability, we want a control such that regardless of where the system is now
and what exogenous actions may occur, the system will reach one of the states in F
within a finite number of transitions and keep visiting it infinitely often after that. In
maintainability, we have a weaker requirement where the system reaches a state in E
within a finite number of transitions, provided it is not interfered with during those
transitions. Thus in maintainability, we admit that if there is continuous interference
(by exogenous actions) we can not get to E in a finite number of transitions. Such a
system will not satisfy the condition of stabilizability, but may satisfy the condition
of maintainability.

Many practical closed-loop systems are not stabilizable, but they still serve a
purpose and we believe that such systems can be specified by using the weaker
notion of maintainability. An example is a mobile robot [Brooks, 1986] which is
asked to ‘maintain’ a state where there are no obstacles in front it. Here, if there
is a belligerent adversary that keeps on placing an obstacle in front of the robot,
then the robot can not get to a state with no obstacle in front of it. But often we
will be satisfied if the robot avoids obstacles in front of it when it is not continually
harassed. Of course, we would rather have the robot take a path that does not have

72

5.2. Running example: Two finite buffers

such an adversary, but in the absence of such a path, it would be acceptable if it
takes an available path and ‘maintains’ states where there are no obstacles in front.

Other examples include agents that perform tasks based on commands. Here, the
correctness of the agent’s behavior can be formalized as ‘maintaining’ states where
there are no commands in the queue. We can not use the notion of stability because
if there is a continuous stream of commands, then there is no guarantee that the
agent would get to a state with no commands in its queue within a finite number of
transitions.

Another important aspect of maintainability is that in reactive software systems,
if we know that our system is k-maintainable, and each transition takes say ¢ time
units, then we can implement a transaction mechanism that will regulate the number
of exogenous actions allowed per unit time to be ﬁ This will also be useful in
web-based transaction software where exogenous actions are external interactions
and the internal service mechanism is modeled as control laws. On the other hand,
given a requirement that we must allow m requests (exogenous actions) per unit
time, we can work backwards to determine the value of k, and then find a controller
to make the system k-maintainable. In general, since in high level control we may
have the opportunity to limit (say through a transaction mechanism) the exogenous
actions, we think ‘maintainability’ is an important notion for high level control.

5.2 Running example: Two finite buffers

We imagine a system with two finite buffers, b; and by, where objects are added
to b; in an uncontrollable way. An agent then moves objects from b; to b and
processes them there. When an object has been processed it is automatically
removed from by. This is a slight modification of a finite buffer example from
[Passino and Burgess, 1998] and generalizes problems such as ftp agents maintain-
ing a clean ftp area by moving submitted files to other directories, or robots moving
physical objects from one location to another.

For simplicity, we assume that the agent has three control actions M;j, that
moves an object from b; to by (if such an object exists), the opposite action, Ma;
that moves an object from bs to by, and Pro that processes and removes an object
in by. There is one exogenous action, Ins that inserts an object into buffer b;. The
capacities of by and by are assumed to be equal.

If the control goal of this system is to keep b; empty, the system is not stabilizable,
since an object can always be inserted and violate the goal. However, if no insertions
are performed for a certain window of non-interference, the agent can always empty
bi. This implies that the system is maintainable but not stabilizable.

We will formalize this example below.

Chapter 5. Stability-based ezecution monitoring

5.3 Reviewing stability and stabilizability

In this section we review the notions of stability and stabilizability adapted from
the definitions in [Ozveren et al., 1991].

5.3.1 Stability and aliveness

Definition 5.3.1 A system A is a 4-tuple (X, X, f,d), where X is a finite set of
states, ¥ is a finite set of actions, d : X — 2% a function listing what actions may
occur (or are executable) in what state, and f : X x ¥ — 2% the non-deterministic
transition function. We overload the transition function to handle sequences of
actions as well, that is, for a sequence of actions A = [ag,a1,...,a,] we define

flz, 4)
f@,jag,a1,...,an)) = |J F@,las,... ,an)).

z' € f(z,a0)

O

Running Example, Cont’d
The transition diagram of the buffer example is depicted in figure 5.1. We assume

Ins

Figure 5.1: The transition diagram of the system for the buffer example.

that the maximum capacity of the buffers is 3, and model the state space by letting
every state in X represent the number of objects in b; and in b,, that is, a state
is identified by a pair of integers (i,j) (ij for short) where i denotes the number
of objects in by and j the number of objects in by. With the maximum capacity

5.3. Reviewing stability and stabilizability

assumed to be 3, the state space consists of 4 x 4 = 16 states. That is
X, =10,1,2,3} x {0, 1,2, 3}.

The set of actions is £, = {Mj3, My, Pro, Ins}.
We assume that the transition function is deterministic (that is f, : Xp x Xp —
¥) and is defined as follows:

fb(<la]> M12) = <Z - 15.7 + 1>
fb(<la]> M21) = <Z + 15.7 - 1>

fo((i,5), Pro) = (i,j — 1)

fo((i,9), Ins) = (i + 1, 5)

The enabling function, dy, is defined as

)) iff i>1landj<2
) iff i<2andj>1
Pro € dy((i,5)) iff 7>1
)

The system A, is then defined as Ay = (X, Ep, fo, dp)
Definition 5.3.2 An alternating sequence of states and actions
Ty A1, L1, 02, s Thy Qft1y Thtly---
is said to be a trajectory consistent with a system A if:
e Typ11 € f(zk,art1), and

e ajy1 € d(zg).

O

Definition 5.3.3 Given a system A and a set of states F, a state z is said to be
stable in A w.r.t. E if all trajectories consistent with A and starting from z go
through a state in F in a finite number of transitions and they visit F infinitely
often afterwards.

We say A = (X, %, f,d) is a stable system if all states in X are stable in A w.r.t. E.
O

Alternatively, A is stable w.r.t. E if, for any state x ¢ E, every infinite trajectory
starting with z will lead to F in a finite number of steps. This alternative definition
will be used in chapter 7.

It is not possible to pick any strict subsets S and E of X; such that S is stable
w.r.t. E. Thus, A4, is only trivially stable, that is, any set of states S is only stable
w.r.t. Xb-

Chapter 5. Stability-based ezecution monitoring

Definition 5.3.4 R(A,z) denotes the set of states that can be reached from z by
some trajectory consistent with A.

A state z is said to be alive if d(y) # 0, for all y € R(A,z). (That is, we can not
reach a state y from x, where no action is possible.)

We say A = (X, %, f,d) is alive if all states in X are alive.O
As an aid in future proofs we state the following characterization of stability:

Lemma 5.3.5 Let A be a system and S and E sets of states. S is stable w.r.t.
E iff there exists a natural number n such that every trajectory consistent with A
starting from x meets F in at most n transitions, for every x € S.

Proof: <) Straightforward from the definitions.

=). Assume that S is stable w.r.t. FE and that there is trajectory consistent with
A starting in a state z € S with length > |X| where no member of the trajectory
belongs to E. Then some state in X must occur more than once on the trajectory,
that is, there is a cycle on the trajectory not meeting E. But then there is an infinite
trajectory starting from x not meeting E at all, which contradicts the assumption
that S was stable w.r.t. E. Therefore, no trajectory starting in S can be longer
than | X|, which proves the lemma.O

It should be noted that Lemma 5.3.5 depends heavily on the finiteness of the set of
states. If X is infinite the Lemma fails.

5.3.2 Stabilizability

We now consider control and exogenous actions. The set of control actions U is a
subset of X, that can be performed by the agent. A particular control law! K :
X — U is function from states to control actions, such that K(z) € d(z). The set
of exogenous actions that can occur in a state (and that are beyond the control of
the agent) is given by a function e : X — 2%, such that e(z) C d(z). We assume
that K (z) & e(z) for any state z.

For our running example we have assumed that the only exogenous action is Ins.

Definition 5.3.6 Let A = (X, X, f,d) be a system. In presence of e, U, and K,
the closed loop system of A, denoted Ak, is defined as the four-tuple (X, %, f,dx),
where dg (z) = (d(z) N {K(z)}) Ue(z). O

Definition 5.3.7 Given a system A, a function e, and a set of states E, we say
S C X is stabilizable with respect to E if there exists a control law K such that for
all z in S, z is alive and stable with respect to E in the closed loop system Aj. If
S = X, we say A is stabilizable with respect to E. O

11t is also referred to as ‘feedback law’, ‘feedback control’ or ‘state feedback’ in the literature.

5.4. Maintainability

Running Example, Cont’d

It is easy to see that for S = {00} (no objects in the buffers) and E = {00, 01,02, 03}
(that is, we want to keep by empty) S is not stabilizable w.r.t. E, since the exogenous
action Ins can always interfere the task of bringing the system back to E.

On the other hand, S = {00} is in fact stabilizablew.r.t. E = {0,1,2}x{0,1,2,3}
(that is, we allow at most two objects in b; at any time), since we can go from any of
the states in {30,31, 32,33} to E with the execution of at most two control actions,
while the exogenous action is not defined for those states. If we would introduce a
failure state, for example for the case when b; is full and Ins is executed, S would no
longer be stabilizable w.r.t. E. In that case A, would be only trivially stabilizable.

5.4 Maintainability

Our intuition behind maintainability is that we would like our system to ‘maintain’ a
formula (or a set of states where the formula is satisfied) in the presence of exogenous
actions. By ‘maintain’ we mean a weaker requirement than the temporal operator
always (O) where Of means that f should be true in all the states in the trajectory.
The weaker requirement is that our system needs to get to a desired state within
a finite number of transitions provided it is not interfered in between by exogenous
actions. The question then is what role the exogenous actions play.

Our definition of maintainability relates a set of initial states S, that the system
may be initially in, a set of desired states E, that we want to maintain, a system A
and a control law K. Our goal is to formulate when the control law K maintains E
assuming that the system is initially in one of the states in S. We account for the
exogenous actions by defining the notion Closure(S, A) of a closure of S with respect
to A. This closure is the set of states that the system may get into starting from S.
Then we define maintainability by requiring that the control law be such that if the
system is in any state in the closure and is given a window of non-interference from
exogenous actions then it gets into a desired state.

Suppose the above condition of maintainability is satisfied, and while the control
law is leading the system towards a desired state an exogenous action happens and
takes the system off that path. What then? The answer is that the state that the
system will reach after the exogenous action will be a state from the closure. Thus, if
the system is then left alone (without interference from exogenous actions) it will be
again on its way to a desired state. So in our notion of maintainability, the control
is always taking the system towards a desired state, and after any disturbance from
an exogenous action, the control again puts the system on a path to a desired state.

We now formally define the notions of closure and maintainability.

Definition 5.4.1 (Closure)
Let A = (X, %, f,d) be a system and S be a set of states. The closure of A w.r.t.
S, denoted Closure(S, A), is defined as

Closure(S, A) = U R(A,),
z€eS

Chapter 5. Stability-based ezecution monitoring

that is, the set of all states reachable from any member of S in the system A.O

Definition 5.4.2 With Closure(S, Ax) and a set of states E we associate the set
Seq(S, Ak, E) of sequences z = zg, 1, ..., x|, one for each z € Closure(S, Ak),
where zj11 =z if 2, € E, and zp41 € f(zk, K(zx)) otherwise. We also define

Sequ(S, Ak, E) = {{zo,--. , x|} | To,-.. ,¥|x| € Seq(S, Ak, E)}.
O

Definition 5.4.3 Let A be a system, z a state, and E a set of states. We call the
sequence of control actions ay, ... ,an a plan from z to E iff f(z,[a1,...,a,]) C E.O

We note that the possible sequences of states that can occur between actions in a
plan are members of Seq({z}, Ak, E), for some control law K, if we repeat the last
state (which is in E) sufficiently many times.

Definition 5.4.4 Given a system A = (X, %, f,d), a set of control action U C ¥, a
specification of exogenous actions e, and a set of states E, we say a set of states S is
k-maintainable with respect to E if there exists a control law K such that from each
state z in Closure(S, Ak), we can get to a state in E with at most k transitions,
where each transition is dictated by the control K.

If there exists an n such that S is n-maintainable with respect to E, we say S is
maintainable with respect to E.

If S = X, then we say A is maintainable with respect to E.O

Running Example, Cont’d

Above we showed that in 4;, S = {00} is not stabilizable w.r.t. E = {00, 01,02, 03}.
Is then S maintainable w.r.t. E? Yes, since for the worst case system state, 33, a
control law can move the system to 30 (by three transitions due to Pos) without the
risk of interfering occurrences of exogenous actions. If there then is three transitions
without interference the control law can apply M, three times and be in 03. This
implies that S is 6-maintainable w.r.t. E. We can with a similar argument show
that S is 9-maintainable w.r.t. {00}. However, we have that S is not maintainable
w.r.t., for example, {03} (Since we cannot go from, for example, {00}, to {03} with
control actions only).

5.5 Algorithms

In this section we provide two algorithms to verify maintainability, and to generate
control for maintainability, with correctness proofs.

5.5. Algorithms

5.5.1 Testing maintainability

Input: A system A = (X, X, f,d), a set of states E, a set of states S, and a control
K.

Output: To find out if S is maintainable with respect to E, using the control K.
Algorithm:

Step 1: Compute Closure(S, Ak).

Step 2: Compute Seq(S, Ak, E).

Step 3: If for all Y € Seq,(S,4k,E), Y NE # () then S is maintainable with
respect to E, using the control K; Otherwise it is not maintainable with respect to
E, using the control K. O

For the correctness of this algorithm we show the following characterization of main-
tainability.

Proposition 5.5.1 Let A be a system, E a set of states, and K a control law. For
every Y € Seq,(S,Ak,E), YN E # (iff S is maintainable w.r.t. E, using the
control law K.

Proof: =) Straightforward, since the control law can move the system from any
state in Closure(S, Ak) to a state in F in at most |X | transitions.

<) If S is maintainable w.r.t. E using K, there is a natural number n such that from
every state in Closure(S, Ax) there exist a sequence of states ending in E of length
at most n, where every transition between states is due to K. Clearly, n < |X]| so
we repeat the last state in all sequences so that all sequences are of length | X | and
gather all such sequences into one set. This set is clearly equal to Seq(S, Ak, E).
Since every such sequence contains a member of E the proposition holds.OI

The complexity of this algorithm depends on the computations in steps 1 and 2. Let
n = |X| and S = X (this maximizes Closure(S, Ak) and is, thus, the worst case).
Clearly, we can compute R(Ak,z), for every z € S, in polynomial time (e.g. by
building the depth-first search tree, and simply collecting the vertices), and since we
only need to do this n times, the computation is polynomial. In the same manner
we can compute Seq(S, Ak, E) by recording the sequences that reach E during the
depth-first search.

5.5.2 Generating a control law for maintainability of a set of
states

Input: A system A = (X, X, f,d), a set of states E, and a set of states S.
Output: Find a control K such that S is maintainable with respect to E, using the
control K.

Algorithm:

Step 0: S;,, := S, Sout = 0.

Step 1: While S;,, # Sou: Do.

Pick an z from S;, \ Sous- Find a plan of minimal length from z to a state in E
using only control actions.

Chapter 5. Stability-based ezecution monitoring

If no such plan exists then EXIT and return(FAIL).

Let a be the first action of that plan.

Assign K(z) = a.

Sout = Sout U {E}

Sin = Sin U f(z,a) U{y : y € f(z,b), for some b € e(X)}.
Step 2: If S;;, = Sout, return(Syy:, K).

Proposition 5.5.2 If the above algorithm terminates by returning S’ and K, then:
(i) 8" = Closure(S, Ak), and (ii) S is maintainable with respect to E, using the
control K.

Proof: We assume that for a particular S the algorithm has returned S’ and K.
(i) We start by showing that S,,: C Closure(S, Ak) is an invariant of the algo-
rithm by induction over the number of iterations, n, of the algorithm, and write
Sr,. and S7 to denote the corresponding sets of states after n iterations. Trivially,

out

S0 . C Closure(S, Ax), and S}, C Closure(S, Ax) holds since a member of S}

out out out

necessarily is a member of S. We assume that S , C Closure(S, Ax) and inspect

a state € SE! such that z ¢ Sk, . Again, if z € S we have z € Closure(S, Ax)
by the definition of closure. Otherwise, there exists a state z’ € S¥, and an action
a such that = € f(z',a), from the construction of S¥ . By the induction hypotheses
we have that z' € Closure(S, Ax) and since z is reachable from z' we also have

z € Closure(S, Ak).

For the other inclusion we take a state z € Closure(S, Ak). By the definition
of closure there exists a state ' € S such that z is reachable from z’ which implies
that there is a trajectory consistent with Ax: z' = zg,a1,21,...,0,, T, = £ where
ZTp+1 € f(Tk,a511) and agy1 € di(zr). We prove that z € S’ by induction over the
length of the trajectory.

For n = 0 we have z € S C S’. We assume that zj belongs to S’ for all k < n. By
the definition of trajectories consistent with Ax we have that agy1 € dx(z) which
implies either that K (zy) = axt1 (1) or ag+1 € e(zg) (2). By the induction hypothe-
ses, xy is added to S, at some iteration of the algorithm, and in the same iteration
all members of the set L = f(zp,ap+1) U{y : y € f(z,b), for some b € e(X)} are
added to S;,. From (1) or (2) we get that z;; belongs to L, which means that
it will be picked by the algorithm in a later iteration, and added to S,,; and thus
belongs to S'. Therefore, S’ = Closure(S, Ax).

(ii) From (i) we know that S’ = Closure(S, Ak), so we may construct Seq(S, Ak, E).
Since the algorithm selects states reached by (sub-) plans of minimal length, the same
state (except for the last that belongs to E) cannot occur more than once in ev-
ery sequence in Seq(S, Ak, E). It is also clear that in every such sequence there
is a state belonging to E. Thus, we can apply proposition 5.5.1, which proves this
proposition. O

For the complexity of this algorithm, we begin by observing that our systems easily
translates into generalized Biichi automata, and that such automata can be trans-

— 80 —

5.6. Generalization: (k,l)-Maintainability

lated into our systems. This implies that we can exploit the following result by De
Giacomo and Vardi [2000]:

Theorem 5.5.3 Planning in generalized Biichi automata is PSPACE-complete?.0

This means that the algorithm has to solve a PSPACE-complete problem in every
iteration. However, if we would restrict systems to only allow deterministic transition
functions (that is, f : X x ¥ — X) the phrase in italics in step 1 of the algorithm
could be replaced by “a minimal length trajectory consistent with A”. The correctness
and completeness proofs are easily adaptable to accommodate this change. In this
case, the systems could be reduced to “standard” Biichi automata, and wvice versa.
Then we can exploit the following result by De Giacomo and Vardi:

Theorem 5.5.4 Planningin standard Biichi automata is NLOGSPACE-complete.C

At this point we would like to point out the relation between our work here and
some research on reactive and situated agents [Kaelbling and Rosenschein, 1991].
In [Kaelbling and Rosenschein, 1991], they state that in a control rule ‘if ¢ then
a’, the action a, must be the action that leads to the goal from any situation that
satisfies the condition ¢. The above algorithm interprets the notion of ‘leading to’
as the first action of a minimal cost plan.

5.6 Generalization: (k,[/)-Maintainability

In this section we generalize the notion of maintainability and show that the notion
of stabilizability is a special case of this generalization. Our generalization is based
on the intuition that perhaps, we can allow a limited number, [, of exogenous actions
during our so called ‘window of non-interference’, k, and still be able to get back to
a state in E. We refer to this general notion as (k, l)-maintainability.

Definition 5.6.1 Given a system A = (X, %, f,d), a set of agents action U C X, a
specification of exogenous actions e, and a set of states F, we say a set of states S is
(k,l)-maintainable (I < k) with respect to E if there exists a control law K such that
for each state z in Closure(S, Ak), all trajectories — consistent with Ax — from z
whose next k transitions contain at most [transitions due to exogenous actions and
the rest is dictated by the control K, reach a state in E by the k-th transition. O

Proposition 5.6.2 (k,0)-maintainable is equivalent to k-maintainable. (A set of
states S is (k,0)-maintainable with respect to a set of states E if and only if S is
k-maintainable with respect to E.)

Proof: Since we will have some time that we do not allow any exogenous actions to
interfere the system so that all trajectories which are consistent with Ax from z in
Closure(S, A) whose next k actions contain at most 0 transitions due to exogenous

2The reader should note that this, in fact, is good news, since planning in general with non-
deterministic operators is EXPSPACE-complete. The reason for the low complexity classification
is that the automata provide a sparse representation of the problem.

— 81 —

Chapter 5. Stability-based ezecution monitoring

actions, reach a state in F within k transitions. And a control law K guarantees
that there is at least one (and exactly one) action to be taken at each state of
Closure(S, A), thus guarantees an existence of at least one trajectory from each
state z of Closure(S, A). So S is k-maintainable.

(<) Suppose that S is k-maintainable with respect to E. Then there exists a
control law K such that for each state z in Closure(S, A), we can get to a state in E
within k transitions, where each transition is dictated by the control K, and is not
an exogenous action. I.e. at most 0 transition is due to exogenous actions. Since k
actions which do not contains any exogenous actions determine only one trajectory
from a state x to a state in F (since the control law has only one feasible action at
each state), we can say that all trajectories (actually there is only one in this case)
which are consistent with Ax = (X, X%, f,dk) from a state z whose next k actions
contain at most 0 exogenous action reach a state E within k transitions. Thus S is
(k,0)-maintainable with respect to E.

Therefore (k,0)-maintainable is equivalent to k-maintainable. O

Proposition 5.6.3 A set of states S is stabilizable iff S is alive and there exists an
integer m such that S is (m,m)-maintainable with respect to E.

Proof: (=) Suppose a set S is stabilizable with respect to E. So there is a control
law K such that S is alive and stable with respect to E in the closed loop system
Ag. Thus all trajectories consistent with Ag and starting from z go through a state
in F in a finite number of transitions and they visit E infinitely often afterwards.
Case 1. Let x € S. Then by assumption, all trajectories from z go through a state
in FE within finite transition. Since there is a finite number of such trajectories, take
ng to be the maximum number of transition of the trajectories from z to a state E.
This includes some actions due to exogenous actions, but at most n, of them.
Case 2. If z € Closure(S, Ax)\S, then the state z is in a trajectory T from a state,
say y, in S. Since all trajectories consistent with Ak reach from a state y in S to a
state in E with finite number of transitions and visit F infinitely often afterwards,
this partial trajectory 7' which starts from a state = and follow the trajectory T
afterwards will visit F infinitely often. So through this trajectory 7', we can reach
from z to a state in E within finite transitions, say n,. This includes at most n,
transitions which are due to exogenous actions.

Then take m = maz{n,|z € Closure(S, A)}. Since Closure(S,A) is finite, m
exists (m < oo). From each state z in Closure(S, Ax), all trajectories, consistent
with Ak, whose next m transitions contain at most m transitions due to exogenous
actions and the rest is dictated by the control K reach a state in E within m tran-
sitions. Thus S is (m,m)-maintainable with respect to E. O.

(<) Suppose that S is alive and there exists an integer m such that S is (m,m)-

maintainable with respect to E. Thus there exists a control law K such that from
each state z in Closure(S, Ak), all trajectories, consistent with Ag, from z whose

— 82 —

5.7, Stability-based ezecution monitoring

next m actions contain at most m transitions due to exogenous actions reach a state
in E within m transition. Thus all trajectories, consistent with A, starting from xz
go though a state y in E, any state, say z, which we can reach from that state y in
E belongs to Closure(S, A) since that state z can be reached from a state z in S
though a state y in E. And with assumption, all trajectories which are consistent
with Ax from a state z whose next m actions contain at most m transitions due
to exogenous actions reach a state in E within m transitions again. Hence those
trajectories visit E within m transitions every time it leaves E to a state outside of
E afterwards. L.e. they visit E infinitely often afterwards. Thus S is stable with
respect to F in the closed loop system Ag. Since S is alive by assumption, S is
stabilizable with respect to E.

Therefore a set of states S is stabilizable with respect to a set of states E if and only
if S is alive and there exists an integer m such that S is (m, m)-maintainable with
respect to E.00

5.7 Stability-based execution monitoring

The obvious monitoring task for a stabilizing controller is to detect whether the
system is stable or not after a detected discrepancy. By viewing a discrepancy as
a new exogenous action, can the controller still stabilize the system? Depending
on the answer to that question we again have the benign/malignant classification,
where a discrepancy that leads to a state within the range of the current controller
is benign, and all other discrepancies are malignant. For malignant discrepancies we
recover applying the following three steps, if possible.

1. Incorporate the discrepancy in the plant model as a new effect of the executed
action (model tuning recovery), then,

2. construct a new controller from the new plant model, and finally,
3. apply the new controller to the current state.

We assume that we have a closed-loop system Ax = (X, %, f,dk) for a controller
K. Let z be a state in which the control action a was executed, and let z' be the
measured state after the execution. Clearly, if 2’ ¢ f(x,a) we have a discrepancy,
since f is the prediction function. However, for the current set of initial states .S and
goal states E, if ' € Closure(S, Ax) we know that the controller will be able to
force the system to a state in E. This is a benign discrepancy, and we take no further
action. Instead, if z' ¢ Closure(S, Ax), we do not know whether E is reachable
anymore, so perform the following:

1. Set f' = (f —(z,a, f(z,a)))U(z,a, (f(z,a) U{z'})), that is, add the new effect
to the transition function. Construct A' = (X, %, f',d) and S’ = SU{z'}, that
is, add the new state as a possible initial state.

— 83 —

Chapter 5. Stability-based ezecution monitoring

2. For A', S', and E, construct a new controller K', for example by using Al-
gorithm 5.5.2. If there is no such controller, we have a fatal error and the
execution should be stopped.

3. Otherwise, execute action K'(z').

This algorithm performs a parsimonous model-tuning recovery, in the sense that the
same discrepancy with the same classification cannot occur again.

Chapter 6

Execution monitoring of
hybrid-systems controllers

6.1 Introduction

In Chapter 2 it was noted that the idea of automated generation of a state transition
model from a rule-based control program is impossible in the general case, and very
difficult even under the limiting assumptions given by control designers. In this
chapter we will present work that remedies some of those problems: We will instead
of a control program begin with a specification of a closed-loop system written in a
language that will enable us to generate a state transition diagram more easily.

As mentioned in Chapter 2 there are numerous modeling formalisms for control
systems. On one hand we have purely discrete formalisms such as finite automata
(e.g. [Ramadge and Wonham, 1989]) or planning formalisms (e.g. Fikes and Nilsson
[1971]), and on the other we have the purely continuous differential equations (e.g.
Faurre and Depeyrot [1977]). However, it is clear that most actual control systems
are hybrid, that is, that they contain both discrete and continuous elements.

There is a large body of work on the problem of hybrid controller synthesis
being pursued in AI research (e.g. [Bjireland and Driankov, 1999]), hybrid sys-
tems (e.g. [Zhang and Mackworth, 1995, Henzinger and Kopke, 1997]), and control
theory (e.g. [Lennartsson et al., 1996]) communities. Typically the synthesis for-
malisms are designed for verification purposes, and the synthesized controllers are
often specifications of controllers rather than actual implementations of these. One
of the reasons for this gap between verification and use is that controllers in use nec-
essarily need to be able to handle many more cases than what normally is covered
by the verification. According to the folklore of process control, more than 70% of
a medium sized PLC program is devoted to fault detection, isolation and recovery.
The remaining 30% is taking care of the actual control, and is the part that is suited
for verification. The verification-use gap is unfortunate, to say the least, since the
purpose of verification is to show that the verified systems can be used in a safe way.

— 85 —

Chapter 6. Ezecution monitoring of hybrid-systems controllers

We believe that we are taking one step in closing the verification-use gap by, in
this chapter, proposing not only that controller programs should be synthesized from
specifications, but also that representations useful for execution monitors should be
synthesized from the same specifications. We do this by utilizing closed-loop Hybrid
Automata (HA) specifications [Alur et al., 1992], assuming that a (reactive) control
program has been synthesized, and constructing a rich model where it is possible to
reason about the expected effects of control actions.

Rectangular hybrid automaton (RHA) is a modeling formalisms where the con-
tinuous behavior is modeled by differential inequalities (e.g. 0 < z < 1), and the
discrete behavior in terms of (instantaneous) mode switches. We will assume that
the RHAs we study are specifications of controllers, and that every mode switch is
due to an invoked control action. Moreover, we will restrict ourselves to handling
controllers for which the control goal can be formulated as safety requirements (that
some condition should, or should not, be maintained during the control).

6.2 Preliminaries

In this section we will present the formal definitions of rectangular hybrid automata.
The following definitions are taken verbatim from [Henzinger and Kopke, 1997].

6.2.1 Rectangular hybrid automata

Definition 6.2.1 Let X = {z,...,z,} be a set of real-valued variables. A rect-
angular inequality over X is an expression of the form z; ~ ¢, where c is an integer
constant, and ~€ {<,<,>,>}. A rectangular predicate over X is a conjunction of
rectangular inequalities. We denote the set of all rectangular predicates over X with
Rect(X). The set of vectors Z € R™ that satisfies a rectangular predicate is called
a rectangle. For a particular rectangular predicate ¢, we denote the corresponding
rectangle with [¢]. By writing ¢, for a rectangular predicate ¢, and a variable index
i, we denote the conjunction of all rectangular inequalities in ¢ only involving the
variable ;. For a set of indices, I, we define ¢! = Nicr ¢t.0

Definition 6.2.2 (Rectangular automaton)

A rectangular automaton A consist of the following components.

Variables. The finite set X = {z1,...,z,} of real-valued variables representing
the continuous part of the system. We write X = {; | z; € X} for the set of dotted
variables, representing the first derivatives. For convenience, we write X' to denote
the set {z}|z; € X} (which we will use to connect variable values before and after
mode switches).

Control Graph. The finite directed multi-graph (V, E) represents the discrete part
of the system. The vertices in V are called control modes which we also will refer
to as locations. The edges in E are called control switches. The switches will some-
times be viewed as functions, i.e. we can say that e(v) = ¢’ iff e = (v,v'). In a
graphical representation of an automaton the locations correspond to the boxes and

— 86 —

6.2. Preliminaries

the switches to the arrows between boxes.

Initial Conditions. The function init : V — Rect(X) maps each control mode to
its initial condition, a rectangular predicate. When the automaton control starts in
mode v, the variables have initial values inside the rectangle [init(v)].

Invariant Conditions. The function inv : V — Rect(X) maps each control mode
to its invariant condition, a rectangular predicate. The automaton control may re-
side in mode v only as long as the values of the variables stay inside the rectangle
[inv(v)]. We define inv(A) as inv(A4) = A,y inv(v). Below, we will apply onto-
logical control in this setting and will need to distinguish between the configuration
and plant formula parts of the invariants. Thus, ¢nv¢ens maps a control mode to
its configuration invariant, and we let invpant = NV — iNVons (in a set theoretic
understanding of the functions).

Jump Conditions. The function jump maps each control switch e € E to a
(non-rectangular) predicate jump(e) of the form ¢ A @' A /\igupdate(e) z; = z}, where
¢ € Rect(X), ¢' € Rect(X'), and update(e) C {1,...,n}. The jump condition
jump(e) specifies the effect of the change in control mode on the values of the vari-
ables: each unprimed variable z; refer to the corresponding value before the control
switch e, and each primed variable 2} to a corresponding value after the switch. So
the automaton may switch across e if

1. the values of the variables are inside [¢], and
2. the value of every variable z; with i ¢ update(e) is in the rectangle [¢ °].

Then, the value of every variable z; with 7 ¢ update(e) remains unchanged by the
switch. The value of every z; with i € update(e) is assumed to be updated non-
deterministically to an arbitrary value in the rectangle [[d)’i]]. For a jump condition
jump(e) = e A P, A /\igupdate(e) z; = z;, we define jump'(e) = ¢, to denote the
actual condition that forces the switch e. Below, we will apply ontological control
in this setting and will need to distinguish between the configuration and plant for-
mula parts of the jump conditions. Thus, jump::onf maps a control switch to its
configuration jump condition, and we let jump,,,, ., = jump’ — jump::onf (in a set
theoretic understanding of the functions).

Flow Conditions. the function flow : V — Rect(X) maps each control mode
v to a flow condition, a rectangular predicate that constrains the behavior of the
first derivatives of the variables. While time passes with the automaton control in
mode v, the values of the variables are assumed to follow nondeterministically any
differentiable trajectory whose first derivative stays inside the rectangle [flow(v)].
Events. Given a finite set A of events, the function event : E — A maps each
control switch to an event.

Thus, a rectangular automaton A is a nine-tuple

(X,V, E,init,inv, jump, flow, A, event)

Chapter 6. Ezecution monitoring of hybrid-systems controllers

6.2.2 Example — Railroad crossing

z > 2000

Figure 6.1: Hybrid automaton modeling the train in the train-and-gate example.

Our running example is a HA model of a railroad crossing presented by Alur et al.
[1993]. The model consists of three sub-models, a train, a gate, and a controller. In
[Alur et al., 1993] the model was used to verify that the controller guaranteed certain
safety properties for the overall system. Our use of this example is to illustrate
how execution monitoring of the controller can be performed by using information
embedded in the HA sub-model for the train.

The HA model of the train (Fig. 6.1) has three locations: far, near, and past,
defined as the distance, =, between the train and the gate. That is, z > 1000 is the
invariant for the location far, x > 0 for near, and =z < 100 for past. Furthermore,
when the jump condition x = 1000 is satisfied in location far, the train HA switches
from far to near, and sets the boolean variable app to true. This variable (and the
variable exit) occur with exclamation marks in this HA to denote that they are set
to true during one sampling interval (and reset afterwards) as a result of an action
in this part of the system. In the HA model of the controller we will see the same
two variables with question marks to denote that switches are caused by changes
in their values.! When the HA is in near and z = 0 is satisfied, the HA switches
from near to past. Finally, when the current location is past and x = 100, then z
is reassigned to an arbitrary value in [2000, 00), and the variable exit is set to true.
The HA model of the gate (Fig. 6.2) has four location: up, open, down, and closed.
Initially, the gate is open and the angle of the gate to the ground is 90° (the angle
is measured by g). Whenever the variable lower is set to true (by the controller)
the automaton switches to down where the gate is lowered a rate of 9° per second.

1The exclamation and question marks are in fact HYTECH syntax [Henzinger et al., 1997], and
are used to denote that the automatons are synchronized by such variables.

— 88 —

6.2. Preliminaries

raise?
lower?
closed
g=20
g=0

Figure 6.2: Hybrid automaton modeling the gate in the train-and-gate example.

When the angle is 0° a switch to closed occurs. If the gate is in location down or
closed and the variable lower is set to true (by the controller), the location will be
the same. If raise is set to true, a switch to up will occur, and the gate will start to
raise by 9° per second until it reaches 90° where a switch to open occurs.

exrit?

Figure 6.3: Hybrid automaton modeling the controller in the train-and-gate example.

The HA model of the controller is given in Fig. 6.3. The idea is that the controller
obtains information from the train automaton whether the train is approaching or
exiting (i.e. from the variables app and exit), then waits for a period of time, a, and
sets lower or raise to true, respectively, which is then handled by the gate.

The system with the three automata has been verified in HYTECH by Henzinger
et al. [1997] to prove that for a < 49/5, when the train is within 10 meters from the
gate, the gate is always fully closed.

— 89 —

Chapter 6. Ezecution monitoring of hybrid-systems controllers

6.3 Automatic generation of models for execution
monitoring

We will now demonstrate how a model for execution monitoring can be generated
for a particular example: A train-and-gate example from [Alur et al., 1993].

To be able to formally describe the translation of an HA to a state transition
diagram, and to formally define execution monitoring on that representation, we will
formally define state transition diagrams.

Definition 6.3.1 (State Transition Diagram)

A state transition diagram is a digraph G = (V, E) with labeled vertices and edges.
For a vertice v € V we define a function formula(v) that maps the vertice to a
boolean formula. Similar to the configuration and plant formula versions of the jump
conditions of control modes, we define formulacony and formulapan:. Moreover,
there is a relation Idle(v) that holds iff the vertice denotes an idle state. For an
edge e € E we define start(e) to be the starting vertex of the edge, end(e) to be the
ending vertex, and action(e) to be a conjunction of control actions, or the dummy
label nop.O

Definition 6.3.2 (Transformed hybrid automata)
Let A = (X, Va4, Ea,init, inv, jump, flow, A, event) be rectangular automaton. Be-
low, we define a state transition diagram 7 (A4) = (Vr(a), Bra))-

1. For every v € V there is a vertice 7 (v) € V(4 such that

e formula(T (v)) = inv(v) (formulacons(T (v)) = inVeons(v)), and
e Idle(T (v)) holds.

2. For every e € E4 there is a vertice T (e) € Vir(4) such that

o formula(T (e)) = jump'(e), (formulacons (T (€)) = jump,,,;(e)) and
e —Idle(T (e)) holds.

3. No other elements exist in V(4) or E7(4) than the ones described above.

4. For v € V(4) such that Idle(v) holds, we know by construction that there
exists a v’ € V4 where v = T (v'). For every such v, there are edges e € Er(4)
such that action(e) = nop, start(e) = v and end(e) = T (ea) for every es €
E4 where e4(v') is defined.

5. For v € V() such that —Idle(v) holds, we know by construction that there
existsaes € E4 where v = T (ea). For every such v, there are edges e € E7 (4
such that action(e) = event(ey), start(e) = v, and end(e) = T (v4), for every
va € V4 where there exists a vertice v/y € V4 for which e4(v)y) = va.

— g0 —

6.3. Automatic generation of models for ezecution monitoring

The basic assumption governing the transformation in Definition 6.3.2 is that dis-
crete change is controlled change, and vice versa. Thus, for the purpose of execution
monitoring of hybrid systems in this thesis, we only monitor the discrete state tran-
sitions.

6.3.1 Railroad crossing cont’d

We will now construct a state transition diagram for the railroad crossing example.
The problem is that it is impossible to clearly distinguish between the locations
idle, about_to_lower, and about_to_raise by only looking at the invariants of the
locations. That is, the “names” of the locations play an important role in the model.
As we have argued in previous chapters, situation assessment relies on some kind of
“uniqueness” of materialized states, which, for example, can be achieved by forcing
states to be mutually exclusive. We will do this for this example too, as follows: We
begin by constructing a set of production rules that could be a control program for
the HA in Figure 6.3, where control actions are executed if a jump condition from
a location is satisfied while the system is in that location. That controller will not
have mutually exclusive conditions for the control actions. Then by exploiting the
synchronization information in the controller HA, the train HA (Figure 6.1), and
the gate HA (Figure 6.2), and by viewing the locations in the train and the gate
HAs as sensor signals to the controller, we can construct a control program with
mutually exclusive conditions. It is then possible to add those conditions to the
original controller HA as jump conditions, add more information to the invariants,
and then to construct the state transition diagram as in Definition 6.3.2.

We define an HA-state of a HA to be a tuple (l,inv), where [is a location (a
symbol) and inwv(l) is the invariant of .

A control rule is an expression S A j = a, where S is an HA- state, j a jump
condition, and a a control action. The conjunction S A j is the precondition of a
control rule. A control program is a set of control rules.

The control program for the controller in Fig. 6.3 will then be as follows:

idle,true) A exit = start_clock

(
(idle,true) A app = start_clock
(about_tolower,t < a) A exit = start_clock
(about_tolower,t < a) Nt =a =

lower A stop_clock (6.1)
(about_to_raise,t < a) A app = start_clock
(about_to_raise,t < a)y ANt =a =

raise A stop_clock (6.2)

In the example (Fig. 6.3) we choose to view every resetting of the clock, ¢, to be a
control action, start_clock, which is assumed to reset and start the clock. Moreover,
we introduce the control action stop_clock that is assumed to stop the clock. The

— 91 —

Chapter 6. Ezecution monitoring of hybrid-systems controllers

action start_clock replaces t := 0 as an action on edges, and stop_clock is introduced
for every edge where the resulting location includes # = 0. 2

It is clear that the control program above is valid if it is started in the idle loca-
tion, the train is started in far, and the gate in open, i.e. the control program will
behave well under the exact circumstances the automata are verified for. However,
in engineering practice it is unrealistic to assume anything about the initial state.
Thus, it is necessary to base the execution monitoring on ezternal information (such
as sensor or actuator information), rather than an assumption on the current state
of the controller. Also, we can see that the preconditions of control rules (6.1) and
(6.2) cannot be distinguished logically based on their invariants. Thus, we require
the control rules to be “physically” mutually exclusive, i.e. that it is physically
impossible for two preconditions to be satisfied simultaneously.?

Now, we will take advantage of two assumptions: First, that we know whether
the clock is running or not (the truth-value of a variable clock_on). Secondly, that
we can sense the current location of the train (that the controller has access to the
truth-values of the variables far, near and past).

To characterize the controller locations we begin in the verified initial location
idle and note that the clock is off, and that the corresponding initial location in
the train HA is far. For about_to_lower we can see that the previous train location
may have been far, and that a switch in the train HA, from far to near must have
occurred, that is, when the controller is in about_to_lower it is possible that the
train is in near. It is also possible that the train switches to past before t = «a is
satisfied. Thus, for about_to_lower we know that the clock is on, and that the train
is in either near or past. If the condition £ = a eventually is satisfied the controller
switches to idle which implies that the train is in far (from the initialization), near
or past when the controller is in idle. Similarly, we note that about_to_raise can be
characterized by clock_on A far. To summarize, we can characterize the location
idle with the formula —clock_on A (far V near V past) which we may translate to
—clock_on, about_to_lower with clock_on A (near Vpast). But these characterizations
only consider the activations of control actions, and to perform execution monitoring
we also need to represent the states in which the controller is waiting in a location.
For example, when the train is approaching, and the clock is running, there is a time
interval when no control action is invoked by the controller.

By replacing the HA-states in the control program above by the characterizations
we obtain the set of rules below.

2To be able to verify a system with this change, we would have to model the clock too with HA.
However, this fairly simple modeling task is not included here.

30ne way of constructing physically mutually exclusive preconditions is to ensure that they are
logically mutually exclusive. However, this may be very inconvenient for the control designer.

— 92 —

6.4. FEzecution monitoring

(S1) —clock_on A exit = start_clock

(S2) -—clock_on A app = start_clock

(S3) clock-on A (near V past) A exit =
start_clock

(S4) clock_on A (near V past) ANt = a =
lower A stop_clock

(S5) clock-on A far A app = start_clock

(S6) clock-on A far ANt =a =

raise N\ stop_clock

The preconditions of the rules above can now be added to as jump conditions to
the automata, in the obvious way. Below, we will use the labels S1 — S6 to denote
the edges in the HA. For example, jump'(S1) = —clock_on A exit and event(S1) =
start_clock.

The characterizations is also used to construct new invariants for the locations,
with the following result.

(IS1) ~—clock_on
(IS2) clock_on A (near V past) ANt < a
(IS3) clock-on A far Nt < a

These three rules model the cases where the controller is waiting in a location idle,
about_to_lower, and about_to_raise, respectively, and we will use the labels IS51 —
IS3 to denote the locations in the HA. For example, inv(IS1) = —clock_on.

By performing the transformation in Definition 6.3.2 we obtain a state transition
diagram resembling that in Figure 6.4, where the formulas of the states are inv(Sx)
and inv(ISz), respectively, and where the unlabeled edges should be marked by
nop.

In general, we can note that if the control program has n rules, and the original
HA has m locations, the state transition diagram will have n + m states (m is the
number of idle states).

6.4 Execution monitoring

We begin by defining the execution semantics of the particular control programs

used in this chapter. If V' = {v;,...,v,} is the set of variables of (or inputs to)
the controller (in our example we have V = {clock_on, ezit, app, near, past, far,t =
a,t < a}.) avector o = (by,...,by,), with b; € {0,1}, is called a sample. The set

4Since t only is used in two particular comparisons to a we choose to view the comparisons as
a boolean variable. We could easily extend the semantics to handle real-valued variables, as well.

— 93 —

Chapter 6. Ezecution monitoring of hybrid-systems controllers

start_clock

start_clock

Figure 6.4: A state transition diagram representing the controller.

of all samples for an application is denoted ¥. We determine the truth-value of a
state in a given sample as usual in propositional logic. During the execution of a
controller, it will receive a stream of samples.

Now, we define how the four first functions of execution monitoring are imple-
mented in this work.
Situation assessment: When a sample is received by the controller, there are only
three distinct possibilities:

1. either exactly one idle state, s, (that is Idle(is) holds) and no other state is
satisfied, or

2. one idle state, is, and a state, s, where there exists an unlabeled edge from is
to s, is satisfied, or

3. no state is satisfied.

The reason why no other cases can occur is that we have physically mutually ex-
clusive jump conditions and invariants. The first case corresponds to when the
controller is inactive waiting for something to happen), the second to when the con-
dition of a control rule is materialized (note that in this case an idle state and an
non-idle state are simultaneously satisfied, since the invariant of a location and a
jump condition from that location are not physically mutually exclusive. However,
two different jump conditions from the same location are physically mutually exclu-
sive.) Since we do not assume that all conceivable samples can be handled by the
controller, the third case is possible.

6.4. FEzecution monitoring

The situation assessment function Sit : ¥ — V() is defined as

s for case 1,
Sit(o) =< s for case 2, and

Sfauly fOr case 3,

where Sgaq¢ 1S a dummy state. The motivation for cases 1 and 3 should be clear,
and for case 2 we set the current state to s since we know that then the controller
will invoke a control action.

Expectation assessment: When the initial sample is received by the controller
the expectation assessment mechanism is idle.

We define the function Ezp: S x A — 25, where S is the set of states, and A4 is
the set of control actions. The set of states in our example is the set of S1 — S6 and
IS1— 1S3, the set of control actions is A = {start_clock,raise A\ stop_clock,lower N
stop_clock}. From the generated state transition diagram (in our example, Fig. 6.4)
we can obtain the definition of Exp. If the controller executed an action a in the
state s, there are two possibilities:

e a = nop which means that s is an idle state. Let M = {s},..., s} be the set
of all states such that there is an edge from s to s} labeled nop, for 1 < i < m.
Then Ezp(s,a) = M U{s}, that is, we expect that any of the states connected
to s, and s can be satisfied next.

e a # nop which means that a “real” control action is executed, and that s is a
non-idle state. If M = {s},...,s!.} is the set of all states such that there is
an edge labeled with a from s to s}, then Ezp(s,a) = M.

Discrepancy detection: This is not particularly problematic: If the controller
performs action a in state s, and the controller reads a sample o such that Sit(o) # s,
we say that we have a discrepancy iff Sit(o) ¢ Ezp(s, a).

The assumption that Sit(c) # s encodes a precise notion of when state transi-

tions occur. That is, if s is an idle state, then a state transition occurs exactly when
a non-idle state materializes, and when s is non-idle a state transition occurs exactly
when an idle state materializes.
Discrepancy classification: The two classification methods introduced in Chap-
ters 4 (ontological control) and 5 (stability-based execution monitoring) can (fairly
easily) be adopted to the HA framework. Below we address the two methods sepa-
rately.

In Chapter 4 the classification scheme of ontological control required energized
actions. In that setting this meant that an action always was active, which coincides
with the execution semantics of rule-based control languages. The reason for this
restriction was that we needed precise knowledge about when state changes occurred.
Here, we have distinguished between states that trigger actions and idle states which
means that we can model a broader class of controllers. However, we still need
the “non-logging” assumption, which in our case means that if there is an edge
from a non-idle state, s, to an idle state is, we have that formulacons(s) and

— 95 —

Chapter 6. Ezecution monitoring of hybrid-systems controllers

formulacons(is) are mutually exclusive (or that their respective rectangles have an
empty intersection).

Assume that a discrepancy has occurred, that is Sit(o) &€ Ezp(s,a). Recall that
the distinction between EA and VOA was made based on whether the configuration
had changed or not. That is, if

formulacons(Sit(o)) = /\ formulacons(s')

s'€Ezp(s,a)

is satisfiable (that is, that the respective rectangles of the two formulas are equal)
then we have an EA. Otherwise a VOA has occurred.

For stability-based execution monitoring we begin by noting that there is no
notion of “exogenous action” in the HA framework. But, in the state transition
diagrams generated above, there are “unlabeled” transitions which cannot be con-
trolled. If we analyze the diagram in Figure 6.4, and view the idle transitions as
exogenous actions, we can note that the system is only trivially maintainable (that
is, that it is only maintainable w.r.t. the entire state set). This is a general feature
of such systems, since every transition from every non-idle state goes to an idle state
(via a controlled transition), and every transition from an idle state is unlabeled.
The interesting monitoring task is, thus, to ensure that the system does not vio-
late a given stability criterion (a set of states F). For this purpose, the algorithm
in Section 5.7 can be adapted to the setting of this Chapter in a straightforward
manner.

— 96 —

Chapter 7

The Situation
Calculus/Golog framework

In this chapter we will apply most of the topics, concepts and techniques introduced
in earlier chapters of this thesis to one formal framework: the Situation Calculus
(SitCalc) and GoLog.

7.1 Introduction

We believe that logic-based approaches to modeling systems provide many insights
that can be used when applying other modeling techniques. This is especially true
for the SitCalc/GoLoG framework which has been described as a model-based pro-
gramming language in [Mcllraith, 1999]. The basic idea behind model-based pro-
gramming is that a programmer provides not only a control program in the language,
but also a model of the system which is to be controlled. The interpretation of the
programs can then exploit the model in various ways, such as for disambiguation of
non-deterministic constructs in the language by predicting the outcome of the pos-
sibilities and choosing the “best”one. Clearly, model-based programming languages
are interesting from an execution monitoring point of view, due to the explicit access
to models and prediction mechanisms.

A reason for choosing the SitCalc/GOLOG framework is that it has a well-defined
logical semantics, that is, the programming language GOLOG has a transition seman-
tics that is described as a logical theory and the modeling language, SitCalc, is a
logical language for reasoning about action and change. Thus, the analysis tasks
can easily be viewed as logical reasoning tasks.

The first approach to execution monitoring in the SitCalc/GoLoG framework
was presented in [De Giacomo et al., 1998] (see Section 7.4 for a review). That
work can be seen as a starting point for the work in this Chapter (Section 7.5) and
in Appendix B, where we generalize some of their ideas and develop issues that they

Chapter 7. The Situation Calculus/GOLOG framework

only sketched.

7.1.1 Overview

The purpose of this chapter is to present the SitCalc/GoOLOG framework and analyze
it from an execution monitoring perspective. We are interested in ensuring that
we can find SitCalc implementations of the five constituting functions of execution
monitoring (from section 2.3.2), that we can formulate the restrictions of ontological
control in SitCalc (from Chapter 4), and that the notion “stability” (from Chapter
5) is applied to SitCalc/GoOLOG.

In Section 7.2 we will present Reiter’s version of SitCalc and in Section 7.3 the
programming language GOLOG is presented. GOLOG uses a SitCalc theory as an
explicit domain model.

Both ontological control and stability-based execution monitoring perform dis-
crepancy detection on states of the system. In the Situation Calculus it is often
convenient to reason with sequences of executed actions (situations) instead, sim-
ilar to the Ramadge-Wonham theory of Discrete Event Systems (see for example
[Kumar and Garg, 1995]). We address the problems of execution monitoring both
with the situation view, in Section 7.5, and the state view and implement ontological
control and stability-based execution monitoring in Sections 7.6, 7.7, and 7.8.

In Appendix A we develop a SitCalc formulation of “stability” (and sketch a
formulation of “maintainability”). We also show how a stabilizing GOLOG program
can be synthesized from an unstable SitCalc theory and prove the correctness of the
synthesis.

As discussed before, SitCalc belongs to the very high end of the SCWA axis, which
is problematic from our point of view. In Appendix B, we show that discrepancies
in this framework causes inconsistencies (due to the strong SCWA) which makes
it difficult to use for real applications. This problem is addressed in Appendix B
where Pinto’s SitCalc framework for concurrency and explicit situation preference
relations is presented and extended to handle discrepancies.

7.2 Reiter’s SitCalc

SitCalc [McCarthy and Hayes, 1969, Reiter, 1991, Levesque et al., 1998] is arguably
the most widespread logical formalism for reasoning about action and change to-
day. The motivation behind the choice of using Reiter’s SitCalc in this thesis over
some competing formalism such as TAL [Doherty et al., 1998], Action Languages
[Gelfond and Lifschitz, 1998], and the Fluent calculus [Thielscher, 1998] is due to
SitCalc’s tight connection to GOLOG (neither of the competing formalisms has a
programming language associated to it).

— 98 —

7.2. Reiter’s SitCalc

7.2.1 Language

The situation calculus (SitCalc) is a sorted second-order language with equality and
uses at least four sorts: primitive actions, situations, fluents, and objects. A fluent
is a term whose value might vary in different situations. We have a special predicate
H, where H(f(d), s) denotes that the fluent f(&) is true in situation s, for a vector,
d, of object constants. We sometimes write this as f(0, s) to denote H(f(d), s), and
—f(d, s) to denote —H (f(0), s).

The set of all primitive actions for a particular theory will be denoted A =
{41, A,,... ,A,}, the set of fluents F = {f1, fo, ..., fm}, where every fluent has a
particular arity, and the set of objects O = {01, 02,...,0r}. The set of background
axioms of SitCalc is denoted ¥ and we refer interested readers to the SItCalc ref-
erence document (by Levesque et al. [1998]) for further details about the logic.
However, three of the foundational axioms are of crucial importance to the rest of
this thesis. First, the second-order induction axiom:

VP. P(Sg) AVa,s.(P(s) A Poss(a,s) D P(do(a,s))) D Vs.P(s).

We also require the definition of the reachability predicate , where, for two situa-
tions s, s', s C s’ is intended to hold whenever the is a “legal” sequence of actions
leading from s to s', i.e.

Vs.=(s C Sp)

Va,s,s'.s C do(a,s') =sC s

Here, s C s’ is an abbreviation for s C— s' Vs = s'.
For a particular axiomatization, the following axioms must be provided:

e Action precondition axioms, one for each primitive action A(Z), having
the syntactic form

Poss(A(Z),s) =M 4(Z, s),

where I14(Z, s) is a formula with free variables among Z, s, and whose only
situation term is s. Intuitively, Poss(A(Z),s) denotes the exact condition
under which it is possible to execute the primitive action A.

e Effect axioms, two for each fluent F', having the syntactic form:

Poss(a, s) Ay} (a,s) — H(F,do(a, s))
Poss(a, s) Avyp(a,s) = —H(F,do(a,s))

where v5(a, s) (for * € {+, —}) is of the form

\/ 7i(a,s) Aa = A(Z)

with one disjunct for every action A.

— 99 —

Chapter 7. The Situation Calculus/GOLOG framework

To characterize the possible changes of all fluents the following ezplanation closure
assumption [Schubert, 1990] is introduced.

Assumption 1 (Explanation Closure Assumption (ECA)) The formulas
77 (a, s) and v (a, s) characterize the positive and negative change, respectively, of
the fluent F.O

By combining the ECA and the effect axioms we get the following set of axioms:
e Successor state axioms, one for each fluent F', having the syntactic form:

Poss(a,s) D (H(F(Z),do(a,s)) =
Y (fvaa 5) \ (H(F(_’),S) A _"Y;(faavs)))v

T+

Intuitively, the successor state axioms for fluent F' says that F' is true after ex-
ecuting the action A in situation s iff it has changed to true (due to v} (%, a, s))
or it was true already in s and did not change to false (due to vz (Z, a, s)).

e Initial situation axioms — what is true initially, before any actions have
occurred. This is any finite set of sentences that mention only the situation
term Sy, or that are situation independent.

Thus, an application axiomatization is a set A = X U? 4p U?g554 U?g,, where X
is the set of background axioms, ? 4p is a set of action precondition axioms, ? g54
is a set of successor state axioms, and ? g, is a set of initial situation axioms and
all situation independent axioms. We will write aga; . ..a; to denote the situation
do(ay, do(. .. do(a1,do(ag, So)) --.)).

One slight departure from Reiter’s style of specification, is that we now partition
the fluent sort in disjoint sub-sorts.

First, we assume a finite and fixed sort of observable world fluents F,,, along
with a set F1,...,F,n of constants of type F,,; the value N is a fixed positive
integer, which is defined by the application. We apply the unique name and domain
closure assumption to world fluents where the constants F,,... , Fi,yy are assumed
to denote different individuals in F,,. Furthermore, every element in F,, is denoted
by some constant in Fq,...,Fy,n. Also, we have F,, C F. The world is fully
observable when F,, = F. At any given situation, if we assume a completely known
initial state, then the theory of action will predict the value of any fluent in the
theory, including those in F,,. The exact role that is played by these fluents will be
clarified in Section 7.5.

Second, we introduce a set of status fluents F;. These fluents will be used in
order to describe the execution status of high level processes that the agent might
be performing. For instance, if the agent is delivering mail, then we could have the
status fluent deliveringMail that would hold in those situations in which the agent
is indeed delivering mail, and it would be false otherwise. As explained later, we
assume a program structure in which these fluents have appropriate values.

Moreover, all fluents not in F; nor in F,, are assumed to be regular domain
fluents.

— 100 —

7.8. GoLoa

Similarly, we assume that we have a finite and fixed sort of observable world
actions A,, along with a set Ayi,..., Ay of constants of type A,; the value
M is a fixed positive integer, which is defined by the application. The constants
Ay, ..., Ay are assumed to denote different individuals in A,,. Furthermore, ev-
ery element in A, is denoted by some constant in A,1,...,Aun- Also, we have
A, C A. The set Ay, corresponds to the exogenous actions of the domain (exoge-
nous from the point of view of the agent).

‘We make use of the notion of history. A history is a sequence of actions 4y,... , 4,.
If we assume theories of action without non-determinism and a complete specification
of the initial situation, then a history uniquely identifies a situation. For convenience,
we will use ; as a sequence operator. Thus, if A is the history Aq,..., A,, then h; A
is the history A;,...,A,, A, Also, we say that h' is an expansion of h whenever h
is a prefix of h'. Formally, h' is an expansion of h whenever do(h, Sy) C do(h', Sp).

We define an observation in situation s, O, to be the set of all ground observable
world fluents that are true in situation s. Since there are no other function symbols
besides do, and observations are always finite we can, for an observation Oy, write
A Os to denote the formula (Apcp, H(F,3)) A (Ar,srgo0, 7H(F,s)). By AOy/q
we denote the observation obtained by replacing the situation argument, s. in A O
by s'.

7.3 Golog

The original GOLOG language was first reported in [Levesque et al., 1997]. One very
important feature of the language is that its semantics was defined in terms of the
Situation Calculus. The language has been extended in several ways: To incorpo-
rate explicit time [Reiter, 1998], interleaved accounts of concurrency [Reiter, 1998,
De Giacomo et al., 1997, de Giacomo et al., 1999a, de Giacomo et al., 1999b], true
concurrency [Baier and Pinto, 1998], sensing [de Giacomo and Levesque, 1998], etc.

In this thesis, we will not propose a new variant of GOLOG. Rather, we will
assume that the programs to be monitored have a specific structure, which we call
self recovery. This structure is discussed in Section 7.5.4.

GoOLOG is a high-level logic programming language used for agent-based program-
ming. A detailed discussion of GOLOG can be found in [De Giacomo et al., 1998],
so we will only describe the constructs of the GoLOG language and the principles
behind the interpretation process. For GOLOG programs 4, d1, d2, and ¢ a pseudo
fluent!, we have the following constructs:

LA pseudo fluent is a SitCalc fluent with all its situation arguments suppressed. ¢[s] denotes
pseudo fluent ¢ “instantiated” with situation argument s.

— 101 —

Chapter 7. The Situation Calculus/GOLOG framework

#?,
(015 62),
(6162),

.6,

8%,
proc P(¥) a endProc

the empty program
primitive action

test truth of condition ¢
sequence
nondeterministic choice
between two actions
nondeterministic choice
of argument to an action
nondeterministic iteration
procedure with formal
parameters ¥ and body a.

For convenience we introduce conditionals and while-loops as:

def

if ¢ then 4, else §; endIf = (¢?;61)|(—¢7?; d2)

def

while ¢ do § endWhile = ((¢7;8)*; —~¢7)

The semantics of GOLOG is a transition semantics [De Giacomo et al., 1997] based
on the two predicates Trans and Final. Here, we will only define the cases of those
predicates that are necessary for our presentation. The formal definitions of Trans
and Final can be found in [De Giacomo et al., 1997] or [De Giacomo et al., 1998].

Trans(d,s,0',s') holds if a program ¢ is executed in situation s then the remain-
der of this program will be 4’ which is up for execution in situation s’. The resulting
situation s’ will be different from s only if the next part in ¢ to be executed is a
primitive action. Formally,

1. The empty program:

2. Primitive actions:

Trans(a,s,d',s') = Poss(a,s) A8 = nil As' = do(a, s).

3. Test actions:?

Trans(nil,s,d',s') = False.

Trans(¢?,s,8',8') = ¢[s] A8 =nil As' = s.

4. Sequence:

Trans(8y;0s,8,48',8') =

Jy.Trans(61,5,7,8') A& =7;02 V
Final(61,5) A Trans(d2,s,4',s").

2The formula ¢ is assumed to not contain any situation arguments. By writing 1[s] we restore

all situation arguments in the formula.

— 102 —

7.8. GoLoa

5. Nondeterministic choice:

Trans(61|02,5,8',s') = Trans(d1,5,8',s') V Trans(d2,s,8',s').

6. Iteration:

Trans(6*,s,8',s') = 3y. Trans(d,s,v,8') A &' = ;8.

Final(é, s) holds if the execution of § can be considered complete in situation s. Since
GoLOG contains nondeterministic constructs, it is possible for both Final(d, s) and
Trans(d,s,0',s) to hold for some programs in some situations. Formally,

1. Empty program: Final(nil,s) = True.

2. Primitive action: Final(a,s) = False.

3. Test action: Final(¢?,s) = False.

4. Sequence: Finals(d1;d2,5) = Final(d1,8) A Final(d2,s).

5. Nondeterministic choice: Final(d1/d2,s) = Final(d1,s) V Final(d2, s).
6. Iteration: Final(0*,s) = True.

The predicate TransCl(d,s,d’,s') denotes the reflexive transitive closure of the
Trans predicate. Formally,

TransCl(d,s,8',s') =
VT.(T(6,s,6,s) A
(Trans(6,s,0",s") AT(8",s",8',s") DT(4,s,6,5))) D
T(6,s,4',s")

The GOLOG transition semantics allows us to define a step function, which, given
a program and a history, returns an action and a continuation. If § is a program
whose first action is A, then a continuation is what remains of § after A. Thus,
given a history h, and a continuation (a program) 9§, step(h,d) is a function that
returns a tuple (4,4'), where A is a primitive action (primitive in the sense of the
underlying theory of action) and 4’ is a continuation, if A is —, then the action is
failure. step’s implementation is the GOLOG interpreter. For a particular realization,
consult [Reiter, 1999]. The step function uses the history h in order to determine
the situation in which the next action is going to be executed. This is necessary, for
instance, in order to evaluate conditional execution of actions.

— 103 —

Chapter 7. The Situation Calculus/GOLOG framework

7.4 The De Giacomo et al. approach to
execution monitoring of Golog

In the original version, GOLOG was basically a planner where a user had the possi-
bility of representing more of the domain structure than just the planning operators
and the initial and goal states. The output of an interpretation of a GOLOG program
was a sequence of primitive actions. In the efforts to use GOLOG for high-level con-
trol of robots, a reactive version was developed, in [De Giacomo et al., 1998], where
the interpreter generates one primitive action at a time, and processes “sensor read-
ings” in between. In that paper the first attempt to add execution monitoring to
the framework was presented.

Execution Monitoring is handled by the predicate Monitor(4,s,d’,s'), where the
current continuation is § and the current situation is s. Monitor checks for the oc-
currence of an exogenous program in situation s, determines the situation s’ reached
by this program, and if the monitored program ¢ terminates off-line, the monitor
returns 4, else it invokes a recovery mechanism that determines a new program ¢'.
The suggested recovery mechanism tries to find a sequence of primitive actions p
that would move the system into a situation where the original program 4 can be
successfully executed, i.e. it generates a program p; ¢ if such a program exists.

In the current implementation of execution monitoring (EM) for GoLog, the
EM senses occurrences of “exogenous” actions. In fact the actions themselves are
not exogenous, it is the occurrences that are, i.e. the EM senses the occurrence of a
GoLOG program which is not the program GOLOG is currently executing. As argued
in [De Giacomo et al., 1998], this “seems dubious in practice”, since it is more likely
that an EM would detect effects of actions, rather than the occurrences. In the
paper, the authors claim to reconcile this point by proposing new, fictitious actions,
one for each fluent, whose effects are to alter their corresponding fluents’ truth value.
The authors only sketch how such a reconciliation could be made, and in Appendix B
of this thesis we give a formal account of this idea, and we will show how this can be
utilized as a mechanism for discrepancy detection. However, even with such fictitious
actions it is not clear how measurements from sensors should be handled within their
approach. In Section 7.5 we propose a more general execution monitoring framework
where the interaction between the controller and the environment is handled.

7.5 General (Situation-based) execution
monitoring

We want to provide a general characterization of what an execution monitor is,
assuming that the execution monitor is monitoring the situation histories rather
than the trajectory of states (which has been considered previously in this thesis).
An execution monitor is a program interpreter that acts with a model of the world
(environment), this is a logical theory of action ¥; a program §, whose execution is
monitored; a world or environment W (which is modeled by the theory of action),

— 104_

7.5. General (Situation-based) ezecution monitoring

and a monitoring boolean condition <. In the rest of this section, we describe these
components. We assume all along that there is one agent that executes § under the
control of the execution monitor. Also, this agent has ¥ and v at its disposal.

7.5.1 The world model

Assume that ¥ is a logical theory of action. It is a model of the world inhabited
by the agent, possibly along with other agents. This is a Situation Calculus theory
of action. The theory describes the world and the changes that are affected after
actions are performed.

The SitCalc theories considered here are an extension of the theories in the style
proposed by Reiter (see Section 7.2). The world model is a theory of action written
as the union of several sets of axioms: action precondition axioms, successor state
axioms, exogenous action specifications, unique names axioms, etc.

7.5.2 The world

The world W is the actual environment. In our model of an execution monitor, we
take the world as being a history indezed observation structure. What this means is
that given a history from some initial point, the structure tells us what is observed
in the world.

Our intention is to model the interaction between the agent and the world in a
manner similar to what Sandewall calls ego-world interaction in [Sandewall, 1995].
Thus, given a history, the world tells us what is observed (fluents and exogenous
actions).

We assume that we have a set Fp of faithful fluent observations®. Furthermore,
we assume that we have exactly N fluent observations (the value of Nis the same
value mentioned in the previous subsection). Analogously, we have a set Ao of action
observations (exogenous actions). For simplicity, we assume that at any point only a
single exogenous action can occur, and that there are exactly M possible exogenous
actions.

We make the simplifying assumption that time is discrete. Furthermore, we
assume that every situation has a unique time (as in, for instance, [Pinto, 1994]).
However, we will not concern ourselves with explicit time. Instead, we will take time
to be represented by histories. Thus, if h and h' are histories and h is a prefix of A/,
then the time of h is less than the time of h'.

The world is modeled as a tuple (wz,w4). The first element, wz, is a mapping
from histories and actions in A to a state, i.e. a mapping of observations (from Fp)
to {T,—} (true, false). The second element, w4, is a mapping from histories and
actions in A to Aep U (nil), where nil is interpreted as no action.

The sets Fo and Ay are in a one to one correspondence with the elements of F,,
and A,, (more precisely, with the names for the elements in each set). Furthermore,

3By faithful, we mean that what is observed is true; in other words, the sensor readings are
always accurate.

— 105 —

Chapter 7. The Situation Calculus/GOLOG framework

we assume that we have a meta-level function map, that given an element fo € Fp,
map(fp) yields the constant that denotes the fluent in F,, corresponding to fe.
Analogously, if ap € Ap, map(ap) yields the constant that denotes the action in A,,
corresponding to ap (we are overloading the function map).

7.5.3 The execution monitor

The execution monitor can be seen as a computational process. As such, at any
point in time one can view the execution monitor’s state, which, given a world,
will determine a transition to the next state. The initial state of the monitor is
characterized by a tuple (X, do, W, Fo, Ao, map), where we assume that ¥ is a
Situation Calculus theory of action that incorporates a complete specification of
the initial state. §p is the program to be monitored, and the rest is as before. At
any point during the monitoring process, the state of the execution monitor can be
characterized with:

1. h: The current history h. It corresponds to a sequence of actions (agent actions
or exogenous actions), which, given an initial situation, lets us keep track of
the current situation. Initially, the history is empty.

2. 4: The current continuation; i.e., what is left of the program to be executed
(after successive applications of the step function). Initially, § is the same as
do.

In order to decide what to do, the execution monitor uses:
1. X, the theory of action. Given the history, it tells the monitor what to expect.

2. A prescription on what to do next. This is the first action A prescribed by
the program ¢ (obtained with the step function). If the program cannot be
continued, then we assume that A is the action — (which we interpret as an
abort action). A program might not be able to continue for several reasons:
it may have been completely executed, or it may have encountered a situation
that does not satisfy the preconditions to carry on with the program.

3. Situation assessment. Given a situation characterized by the history h, the
action A, the world view (wz(h, A),w(h, A)), we obtain the new history h',
which is an expansion of A. In the trivial case, in which everything develops ac-
cording to expectations (no exogenous actions and fluent values as predicted),
we’ll have h' = h; A. Thus, A’ will be the history h expanded with action
A. In other cases, h' would be an expansion consistent with the exogenous
actions that might have occurred and the fluents that were observed (i.e.,

(wr(h, A),wa(h, A)))-

4. Monitoring formula: This is a logical formula whose truth value (assigned by
¥) would tell the monitor what to do. The formula will check discrepancies
between what is expected (i.e., what is true after h; A) and what actually

— 106 —

7.5. General (Situation-based) ezecution monitoring

happened (i.e., what is true after h'). We’ll assume that the monitor will
entertain two options: Stop the execution of the program and restart it. Do
nothing, allowing the program to continue. The first condition is characterized
by a formula v, (h, h'), the second condition is the default condition.

The monitoring specified in the last bullet might appear unsophisticated. Indeed,
one could conceive a much more intrusive monitor. For instance, a monitor might
decide to abort execution of the program on its own accord, or restart the program
at some arbitrary entry point (if such were identifiable by some means). What we
propose is that the programmer should write programs that would specify how to
proceed from some arbitrary state obtained after interruption. For example, if our
agent is delivering coffee and it drops the coffee on the floor, then the program may
be restarted and the resulting situation — dirty floor and no coffee — is evaluated as
a starting situation for the program (not to confuse with Sy. An actual program
architecture that does this is presented below.

Given the above information structure, available to the monitor, an algorithm
that implements an execution monitor is described below:

e Let h < empty. Initialize the current history as empty.
e Let (A,0) <« step(h,dg).
e Do forever:

If A= —, abort.

Execute A, obtain (wr(h, A),w(h, A)).

h' « assess(h, A, (wr(h, A),w4(h, A))).

If h' = h; A then (A, d) « step(h',).
else (4, §) « recover(h,h', by,).

h < h'

S ok W N o=

Figure 7.1: A possible monitor

Situation assessment

In the Algorithm of figure 7.1, there is a reference to the function assess, whose
role we now explain. The function assess takes a history h, an action A, and an
observation tuple, and returns a history h' which is an expansion of h.

The execution monitor is in a situation that results from executing history h
in the initial situation. The observation tuple tells us how the world reacts. This
latter information comes in the form of a tuple. The first element of the tuple is a
truth assignment to all the fluent constants in Fgp, and the second is either nil or

107

Chapter 7. The Situation Calculus/GOLOG framework

an ezogenous action?.

Given this information, the function assesses the current situation, i.e., it deter-
mines a true history h', that is consistent with the action A and the observation
tuple. In the most trivial case, w4(h, A) would be nil, and the observation tuple
would be exactly as predicted by ¥; that is, for every constant F € Fp:

¥ = H(map(F), do(h; 4, So))

if and only if wz(h, A)(F) = T. Under those circumstances h' = h; A.
Another simple case is obtained if w4(h, A) is not —, and the observation tuple
is such that for every constant F € Fp

Y ‘: H(map(F), do(h; A; "‘)A(ha A)a SO))

if and only if wx(h, A)(F) = T. Under those circumstances h' = h; A;w4(h, A).

Any other situation corresponds to a surprise, in the sense that the available
information (i.e., current history h and exogenous action w4(h, A)) is not enough
to explain the fluent observations. In this case, there are several ways in which the
assessment can be handled, and the two alternatives we consider are:

Alt. 1 Perform a diagnostic procedure (e.g. in the sense of McIlraith [1998]). This
may lead to deriving a hypothesis h', such that for every constant F € Fp

% = H(map(F),do(h', So))

if and only if wx(h, A)(F) = T. Recall that map(F) is not a term in the language
of the situation calculus; rather, it is a term outside the logical language that
has to be replaced by the fluent to which F is mapped.

We require h' to be an expansion of h. Thus, we need the diagnosis to be
categorical (i.e., no disjunctive hypotheses). For this alternative to be viable,
we need X to be rich enough to incorporate exogenous actions that might or
might not be observable, and that would explain the surprises.

Alt. 2 Simply accept the new state and let h' be h; A;wa(h, A); Ax, (assuming that
wA(h, A) is not equal to —). Here, we assume that 3 contains one action Ax,
for every possible assignment of truth values to elements of F». These actions
(fictitious action) will simply set the observational fluents to the corresponding
values. We’ll call these actions fluent setting fictitious actions. Note that
these fictitious actions carry no explanatory power, and simply help make the
theory consistent. As long as we are dealing with finite object domains, this
alternative can, equivalently, be phrased in a state-based setting. We explore
this in Appendix B.

4We require a single exogenous action to avoid dealing with true concurrency. This is not a
problem (see [Baier and Pinto, 1998]), however introducing true concurrency would simply distract
us from our objective.

— 108 —

7.5. General (Situation-based) ezecution monitoring

Recovery

Whenever h; A # h' a recovery ensues. Recovery is necessary whenever there is a
discrepancy between expectations (i.e., the state resulting from history h; A) and
the actual situation (resulting from history h').

If the discrepancy between the expected situation and the actual situation is
deemed to be irrelevant, then it is ignored. Otherwise, recovery will ultimately
depend upon domain specific information that is made available to the system (either
the actual monitor, or the monitored program). We will take the point of view that
the program contains its own recovery mechanisms, as will be explained in the
following section.

7.5.4 Self-recovery program structure

We consider a program structure similar to that of a production system, that is:

wo = Boj-.- 500 = Bn

We assume that this program, when invoked, treats the set of production rules in
a fashion similar to that of a Lisp cond statement. That is, the conditions are
evaluated in order, and the smallest 7 such that (; holds leads to the execution of
(1. We assume that ¢, is a catch all identically true condition, and that (3, is an
abort statement or a planning from scratch procedure.

Notice that the program structure that is suggested is directly allowed by the
GoLoG language (in all its incarnations), since it is simply a set of nested if-then—
else statements. Some important points to keep in mind. First the ¢; conditions
are all evaluated at the situation in which the program is restarted. This situation
is identified by the current history, which is kept by the monitor.

In [Nilsson, 1994a], Nilsson proposed the notion of Teleo—Reactive (TR) pro-
grams. A teleo—reactive program is also similar to a set of production rules. There
are several aspects of TR—programs that on the surface appear to make these pro-
grams more suitable for agent control. For instance, TR actions can be durative®
rather than discrete. Also, the conditions have to be continuously evaluated, and
the corresponding action is executed as long as the condition is the first one to hold
(in the order defined by the production rules). This behavior can be easily simulated
by a self-recovery program by constructing a suitable ; condition.

Example

In this example, we consider a robot that inhabits an office environment. The robot
can walk through corridors to get from office to office, it can pick up and deliver
mail, it can obtain coffee and deliver coffee, and it can also clean areas it finds
dirty. A similar scenario was modeled in detail in [Reiter, 1998]. Thus, we exclude
cluttering details here and refer to that paper. The theory of action ¥ will include
in its vocabulary the following fluents:

51.e., they can continue indefinitely; e.g. moving forward.

— 109 —

Chapter 7. The Situation Calculus/GOLOG framework

1. carryingCoffee holds if the robot is carrying coffee. Formally,

Poss(a, s) D [holds(carryingCoffee, do(a, s)) =
a = pickupCoffee V
holds(carryingCoffee, s) A
—(a = putdownCoffee V a = droppedCoffee)]

The action droppedCoffee is assumed to be exogenous.
2. carryingMail(z) holds if the robot is carrying mail destined for office z.

3. deliveringCoffee(z) holds if the robot is delivering coffee to office z. Formally,

Poss(a, s) D [holds(deliveringCoffee(z), do(a, s)) =
a = goingTo(z) A holds(carryingCoffee, s) A
holds(wantsCoffee(x), s) V
holds(deliveringCoffee(z), s) A
—(holds(At(z), s) A a = giveCoffee(z)]

4. deliveringMail (z) holds if the robot is delivering mail to office z.

5. batteryLow holds if the batteries are low. recharging if the robot is recharg-
ing its batteries. in this example we assume that batteriesTurnedLow is an
exogenous action.

Aside from these fluents, the robot can execute a number of complex actions
(Goroga procedures), which are built on top of some more basic primitive actions.
Informally, these procedures are: deliverCoffee(x), to deliver coffee to office z, and
deliverMail to deliver mail to office x; recharge, which recharges the robot’s batteries;
clean, which cleans a mess caused by accidentally dropping the coffee; Interrupt,
which interrupts the execution of whatever it is that the robot is doing.

The basic top-loop GOLOG program can have the following structure (again ex-
cluding a number of details):

proc TopLoop
while T do
(r2){
if hasMail(z) then deliverMail (z)
else if wantsCoffee(z) then deliverCoffee(z)

}

Note that we in this program only specify the main tasks of the robot, and leave
abnormal contingencies to the monitor.

— 110 —

7.6. State-based ezecution monitoring, BM classification and MT recovery

A self recovery program could be:

batteryLow — recharge;
messy — clean;
carryingMail (z) — deliverMail (z);
carryingCoffee N wantsCoffee(z) — deliverCoffee(z);
T — recharge;

Now, we need to specify the conditions under which the execution monitor has
to intervene. Thus, we need to specify the 7; condition which tells the execution
monitor to restart the program. In this case, this condition might be:®

batteryLow(s') V —carryingCoffee(s') A deliveringCoffee(s')

We assume that the procedure TopLoop is executing and that the current his-
tory is h. Someone, say r, wants coffee and the robot invokes the procedure
deliverCoffee(r). If the coffee suddenly slips from the robot gripper before the robot
finishes its task, the situation assessment function will return h' = h; dropped Coffee
which differs from the expected h; deliver Coffee(r) (assuming that there is a defined
action deliverCoffee(z) in ¥). The assessment will also report that the formula
—carryingCoffee(h', So) A deliveringCoffee(h', Sg) holds which will trigger the moni-
tor to invoke the self-recovery program. Unless the batteries are low in this situation,
the robot will note the mess it created and start to clean up. When the cleaning
action has finished the monitor will give control back to the continuation of the
current GOLOG program.

7.6 State-based execution monitoring,
BM classification and MT recovery

Apart from the previous few sections, we have considered state-based execution mon-
itoring in this thesis. This means that detection and classification of discrepancies in
ontological control and stability-based execution monitoring is based on the trajec-
tory of states, rather than on the sequence of executed actions. In this section and
the following, we will examine how ontological control and stability-based execution
monitoring can be handled within the SitCalc/GoLoG framework.

In this section we will describe the recovery technique employed in the two sub-
sequent sections. In certain situations it is a feasible idea to change the underlying
SitCalc model for a GOLOG program in order to, e.g., make it reflect the actual sys-
tem more adequately (as in ontological control), or to ensure that certain unwanted
control situations do not occur again. For GOLOG we can note that any discrepancy
makes the theory inconsistent. This is somewhat unintuitive, since the real world
certainly does not disappear whenever it does not behave as we expect it to.

Shere s' is do(h', So)

— 111 —

Chapter 7. The Situation Calculus/GOLOG framework

[Type [Oprev | Ocop | Omat | Revision |

A F F —-F | Add more informa-
tion to v5

B -F -F F Add more informa-
tion to 7;,2

C F -F F Remove informa-
tion from vy

D -F F —F | Remove informa-
tion from 'y?;.'

Table 7.1: The four kinds of discrepancies.

Instead of sensing fluent values, as in de Giacomo et al’s work (Section 7.4)
suggest that the execution monitor should sense fluent values instead of action oc-
currences. The Trans function makes it possible to compute the expected result of
a primitive action, so it is easy to determine whether there is a discrepancy between
the sensed values and the expected ones. Next, if a discrepancy is detected we know
that the observation is not a consequence of the axiomatization, since the initial
state is completely specified and the actions are deterministic. To proceed, we sug-
gest that the model (the underlying SitCalc axiomatization) should be changed in
case of a discrepancy. We can classify the possible causes of the discrepancy as either
being malignant, which implies that the successor state axioms do not reflect the
environment adequately, or benign, which implies that the successor state axioms
are corroborated, but that the system is in a different state than what was expected.

The changes of the model that we propose are:

Benign discrepancy: Replace the initial situation axioms with the new and un-
expected observation, where the situation argument of the fluents are relativized to
situation Sp, and restart the execution. Invoke the recovery mechanism if necessary.
Malignant discrepancy: Let Op., be the state of the previous situation, A the
primitive action invoked in the previous situation, O.,, the expected state after in-
voking A in a situation with state Oprey, and Op,q+ the observed current state. For
a particular fluent F' with successor state axiom

Poss(a, s) D (H(F,do(a, s)) =
7;(‘15 5) \Y% (H(Fa 5) A _"Y; (aa 5)))a

we have four types of discrepancies described in Table 7.1. Types A and B describe
the cases where the fluent F' is modeled to be inert (i.e. to not change its value) by
the action A, but that the value is sensed to have changed. This means that, in the
case of a VOA, we need to add the particular case to 'y;,f or g, to make sure that the
observed change is considered by the model. For cases C and D, changes are modeled
but do not occur. This means that the changes assumed by the model should be
removed. When the changes have been performed, we replace all initial situation
axioms with the materialized observation and continue (possibly with recovery).

— 112 —

7.6. State-based ezecution monitoring, BM classification and MT recovery

7.6.1 Formalization of the idea

Assume that for an application axiomatization A = X U? 4p U? 554 U? g, we have
an observation Og and that we perform the action A in s to take us to situation
do(A,s), and that we expect to sense the observation Ogo(4,s), but that we instead
sense an observation OZlo(A,s)’ where Ogo(a,5) 7 O’dO(A’S) (i.e. we have detected a
discrepancy).

Next, we need to discriminate between the four types of discrepancies described
in Table 7.1. We begin by constructing the sets Spos = Ogo(a,s) — O&O(AYS) and
Sheg = O;O(Aﬁ) — OdO(A,S). Spos contains all fluents that where expected to be true
but where observed to be false, thus being type A or D discrepancies, and Speq
contains all fluents expected to be false but that where observed to be true, thus
being type B or C discrepancies. Now, we check if the members of S,,s and S,
belong to Os:

o If F(0) € Spos and F(0) € Os, F(0) is of type A .

o If F(0) € Speg and F(0) € Os, F

((

o If F(0) € Spos and F(0) & Os, F(0) is of type D.
((0) is of type B.
((

(
o If F(0) € Speq and F(0) & Os, F(0) is of type C.

Given the three observations Os, Og,(4,s), and OZlo(A,s)’ we can easily classify every
discrepancy as being of type A, B, C, or D.

Let F(0) be a discrepancy in situation do(A4,s), and H(F(Z),do(a,s)) = ...
the corresponding successor state axiom, where the length of # is n. To construct
the formula needed for model repair, as in the fifth column in table 7.1, we need
the formula describing the sensed observation in situation s (the precondition of the
detected VOA), i.e. A Os, and the instantiation formula, instg: of the variables in
Z, which is instg: =2z, =01 N... Nz, = 0,. The instantiation formula describes
the variable bindings materialized in situation do(4,s). For each discrepancy F(0)
in situation s we construct the formula /6151(5) = AOg/s A instg.

We assume that the successor state axiom for F' is on the form

H(F(Z),do(a,s)) =
\/ 7 (& s) na= 4 (7.1)
—|\/7r[(§:', s)ANa=4;). (7.2)

We formalize the repair actions mentioned in the fifth column in table 7.1 as follows:
Type A: Replace the disjunct 7~ (Z,s) Aa = A in (7.2) by

(ﬂ-i(fas) Vﬁ;(g)) ANa = A

— 113 —

Chapter 7. The Situation Calculus/GOLOG framework

Type B: Replace the disjunct 77 (Z,s) Aa = A4 in (7.1) by

(74 (Z,8) V Bpy) Na = A

Type C: Replace the disjunct 77 (%,s) Aa = A in (7.2) by

T (Z,8) A —Bp@z Na= A

Type D: Replace the disjunct 77 (%,s) Aa = A in (7.1) by

7t (%, 8) A B Na = A

Observe that the structure of (7.2) and (7.1) remains unchanged after the the repair
actions. To make sure that the application order of the repair actions does not
matter, we need the following lemma.

Lemma 7.6.1 For two discrepancies, F(3) of type A and F (o) of type C, the order
in which we apply the revision actions is irrelevant.

Proof: We can see that the repair actions give syntactically different resulting for-
mulae depending on the order of the repairs, i.e. if we use the type A repair before
type C, the result will be

(= (%, 8) V /6;?(3)) A —',3;..((7) Na=A,
and if we start with type C repair we get
((ﬂ-i (fa s) A _‘ﬁp(o'?)) \ ﬁfr(a)) ANa = A.

The only case when their respective truth values differ is when ,BF(E) and Bp(s are

both true, which would imply that instg:/\instg' is satisfiable. This can only occur if
@ = o, which means that both F(3) and —F () have materialized (since we had one
type A and one type C discrepancy). This is obviously false, so the two formulas
are equivalent.O

For discrepancies of type B and D, the proof is analogous.

When a discrepancy is detected, and it is classified as being malignant, the dis-
crepancy type is determined. This is done for all discrepancies. Based on the type
information we perform revision on the successor state axioms of the discrepancies.
When all discrepancies have been dealt with, we have a new set of successor state
axioms ?'5g 4. We replace the previous set ? sg4 in A with 7’55, and replace the ini-
tial situation axioms in A with the materialized observation, i.e. the new application
axiomatization is defined as

A= (A= 750) U 0334,) U (A~ 7554) UT55)

114

7.7. Stability-based ezecution monitoring

7.7 Stability-based execution monitoring

The first instance of BM classification for GOLOG is what we call stability-based
execution monitoring. The basic idea is that there is a set of states, described by a
property -, that represents the desired behavior of the system. If a SitCalc theory,
A is stable w.r.t 7, or that there exists a GOLOG program that stabilizes A w.r.t.
v, then we know that if no discrepancies occur the system will always return to the
desired set of states in finite time. Stability-based execution monitoring means that
we want to maintain stability even in the presence of discrepancies. We can do this
by distinguishing between two types of discrepancies: Discrepancies that moves the
system into a state described by -y and discrepancies that move the system outside
of ~.

7.7.1 Discrepancy detection and classification

The general idea behind stability-based execution monitoring was introduced in
section 5.7. In that framework, discrepancy detection is straightforward; if the
current predicted state is different from the current actual state, then there is a
discrepancy. In SitCalc the detection consists of computing whether

A0,

holds or not, where A is the application axiomatization, s is the current situation,
and Og is the current actual observation.

Discrepancy classification requires somewhat more sophistication, where it is
necessary to find out whether a given discrepancy belongs to the closure of the
system or not. In SitCalc the “closure” notion translates to the set of states that can
be reached by control actions from the initial situation, and this can be formalized
as follows:

InClosure(s) =
s = So \Y
(do(a,s') C s D Poss(a,s') A InClosure(s')).

The classification process is then to compute
A =35 Og)s N InClosure(s'), (7.3)

which intuitively means that the current actual observation holds in some situation
reachable from the initial situation by actions. If relation 7.3 holds, we have a benign
discrepancy, otherwise it is malignant.

7.8 Ontological control

From chapter 4 we recall the three restrictions sufficient for ontological control: the
existence of a perfect sub-model, non-logging and energized actions. In this section

— 115 —

Chapter 7. The Situation Calculus/GOLOG framework

we will suggest a way to encode this in a SitCalc theory. In the next Section we will
then show how ontological control can be performed in the SitCalc/GoLOG frame-
work.

Perfect sub-model

Similar to the theory in chapter 4 we partition the set of fluents, F into configuration
fluents and plant fluents. We introduce a new predicate symbol, Conf, for this, so
that Conf(F) holds iff F is a configuration fluent. Since observations are assumed
to be conjunctions of ground fluents we can always partition an observation into a
configuration and a plant formula part.

Non-logging
We defined a system to be non-logging iff the configurations of consecutive states
are mutually exclusive. In SitCalc we will translate this to the following

AE
Af. Conf(f) A (H(f,s) # H(f,do(a, s)).

Intuitively this means that some configuration fluent changes value between two
consecutive situations.

Energized Actions

Actions in a SitCalc theory are not necessarily energized, but the common assump-
tion that formulas in a SitCalc theory are “simple”, that is, that they only mention
one particular situation term, makes the theories Markovian. By Markovian we
mean that the entire history is encoded in the current situation and, thus, that the
current state contains all information necessary to find the next action to execute.
Ballistic actions in general, cannot exist in a Markovian system, since their effects
may not be measurable at every sampling instance. We can safely assume that all
actions are energized.

7.8.1 Discrepancy detection and classification

There is no difference between the detection process for stability-based execution
monitoring and for ontological control.

For classification, there are two possible causes for the discrepancy, EA (a benign
discrepancy) or VOA (a malignant discrepancy).
EA
Now, if

{F(0)|F € Conf and F(0) € Os }

{F(0)| F € Conf and F(0) € Oy,4.6)}s (7.4)

we know that the actuator sensors have not changed from situation s to do(4,s),
and we explain the the discrepancy with EA. We then change the application ax-

— 116 —

7.8. Ontological control

iomatization to A" = (A —?5,) U {A Oto(a,s)/So}- That is, we replace the initial
situation axioms by the latest observation.

VOA

We detect a VOA by noticing that

{F(3)|F € Conf and F(3) € Ogo(as) }

{F(0)| F € Conf and F(0) € Oyya.6) }» (7.5)

i.e. that the actuator sensors have changed exactly as expected, but other changes
have not followed our expectations.

7.8.2 Trolley example

I
"X
Al l2A

store t1 t2

Figure 7.2: The plant.

We will now look at an example of a plant depicted in Figure 7.2, which was
introduced in Chapter 4. We control a robot arm (our actuator) that is supposed to
move boxes from store to the trolleys at positions t1 and t2. The actuator output
is the value of a fluent Position(p, s) (for the position of the robot arm) p can take
the values store, t1, or t2, representing the depicted possible positions. The plant
signals give values to a fluent Load(l,n), where I denotes the sensor (I1 or [2), and
n denotes the number of boxes on the respective trolley, i.e. 0, 1, or 2. We have
one control action, Move(z,y), where z and y are two different positions, and we
assume that when z is store, y is t1 or t2, and there are less than 2 boxes on the
trolleys, Move(z,y) invokes the robot arm to grab one box at store and move to
t1 or t2 and to drop the box at that position. We choose the following SitCalc
axiomatization:

Poss(Move(z,y),s) =
T #yA(y =storeV (z = storeA
Vn,n'. (H(Load(I1,n),s) A
H(Load(I12,n'),s) - n+n' <2))),

117

Chapter 7. The Situation Calculus/GOLOG framework

We define the successor state axiom for our only member of Conf, Position, as

H (Position(p), do(a, s)) =
Jz.a = Move(z,p) V
(H (Position(p), s) A ~a = Move(p, z)).

The successor state axiom for Load is somewhat larger:

H(Load(l,n),do(a,s)) =
(I=1An=0AF)V
((I=11An=1AH(Load(l,0),s))V
(l=11An=2AH(Load(l,1),s))) A
a = Move(store,tl))V
(I=12An=0AF)V
((I=12An=1AH(Load(l,0),s))V
(l=12An=2AH(Load(l,2),s))) A
a = Move(store,t2))
) Vv
(H(Load(l,m), s) A
= ((I =11 Aa= Move(store,t1)) V
(I =12 AN a = Move(store, t2)))).

Initially, the arm is at position store and there are no boxes on the trolleys, i.e.

78, =

{H(Position(store), Sy), H(Load(l1,0), So),
H(Load(12,0),S0)}

Now, assume that we execute Move(store,t1) in Sy. Let s = do(Move(store, t1), Sp).
We then expect the observation

Os = {Position(t1), Load(l1,1), Load(l2,0)}.

to be sensed. We will now illustrate the two causes of discrepancies:

EA

Assume that somebody moves a box from the store to the trolley with load sensor
[1 when the robot arm has begun executing Move(store,t1). Since actions are
energized, and the exogenous move will make the precondition of the action false
(i.e. the state in which the action was invoked), the action will stop, and we will
sense

O! = {Position(store), Load(l1,1), Load(12,0)}.

— 118 —

7.8. Ontological control

We detect the discrepancy by noting that O # OL, and classify the cause of the
discrepancy as EA with Equation (7.4). To continue, we replace ? g, by

{/\ O;/sg} =

{H(Position(store), Sp) A H(Load(l1,1),Sy) A

H(Load(12,0), S0)}
and try to recover the GOLOG program.
VOA
An unmodeled ontological assumption of the system is that position t1 corresponds
to load sensor 1, and that t2 corresponds to [2. If this is false the model is not valid
for control. Thus, we assume that the position of the trolleys has been changed,
which means that the sensed observation after performing Move(store, t1) in Sy
will be

O. = {Position(t1), Load(l1,0), Load(I2,1)}

Again, we detect the discrepancy by noticing that Os # OL, and classify it as caused
by VOA with Equation (7.5). We have four discrepancies, where Load(l1,1) is of
type D, Load(12,0) is of type A, Load(l1,0) is of type B, and Load(I2,1) is of type
C. The precondition of the VOA is in this case

/\ OSO/s =
H(Position(store), s) A H(Load(l1,0),s) A
H(Load(12,0), s).

Thus, we have

So)E/\OSO/S/\l:ll/\n:I.

Load(l1,1

. 11,1
inst;
n

Similarly, we can construct the 8% for each discrepancy F.
When we repair the successor state axiom for Load we get the following result:

H(Load(l,n),do(a, s)) =
(
l=11An=0AF)V
((I=11An=1AH(Load(l,0),s))V
(I=11An=2AH(Load(l,1),) V B7",401.0)) N
_'ﬂfgad(ll,l) A a = Move(store,t1))V
H(Load(l,n),s) A
~((t=0v /Bf?md(zz,o)) A _'fgfgad(w,l) A
a = Move(store, t1)) V
(Il =12 A a = Move(store, t2)))).

— 119 —

Chapter 7. The Situation Calculus/GOLOG framework

It is easy to see that this particular VOA cannot occur again. It will be handled
properly by the new successor state axiom. However, if we perform the action
Move(store, t2) a similar VOA will occur.

— 120 —

Chapter 8

Conclusions and future work

In this Chapter we will conclude and summarize the work presented in this thesis,
as well as present some pontentially fruitful future research paths.

8.1 Conclusions

In Chapter 1 two problems that have guided this work were posed. They were:

e How can control engineers handle the increasing demands for safety and op-
timality of control systems, in settings where the systems themselves or their
operating environments severely restrict the possibility of precise mathematical
modeling?

e How can the problem above be solved with minimal introduction cost, that is,
minimal cost for introducing new technology?

The hypothesis of this dissertation is that a feasible answer to the questions is:
Use model-based execution monitors.

An execution monitor is, in this thesis, a separate architectural entity that should
be mounted on a controller with access to the controllers inputs and outputs (and
possibly with access to internal control structures of the controller). Then, given
a model of the closed-loop system, the the execution of the controller is monitored
with a particular focus on the detection of discrepancies between the actual and
predicted effects of action invocations.

In arguing for the hypothesis, we have had to clarify some methodological issues
such as what execution monitoring is (by specifying an appropriate working defini-
tion), the impact that a particular choice of modeling formalism has on execution
monitoring, and the identification of the central research issues. This work was pre-
sented in Chapter 2. The idea of employing a model-based execution monitor is
not new, nor does it belong to one specific academic discipline, so in Chapter 3 we

— 121 —

Chapter 8. Conclusions and future work

provided an attempt to review, and compare, some representative work on execu-
tion monitoring in Control Theory, Computer Science, and AI. As a result of the
discussion in Chapter 2, a set of five constituting functions of execution monitors
was identified. These were situation assessment (mapping the current sensor mea-
surements to a state, or situation, in the model), ezpectation assessment (computing
the predicted current state, or situation), discrepancy detection (comparing the ac-
tual and predicted current state, and determining whether there is a discrepancy
between the two), discrepancy classification (explaining a detected discrepancy, or
assessing its potential harmfulness), and recovery (taking some action to make the
system behave as wanted after a discrepancy, if possible).

This thesis has focused on discrepancy classification, and in Chapters 4 and
5 two classification paradigms were presented: Ontological Control and Stability-
Based execution monitoring. Ontological control concerns execution monitoring of
software-based industrial process controllers, and was originally (by Fodor [1995])
developed to handle infinite recovery loops. Stability-based execution monitoring
concerns the insurance that a closed-loop system is stable throughout its execution,
that is, that a given criterion always holds, or can be made to hold, whatever state
the system currently is in.

For ontological control, we have presented an implementation of the theory, and a
first set of experimental results, where the implementation was tested on a subsystem
of a real industrial process controller. The results are promising (but inconclusive).

In Chapters 6 and 7 the two paradigms were applied in two different modeling
formalisms: Hybrid Automata and the Situation Calculus/GoLoG framework. For
both these formalisms a number of extensions were developed to cope with the
requirements of execution monitoring.

Five of the most important contributions of this thesis are the following:

e Reviewing and comparing a number of previously proposed approaches to ex-
ecution monitoring in Control Theory, Computer Science, and AI (in Chapter
3). A major part of this work consists in the construction of a conceptual
framework that enables such comparisons (Chapter 2).

e The formalization, generalization, extension, and implementation of Ontolog-
ical Control (Chapter 4). This includes our proposal as to how to (semi-)
automatically generate a model of a closed-loop system by analyzing the con-
trol program.

e The development and analysis of the notion of “maintainability”, and its ap-
plication to an execution monitoring setting (Chapter 5).

e The attempt to bridge the gap between system verification and system execu-
tion monitoring (Chapter 6). This was demostrated by transforming closed-
loop models in a formalism designed for verification to a formalism that could
be utilized by an execution monitor engine.

e The analysis of the feasibility and utility of using a logical framework for the
types of execution monitoring presented in this thesis (Chapter 7).

— 122 —

8.2. Future work

8.2 Future work

Guided by the five contributions above, we will in this section state some of the
more interesting prospects for future work on model-based execution monitoring.

e We are pleased to see that steps to bridge the gap between FDI and model-
based diagnosis now are occurring more commonly in the literature (see e.g.
Cordier et al. [2000]). However, there is still a need for more work that links
concepts and techniques from AI, Control Theory and Computer Science, from
an execution monitoring point of view. As the importance of critical and
complex software-based control systems increases in society, there are large
benefits to be gained by a closer integration of the three areas.

e In its present form, ontological control places quite strict restrictions on sys-
tems in order to be applicable. An idea that has not been investigated is
“partial classifiability”, where even though the entire system does not satisfy
the restrictions, parts of it does, and guarantees of correct classification extend
only to those parts.

The problem of automatically generating models from a control program is
an interesting and complex problem with potential import. In the approach
taken in Chapter 4 we only consider the logical structure of the given program,
which suffices to semi-automatically generate a model. A problem that we
experienced with the generated model during the experiments was that for
every sensor reading the execution monitor recieved as input, there were many
(20-30) states that materialized, and it was not easy to perform situation
assessment even with the help of the goal paths. However, there is more
information available that could be utilized to automate more of the translation
process, and potentially would give us richer models. The next step we have
considered is to use temporal information from the program, that is, the logical
computations in the program are necessarily made in a partial temporal order.
This information could be used to limit the number of candidate states in the
situation assessment process.

e As shown in Chapter 5 the notions “stability” and “maintainability” are in-
comparable, while the notion “(k,l)-maintainability” generalizes both of them.
This interesting notion has not yet recieved the attention it deserves, but will
be analyzed more deeply in the future.

e Chapter 6 concerns the translation of hybrid automata to a state transition
diagram that can be used for execution monitoring. On the other hand, how
one generates an executable controller program from a hybrid automata is
an open question. Is it, for instance, possible to simultaneously generate a
controller program and a state transition digram of the new closed-loop system
for execution monitoring, and could this be a feasible way to automatically
proceed from a verified specification to a safe implemented control system?

— 123 —

Chapter 8. Conclusions and future work

In conclusion, the topic of execution monitoring is an exciting research area with
much left to be done. As autonomous systems are becoming more common, and will
continue to be, execution monitoring will be even more important. In some sense, it
provides a limited form of machine introspection and a potential basis for self-repair
of autonomous systems that will become increasingly more important in the future.

We have shown in this thesis that parts of the puzzle can be solved for less
challenging, but still complex software systems, and we look forward to new advances
in execution monitoring in the future.

— 124_

Bibliography

[AAAI 00, 2000] R. Dechter and R. Sutton, editors. Proceedings of the Seventeenth
National Conference on Artificial Intelligence, Austin, Texas, August 2000. Amer-
ican Association for Artificial Intelligence, AAATI Press/MIT Press.

[AAAI °87, 1987] American Association for Artificial Intelligence. Proceedings of the
Sizth National Conference on Artificial Intelligence (AAAI ’87), Seattle, Wash-
ington, July 1987. AAAT Press/MIT Press.

[AAATI ’94, 1994] American Association for Artificial Intelligence. Proceedings of
the Twelfth National Conference on Artificial Intelligence, Seattle, Washington,
August 1994. AAAT Press/MIT Press.

[AAAI ’96, 1996] American Association for Artificial Intelligence. Proceedings of
the Thirteenth National Conference on Artificial Intelligence, Portland, Oregon,
August 1996. AAATI Press/MIT Press.

[ABB, 1999] ABB Industrial Systems. Stressometer: Application overview and and
principles., 1999. 4/6 High Mill Application, Version 5.0.

[Abello and Dolev, 1997] J. Abello and S. Dolev. On the computational power of
self-stabilizing systems. Theoretical Computer Science, 183:159 — 170, 1997.

[Abramson, 1991] B. Abramson. An analysis of error recovery and sensory inte-
gration for dynamic planners. In Proceedings of the Ninth National Conference
on Artificial Intelligence (AAAI’91), Anaheim, California, July 1991. American
Association for Artificial Intelligence, AAAI Press.

[Agre and Chapman, 1987] P. Agre and D. Chapman. Pengi: An implementation
of a theory of activity. In AAAT 87 [1987].

[AIPS ’94, 1994] Kristian Hammond, editor. Proceedings of the Second International
Conference on Artificial Intelligence Planning Systems, Chicago, Illinois, 1994.
AAAT Press.

[Alur et al., 1992] R. Alur, C. Courcoubetis, T. Henzinger, and P.-H. Ho. Hybrid
automata: An algorithmic approach to the specification and and verification of
hybrid systems. In Workshop on Theory of Hybrid Systems, volume 736 of Lecture

— 125 —

BIBLIOGRAPHY

Notes in Computer Science, pages 209-229. Springer Verlag, Lyngby, Denmark,
October 1992.

[Alur et al., 1993] R. Alur, T. Henzinger, and P. Ho. Automatic symbolic verifica-
tion of embedded systems. In Proceedings of IEEE Real- Time Systems Symposium,
Raleigh-Durham, NC, December 1993.

[Ambros-Ingerson and Steel, 1988] J. Ambros-Ingerson and S. Steel. Intergrating
planning, execution and monitoring. In Proceedings of the Seventh National Con-
ference on Artificial Intelligence (AAAI’88), Saint Paul, Minnesota, August 1988.
American Association for Artificial Intelligence, AAAI Press/The MIT Press.

[Arkin, 1990] R.C. Arkin. Intergrating behavioral, perceptual and world knowledge
in reactive navigation. Robotics and Autonomous Systems, 6:105-122, 1990.

[Baier and Pinto, 1998] Jorge Baier and Javier Pinto. Non-instantaneous Actions
and Concurrency in the Situation Calculus (Extended Abstract). In Giuseppe
de Giacomo and Daniele Nardi, editors, 10th European Summer School in Logic,
Language and Information, 1998.

[Baker, 1989] A. Baker. A simple solution to the Yale shooting problem. In R.J.
Brachman, H.J. Levesque, and R. Reiter, editors, Proceedings of the First Inter-
national Conference on Principles of Knowledge Representation and Reasoning
(KR ’89), Toronto, Canada, May 1989. Morgan Kaufmann.

[Baral et al., 2000] C. Baral, S. Mcllraith, and T.C. Son. Formulating diagnos-
tic problemsolving using an action language with narratives and sensing. In
F. Giunchiglia and B. Selman, editors, Proceedings of the Seventh International
Conference on Principles of Knowledge Representation and Reasoning (KR’00),
Breckenridge, CO, US, April 2000. Morgan Kaufmann, San Francisco.

[Basseville and Nikiforov, 1993] M. Basseville and I. Nikiforov. Detection of Abrupt
Changes: Theory and Applications. Prentice Hall, Englewood Cliffs, NJ, USA,
1993.

[Beard, 1971] R.V. Beard. Failure accomodation in linear systems through self reor-
ganization. Phd thesis, Massachusetts Institute of Technology, Cambridge, MA,
USA, 1971.

[Beetz and McDermott, 1994] M. Beetz and D. McDermott. Improving robot plans
during their execution. In AIPS ’94 [1994].

[Benson, 1996] S. Benson. Learning Action Models for Reactive Autonomous Agents.
Phd thesis, Department of Computer Science, Stanford University, 1996.

[Bjdreland and Driankov, 1999] M. Bjireland and D. Driankov. Synthesizing dis-
crete controllers from hybrid automata - preliminary report. In Working Papers
of the AAAI Spring Symposium on Hybrid Systems and AI Stanford, CA, USA,
March 1999.

— 126 —

BIBLIOGRAPHY

[Bjireland and Fodor, 1998] M. Bjireland and G. Fodor. Ontological control. In
Working Papers of the Ninth International Workshop on Principles of Diagnosis
(Dz’98), Sea Crest Resort, N. Falmouth, MA, USA, May 1998.

[Bjdreland and Fodor, 2000] M. Bjareland and G. Fodor. Execution monitoring of
industrial process controllers: An application of ontological control. In SAFE-
PROCESS 2000 [2000].

[Bjireland and Haslum, 1999] M. Bjireland and P. Haslum. Stability, stabilizability,
and golog. Unpublished, August 1999.

[Bjireland and Karlsson, 1997] M. Bjareland and L. Karlsson. Reasoning by re-
gression: Pre- and postdiction procedures for logics of action and change with
nondeterminism. In IJCAI ’97 [1997].

[Bjdreland and Pinto, 2000] M. Bjéreland and J. Pinto. Handling surprises in logics
of action and change. Unpublished manuscript, 2000.

[Bjdreland, 1999a] M. Bjireland. Execution monitor synthesis for hybrid systems —
preliminary report. In Proceedings of the Fourteenth IEEE International Sympo-
sium on Intelligent Control (ISIC’99), Boston, USA, September 1999.

[Bjireland, 1999b] M. Bjiareland. Recovering from modelling faults in GOLOG. In
Proceedings of the IJCAI’99 Workshop: Scheduling and Planning meet Real-time
Monitoring in a Dynamic and Uncertain World, Stockholm, Sweden, August 1999.

[Blanke et al., 2000] M. Blanke, C.W. Frei, F. Kraus, R.J. Patton, and
M. Staroswiecki. What is fault-tolerant control ? In SAFEPROCESS 2000 [2000].

[Blum and Furst, 1997] A. Blum and M. Furst. Fast planning through planning
graph analysis. Artificial Intelligence, 90:981, 1997.

[Brooks, 1986] R. Brooks. A robust layered control system for a mobile robot. IEEE
Journal of Robotics and Automation, page 14..23, April 1986.

Brooks, 1991] R. Brooks. Intelligence without representation. Artificial Intelli-
g
gence, 47(1 — 3):139 — 159, 1991.

[Broverman and Croft, 1988] C. Broverman and B. Croft. Reasoning about excep-
tions during plan execution monitoring. In AAAT ’87 [1987].

[Carpanzano et al., 1999] E. Carpanzano, L. Ferrarini, and C. Maffezzoni. An
object-oriented model for hybrid control systems. In Proceedings of the 1999
IEEE International Symposium on Computer Aided Control System Design, Ko-
hala Coast-Island of Hawai’i, Hawai’i, USA, August 1999.

[Cassandra et al., 1994] A.R. Cassandra, L.P. Kaelbling, and M.L. Littman. Acting
optimally in partially observable stochastic domains. In AAAT ’94 [1994].

127

BIBLIOGRAPHY

[Chapman, 1987] D. Chapman. Planning for conjunctive goals. Artificial Intelli-
gence, 32:333 — 377, 1987.

[Chen and Patton, 1999] J. Chen and R.J. Patton. Robust model-based fault diag-
nosis for dynamic systems. Kluwer Academic Publishers, 1999.

[Chittaro et al., 1993] L. Chittaro, G. Guida, C. Tasso, and E. Toppano. Functional
and teleological knowledge in the multimodeling approach for reasoning about
physical systems: A case study in diagnosis. IEEE Transactions on Systems,
Man and Cybernetics, 23(6):1781-1751, November 1993.

[Coradeschi and Saffiotti, 2000] S. Coradeschi and A. Saffiotti. Anchoring symbols
to sensor data: Preliminary report. In AAAT 00 [2000].

[Cordier et al., 2000] M-O. Cordier, P Dague, M. Dumas, F. Lévy, J. Montmain,
M. Staroswiecki, and L.nd Tr Travé-Massuyés. Al and automatic control ap-
proaches to model-based diagnosis: Links and underlying hypotheses. In SAFE-
PROCESS 2000 [2000].

[de Giacomo and Levesque, 1998] G. de Giacomo and H. Levesque. An Incremental
Interpreter for High-Level Programs with Sensing. Technical report, University of
Toronto, 1998. URL = http://www.cs.toronto.edu/cogrobo/incr-exe.ps.Z.

[De Giacomo and Levesque, 1999] G. De Giacomo and H. Levesque. Projection us-
ing regression and sensors. In IJCAI ’99 [1999].

[De Giacomo and Vardi, 2000] G. De Giacomo and M. Vardi. Automata-theoretic
approach to planning for temporally extended goals. In S. Biundo and M. Fox,
editors, Recent advances in AI Planning, volume 1809 of LNCS. Springer-Verlag,
2000. Proceedings of the 5th European Conference on Planning (ECP’99) in
Durham, UK, September 1999.

[De Giacomo et al., 1997] G. De Giacomo, Y. Lesperance, and H.J. Levesque. Rea-
soning about concurrent execution, prioritized interrupts, and exogenous actions
in the situation calculus. In IJCAI 97 [1997].

[De Giacomo et al., 1998] G. De Giacomo, R. Reiter, and M. Soutchanski. Execu-
tion monitoring of high-level robot programs. In KR’98 [1998].

[de Giacomo et al., 1999a] G. de Giacomo, Y. Lesprance, and H.J. Levesque. Con-
golog, a concurrent programming language based on the situation calculus: foun-
dations. Submitted for publication, February 1999.

[de Giacomo et al., 1999b] G. de Giacomo, Y. Lesprance, and H.J. Levesque. Con-
golog, a concurrent programming language based on the situation calculus: lan-
guage and implementation. Submitted for publication, February 1999.

[de Kleer and Williams, 1987] J. de Kleer and B. Williams. Diagnosing multiple
faults. Artificial Intelligence, 32:97-130, 1987.

— 128 —

BIBLIOGRAPHY

[Dean and Wellman, 1991] T.L. Dean and M.P. Wellman. Planning and Control.
Morgan Kaufmann, San Mateo, CA, USA, 1991.

[Dijkstra, 1974] E. W. Dijkstra. Self-stabilizing systems in spite of distributed con-
trol. Communications of the ACM, 17:643 — 644, 1974.

[Dijkstra, 1986] E.W. Dijkstra. A belated proof of self-stabilization. Distributed
Computing, 1:5 — 6, 1986.

[Doherty et al., 1998] P. Doherty, J. Gustafsson, L. Karlsson, and J. Kvarnstrom.
TAL: Temporal action logics language specification and tutorial. Linkdping
Electronic Articles in Computer and Information Science, 3(015), 1998. URL:
http://www.ep.liu.se/ea/cis/1998/015/.

[Doyle et al., 1986] R. Doyle, D. Atkinson, and R. Doshi. Generating perception
requests and expectations to verify the execution of plans. In Proceedings of
the Fifth National Conference on Artificial Intelligence (AAAI’86), Philadelphia,
Pennsylvania, August 1986. American Association for Artificial Intelligence, AAAI
Press/MIT Press.

[Dvorak and Kuipers, 1989] D. Dvorak and B. Kuipers. Model-based monitoring of
dynamic systems. In Proceedings of the Eleventh International Joint Conference
on Artificial Intelligence, Los Altos, CA, USA, 1989. Morgan Kaufmann.

[Dvorak and Kuipers, 1991] D. Dvorak and B. Kuipers. Process monitoring and
diagnosis: A model-based approach. IEEE Expert, 5(3):67 — 74, 1991.

[Earl and Firby, 1997] C. Earl and J. Firby. Combined execution and monitoring for
control of autonomous agents. In Proceedings of the First International Conference
on Autonomous Agents (AGENTS’97), Marina Del Rey, CA, USA, February 1997.
ACM.

[Falkenroth, 2000] E. Falkenroth. Database Technology for Control and Simulation.
Phd thesis, Link6éping Studies in Science and Technology no. 637, Linkopings
universitet, Sweden, 2000.

[Faurre and Depeyrot, 1977] P. Faurre and M. Depeyrot. Elements of System The-
ory. North-Holland, 1977.

[Ferguson, 1992] I. Ferguson. TouringMachines: Autonomous agents with attitudes.
IEEE Computer, 25(5), 1992.

[Fikes and Nilsson, 1971] R. Fikes and N. Nilsson. STRIPS: A new approach to the
application of theorem proving to problem solving. Artificial Intelligence, 2:189 —
208, 1971.

[Fikes et al., 1972] R. Fikes, P. Hart, and N. Nilsson. Learning and executing gen-
eralized robot plans. Artificial Intelligence, 3(4):251-288, 1972.

— 129 —

BIBLIOGRAPHY

[Fodor, 1995] G. Fodor. Ontological Control — Description, Identification, and Re-
covery from Problematic Control Situations. PhD thesis, Department of Computer
and Information Science, Link6pings universitet, Sweden, 1995.

[Fodor, 1998] G. Fodor. Ontologically Controlled Autonomous Systems: Principles,
Operations and Architecture. Kluwer Academic, 1998.

[Frank, 1990] P. Frank. Fault diagnosis: A survey and some new results. Automatica:
IFAC Journal, 26(3):459 — 474, 1990.

[Gelfond and Lifschitz, 1998] M. Gelfond and V. Lifschitz. Action languages.
Linképing FElectronic Articles in Computer and Information Science, 3(016), 1998.
URL: http://www.ep.liu.se/ea/cis/1998/016/.

[Gil, 1992] Y. Gil. Acquiring Domain Knowledge for Planning by Ezperimentation.
PhD thesis, Carnegie Mellon University, 1992.

[Gu et al., 1994] W. Gu, J. Vetter, and K. Schwan. An annotated bibliography
of interactive program steering. Technical Report GIT-CC-94-15, College of
Computing, Georgia Institute of Technology, Atlanta, USA, 1994. Available at
http://www.cc.gatech.edu/systems/projects/FALCON/.

[Gu et al., 1997] W. Gu, G. Eisenhauer, and K. Schwan. Falcon: On-line monitoring
and steering of parallel programs. In Procfeedings of the Ninth International Con-
ference on Parallel and Distributed Computing and Systems (PDCS’97), Wash-
ington D.C., USA, October 1997.

[Hammond, 1990] K. Hammond. Explaining and repairing plans that fail. Artificial
Intelligence, 45:173-228, 1990.

[Hamscher et al., 1992] W. Hamscher, L. Console, and J. de Kleer, editors. Readings
in Model-Based Diagnosis. Morgan Kaufmann, 1992.

[Henzinger and Kopke, 1997] T. Henzinger and P. Kopke. Discrete-time control
for rectangular hybrid automata. In Proceedings of the Twentyfourth Interna-
tional Colloguium on Automata, Languages, and Programming (ICALP’97), vol-
ume 1256 of Lecture Notes in Computer Science, pages 582-593. Springer-Verlag,
1997.

[Henzinger et al., 1997] T. Henzinger, P.-H. Ho, and H. Wong-Toi. HYTECH: A
model checker for hybrid systems. In Proceedings of the Ninth International Con-
ference on Computer-Aided Verification (CAV’97), volume 1254 of Lecture Notes
in Computer Science, pages 460—463. Springer-Verlag, 1997.

[Herman, 1999] T. Herman. Self-stabilization bibliography: Access guide.
http://www.cs.uiowa.edu/ftp/selfstab/bibliography/access.html,
September 1999. Available only via www.

— 130 —

BIBLIOGRAPHY

[IJCAI °97, 1997] M.E. Pollack, editor. Proceedings of the Fifteenth International
Joint Conference on Artificial Intelligence (IJCAI ’97), Nagoya, Japan, August
1997. Morgan Kaufmann.

[IJCAI ’99, 1999] T. Dean, editor. Prooceedings of the Sizteenth International Joint
Conference on Artificial Intelligence, Stockholm, Sweden, August 1999. Morgan
Kaufmann.

[Jacobson and Nett, 1991] C.A. Jacobson and C.N. Nett. An integrated approach to
controls and diagnostics using the four parameter control. IEEE Control Systems
Magazine, 11(6):22-29, 1991.

[Kaelbling and Rosenschein, 1991] L. Kaelbling and S. Rosenschein. Action and
planning in embedded agents. In P. Maes, editor, Designing Autonomous Agents,
pages 35-48. MIT Press, 1991.

[Kalman, 1960] R.E. Kalman. A new approach to linear filtering and prediction
problems. Journal of Basic Engineering, pages 35 — 46, 1960.

[Knoblock, 1995] C. Knoblock. Planning, executing, sensing, and replanning for in-
formation gathering. In C. Mellish, editor, Proceedings of the Fourteenth Interna-
tional joint Conference on Artificial Intelligence (IJCAI’95), Montreal, Canada,
August 1995. Morgan Kaufmann.

[KR’98, 1998] A. Cohn, L. Schubert, and S. Shapiro, editors. Principles of Knowl-
edge Representation and Reasoning: Proceedings of the Sizth International Con-
ference (KR’98), Trento, Italy, June 1998. Morgan Kaufmann, San Francisco.

[Kumar and Garg, 1995] R. Kumar and V. Garg. Modeling and Control of Logical
Discrete Event Systems. Kluwer Academic Publishers, Boston, MA, USA, 1995.

[Lee and Durfee, 1994] J. Lee and E. Durfee. Structured circuit semantics for reac-
tive plan execution systems. In AAAI *94 [1994].

[Lennartsson et al., 1996] B. Lennartsson, M. Tittus, B. Egardt, and S. Pettersson.
Hybrid systems in process control. IEEE Control Magazine, October 1996.

[Levesque et al., 1997] Hector J. Levesque, Raymond Reiter, Yves Lespérance,
Fangzhen Lin, and Richard B. Scherl. GOLOG: A Logic Programming Language
for Dynamic Domains. The Journal of Logic Programming, 31:59-84, 1997.

[Levesque et al., 1998] H. Levesque, F. Pirri, and R. Reiter. Foundations for the
situation calculus. Linkdping Electronic Articles in Computer and Information
Science, 3(018), 1998. URL: http://www.ep.liu.se/ea/cis/1998/018/.

[Lewau, 1999] P. Lewau. A prototype of an ontological controller. Master’s thesis,
Link6ping Studies in Science and Technology, Link6pings universitet, April 1999.
No. LiTH-IDA-Ex-9949.

— 131 —

BIBLIOGRAPHY

[Lewis, 1997] R.W. Lewis. Programming industrial control systems using IEC 1131-
3. Number 50 in IEE Control Engineering Series. The Institution of Electrical
Engineers, London, United Kingdom, 1997.

[Lin, 1996] F. Lin. Embracing Causality in Specifying the Indeterminate Effects of
Actions. In AAAT ’96 [1996].

[Lukaszewicz, 1990] W. Lukaszewicz. Non-Monotonic reasoning: formalization of
commonsense reasoning. Ellis Horwood, 1990.

[Lyons and Hendriks, 1995] D. Lyons and A. Hendriks. Planning as incremental
adaption of a reactive system. Robotics and Autonomous Systems, 14:255-288,
1995.

[McCarthy and Hayes, 1969] J. McCarthy and P. Hayes. Some philosophical prob-
lems from the standpoint of artificial intelligence. In B. Meltzer and D. Michie,
editors, Machine Intelligence 4, pages 463—-502. Edinburgh University Press, 1969.

[Mcllraith, 1997] S. MclIlraith. Towards a formal account diagnostic problem solving.
Phd thesis, University of Toronto, 1997.

[Mcllraith, 1998] S. Mcllraith. Explanatory diagnosis: Conjecturing actions to ex-
plain observations. In KR’98 [1998].

[Mcllraith, 1999] S. Mcllraith. Model-based programming using golog and the situ-
ation calculus. In Working Papers of the Tenth International Workshop on Prin-
ciples of Diagnosis (Dz99), Loch Awe, Scotland, June 1999.

[Misawa and Hedrick, 1989] E.A. Misawa and J.K. Hedrick. Nonlinear observers — A
state-of-the-art survey. Journal of Dynamic Systems, Measurement, and Control,
111:344 — 352, 1989.

[Munson, 1971] J. Munson. Robot planning, execution, and monitoring in an un-
certain environment. In Proceedings of the Second International Joint Conference
on Artificial Intelligence (IJCAI’71), London, England, 1971. Morgan Kaufmann.

[Muscettola et al., 2000] N. Muscettola, P. Nayak, B. Pell, and B. Williams. Remote
agent: To boldly go where no Al system has gone before. Artificial Intelligence,
2000. To Appear.

[Musliner et al., 1995] D.J. Musliner, E.H. Durfee, and K.G. Shin. CIRCA: A coop-
erative intelligent real-time control architecture. IEEE Transactions on Systems,
Man and Cybernetics, 23(6):1561 — 1574, 1995.

[Nakamura et al., 2000] M. Nakamura, C. Baral, and M. Bjareland. Maintainability:
a weaker stabilizability-like notion for high-level control agents. In AAAI ’00
[2000].

[Nilsson, 1982] N. Nilsson. Principles of Artificial Intelligence. Springer-Verlag,
1982.

— 132 —

BIBLIOGRAPHY

[Nilsson, 1994a] Nils J. Nilsson. Teleo-Reactive Programs for Agent Control. Journal
of Artificial Intelligence Research, 1:139-158, 1994.

[Nilsson, 1994b] N.J. Nilsson. Teleo-reactive programs for agent control. Journal of
Artificial Intelligence Research, 1:139-158, 1994.

[O’Reilly, 1983] J. O’Reilly. Observers for linear systems. Academic Press, London,
1983.

[Ozveren et al., 1991] C. Ozveren, A. Willsky, and P. Antsaklis. Stability and stabi-
lizability of discrete event dynamic systems. Journal of the ACM, 38(3):730-752,
July 1991.

[Passino and Burgess, 1998] K. Passino and K. Burgess. Stability Analysis of Dis-
crete Event Systems. Adaptive and Learning Systems for Signal Processing, Com-
munications, and Control. John Wiley and Sons, Inc., New York, 1998.

[Pinto and Bjareland, 2001] J. Pinto and M. Bjireland. An architecture for execu-
tion monitoring. Submitted to the Seventeenth International Joint Conference on
Artificial Intelligence (IJCAI ’01), August 2001.

[Pinto, 1994] Javier Pinto. Temporal Reasoning in the Situation Calculus. PhD
thesis, Department of Computer Science, University of Toronto, Toronto, Ontario,
Canada, February 1994. URL = ftp://ftp.cs.toronto.edu/~cogrobo/jpThesis.ps.Z.

[Pinto, 1998a] J. Pinto. Concurrent actions and interacting effects. In KR’98 [1998].

[Pinto, 1998b] J. Pinto. Occurrences and narratives as constraints in the branching
structure of the situation calculus. Journal of Logic and Computation, 8(6):777—
808, December 1998.

[Ramadge and Wonham, 1989] P. Ramadge and W. Wonham. The control of dis-
crete event systems. Proceedings of the IEEE: Special Issue on Discrete Event
Systems., 77:81-98, 1989.

[Reiter, 1978] R. Reiter. On closed-world data bases. In H. Gallaire and J. Minker,
editors, Logic and Data Bases, pages 55—76. Plenum Press, New York, 1978.

[Reiter, 1987] R. Reiter. A theory of diagnosis from first principles. Artificial Intel-
ligence, 32(1):57 — 95, 1987.

[Reiter, 1991] R. Reiter. The frame problem in the situation calculus: a simple
solution (sometimes) and a completeness result for goal regression. In V. Lifschitz,
editor, Artificial Intelligence and Mathematical Theory of Computation: Papers
in Honor of John McCarthy. Academic Press, San Diego, 1991.

[Reiter, 1998] Ray Reiter. Sequential, Temporal GOLOG. In A. Cohn, L. Schubert,
and S. Shapiro, editors, Principles of Knowledge Representation and Reasoning:
Proceedings of the Sixth International Conference (KR’98), pages 547-556. Mor-
gan Kaufmann, June 1998.

— 133 —

BIBLIOGRAPHY

[Reiter, 1999] Raymond Reiter. KNOWLEDGE IN ACTION: Logical Foundations
for Describing and Implementing Dynamical Systems. Book Draft, available from
http://www.cs.utoronto.ca/ cogrobo, 1999.

[Rich and Knight, 1991] E. Rich and K. Knight. Artficial Intelligence. McGraw-Hill,
Inc., 2nd edition, 1991.

[Rinner and Kuipers, 1999] B. Rinner and B. Kuipers. Monitoring piecewise con-
tinuous behaviours by refining semi-quantitative trackers. In IJCAI 99 [1999].

[Sacerdoti, 1977] E. Sacerdoti. A Structure for Plans and Behaviour. Artificial
Intelligence series. Elsevier North-Holland, New York, 1977.

[SAFEPROCESS 2000, 2000] A.M. Edelmayer, editor. Proceedings of the Fourth
IFAC Symposium on Fault Detection, Supervision, and Safety for Technical Pro-
cesses (SAFEPROCESS 2000), Budapest, Hungary, June 2000. IFAC.

[Saffiotti, 1998] A. Saffiotti. Autonomous Robot Navigation: A Fuzzy Logic Ap-
proach. PhD Thesis, Faculté de Science Appliquées, IRIDIA, Université Libre de
Bruxelles, 1998.

[Sandewall and Shoham, 1994] E. Sandewall and Y. Shoham. Nonmonotonic tem-
poral reasoning. In D. Gabbay, editor, Handbook of logic in artificial intelligence
and logic programming, volume 2. Oxford University Press, 1994.

[Sandewall, 1994] E. Sandewall. Features and Fluents. The Representation of
Knowledge about Dynamical Systems, volume I. Oxford University Press, 1994.
ISBN 0-19-853845-6.

[Sandewall, 1995] Erik Sandewall. Features and Fluents, A Systematic Approach to
the Representation of Knowledge about Dynamical Systems. Oxford University
Press, 1995.

[Schroeder, 1995] B. Schroeder. On-line monitoring: A tutorial. Computer, pages
72-78, June 1995.

[Schubert, 1990] L.K Schubert. Monotonic solution to the frame problem in the
situation calculus: an efficient method for worlds with fully specified actions. In
Knowledge Representation and Defeasible Reasoning, pages 23—67. Kluwer Aca-
demic Press, 1990.

[Shen, 1989] W.-M. Shen. Learning from the Environment Based on Actions and
Percepts. PhD thesis, Carnegie Mellon University, 1989.

[Simmons et al., 1997] R. Simmons, R. Goodwin, K. Haigh, S. Koenig,
J. O’Sullivan, and M. Veloso. XAVIER: Experience with a layered robot ar-
chitecture. SIGART Bulletin, 8(1-4):22-33, 1997.

[Sorensen, 1985] H.W. Sorensen, editor. Kalman Filtering: Theory and Applica-
tions. IEEE Press, New York, 1985.

— 134_

BIBLIOGRAPHY

[Struss, 1997] P. Struss. Fundamentals of model-based diagnosis. In IJCAI ’97
[1997].

[Thielscher, 1997] M. Thielscher. A theory of dynamic diagnosis. Electronic Trans-
actions of AI 1997. Available at http://www.ep.liu.se/ea/cis/1997/011.

[Thielscher, 1998] M. Thielscher. Introduction to the fluent calculus. Linkdping
Electronic Articles in Computer and Information Science, 3(014), 1998. URL:
http://www.ep.liu.se/ea/cis/1998/014/.

[Wang, 1994] X. Wang. Learning planning operators by observation and practice.
In AIPS 94 [1994].

[Williams and Nayak, 1996] B.C. Williams and P.P. Nayak. A model-based ap-
proach to reactive self-configuring systems. In AAAT ’96 [1996].

[Zhang and Mackworth, 1995] Y. Zhang and A. Mackworth. Synthesis of hybrid
constraint-based controllers. In Hybrid Systems II, number 999 in Lecture Notes
in Computer Science. Springer-Verlag, 1995.

— 135 —

BIBLIOGRAPHY

— 136 —

Appendix A

Stability and stabilizing
Golog programs

In this appendix we will translate “stability” from chapter 5 to SitCalc. Stability
is not a first-order property, since it requires quantification over infinite situation
trajectories. Therefore, we represent an infinite situation trajectories with a partial
trajectory function T : & — A. We intend 7(s) = a to mean that action a is
executed in situation s, if the specific situation trajectory defined by 7T is followed.
Formally,

Definition A.0.1 (Trajectory Function)
For a SitCalc theory A, T is a trajectory function if

A |=T(s) =a D Poss(a, s).
O

We need our trajectory functions to be somewhat more restricted.

Definition A.0.2 (Trajectory Prefix)
Let s be a situation, and 7 be a trajectory function. We then say that s is a prefiz
of T, denoted Prefiz(s,T) iff, s = So or s = do(a, s') such that 7(s') = a and
Prefiz(s',T) holds, for some s’ and a. Formally,
Prefiz(s,T) =
s=S8yV3s' a.s =do(a,s') NT(s') =aA Prefiz(s',T).

O

Intuitively, Prefiz(s,7), where s is a situation and T a trajectory function, means
that either s = Sy or s is constructed exactly according to 7.

137

Appendiz A. Stability and stabilizing GOLOG programs

Definition A.0.3 (Alive Trajectory)

Let 7 be a trajectory function. We say that 7T is alive, denoted Alive(T), iff for
every prefix s of T, there exists an action a such that 7 (s) = a holds, and for every
such action a it is possible to execute a in s. Formally,

Alive(T) =
Prefiz(s,T7) D Ja.T(s) =a

O

Intuitively, a trajectory function 7 is alive iff there exists a continuation to every
prefix of 7. Clearly, an alive trajectory function defines an infinite sequence of
situations. The fact that every continuation starts by a possible action follows from
the definition of trajectory functions. Let «(s) be a boolean combination of ground
atoms, i.e. of expressions of the type H(f(d),s) or ~H(f(0),s). Such a formula
describes a set of situations in which a particular property holds, the set

S ={s|(s)}

and we will refer to such a formula as a property. Clearly, stability is not a first-order
property, so we will employ second-order quantification over trajectory functions.

Definition A.0.4 (Stable Theory)
Let A be a SitCalc theory and y(s) a property. We say that A is stable w.r.t. v iff

AE
Vs.—y(s) D
VT.Prefiz(s,T) A Alive(T) D
3s'.s C s' A Prefiz(s', T) Avy(s).

O

In general, it is a distinct possibility that a system is not stable, and that we want
to construct a stabilizing controller. In the next section we will construct a GOLOG
program that does exactly this.

A.1 Stabilizing Golog programs

The main goal of this section is to define the notion of stabilizing GOLOG programs,
i.e. GOLOG programs that make an unstable SitCalc theory stable, and show how
such programs can be synthesized. Our main tool for this will be trajectory functions.

We begin by connecting the semantics of a GOLOG program to trajectory func-
tions by defining the notion program trace.

— 138 —

A.2. Synthesis of stabilizing controllers

Definition A.1.1 (Program Trace)
Let T be a trajectory function and § a GOLOG program. We say that 7T is a trace
of program ¢, denoted Trace(T,), iff

Vs. Prefiz(s,T) D
(3¢'. TransCl(4, So, 0", s)) V
(36'3s".s' C s A TransCl(d, So, ¢, s') A Final(d',s"))

O

Intuitively, 7 being a trace of § means that every prefix of 7 is a situation that could
be arrived at by executing program 4 in the initial situation. The second disjunct
handles the case where § has halted in an earlier situation s’.

Clearly, if every alive trajectory function for a theory that is a trace of the same
program stabilizes the theory, we can say that the program stabilizes the theory.
Formally, we have

Definition A.1.2 (Stable Under Control)
Let A be a SitCalc theory, v(s) a property, and let § be a GOLOG program. We say
that A is stable w.r.t. v under control of §, or that § stabilizes A w.r.t. v , iff

A=
Vs.—y(s) D
VT.Prefiz(s, T) A Alive(T) A Trace(T,8) D
3s'.s C s’ A Prefiz(s', T) Avy(s).
O

The controller stabilizes A by limiting the set of possible trajectories to only those
that are execution traces of §, and by ensuring those trajectories satisfy the stability
criterion.

A.2 Synthesis of stabilizing controllers

A necessary condition for the existence of a stabilizing controller is the existence
of at least one trajectory function 7 that satisfies the stability criterion w.r.t. the
desired property v. However, the function 7 is an infinite object. In order to express
it as a finite GOLOG program, some further restriction is necessary.

Definition A.2.1 (Markovian Trajectory)
Let 7 be a trajectory function. We say that 7 is Markovian iff

AE
VsVs'. (Vf. H(f,s) = H(f,5')) D T(s) = T(s'))

— 139 —

Appendiz A. Stability and stabilizing GOLOG programs

Intuitively, 7 having the Markov property means that in two situations that sat-
isfy the same set of fluents, i.e. the same state, the trajectory function behaves
identically; it is history-independent.

Let v be a property and suppose A is a SitCalc theory that is not stable w.r.t.
~. Suppose further that there exists a alive trajectory function 7 that satisfies the
stability criterion, i.e.

A=
Vs.—=y(s) A Prefiz(s,T) D (A.1)
3s'.s C s' A Prefiz(s',T) Avy(s")
and that 7 is Markovian. We now show how to construct a stabilizing GoLOG
controller, starting from 7.

Let Fgr be the set of ground fluents. We call a subset w = {f(d)1,...,f(0)m}

of Fg,» an observation and define an observation test as the formula
_ f0) f@)ew
wls) =
W= A { s fa5e
f(9)eFar

For each observation w, construct the program fragment w?; a iff there exists some
situation s such that w(s) hold and 7 (s) = a. The sought controller is then con-
structed as

or = (wr1%a1].. . |lwm?am)"; =7,

where — denotes any contradiction. We now set out to prove that §+, constructed
from T, does stabilize A. The basic idea is to show that every trace of 7 implies
T. We start with a Lemma:

Lemma A.2.2 Let é7 be defined as above, then, for any situation s and some
program §

TransCl(d1, So, 9, s) implies TransCl(d+, So, 07, $)
and
TransCl(d1, So,d, s) implies Prefiz(s,T).

Proof: We use induction over s.
TransCl(d7, So,d07,S0) and Prefiz(So, T) holds by definition.
We assume that the proposition holds and prove that

TransCl(d1, s, d,do(a;, s)) implies TransCl(dr, s,d1,do(as, s)),

for some i. We compute the applications of T'rans.

140

A.2. Synthesis of stabilizing controllers

By definition of the T'rans for nondeterministic iteration we have,

Trans(ét,s,6,8') =
(Fe. Trans((w1?;a1]- .- |wm?; am), 5,68) ANd =€d7)V
(Final((w1?;a1|. .. |wm?;am)*) A Trans(—?, s,€,s')) (A.2)
which is the first application of T'rans.
Trans(—7,s,d,8') =— A6 = nil A's' = s, which can not possibly hold, which
makes the second disjunct in (A.2) false. Thus, we need to compute
Trans((wi?;a1] ... |wm?;am), s, € 8') =
Trans(wi17;a1,58,€6,8')V...VTrans(wmn?; am, s, €, 8')

for some program €, by definition of T'rans for nondeterministic choice. For each i
we have

Trans(w;?; a;, s,¢€,8') = 3. Trans(w;?,s,(,s') Ae = (5a; (A.3)
by definition of T'rans for sequences. Furthermore
Trans(w;?,5,(,8') S wi[s] AN =nilAs' =s

by definition of Trans for conditions. This second application of Trans yields that
Trans((w1?;a1] .- . |wm?; am), s, nil; a;, s) iff w;[s]. In the third application of T'rans
we move from the program mnil;a; in situation s to a new program 7 and a new
situation s".

] n
Trans(nil;a;, s,n,s") =

Final(nil, s) A Trans(a;, s,n, s")

Trans(a;, s,n,s")

which by definition of T'rans for primitive actions gives

Trans(a;, s,n,s") =
Poss(ai,s) Anp=mnil As" = do(ai, s)

By means of Trans we went from §7 in situation s, to nil;a; in s iff w;[s], and
from that to nil in do(a;, s). Thus, we have TransCl(dT, s, 0, do(a;, s)) iff w;[s], for
some i, and 6 = nil;d7. Since the action nil has no effects whatsoever it is clear
that TransCl(dT, s, 01, do(a;, s)) iff w;[s]. Moreover, the construction of §7 ensures
that some w;[s] will hold and since we have a completely specified initial state and
all primitive actions are deterministic, w;[s] is unique. From the hypothesis and by
transitivity we have that TransCl(é1, So, d7, do(a;, s))

By the definition of Prefiz (definition A.0.2) we know that:

Prefiz(do(a;,s),T) = T(s) = a; A Prefiz(s,T),

141

Appendiz A. Stability and stabilizing GOLOG programs

for some i. Now, since w;[s] determines the value of every fluent, and 7 is Marko-
vian, 7(s) = a;, which implies Prefiz(do(a;i,s),T) (as Prefiz(s,7T) holds by the
hypothesis).O

Theorem A.2.3 (Correctness of d7) Let A be a SitCalc theory, v a property, T
a Markovian trajectory function satisfying condition (A.1), and 6+ defined as above.
Then A is stable w.r.t. v under control of d.

Proof: We show that for any trajectory function 7' which is a trace of é7,

A =Vs. Prefiz(s, TYAT'(s)=aD>T(s)=a

Stability then follows from the fact that 7 satisfies condition (A.1).

Let s be an arbitrary situation such that Prefiz(s,7') holds and 7'(s) = a.
Then do(a, s) is also a prefix of 7' by the definition of prefix, and since 7' is a
trace of d7, there exists, by the definition of program trace, a program § such that
TransCl(dr, So, 0, do(a, s)) (and since we know from Lemma A.2.2 that 7 never
halts, we ignore the second disjunct in the definition of program trace). By Lemma
A.2.2, we have Prefiz(do(a, s),t) which implies that 7 (s) = a.O

It should be noted that the Markov property is a sufficient condition for trans-
lation of a trajectory function into a GOLOG program. It may very well be the case
that there are other, less restrictive, conditions that will enable such a translation
too.

142

Appendix B

Handling discrepancies in
Pinto’s concurrent SitCalc

In this appendix we will show how surprises may be handled in SitCalc.

B.1 Surprises in Reiter’s SitCalc

With a state-based view on execution monitoring, a natural definition of a discrep-
ancy in SitCalc could be the following:

Definition B.1.1 (Discrepancy (Surprise))
Let A be an application axiomatization and Og,(4,s) an observation with s being a
ground situation term. If

A l# Odo(A,s)
we say that Og,(a,s) is a discrepancy (or, surprisel).0

In Chapter 2 the notion “Strength of Closed World Assumption” of a modeling
formalism was discussed. We claimed that SitCalc belonged to the far right end of
the scale, since it enforces precise predictions on the values of state variables (or,
fluents as they will be called in this chapter and the next) over time, where changes
are due to control actions. To solve the frame problem? SitCalc relies on action-
based inertia, that is, fluents changes exactly when an action makes them change.
This is the mechanism that enforces precision. Action-based inertia is a fairly strong
assumption and from our perspective, it is too strong. In fact, adding an observation

IThe terminology of the Reasoning about Action and Change research areas is partial to the
term “surprise”.

2The frame problem is a representational problem for declarative formalisms for knowledge
representation. The problem is that it is desirable to only have to explicitly represent things that
change in dynamic environment, without having to bother with all the things that do not change.

— 143_

Appendiz B. Handling discrepancies in Pinto’s concurrent SitCalc

to the theory that does not satisfy an expected observation yields an inconsistent
theory.

Example B.1.2 As a simple example of this, we can reuse an example that was
popular in the 80’s: the Stolen Car Scenario [Baker, 1989]. In the scenario I leave
my car in a parking lot and return after three days. I expect to find the car where
I left it, but instead it is stolen. We can model this scenario in a simple fashion in
SitCalc as follows: there is only one action wait, and only one fluent parked, where
H (parked, s) denotes that the car is parked in situation s. the action wait does not
change the truth value of the fluent. As we assume that it always is possible to wait,
Poss is always true. We have the following successor state axiom?:

Poss(a,s) D
(H (parked, do(a, s)) = H (parked, s)),

that is, I assume that that nothing may change the fact that the car is parked. We
also have the initial situation axiom

H (parked, So).
After three days observe that the car is stolen, that is, that
—H (parked, do(wait, do(wait, do(wait, Sp))))

holds. With the successor state axiom we see that this observation is equivalent with
—H (parked, Sg) which contradicts the initial situation axiom, thus, the observation is
a discrepancy. In the terminology of [Sandewall and Shoham, 1994], Reiter’s SitCalc
is not consistency preserving. The problem from an execution monitoring perspective
is that we cannot reason about the discrepancy as it contradicts the application
axiomatization.O

In section B.2 we will solve the problem of Example B.1.2 by relaxing ECA to
allow for fictitious actions to occur concurrently with the primitive actions. The
occurrences of such fictitious actions is then minimized.

Above we showed that the strong inertia assumption made theories with dis-
crepancies inconsistent. In that case we cannot reason about discrepancies, nor
distinguish between discrepancies and an inconsistent original application axiomati-
zation.

B.2 Surprises with fictitious actions in Pinto’s Sit-
Calc

In this section we will address these problems by introducing fictitious actions, that
is, two actions for every fluent that change the fluent value to true or false respec-
tively. When we encounter a discrepancy, the theory will no longer be inconsistent,
instead it will be possible to show that at least one fictitious action was executed.

3The v-formulas are empty in this example, and since they are disjunctions they have the value
F.

— 144_

B.2. Surprises with fictitious actions in Pinto’s SitCalc

The most natural way to model this, in our mind, is to allow for fictitious actions
to be executed concurrently with the primitive actions. Moreover, since fictitious
could explain any change we need to ensure that fictitious actions only occur when it
is absolutely necessary. Thus, our starting point will be Pinto’s concurrent flavor of
SitCalc [Pinto, 1998a]. We will also exploit his work on explicit situation preference
relations to minimize the occurrences of fictitious actions [Pinto, 1998b].

B.2.1 Language

The concurrent SitCalc (CSitCalc) is a second-order sorted language with sorts F,
A, Atict, C, S, and S for fluents, primitive actions, fictitious actions, concurrent
actions, situations and domain objects. There are two fictitious actions, A; and
Ay, for every F' € F, and the concurrent actions are sets of primitive and fictitious
actions, that is C = 2AYAsiet . Fluents may take arguments from the set of domain
objects.

We have the following function and predicate symbols:

do:C xS — S. The term do(c, s) denotes situation resulting from the concur-
rent execution of all actions in c¢ in situation s.

Poss C C x 8. The atomic formula Poss(c, s) denotes that it is possible to
execute the actions in ¢ concurrently in situation s.

-

H C FxS. For afluent F and situation s, H(F'((d)), s) denotes that the fluent
F(d), for a sequence of domain objects d = d1,... ,d,, holds in situation s.

Prim = A, Fict = Ay;ct. These predicates are used when we explicitly need
to distinguish between the two types of actions.

B.2.2 Basic axiomatization

A number of basic axioms for CSitCalc builds the structure of the models and
are very similar to the basic axioms of SitCalc (section 7.2.1). For a complete
presentation, see e.g. [Pinto, 1998b]. For concurrent actions, we define Poss as
follows*:

Poss(c,s) =Va.a € ¢ D Poss({a},s) (B.1)

Axiom (B.1) states that a concurrent action is possible to execute in a situation iff
every member of the concurrent action can be executed on its own.

B.2.3 Domain axiomatization

A domain axiomatization is divided into several sets of axioms. We say that a for-
mula is simple on a situation term s if it does not mention any situation terms other

4Note that free occurrences of variables are assumed to be universally quantified.

145

Appendiz B. Handling discrepancies in Pinto’s concurrent SitCalc

than s, and does not quantify over s.

Action Precondition Axioms
The set Tpre. of action precondition axioms for primitive actions, each on the form:

Poss({a(Z)},s) D Tu(s) (B.2)

where ¥, (s) is a formula simple on s. In principle, it should be possible to restrict
the possibility of executing fictitious actions in the same way as for any action, i.e. by
defining a non-trivial ¥, (s) for fictitious actions a. This could, for example, be used
to prefer one fictitious action over another in cases of non-determinism. However,
in this thesis make the simplifying assumption that fictitious actions always can be
executed. Formally,

Fict(a) D Poss({a}, s).

If we assume that ¥, (s) characterizes the set of states in which a is possible to
execute, we can apply Clark’s completion to all formulas of form (B.2), and thus get
a characterization of the predicate Poss.

Effect Axioms
The set T.ss of effect axioms. For every fluent F' and primitive action A, we can
have the following two axioms:

Poss(c,s) NA € cAGL(A,s) D H(F,do(c,s)) (B.3)
Poss(c,s) NA € cANGgr(A,s) D —H(F,do(c,s)) (B.4)

Intuitively, formula (B.3) ((B.4)) says that if ¢ is possible to execute in situation
s, where the action A is a member of ¢ and the qualification G}.(4,s) (Gr(4,s))
for the effects of actions on F' holds, then F' will be true (false) after the execution.
The close relation between this formulation and Reiter’s (from section 7.2.1) should
be obvious. The only syntactical difference is that we have substitutes the term
equivalence for term inclusion.

By simple logical rewriting all axioms on the form of (B.3) and (B.4) can be
compiled to one axiom for positive effects of actions on F' and one for all negative
effects:

Poss(c, s) Avf(c,8) D H(F,do(c, s)) (B.5)
Poss(c,s) ANvp(c,s) D ~H(F,do(c,s)) (B.6)

If there are no positive (or negative) effect axioms a fluent F', then the formula
75 (¢, 8) (or v (c,8)) is the atom F. Note that v* (for * € {+, —}) is on the form

\VAccnGr(4,s).
This implies that if there are no positive or negative qualifications for a fluent, the

146

B.2. Surprises with fictitious actions in Pinto’s SitCalc

corresponding «y is equivalent to F? as it can be seen as an empty disjunction.
Successor State Axioms

The set Tss, of formulas. Recall that in SitCalc the effect axioms and ECA, that is
that v (c,s) (vx(c,s)) characterizes all positive (negative) change of F, yields the
successor state axioms. To accommodate for occurrences of fictitious actions, we
need to relax the explanation closure assumption to the following:

Assumption 2 (Relaxed Explanation Closure Assumption (RECA)) The
formula v} (¢, s)A Ay & ¢ (vp (¢, 8) AAJ. & c) or the execution of the fictitious action,
that is A}, € ¢ (A € c) characterizes positive (negative) change of the fluent F.O

RECA and the effect axioms combine to the successor state axioms:

Poss(c, s) D (H(F,do(c,s)) =
(vE(c,s) NAp)V AR €c)V
(H(F,8) A=((vp(c,8) NAL)V Ap € ¢)) (B.7)

A transformation of Reiter’s SitCalc to CSitCalc is clearly straightforward. The
other direction is in the general case not possible.

Initial situation axioms

The set Ts,. This is any finite set of sentences that mention only the situation
term Sy, or that are situation independent. The initial situation necessarily has to
completely specified, i.e. every ground atom is either true or false in Sp.

Thus, an application axiomatization is a set A = ¥ U Tppee U Ts5q U T, where
¥ is the set of background axioms (including unique names axioms that we have
omitted in the presentation above), Ty .. is a set of action precondition axioms, T,
is a set of successor state axioms, and T, is a set of initial situation axioms and all
situation independent axioms. We have the following useful lemma:

Lemma B.2.1 Let A be an application axiomatization and F' a fluent of the theory.
Then

A |= Poss(c,s) D =(vf (¢;5) Ayp(c,)

Proof: An immediate consequence of the construction of the vs, see formulas (B.5)
and (B.6).0

We define an observation in situation s, Og, completely analogous to before.

Example B.2.2 (Stolen Car Scenario Cont’d)
We revisit the Stolen Car Scenario, this time with the successor state axiom:
Poss(c, s) D (H(parked,do(c, s)) =
+
Aparked €cV

H(parked, s) N A, 1ca & ©);

5That is, the truth value false. The truth value true is denoted T.

— 147_

Appendiz B. Handling discrepancies in Pinto’s concurrent SitCalc

Again we have the initial situation axiom
H (parked, Sp),
and the observation

—H (parked, do(c", do(c', do(c, Sp)))) A
wait € ¢ Await € ¢' ANwait € c".

By applying the successor state axiom (or performing goal regression in Reiter’s
terminology) three times to the observation, we get the following equivalent formula:

(A;arked Zc' A
((A;arked Zc' A
((A;arked ZcA
(—H (parked, Sg) V A
Aparkea €€))V
Aparked € €")) A

wait € ¢ A wait € ¢’ A wait € ¢”

;;arked € C)) \%

The conjunction of the first conjunct of this formula and the initial situation axiom
yields the following formula on conjunctive normal form:

— — ! — "
(Aparked gcV Aparked €cV Aparked €c) A

(A;arked g CI v A;arked € C”) A
A:arked g C” (BS)

This formula is clearly satisfiable and we have therefore hedged the inconsistencies.O

However, there are a number of unintuitive models of the theory in example B.1.2.
For example, in one model the fictitious action A, , is a member of c, ¢, and c¢".
In another model both A;Mked and A:Mked are members of c. To handle this we will
need to define a preference policy on situations to filter out unwanted models. In
the next section we will formally define the notion “surprise” and show that RECA
hedges inconsistencies in the general case.

B.2.4 Reasoning about surprises

We again assume that an observation Og,(c,s) represents some sensor inputs. A
surprise is then an observation that is not entailed by the SitCalc theory if only
primitive actions have been executed. Formally,

148

B.2. Surprises with fictitious actions in Pinto’s SitCalc

Definition B.2.3 (Surprise)
Let A be an application axiomatization and Og4(c
do(cp,do(cn_1,...do(ce,do(c1, Sp))...)). If

s) and observation with s =
n41,

n+1
A~ /\ Odo(eni1,s) N /\ Va.a € ¢; D —Fict(a)
i=1

1=

then we say that Oz,) is a surprise.00

Cn+1,S

The reasoning task can, thus, be described as, for a system
<A’ S’ O>’

where A is a CSitCalc theory, s is a situation, and O an observation, to find an
“adequate” set of fictitious actions ¢, such that

A |: A Odo(cn+1,s)-

We will formally define the adequacy notion below.
We start by showing that our CSitCalc theory does handle surprises in the general
case.

Proposition B.2.4 Let A be an application axiomatization, and assume that Oy, (c,s)
is a surprise. Then,

A ‘: /\ Odo(c,s)'

Proof: We show that A entails A Ogo(c,s) Where all fictitious actions that occur in
the situation do(c,s), are members of c¢. That is, no fictitious actions have occurred
in s.

Since Ogo(c,s) is @ surprise, there must be at least one fluent, F', too much or
too little in Ogy(c,s)- There are four cases to consider for every such F; When F'
should have changed from true to false (C1) or from false to true (C2) due to c, but
did not, and when F should have remained true (S1) or false (S2) but did not, that
is, it should not have been affected by the execution of A. We will only show the
proposition for cases C1 and S1. The other two cases can be proven analogously.For
readability we omit the object arguments of the actions and fluents.

C1l: Failed change from true to false: We assume that H(F,s) and
Poss(c,s) holds and that the execution of the primitive actions in ¢ in s
would make —H (F,do(c,s)) hold, that is that v (c,s) holds. Moreover, we
assume that H(F,do(c,s) holds, contrary to our expectations. Thus, we are
interested in the formula

(VE(e,s) NAp ¢ e) VAL €c)V
(H(F,s) A=((7p(e,s) AN Ap ¢) V Ap € c))

Appendiz B. Handling discrepancies in Pinto’s concurrent SitCalc

From Lemma B.2.1 v, (c,s) cannot hold. This together with the other as-
sumptions above yields

AL €cV(Af€echNAL dc),
which is equivalent to A}, € c A AL ¢ c.

S1: Failed persistence of a true fluent: We assume that H(F,s) and
Poss(c,s) holds and that the execution of the primitive actions in ¢ in s
would make H(F,do(c,s)) hold, that is that v} (c,s) holds. Moreover, we
assume that —H (F, do(c,s) holds, contrary to our expectations. Thus, we are
interested in the formula

(=75 (e,8) V Ap € ¢) A Af &) A
(~H(F,s) V ((vp(c,8) AN Ap ¢) V Ap € ¢))

From Lemma B.2.1 vz (c,s) cannot hold. This together with the other as-
sumptions above yields

(Ap €cAAL dc)V AL Ec,
which is equivalent to A, € c A AL & c.
O

By adding the fictitious actions in this way we have allowed for many models that are
unwanted. Especially, when no surprises exist it is desirable that we can prove that
only primitive actions are executed, since we then have exactly the type of theory
utilized by a GOLOG interpreter. To achieve this we propose that the occurrences
of fictitious actions are minimized, that is, that we try to explain any change with
as few fictitious actions as possible.

Following [Pinto, 1998b] we introduce two predicates proper and legal on situa-
tions, for technical reasons: Basically, actions that are not possible do not lead to a
proper situation. Formally,

proper(s) D (s = Sy VVe,s'.do(a+c,s') C s D Poss(c, s')).

A legal situation is a situation such that there exists a proper continuation of the
history.® Formally,

legal(s) = 3s'.s C s' A proper(s'). (B.9)

Now, we can define a preference relation on situations:

6Note that Pinto’s legality predicate is a specialization of the Aliveness predicate in definition
A.0.3.

— 150 —

B.2. Surprises with fictitious actions in Pinto’s SitCalc

Definition B.2.5 (Fictitious-Action Preferred Situation)
We define a preference relation, <, on situations, as follows

legal(s1) Alegal(sy) D sy <s2 =
$1 =89 =Sy V
ds3, 84. 81 = do(c, 83) A 82 = do(c', 84) A
(H(f,s1) = H(f,s2)) A (Va.Fict(a) N\a€cDa€ec)A (B.10)
s3 54 (B.11)

If s < s' we say that s is preferred over s'.0

Basically, this preference relation compares situations that reach equivalent states.

Definition B.2.6 (Minimal situation)
A situation s is minimal if no situation exists that is preferred over s and that is
different from s. Formally,

minimal(s) = legal(s) AVs'.legal(s') Ns' ds D s =54 (B.12)
O

Let T, be the set with the formulas (B.9) , (B.11) and (B.12).
We redefine the reasoning task to incorporate the minimality criterion as follows:

AUT, = /\ Odo(c,s) N minimal(do(c,s)).

Example B.2.7 (Stolen Car Scenario Cont’d)

We denote the four situation sq, s; = do(c, sp), s2 = do(c’,s1), and s3 = do(c", s3),
respectively. We know that H(parked,sq) and we progress to find the minimal
situations. In s; we have two cases

1. H(parked,do(c,sq)): The minimal choice of ¢ is that no fictitious actions
belong to c. In the next step we get

(a) H(parked,do(c',do(c,sp))): The minimal choice of ¢’ is again that no
fictitious actions have occurred. Finally, since we know that the literal
—H (parked, do(c", s2)) holds we must have A, ; € ¢”. In this situation
trajectory a fictitious action only occurred in the last situation.

(b) —H(parked,do(c',do(c,s0)))): The minimal choice of ¢’ is here that the
membership A;Mked € c’ holds. In the next step the minimal choice is
that no fictitious action belongs to ¢’. In this situation trajectory the
only occurrence of a fictitious action is in c’.

2. ~H(parked, do(c,sg)). Clearly A_ . . is the only member of c. In the next

parke
step we get:
(a) H(parked,do(c',do(c,sp))): If A:Mked is member of ¢’ we do not have a

minimal situation, since H (parked,ss) holds by case (1a) above.

— 151 —

Appendiz B. Handling discrepancies in Pinto’s concurrent SitCalc

(b) —H(parked,do(c',do(c,s0)))): The minimal choice of ¢’ is that no ficti-
tious actions have occurred, and as above, no fictitious action belongs to

c”. In this situation trajectory the only occurrence of fictitious actions is
in c.

Thus, in each of the three minimal situations the fictitious action A_

parke
+
exactly once, and Aparked

4 oceurs
does not occur at all.O

— 152 —

