Extending Temporal Action Logic

Joakim Gustafsson
Department of Computer
and Information Science

Linkopings Universitet
S-58183 Linkoping, Sweden
joagu@ida.liu.se

April 18, 2001

Abstract

An autonomous agent operating in a dynamical environment must be able to
perform several “intelligent” tasks, such as learning about the environment,
planning its actions and reasoning about the effects of the chosen actions.
For this purpose, it is vital that the agent has a coherent, expressive, and
well understood means of representing its knowledge about the world.

Traditionally, all knowledge about the dynamics of the modeled world
has been represented in complex and detailed action descriptions. The first
contribution of this thesis is the introduction of domain constraints in TAL,
allowing a more modular representation of certain kinds of knowledge.

The second contribution is a systematic method of modeling different
types of conflict handling that can arise in the context of concurrent actions.
A new type of fluent, called influence, is introduced as a carrier from cause
to actual effect. Domain constraints govern how influences interact with
ordinary fluents. Conflicts can be modeled in a number of different ways
depending on the nature of the interaction.

A fundamental property of many dynamical systems is that the effects
of actions can occur with some delay. We discuss how delayed effects can
be modeled in TAL using the mechanisms previously used for concurrent
actions, and consider a range of possible interactions between the delayed
effects of an action and later occurring actions.

In order to model larger and more complex domains, a sound modeling
methodology is essential. We demonstrate how many ideas from the object-
oriented paradigm can be used when reasoning about action and change.
These ideas are used both to construct a framework for high level control ob-
jects and to illustrate how complex domains can be modeled in an elaboration
tolerant manner.

Acknowledgements

The following people have contributed to this thesis with support, help, com-
ments, or patience:

First of all I would like to express my deeply felt gratitude towards Patrick
Doherty for his guidance and encouragement. Also many thanks to Jonas
Kvarnstrom and Lars Karlsson for doing the tedious task of reading the
manuscript numerous times. I am grateful to all members of KPLAB for
much help and inspiration. I would also like to thank technical and admin-
istrative staff at IDA for support and assistance.

A cryptical thanks goes to the runners for interesting, if not fruitful dis-
cussions. Further I would like to thank my parents and sisters. Saving the
most important for last, I would like to thank my beloved wife Henrietta
Gustafsson for patience, support and love.

This work has been supported by the Swedish Research Council for Engi-
neering Sciences (TFR) and the Wallenberg foundation

JOAKIM GUSTAFSSON, LINKOPING, MAY 2001

Contents

1 Introduction 1
1.1 Motivation and Topics 2
1.2 Organization 4
1.3 History of PMON and TAL 5
1.4 Ramification Terminology 7

2 Basic PMON 9
2.1 The Language L(ND) 9
2.2 TheLanguage L(FL) 11
23 From L(ND)to L(FL) 11
2.4 PMON Circumscription 13

241 Occlusion 13
2.4.2 The PMON Circumscription Policy 14

3 Survey of Ramification Approaches 17
3.1 Important Aspects of Ramification 17
3.2 Non-Causal Approaches 18
3.3 Causal Approaches 20

33.1 EarlyWork 20
3.3.2 McCain and Turner, 95 21
333 Lin,95. e 24
3.3.4 Thielscher, 95 Lo oL 27
3.35 Sandewall, 96 30
3.3.6 McCain and Turner, 97 32
3.3.7 Denecker, Dupré and Belleghem, 97 33
3.3.8 Shanahan, 99 000 36
34 Conclusions L 38

4 Ramification 41

4.1 Introduction. 41
4.2 Extending PMON to handle Ramification 43
4.2.1 Causal and Acausal Constraints 44
4.2.2 Translation into L(FL). 45
4.2.3 PMON(RGCs) Circumscription 46

43 Exampleso e 47
44 CausalCycles 50
441 CausalCycles. 51
4.4.2 Causal Cycles in Non-Fixpoint Approaches 51
4.4.3 Causal Cycles in Fixpoint Approaches 53
4.44 Stratified Theories 54

4.5 Breaking Causal Cycles: I 54
4.5.1 Three Typesof States 55
4.5.2 Defining the Behavior of Cascades 58

4.6 Breaking Causal Cycles: IT 64
4.6.1 Introduction, 64
4.6.2 Self-triggered Cycles in TAL-C 65
4.6.3 Preventing Self-triggered Cycles 66
4.6.4 Diagnosis e e 72
4.6.5 Related Work 72

4.7 Conclusionso e e 74
5 Reasoning about Concurrent Interaction 7
51 TAL-C e 7
5.1.1 The Two Language Levels of TAL-C 78
5.1.2 Organization of the Chapter. 78

5.2 Preliminaries 79
5.2.1 Scenario Descriptions in TAL 79
5.2.2 The Language L(ND) 82

5.3 Variations on the Concurrency Theme 84
5.4 From Action Laws to Laws of Interaction 87
5.4.1 Interaction on the Level of Actions 87
5.4.2 Interaction on the Level of Features 88

5.5 Extending TAL to TAL-C 90
5.5.1 Persistent and Durational Features 90
5.5.2 Syntactical Additions 91
56,3 AnExample 91

5.6 Variations on the Concurrency Theme Revisited 92

ii

5.6.1
5.6.2
5.6.3
5.6.4

Interactions from Effects to Conditions.
Interactions Between Effects
Interacting Conditions
Special vs. General Influences

5.7 Working with TAL-C Scenarios
5.8 Other Work on Concurrency
5.9 Conclusions L oL o

Delayed Effects of Actions

6.1 Introduction. e
6.2 Examples e
6.3 Conclusions e

Object-Oriented Reasoning
about Action and Change
7.1 Modeling Object-Orientation in TAL-C

7.1.1
7.1.2

Classes v v v i i e e e e e e e
Elaboratinga Class

7.2 Elaboration Tolerance
7.3 Related Work
74 Conclusions o i i e e e e e e e e e

Using TAL for Control

8.1 Other Approaches,
8.2 General Framework,
8.3 Control Objectsin TAL
8.4 Control Structuresin TAL

8.4.1
8.4.2
8.4.3
8.4.4

Forloopso,
Whileloops L oo o
Ifthenelse
Sequence Lo

8.5 Simulation and Planningo
8.6 Larger Examples,
87 Conclusions

Examples

9.1 Implementation and Tests
9.2 Some Terminology,
9.3 Object-Oriented Modeling I:

The Lift Scenario

iii

107
107
109
112

113
115
116
119
121
122
123

125
126
127
129
131
131
131
132
132
134
135
136

9.3.1 Overview of the Design 139

9.3.2 Elaborations 0. 142
9.3.3 Summary 142

9.4 Object-Oriented Modeling II:
The Missionaries and Cannibals Problem 143
9.4.1 Overview of the Design 143
9.4.2 Setting Up the Problem 146
9.4.3 Elaborations 0., 147
944 Summaryo e 158

9.5 Object-Oriented Modeling ITI:
The Road Network 158
9.5.1 Henschel and Thielscher’s Solution 158
9.5.2 Overview of the Design 159
9.5.3 Elaborations, . 161
9.5.4 Summary 163
10 Conclusions and Future Work 165
10.1 Future Worko 166
A TAL Without Dependency Laws 167
A1 L(ND) . . oo e 167
A1.1 Sorts and Expressions 167
A12 Formulas 169
A13 Reassignment 169
A14 Statements 170
A2 TheBase Logic L(FL) 171
A.3 Foundational Axioms 171
A4 Translation Functions 171
Ab Examples 173
B Modifications of TAL for Dependency Laws 175
B.1 Dependency Laws 175
B.2 Minimization Policy 176
C Formal Specification of TAL-C 177
C.1 The Language L(ND) for TAL-C 177
C.2 Translation from £L(ND) to L(FL) 179
C3 Example 182

iv

D Complete Lift Scenario 187

D.1 Scenario Setupo oo 187
D.1.1 ValueSorts 187
D.1.2 Action Statements 187
D.1.3 Action Occurrences (initializing the problem) 188

D.2 Classes . . v v v v v i e e e e e e e e e e e e e 188
D.2.1 Definitionof subclass 188
D.2.2 Button. 188
D23 Lift 189
D.24 Controller 190

E Complete Basic Cannibals and Missionaries Problem Sce-

nario Description 193

E.1 ScenarioSetup i 193
E.11 ValueSorts 193
E.1.2 Feature Symbols 194
E.1.3 Initial State Specification 194
El4 Goal 194
E.1.5 Definitionof subclass 195
E.1.6 Definition of Related Groups 195

E2 Classes v v v i v i e e e e e e e e e e e 195
E21 Object e 195
E22 Boat 196
E23 Group e 196
E2.4 Cannibal, 197
E.25 Missionary 198
E2.6 Place 198
E27 Bank. 199

E.3 General Constraints 199

F Complete Road Network Scenario 201

F.1 ValueSorts @ @ i i i i it i i i e 201

F.2 Feature Symbols 202

F.3 Original Scenario v v v 202

Chapter 1

Introduction

Developing techniques for reasoning about action and change (RAC) has been
an important topic of research in artificial intelligence from its inception. This
is natural, because the ability to foresee the results of actions is something
that distinguishes intelligent behavior. In particular it is the basis for forming
plans or predicting the result of the execution of a plan.

The approach taken in this thesis follows the tradition of using logic to
define properties of a world and the actions available to an agent. The world
history is represented by a sequence of states. Each state is a snapshot of
the world at a particular time-point. A state is an assignment of values to
variables called fluents. The idea is that the user formulates how actions
influence the world either directly in logic or in a surface language that is
translated into logic via a macro-translation. The result is combined with a
logic theory consisting of axioms describing how states relate to each other
and other technical details. The possible sequences of states can then be
inferred from the combined theory via an inference mechanism.

The slow development of this area is hardly surprising because the goal
is quite general and the solution quite complex. For example, we want to
model not only simple sequences of deterministic single step actions but also
the following:

e Context dependency. The result of an action may depend on the
state in which it is invoked.

e Nondeterminism. For a given state, the execution of a nondetermin-
istic action may lead to several different possible resulting states.

e Ramification. Any action can have indirect effects, possibly long
chains of dependencies. If all of these side-effects have to be expressed

directly in the actions, the action descriptions can become very large
and complex.

e Concurrency. Actions can overlap in time. Several different types of
conflicts can result from this.

In order to reason about actions, an explicit or implicit model of time is
needed. For example, an action may be invoked at a certain time-point, and
may be executed during an interval of time or possibly instantaneously at a
single point in time. The two most popular ways to represent time are either
to let time progress only when an action is executed (these approaches are
called event-based), or to have an explicit timeline and specify the time-points
when each action starts and stops.

Time progression is the root of the frame problem. Any single action
normally changes only a few of the many fluents that describes a complex
world. When using logic, we need a concise way of ensuring that fluents
not explicitly affected by a certain action invocation retain their values from
before the action was invoked, without having to state this explicitly for
each unaffected fluent. This problem is arguably solved today for particular
well-defined classes of problems.

Unfortunately, the existing solutions are forced to use some kind of non-
monotonic construction. The choice has often been circumscription [93, 60]
or its semantical counterpart, preferential entailment [96, 90]. Due to the
second-order nature of circumscription, it is hard to design efficient algo-
rithms for reasoning in such logics. It is a great advantage if we can remain
in first-order logic, or use restricted forms of second-order logic theories that
can be reduced to logically equivalent first-order logic theories. All logics
developed in this thesis can be reduced in this manner. It is even question-
able whether first-order theories meet the requirements of representational
efficiency but there are many results that can be used in this case.

1.1 Motivation and Topics

The intention of this thesis is to investigate solutions to the following prob-
lems in the research area of reasoning about action and change.

The ramification problem: Since reasonable solutions to the frame prob-
lem have been found, much of the attention in the research community has
now shifted to the problem of modeling side-effects of actions. The classical

solutions to the frame problem consider actions to be the only way to affect
the values of fluents, but it is infeasible to provide an exhaustive action de-
scription for each possible state of the world. This is called the ramification
problem, a name originally suggested by Ginsberg and Smith [39] and inspired
by Finger [31]. Ginsberg and Smith provide the following description:

The difficulty is that it is unreasonable to explicitly record all of
the consequences of an action, even the immediate ones. [...] For
any given action there are essentially an infinite number of pos-
sible consequences that depend upon the details of the situation
in which the action occurs.

Action descriptions should therefore be restricted to the part of the world that
are directly affected by the action. The indirect effects should be handled by
some type of dependency constraints that describe the behavior of the world
in terms of dependencies among fluents.

The ramification problem is one of the main topics of this thesis. In
Chapter 2 we present PMON, a logic that handles some aspects of the prob-
lem using dependency laws. This solution handles a broad class of domains,
but the ramification problem is still far from solved. For example, like many
other approaches, the PMON approach has some trouble dealing with cycles
of causal dependencies. We also present two different ways of eradicating this
limitation.

The dependency laws developed for ramification in Chapter 2 have proven
extremely versatile and are used in the remainder of the thesis, with minor
modifications, for modeling and solving additional problems.

Concurrency: When action invocation intervals are permitted to overlap,
or when delayed effects of actions are allowed, a fluent might be influenced in
several different ways at the same time. This might lead to contradictions or
other unintuitive results. Many approaches to this problem use only instan-
taneous actions and handle conflicts by explicitly, in the action definitions,
describing what happens when several actions are invoked concurrently. We
show some weaknesses with this approach and suggest an extension to the
logic we constructed to handle ramifications. This extension, described in
Chapter 5, deals with conflicts and many other problems associated with
concurrency.

Elaboration tolerance: McCarthy [75] defines elaboration tolerance as
follows:

A formalism is elaboration tolerant to the extent that it is conve-
nient to modify a set of facts expressed in the formalism to take
into account new phenomena or changed circumstances.

The importance of elaboration tolerance increases as the worlds we model
grow larger and more complex and as we attempt to model them in increas-
ingly greater detail. If we aim to model more realistic scenarios than simple
toy examples there is a need to develop mechanisms for incrementally con-
structing them in a structured and principled manner. The object-oriented
paradigm has been developed for these purposes with respect to ordinary
programming languages. In Chapter 7 we show how the ideas of an object-
oriented approach to scenario construction can be applied to our logic. In
Chapter 9 we apply the object-oriented methodology to some larger examples.
One of the examples presented in that chapter is the cannibals and mission-
aries problem, with the elaborations originally described by McCarthy.

1.2 Organization

This thesis is based on work done in co-operation with my thesis advisor
Patrick Doherty, Lars Karlsson and Jonas Kvarnstrém.

Chapter 2 presents the state of the PMON logic before the modifications
presented in this thesis.

Chapter 3 contains a selected survey of other approaches used in solving
the ramification problem.

Chapter 4 is based on a paper presented at KR’96, written in co-
operation with Patrick Doherty [42]. This chapter shows how PMON can
be extended to deal with indirect effects of actions using dependency laws.
Further, it discusses the problems associated with causal cycles and proposes
two solutions. The second of these is based on an unpublished paper written
in co-operation with Jonas Kvarnstrém [43].

Chapter 5 presents TAL-C [49, 47], which is a modification of PMON
designed to handle concurrency and is based on the ideas from Chapter 4.
The formal definition of TAL-C can be found in Appendix C.

Chapter 6 explores how one can model delayed effects of actions in TAL.
Conflicts due to delayed effects of actions have much in common with conflicts
caused by concurrency. Furthermore, the explicit timeline combined with the

ability to use separate time-points in the precondition and effect parts of a
dependency law make our logics well suited for handling delayed effects of
actions. Modeling delayed effects of actions is difficult for many of the other
approaches proposed for reasoning about action and change. This chapter is
based on a paper by Lars Karlsson, Joakim Gustafsson and Patrick Doherty
published at ECAT’98 [49].

Chapter 7 provides a set of tools for structuring large domains using
object-oriented concepts. During the work on PMON and TAL it become
evident that there is a lack of a methodology of constructing modular, elab-
oration tolerant domains and the object-oriented paradigm is a well known
solution to these problems. The work on object-orientation is based on a
paper by Joakim Gustafsson published at SCAT’01 [41].

Chapter 8 describes how the object-oriented methodology can be used
to model objects that behave as controllers, automatically invoking actions
at suitable points in time. This is in contrast to classical TAL scenarios,
where the user specifies a finite list of timed action instances to be executed.

Chapter 9 provides three slightly larger scenarios where all of the tools
developed in the thesis are used. The scenario descriptions are found in
Appendices D, E and F.

Chapter 10 presents some of the conclusions we can draw from the thesis
and discusses future work.

1.3 History of PMON and TAL

The logical formalisms used in this thesis have gone through a number of
iterations with various extensions which have resulted in the use of different
naming conventions in the published papers. In this section, we provide a
short history of the development of these formalisms to provide a context for
the remainder of the thesis.

We begin the history of the logic now known as TAL (Temporal Action
Logic) with the Features and Fluents framework [90] developed by Sande-
wall. Features and Fluents is a systematic approach to the representation of
knowledge about dynamic systems that includes a framework for assessing
the range of applicability of existing and new logics of action and change.
Several logics of action and change are introduced and assessed as being
correct for particular classes of action scenario descriptions. The scenario
class KC-TA and one of its associated entailment relations, PMON (Pointwise
Minimization of Occlusion with Nochange premises), requires explicit, correct
and accurate knowledge, and deals with nondeterministic actions, incomplete
specification of state and the timing of actions, and observations at arbitrary

time-points. Doherty [19, 20] provides a syntactic characterization of PMON
in terms of classical logic and circumscription and shows that for the IC-IA
class, the circumscription axiom can be reduced to a first-order formula. Do-
herty’s PMON logic provides a surface language together with a translation
function from the surface language to classical logic.

Note that although PMON is an entailment relation in Features and Flu-
ents, the original logic developed by Doherty, based on PMON, was also called
PMON, but the emphasis was on syntactic categorization of the entailment
method.

Although the logic PMON is assessed correct for a broad class of action
scenarios, it is restricted to actions that do not permit indirect effects, and
actions cannot occur concurrently. It deals with the frame problem in iso-
lation but not with ramification. The further development of the PMON
logic follows the graph in Figure 1.1. Inspired by the frame construct in
Kartha and Lifschitz [50], Doherty and Peppas [27] extended PMON with
the frame construct to deal with various types of ramification. The resulting
logic was called PMON(R). The frame construct is a way to globally specify
a set of fluents that are in the frame and subject to inertia, while all other
fluents may vary freely. This approach has several weaknesses, among others
the inability to handle chains of dependencies. For this reason, work con-
tinued with developing a modification able to handle a more general class
of scenarios than PMON(R). This led to the development of PMON(RCs)
by Gustafsson and Doherty [42] described in Chapter 4. PMON(RCs) is a
modification of PMON where a macro handling directional dependency laws
is added to the surface language. PMON(RCs) also uses first-order predicate
logic as compared to PMON which uses propositional logic. PMON(RCs)
was modified and extended into PMON™ in Doherty [21], where the formal
proofs underlying the logic were gathered and presented. At this stage the
family of PMON logics was renamed “TAL” (Temporal Action Logics) to
avoid confusion with the entailment relation.

PMONT has formed a basis from which two modified versions emerged.
The first extension is TAL-C by Karlsson and Gustafsson [47], who investi-
gate how the logic can be extended to model concurrency. We describe this
logic in Chapter 5 and provide a formal specification in Appendix C. The sec-
ond extension is TAL(seq) which applies ideas from Thielscher [98] to TAL.
Section 4.5 describes of TAL(seq). The latest version of the logic, TAL 2.0
by Doherty et al. [22], is basically the same logic as TAL-C, but with some
minor modifications. It is intended to provide a uniform presentation of the
current stable kernel of the TAL family of logics.

PMON

PMON(RCs) PMON(R)

PMON+ 1.0 -> TAL 1.0

TAL-C TAL (seq)

TAL 2.0

Figure 1.1: The evolution from PMON onwards.

1.4 Ramification Terminology

Some terminology regarding ramifications are necessary to clarify before we
move on.

In Chapter 4 we introduce constraints of the form o > (3, called causal
rules or causal constraints, loosely interpreted as “a causes 3”. We will call o
the trigger and (8 the effect. There is sometimes also a precondition v which
means that the rule has the form v — a > (. These forms provide a means
of representing some limited forms of causal laws or rules.

In Chapter 5, we develop the logic TAL-C and introduce a more general
means of representing causal rules using three new operators R, I and X. We
have chosen to call the more general rules dependency rules or dependency
constraints instead of causal rules. This is to avoid many of the associations
the word “causality” carries. The operators provide a generic tool to express
dependencies between fluents and can be used to model both causal depen-
dency laws and explanatory dependency laws. Causal dependency laws are
of the kind “A causes B”, for example “turning the switch causes the lamp
to go on”. Explanatory dependency laws work in the opposite direction, “If

B is true, the explanation is that A is true”, for example “if the lamp is on,
the explanation must be that the switch has been turned on”. Causal and
explanational dependency laws will be handled in the same way since the
difference is conceptual rather than technical.

The next chapter presents a short description of the state of the PMON/TAL
logic before the work presented in this thesis began [19, 20].

Chapter 2

Basic PMON

Many reasoning problems involving action and change can be conveniently
represented in terms of (action) scenario descriptions. Scenario descriptions
can be described as partial specifications of initial and other states of a sys-
tem, combined with descriptions of the actions that have occurred together
with their timing. The “Yale Shooting Scenario” [44] and “Stanford Murder
Mystery” [8] problems are well known examples of scenarios. Scenario de-
scriptions can be formalized directly in terms of a logic language, or, for con-
venience, described in a higher level macro language which is then compiled
into a logical language. In our framework, we will represent action scenarios
in a narrative language £(ND), which is translated into a standard logical
language £(FL). All formal reasoning will be done using £(FL) together with
appropriate circumscription policies for modeling inertia. Detailed descrip-
tions of both languages and the translation process may be found in Doherty
[19, 20] and in Appendices A and B. Please refer to the book Features and
Fluents [90] by Erik Sandewall for an interesting and detailed discussion of
the philosophy behind modeling action and change using this approach.

The description in this chapter loosely follows previous work [25, 19,
20, 42] but contains many simplifications for purposes of readability, such
as only dealing with boolean domains and the absence of a more precise
definition of fluents. It will, however, provide sufficient detail to provide a
basic understanding of the original PMON languages.

2.1 The Language L(ND)

The formal syntax for specifying scenario descriptions is defined in terms
of the surface language £(ND), consisting of action occurrence statements,

action law schemas, and observation statements, labeled with the symbols
occ, acs, and obs, respectively.

Example 2.1.1

The well known Stanford Murder Mystery scenario is shown below using the
L(ND) syntax:

Scenario Description 2.1

obs;y tg=0At{ =10

obsy [to]alive

obs3 [t1]—alive

occy [2,6]Fire

acsy [t1,t2]Fire ~» [t1]loaded — [t1,t2](alive := F Aloaded := F) O

Given a scenario description Y, consisting of statements in the surface lan-
guage L(ND), these statements are translated into formulas in the many-
sorted first-order language L£(FL) via a two-step process. In the first step,
action schemas in T are instantiated with each action occurrence statement of
the same name, resulting in what are called schedule statements, where each
schedule statement is labeled with the symbol scd. The schedule statements
replace the action schemas and action occurrence statements. The result of
the first step is an expanded (action) scenario description, Y', consisting of
both schedule and observation statements.

Example 2.1.2

The expanded scenario description associated with Example 2.1.1 is shown
below:

obs; tg=0A%t1 =10

obsy [to]alive

obsz [t1]—alive

scd; [2]loaded — [2,6](alive := F' A loaded := F) O

In the second step of the translation process, macro-translation definitions are

used to translate statements in Y’ into formulas in £(FL). Before translating
the example, we must first define £(FL).

10

2.2 The Language L(FL)

The base language £(FL) is a many-sorted first-order logic with equality. For
the purposes of this chapter, we assume two sorts': a sort 7 for time and a
sort F for fluents. The language includes the predicate symbols Holds and
Occlude, of type T x F. The intuition behind Holds(t, f) is that fluent f is
true at time-point ¢, and Occlude(t, f) can loosely be interpreted to mean
that f is exempt from the inertia assumption at time-point ¢.

The numerals 0,1,2,... and the symbols tg,t1,... will be used to de-
note constants of type 7 and the symbols ¢g,%1,... will be used to denote
variables of type 7. We define the set of temporal terms to be the closure
of the temporal variables and temporal constants of the language under the
operators + and —. A fluent is a function of time with the boolean truth
values as range. The symbols fi, f2,... will be used to denote variables of
type F. We assume an appropriate set of function symbols of proper arity
for fluent names (for example alive, at).

An atomic formula is defined as any formula of the form Holds(t, f) or
Occlude(t, f), where t is a temporal term and f is a fluent. The set of formulas
of L(FL) is defined as the closure of the atomic formulas under the boolean
connectives (-, A, V, —, «>) and the universal and existential quantifiers (V,
3).

The intended interpretation for 7 is linear discrete time where 7T is con-
sidered isomorphic to the natural numbers. Since there is no axiomatization
for time interpreted as the natural numbers, we either assume an interpreted
language, settle for something less such as “integer-like, discrete flow of time
with a first moment” which is axiomatizable [33], or assume a sound but
incomplete axiomatization of the flow of time. In practice, we will be using
a specialized temporal constraint module for reasoning about time which is
normally sound, but incomplete.

2.3 From L(ND) to L(FL)

As stated in Section 2.1, the second step of the translation process uses
macro-translation definitions to translate statements in Y’ into formulas in
L(FL). We need a few preliminary definitions which will prove useful both
here and in the definition of causal constraints in a later chapter. A elemen-
tary reassignment formula is of the form f := T or f := F, where f is a

!Note that we have restricted this chapter to only fluents with boolean value domains.
Appendix A contains the complete definition, where this restriction is lifted.

11

fluent. A fluent formula is any boolean combination of fluents. An elemen-
tary scenario formula is of the form [t]y, where ¢ is a temporal term in £(FL)
and + is a fluent formula. A scenario formula is any boolean combination of
elementary scenario formulas.

Let y and § denote fluent formulas and e denote a fluent (possibly negated).
Let C be any of the logical connectives A, V, or —.

Any elementary scenario formula can be reduced to a boolean combina-
tion of elementary scenario formulas of the form [t]e:

[t](6 C) = [t]6 C [t]y.

The following list of macro-translation definitions should suffice to provide
the general idea behind the translation from £(ND) to £(FL):

[5,8]0 £ Vt1.s<t; <t— [t1]0
[5,8)0 = Vij.s<t; <t—[t]0
[tle £ Holds(t,e)
[s,tle:=T = Holds(t,e) AVti(s < t; <t — Occlude(t,€))
[s,tle:=F = Holds(t,—€) AVti(s < t; <t — Occlude(ty,€))

5
~
ISW
VY
—~
\?F e
i
(92}
~—
1%

—Holds(t,€).

The translation of Y’ in Example 2.1.2 into £(FL) is shown below:
obs; tg=0A%t1 =10
obsy Holds(tg, alive)
obss —Holds(t1,alive)
scd; Holds(2,loaded) —
[Holds(6,alive) A —~Holds(6, loaded)A
Vi(2 <t <6 — Occlude(t, alive))A
V(2 < t <6 — Occlude(t,loaded))]

Note that although the labels are not part of the language £(FL), they are
retained after translation. The labels are directly correlated with the parti-
tioning of formulas used in the circumscription policy described in the next
section. The notation

I'c =Tos UI'scp Ul'yna UT'p

is used for a scenario description in £(FL), where I'ogs and I'scp contain
the observation and schedule statements in the scenario, I'r contains the
axiomatization for the flow of time (when provided), and I'yna contains the

12

appropriate unique name axioms for the sorts 7 and F. In the rest of the
thesis, we will use the convention of suppressing I'ynya and I'r, assuming
they are provided with every theory. In addition, we will use the notation
I'x, where X is an acronym such as OBS, for a finite set of formulas or their
conjunction in contexts where this makes sense.

2.4 PMON Circumscription

In this section, we will describe the mechanisms that cause inertia in the
fluents that are not influenced by any action. We will describe the intuition
behind the use of occlusion, introduce a nochange axiom, describe the fil-
tered minimization technique, provide a circumscription policy which uses
occlusion, the nochange axiom, and filtering, and show that the second-order
circumscription policy for any theory in the I—-IA class of action scenarios is
reducible to a first-order theory.

2.4.1 Occlusion

The use of the occlusion concept and its representation in terms of the pred-
icate Occlude has already been shown to be quite versatile in providing so-
lutions to a number of open problems associated with the representation of
action and change. Although occlusion is related to the use of an abnormal-
ity predicate together with an inertia assumption, there are some differences.
The main difference is perspective. Occlude is used to provide a fine-grained
means of excluding particular fluents at particular points in time from being
subject to what are normally very strong inertia assumptions. In fact, in ret-
rospect much of the progress made in solving a number of problems stemming
from the original Yale Shooting Scenario has been the gradual relaxation of
strict inertia in dealing with nondeterminism, postdiction and in the current
case, indirect effects and delayed effects of actions. It is the fine-grained use
of Occlude together with the filtered minimization technique, where Occlude
is minimized in only parts of theories, that contributes to the simplicity of the
solution. Filtering minimizes the need for complex minimization strategies.
In fact, most of the time, the minimization policy involves little more than
applying predicate completion to Occlude relative to part of a theory.
Recall the scenario description in Section 2.3. Associated with each ac-
tion type in a scenario is a subset of fluents that are potentially influenced by
the action (those fluents in the right-hand side of a rule). If the action has
duration, then during its execution, it is not known in general what value the

13

influenced fluents have. Since the action performance can potentially change
the value of these fluents at any time, all that can generally be asserted is
that at the end of the duration the fluent is assigned a specific value (note
that additional constraints can be provided for activity within the duration).
To specify such behavior, the Occlude predicate is used in the definition of
reassignment expressions which in turn are used as part of the definition of an
action schema. In order to specify actions with durations and indeterminate
effects of actions properly, it should be clear that fluents directly set by an ac-
tion should be occluded during the execution of the action. In Lifschitz’s [62]
terminology, occluded fluents are simply frame-released fluents.

The predicate Occlude takes a time-point and a fluent as arguments. The
definition for a reassignment expression [t1,%2]d := T used in an action oc-
currence statement as follows:?

Holds(t2,8) AVt(t1 < t < tg — Occlude(t,9)).

Referring to our previous example, it can be observed that the occlusion spec-
ification is automatically generated by the translation process from £(ND) to
L(FL). Occlusion specifies what fluents may change at what points in time.
The nochange axiom described next specifies when a fluent is not permitted
to change value.

2.4.2 The PMON Circumscription Policy

Let T'ycg denote the following nochange axiom,
Vf,t(Holds(t, f) @ Holds(t + 1, f) — Occlude(t + 1, f)), (2.2)

where the connective @ denotes exclusive-or. The axiom states that if a fluent
f is not occluded at ¢ + 1 then it can not change value from ¢ to ¢ + 1. This
axiom, together with the observation axioms, will be used to filter potential
histories of action scenarios.

Filtered preferential entailment is a technique originally introduced by
Sandewall [89] for dealing with postdiction. The technique is based on dis-
tinguishing between different types of formulas in a scenario description and
applying minimization to only part of the scenario, or different minimization
policies to different parts of the scenario. In this particular case, we will
distinguish between schedule statements I'scp and the rest of the scenario
description. The idea is to minimize the Occlude predicate relative to the

2For [t1,t2]6 := F, simply negate the Holds predicate.

14

schedule statements and then filter the result with the observation formulas
I'oss and the nochange axiom I'ycg. The minimization policy generates po-
tential histories where the possibility for change is minimized. The potential
histories are then filtered with the observations, which must hold in any valid
history, and with the nochange axiom which filters out any spurious change
not explicitly axiomatized by the actions. More formally, instead of using
the policy

I'nce ATc A Cireso(Tc(Occlude); Occlude),

where Circso denotes standard second-order circumscription, PMON cir-
cumscription is defined using the policy

I'nce AT'¢ A Cireso(T'sep (Occlude); Occlude). (2.3)

Observe that the circumscription policy is surprisingly simple, yet at the
same time assessed correct for the broad ontological class K-IA. One simply
minimizes the Occlude (frame-released) predicate while leaving Holds fixed
in that part of the theory containing the action occurrences and then filters
the result with the nochange (inertia) axiom and the observation axioms.

Although Circso(I'scp(Occlude); Occlude) is a second-order formula, it
can be shown using two results by Lifschitz [61] and the fact that Occlude-
atoms only occur positively in I'sop, or through the use of predicate comple-
tion, that it is reducible to an equivalent first-order theory. Details may be
found in Doherty [20, 19].

Example 2.4.1 (Cont. example 2.1.2)
The final £(FL) theory of example 2.1.2, excluding I'yna, I'ncg and 't is
as follows:
to=0At1 =10A
Holds(tg, alive) A
—Holds(t1,alive) A
Holds(2,loaded) —
—Holds(6, alive) A ~Holds(6,loaded) A
Vt, f. Occlude(t,) <>
[Holds(2,loaded) A2 <t <6 A
(f = alive V f = loaded)]

It entails that the gun must have been loaded at the initial time-point, which
is the correct result. O

15

In the following chapters we will examine some of the most well-known ap-
proaches to ramification and then present a solution within the PMON frame-
work that continues to satisfy the requirement that the use of circumscription
is always reducible to a logically equivalent first-order theory.

16

Chapter 3

Survey of Ramification
Approaches

This chapter contains an overview of some of the most well-known approaches
to ramification. Although some of these approaches also cover solutions to
other problems, such as the frame problem, the main subject of this chapter
is how they handle the ramification problem. The terminology has been left
unchanged as far as possible; footnotes are provided for comparison with our
terminology. We will place more emphasis on the so-called causal approaches,
and only briefly sketch the others. Sandewall [91] provides a comparative
assessment of both causal and non-causal approaches.

In Section 3.1, we identify some important properties of approaches to
ramification which we will refer to in the discussions of the different ap-
proaches. Next, Section 3.2 briefly describes some non-causal approaches.
Section 3.3 describes some of the more important causal approaches in more
detail. Finally, Section 3.4 contains an overview of the different approaches
considered in this chapter.

3.1 Important Aspects of Ramification

The three main factors that will be investigated in the different formalisms
discussed in this chapter are expressivity, the ability to handle theories with
causal cycles, and the representation of time.

17

Expressivity Although all of the approaches represent causal rules as log-
ical formulas, the expressivity of these formulas varies between the different
approaches. For example, some approaches use propositional logic while oth-
ers use predicate logic. Other differences relate to whether preconditions are
allowed and how general the effect part of a rule can be.

Some approaches allow the left-hand side of a dependency law to contain
both triggers and preconditions. The difference between a precondition and
a trigger is that the precondition is used to detect values of fluents while
triggers are used to detect change of values in fluents. As we will see, not all
formalisms allow preconditions to dependency laws.

The formalisms also differ in how general the postcondition of a depen-
dency law can be. Some approaches allow arbitrary first-order formulas,
while others limit the postcondition to a literal.

Causal cycles Causal cycles can be difficult to handle in logic. Therefore
some approaches require stratified theories where no casual cycles are present.
A full discussion on the problems associated with causal cycles is found in
Section 4.4.

Representation of time The representation of time fills an important
role when we want to represent delayed effects and actions with durations.
Some of the approaches use an explicit timeline while others are event-based.

3.2 Non-Causal Approaches

Non-causal approaches, which do not support explicit causal directionality,
will only be briefly mentioned.

Ginsberg and Smith The first to discuss ramifications, in the area of
reasoning about action and change, were Ginsberg and Smith [38]. They
use a possible worlds approach which works in a STRIPS-like manner [30].
Only a single model of the world is maintained, which is updated to reflect
the results of any particular action. However, a complete description of the
consequences of actions is not required. The model of the world is updated
inferentially from actions and domain constraints. The domain constraints
specify the relationships between different facts in the world. Inference here
means trying to find the nearest possible world to the current one based on
a standard notion of “nearness”.

18

The stuffy room problem is presented and discussed. It illustrates the
fact that straightforward minimization of change can give unintuitive results.
Basically one wants to specify that a room is stuffy if both ducts leading air
into the room get blocked. Now suppose that one duct is blocked and an
action blocking the other duct is executed. The result is two models, one
where the room gets stuffy, and one unintuitive model where the other duct
becomes unblocked, and the room remains not stuffy. We cannot select one
of these models over the other since neither of them is a subset of the other.
Ginsberg and Smith consider both models legal. The authors argue that
since this is a result of the knowledge we have put into the system, this is
what we should expect. More knowledge has to be added in order to remove
the unwanted model.

Kartha and Lifschitz As an extension to the A language [35], Kartha and
Lifschitz [50] present ARy. The basic idea is to divide the fluents into frame
and nonframe fluents, where only the frame fluents are subject to inertia. The
nonframe fluents should be completely determined by the domain constraints.
The frame fluents can of course be temporarily released from the persistence
assumption if they are caused to change by actions. The surface language is
translated into a nested abnormality theory and minimized with respect to
abnormality.

Doherty and Peppas PMON(R) by Doherty and Peppas [27] is a version
of the PMON logic inspired by the work of Kartha and Lifschitz, but with
a time argument to the frame predicate to make it more fine-grained. In
PMON, inertia is enforced using a nochange axiom; the key here is to apply
the nochange axiom only to the frame fluents, thereby excluding the non-
frame fluents from the persistence assumption.

Lin and Reiter Lin and Reiter [69] extend the situation calculus to deal
with some aspects of the ramification problem. This is done with a specialized
(and technically quite complicated) priority minimization policy. They also
discuss the interpretation of domain constraints as qualification of actions,
which is a problem pointed out by Ginsberg and Smith [38].

19

3.3 Causal Approaches

The basic idea behind the causal approach to dealing with ramification is to
explicitly model the direction of dependencies between fluents. This depen-
dency information can be incorporated as domain constraints or provided
as a relation between fluents. For historical reasons we will refer to these
kinds of methods as causal approaches, even though the word “causal” is
not well chosen. The types of dependencies expressible by these methods are
not limited to dependencies that are strictly causal. McCain and Turner [72]
suggest the following two sentences to distinguish between two different kinds
of knowledge, where ¥ and & are sentences.

e The fact that ¥ causes the fact that ®.

e Necessarily, if U then the fact that ® is caused. !

We will use the term “dependency law” to denote both these types of laws.

Example 3.3.1

If a box is pushed, then it is caused to move. But we might be more interested
in finding explanations instead, so the rule we want to formulate might be
that the box is stationary if it is not pushed. Using a “causal” approach
there is nothing that prevents us from writing rules of the kind —moves >
—pushed, even though —pushed is not caused by —moves. What we have is
a dependency relation between the box and the forces acting upon it. If the
box is stationary, we can determine that it is not pushed. In the words of
McCain and Turner’s second sentence from above: “Necessarily, if the box is
stationary then the fact that it is not pushed is caused”. The reason for the
box not being pushed needs not be explicitly stated in this sentence. a

3.3.1 Early Work

Causality between events is mentioned by Georgeff [37]. He distinguishes be-
tween the case where an event causes the simultaneous occurrence of another
event, and the case in which an event causes the occurrence of a consecutive
event. A predicate Causes is used in both cases to represent the causal re-
lationship between events. Causes(®,e;, es) means that if @ is true and the
event e; happens, then so does event es.

Pearl was one of the first to argue for a primitive notion of causality ([80]
and [81]). Since his method is probabilistic, it is difficult to compare with

!Note that ¥ does not have to be the cause of ®.

20

the approaches focused upon in this thesis and we will not describe these
alternatives here. Many of the ideas can be seen in other work inspired by
the work of Pearl, for example Geffner [34], Lin [67], McCain and Turner
[71], and Griinwald [40]. Especially Griinwald’s approach seems to bring the
ideas of Pearl closer to our research area.

Other early work on causality includes Lansky [56], McDermott [77],
Shoham [95] and Allen [3].

Three influential causal methods were presented at IJCAI’95. Thielscher
[98] suggests a fixpoint-oriented approach, McCain and Turner [71] present
both a fixpoint and a declarative approach, and Lin [67] proposes an extension
to the situation calculus. All these three are presented below and have in
common that they support a means of explicitly specifying the directionality
of dependencies between fluents.

3.3.2 McCain and Turner, 95
Terminology

The method presented by McCain and Turner [71] uses a standard language
of propositional logic, based on a fixed set of atoms. An interpretation for
the language is represented by a maximal consistent set of literals.

Background knowledge is given in the form of state constraints and causal
laws®. A standard example of a state constraint is Walking — Alive (standard
implication). McCain and Turner use causal rules of the form

a=f (3.1)

where o and 3 are formulas®. Informally, this rule expresses a relation of
determinism between the states of affairs that make o and 3 true. To begin
with, the causal laws are treated as inference rules; later in their article they
are recast as rules called s-conditionals.

The standard derivability relation - of propositional logic is extended to
take inference rules into account. Let I" be a set of formulas and C be a set
of inference rules. I is said to be closed under C if for every rule o = 8 € C,
if « € T then 8 € T'. For any formula «,

I'¢ca

means that a belongs to the smallest set of formulas containing T" that is
closed with respect to propositional logic and closed under C.

2Causal laws here are what we call dependency laws.
3The = symbol is similar to our > sign.

21

How to get from one state to the next

The standard framework in which the problem of ramification is addressed is
one in which background knowledge is given in the form of state constraints.
For this framework, the problem was specified by Winslett [101] using the
following definition.

Definition 3.3.1 ([71])
For any interpretation S, any explicit effect F, and any set B of formula
constraints, Res% (E, S) is the set of interpretations S’ such that

1. §' satisfies E U B, and

2. no other interpretation that satisfies £ U B differs from S on fewer
atoms, where “fewer” is defined in terms of set inclusion. m|

McCain and Turner propose the following reformulation of the above defini-
tion, in order to take inference rules into account.

Definition 3.3.2 ([71])

For any interpretation S, any explicit effect F, and any set C of inference
rules, Res¢.(E, S) is the set of interpretations S’ such that S’ = {L : (SN
SYUE k¢ L}. O

Declarative version

The trouble with the definition of Res‘é is that like Definition 3.3.1 it cannot
be recast in semantic terms by replacing the derivability relation - with F.
To remedy this a conditional logic Ca,; is defined. Cg,t is an extension of Sb
modal logic.

The vocabulary of the Cq,; language consists of a fixed set of atoms. The
formulas of the language are formed from its atoms and expressions of the
form (3.1). Here expressions of the form (3.1) are called s-conditionals, and
they may be read as: “the truth of a determines the truth of 3”.

A structure for a Cq,g language is a pair (£2,.5), where Q is a non-empty set
of interpretations (of the atoms of the language), and S is an interpretation
such that {S} € Q.

For any set U of interpretations and any formula o of propositional logic,
U E « is an abbreviation for the expression VS € U.S F a. Furthermore, for
any set I' of formulas of propositional logic, U F T" is an abbreviation for the
expression Ya € I'U F a.

22

The definition of a structure (R, S) satisfying a formula « is as follows.
For all formulas o and 3 (except in the last clause below, where a and 3 are
formulas of propositional logic),

() F aiff €S, if aisan atom,

(Q,8) E —aiff (Q,5) ¥ a,

(Q,8) E anpiff (2,5)F aand (22,5) F G,

(Q,8) F a=pgiffforallU € Q, if U F o then U F 8.

Let T be a set of formulas. A model of T is a structure that satisfies every
formula in T. A model (£, S5) is said to be mazimal if there is no model
(Q,S") of C such that Q is a proper subset of . We can now define a
version of Resy, called Res%}:

Definition 3.3.3 ([71])

Let C be a set of s-conditionals, and let M = (€, S") be a maximal model of
C. For any state S and explicit effect E, Res‘}l:[(E,S) is the set of states S’
such that

S'={L:VU €Q, f UF (SNS')UE then U F L} O

Example 3.3.2

To illustrate this formalism we encode the fact that a light (Light) is on only
when two switches (Up! and Up2) are in the same position. We let the set
of inference rules C be {(Upl <> Up2) = Light,—~(Upl <> Up2) = —Light},
the explicit effect E be {Up1}, and choose the starting state S to be
{—Up1, Up2,—Light}. The resulting set of states is

Resy (E,S) = {{Up1, Up2, Light}}. O

Observations about the formalism

As we can see, this formalism only deals with how to describe a relation
between one state and the next. How it handles time and observations is
not clearly specified, but it should be considered to be event-based. One
weakness of the formalism is that it is completely declarative and provides
no guidelines on how to compute Res‘}\; in practice.

The language of the formalism is propositional logic, which limits the
expressivity considerably. There is only one time-point in the left-hand side
of the causal laws which means that there is no distinction between triggers
and preconditions.

23

An interesting fact is that McCain and Turner present both a fixpoint and
a non-fixpoint variant of the function that computes the successor state. The
fixpoint version handles unstratified theories, but the non-fixpoint version
does not. This is shown in Example 4.4.2.

3.3.3 Lin, 95

Another proposal using explicit causality was presented by Lin [67] at the
same time as McCain and Turner [71]. Using a Caused predicate, directional-
ity of causation can be encoded within the situation calculus framework. Lin
later shows how this approach can be used to deal with nondeterminism [68].

Definitions

The usual situation calculus predicates and functions are used:

e The binary function do — for any action a and any situation s, do(a, s)
is the situation resulting from performing a in s.

e The binary predicate Holds — for any propositional fluent p and any
situation s, Holds(p, s) is true if p holds in s.

e The binary predicate Poss — for any action a and any situation s,
Poss(a, s) is true if a is possible (executable) in s.

e Sy is the initial situation.

Time progresses through the execution of actions, that is, successive appli-
cations of the do function, leading to a branching time-structure.

In addition to the standard situation calculus notation a ternary predicate
Caused is introduced. The first argument is a fluent, the second is a truth
value, and the third is a situation. For example, Caused(p,true,s) denotes
that the fluent p is caused to be true in situation s.

The following axioms are included to handle the Caused predicate:

Caused(p,true,s) — Holds(p,s), (3.2)
Caused(p, false,s) — —Holds(p,s)

and the frame axiom

Poss(a,s) — ((Fv)Caused(p,v,do(a,s)) —
[Holds(p,do(a, s)) <> Holds(p, s)]) (3.4)

24

From this the pseudo successor state aziom can be derived®:

Poss(a,s) - {Holds(p,do(a,s)) +»
Caused(p, true, do(a, s)) V (3.5)
Holds(p, s) A - Caused(p, false, do(a, s))}.

A formula ®(s) is called a simple state formula about s if ® does not mention
Poss, Caused or any situation term other than s.

Procedure

The procedure of constructing a logical theory can be summarized as follows:

Step la: For each action A(E:)), formalize the direct effects of A by axioms
of the form:

Poss(A(?), s) — (3.6)

®(s) — Caused(F(Z_/)),'u,do(A(;),s)),
where F is a fluent name, and ®(s) is a simple state formula about s
Step 1b: For each action A(?), formalize the explicit qualifications of A by
axioms of the form:

Poss(A(%), s) — &(s), (3.7)
where ®(s) is a simple state formula about s.
Step 1lc: Formalize all causal rules by axioms of the form:

®(s) A Caused(py,v1,5) A ... N Caused(pp,, vy, s) — Caused(F(;), v,),
(3.8)

where F is a fluent, and ®(s) is a simple state formula about s.

“This can be compared to the single, fixed, general frame axiom of Elkan [28]:

Va,s,p holds(p,do(s,a)) +»
causes(a, s,p) V (holds(p, s) A\ ~cancels(a, s,p)).

25

Step 1d: Formalize all other domain knowledge by axioms of the form
Vs.C(s), where C(s) is a simple state formula about s.

The above four steps yield a starting theory 7.

Step 2: Circumscribe Caused in T with all other predicates fixed. Since this
is done using Clark completion, the theory T" has to be stratified (that
is, that it must not contain causal cycles; see Section 4.4.4).

Step 3: Replace the occurrences of Caused i1_1) the pseudo successor state
axiom (3.5) to get the form Caused(F(z),v,s) <> ¥, where ¥ is a
formula not containing the predicate Caused.

Step 4: For each action A, maximize Poss(A(?),s) with Holds(p, s) fixed
but Caused and Holds(p,s') A s’ # s allowed to vary.

Example 3.3.3
Below is a scenario with a causal law that states that shooting someone
results in that he stops walking.

Poss(start-walk,s) — Caused(walking, true, do(start-walk, s)),
Poss(end-walk,s) — Caused(walking, false, do(end-walk, s)),
Poss(shoot,s) — Caused(dead,true,do(shoot, s)),
Poss(start-walk,s) — -—walking(s),
Poss(end-walk,s) — walking(s),
-

dead(s) Caused(walking, false, s).

Observations about the formalism

Lin allows preconditions (®) and triggers in the form of conjunctions. The
postcondition is limited to a literal. This means that his dependency laws
cannot model nondeterminism in its current form. A statement of the type
“if the coin is in the air then it will fall down on either a black or a white
square” will be difficult to encode with this type of dependency law. Actions
can have nondeterministic effects, however [68].

One interesting aspect of this method is that it is the first general ap-
proach to the ramification problem that does not use a fixpoint computation
to determine the resulting states. It is also the first approach that discusses
the stratification problem. The minimization policy used in Lin’s method is

26

similar to the original PMON policy. This being the case, some minor exten-
sions to the original PMON minimization policy and some additional macros
in the surface language £(ND) made it possible to model dependencies in
TAL, we discuss this in Chapter 4.

3.3.4 Thielscher, 95

Thielscher regards the direct effects obtained after firing an action merely as a
preliminary approximation to the resulting situation [97, 98, 99]. The result-
ing situation is computed by first applying direct effects and then performing
additional post-processing steps that generate indirect effects relative to do-
main constraints specified as causal rules. For each action there is a set of
states; each state represents a possible direct effect of the action. Following
the direct effect of an action is a sequence of states representing the progres-
sion towards a state that is legal with respect to the domain constraints®.
In order to “trigger” causal rules in the right order and direction, additional
knowledge about the directionality of causation (influence relationships) has
to be specified. These influence relationships together with the domain con-
straints are compiled into causal relations, which are then used to progress
between states in a cascade.

Definition 3.3.4

Let F be a finite set of symbols called fluent names. A fluent literal is either
a fluent name f € F or its negation, denoted by f. A set of fluent literals is
inconsistent iff it contains some f € F along with f. A state is a maximal
consistent set of fluent literals. O

The set of fluent formulas is inductively defined in the standard manner.

Definition 3.3.5

Let F be a set of fluent names. An action law is a triple (C,a, E) where C,
called the condition, and E, called the effect are consistent sets of fluent
literals; and a, called the action name, is a symbol not occurring in F. If S is
a state then an action description o = (C, a, E) is applicable in S iff C C S.
The application of a to S yields (S\C)U E; this will be called the direct effect
of firing the action a. O

Note that nondeterminism of actions is achieved through the fact that an
action may be associated with several action laws.

®Sandewall’s cascades (see Section 3.3.5) are similar to this.

27

Ramifications

Thielscher addresses the ramification problem by regarding the state resulting
from the computation of the direct effects merely as an intermediate state,
which requires additional computation accounting for possible indirect effects.
More specifically, a single indirect effect is obtained according to a directed
causal relation between two particular fluents.

Definition 3.3.6
Let F be a set of fluent names. A causal relationship is an expression of the
form

a causes (if T,

where T' is a fluent formula and a and § are fluent literals. O

These causal relationships are computed from causal constraints and influ-
ence information as will be explained later. Formulas which have to be sat-
isfied in all possible states in a domain are called the domain constraints.

Definition 3.3.7
Let (S, E) be a pair consisting of a state S and a set of fluent literals E. Then

a causal relationship a causes 3 if I is applicable to (S, E) iffF/\Bi_s true in
Sand a € E. Its application yields the pair (§', E') where S’ = (S\{8})U{8}
and E' = (E\{8}) U {B}- O

If R is a set of causal relationships, then (S,E) ~gz (S’,E') denotes the
existence of an element in R whose application to (S, E) yields (S', E').

(S,E) ~3% (S', E') expresses the fact that successive application of the causal
relations in R to (S, E) yields (', E').

Definition 3.3.8

Let F and A be sets of fluent and action names, respectively, £ a set of action
laws, D a set of domain constraints, and R a set of causal relationships.
Furthermore, let S be a state satisfying D and a an action name. If there
exists an action description (C,a, E) € A which is applicable with respect to
S, then the state S’ is a successor state iff

1. ((S\C)UE,E)~3g (8',E') for some E' and

2. S' satisfies D. O

28

Some types of causality are difficult to express due to the fact that & and § in
a causal relationship must be literals. Therefore Thielscher provides a way to
compute causal relationships from domain constraints together with a binary
relation Z C F x F called the influence information. If (f1, f) € Z then this is
intended to denote that a change of f;’s truth-value might possibly influence
the truth-value of fo.

The technical details of the transformation from influence information
and domain constraints to causal relations can be found in Thielscher [99].

Example 3.3.4

Let us consider the well-known switch example. The light is on if and only
if both switches are on. There is a domain constraint swy A sws <> light.
If directionality from left to right is required the causal relationship is Z =
{(sw1,light), (swa,light)}. The result becomes:

swg causes light if sw;
swy, causes light if sws
swg causes light if T

swy causes light if T O

Observations about the formalism

Thielscher requires that triggers and postconditions are literals. At a first
glance this might seem to imply that Thielscher’s language has the same
expressibility as Lin’s, but the fact that it is a fixpoint method together with
the freedom of choice in what order the causal relationships are applied makes
it possible to express nondeterminism in Thielscher’s approach.

The “coin in the air” problem could be encoded like this (assuming black
and white are false in the initial state):

air causes black if white

air causes white if black

This would result in a state where either black or white is true, not both.
This is due to the fact that when we have chosen to apply one of the causal
relationships in the initial state, then, in the resulting state, it will be im-
possible to apply the others. The choice of which of the causal relationships
should be applied is what leads to the nondeterminism.

Thielscher’s approach is quite versatile. The restricted form of the causal
relationship may seem limiting, but used correctly it is possible to handle

29

many important aspects of the ramification problem and related problems,
which include unstratified theories, ramification as qualification, and some
aspects of delays and concurrency.

3.3.5 Sandewall, 96

A method for assessment of ramification is proposed by Sandewall in [91].
The idea is that different approaches should be assessed with respect to an
underlying semantics which formally defines the intended conclusions for a
class of scenario descriptions. The purpose of the underlying semantics is to
define the set of intended models, and thereby the set of intended conclusions,
in a precise, simple and intuitively convincing fashion.

The method for handling ramification that serves as the basis on which
other approaches are judged has much in common with Thielscher’s method
in the sense that it is basically a fixpoint approach. The details of the causal
chains, however, are captured in the function IV, thereby avoiding the need
for a fixpoint computation.

Causal propagation semantics

Let R be the set of possible states in the world, formed as the cartesian
product of the finite range sets of a finite number of state variables. Also, let £
be the set of possible actions, and let the main nezt-state function N(E,r) be
a function from £ X R to non-empty subsets of R. The function V is intended
to indicate the set of possible result states if the action E is performed when
the world is in state . The assumption N(E,r) # 0 expresses the fact that
every action E can always be executed in every starting state r.

A binary non-reflexive causal translation relation C between states is in-
troduced; if C(r,r') then 7’ is said to be a successor of r. A state r is said to
be stable iff it does not have any successor. The set R¢ of admitted states is
chosen as a subset of R all of whose members are stable with respect to C.

Furthermore, an action invocation relation G(E,r,r') is a relation where
E € £ is an action, r is the state where the action E is invoked, and 7’ is a
new state where the instrumental part of the action has been executed. For
every E and r there must be at least one r’ such that G(E,r,r'), that is,
every action is always invocable.

An action system is a tuple (R,€,C,R¢,G). For any state r € Rg,
consider a state r1 such that G(E,r, 1), and a sequence of states ri,72, ..., 7%
where C(r;,r;11) holds for every i between 1 and k — 1, and where r; € R¢

30

is a stable state. Such a sequence is called a transition chain, and ry is
considered as a result state of the action E in the situation r.

The intention is that it shall be possible to characterize the resulting state
7% in terms of E and r, but without referring explicitly to the details of the
intermediate states. The following assumptions (or something similar) are
needed in order to make this work as intended.

Definition 3.3.9

If three states r,7; and r;,1 are given, the pair r;, ;11 is said to respect r iff
(ri(f) # riv1(f)) = (ri(f) = r(f)), for any state variable f that is defined
in R. Then, an action system (R,&,C,R¢,G) is said to be respectful iff for
every r € R¢ and every E € &€, r is respected by every pair r;,7;41 in every
transition chain, and the last element of the chain is a member of Rc. O

This condition amounts to a “write-once” or “single-assignment” property: if
the action E is performed in state r, the world may go through a sequence of
states, but in each step from one state to the next, there cannot be changes in
state variables which have already been changed previously in the sequence,
nor can there be any additional change in a state variable that has changed
in the invocation transition from r to ;. This definition can be compared to
Lin’s definition of stratified systems in [67], or the definitions of applicability
and successor axiom by Thielscher (presented as Definition 3.3.7 and 3.3.8 in
this thesis).

As a consequence of these definitions, if (R,&,C,R¢,G) is a respectful
action system, and r € R¢,E € £ and G(E,r,r') holds for some 7', then
all transition chains that emerge from (E,r) are finite and cycle-free. The
set of states will be denoted N(E,r). The set N(E,r) is derived from the
elementary relations G and C in the action system.

Respectful action systems are intended to capture the basic intuitions of
actions with indirect effects which are due to causation, as follows. Suppose
the world is in a stable state r, and an action E is invoked. The immediate
effect of this is to set the world in a new state, which is not necessarily stable.
If it is not, then one allows the world to go through the necessary sequence
of state transitions until it reaches a stable state. That whole sequence of
state transitions is viewed as the action, and the resulting admitted state is
viewed as the result state of the action.

Observations about the formalism

One has to remember that this is a method used for assessments. This makes
a comparison with more detailed methods somewhat problematic. Some

31

general observations can, however, be made about the assessment method,
for example that it handles causal cycles.

Sandewall uses a fixpoint-oriented approach, but the results of the cas-
cades are captured by the IV function. Using IV, the approach can be con-
sidered to be a non-fixpoint method.

The fact that C is a relation between only two states and that change
is not remembered makes it impossible to distinguish between preconditions
and triggers. So, just as is the case in Geffner’s and McCain and Turner’s
approaches, preconditions cannot be expressed in Sandewall’s approach.

3.3.6 McCain and Turner, 97

The second formalism by McCain and Turner [72] is inspired by the work
of Pearl ([80, 81]). The underlying propositional signature is described by
three pairwise-disjoint sets: A set of action names, a nonempty set of fluent
names, and a nonempty set of time names (corresponding to a segment of the
integers). The atoms of the language are expressions of the forms a; and f,
where a, f, and ¢ are action, fluent, and time names, respectively. Intuitively,
at is true iff action a occurs at time ¢, and f; is true only iff the fluent f holds
at time £. A fluent formula is a propositional combination of fluent names.

A causal law is an expression of the form ¥ = &, where ¥ and & are
formulas of the underlying propositional language. ¥ is called the antecedent
and @ is called the consequent of the causal law. A causal law ¥ = & can
mean both

e the fact that ¥ causes the fact that ®, and
e necessarily, if U then the fact that ® is caused.

A causal theory is a set of causal laws.

An interpretation I for a propositional language is identified with the set
of literals L such that I = L. For every causal theory D and interpretation I,
let

DT = {T|for some &,& = ¥ € D and I |= &}.

An interpretation I is causally ezplained according to D ifand only if I = {L:
D! = L}, where L is understood to stand exclusively for literals.

A fluent has to have a cause for its value at each time-point. This is
the case even if the fluent retain the value it had at the previous time-point,
so in order to handle inertia we have to add a cause for it. The formula

32

ot N\ 0¢+1 = 0Ot41, where o is a meta-variable ranging over I, expresses the

fact that the fluents designated by the fluent formulas in I are subject to

inertia. This states that if a fluent is inert then it has a cause to be inert.
Let D be a causal theory in which

1. the consequent of every causal law is a literal, and
2. every literal is the consequent of finitely many causal laws.

Literal completion of D means the classical propositional theory obtained by
an elaboration of the Clark completion method [15], as follows: For each
literal L in the language of D, include the formula L = (®; V...V ®,), where
®4, ..., P, are the antecedents of the causal laws with consequent L.

Observations about the formalism

In order to apply the literal completion of a theory, McCain and Turner
restrict the consequent of the casual laws to be a literal. Lifschitz [64] pro-
vides an extension of this formalism to non-propositional logic with arbitrary
causal rules without any restrictions on the syntactic form of the pre- and
postconditions. This transformation may introduce second-order quantifiers,
but Lifschitz claims that these quantifiers can be eliminated in many cases.

McCain and Turner’s approach only describes causal rules and it is not
clear how observations and action invocations are handled. McCain and
Turner provide a non-fixpoint method for computing the models of a theory,
which indicates that they would have trouble handling unstratified theories.

An interesting feature of this approach is that the timeline represented by
adding a subscript to the fluents allows delayed effects, although the authors
mention this only in passing.

3.3.7 Denecker, Dupré and Belleghem, 97

A systematic solution to the ramification problem is presented by Denecker,
Dupré and Belleghem [17, 10]. They begin by stating three requirements
they want their solution to satisfy:

First, the dependent effect propagation rules (the causal rules) should
not necessarily be coupled with the state constraints. To exemplify this
Denecker et al. propose a counter that increases its value each time-point. It
is problematic to construct such a counter if the causality is tightly connected
to state constraints which only reference a single time-point.

33

Second, Denecker et al. define a precise general semantics for their effect
rules. They show that many approaches to ramification can be seen as in-
stances of the same generic idea: Interpreting the set of rules as a generalized
form of inductive definition. However, the approaches differ in their ability
to handle cyclicity. They state:

In reasoning about actions an acyclicity condition can be justified
because of the acyclic nature of causality, but we argue that this
notion should not be imposed on the syntactic level. This is
because an evident requirement in knowledge representation is the
modularity of representation: it should be possible to describe the
behavior of a system in terms of the behavior of its components,
where each component type has a specific representation which
is used for different instances, in the same system or in different
systems. The model of a system should only be dependent on the
types of all components and on their connections.

Third, they require their solution to be compact and natural.

Given these requirements Denecker et al. describe three increasingly gen-
eral approaches. Only the last, most general approach will be briefly de-
scribed here. The complete definitions of the approaches are found in De-
necker et al. [17].

The general semantics approach

Let D be a domain of propositional symbols, including the symbols t and
f, denoting true and false. The elements of D are called atoms or positive
literals, and the negation of elements of D are negative literals. The set
Defined(D) of atoms which occur in the head of a rule is called the set of
defined atoms. Its complement Open(D) = D \ Defined(D) is called the set
of open atoms.

The basic language consists of the primitives holds(l) meaning that [is
true in the initial state, caus(l) meaning that there exists a cause for changing
[to true and act(a) denoting the invocation of an action a. The macro init(l)
is reduced according to init(l) = caus(l) A holds(-l).

34

Definition 3.3.10 ([17])
A D-proof-tree T of p € D is a tree of literals of D with p as root such that:

e all leaves of T are open literals (possibly t, f) or defined negative liter-
als;

e for each non-leaf node p with set of immediate descendants B, it holds
that p < B € D; hence p is a defined symbol in D;

e T contains no infinite branches (hence it is free from cycles). O

The truth value of an atom is determined in the following way. If any proof
tree has only true leaves, the atom is true, and if all proof trees have a false
leaf, the atom is false. Since there is no guarantee that for a particular atom
the truth values of all proof trees are known, a third truth value u is used to
designate atoms of which the truth could not or has not yet been determined.

Definition 3.3.11 ([17])

Given a set of defined ground atoms P, the set V), of (3-valued) valuations on
P is the set of all functions P—{t,f,u}. On V,, a partial order <p is defined
as the pointwise extension of the order u <gp t, u <p f O

Given a valuation I € V, and an interpretation O of the open atoms, for
each I € P we define its supported value with respect to I and O, denoted
SVi0(l), as the truth value proven by its best proof tree:

Definition 3.3.12 ([17])
e SVio(l) = t if | has a proof tree with all leaves containing true facts
with respect to I and O;

e SVio(l) = fif each proof tree of [has a false fact with respect to I and
O in a leaf;

e SVi0(l) = u otherwise. O

Definition 3.3.13 ([17])
The induction operator PZpo : Vp — Vp : I — I' is defined such that
Vp e P: I'(p) = SVi,0(p).]

It can be proven that this operator is monotonic and hence always has a least
fixpoint PZp o 1 for a given interpretation O of the open atoms. This allows
the general definition D with respect to O, denoted Zp o, as follows:

35

Definition 3.3.14 ([17])
Given < P,D,0 >, ID,O = ,PI‘D,O T O

Using this mechanism it is possible to compute the legal interpretations of a
scenario.

Summary and comparison with TAL

The simple, short description of the general semantics used by Denecker et
al. is that each atom should have a finite explanation, without any casual
cycles. The definition is simple and powerful, and seems to handle a broad
class of scenarios. Concurrency, delays, duration and complexity are briefly
discussed, but it would be more interesting to see a thorough analysis of how
these aspects are solved within the general semantics.

The paper discusses a number of problems resulting from too strong con-
nections between causal laws and state constraints in certain approaches.
These problems are not present in TAL, since TAL constraints can range
over several states and the relaxation of inertia can be completely separated
from state constraints. A construction like the counter example in Denecker
et al. [17] can easily be modeled in TAL (for a slightly more complex counter,
see for example the move_up procedure in the elevator example on page 140).

The paper also discusses the conflicts that can arise from defining rules
such as

caus(p) < —caus(p).

These types of nonsense statements cannot occur in TAL because causality
does not exist as a first class citizen in our logic. We can only express causality
through changing or observing change in the values of fluents. The closest
we can get to the above expression is

dep —~([t]-p A [t +1]p) = I([t + 1]p)

which is equivalent to V¢.[t]p.

3.3.8 Shanahan, 99

A complete introduction to Shanahan’s event calculus and the research area
of reasoning about action and change can be found in Shanahan [93, 94].
The formalism’s basic predicates are as follows. Initiates(a,3,7) means
that the fluent 3 starts to hold after action « at time 7, Terminates(a, 5, T)
means that the fluent 3 ceases to hold after action « at time 7, Releases(a, 53, T)

36

means that the fluent § is not subject to inertia after action o at time 7,
Initiallyp(B) means that the fluent 3 holds from time 0, Initiallyn(5) means
that the fluent 8 does not hold from time 0, Happens(a,T) means that the
action a occurs at time 7, and HoldsA#(83,7) means that the fluent 8 holds
at time 7. The axioms describing the relations between the predicates are
the following:

HoldsAt(f,t) < Initiallyp(f) A = Clipped(0, f,t)
HoldsAt(f,t2) < Happens(a,t1) A Initiates(a, f,t1) At1 < t2 A
- Clipped(t1, f,t2)
Clipped(t1, f,t3) — Ja,t2 <>
Jda, to[Happens(a,ta) Nty < ta Aty <tz A
[Terminates(a, f,t2) V Releases(a, f,t2)]]
—HoldsAt(f,t) < Initiallyn(f) A = Declipped(0, f,t)
—HoldsAt(f,t3) < Happens(a,t1) A Terminates(a, f,t1) ANty < ta A
—Declipped(t, f,t2)
Declipped(t1, f,t3) — Ja, ta|Happens(a,ta) ANt1 < ta Ata <tz A
[Initiates(a, f,t2) V Releases(a, f,t2)]]
The conjunction of these axioms is denoted EC.
Added to this are state constraints and causal constraints. State con-
straints are HoldsAt formulas with a universally quantified time argument.
The idea behind the causal law is, similar to the ideas in Pinto [84], to let an

event be a carrier from cause to effect. For this the following four rules are
needed:

Started(f,t) <> HoldsAt(f,t) V Ja[Happens(a,t) A Initiates(a, f,1)]

Stopped(f,t) <> ~HoldsAt(f,t) V Ja[Happens(a,t) A Terminates(a, f,t)]
Initiated(f,t) <> Started(f,t) A ~Ja[Happens(a,t) A\ Terminates(a, f,t)]
Terminated(f,t) <> Stopped(f,t) A ~Ja[Happens(a,t) A Initiates(a, f,t)]

Example 3.3.5
The following is an example of a causal constraint:

Happens(LightOn,t) —
Stopped(Light,t) N Initiates(Switchl,t) A Initiated(Switch2,t) O

Given a conjunction X of Initiates, Terminates and Releases formulas, a con-
junction A of Initiallyp, Initiallyy, Happens and temporal ordering formulas,

37

a conjunction ¥ of state constraints, and the unique names axiom (2 for
action fluents, the minimization policy becomes:

CIRC(X, Initiates, Terminates, Releases) N
CIRC(A, Happens) N\EC ANQ AT

Shanahan discusses the inability of his approach to handle vicious cycles (his
name for causal cycles), but no solution to the problem is presented. It is
possible that the method used to handle cycles presented in Section 4.6 can
be applied to the event calculus.

The mechanism to handle the ramification problem in the event calculus
is straightforward and adds only small changes to the formalism.

3.4 Conclusions

As we can see there are a wide variety of methods for handling side-effects, but
it is also obvious that some general systematizations can be made. We can, for
example, distinguish between methods that check and execute all dependency
laws within one state (which we call non-fixpoint approaches) and methods
that use a sequence of states to reach a fixpoint (called fixpoint approaches).
The reason for this distinction is that non-fixpoint approaches have difficulties
handling theories with causal cycles. Other important differences are how the
approaches handle time, whether they use propositional logic or predicate
logic, if dependency laws can be nondeterministic, and so on.

Figure 3.1 contains an overview of the approaches we have considered in
this chapter.

38

‘sayoeoidde Jay1o Jo A1IAISSaIdXa Y3 JO MIIAIRAQ

1€ 24n314

ON oN oN suoioe |euoneing
poseq-1usang paseq-1usng LB awi|
SOA SOA oN $912A> |esned ss|pueH
jusjeainbs ejnwuo4 [BE] [SE.] SUOI}IPUO1SOd
a8ueyo pue a3ueyo pue
a8ueyo usn|4 anjeA jusn|4 anjeA jusn|4 uoIlpuodaid
|euoiisodoid 91ed1pald |euoiyisodoid | 21807
[16] lIemapues | [g6] 4oyasppiyy | [v6] ueyeueys
oN oN oN oN suoloe |euonein(
paijidads 10|\ IILETI] paseq-1usng paseq-1usng awi|
SOA ON oN oN $912K> |esned ss|pueH
[es911] [es911] [SE.] ejnwJo4 SUOINPUO1SOd
a8ueyd pue a8ueyd pue a8ueyd pue
anjeA jusn|4 anjeA jusn|4 anjeA jusn|4 a8ueyo jusn|4 | uonipuodaid
|euoilisodoid |euoiyisodoid 91e21paid |euoinusodoiq | 21807
[c2] 26 “4ouany [12] 66 “4ouany
[01] “Je 38 J>po3URQ uredon [29] un utedon

39

Note that the “Precondition” row in the table represents if and how pre-
conditions are triggered. Most approaches have causal laws that can be
triggered both on fluents values and on fluent change but some are restricted
to trigger only on change.

Figure 3.2 illustrates the approaches that have influenced the development
of the TAL family the most.

Pearl

Geflner McCain in Thielscher
Turner

Gustafsson Sandewall
Doherty

PMON+

Karlsson Gustafsson
Gustafsson ~ TAL(seq)
TAL-C

Figure 3.2: Brief overview of the influences between different methods of
modeling causality.

Now that we have briefly surveyed a number of representative approaches
to ramification, we proceed to present our own methods in the next chap-
ter. Some of the following chapters contain additional comparisons to other
approaches. These comparisons are more narrow in scope and only relate to
the topics of those chapters.

40

Chapter 4

Ramification

This chapter introduces our approach to handling causal rules as presented
in “Embracing occlusion in specifying the indirect effects of actions” [42].
Although the basic approach does not allow causal cycles, we also present
two possible extensions for handling this.

4.1 Introduction

Although early versions of the PMON logic [20] were assessed correct for a
broad class of action scenarios, they did not allow the modeling of indirect
effects: All effects of an action, direct and indirect, had to be specified ex-
plicitly in a monolithic action description. In other words, those versions of
PMON dealt with the simple frame problem in isolation and did not attempt
to solve the ramification problem.

The first approach to solving the ramification problem within the PMON
framework was presented by Doherty and Peppas [27], who extended the
original PMON logic with a frame construct inspired by a similar construct
used by Kartha and Lifschitz [50]. At any time-point, fluents in the frame
were subject to inertia, while fluents not in the frame could vary freely, re-
stricted only by domain constraints. Thus, the use of frame fluents, occluded
frame fluents, and non-frame fluents in the resulting logic PMON(R) corre-
sponded approximately to Kartha and Lifschitz’s tripartite division of fluents
into frame, frame released, and non-frame fluents.

In PMON(R), indirect effects affecting certain specific fluents could be
modeled by placing those fluents outside the frame and using domain con-
straints to define their values in terms of the frame fluents. The extended
logic was still characterized in terms of a circumscription axiom, but in con-

41

trast to the case for PMON, this axiom could not in the general case be
reduced to a first-order formula.

Recently, causal minimization techniques have again become increasingly
more popular. These techniques are based on introducing explicit causal
predicates or causal rules to specify the indirect effects of actions [67, 68, 71,
98]. In this chapter, we will show how the base logic PMON can be extended
with causal rules with little change to the existing formalism. In fact, causal
rules in this context are really nothing more than macros in a surface lan-
guage which when translated into the base language of PMON take advantage
of the already existing predicate Occlude. As stated previously, the Occlude
predicate has already been proven to be quite versatile in specifying actions
with duration and indeterminate effects of actions. Omne of the benefits of
using this approach to specify indirect effects of actions is that the original
circumscription policy for the base logic PMON is left virtually intact. Con-
sequently, the extended version, which we will call PMON(RCs), inherits the
nice feature of allowing the reduction of any circumscribed action theory to
a logically equivalent first-order theory provided the axiomatization of the
chosen flow of time is first-order definable.

What is striking when investigating PMON(RCs) is the comparison with
Lin’s recent proposals for dealing with indirect effects of actions and inde-
terminate actions ([67, 68]). In fact, the Cause predicate and minimization
policy used by Lin are virtually analogous with the use of the Occlude pred-
icate and the minimization policy used in both the original PMON [90, 20],
and the minor extension made in PMON(RCs).

There are a number of factors which makes a formal comparison between
the two approaches difficult, although it should be mentioned that a study of
the proper formal tools needed to do such comparisons was initiated in Do-
herty and Peppas [27]. In particular, we use a linear time structure, whereas
Lin uses the situation calculus. In addition, Lin also deals with actions which
may fail and with the qualification problem.! Finally, much of Lin’s work
deals with the automatic generation of successor state axioms as a means for
computing entailment in the situation calculus framework.

In the rest of the chapter, we will do the following: Section 4.2 extends
PMON by introducing causal and acausal constraints. Section 4.3 illustrates
the approach with a number of examples. Section 4.4 discusses the problems
associated with causal cycles, and Sections 4.5 and 4.6 present two very
different approaches to solving those problems within the TAL framework.

! Although our article [42] did not cover those issues, they were later explored by Kvarn-
strom and Doherty [52] with respect to the the TAL-C logic.

42

4.2 Extending PMON to handle Ramification

We will now proceed to the main topic of this chapter, that of extending
PMON in order to deal with indirect effects of actions. The ramification
problem states that it is unreasonable to explicitly specify all the effects of
an action in the action specification itself. One would rather prefer to state
the direct effects of actions in the action specification and use the deductive
machinery to derive the indirect effects of actions using the direct effects
of actions together with general knowledge of dependencies among fluents,
specified as domain constraints. The dependencies specified using domain
constraints do not necessarily have to be based solely on notions of physical
causality.

The idea is that there is a certain tiered precedence for change where
change in fluents of a certain class are dependent on changes of fluents in
another class but not vice-versa. Which fluents have precedence over others
is of course a domain dependent call and that information must be provided
in some manner, for example, either explicitly in terms of causal rules, or
perhaps implicitly in terms of partitioning fluents in classes such as framed,
frame-released and non-framed as is the case with [50], and using a particular
minimization policy. A particular domain policy might be based on physical
causality, where the precedence is for causes to have a stronger inertia quota
than their dependencies. On the other hand, when explaining effects, one
might reverse the precedence. A good example is the domain constraint
light = switchy V switchy where causal flow is in the right—left direction, but
one might equally well reverse the precedence for actions which turn a light
on instead.

One of the difficulties in dealing with the ramification problem is the
fact that a tension exists between solving the standard frame problem which
requires minimizing change across the board, and attacking the ramifica-
tion problem which requires relaxing minimization of change just enough to
permit change for indirect effects, but only indirect effects that have a justi-
fication. As mentioned above, it is still an open issue as to what policies such
justifications should be based on. Physical causality is simply one of several
reasons one might set up dependencies between fluents. Sandewall [91] and
Thielscher [98] have analyzed different policies for justifying dependencies
between fluents.

The basis of our solution is a straightforward encoding of relaxing mini-
mization of change just enough for the indirect effects of actions. This will
be done by introducing causal rules in £(ND) which provide a means of ex-

43

pressing the directionality of dependencies between fluents and defining their
translations into £(FL) in terms of the Occlude predicate, which excludes
the indirect effects from the non-change constraint in the nochange axiom
I'neg. We will begin by distinguishing between two types of domain con-
straints, causal constraints and acausal constraints, and then specifying both
their representations in £(ND) and translations into £(FL), in terms of the
Occlude predicate.

4.2.1 Causal and Acausal Constraints

In order to express causal constraints, we begin by defining causal relation
expressions in L(ND).

Definition 4.2.1
A causal relation is an expression in L(ND) with the following form:

[t]6 > [s],

where both ¢ and s are temporal terms in £(FL), ¢ < s, and § and ~y are
fluent formulas. |

The intended meaning of a causal relation is “if the fluent formula ¢ is true
at time-point ¢, then the fluent formula v must be true at time-point s, and
a change in « due to this rule is legal with respect to the nochange premise”.

Definition 4.2.2
A causal constraint is an expression in L(ND) with the following form:

Q(a — [t]d > [s]y) or Q([t]6 > [s]v),

where « is a scenario formula in which for any temporal term ¢ in a, t' < t,
and where @ is a sequence of quantifiers binding free variables of sorts F
and 7. O

We call a the precondition for the causal constraint. The use of preconditions
permits the representation of context dependent dependencies among fluents.
Note also, that because the formalism uses explicit time and ¢ and s may refer
to different time-points, it is straightforward to represent delayed effects of
actions using causal constraints. We will demonstrate this in the examples
which follow in the next section. Causal constraints, also referred to as
dependency constraints, will be labeled with the prefix “dep” in scenario
descriptions in L(ND).

44

The following expressions provide examples of conditionalized and non-
conditionalized causal constraints:

dep; Vi([tJunderwater — ([t]|breathing >> [t + to]—alive))

depa Vi([t]alive > [t|—walking)

Acausal constraints describe relations between fluents without encoding any
preference for dependency ordering. In a sense, a special class of acausal con-
straints is not really necessary. Technically, they could be defined as obser-
vations in a scenario which are observed at all time-points, but conceptually
there is a difference.

Definition 4.2.3
An acausal constraint is an arbitrary quantified scenario formula in £(ND).
a

Acausal constraints will be labeled with the prefix “acc” in £L(ND). We call
an acausal constraint where all fluents have the same temporal term a static
domain constraint, while those with several temporal terms will be called
transition constraints. The following expressions provide examples of static
and transition constraints, respectively:

acc; Vt([t]-black V [t|~white)

acce Vi([t]—alive — [t + 1]-alive)

4.2.2 Translation into £(FL)

In the previous section, we defined a number of different domain constraint
types in the surface language £(ND). We will now provide a translation into
L(FL) and show that our informal intuitions regarding dependency prefer-
ences among constraints are formally encoded into L£(FL). Note that the
only new symbol introduced when defining our domain expressions is the
symbol >>. The following macro-translation definition provides the proper
translation for this relation.

Definition 4.2.4

(6> [sly = [([t]6 — [s]y) A (4.1)

([t — 118 A [116) > [S|X ()], (42)

where t < s and where [s] X () denotes the occlusion of all restricted fluent
terms in v at s.2 O

*For example, if v is e1Ce2, where C is a logical connective, then [s]X(y) is
Occlude(s,€1) A Occlude(s, €2).

45

This intermediate formula is then translated into £(FL) in a manner similar
to that described in the example in Section 2.3.

Example 4.2.1
The following causal constraint expression specified in £(ND),

dep Vt[t](—alive > —walking)?,
is translated into the following £(FL) formula,
dep Vt[(—Holds(t,alive) — - Holds(t, walking))A
(Holds(t — 1,alive) A ~Holds(t,alive) — Occlude(t, walking))].
O

The intuition behind the translation in Definition 4.2.4 is as follows: The
first part of Definition 4.2.4, (4.1), represents the actual causal dependency.
The formula [t]§ — [s]y forces 7 to be true if § is true. The second part
(4.2) simply justifies the changes caused by the first part, but only in the
appropriate causal direction. The formula ([t — 1] A [t]d) — [s]X (), states
that a change in v caused by the rule is legal with respect to the nochange
axiom.

4.2.3 PMON(RCs) Circumscription

The language of scenario descriptions £(ND) has been extended for causal
and acausal constraints and additional macro-translation definitions have
been introduced which permit the translation of scenario descriptions with
domain constraints into £(FL). The final step will be to extend the cir-
cumscription policy used in PMON to accommodate these new changes.
Let I'4cc and I'pgp denote the translations of the acausal and causal con-
straints into £(FL), respectively. An action scenario I'¢c is now defined as
I'c =Tprr UTcHug, where

I'ri =T'nvcegUTloBs UTucc UTl'yna UT'r

I'cue =T'scp Ul'pEP.
The new circumscription policy is defined as

Trir A Cireso(Tora(Occlude); Occlude) (4.3)

3In the rest of the chapter [t](§ >) will often be used instead of [t]6 > [t]y. This
notation is only used in this chapter. Later we will use TAL-C instead and the I/R/X
notation as presented in Chapter 5 and Appendix C.

46

Note that since I'cgg contains no negative occurrences of Occlude, and all
other predicates are fixed, any action scenario in PMON(RCs) is provably
reducible to a logically equivalent first-order theory. The first-order reduction
applies to the extended scenarios without change.

4.3 Examples

In this section, we will consider two examples from the literature, the latter
slightly modified from the original. These examples should help in acquiring
both a conceptual and technical understanding of PMON(RCs).

Example 4.3.1

The walking turkey problem is a well-known ramification scenario and rela-
tively straightforward to encode and solve using causal constraints. We will
require one causal constraint stating that dead turkeys do not walk. One
ramification of shooting a turkey is that it no longer walks and our theory
should entail this indirect effect. The following action scenario description in
L(ND) describes the walking turkey problem:

Scenario Description 4.4

obs [O]walking

occ [2,4]Shoot

acs [s,t]Shoot ~» [s,t]alive := F'
dep Vt.[t|alive > —~walking

The corresponding translation into £(FL) is,

obs Holds(0,walking) (4.5)
scd - Holds(4,alive) AVt(2 <t <4 — Occlude(t, alive))
dep Vt[(—Holds(t,alive) — — Holds(t,walking))A

(Holds(t — 1, alive) A ~Holds(t, alive) — Occlude(t, walking))]

The scenario is partitioned as:

I'rrir =T'necgUTlos Ul'acc UTuna Ul'r,
where
Tops = {Holds(0,walking)},I'yna = {alive # walking}, T acc = {},
and

I'cuae =Tscp AT'pep,

47

where

Tscp = {—Holds(4,alive) AVt(2 <t <4 — Occlude(t, alive))},
{Vt[(—Holds(t,alive) — - Holds(t,walking)) A
(Holds(t — 1,alive) A = Holds(t, alive) — Occlude(t,walking))]}.

I'pep

Circumscribing Occlude in T'cgyg results in the following definition, which
can be generated using either our algorithm [26] or standard predicate com-
pletion:

Vt, f.(Occlude(t, f) < ((f=aliveAN2<t<4)V
(f = walking A Holds(t — 1, alive) A ~Holds(t, alive))))

For readability, we list the complete translation of the scenario in L(FL),
with the definition of Occlude derived via circumscription:

Vf,t(Holds(t, f) @ Holds(t + 1, f) = Occlude(t + 1, f)) A
Holds(0, walking) A
alive # walking A
—Holds(4, alive) A
Vt[(—Holds(t, alive) — —Holds(t,walking)) A
Vt, f(Occlude(t, f) <> ((f = alive A2 <t < 4)V
(f = walking A Holds(t — 1, alive) A ~Holds(t, alive))))

There are two classes of preferred models for this scenario due to the fact
that the shoot action has an extended duration and its effects may occur at
time point 3 or 4:

[0, 2]alive A walking

[3, co]-alive A —walking
and

[0, 3]alive A walking

[4, co]alive A —walking O

48

Example 4.3.2
The extended stuffy room problem is based on the original problem due to
Winslett [101], where a room gets stuffy if both ducts providing fresh air get
blocked. We extend it by introducing a box which requires the use of chained
causal rules, and by encoding a delayed effect of an action by using one of
the causal rules.

In this scenario, there are two causal constraints. The first asserts that
ducts is blocked if something is put on top of it (locz). The second asserts that
the room gets stuffy two time-points after both ducts are blocked. Between
time-points 2 and 5 a box is moved to location locy. The action scenario is
represented in £L(ND) as:

Scenario Description 4.6

obs [0](blocked(duct;) A —blocked(ducty) A at(box,loc;) A —stuffy)

occ [2,5]move(box, locy, loca)

acs Vz,l1,12([s, tjmove(z,[1,12) ~» [s,t]at(z,l1) := F A [s, t]at(z,12) :=T)
dep1 Vt,z[t](at(z,locz) > blocked(ducts))

deps Vi([t](blocked(duct;) A blocked(ducta)) > [t + 2]stuffy)

Translating into £(FL) and circumscribing results in a theory equivalent to
the following:

Holds(0, blocked(duct;)) A = Holds(0, blocked (ductz2)) A

Holds(0, at(box, locy)) A

—Holds(0, stuffy) A

—Holds(5, at(box, locy)) A

Holds(5, at(box, locs)) A

Vt, z(Holds(t, at(x,loca)) — Holds(t,blocked(ducts))) A

Vt(Holds(t,blocked(ducty)) A Holds(t, blocked(ducty)) —
Holds(t + 2, stuffy)) A

Vf,t(Holds(t, f) ® Holds(t + 1, f) — Occlude(t + 1, f)) A

49

Vi, £(
Occlude(t, f) <>

(2<t<5Af=at(box,loci))V
(2<t<5Af=at(box,locy)) V
Vz(—Holds(t — 1,at(z, loca)) A Holds(t, at(z,loca)) A
f = blocked(ducts)) V
(—[Holds(t — 3, blocked(duct;)) A Holds(t — 3, blocked(ductz))] A
Holds(t — 2, blocked(duct;)) A Holds(t — 2, blocked(ductz)) A

f = stuffy))

In addition, the unique name axioms are included, but not listed here. The
theory correctly entails that if something is placed on top of ducty while duct
is blocked, then the room will become stuffy two time-points later. In the
current axiomatization, the room would remain stuffy forever even after one
of the ducts became free. This is because the nochange axiom prevents the
room from becoming unstuffy without reason. In the current theory, there is
no axiom which states otherwise. A rule stating that the room is stuffy only
when both ducts are blocked can be added without difficulty:

deps Vi([t]-(blocked(duct;) A blocked(ducts)) > [t + 2]—stuffy).

This example demonstrates both the use of casual chaining and how causal
constraints can be used to specify delayed effects of actions. O

4.4 Causal Cycles

This section considers the problem posed by non-stratified theories (theo-
ries with causal cycles) and why non-fixpoint approaches have difficulties in
handling them. After that we present two solutions to the stratification prob-
lem. The first solution, in Section 4.5, contains a modification of TAL, trans-
forming it into a fixpoint approach similar to Thielscher’s and Sandewall’s
solutions. The second solution, in Section 4.6, is based on an unpublished
article by Gustafsson and Kvarnstrom. That approach does not need any
modification to TAL since it works by moving the cycle detection into the
surface language. This allows us to experiment with different types of cycle
handling without having to change the underlying logic. It also shows that
correct cycle handling can be done without the need to introduce fixpoint
mechanisms.

50

Before the solutions are presented, let us begin by defining causal cycles
and examining the nature of the problems associated with theories containing
causal cycles.

4.4.1 Causal Cycles

The following definition of causal cycles is inspired by the definition of strat-
ification by Lin [67].

Definition 4.4.1

Let T be a set of dependency laws. A causal cycle in T is a sequence of fluents
(fo, f1s--- fn) such that fo = fiAfi = fa Ao A fa1 = fu A fa = fo,
where for any fluents f and f’, f = f' if there is a dependency relation
in T such that f appears in the trigger and f' appears, not delayed, in the
postcondition in the dependency relation. O

For example, a theory containing the dependency laws [t](dead > —alive) and
[t](—alive > dead) contains the causal cycle (dead, alive).

4.4.2 Causal Cycles in Non-Fixpoint Approaches

The existence of causal cycles in a theory causes problems for the non-fixpoint
approaches to ramification discussed in this thesis, including Lin’s approach
and the PMON(RCs) approach discussed in the previous sections. The prin-
ciple behind these approaches is as follows:

1. Let S be the current state.
2. Let W be the set of all possible states.

3. Remove those states from W that cannot be legal successors of S,
considering fired actions, dependency laws, the inertia assumption and
possibly other criteria.

4. The resulting set W contains all legal successor states with respect to S.

If a theory contains causal cycles, this procedure is not necessarily strong
enough to filter out all unwanted models. For this reason, we have previously
restricted our logic to deal only with stratified theories, where causal cycles
do not occur. The reason for the problems associated with causal cycles will
be explained using a small example.

51

Example 4.4.1

Consider a scenario description that contains two fluents alive and dead. If
the fluents should be “synchronized” in the sense that if alive becomes false
then it causes dead to become true and vice versa, one could imagine that
this could be achieved using two dependency laws as in the example below.

Scenario Description 4.8

obs; [0]alive A —dead

occ; [5,6]Shoot

acsy [tl,tz]ShOOt ~ [tl,tz]alive =F
dep; Vit ([t]—alive > [t]dead)

depy Vit ([t]dead >> [t]—alive)

The intuitive conclusions from this scenario description would be that alive
and dead remain unchanged until the Shoot action is executed. At 6, alive
should become false and (by dep;) dead should become true, and the fluents
should retain the same values in [6, c0).

However, consider an interpretation where alive becomes false and dead
becomes true at 1. Since there is a suitable change in alive, dependency law
dep; is triggered, which occludes dead at 1, allowing dead to change values.
Similarly, since there is a suitable change in dead, dependency law deps is
triggered, which occludes alive at 1, allowing alive to change values. Since
both features are occluded, the inertia assumption (encoded in the nochange
axiom) is not violated, and all observations and dependency constraints are
satisfied. Thus, this interpretation is a valid model.

This means that it is impossible to infer that alive is true at time-point 1.

O

This problem only arises for non-fixpoint approaches. The reason for this
is that all ramifications take effect in the same state. In non-fixpoint ap-
proaches, the transitivity of dependency laws is immediate, whereas fixpoint
approaches (discussed in the following subsection) have transitivity over a
sequence of states. This means that in non-fixpoint approaches the postcon-
dition of a dependency law may very well directly influence its own trigger.
In fixpoint approaches the postcondition always takes effect in another (later)
state than the trigger; this procedure is repeated until a fixpoint has been
reached.

Of course, it is possible to argue that causal cycles are an artificial prob-
lem, and that if a certain scenario can be modeled with causal cycles it can be
re-modeled without causal cycles, since causality is acyclic in nature. But this
usually requires more detailed, complicated models of the world, and since

52

we are interested in common-sense reasoning, we often want to abstract away
from such details and model causal relations that are not necessarily directly
grounded in physical laws of nature, relations that may sometimes be cyclic.
In addition it places an additional burden on the knowledge engineer.

4.4.3 Causal Cycles in Fixpoint Approaches

The general idea behind the fixpoint approaches to compute the successor
states of state S is as follows:

1. Fire the action; call the resulting set of states S.
2. Let R = 0.
3. For each s € S do:

(a) If none of the dependency laws can be applied, then add s to R.

(b) Otherwise, let W be the set of resulting states where at least one
of the dependency laws has been applied to s.* ® If W # (), then
recursively apply step 3 to each w in W.

4. R is the set of successor states.

Thielscher [98] uses a fixpoint-oriented method. McCain and Turner [71]
define both a fixpoint and a non-fixpoint approach. Sandewall [91] uses a
fixpoint-oriented approach, but the results of the cascades are captured by
the N function. Using N the approach could be considered as a non-fixpoint
method.

Example 4.4.2
As an example that illustrates the difference between the two types of ap-
proaches, consider McCain and Turner’s non-fixpoint method (Definition
3.3.3) and their fixpoint method (Definition 3.3.2) for a non-stratified theory.
We will see that the fixpoint method provides the intended solution, whereas
the non-fixpoint method results in models with counter-intuitive spontaneous
change.

Let us consider a world with three fluents p, ¢ and r, an initial state
S = {—p,—~q,r}, an explicit effect £ = r, and two causal laws p = ¢ and

AW is a set of states, since both the choice of dependency laws and the dependency laws
themselves may be nondeterministic.

®We assume that all fluents not affected by the applied dependency laws remain inert
in the states in W.

53

g = p. The intuitive result is {—p, -q, r}, since the value of r is changed and
p and q should be unaffected by the action. The problem is that non-fixpoint
methods in addition to the above result give the additional result {p,q,7}.

We begin by examining the fixpoint approach: Suppose S] = {-p, —q,7}.
This means that (SN S]) UE = {-p,—q,r} and since {L : {-p,—q,r} F¢c
L} = S, S] must be a solution.

Now suppose S = {p,q,r}, (SNSLUE = {r}. Weget {L: {r} ¢ L} #

%, so S} is not a solution. So we see that Res(E,S) = {5} which is the
intuitive result.

The interesting point is to examine Res (E,S) and see if it gives S!
but not S). The interesting interpretations are Uy = {-p,—q,7} and Uy =
{p,q,7}

When we try S] we see that Uy F {-p,—q,7} and {L : U; F L} = S}
so S is a solution. But the surprise comes when we try Sy: Uz F {r} and
{L:Us E L} = 8} so according to this Resi (E,S) = {8}, S5} which is not
what we expected. O

4.4.4 Stratified Theories

In essence, a theory is stratified if it contain no causal cycles. The following
is a slightly modified definition taken from Lin [67]:

Definition 4.4.2
We say that a set T of dependency laws is stratified if it contains no causal
cycles (Definition 4.4.1). O

This means that a theory with the dependency laws [t](dead >> —alive) and
[t](—alive > dead) is not stratified.

This is the definition of stratification used in this thesis. An alternative,
stricter definition of stratification is to require the fluents to be ordered in
layers such that no fluent depends on any fluent in a higher layer.

We will now move on to describing the first solution to handling non-
stratified theories, TAL(seq). The second solution is presented in Section 4.6.

4.5 Breaking Causal Cycles: 1

We have seen that TAL with side-effects handles a broad class of problems.
However, we have also seen that if the theories are not stratified, then TAL
does not provide intuitive results.

54

Thielscher [98] solves this problem by viewing the effects caused by actions
merely as an approximation of the final result. The complete result is reached
by going through a sequence of states. Sandewall [91] also uses sequences of
approximate states to reach a stable state.

The intention in this section is to combine the idea of sequences of states
from Thielscher and Sandewall with the approach in TAL [42, 21]. This new
combination will handle both stratified and non-stratified theories and will
have the following advantages:

e We retain all the previous expressivity of TAL, including delayed effects,
nondeterminism of both actions and dependency laws and the ability
to use actions with extended duration.

e We build on existing work, using first-order predicate logic.
e The method is a declarative description of a fixpoint approach.

TAL(seq) should be viewed as a proposal for how TAL could be modified to
handle both stratified and non-stratified theories, not as a complete formalism
since many of the details which would make it so have been left out.

4.5.1 Three Types of States

We distinguish between three types of states, as illustrated in Figure 4.1.
A connecting state at time t is the state resulting from all effects having
taken place strictly before time ¢t. The primary-result state at time-point ¢
is the only state that is directly influenced by actions at t. All other states
are called dependent states; these states are only influenced by dependency
laws. For each time-point, a cascade is a chain of states beginning with a
connecting state followed by a primary-result state followed by a chain of
dependent states.

Since there is an explicit timeline in TAL, each time-point has to have
its own cascade. This is an important difference between TAL(seq) and the
formalisms developed by Thielscher and Sandewall.

To be able to distinguish between the states in the cascade, the Holds
and Occlude predicates need an extra argument besides the fluent, the value
and the time-point. Therefore we introduce an additional argument of sort &
(the non-negative integers). It represents the number in the cascade (called
the cascade number). This argument will be placed between the time-point
and the fluent name.

55

Timeline
Connecting state

Actions

Primary-result state
Dependency
laws

Dependent state
Dependency

laws

Q0001 -

Identical states

O—0- ~0-20-20-101-
—
\&vow w0

Cep

Figure 4.1: The relation between the different types of states.

56

The following shorthand notation will sometimes be used:

{t,i}f =v = Holds(t,i, f,v)
{t,i}~f =v = -Holds(t,i, f,v)

If f is a fluent then

{t,i}X(f) = Occlude(t,i, f)
{t,i}-X(f) 2 -Occlude(t,i,f).

If o is a formula then {¢,i}X(a) and {¢,i}-X(a) denote the conjunction of
occlusion of all fluents in a.

The connecting state

Each cascade begins with a connecting state. This state is determined by the
cascade of the preceding time-point as will be explained in Definition 4.5.3.
The cascade number for this state is 0, so the fact that fluent f holds in the
connecting state at time-point 3 will be denoted Holds(3,0, f).

References to values of fluents at a given time-point ¢ should be to the
connecting state on the following time-point ¢ 4+ 1 since we want to know
what the value is after all dependency laws have taken effect.

The primary-result state

The primary-result state follows immediately after the connecting state. This
is the state that has resulted when all direct effects of actions and delayed
effects have been taken into consideration.

The translation of the reassignment macro (See Section A.4) has to be
changed for this purpose.

Definition 4.5.1

Tran([t,t'] fe(wr, -, wiy) == v) = (4.9)
Holds(t', 1, fe(w1, -y wiy,), v) A
vt" (t <t" <t — Occlude(t”, 1, fr(wi, ..., wi,))) 0

Definition 4.5.5 describes how the dependency laws affect the primary-result
state.

57

The dependent states

The primary-result state is followed by a chain of dependent states. This
chain is generated by the instantaneous dependency laws as will be shown
in Definition 4.5.5. The idea behind the approach is that when we can no
longer apply any of the dependency laws, a stable state has been reached.
The values of all fluents in this stable state are copied to the connecting state
at the following time-point, as shown in Definition 4.5.3. This is the reason it
is called a connecting state: It connects the fixpoint state in a cascade with
the first state in the following cascade.

4.5.2 Defining the Behavior of Cascades

This section discusses the axioms needed for inertia in ramification sequences
and for connecting the last state in a cascade to the following connecting
state. Thereafter the syntactical definition of a dependency law is given
together with the translation into our logic.

Definition 4.5.2
The nochange axiom in TAL(seq), I'ncga, is ©
Vi >0,s >0, f[({t,s}f @ {t,s+1}f) —
({t, s +1}X(F)AVs' > 0[s" < s = {t,s"}=X(f)])],
where the @& operator denotes exclusive-or. O

The idea is straightforward: Only allow a fluent to change value the first
time it is influenced in a cascade. There are two reasons for this restriction.
The first is that it prohibits infinite cascades, provided that the number of
fluents is finite. If n is the number of fluents, then a cascade must have
reached a fixpoint before, or when it reaches, the dependent state number n.
The second reason is that a cascade is considered to be instantaneous, so
no time progresses between the primary-result state and the following con-
necting state. It would be counter-intuitive to allow a fluent to change value
several times without at least some time elapsing. This closely resembles the
respectfulness criterion used by Sandewall [91]. In this sense, the numerical
indicators provided in cascades should be interpreted as indexes rather than
time-points in a temporal progression.

The second axiom needed is for copying a stable state to the following
connecting state.

8Like the old nochange axiom I'nvcg, the new axiom I'ycge is not part of the theory
that is minimized. Thus, the negative occurrences of the Occlude predicate does not pose
a problem for reduction.

58

Definition 4.5.3
The axiom for copying stable fluents, I'¢p, is:

Vi >0,s >0 [Vf({t,s}f <
{t,s +13f) = Vi({t,s}f < {t +1,0}f)] =

If all fluents remain unchanged between the states at cascade number s and
s + 1, a stable state has been reached, and all fluents are copied to the
following connecting state.

Dependency laws

Dependency laws can be divided into causal dependency laws and ezplanatory
dependency laws. Causal dependency laws are of the kind “A causes B”,
for example “turning the switch causes the lamp to go on”. Explanatory
dependency laws work in the opposite direction, “If B is true, the explanation
is that A is true”, for example “if the lamp is on, the explanation must be
that the switch has been turned”. Causal and explanatory dependency laws
will be handled in the same way since the difference is conceptual rather than
technical. A more thorough discussion of this can be found in [72].

Definition 4.5.4
A dependency law in the surface language is an expression of the form

vt > 0([tla — ([ru(8)]6 > [r2(2)]7)),

where a, ¢ and 7y are fluent formulas, ¢, 71(t) and 7»(t) are of type T and
t < 7i(t) < 1a(t) for all ¢. O

The intended meaning of the above definition is: “If « is true at time-point ¢,
then d at time-point 71 (¢) influences formula 7 to become true at time-point
T2(t)”.

If 7 (t) < mo(t), the dependency law is called a delayed dependency law,
and otherwise it is called an instantaneous dependency law. The case when
71(t) > 72(t) is considered illegal.

59

Definition 4.5.5
A dependency law [tja — ([11(2)]d > [m2(t)]y) in £L(ND) is translated to the
following formula in £(FL):

(({t +1,0}a ATi(t) < mo(t)) —
[({2(8) + 1,0} = {ma(2), L}7) A
({re(t),03=0 A {ri(t) + 1,0} —

{r2(2),1}X(7))]) A (4.10)
T1(t) = 72(t) — |
({t,0ta A{r1(t),0}6 — {71(¢),0}7) (4.11)
A
Vs> 0[

({r1(t),8}=6 A {m1(t),s + 1}6 A
{n(t),s +1}a) —
({m1(8), s + 2}y A{ri(t), s + 2} X(7))] (4.12)

The first part (4.10) takes care of delayed dependency laws, and ensures
that they are effectuated in the primary-result state, first with respect to
the assigned value and then with respect to occlusion. For instantaneous
dependency laws, (4.11) ensures that all connecting states are legal with
respect to the dependency law. So, even if the intermediate states in a
cascade violate some of the domain constraints, we are sure to end in a legal
state. Sentence (4.12) enforces the actual change in the cascade.

Translation and minimization

The translation and minimization policy is similar to PMON with the fol-
lowing exceptions:

¢ Observation statements are applied to the connecting state at the next
time-point. This is done in order to ensure that what we actually
observe is the fixpoint result of the cascade at the present time-point.
For example:

obs [5]dead A —walking (4.13)

would be translated to
obs Holds(6,0,dead) A —~Holds(6,0, walking).

The same goes for static constraints and preconditions in actions.

60

o All reassignments take effect in the primary-result state according to
translation (4.9).

Let T be a action scenario, and let Tran(Y) be its translation into £(FL).
Then the formula « is entailed by Tran(Y) iff

Fyna Al ATnce2 ATep AToss AT acc A
Circso(T'scp AT pep; Occlude) = o (4.14)

Note that the the Occlude predicate only occurs positively in a translation
of an action scenario. Consequently, we can show that the circumscription
above is reducible to a logically equivalent first-order formula.

Example 4.5.1

This example of a simple seesaw shows the translation of a scenario from
the surface language to L(FL). The example consists of two different actions
influencing a seesaw, Moveleft and MoveRight, each having the position as
argument. The actions are used to move one of the sides of the seesaw ei-
ther up or down; the idea is that the other side should move in the opposite
direction without any intermediate states that violate the rule that the see-
saw is straight. Furthermore, note that this is a theory with causal cycles
containing four dependency laws governing the behavior of the seesaw.

Scenario Description 4.15

obs; [0]left = down A right = up

occy [2,3] MoveRight(down)

occy [3,4] Moveleft(down)

occs [5,7] Moveleft(up)

acsy [t1,ta] MoveRight(position) ~ [t1,1s] right := position
acsy [t1,ta] Moveleft(position) ~ [t1,ts] left := position
dep; Vi([t]left = down > [t]right = up)

depa Vi([t]left = up > [t]right = down)

deps Vi([t]right = down > [t]left = up)

deps Vit([t]right = up > [t]left = down)

After expansion we get the following scenario description:

Scenario Description 4.16
obs; [0]left = down A right = up
scd; [2, 3]right := down

scd; [3,4]left := down

scdy [5, 7]left := up

61

dep; Vit([t]left = down > [t]right = up)
deps Vit([t]left = up > [t]right = down)
deps Vi([t]right = down > [t]left = up)
deps Vi([t]right = up > [t]left = down)

The corresponding set of labeled well formed formulas in £(FL) is:

Scenario Description 4.17
obs; Holds(1,0, left,down) A Holds(1,0, right, up)
scd; Holds(3,1, right,down) A Occlude(3, 1, right)
scde Holds(4,1, left,down) A Occlude(4, 1, left)
scds Holds(7,1,left,up) AVt(5 < t <7 — Occlude(t, 1, left))
dep1 Vt[(Holds(t,0,left,down) — Holds(t,0, right, up)) A
Vs > 0[~Holds(t, s, left,down) A Holds(t, s + 1, left,down) —
(Holds(t, s + 2, right,up) A Occlude(t, s + 2, right))]]
deps Vt[(Holds(t,0,left,up) — Holds(t,0, right,down)) A
Vs > 0[—~Holds(t, s, left,up) A Holds(t,s + 1, left,up) —
(Holds(t, s + 2, right,down) A Occlude(t, s + 2, right))]]
deps Vt[(Holds(t,0,right,down) — Holds(t,0, left, up)) A
Vs > 0[—~Holds(t, s, right, down) A Holds(t, s + 1, right, down) —
(Holds(t, s + 2, left,up) A Occlude(t, s + 2, left))]]
deps Vt[(Holds(t,0,right,up) — Holds(t,0, left,down)) A
Vs > 0[—Holds(t, s, right,up) A Holds(t,s + 1,right,up) —
(Holds(t, s + 2, left,down) A Occlude(t, s + 2, left))]]

Assuming the domain of left and right is {down, up}, circumscription of I'scp
and I'pgp with Occlude minimized results in the following definition:

Vt, s, f Occlude(t, s, f) <>
[(t=3As=1Af =right)V
(t=4As=1Af =left)V
B<t<TAs=1Af=Ileft)V
(f =right AVt,s2,v(s =82 +2 —
—Holds(t, s, left,v) & Holds(t, s2 + 1, left,v))) V
(f = left AVt, s3,v(s =893 +2 —
—Holds(t, s2, right,v) & Holds(t, s2 + 1, right, v)))]

The two last lines state that if the value of left is changed, then right should be
occluded and vice versa. The same scenario would in TAL result in that the

62

position of the seesaw would vary freely. For example, it would be impossible
to deduce the position of the seesaw at time-point 1 using TAL. O

Example 4.5.2

In the following example we will consider two-way directionality combined
with nondeterminism. Let us consider the domain constraint Swy VSws < La
representing that a lamp (La) is on if any of the two switches (Swy and Swa)
is on. Suppose we can influence both the switches and the lamp via actions.
What happens if we turn on a switch? We do not want the other switch
to change as well. How can we recognize whether the lamp is influenced
directly (leading to possible change in the switches) or if it is influenced via
the domain constraint in a left to right direction (not leading to a right to
left direction)?

We model the problem as follows:

t]-La — ([£](Sw1 V Swa) > [f]La))
tlLa — ([t]~(Sw1 V Swa) > []-La))

£](—Swi A ~Swa) — ([t]La > [](Swi V Sw2)))
£)(Swi V Swa) — ([t]-La > []~(Sw1 V Sw3)))

Ph @F @L @F
vV IV IV IV
oS O O O
A~ A~~~

This formalization may appear to be very complex, even contradictory. How
can one have the precondition La and the effect —La, at the same time-point?
The answer is that the precondition is checked earlier in the cascade than the
consequence occurs. The first dependency law should be read “If the lamp
is off and any of the switches are turned on at time-point ¢, then the result
at the end of the cascade at time-point ¢ is that the lamp is on”.”

Since all of these are influencing constraints with ¢ = 71(¢) = 7»(t), this

"It can be argued that the natural thing to do is to minimize change as much as possible.
If we want to do this, we can rewrite the third dependency law as follows:

Vt > 0([t](—Swi A =Swz) — ([t]La > [E]((Swi A ~Swa) V (—Swy A Swz))))

63

is transformed (and abbreviated) into:

Vt > 0({t,0}(Swi V Sws) <> {t,0}La) A
Vit > 0,8 > 0(({t,s}~(Swy V Swa) A {t,s + 1}(Swy V Swy) A
{t,s + 1}-La) —
({t,s +2}La A {t,s +2}X(La))) A
Vit > 0,s > 0(({t,s}(Swy V Swa) A {t, s + 1}=(Swy V Swy) A
{t,s + 1}La) —
({t,s +2}-La A {t,s + 2} X(La))) A
Vt > 0,s > 0(({t,s}-La A {t,s + 1}La A {t,s + 1}(—Sw;i A =Swy)) —
({t,s + 2}(Swy V Swa) A
{t,s +2}(X(Sw1) A X(Sw2)))) A
Vt > 0,5 > 0(({t,s}La A {t,s +1}-La A {t,s + 1}(Swy V Swq)) —
({t,s +2}=(Swy V Swy) A
t,5 4 2}(X(Sw1) A X(Sws))

The length of this result may be surprising, but this example contains many
subtleties that are not obvious at first glance. For example, toggling on just
one switch should not lead to a model where both switches are on. O

The next section explores a completely different way of approaching the prob-
lem with cycles, without any of the modifications of TAL necessary in this
section.

4.6 Breaking Causal Cycles: II

This section consists of an unpublished paper by Gustafsson and Kvarnstrém
that discusses a solution to the problems associated with causal cycles in the
context of TAL-C. Although TAL-C has not yet been presented (see the next
chapter or Appendix C) we have chosen to place this presentation here since
the aim is to provide a concise solution to the problem with causal cycles.
The readers not familiar with TAL-C are encouraged to read Chapter 5 before
reading the following section.

4.6.1 Introduction

There are a number of approaches in the literature that are able to handle
causal cycles. Interestingly, it appears that these approaches always use non-

64

standard entailment criteria specifically designed to deal with the ramification
problem (for example, Thielscher [98], McCain and Turner [71], and Denecker
et al. [17]), while approaches where an existing logic is extended for side effects
have problems with causal cycles, allowing them to trigger themselves (e.g.,
Lin [67], Gustafsson and Doherty [42], and Shanahan [94]).

This immediately leads to the question of whether using a tailor-made en-
tailment criterion is truly essential for dealing with causal cycles. This would
be very unfortunate, as it would preclude the use of many standard tech-
niques and tools such as first order theorem provers. As we will show, this is
not the case. We will present an existing solution to the ramification problem
within the TAL (Temporal Action Logics) framework [42] and demonstrate
that it allows spontaneous change when causal cycles are present. We will
then describe a filtering technique for removing all models in which such
spontaneous change is present. This is achieved by introducing additional
logical constraints on causal effects, and is handled completely within the
logic without recourse to tailor-made entailment criteria. Therefore, the re-
sulting TAL narratives are still reducible to first-order logic, existing correct-
ness results are still applicable, and existing solutions to problems such as
the qualification problem can still be used.

4.6.2 Self-triggered Cycles in TAL-C

To see how causal cycles can be triggered spontaneously in TAL-C, consider
the following narrative, inspired by an example by Denecker et al. [17].

Example 4.6.1

There are two interlocking gear wheels. If either wheel is turning, this will
cause the other wheel to turn. Initially the wheels are still, but between
time-points 4 and 5, an action makes the first wheel start turning.

Scenario Description 4.18
per Per(T1) A Per(T3)

acs [tl, tz] Turn; — I((tl, tz] T1)
dep; Vt.Cp([t]T1) — I([t] T2)
depz Vt. CT([t] T2) — I([t] T1)
obs [0] —|T1 A —|T2

occ [4,5] Turny

We declare the fluents Ty and Ts as persistent, and describe the effects of
the action Turn;. The two dependency constraints describe the fact that if
either wheel is turning, then this is sufficient cause for the other wheel to

65

turn. Finally, we observe that neither wheel is turning at 0, and an action
occurrence statement states that Turn; takes place between 4 and 5.
Intuitively, one would expect both wheels to remain still from 0 to 4.
At 5, we turn Ty, which should also cause T2 to start turning. Although
there is a model where this happens, there are also models in which T; starts
turning at some time-point ¢ < 5. This is sufficient cause for Ty to start
turning, which is sufficient cause for T; to start turning. The causal cycle
has triggered itself spontaneously. O

4.6.3 Preventing Self-triggered Cycles

Our approach to filtering models with self-triggered causal cycles will be
presented in two steps. First, we will present a method that handles causal
dependencies triggered by a change in a single fluent. We will then extend
this method to handle dependencies triggered by changes in multiple fluents
as well as dependencies triggered by fluents taking on certain values rather
than changing values.

Simple Trigger Conditions

We first consider action definitions and dependency constraints of the form

acs [t1,ta] Action — (¢ — I((7,7']4)) and (4.19)
dep Vt.Op([t] f =v) = I([t + c]¢)

where c € {0,1,2,...}. If ¢ =0, dep is a non-delayed dependency constraint;
otherwise, it is a delayed dependency constraint.

Returning briefly to the gear example, note that there are at least two
different ways of defining a causal cycle. Consider a spurious model where
dep; and deps self-trigger at time 1. It could be said that there is a causal cy-
cle involving dep; and deps, since dep; triggered deps which in turn triggered
dep;. Alternatively, it could be said that there is a causal cycle involving the
fluents T; and T, since a change in Ty caused Ty to change, which caused
the initial change in T;. We will use the latter approach: Given a model of
a TAL narrative and a time-point 7, we define a triggered causal cycle as a
sequence (f1,... , fm, fm+1), where fp,11 = f1 and where for all 1 < k < m,
there is a non-delayed dependency constraint V¢.Cp([t] fr = v) — I([t] %)
such that Cr([7] fx = v) holds and such that fr41 occurs in %. Such cycles
can be detected using a cause graph.

66

Definition 4.6.1 (Cause Graph)

Let T be a TAL narrative and F the set of fluents in Y. Let grounded be a
symbol representing a grounded cause, and let 7' = F U {grounded}. The
unique cause graph for a time-point 7 and a model of T is a directed graph
with nodes F’, constructed as follows. First, for each action a occurring in T
and for each fluent f affected by a at 7, add an edge from grounded to f.
Then, for each dependency constraint V¢.Cr([t] g = v) — I([t+c|) triggered
at t = 7 — c and for each fluent f occurring in 1), if ¢ = 0 then add an edge
from g to f, otherwise add an edge from grounded to f. O

However, simply removing every model for which there is some 7 with a cyclic
cause graph is too restrictive. In the gear example, an action will make T;
true at 5; even in the intended model, this causes Ts to become true at 5,
which causes T; to become true. Thus, there is a triggered causal cycle, but
since it has a grounded cause (the action), this model should be retained.

Instead, a model should be removed when there is some f that has
changed values at some 7 without a grounded cause, that is, some f for which
there is no path from grounded to f in the cause graph for 7. Equivalently,
a model should be removed when there is some 7 for which it has no acyclic
selected cause graph.

Definition 4.6.2 (Selected Cause Graph)

Given a time-point 7 and a model of a TAL narrative, a selected cause graph
for this time-point and model is a subgraph of the corresponding cause graph,
with the same nodes, such that for each fluent f that has changed at 7, there
is at least one edge leading to f (a reason for the change). O

Note that a cause graph contains edges to every fluent that has been influ-
enced by an action or dependency constraint, even if some of those fluents
have not actually changed values. This provides some useful information
when we consider diagnosis. In a selected cause graph, however, we only
consider fluents that have changed values.

Example 4.6.2 (continued from 4.6.1)

For any model of the gear example, the cause graph for time-point 5 has the
nodes T7, Ty and grounded, with edges as shown in Figure 4.2. Although this
graph is cyclic, the part of the figure marked in gray is an acyclic selected
cause graph.

However, in any model where the causal cycle triggers itself at some 7, the
cause graph for 7 has only two edges (Figure 4.3). This graph is cyclic, and
if we remove any edge, it is no longer a selected cause graph. O

67

Figure 4.2: Cause graph for time 5

Grounded

Figure 4.3: Cause graph with self-triggered cycle

We must now define a set of TAL formulas that model the cause graph and the
existence of an acyclic selected cause graph at each time-point. We introduce
a value domain node containing the special value grounded as well as one
symbol for each fluent in the original narrative. The cause graph is modeled
as a boolean durational fluent Cause(node,node) with default value false.
Then, by introducing additional consequences for each action and dependency
constraint, Cause(n,n’) is made true at 7 iff there is an edge from n to n’ in
the cause graph for 7.

For each action definition of the form [t1, 3] Action — (¢ — I((7, 7]),
let the set {ni,...,nn} C node be those nodes that correspond to some
fluent occurring in %, and replace the action definition with [¢1,¢2] Action —
(¢ = I((r, ") AN N~y I((7,7'] Cause(grounded, n;))), indicating that there
is a grounded cause for change in each n;.

For each dependency constraint V¢.Crp([t] f=v)—I([t + c] 1), let the set
{n1,... ,nm} C node be those nodes that correspond to some fluent in 1,
and replace the dependency constraint with V¢.Cr([t] f = v) = I([t +]) A
NAiv1 I([t + c] Cause(n, n;)), where n is the node corresponding to f if ¢ =0
and n = grounded otherwise.

Given these modified statements, Cause(n,n’) will be true at any given
time-point 7 iff the cause graph for 7 has an edge from n to n'. (Recall that
we circumscribe Occlude in the £(FL) translation of the narrative. Since
Cause is a durational fluent, taking on the value false unless occluded, we
have essentially also circumscribed Cause. This explains why Cause is never
allowed to vary freely.)

68

A boolean dynamic fluent Selected(node, node) is added, together with
domain constraints forcing it to correspond to some selected cause graph.
For each fluent f with corresponding node n, a domain constraint of the
following form is added:

accy, (tJf=vZ[t+1]f =v)— [t + 1] Selected(c, n)] (4.20)
Then, we ensure that Selected is a subgraph of Cause:
accyp [t] Selected(n,n') — [t] Cause(n,n') (4.21)

Now, Selected must be some selected cause graph. In order to ensure that
there exists at least one acyclic selected cause graph, all that remains is to
constrain Selected to be acyclic, which is the case iff its transitive closure is
irreflexive. Although the transitive closure cannot be defined in first-order
logic, it is irreflexive iff it and all its supersets are irreflexive. Therefore, we
define a new boolean dynamic fluent Closure, which is constrained to be some
irreflexive superset of the transitive closure of Selected.

accic [t] Selected(n,n') — Closure(n,n’) (4.22)
accyy [t] Selected(n,n') A Closure(n’,n"") — Closure(n,n')
accie [t] =Closure(n, n)

We emphasize that each step in this procedure can be performed mechanically
by a narrative pre-processor. This removes all models in which a causal cycle
has triggered itself spontaneously.

Complex Trigger Conditions

The solution presented above was sufficient for handling dependency con-
straints triggered by a change in a single fluent. We would also like to handle
dependency constraints triggered by changes in multiple fluents, as well as by
fluents that have a certain value rather than change values. We will therefore
consider constraints of the form

dep Vt.(NLilt +cil fi = vi) = I([t +c]9), (4.23)
where ¢,¢; € {0,1,2,...}. Note that although the Cp macro is no longer
allowed, any formula allowed in the previous section can easily be rewritten
on this form. Also, dependency constraints with disjunctive preconditions
can be written as multiple dependency constraints on this form. Disjunctive
effects are allowed within the scope of the I macro operator.

We must now change the definitions of cause graphs and selected cause
graphs, since no single fluent can be selected as the cause of change in another
fluent: It is necessary to select the entire set of fluents that were the trigger
condition for some dependency constraint.

69

Definition 4.6.3 (Cause Graph)

Let T be a TAL narrative and F the set of fluents in Y. Let grounded be a
symbol representing a grounded cause, and let F' = F U {grounded}. The
unique cause graph for a time-point 7 and a model of T is a labeled directed
multigraph with nodes F’, constructed as follows. First, for each action a
occurring in Y and for each fluent f affected by a at 7, add an edge from
grounded to f with the label (a,true). Then, for each dependency constraint
dep = Vt.(A;_1[t + ci] fi = vi) = I([t + c]) triggered at some t = 7 — ¢, for
each 1 < ¢ < n, and for each fluent f occurring in v, if ¢; < ¢ (a local delay)
add an edge from f; to f labeled (dep,true), otherwise add an edge from f;
to f labeled (dep, false). O

Example 4.6.3 (continued)
We rewrite the dependency constraints on the required form:

Scenario Description 4.24
dep: Vt([t] -T1 A [t + 1] T1) — I([t + 1] T2)
dep2 Vt([t] —|T2/\ [t+1] T2) — I([t‘l— 1] Tl)

The cause graph for time-point 5 is now somewhat more complex (Figure 4.4).
Each label is a tuple (s,g), where s is the name of the action or depen-
dency constraint that introduced the edge and g indicates whether the edge
is grounded. O

<Turn,true> <Dep, false>

Q/—\ @KD—\ s

Grounded <Dep2,true>

<Dep2,false>
Figure 4.4: Cause graph for time 5

The condition for filtering out models must change slightly, since delayed
dependencies, which previously gave rise to edges from the special value
grounded to the fluents they affected, now introduce edges from the fluents
in their preconditions to the fluents they affect. A model should be removed
iff there is some time-point 7 for which every selected cause graph for the

70

model contains some cycle where every edge has a label (l;,false), that is,
where every edge arises from a non-delayed fluent dependency.

Definition 4.6.4 (Selected Cause Graph)

Given a time-point 7 and a model of a TAL narrative, a selected cause
graph S for this time-point and model is a subgraph of the corresponding
cause graph C, with the same nodes, such that for each fluent f that has
changed from 7 —1 to 7, there is at least one edge leading to f, and for each
edge label [in C, either all edges in C labeled [are in S, or S has no edge
labeled I. O

As before, we introduce a TAL value domain node containing the special value
grounded as well as one value for each fluent in the original TAL narrative.
We also introduce a value domain label containing one symbol for each action
and dependency constraint, as well as a special symbol indirect which will be
used later. Then, the cause graph is modeled as a boolean durational fluent
Cause(node, node, label, boolean) with default value false, and Cause(n,n/,l, g)
is made true whenever the cause graph has an edge from n to n' labeled (I, g).
This is achieved by introducing additional consequences for each action and
dependency constraint.

For each action definition of the form [t1, 2] Action — (¢ — I((7, 7] %)),
let {n1,...,nm} C node be those nodes that correspond to some fluent in 7
and let a € label be the identifier for this action. Replace the definition with
[t1,t2] Action — (¢ — I((7, "]) AN~ I((7, 7"] Cause(grounded, n;, a, true))).

Then, for each dependency constraint of the form V¢.(AL [t +] fi =
v;) — I([t + c]v¢) with identifier d € label, let (p1,...,pn) be the nodes
corresponding to (fi,..., fn) and let {n1,... ,ny} C node be those nodes
that correspond to some fluent in 1. For all 1 < i < n, let g; be the value true
if ¢ < ¢;, the value false otherwise. Replace the dependency constraint with
VE(N e+ i) £ 2) = T(it+ A) AN, Ny T(t+) Cause(pi, nj, d, 97))-

A boolean dynamic fluent Selected with the same arguments as Cause
is added, as well as domain constraints forcing it to correspond to some
selected cause graph. For each fluent f with corresponding node n, a domain
constraint is added:
acco, ([t=1]f =v £ [t] f =v) = Ir,c,g[[t] Cause(c, f,7,9) A (4.25)

Vc'[[t] Cause(d, f,r,g) — [t] Selected(c, f,7,g)]]

Then, we ensure that Selected is a subgraph of Cause:

accyp [t] Selected(a, b,r,g) — [t] Cause(a, b, T, g) (4.26)

71

Finally, we should remove all models for which there is some time-point
for which it is impossible to find a definition of Selected that satisfies the
conditions given above.

accy. [t] Selected(n, n/, r, false) — Closure(n,n') (4.27)
accyqg [t] Selected(n, n', 7, false) A Closure(n',n") — Closure(n,n")
accoe [t] =Closure(n, n)

4.6.4 Diagnosis

The techniques presented in the previous section reified dependencies between
fluents to prevent causal cycles from being triggered spontaneously. One of
the advantages of having reified this information is that it can also be used
for other purposes, such as diagnosis.

Suppose, for example, that we want to know why Tweety has died. More
formally, alive has become false at some time-point ¢, and we want to find the
underlying causes. This information is encoded in the selected cause graphs
for ¢t. Each graph corresponds to one combination of direct and indirect
effects that caused Tweety to die.

Given a selected cause graph S, consider every edge leading to the node
alive. Each such edge has influenced the fluent directly in some way: If it
is labeled (A;, true) then the action A; has changed the value of alive. If
it is labeled (dep;,true), then the delayed dependency constraint dep; has
affected the fluent. Otherwise, it is labeled (dep;, false), and the non-delayed
dependency constraint dep; has affected the fluent; in this case, it is possible
to use the selected cause graph to track the reasons why dep; was triggered,
and to recursively follow these reasons back to their grounded causes.

4.6.5 Related Work

We will now select four other solutions and discuss their relation to our
approach with respect to causal cycles.

Thielscher. One of the earliest causality-based solutions to the ramification
problem is Thielscher’s approach [98, 99], which uses a specialized entailment
criterion where applying an action to a state leads to a new intermediate
state. If at least one causal rule can be applied in this state, one such rule is
chosen nondeterministically, which leads to a new intermediate state. This
is repeated until a stable state is reached. Each fluent may change values
more than one time in this sequence of states, which suggests that there is
an actual flow of time within the sequence.

72

Since causal rules never have direct or indirect effects in the state in which
they are triggered, they can clearly never be self-triggered. Unfortunately,
the procedural nature of this approach makes it hard to compare it to our
more declarative approach, and although there has been much debate about
whether this is the best way to model causal delays, such discussions are
outside the scope of this thesis.

Nondeterminism is attained through the freedom to choose in what order
the causal rules should be applied. This suggests that it might be hard to
foresee the outcome of a complex system where the intermediate states have
no correspondence to reality. A more thorough investigation of Thielscher’s
approach can be found in Thielscher [99] and Denecker et al. [17].

Denecker, Dupré and Belleghem. Denecker et al. [17] present a general
semantics for handling causal rules, using an inductive definition as the basis
for the reasoning mechanism. They point out that it is necessary to restrict
causal cycles on a semantical level (as in the approach presented in this
section) rather than on a syntactical level.

A central concept is the D-proof-tree, which is used to define the set of
legal models and has been the main source of inspiration for our approach.
A graph of dependencies is built for each fluent, and if that graph is a tree,
it determines the value of the fluent.

Denecker et al. make a strong differentiation between state constraints
and causal rules, and claim that it should be possible to express causal rules
without an underlying state constraint. This differentiation is not needed
in TAL, however, since TAL dependency constraints are flexible enough to
express both kinds of rules.

Another important difference is that while [17] represents causality in
terms of a Cause predicate, which can be used in the trigger of a causal rule,
TAL dependency constraints are triggered by fluent values. Problematic
statements like (cause(p) < —cause(q)) N (cause(q) < —cause(p)) are not
expressible in TAL.

Shanahan. Shanahan [94] notes in his solution to the ramification problem
in the event calculus that mutually dependent fluents can cause phantom
self-starting events. However, his approach contains most of the requirements
for the methods presented in this section to be applicable. Cause is similar
to Shanahan’s Happens predicate in that it is false by default, and dynamic
fluents such as Selected and Closure can easily be handled by adding a Releases
predicate as described in Shanahan [93].

73

Lin. Lin [67] was the first to consider the problem of causal cycles in relation
to causal domain constraints. Rather than preventing causal cycles from
triggering themselves spontaneously, he defines a syntactical stratification
condition that ensures that a theory cannot contain causal cycles at all. This
condition is stronger than the semantic counterpart of [17].

It is doubtful whether one could remove the stratification condition from
Lin’s approach by applying the techniques presented here, since stratification
is also (according to Lin) necessary because the Clark completion being used
is too weak for handling cycles and recursion in causal rules.

4.7 Conclusions

We feel that PMON and its extension TAL have a number of advantages over
other formalisms for specifying action scenarios. They use explicit time in
terms of a linear metric time structure which allows one to specify actions
with duration, delayed effects of actions, and the incomplete specification of
timing and order of actions in a straightforward manner. We have argued
that there is a simple and intuitive surface language for describing scenarios
and that for this particular class of scenario descriptions, we can reduce the
circumscribed scenarios to the first-order case algorithmically.

On the other hand, we have not claimed that this logic is suitable for
all classes of problems, nor that it has solved the frame and ramification
problems in total, whatever they may be defined as being for the moment.

We have shown that in the standard approach to ramification in TAL,
causal cycles can be triggered spontaneously. Two solutions to this are de-
scribed and discussed. The first utilizes a tailor-made entailment criterion
with sequence of intermediate states similar to the approaches by Thielscher
and Sandewall.

We posed the question of whether correcting the problem with cycles al-
ways requires this type tailor-made entailment criterion, and showed that this
was not the case by providing a systematic method for adding constraints to
a narrative in order to filter out unwanted models. This method can be com-
pletely automated and implemented as a simple narrative preprocessor. Since
the TAL-C language and its underlying logic and entailment criterion needed
no modifications, any narrative would still be reducible to first-order logic,
and existing solutions to other problems such as the qualification problem
could still be used.

74

We also showed that our approach can help in performing some forms of
diagnosis and explanation, and compared it to several other approaches in
the literature.

The next chapter will illustrate how dependency rules can be used to
solve several aspects of the concurrency problem.

75

76

Chapter 5

Reasoning about Concurrent
Interaction

To an agent operating in a complex multi-agent environment, it is important
to be able to reason about how the environment changes due to the actions
that the agent performs. Most of the work in reasoning about action and
change has been done under the (sometimes implicit) assumption that there
is a single agent that performs sequences of actions. This is a comparatively
easier modeling problem than reasoning about action and change under a
multi-agent assumption, or under a non-sequentiality assumption for a single
agent, which by necessity introduces the complication that one or several
agents can perform actions concurrently. Concurrency, in turn, can involve
a wide range of interactions between actions, which makes it unlikely that
there is one single, uniform technique of general applicability.

The work presented here is based on the article “Concurrent Interaction”
by Karlsson and Gustafsson [48].

5.1 TAL-C

This chapter presents an approach to reasoning about action and change
which supports the description of concurrent actions with nontrivial inter-
actions. The approach is based on TAL 1.0 (Temporal Action Logic, called
PMON and PMON(RCs) in the previous chapters), which in its original form
[90, 20] covers worlds with natural numbers time domain and sequentially ex-
ecuted actions whose effects can be context-dependent (different initial states
can lead to different effects) and nondeterministic (the same initial state can
lead to several different effects). From the perspective of concurrency, an im-

7

portant property of TAL is that actions have durations (that is, occur over
an interval of time). In the previous chapter the original PMON logic was
extended to support ramifications, or indirect effects [42]. In this chapter we
present TAL-C, a development of the TAL/PMON formalism, which com-
bines support for ramification and concurrency. Some of the results presented
in this chapter have later been exploited for dealing with delayed effects [49]
which is described in Chapter 6, and for handling qualified action descriptions
[52].

In TAL-C, the description of concurrent interactions is made on the level
of features (state variables). The central idea is that actions are not modeled
to directly change the world state, but to produce influences on features. For
each feature one can then use influence laws to specify how it is affected by its
various associated influences. Besides providing a flexible and versatile means
for describing concurrent interactions, the use of influences and influence
laws permits describing the properties of actions, dependencies and features
in isolation, thereby improving modularity. = The major merit of TAL-C
is that it combines (a) a standard first-order semantics and proof theory;
(b) a notion of explicit time, which makes it possible to reason about the
durations and timing of actions and effects; and (c) the modeling of a number
of important phenomena related to concurrency, in addition to ramification
and nondeterminism.

5.1.1 The Two Language Levels of TAL-C

TAL-C, like its predecessors, is a formalism consisting of two languages. First,
there is the surface language £(ND) which provides a number of macros that
make it possible to describe TAL-C scenarios in a concise way. Scenario
descriptions in £(ND) are translated to the standard first-order language
L(FL) by expanding these macros, and after a suitable circumscription policy
has been applied, and reduced to a first-order formula, first-order deduction
can then be used for reasoning about the scenario descriptions. L£(ND) is
used throughout most of this thesis for readability; the translation to £(FL)
is presented in Appendix C. Therefore, some definitions are given preliminary
presentations in £(ND) but are actually encoded as macro expansions in the
translation to L(FL).

5.1.2 Organization of the Chapter

The rest of the chapter is organized as follows. In Section 5.2, TAL is intro-
duced with an example and a definition of the syntax of the surface language

78

L(ND). In Section 5.3, a number of interesting cases of concurrency are
identified and discussed. Section 5.4 outlines an approach to concurrency
and introduces the concept of influences, and Section 5.5 introduces the ex-
tensions to TAL that results in TAL-C. In Section 5.6, the means for solving
the problems identified in Section 5.3 are developed. Section 5.7 addresses
modularity in the context of TAL-C. Section 5.8 provides an overview of
previous work on concurrency, and Section 5.9 contains some conclusions.
Appendix C in the thesis presents a translation from the surface language
L(ND) to the first-order language £(FL).

5.2 Preliminaries

The surface language £(ND) for sequential scenario descriptions is presented
in this section, and extensions for concurrency are introduced in Section 5.5.

5.2.1 Scenario Descriptions in TAL

The following is a scenario description in £(ND). It describes a world with
two types of actions (LightFire and PourWater), and a number of agents (bill
and bob) and other objects (wood1). For notational convenience, all variables
appearing free are implicitly universally quantified.

Scenario Description 5.1
acsy [s,t|LightFire(a,z) — ([s]dry(z) A wood(z) — R((s, t|fire(z)))
acsy [s,t|PourWater(a,z) —
(R([s, t]~dry(z)) A ([s]fire(z) — R((s,t]—fire(z))))
obs; [0]dry(wood1) A —fire(wood1) A wood(wood1)
occ; [2, 5]LightFire(bill, wood1)
occy [6, 7]PourWater(bob, wood1)

The statements acs; and acsp are action laws, which describe the effects of
specific action types under different conditions. The first action law states
that if an agent a lights a fire using some wood z, and if the wood is dry, then
the result will be that the wood is on fire. The expression [s, t]LightFire(a, x)
denotes the action in question where [s,] is its time interval, and [s]dry(z) A
wood(z) denotes that the features dry(z) and wood(x) hold at time-point s.
The statement R((s,t|fire(z)) denotes that the feature fire(z) is reassigned to
become true somewhere in the interval (s,t], and in particular that it is true

79

at the last time-point ¢ of the interval.! The second action law states that if
somebody pours water on an object, then the object will no longer be dry,
and will cease being on fire.

The line labeled obs; is an observation statement. It states that the
wood (denoted woodl) is dry and not burning at the initial time-point 0.
Observations are assumed to be correct, and can refer to arbitrary time-
points or intervals; in the latter case, the notation [r,7']¢ is used (e.g.
[0, 6]dry(woodl)). The lines occ; and occy are occurrence statements. They
describe what actions actually occur in a scenario description. A fire is lit
by the agent bill during the temporal interval [2, 5], and then the agent bob
pours water on the wood during the temporal interval [6,7]. No actions be-
sides those explicitly appearing in the occurrence statements are assumed to
occur in the scenario. By using non-numerical temporal constants, such as
[s1, t1]LightFire(bill, woodl), the exact timing of an action can be left unspec-
ified.

It is possible for features to have domains other than boolean truth values.
In that case, the notation f=w is used to state that the feature f has the
value w, like in the statement [5]traffic-light=green. The same notation is
applicable to booleans (but optional), for example [s]dry(z)=T.

The following are two examples that could complement the description
of the LightFire action in (5.1). The line labeled dep; states that if an object
starts burning, then it also starts smoking, and deps states that if an object
starts smoking and the damper is closed (or the object is smoking and the
damper becomes closed) then the agent’s eyes become sore. The Cr operator
denotes that the expression inside was false at the previous time-point, if one
exists, and has just become true: Cr([tla) = (V#'[t = ' +1 — [t']|-a] A [t]e)?.
dep; Cr([t]fire(z)) — R([t]smoking(z)) (5.2)
dep2 Crp([t]smoking(z) A ~damper-open) — R([t]eyes-sore(a))

Reassignment (R) plays an important role in the solution to the frame prob-
lem [76] in TAL. Reassignment expresses change, and unless a feature is
involved in reassignment, it is assumed not to change.

!Previously, the notation [s, t]fire(z) := T has been used for reassignment [90]. However,
in order to be coherent with the notation for the additional operations on features that are
introduced in this chapter, R((s, t]fire(z)) has been preferred.

?Previously we have used integer time but TAL-C uses natural numbers.

80

The reassignment operator is defined as follows:3
R((r,7'le) = (X((,7']a) A[r']e)
R([r)a) = (X([r]a) A[7]a)

X is an operator that represents “occlusion” of the features in «, whereas
the right-most parts of the definitions denote that o holds at the end of
the interval. As usual, occlusion represents an exception from the general
principle of persistence, so features that are occluded are allowed to change
from one time-point to the next. By minimizing occlusion, the time-points
where a specific feature can change value are restricted to those time-points
where the feature in question explicitly appears in a reassignment. The fact
that features normally do not change is encoded in the nochange axiom below.
It states that unless the feature f is occluded at time-point ¢ + 1, it must
have the same value at ¢ 4+ 1 as at time-point ¢.

vt o[- X ([t + 1]f) — ([t]f=v = [t + 1]f=v)] (5.3)

To illustrate how one can reason in TAL, consider the scenario description
in (5.1). From 0 to 2, there is no reassignment and therefore no occlusion, so
one can with the aid of (5.3) infer

[0, 2]dry(wood1) A —fire(woodl) A wood(wood1).
From lines acs; and occy, it follows that
[2]dry(wood1) A wood(woodl) — R((2, 5lfire(wood1))

holds, which yields [5]fire(woodl). As the two other features are not occluded,
due to (5.3) one has that

[3, 5]dry(wood1) A wood(wood1)
holds, and then that
[6]dry(wood1) A fire(wood1) A wood(wood1)
holds. From acss and occo, it follows that

R((6, 7]~dry(wood1)) A R((6, 7]—-fire(wood1))

3These definitions are actually encoded in the translation process from £(ND) to £(FL)
in Appendix C. The £L(ND) versions in this section are preliminary.

81

holds, which yields

[7]—dry(wood1) A —fire(wood1l) A wood(woodl).
Finally, as nothing happens after 7,

[t]-dry(woodl) A —fire(wood1) A wood(wood1)
holds for all ¢ > 7.

5.2.2 The Language L£(ND)

This section defines the surface language L£(ND) for sequential scenarios.
Extensions for concurrency are introduced in Section 5.5, and the translation
to the first-order language L£(FL) is presented in Appendix C. We use the
overline as abbreviation of a sequence, when the contents of the sequence is
obvious. For example, f(Z,y) means f(x1,...,%Tn, Y1, ---» Ym)-

Definition 5.2.1 (vocabulary)

A TAL vocabulary v = (C,F,A,T,V,R,S,0) is a tuple where C is a set of
constant symbols, F' is a set of feature symbols, A is a set of action symbols,
T is a set of temporal function symbols, V is a set of value function symbols,
R is a set of relation symbols, S is a set of basic sorts and o is a function
that maps each member of these symbol sets to a sort declaration of the form
S1X...x8,0r 81 x... xS, = Spy1 where §; € S. O

Definition 5.2.2 (basic sorts)

There are a number of sorts for values V;, including the boolean sort B with
the constants {T,F}. There are a number of sorts for features F;, each one
associated with a value domain dom(F;) = V; for some j, a sort for actions A,
and a temporal sort 7. m|

The sort 7 is assumed to be interpreted, but can be axiomatized in first-
order logic as a subset of Presburger arithmetic [51] (natural numbers with
addition).

Definition 5.2.3 (terms)
A wvalue term w is a variable v or a constant v of sort V; for some i, or an
expression g(wi,... ,wp) where g : Vg, X ... X Vg, — V; is a value function
symbol and each w; is of sort Vy;. A temporal term 7 is a variable ¢ or a
constant 0,1,2,3,... or sy,t1,..., or an expression on the form 7, + 75, all of
sort 7. A fluent term ¢ is a feature variable f or an expression f(wq,... ,wy)
where f: Vi, X ... X Vg, — F; is a feature symbol and each wj is of sort V.
O

82

Definition 5.2.4 (temporal and value formulas)

If 7 and 7/ are temporal terms, then 7 = 7/, 7 < 7/ and 7 < 7/ are temporal
formulas. A wvalue formula is of the form w = w’ where w and ' are value
terms, or r(wi,... ,wn) where r: Vg, X... X Vy, is a relation symbol and each
wj is of sort V. |

Definition 5.2.5 (fluent formula)

An elementary fluent formula has the form f=w where f is a fluent term
of sort F; and w is a value term of sort dom(F;). A fluent formula is an
elementary fluent formula or a combination of fluent formulas formed with
the standard logical connectives and quantifiers. O

The elementary fluent formula f =T (f = F) can be abbreviated f (—f).

Definition 5.2.6 (timed formulas)

Let 7,7’ be temporal terms and « a fluent formula. Then [1,7']e, (,7]a
and [7]o are fized fluent formulas, Cr([7]c) is a becomes formula, R((T, T']at),
R([r,7"]a)and R([7]a) are reassignment formulas, and X ((1, 7']a), X ([r, 7'])
and X ([r]a) are occlude formulas. Fixed fluent formulas, becomes formulas,
reassignment formulas and occlude formulas are called timed formulas. O

Definition 5.2.7 (static formula)
A logical combination (including quantifiers) of temporal and value formulas,
fixed fluent formulas and/or becomes formulas is called a static formula. O

Definition 5.2.8 (change formula)

A change formula is a formula that has (or is rewritable to) the form Qv(a; V
... V ay,) where Qv is a sequence of quantifiers with variables, and each o;
is a conjunction of static, occlusion and reassignment formulas. The change
formula is called balanced iff the following two conditions hold. (a) Whenever
a feature f(w) appears inside a reassignment or occlusion formula in one of
the a; disjuncts, it must also appear in all other o;’s inside a reassignment
or occlusion formula with exactly the same temporal argument. (b) Any
existentially quantified variable v in the formula, whenever appearing inside
a reassignment or occlusion formula, only does so in the position f =v. O

Definition 5.2.9 (application formula)

An application formula is any of the following: (a) a balanced change formula;

(b) A — A, where A is a static formula and A is a balanced change formula;

or (c) a combination of elements of types (a) and (b) formed with A and V.
O

83

Definition 5.2.10 (occurrence formula)

An occurrence formula has the form [, 7']|®(w), where T and 7' are temporal
terms, @ is an action name of sort V; X ... x V, — A and the value terms in
w are of matching sorts. O

Definition 5.2.11 (scenario description components)

An action law (labeled acs) has the form Vi,t',z,y[[t,t']®(Z) — ¥(Z,7)]
where [t,t']®(T) is an occurrence formula and ¥(Z,7) is an application for-
mula. A dependency law (labeled dep) has the form V¢,Z[¥(Z)] where ¥(Z)
is an application formula. An observation (labeled obs) is a static formula.
An occurrence (labeled occ) is an occurrence formula [, 7']®(w) where 7, 7/
and w all are variable-free terms. |

5.3 Variations on the Concurrency Theme

In this section, we release the sequentiality assumption from the previous
section and identify a number of issues that a language for scenarios with
concurrency should be able to handle. We observe that TAL is sufficient for
handling some of these issues, namely action duration and concurrent execu-
tion of independent actions. When it comes to interacting actions, we observe
that TAL is not sufficient in a number of cases. This observation forms the
basis for the discussion on how to extend TAL to handle concurrency in the
subsequent sections. Notice that although we address mainly actions, the
discussion also applies to dependencies.

In many domains, it is a fact that actions take time. As long as actions
occur sequentially, the only way actions can interact is when the effects of
one action affect the context in which a later action is executed. Therefore, it
can make sense to abstract away action durations in the case of sequentiality,
as is done in for instance basic situation calculus [85]. However, in the case of
concurrency, the durations of actions are important for a number of reasons.
First, the way the durations of two or more actions overlap can determine
how they interact. Second, an action can overlap with two or more other
actions without these latter actions overlapping. Third, what happens in
the duration of an action can be important for how it interacts with other
concurrent actions. TAL has explicit time and actions in TAL have duration.

Concurrent actions can be independent, and can involve disjoint sets of
features. In this case, the combined effect of the concurrent actions is simply
the union of the individual effects, as in the example below.

84

Scenario Description 5.4

acsy [s,t|LightFire(a,z) — ([s]dry(z) A wood(z) — R((s, tlfire(z)))
acsy [s,t|PourWater(a,z) — R((s,t]~dry(z)) A R((s, t]—fire(z))
obs; [0]dry(wood1) A —fire(wood1) A wood(wood1)

obsy [0]dry(wood2) A —fire(wood2) A wood(wood2)

occy [2, 7]LightFire(bill, wood1)

occy (2, 7T]LightFire(bob, wood?2)

Here TAL yields the conclusion [7](fire(woodl) A fire(wood2)) as intended.
Concurrency of independent actions does not pose a problem for TAL [102],
nor should it for most other formalisms that do not rely on some kind of
explicit frame axioms. The difficult problems arise when concurrent actions
are not independent.

We address three different problems related to concurrent execution of
interdependent actions. The first problem is due to the fact that the condi-
tions under which an action is executed are not always stable, but may be
altered by the effects of other concurrent actions. Consider a slight modifi-
cation of (5.4), where bob pours water on the fire wood while bill is lighting
the fire. The intuitive conclusion is that the wood should not be on fire at 7.
We formalize this scenario in TAL by modifying some lines in the scenario
description (5.4) above.*

Scenario Description 5.5
occ; [2, 6]LightFire(bill, wood1)
occy [3,5]PourWater(bob, wood1)

The modified scenario description allows us to infer that the wood is actually
on fire: [7]fire(wood1). The reason is that the effect of the LightFire(bill, wood1)
action is determined only by the state at time-point 2 whereas the wood does
not become wet until time-point 5. Thus, only referring to the starting state
in preconditions of action laws is apparently not sufficient. One needs to take
into account that the conditions under which the action is executed may be
altered by the direct and indirect effects of other actions while the action is
going on.

The effects of one action on the conditions of another action need not
always be harmful. Often, the execution of one action can enable the suc-
cessful execution of another simultaneous action. For instance, turning the
latch of a door might enable opening the door. Sometimes, the enabling is
mutual, and two (or more) actions have synergistic effects.

“We only present the modified or added lines in the subsequent scenario descriptions.

85

A slight modification of the scenario description above illustrates the
second problem, which is due to the way effects of actions are represented
with reassignment. Assume that the two last lines in (5.4) are replaced with
the following:

Scenario Description 5.6
occy [3, 7]LightFire(bill, wood1)
occy [3,7]PourWater(bob, wood1)

That is to say, the lighting and the pouring actions have the same duration.
Now, from acs; and occy one can infer the effect [7]fire(woodl) and from acsg
and occy one can infer the effect [7]—fire(wood1). Notice that these two effects
are both asserted to be direct and indefeasible. Thus, the scenario becomes
inconsistent. The conclusion one would like to obtain is again that the wood
is not on fire.

A variation of effect interaction is when several actions affect the same
feature in a cumulative way, that is, when the total effect of the actions is
an aggregate of the individual effects. Reassignment represents changes to
absolute values (although these values can be calculated relative to other
values), and obviously, aggregation of absolute values is not very meaningful.
For instance, consider the following scenario description with a box of coins.

Scenario Description 5.7 (Coin scenario with cumulative effects)
acs; [s,t]TakeCoin(a,b) — [s]coins(b) = (n + 1) — R((s,t|coins(b) = n)
obs; [0]coins(box1) = 2

occy [2, 3] TakeCoin(bill, box1)

occy [2, 3] TakeCoin(bob, box1)

Both occ; and occy produce the effect R((2,3]coins(box1)=1). Notice that
this effect states that coins(box1l) has the absolute value 1, and not that
coins(box1) is decremented by 1. Therefore, TAL yields [3]coins(box1)=1,
while the intuitive conclusion is that there are 0 coins in the box at time-
point 3.

The third problem is that the conditions for two concurrent actions might
interfere. In particular, actions might compete for such things as space,
objects and energy. For instance, if lighting a fire requires the use of two
hands, then a two-handed agent is not able to light two fires concurrently.
One way of addressing this type of conflict is in terms of limited resources.

86

5.4 From Action Laws to Laws of Interaction

Based on the observations in the previous section, we argue that the way
action laws are formulated in TAL (and many other formalisms) is not ap-
propriate in the case of concurrency. In this section, two potential solutions
are discussed. The first solution is to deal with interactions on the level
of actions by allowing more expressive action laws. The second solution is
to deal with interactions on the level of effects and features, by expressing
effects in a less direct and absolute manner than direct reassignment of a
feature. One can also imagine numerous combined approaches, for instance
where conflicts can be detected on the level of features and then resolved on
the level of actions, but that will not be discussed here.

5.4.1 Interaction on the Level of Actions

As the description of the effects of actions is usually centered around actions
in most formalisms, it might seem like an obvious approach to also deal
with concurrent interactions on the level of actions. This approach can be
realized with action laws that refer to combinations of action occurrences,
as in the work of Baral and Gelfond [9], Li and Pereira [59], Bornscheuer
and Thielscher [13], and Reiter [86]. The following action laws, encoded in a
hypothetical extended version of TAL, illustrate how one can overcome the
problems in (5.5) and (5.6). Observe how acs; cancels the effect of LightFire
in the presence of PourWater.

Scenario Description 5.8
acsy [s, t|LightFire(a,z) A
=3a’, s, t'[(s< s <tVs<t <t)A
[s',t'|PourWater(a’, z)] — ([s]dry(z) Awood(z) — R((s,t]—fire(z)))
acsy [s,t|PourWater(a,z) — R((s,t]~dry(z)) A R((s,t]—fire(z))

Unfortunately, this solution has a number of weaknesses. It is no longer pos-
sible to describe actions in isolation, which weakens the case for modularity
in action descriptions. All potentially interacting action combinations have
to be identified and explicitly put into action laws. If actions have duration,
the number of such combinations is not just determined by the number of
actions, but also by the number of ways two or more actions can overlap in
time.

Other factors also contribute to additional complexity. If an action has
several effects, then one might not want an interference regarding just one
feature to neutralize all the effects of the action. Furthermore, if the action

87

interfered with starts before the interfering action, then the parts of the
effects of the former action that are defined to occur before the starting time
of the latter action should not be prevented, as this would imply causality
working backwards in time.

An additional problem is that interactions are not confined to occur ex-
clusively between the direct effects of actions, but might also involve indirect
effects. Taking into consideration all potential interactions between com-
binations of actions and dependency laws would simply not be feasible for
most nontrivial domains. Further, this would multiply all the previously
mentioned complications.

5.4.2 Interaction on the Level of Features

As an alternative to an action-centered approach, we propose an approach
based on the assumption that interactions resulting from concurrency are
best modeled on the level of features, and not on the level of actions. The
central ideas are as follows.

1. Actions provide an interface between the agent and the environment.

2. An action law does not explicitly encode the immediate effects that the
action has on the state of the world. Instead, action laws encode what
influences the action brings upon the environment.

For instance, instead of stating R((s, t/fire(x)) as an effect of the action
[s,t]LightFire(a,), one states I((s,t|fire*(z, T)) where fire*(z, T) repre-
sents an influence to make the feature fire(xz) true (the I operator is
similar to R, but denotes that the expression inside is true throughout
the interval). An influence represents an inclination for a feature to
take on a certain value or to change in a certain direction. Thus, it
is more correct to consider action occurrence statements as represent-
ing action attempts that might fail to have their expected effects due
to external interference rather than representing successfully executed
actions.

3. Similarly, dependencies are modified to result in influences rather than
actual changes.

4. The actual effects that these influences (and indirectly the actions
than caused them) have on the environment are then specified in a
special type of dependency laws called influence laws. For instance,
[t]fire*(z, T) — R([t]fire(z)). Generally, each feature is associated with

88

a number of different influences. The behavior of a feature can be
specified by a number of influence laws that describe how this feature
is affected by different individual influences and combinations of in-
fluences. Thus, descriptions of features and how they change due to
influences play a central role in TAL-C.

This approach implies that the emphasis of the world description has shifted
from actions to features, and from action laws to influence laws. Further, it
can be realized with a minimum of modifications to the TAL language, and
in particular the first-order nature of TAL can be retained (see Appendix C).
Influence laws have the same form as dependency laws, which are already an
integral part of the language, and influences can actually be represented as
features. The difference between influences and other features is purely con-
ceptual; no new syntactic or semantic constructions particular to influences
are required (although some new constructs applicable to features in general
will be introduced). The term “actual features” will be reserved for features
that are not influences.

Notice that the use of influences as intermediaries of change serves two
purposes. First, it makes it possible to avoid logical contradiction when two
or more actions and dependencies affect the same feature. For instance, the
combination [5lfire*(woodl,T) and [5]fire*(woodl,F) is logically consistent,
but the combination [5]fire(woodl) and [5|—fire(woodl) is not. But there
is more to concurrent interactions than preserving consistency. The actual
outcomes of interactions need to be represented somehow, and a rich phe-
nomenon like concurrent interactions requires a flexible representation that
goes beyond the most stereotypical cases. This is supported in TAL-C by
the fact that influences are first-class objects, which can be referred to in
influence laws.

The use of influences in TAL-C has some resemblance to the way physical
systems are often modeled. For instance, in mechanics the position/speed of
a physical body is influenced by forces, and in hydraulics the flow between
tanks are influenced by pressures. Notice that in physics, influences often
behave cumulatively. For instance, several forces can influence an object in
a mechanical system at the same time, and these forces can be aggregated
using vector addition. The term “influences” is explicitly used in qualita-
tive reasoning about physical systems by (among others) Forbus [32]. For
instance, in Forbus’s qualitative process theory, the expressions I+(amount-
of(dest),A[flow-rate]) and I—(amount-of(source),A[flow-rate]) denote that the
flow rate between two interconnected tanks influences the amount of liquid in
the tanks to increase respectively decrease. If a tank t has several pipes con-

89

nected, then amount-of(t) will be subject to several influences. The flow rate
is in turn proportional to the difference of pressure in the two tanks (flow-rate
x@Q+ Alpressure(src)]—A[pressure(dest)]). Yet, the use of influences in TAL-C
is not identical to the use in physical modeling. Although influences surely
can be used in TAL-C in ways compatible with quantitative and qualitative
physical modeling, they need not always faithfully represent actual physical
entities or behave cumulatively.

5.5 Extending TAL to TAL-C

This section presents the differences between TAL and TAL-C. These include
a new class of features, a new effect operator I and two new classes of scenario
description statements.

5.5.1 Persistent and Durational Features

In reasoning about action and change, features are typically considered to
be persistent. That means that they only change under special conditions,
such as during the execution of an action. In order to facilitate the use
of influences, TAL-C is in addition equipped with a second type of features
called durational features. These normally have a default value, and they can
only have a non-default value under certain circumstances, such as during the
execution of an action.’ The predicates Per(f) and Dur(f,v) represent that
a feature is persistent respectively durational with default value v. These
predicates can be augmented with a temporal argument to support features
with variable behavior, such as variable default value. The default behavior
of persistent features is defined as follows:®

vt, f,v[Per(f) = (= X([t + 1]f) = ([t]f=v = [t + 1]f=0))] (5.9)
The default behavior of durational features is defined as follows:
Vi, f,v [Dur(f,v) = (=X ([t]f) — [t]f=v)]- (5.10)

Notice that the distinction between persistent and durational features is in
principle orthogonal to the distinction between actual features and influences,

5The representation of features that are only momentarily true has previously been
addressed by for instance Lifschitz and Rabinov [66] and Thielscher [97].

Recall that the occlusion operator X denotes that a feature is not subject to its default
assumptions at a given time-point. Furthermore, the following definitions are preliminary;
the final versions are presented in Appendix C.

90

although in practice actual features are mostly persistent and influences are
mostly durational. Naturally, one need not be confined to the two types of
features presented here, but they suffice for the purposes of this thesis. We
should also mention that the distinction between persistent and durational
features has proven useful for more than concurrency. In particular, it has
proven fruitful for addressing the qualification problem [52].

5.5.2 Syntactical Additions

In addition to the reassignment operator R, we provide a new operator I
which is typically (but not necessarily always) used for durational features.
It is used to state that something holds over an interval.

I((r,7a) £ X((1,7"]a) AVt(T <t < 7 = [t]a) (5.11)

This specifies that the features in o are exempt from their default behaviors
and that the formula « is true at all time-points from 7 + 1 to 7’.

The definitions of a change formula and a balanced change formula are
extended to include durational formulas of the forms I((7,7']a), I([r,7']a)
and I([7']e), and with the same restrictions as for R and X formulas. Two
new kinds of scenario statements are introduced: Domain formulas (dom)
that can contain Per and Dur elements and value formulas, and influence
laws (inf), which have the same syntax as dependency laws.

5.5.3 An Example

In the following scenario description, there is a durational feature fire* rep-
resenting influences on the actual feature fire. Henceforth, we will follow
the convention of representing the influences on an actual feature f(w) with
f*(@,v), where v is a value in the domain of f.

Scenario Description 5.12

dom; Per(fire(x)) A Dur(fire*(z,v),F)

acsy [s,t|LightFire(a,z) — I((s,t]fire*(z, T))

infy [s, s+ 3|fire*(z, T) A —fire*(z,F) — R([s + 3]fire(z))
infy [s]fire*(z, F) — R([s]-fire(x))

occy [2,6]LightFire(Bob,woodl)

Notice how acs; does not immediately cause fire to be true. Instead, it
produces an influence to make fire true, using the I operator. How influences
on fire then affect fire is described in inf; and infy. It takes 4 consecutive time-
points of positive influence to make fire true, while it takes just 1 time-point of

91

negative influence to make it false. The influence to make fire false always has
precedence over the influence to make fire true. As a matter of fact, inf; and
infy are general enough to handle any conflict that can occur between a group
of actions/dependencies that try to make fire both true and false at the same
time. Thus, one can in principle add arbitrary action laws and dependency
laws influencing fire without any worries that they lead to inconsistency.
Of course, it might still be desirable to refine or modify the way conflicts
between influences are treated as a domain is elaborated and more actions and
dependencies are introduced. In the examples to follow, we will continue to
use influences in a manner that permits easy extension of scenarios, although
this practice leads to somewhat larger scenario descriptions. This issue is
further elaborated in Section 5.7.

5.6 Variations on the Concurrency Theme Revisited

In Section 5.3, a number of concurrent interactions that our original TAL
formalism could not handle were identified. In this section, we show how
these interactions can be represented in TAL-C. We should emphasize that
although we present specific examples, the techniques employed in this section
are applicable to frequently reoccurring classes of interactions.

5.6.1 Interactions from Effects to Conditions

Scenario description (5.5) was an example of the effects of one action in-
terfering with the execution of another concurrent action. While Bill was
lighting a fire, Bob poured water on the wood. This type of interference can
be handled by including a suitable condition in the influence law that makes
the fire feature true.

The following two laws state that the fact that the wood is not dry pro-

duces an influence fire*(z,F) to extinguish the fire (if there is one), and that
in order to affect the feature fire(z) the influence fire*(z, T) for starting the
fire has to be applied without interference for an extended period of time.
The non-interference condition in this case is that fire*(z, F) stays false.
dep; [s]-dry(z) — I([s]fire*(z,F)) (5.13)
infy [s,s + 3]fire*(z, T) A —fire*(z, F) A wood(z) — R([s + 3]fire(z))
Below is the complete modified version of scenario (5.5). The action laws
acs; and acsy and dependency law dep; produce influences, and the effects
that these influences have, alone and in combination, are specified in infy,
infa, infg and infy.

92

Scenario Description 5.14

dom; Per(fire(z)) A Dur(fire*(z,v),F)

domg Per(dry(z)) A Dur(dry*(z,v),F)

doms Per(wood(z))

acsy [s,t|LightFire(a,z) — I((s,t]fire*(z, T))
acsy [s,t]PourWater(a,x) — I((s,t]dry*(z,F))
depr [s]-dry(z) — I([s]fire*(z, F))
infy [s, s+ 3|fire*(z, T) A —fire*(z,F) A wood(z) — R([s + 3]fire(z))
infy [s]fire*(z,F) — R([s]ﬂflre(x))

inf3 [s,s 4+ 3]dry*(z, T) A ~dry*(z,F) — R([s + 3]dry(z))

infy [s]dry* (2, F) — R([s]dry(a))

obs; [0]—fire(woodl) A dry(woodl) A wood(wood1)

occ; [2, 6]LightFire(bill, wood1)

occy [3,5]PourWater(bob, wood1)

The fact that the wood is not on fire at 7 can be inferred as follows (we provide
a first-order proof in Appendix C). Due to occe and acsy, the condition
(3,5]dry*(wood1,F) holds. This condition and infs yield [4,5]~dry(wood1),
and as dry is persistent, [6]—dry(woodl) and [7]—dry(woodl). The rule dep;
then yields [7]fire*(woodl, F). Finally, infy gives [7]—fire(woodl). Notice that
although [3, 6]fire*(wood1, T) holds, the condition [s, s + 3](fire*(wood1, T) A
—fire*(wood1, F) A wood(wood1)) does not hold for any s < 3, and this is the
only condition (in inf;) under which fire(woodl) can become true.

The case when an effect of one action enables the effect of another action
can also be handled with conditional influence laws. For instance, the fol-
lowing influence law states that opening a door requires initially keeping the
latch open (the example is originally due to Allen [4]):
infy [t]latch-open A [t,t + 5lopen*(T) — R([t + 5]open) (5.15)
A variation of enablement is when the concurrent execution of two or more
actions may mutually enable a common effect that none of them could have
in isolation. This phenomenon is referred to as synergistic effects. It can
also be the case that the concurrent execution of several actions may pre-
vent effects that each of the actions would have in isolation. In TAL-C, this
can be achieved with the use of dependency laws. One example which con-
tains both synergistic enablement and prevention is the scenario with a soup
bowl standing on a table (the version presented here is an elaboration of the
original scenario, which is due to Gelfond, Lifschitz and Rabinov [36]). The
table has four sides: | for left, r for right, f for front and b for back. The
variables a, ¢ and r represent the agent, the table and a side of the table,
respectively. The table can be lifted at any side (acs;). The actual feature

93

lift-s(z, r) represents that the table z is lifted on side r. If the table is lifted
at two opposite sides, then it is lifted from the ground (dep;), but if is not
lifted at opposite sides, then it is tilted (depz). If there is a soup bowl on
the table and the table is tilted, then the soup is spilled (deps). The relation
opp, defined in acc, specifies when two sides are opposite.

Scenario Description 5.16
dom; Dur(lift-s(z,7),F) A Dur(lift-s*(z, r,v), F)
domg Dur(tilted(z), F) A Dur(tilted*(z,v), F
domg Dur(lifted(x), F) A Dur(lifted*(z,v), F)
domy Per(spilled(x)) A Dur(spilled*(z,v))
domjs Per(soup(z)) A Per(table(z)) A Per(on(a: Y)
acc opp(r,r') = [(r,r") =(l,n) V(r,r') =(r,) V (r,r") =(f,b) V (r,r") = (b, f)]
acsy [s,t|Lift(a,z,r) — I((s,t]lift-s*(z,r, T))
dep; [t](table(z) A 3ry, rolift-s(z,71) A lift-s(z, 72) A opp(r1,72)]) —
I([t]lifted*(z, T))

[t](table(z) A lift-s(z,71) A —3re, r3flift-s(z, r2) A lift-s(z,r3) A
opp(rz,73)]) — I([t]tilted"(z, T))
t]tilted(y) A on(z,y) A soup(z) — R([t + 1]spilled*(z, T))
t)lift-s*(z,r, T) — I([t]lift-s(z, 7))
Jtilted*(z, T) — I([t]tilted(x
]
]

deps

deps
inf1

[

[
inf2 [t))
infg [t]spilled*(z, T) — I([t]spilled(z))
inf, [t]lifted*(z, T) — I([t]lifted(z))
obs; [0]table(tl) A soup(sl) A on(sl,tl)
occy (3, 6]Lift(bill,t1,)

occe [3,6]Lift(bob,t1,r)

In this scenario, one can infer from the statements occy, occe, inf; and
infy that lift-s(t1,1) A lift-s(tl,r) holds from 4 to 6. Thus, the condition
Iry, rolift-s(z, r1) A lift-s(z,r2) A opp(ri,r2)] is satisfied in this time inter-
val, enabling the effect lifted(tl) from dep; and infs, while preventing the
effect tilted(t1) according to deps and infs.

The table lifting scenario encodes several other potential interactions be-
tween lifting actions. If the two lifting actions are not synchronized, the
table is tilted and the soup is spilled. For instance, if occy is altered to
[4, 7|Lift(bob,t1,r), then one can infer both [4](table(tl) A lift-s(t1, I) and
—3rg, r3|lift-s(t1, re) Alift-s(t1, r3) Aopp(rz,73)]). According to depz and infa,
this produces the effect [4]tilted(t1), and the soup is spilled. Also notice that if
the table is lifted from three sides, (for instance, add occs [4, 7]Lift(ben,t1,f) to
the scenario description) then the condition Jry, ro[lift-s(z, 1) A lift-s(z,r2) A

94

opp(ri,72)] is still satisfied, which implies that the table is lifted and not
tilted. However, if the only occurrences are occ; and occs, then that condi-
tion does not hold and the table is tilted and the soup is spilled.

Notice that it is possible to write influence laws that determine directly
from the lift-s* influence whether the table is lifted or the soup is spilled.
Anyhow, we have preferred to explicitly represent the causal chain from lifting
to spilling and tilting, as this makes it easier to extend the scenario to include
actions that for instance counter-act the lifting by pressing down a side of
the table or that stabilize the bowl.

5.6.2 Interactions Between Effects

The previous subsection addressed interactions between effects and condi-
tions of actions and dependencies. As observed in Section 5.3, another prob-
lem is when two or more actions or dependencies are affecting the same
feature. Such combinations of effects can be conflicting or cumulative.

Conflicting effects

Returning to the fire lighting scenario description (5.14), it can be observed
that the use of influence laws in that scenario also solves the problem of
conflicting effects that was observed in (5.6) in Section 5.3. There were two
influence laws in (5.14) that determined the result of conflicting influences
on the fire feature:

infy [s, s+ 3|fire*(z, T) A —fire*(z, F) A wood(z) — R([s + 3]fire(z)) (5.17)
infy [s]fire*(z,F) — R([s]-fire(z))

Now assume that the occurrences in (5.14) are modified as follows.

occy [2,6]LightFire(bill, wood1) (5.18)
occy [4,6]PourWater(bob, wood1)

In this case, one can infer (2, 6]fire*(wood1, T), which normally has the effect
[6]fire(wood1) (inf;). One can also infer [6]—dry(wood1) and [6]fire* (wood1, F),
which normally results in [6]—fire(wood1l) (infz). The conflict between these
two influences is resolved in inf; and infy, to the advantage of the latter.
The fire lighting scenario illustrates a conflict involving just two opposite
influences. However, there might also be conflicts involving arbitrarily large
numbers of influences. For instance, consider the following scenario where
several agents try to pick up the same object. The feature pos(z) represents
the position of an object z, and its value domain of positions includes both
locations (e.g. floor) and agents (e.g. bill, bob). An object can only have

95

one position, so when more than one agent is trying to take the object, then
there is a conflict. This conflict is resolved in inf; in the scenario description.

Scenario Description 5.19

dom; Dur(pos*(z,a),F) A Per{pos(x))

acsy [s,t|Pickup(a,z) — I((s,t]pos*(z,a))

infy [t]pos(z)=floor A Jp[[t + 1]pos*(z,p)] —
Ip[[t + 1]pos™(z,p) A R([t + 1]pos(z)=p)]

obs; [0]pos(wallet) = floor

occy [2, 3]Pickup(bill,wallet)

occy [2,3]Pickup(bob,wallet)

The line labeled inf; states that “if the object = is on the floor and at least
one agent is trying to take x then one of the agents who are trying to take z
will actually have z”. The result in this case is nondeterministic, and this is
perhaps the best way to treat conflicts when one lacks detailed information
of what the actual result would be. Notice that the consequent of inf; only
changes the value of pos(z), and not the value of the influence pos*(z, p). The
pos*(z,p) component of the consequent is in effect a filter on the values p
that pos(z) can be reassigned to.
It is equally possible to state that no effect occurs in the case of conflict:
infy ([t]pos(z)=floor A [t + 1]pos*(z,p) A =3p'[[t + 1]pos*(z,p') Ap £ p']) —
R([t + 1]pos(z)=p) (5.20)
Finally, some values might be preferred to other values. For instance, we can
enhance the picking-up scenario by giving preference to stronger agents, as
follows. The relation stronger encodes a partial ordering on agents based on
their relative strength.

inf; [t]pos(z)=floor A Jp[[t + 1]pos*(z,p)] —
Ip[[t + 1]pos*(z,p) A =3p'[[t + 1]pos*(z,p’) A stronger(p', p) A
R([t + 1]pos(z)=p) | (5.21)

Cumulative effects

Another common phenomenon besides conflicting influences is when influ-
ences signify some relative change, and therefore multiple influences can be
combined in a cumulative way.

We have already mentioned that in mechanics, multiple forces on an ob-
ject can be combined using vector addition, and the vectorial sum determines
changes in the objects speed and position. Here, we present another example,
which involves a box from which agents can take coins. In order to specify

96

cumulative effects, we need to introduce a minimal portion of set theory, in-
cluding set membership (in), the empty set (empty) and subtraction of one
element from a set (remove). A set theory that is sufficient for our purpose
is obtained using the following two axioms. The sets contain only features of
a specific feature sort, so the axioms have to be restated for different sorts.
The variable o represents sets.

Vo, f, f'[in(f, remove(f',0)) = (in(f,0) A f #)] (5.22)

Volempty(a) =V f[—in(f, o)]] (5.23)

Furthermore, we provide the following definition of the sum of feature values
over a set of features.

Vt, o, fym,nlin(f, o) A sum(t, remove(o, f)) = m A [t]f =n — (5.24)
sum(t,o) = (m + n)]
Vt, o[empty(c) — sum(t,o) = 0]

Now we can introduce an influence coins™ (a, ¢) with a value domain of natural
numbers and default value 0 to represent that an agent a is taking a coin
from a container c¢. In addition, we define the special function Coins™(t,c)
which for a given c represents the set of all coins™ (a, ¢) with a nonzero value
at time-point ¢.

in(coins™(a, '), Coins™(¢,¢)) = (¢ = ¢’ A [t]-coins™ (a,c) = 0) (5.25)

This definition establishes the existence of a set which contains all the non-
zero features of the relevant type. The definition of remove above then estab-
lishes the existence of all subsets of this set, which is sufficient for determining
the sum of the values of all features in the set.

The scenario description (5.7) is modified as follows.

Scenario Description 5.26

dom; Dur(coins™ (a,c),0) A Per(coins(c))

acsy [s,t|TakeCoin(a,c) — I([t]coins—(a,c) =1)

inf; [t]coins(c)=(m + n) A sum(t+1,Coins™ (t + 1,c)) =n) —
R([t + 1]coins(c)=m

obs; [0]coins(box1)=2

occ; [2, 3] TakeCoin (bill, box1)

occe [2, 3] TakeCoin(bob, box1)

97

The cumulative behavior of the coins feature is encoded in the influence
statement inf;, which adds together the values of all non-zero coins™ (a, ¢) for
a specific ¢ and adds this sum to coins(c). From this scenario description, one
can infer that Coins™ (3,box1) = {coins™ (bill,box1), coins ™ (bob,box1)}. As
[3]coins™ (bill,box1) = 1 and [3]coins™ (bob,box1) = 1 we get the result that
sum(Coins™ (3, box1)) = 2 and [3]coins(box1)=0. Obviously, the scenario can
be enhanced. For example, more than one coin can be taken by the same
agent, coins can be added to the box, and so on.

5.6.3 Interacting Conditions

Finally, there is the problem that the conditions of two or more actions may
interact. A special case of this is when an agent has a resource that can only
be used for one action at a time. For instance, people generally have only
two hands, and thus cannot simultaneously perform two actions that each
requires the use of both hands, like lighting a fire. A strategy for representing
resources is to introduce a feature representing what action the resource is
actually used for. In the following scenario, the feature uses-hands(z) fulfills
this function. There is a value sort of action tokens that duplicates the
action sort (for example the value light-fire(a,z) corresponds to the action
LightFire(a, x)). The feature uses-hands(z) has action tokens as domain, and
the letter e is used for action token variables. The action token noop stands
for “no operation”.

The use of a resource for an action is divided into two steps. First,
the action claims the resource. The statement labeled acs; in the scenario
description below states that the action of lighting a fire needs the "hands”
resource. This need is represented by the influence uses-hands*(a, €). Second,
the resource is actually used and the action produces some effect. The row
labeled dep; below states that if the hands are used for lighting a fire, then
this will produce a fire influence.

Scenario Description 5.27

dom; Per(fire(x)) A Dur(fire*(z,v),F)

domy Per(wood(z))

domg Dur(uses-hands(a), noop) A Dur(uses-hands*(a,e),F)

acsy [s,t]LightFire(a,z) — I((s,t]uses-hands*(a, light-fire(a,z)))

depi [tluses-hands(a) = light-fire(a,) — I([t|fire*(z, T))

infy Je[[t|uses-hands*(a, e) | — Je| [t]uses-hands*(a, e) A I([t]uses-hands(a) =
e)]

infa [s,s + 3|fire*(z, T) A —fire*(z, F) A wood(z) — R([s + 3]fire(x))

inf3 [s]fire*(z, F) — R([s]—fire(z))

98

obs; [0]dry(wood1) A —fire(wood1) A wood(wood1)
occt [2, 6]LightFire(bill, wood1)
occy (2, 6]LightFire(bill, wood2)

The distribution of resources is encoded in inf;, which states that if at least
one action e needs the “hands” resource then some action that needs that
resource will have it (compare to inf; in (5.19)). If two or more actions need
a resource, then only one of them will have it, and the resource can randomly
alter between competing actions. In this example, the value of uses-hands(a)
alternates randomly between light-fire(bill, wood1) and light-fire(bill, wood2)
from 3 to 6, with the result that both actions fail or only one of them succeeds.

More sophisticated forms of resources than the binary resource above
are also possible. For instance, one can utilize the techniques presented in
connection with cumulative effects to deal with quantitative and sharable
resources, and resources can be renewable or consumable.

5.6.4 Special vs. General Influences

In all examples so far, each feature type’ has its own set of influences and
influence laws. While offering a high level of freedom in handling concurrent
interactions, this approach also requires declaring influences for each feature
type and writing down a large amount of influence laws. Of course, if one de-
sires a flexible and non-stereotypical treatment of interactions, this is hard to
avoid. But TAL-C is also capable of a more uniform and compact treatment
of interactions. Instead of declaring separate influences of each actual feature
type (e.g. dry* for dry), one can group together features with the same value
domain and the same behavior and let them be of the same feature sort F;.
Next, one introduces a function * : F; x dom(F;) — F; that for a given fea-
ture and value represents an influence on the feature to change according to
the value (e.g. *(dry(woodl),F)). Thereby, it is possible to specify influence
laws that apply to all feature types that are of the sort F;. The following
is an example of a general influence law where dom(F;) is the boolean value
sort. The variable f (implicitly universally quantified) is of sort F;. The
influence law handles conflicts by making the outcome nondeterministic.
dom Dur(x(f,v),F) (5.28)
inf ([t]«(f, T) A —x(f,F) = R([t])) A
(+(f,T) A *(f, F) > R({~F)) A
([t]=(f, T) A x(f, F) = X([t]f))

"We consider all features with the same feature symbol, for example fire, to define a
type. Several feature types with the same value domain might be of the same sort.

99

This approach yields a number of influence laws that is proportional to the
number of feature sorts, instead of proportional to the number of feature
types. It can be particularly useful for scenarios with a large number of
feature types that exhibit relatively uniform behaviors. In addition, the fact
that influence laws are more general and apply to sorts rather than to specific
feature types implies a higher degree of reusability.

5.7 Working with TAL-C Scenarios

When encoding a scenario in TAL-C, a bottom-up approach involving the
four following levels can be used.

1. Identify relevant features of the world and their value domains.

2. For each feature, determine its normal (non-influenced) behavior, its
potential influences and how these affect the feature alone and in com-
bination.

3. Identify actions and dependencies in the world and how these influence
features.

4. Determine what holds and occurs in the world, and what individuals
there are.

Often, it is not possible to work strictly sequentially from level 1 to level 4.
The elaboration of a complex scenario is an iterative and incremental pro-
cess, where the four levels above are intertwined and decisions made earlier
need to be reconsidered. Therefore, to estimate how demanding this elabora-
tion process would be in TAL-C, it is relevant to analyze what implications
additions or modifications at different levels would have on an existing sce-
nario description as a whole. Although there are some initial studies on the
subject [75], there exist no systematic methods for performing this kind of
estimate. Therefore, the following observations are based mainly on practical
experience and common sense.

To provide a background for the discussion to follow, we need to make
some additional assumptions about the form of a scenario description. We
should emphasize that these assumptions represent good conventions that
have been followed in this chapter, but they are not formally part of the
TAL-C definition. An action law for an action A has the following form,
where AA(®) contains only actual features and AA(®) contains only influences:

acs [t,t]AZ) — (AA® 5 AA@) (5.29)

100

A dependency law has the following form, with the corresponding restrictions
on Ax(Z) and Ag(T):

dep Ax(T) — Ax(Z) (5.30)
A domain statement for a specific feature has one of the two following forms:
dom Per(f(z)) (5.31)

dom Dur(f(Z),v)

Finally, each feature type f has a number of influence laws of the form

inf, Al®@) - Al®T) (5.32)
where the consequent Af(Z) contains references to no other actual feature but
f(z) and this feature occurs only inside reassignment, interval and occlude
formulas. Af(Z) may also contain influences that belong to f(Z), but then
only inside static subformulas. The antecedent Ai(E) contains only influences
that belong to f(Z) (for example f'(®*?)) and actual features. Each group of
influence laws represents a module that describes the behavior of a specific
feature f together with the dom statement for that feature, and any conflicts
or other interactions are handled locally within that module. Finally, we
assume that each influence only belongs to one actual feature.

Given the assumptions above, we can draw the following conclusions
about the impact an addition or modification will have on a scenario de-
scription.

Adding a new feature (level 1 according to the enumeration above) does
not in itself affect anything else. It is obviously followed by adding new
influences and influence laws (level 2) and sometimes also adding or modifying
actions and dependencies (level 3). These operations are discussed below.

Adding or altering the default behavior of a feature (level 2) is local to
the domain statement specifying the default behavior in question. Adding a
new type of influence for a feature implies altering the influence laws for the
feature in question, but does not affect the influence laws for other features. If
care is taken in the choice of influences, additions of influences should seldom
occur, and the types of influences for a given feature should remain more or
less constant. As a parallel, the physical property of an object’s speed can
be influenced by a large amount of imaginable actions and conditions. Yet,
one single type of influence (“force”) suffices to determine changes in speed.
Further, altering the interactions between influences for a particular feature
is local to the influence laws (that is, the module) of that feature, but does
not affect the default behavior or any action or dependency laws.

Modifying or adding an action law or dependency law (level 3) does not
affect any other existing action or dependency laws as any interactions are

101

delegated to the influence laws, nor does it affect existing influence laws.
The exception is of course when the new action or dependency law requires
the introduction of a new type of influence for a particular feature, in which
case the influence laws of that feature have to be extended. Finally, adding
action occurrences and observations (level 4) does not affect anything at the
preceding levels.

In summary, additions or modifications are in general local operations
which preserve modularity in TAL-C. Different features can be described
in isolation, and given a set of features and associated influences, different
actions and dependencies can be described in isolation. This property is
mainly due to two features of the logic, namely that interactions between
actions and dependencies are channeled through influences, and further that
the respective sets of influences of different features are disjoint, and therefore
the behaviors of features can be specified in normal behavior and influence
laws that are independent of those of other features. It is encouraging to
achieve this level of modularity, considering the fact that we are addressing
complicated causal dependencies and concurrent interactions.

5.8 Other Work on Concurrency

Hendrix Hendrix’s work [45] is an early attempt to represent continu-
ous and simultaneous processes, using a STRIPS-like [30] language. Unlike
STRIPS, Hendrix’s formalism involves notions of explicit time, duration, and
simultaneous and extraneous activity. A process has preconditions and con-
tinuation conditions that determine when the process can be initiated and
for how long it goes on. Hendrix distinguishes between instantaneous effects
at the initiation and termination moments of the process and gradual ef-
fects that occur while the process is going on. However, there are no means
for determining what happens when more than one process affects the same
feature (”parameter” in Hendrix’s terminology). More sophisticated repre-
sentations of physical processes were later developed in qualitative reasoning,
where Forbus [32] has already been mentioned.

Georgeff In the work of Georgeff [37] there are world states that are linked
together in histories. In a world state, features can hold and one or more
events (actions) can occur. Specific features can explicitly be declared to
be independent of specific events, and a persistence axiom, similar to the
nochange axiom in TAL, states that if a feature p is independent of all events
in a state, then it will not have changed in the next state. Georgeff then in-

102

troduces the concept of correctness conditions. If the correctness condition p
of an event e is independent of another event €', then ¢’ will not interfere
with (prevent) e. Thus, Georgeff’s formalism can define when two events
(actions) can and cannot occur simultaneously, and what the result is when
two independent events are executed simultaneously. A limitation is the lack
of an explicit notion of duration, so events cannot overlap partially. Georgeff
also considers processes, which are essentially related groups of events with
limited interaction with events outside the process.

Lansky Structural relations between events is the central theme in work
by Lansky [56]. In GEM, there is an explicit representation of event location;
events can belong to elements, which are loci of forced sequential activity, and
which in turn can belong to groups. In essence, groups represent boundaries
of causal access. Events inside a group can only interact with external events
via specific ports (causal holes). Thereby, the possible concurrent interactions
between events can be restricted.

Pelavin Pelavin’s work on a logic for planning with simultaneous actions
with duration [82] is based on Allen’s interval temporal logic [4], in which
properties and actions are associated with intervals of time. Pelavin’s formal-
ism has quite a complex non-standard semantics, where the central entities
are world histories. A closeness function defines how the addition of actions
to a world history results in new world histories. On the syntactic level, there
are modal operators on world histories: IFTRIED(pi, P) denoting that the
condition P would hold if the actions in pi are executed, and INEV(i, P)
stating that the condition P inevitably holds at time i (is independent of
anything happening after 7). These operators can be used for quite sophisti-
cated descriptions of actions, including interference where one action prevents
another and cumulative effects. However, what does not change due to an
action has to be explicitly encoded, and there is no concept of dependency
laws.

Thielscher Thielscher [97] presents a theory of dynamic systems, where
state transitions can occur naturally in addition to being caused by actions.
Fluents are divided into two sets. There are persistent fluents, which are
subject to inertia and only change when directly influenced, and there are
momentary fluents that become false if nothing affects them. A subset of
the momentary fluents are the action fluents. Causal laws are specified in
a STRIPS-style manner, with a precondition, a set of persistent fluents to

103

become true, a set of persistent fluents to become false and a set of mo-
mentary fluents to become true in the following state. Thielscher addresses
some aspects of concurrency, but a versatile way of handling time is lacking.
Durations and delays cannot be easily modeled, due to the STRIPS-style
operational nature of the language. The paper also discusses one type of
concurrent conflicts the formalism can handle, but no general way to handle
other types of concurrent conflicts is mentioned.

Ferber and Miiller Ferber and Miiller [29] presents a theory for dynamic
multi-agent environments with a distinction between influences and state.
The world develops in two-step cycles: there is a set of operators (corre-
sponding to actions and events) that for given influences and conditions on
the state yield new influences, and a set of laws that for given conditions on
the state and influences transform the state. The state component develops
according to a persistence assumption, whereas influences are transient (like
persistent respectively durational features in TAL-C). The theory is then
augmented with agent behaviors, which are functions from influence sets
(percepts) to influence sets (responses). A STRIPS-style operational formal-
ism is used in the paper, but the authors explain that the general principles
should apply to other types of formalisms as well.

Pinto and other work with the situation calculus Among the work
done in situation calculus, Pinto’s modeling of concurrency [83] is particularly
interesting. Pinto addresses the use of resources and exploits state constraints
(of a weaker kind than the dependency laws in this thesis) to deal with effect
interaction, although in the context of instantaneous actions. Also other
authors such as Gelfond, Lifschitz and Rabinov [36], Lin and Shoham [70]
and Reiter [86] address concurrency in the context of the situation calculus.
However, most of the problems these authors consider are specific to the
situation calculus, including how to extend the result function to take more
than one action, and how to represent action duration [36, 86] and extraneous
actions [86]. The topic of concurrent interaction is only briefly addressed; for
instance, Lin’s and Shoham’s treatment is restricted to effecting cancellation
in case two actions are in conflict.

Baral and Gelfond Finally, we should also mention Baral and Gelfond’s
propositional language A¢ [9] and its relatives by Li and Pereira [59] and
Bornscheuer and Thielscher [13]. A¢, an extension of Gelfond’s and Lifs-
chitz’s language A [35], relies on action rules (e-propositions) of the form

104

{44,... ,A,} causes e if pi,... ,p, to describe concurrent interactions (re-
call the discussion in Section 5.4 regarding some limitations of this type of
approach). Rules for the same fluent with more specific action parts override
less specific ones. This makes A¢ suitable for representing synergistic and
conflicting effects. On the other hand, actual cancellation of effects requires
the use of explicit frame axioms, like in the soup bowl example [9] where
the rule {lift_left, lift_right} causes —spilled if —spilled overrides the rules
{lift_left} causes spilled and {lift_right} causes spilled. None of the articles
[9, 59, 13] address ramification or action duration, and only Bornscheuer’s
and Thielscher’s version addresses nondeterminism. The three languages dif-
fer mainly in the treatment of concurrent conflicts that are not resolved by
any e-proposition. According to Baral and Gelfond, the entire resulting state
is undefined, according to Li and Pereira, the result of the conflicting actions
is undefined, and according to Bornscheuer and Thielscher, the resulting
value of the conflicting feature is nondeterministic.

5.9 Conclusions

In this chapter, we have presented TAL-C, which is a logic for describing
action scenarios that involve action concurrency and causal dependencies
between features. What distinguishes TAL-C from previous work is the com-
bination of the following factors: (a) TAL-C has a standard first-order se-
mantics and proof theory. (b) TAL-C has a notion of explicit time, which
makes it possible to reason about the durations of actions and other interest-
ing temporal properties and relations. (c) TAL-C is able to model a number
of important phenomena related to concurrency. We should also mention
that several of the examples in this chapter have been tested using a partial
implementation of TAL and TAL-C, called VITAL (available on the Www at
http://www.ida.liu.se/~jonkv/vital.html as a Java program).

Technically, TAL-C is closely related to TAL with ramification [42], al-
though the surface language £(IND) has been modified and extended. In the
base language L£(FL), the same predicates are still used, with the addition of
Per and Dur. Most important, the same simple circumscription policy is still
applicable, which implies that we can reason about concurrent interactions
in first-order logic.

The main difference between TAL and TAL-C is conceptual in nature
and based on how action laws are defined and used. We have demonstrated
how traditional action laws suffer from a number of problems, in particular
due to the fact that preconditions in action laws refer to the state before the

105

action is executed, and that the effects are absolute and indefeasible. The
solution involving action laws with multiple actions was rejected due to lack
of precision and scaling. Instead, we proposed an approach where actions
produce influences instead of actual effects. The way these influences change
the world, both alone and in interaction with other influences can then be
specified in influence laws for individual features. TAL-C has been demon-
strated on a number of nontrivial concurrency-related problems. The use of
influence laws in TAL-C provides a flexible tool for describing what happens
when a feature is subject to influence from several actions or dependencies
simultaneously. Additions and modifications to a TAL-C scenario description
are local operations which preserve modularity.

In the next chapter we will show how the methods developed to solve
concurrency problems directly can be applied to handle many problems with
delayed effects of actions and dependency rules.

106

Chapter 6

Delayed Effects of Actions

A fundamental property of many dynamical systems is that effects of actions
can occur with some delay. In this chapter, based on the work by Karlsson,
Gustafsson and Doherty [18, 49], we address the representation of delayed
effects in the context of reasoning about action and change. We discuss how
delayed effects can be modeled both in abstract ways and as detailed pro-
cesses, and we consider a range of possible interactions between the delayed
effects of an action and actions occurring at later time-points, including in-
terference and cumulative effects.

6.1 Introduction

A fundamental property of many dynamical environments, in particular nat-
ural ones, is that changes as a response to actions or events do not occur
instantaneously, but after some duration of time. This observation is obvi-
ously of great interest in reasoning about action and change, and is usually
discussed in terms of delayed effects or processes. In fact, if some change oc-
curs after the end of an action, then there must be some underlying process
going on. However, a description of this process might be too complicated or
not even available. By instead considering the changes caused by the process
as delayed effects of the action in question, one can sometimes abstract away
from the details of the process and still be able to obtain an adequate de-
scription of its manifestations. In this chapter, we show how delayed effects
can be modeled in the language TAL-C described in the previous chapter.
There are three factors that make TAL-C a suitable instrument for dealing
with delayed effects: the existence of a notion of time which is independent of
actions; the possibilities to define causal dependencies outside of action de-

107

scriptions; and the support for concurrent interactions. Explicit time makes
it possible to state that a delayed effect occurs after some (possibly indeter-
minate) amount of time, and causal dependencies and concurrent interactions
are crucial in describing interactions between actions. The fact that the ef-
fects of an action are not confined temporally within the duration of that
action creates ample opportunities for interactions to occur: a delayed effect
of an action can prevent or be prevented by the effects of a later action, or
might occur simultaneously with a later action.

Delayed effects have not received much attention in the literature. Some
papers on continuous change, for example by Sandewall [90] and Shanahan
[92], address the explicit representation of continuous processes that can go
on after an action has been executed, such as water filling a sink after the
tap has been turned on. Shanahan also presents an example with an alarm
that goes off after a fixed time interval. Further, there is work by Doherty
and Gustafsson [18] on representing delays with dependency laws. However,
none of the logics in these papers deal with concurrent interactions. It is
the modeling of how the delayed effect of one action can interact with other
actions that is the most important contribution of this chapter.

An example of a delayed effect, due to Gelfond, Lifschitz and Rabinov [36],
is a pedestrian light that turns green 30 seconds after one presses the button
at the crosswalk. They represent the delayed effect as a postcondition of a
Press action. In TAL-C, the same example (somewhat extended) is encoded
in the scenario description below

Scenario Description 6.1

dom; Dur(pressed, F) A Per(tick) A Per(color)

acsy [t,t'|Press — I((t,t']pressed)

dep1 Cr([t]pressed A —tick) — R([t + 1]tick)

deps Crp([t]tick) A [t,t+29]tick — R([t+29]color = green)

deps Crp([t]tick) A [t,t+58]tick — R([t+59]color = red A —tick)
obs; [0]color = red A —tick

occy [10, 14]Press

occa [22,26]Press

There is some subtlety in this scenario description. Pressing the button a
second time (while tick is true) will not result in a second period of green.
Thus, the second Press action (occg) is futile. Notice that this represents
an interaction between a delayed effect of one action (occy) and a second
intermediate action (occy). In addition, the delayed effect itself (the light is
green) has a duration.

108

6.2 Examples

In the pedestrian light scenario above, we gave an example of a delayed effect
that had limited duration and that blocked another effect (the effect of the
second pressing of the button). In this section, we investigate some other
interesting aspects of delayed effects using some illustrative scenarios.

Interruption and varying delay time. The first of these scenarios il-
lustrates that the delay may be of varying length and that a delayed effect
might be interrupted. It involves a fire-cracker which explodes after a delay
of between 10 and 15 seconds. There are two features, burn and expl, which
are determined by three influences: burn*(T) and burn*(F) make burn true
respectively false, and expl* causes the cracker to explode. The effects of
the actions and dependencies in acsy, acsqs, depy, deps and depg are directed
through these influences, and dep;, deps and deps specify how the influences
affect burn and expl, including when they are in conflict. Regarding delays,
deps states that if the fuse has been burning for at least 10 time-points, then
it might explode, and depg states that the cracker will definitely explode if
the fuse has been burning for 15 time-points. This scenario yields the conclu-
sion that there will be an explosion sometimes between time-points 13 and
18.

Scenario Description 6.2

dom; Per(burn) A Dur(expl, F) A Dur(burn*(v),F) A Dur(expl*, F)
acsy [t,t'|Light — I((t,t]burn*(T))

acsy [t,t'|Extinguish — I((¢,t']burn*(F))

infy [t](burn*(T) A —burn*(F)) — R([t]burn)
infy [t]burn*(F) — R([t]-burn)

infg [tlexpl* — I([t]expl)

deps [tlexpl — I([t]burn*(F))

deps [t,t+9]burn — X ([t+10]expl*)

depg [t,t+14]burn — I([t+15]expl*)

obs; [0]—burn

occy [2,3]Light

However, adding an Extinguish action will interrupt the burning, according
to acse and deps.

occy |5, 6]Extinguish

109

Notice that additional action laws that relate to burn can be added incre-
mentally by utilizing burn*, without any need for modifying the underlying
description of burn itself. This is one of the strengths of TAL-C.

Concurrent interaction. Concurrent interaction due to delayed effects
can also be of a more direct nature, like in the following example with cumu-
lative effects. In order to specify cumulative effects, we need the set theory
introduced in the previous chapter on page 97. The following scenario models
a bank account, where the balance (the persistent numerical feature balance)
can be altered by influences bal™(z) with default value 0, where x repre-
sents the source (person, bill etc) of the influence. A special function Bal™ (¢)
represents the set of non-zero influences bal*(z) at each time-point ¢.

in(f,Bal™ (t)) = 3z[f = bal™(z) A [t]-bal'(z) = 0] (6.3)

The values of the members of the set Bal™(¢) are added together at each
time-point £, and this sum is added to the present balance. We also assume
that there can be a deficit on the bank account, but that this leads to a
remark from the bank. The following scenario describes how an agent (bob)
sends a bill to be paid by his bank and then realizes that the balance is too
low to cover this bill, and in the last moment manages to make a deposit and
avoids getting a remark.

Scenario Description 6.4

dom; Per(balance) A Dur(bal*(z),0) A Per(amount(z)) A Per(remark)

acs; [s,t]Deposit(a,n) — I([t]bal™(a) = n)

acsy [s,t]MailBill(a, b) A [tJamount(b) = n — I([t + 50]bal™*(b) = —n)

dep; [t]balance=m A sum(t+1,Bal™ (t+1)) = n — R([t + 1]balance=(m + n))
dep2 Cr([t]3n[balance =n A n < 0]) — R([t]remark)

obs; [0]balance=50 A —remark

obsy [0]amount(bill1)=150

ocer [2,3]MailBill (bob, bill1)

occy [52,53]|Deposit(bob, 100)

The key here is dep;, which sums the values of the non-zero bal™(a) in Bal™ (%)
and adds this sum to balance. Thus, Balt(53) = {bal*(bob),bal™ (bill1)}
where [53]bal™(bob) = 100 and [53]bal*(billl) = —150, which results in
sum(53,Bal*(53)) = —50 and [53]balance = 0.

110

Explicit processes. The previous examples have shown how one can ab-
stract away the underlying mechanics of processes. It is, however, important
to point out that our approach is well suited for scenarios that model the
dynamics of the world in more detail by letting features represent actual
physical quantities. For instance, consider somebody filling a jug from a beer
cask with a tap. Let the real-valued feature flow(z,y) represent a flow from
z to y, let Flow™ (¢,y) represent the set of non-zero flows into y at ¢ and let
Flow™(t,z) represent the non-zero flows out of .

in(f,Flow™ (t,y)) = 3z[f = flow(z,y) A [t]-flow(z,y) = 0] (6.5)
in(f,Flow™(¢,z)) = Jy[f = flow(z,y) A [t]-flow(z,y) = 0]

In the following scenario, deps encodes a difference equation that determines
the volume of water in a vessel based on the sum of flows into and out of the
vessel. There are also actions for opening and closing the taps (acs; and acss),
and a dependency law that states that a cask with an open tap produces a
flow which is a function of the level of liquid inside the cask (dep;). A is
the bottom area of the cask, Ay is the area of the tap hole and g is the
gravitational constant. Initially, the jug is under the tap of the cask (obs;)
and the tap is closed (obsz).

Scenario Description 6.6

dom; Per(vol(z)) A Per(open(z)) A Per(cask(z)) A Per(under(z)) A
Dur(flow(z,y),0)

acs; [s,t]OpenTap(z) — ([s]cask(z) — R((s,t]open(z)))

acsy [s,t|CloseTap(z) — ([s]cask(z) — R((s,t]—open(z)))

dep; [t]vol(z) = v A [t+1]cask(z) A open(z) A under(z) =y —
I([t+1]flow(z,y) = (A24/294;))

depy [tlvol(z)=m A sum(t+1,Flow™ (t+1,z)) =n A
sum(t+1,Flow™ (t+1,z)) = k — R([t + 1]vol(z)=(m+n—k))

obs; [O]Junder(caskl) = jugl A cask(caskl)

obsy [0]—open(z)

obss [0]vol(caskl) = 100 A vol(jugl) =0

occy [5,6]OpenTap(caskl)

occy [7,8]CloseTap(caskl)

Opening the tap of the cask (occi) produces a flow (flow(caskl, jugl)) from
the cask to the jug that decreases as the level of beer in the cask decreases,
and closing the tap (occy) stops the flow. Notice that our representation of
concurrency makes it easy to for instance open an additional cask above the
jug; the total flow into the jug would then be the sum of flows from the casks.

111

6.3 Conclusions

We have presented a method for representing delayed effects of actions which
utilizes previous results on ramification and concurrency. As a matter of fact,
the formalism used here (TAL-C) is identical to the one presented in Chapter
5, but whereas that chapter concentrated on the interaction between more or
less immediate effects of actions, here we exploit the potential to deal with
the additional dimension of delays. There are essentially three features of
TAL-C that provide this potential. First, there is a notion of explicit time
that is independent of action, and that allows us to easily formulate temporal
expressions such as ”after 15 seconds”. Second, there are dependency laws
that allow us to describe delayed effects outside of action laws, in addition to
dealing with complex ramifications. Third, there is support for concurrency,
which is based on the aforementioned dependency laws and a distinction
between persistent and durational features. This permits the delayed effects
of an action to interact with other actions. In fact, it is the complications that
concurrency adds that are the fundamentally difficult issue in representing
delayed effects, and maybe that explains why so little progress has been made
on the subject. The examples have illustrated delayed effects with duration,
interactions with other actions including interruptions, and the modeling of
actual processes.

112

Chapter 7

Object-Oriented Reasoning
about Action and Change

Traditionally, the action and change community has primarily used toy do-
mains as benchmarks for testing the semantic adequacy of formalisms. Ex-
ample 2.1.2 in this thesis is an example of this type of domain. Most of the
time, action scenarios in the literature can be described in words using a cou-
ple of sentences and the logic representation is seldom more than a page long,
with the sentences grouped together by type rather than structure. These
toy examples are used in order to highlight or explain some particular point
the author wants to make and do have scientific value. However, with some
of the classical RAC problems at least partially solved and well understood,
and with powerful tools available for reasoning about action scenarios, it is
now both possible and necessary to model larger, more complex domains if
formalisms of the type described in this thesis are to be applied practically.

When we cease modeling toy domains and begin working with more com-
plex examples, it becomes painfully apparent that there is a lack of method-
ologies and tools for representing large application domains. There are no
principles of good form, like the “No Structure in Function” principle from
the qualitative reasoning community [16].

The following topics and questions springs to mind when trying to frame
the proper context to address structuring issues in RAC:

e Elaboration tolerance: How do we ensure that a domain can ini-
tially be modeled at a high level, with the possibility to add further
details at a later stage without completely redesigning the domain de-
scription? How do we design domain descriptions that can be modified
in a convenient manner to take account of new phenomena or changed
circumstances?

113

e Modularity and reusability: How can particular aspects of a domain
be designed as more or less self-contained modules? How do we provide
support for reusing modules?

e Consistency: How can complex domains be modeled in a consistent
and systematic way, to allow multiple designers to work on a domain
and to enable others to understand the domain description more easily?

These questions point toward the need for a framework or a methodology
that provides the tools for modeling larger domains. One possibility is to try
and apply abstraction and structuring methods used in software engineering
to what we call “Logic Engineering”. The object-oriented paradigm is one
such structuring method that we will focus on. The object-oriented paradigm
(for example [2, 11]) claims to provide a more direct mapping to the way we
think about reality in an intuitive manner.

An object is an encapsulated abstraction of some part of reality that offers
specific services to the surrounding world. These services are called methods
and are the only way to interact with objects. The methods are offered to
prospective users by means of an interface, the actual implementation being
hidden from the user. A method is invoked by sending a message to the
respective object telling it to execute a specific method.

There are certain powerful principles that make object-orientation suit-
able for modeling larger RAC scenarios.

o Modularity, that is, the decomposition of large and complex systems
into smaller modules or objects that interact with each other.

e (lasses of objects can be defined in advance and stored in a library.
Each object is created as an instance of an already existing class and
contains the same features as its class. This facilitates reusing models.

e The concept of reusability becomes even more powerful in combina-
tion with inheritance. A new class of objects can be easily created as
a specialization and/or extension of already existing classes. A sub-
class inherits the properties of its parents, and often also adds its own
properties.

In the classical object-oriented view as applied to programming, a method is
a sequence of code that is procedurally executed when the method is invoked.
In our approach, however, a method will contain a set of rules that has to
be satisfied whenever the method is invoked. This means that we can invoke

114

methods over intervals of time and that several methods might be invoked
concurrently.

In addition to the above standard object-oriented features we add con-
straint methods that contain rules that must always be fulfilled by all in-
stances of a class. They can be viewed as methods that are invoked at all
time-points. This allows us to express many RAC constructions, for example
state constraints, but still retain an object-oriented viewpoint. A constraint
method can in some senses be compared to an invariant.

7.1 Modeling Object-Orientation in TAL-C

As we have shown previously in this thesis, TAL-C is a flexible and fine-
grained language suitable for handling a wide class of domains. The intention
of this chapter is to show how to use a number of different aspects of object-
orientation in the TAL-C language as a structuring mechanism for domain
descriptions, thereby supporting the modeling of more complex and larger
domains and the reuse of parts of old domain descriptions when modeling
related domains.

The object-orientation can be represented directly in the TAL-C surface
language £(ND). The versatility of durational fluents makes it straightfor-
ward to model many of the aspects of the object-oriented paradigm that is
hard to model in a monotonic logic. Although some of the constructions may
initially seem cumbersome, it is possible to introduce a new set of macros in
L(ND) to hide them. This form of abstraction already is an integral part of
TAL and its methodology.

We use the same logic as in the previous chapters, but with a slight addi-
tion for defining the fluent value domains used to simplify the presentation.
The standard manner of defining finite domains is by directly listing its ele-
ments. An example of this is the following definition of the boolean domain:

dom boolean={T, L}

The new approach to defining domains is to first describe the relation
between the domains and then to add the elements. An example of this is:

dom THING

dom VEHICLE eztends THING
dom CAR ezxtends VEHICLE
obj agentl: THING

obj helicopterl: VEHICLE
obj wvolvol: cAr

115

From this it is possible to create the closure of the domains. In the example,
the THING domain is {agentl, helicopterl,volvol}, the VEHICLE domain
is {helicopterl,volvol} and the CAR domain contains only volvol.

This way of representation means that objects cannot be constructed and
terminated dynamically. All objects exists at all time-points.

In this chapter we demonstrate the technique using a small application
involving a watertank. We begin with two classes called TANK and FLOW-
TANK. The only interaction possible with the TANK class is to set the volume
in the tank to a specified number. The FLOWTANK class has the same behav-
ior as the TANK class but in addition it is possible to add a flow into or out
of the tank. We emphasize that the approach targets larger, more complex
application domains. Chapter 9 provides three larger scenario descriptions
where these ideas are exemplified.

7.1.1 Classes

The basic idea behind our approach is to model classes as sets, and instanti-
ated objects as elements of these sets. Since TAL-C is an order-sorted logic,
the existing mechanisms for handling the fluent value domains can be used
for our purpose.

In our watertank example, the tank class with the instantiated object
tank1 would be represented as a domain called TANK containing the element
tankl. The domain definition in £(ND) looks like this:

dom TANK extends OBJECT
obj tankl: TANK

An object is a member of a class if and only if it is defined as an instance of
the class itself or of its subclasses.

This technique ensures that inheritance can be handled in a straightfor-
ward manner. If class B extends class A, then B is a subset of A. This
means that it is possible to quantify over all objects of a given class, which
will be necessary when defining methods. For our watertanks example we
would add the following definitions:

dom FLOWTANK ertends TANK
obj tank2: FLOWTANK

The resulting closure, that takes place at translation time, is that FLOWTANK =
{tank2} and TANK = OBJECT = {tankl, tank2}. At translation time we
also mechanically construct a domain called classnames that contains the
names of the classes and a subclass fluent representing the class structure.
The fluent subclass(cy, c2) is true if ¢; is a subclass of cs.

116

In our example, the subclass relation would be as follows:

dom classnames = {OBJECT, TANK, FLOWTANK}
acc Vit,c1 € classnames,cy € classnames
[t]subclass(ci, c) <>
((c1 = FLOWTANK A ¢2 = OBJECT) V
(c1 = FLOWTANK A ¢a = TANK) V
(1 = TANK A ¢a = OBJECT))

Attributes in an object

The attributes in a class are modeled as standard TAL-C fluents. Since each
object of a class should have its own copy of each attribute, all attribute
fluents take a single argument of the same type as the class where it was
defined.

For example, our TANK class needs a volume attribute. Assuming we have
a floating point value domain float, the volume attribute can be modeled
as a persistent fluent taking a water tank as an argument:

attr volume(TANK) : float

Clearly, since FLOWTANK is a subsort of TANK, any FLOWTANK will also
have a volume. In other words, the attribute is automatically inherited by
subclasses of TANK taking a flow tank as argument:

The FLOWTANK class also needs a flow attribute, which can be modeled
as a fluent

attr flow(FLOWTANK) : float
Any object of a subclass of FLOWTANK will have a flow attribute.

Methods

The only legal interaction between objects is by method invocations. We
define three types of methods: procedures, functions and constraint methods.
Procedures are used to change the internal state of an object and have no
return values, functions do not cause any change but have a return value,
and constraint methods represent rules or constraints that are not explicitly
invoked but must hold at all time-points.

Procedures: In our approach, procedure invocations are modeled using
invocation fluents. For each class ¢ with the corresponding fluent value do-
main DOMAIN, and for each procedure m we wish to define in that class
with arguments of sorts (s1,... , sp), we define a durational invocation fluent

117

m(OBJECT, DOMAIN, $1,... ,Sy,) : boolean with default value false. At any
time-point where an object o wants to invoke this procedure in another object

o', with the actual arguments z1,... ,Z,, it should make m(o,0’,z1,... ,zy)
true. We will often use the form o'.m(o,z1,... ,z,) as a syntactic sugar for
m(0,0',T1,... ,Ty).

Suppose, for example, that the TANK class should have a procedure
set-volume(f : float). We add a durational fluent set-volume(OBJECT, TANK,
float) : boolean with default value false. Then, the object user1 can call
tank1.SET-VOLUME(2.0) at some time-point ¢ by making set-volume(useri,
tankl,2.0) true at ¢ using an interval reassignment formula.

What remains is to define the set-volume procedure. This is done using
a dependency constraint that is triggered whenever the invocation fluent is
true for some combination of arguments. The basic structure of the definition
looks like this:

dep Vi,caller € OBJIECT, self € TANK, f € float
[t]self.set-volume(caller, f) — I([t]volume(self) = f)

This dependency constraint states that if any object caller calls the set-
volume procedure in the tank self with argument f, then the volume in self
becomes f.

Since all objects created from subclasses of TANK by necessity are mem-
bers of the TANK domain, this method can be invoked on all of them. The
above example models a public procedure, which means that any other object
can invoke it. If we want to make the method protected, which means that
it can only be invoked by objects belonging to TANK or one of its subclasses,
the domain of caller can simply be set to TANK instead of OBJECT. Note that
the caller variable can be ignored if the issue of method privacy is irrelevant
in the domain.

Constraint methods: In contrast to normal object-oriented programming,
some types of behavior have to be active at all time-points. For this we intro-
duce a special type of methods that we call constraint methods. A constraint
method looks like a procedure with the exception that we do not require any
invocation fluent to be true in order for the method to be active. An exam-
ple of this is the flow in a flowtank. The changing of the volume does not
depend on any method invocation; it should automatically be done at every
time-point. The constraint method for this would look like the following:

dep Vi, self € FLOWTANK, f1, fo € float
[t]flow(self) = f1 A [t|volume(self) = fa —
I([t + 1]self.set-volume(self, f1 + f2))],

118

where flow is the inflow of the tank minus the outflow of the tank. This
constraint means that if at time-point ¢ we have flow f; and volume f; then
we invoke the set-volume method with argument f; + f2 at time-point ¢ + 1.

Functions: Functions are a special case of a constraint method. Functions
are used to get values from objects. Instead of representing the invocation
with a boolean fluent, as we do for the procedures, we let a return value
fluent have the same domain as the return value, as in:

dep Vi,caller € OBJECT, self € TANK
I([t]self.query-volume(caller) = volume(self))

7.1.2 Elaborating a Class

Since class definitions are not monolithic, an existing class can easily be
extended with new attributes and methods without the need to modify the
old class definition. It is also possible to create subclasses that have additional
attributes or methods. Finally, method implementations in a superclass can
be overridden (redefined) in a subclass.

Overriding Method Implementations

A useful feature of object-orientation is the ability to override methods: A
method defined in a superclass may be redefined in a subclass, and the new
definition takes precedence over the old definition. Say, for example, that
we later want to use the FLOWTANK class but we want to have an upper
limit on the amount that we can put into the tank (for example, 10 units
of water). In this case we construct a new class called OFTANK (OverFlow
Tank) to represent such tanks. This class extends the FLOWTANK class with
a new method description for the set-volume method that overrides the old
behavior. For this to work in our approach, two things have to be done when
a method is defined. First, we need to have a way of blocking a method
from being invoked. Secondly, when we define a method, we should block
all methods with the same name in the superclasses. To do these things
we introduce a durational fluent called override(object,method,classname)
which normally is false, to represent that for a given object object, the
method method defined in class classname is overridden.

The first step is made by adding a statement of the following form each
time a method is defined:

dep Vt,c € classnames,i € CURRENTCLASS (7.5)
[t] subclass(CURRENTCLASS, ¢) — I([t]override(i, methodname, c)),

119

where CURRENTCLASS is the class in which the method is being defined,
methodname is the name of the method being defined, and ¢ ranges over
all instances of class CURRENTCLASS. The intended meaning of the above
statement is that override should be true for all methods with the same name,
defined in superclasses. For notational convenience we will use the macro
ClassMethod(CURRENTCLASS, methodname) as a shorthand for statements
of type (7.5).

The second step consists of adding, in our method definitions, the require-
ment that the method is not overridden for the given object in the current
class. We will use the macro Invoked (CURRENTCLASS, methodname, f) as a
shorthand!® for

[t)methodname(caller, self, f) A
[t]-override(self, methodname, CURRENTCLASS).

The set-volume method we defined earlier should instead be written in the
following way, to accommodate the possibility of overriding:

depiq ClassMethod(TANK, set-volume)
dep1p Vt, caller € OBJECT, self € TANK, f € float
Invoked(TANK, set-volume, f) — I([t|jvolume(i) = f)

If a method is defined as above, it overrides all methods with the same name
higher in the hierarchy. It also makes it possible to override this method
implementation if some subclass redefines the method.

Example 7.1.1
The OFTANK can now be modeled in the following way:

dom OFTANK ertends FLOWTANK

attr overflow(OFTANK) :boolean

depag ClassMethod(OFTANK, set-volume)

depap Vt, caller € OBJECT, self € OFTANK, f1 € float

Invoked(OFTANK, set-volume, f1) —
I([tlvolume(self) = min(f1,10))

depac Vt, caller € OBJECT, self € OFTANK, f; € float
Invoked(OFTANK, set-volume, f1) A f1 > 10 — I([t]overflow(self))

We see that the overriding is taken care of automatically. O

Example 7.1.2
In the classical penguin example BIRDs can in general fly, but PENGUINs
cannot. The fact that an object can fly is represented by the query-flies

!Note that the Invoked macro is context dependent on self and caller.

120

function. The PENGUIN class extends the BIRD class but overrides the query-
flies function with a new function that always returns false.

dom BIRD eztends OBJECT
depi, ClassMethod(BIRD, query-flies)
dep1p Vt, self € BIRD I([t]self.query-flies() = T)

dom PENGUIN eztends BIRD

depa, ClassMethod(PENGUIN, query-flies)

depap Vt, self € PENGUIN I([t]self .query-flies() = 1)
obj tweety : BIRD

obj opus : PENGUIN

Here query-flies(tweety) is true and query-flies(opus) is false at all time-
points. We have ignored the caller variable in this example since it seems
farfetched to apply method privacy issues here. a

7.2 Elaboration Tolerance

According to McCarthy [75], elaboration tolerance is the ability to accept
changes to a persons or a computer programs representation of facts about
a subject without having to start all over. Several of the ideas used in the
object-oriented paradigm make it easier to build elaboration tolerant scenar-
ios. This is not surprising since many characteristics of the object-oriented
paradigm such as modularization and the possibility to reuse code support
elaboration tolerant programming to some extent.

With inheritance it is possible to specialize a class, adding more methods
and constraints. Overriding is another aspect that is useful for increasing
elaboration tolerance. It allows us to change some behaviors of a class without
having to know all the details of that class. This way we do not have to apply
any “surgery”? if we desire to change the behavior of a subclass. We only
have to override the methods that we want to change, leaving the original
domain description unchanged.

An example of application of these techniques can be found in Section
9.4, where the well-known missionaries and cannibals scenario is gradually
elaborated using these mechanisms as a basis.

*McCarthy uses the term surgery to describe the act of going through the scenario
description and changing specific values by hand.

121

7.3 Related Work

Much work has been done in applying object-oriented concept to the appli-
cation of knowledge representation. One such area is description logics (see
for example Brachman et al. [14] and Borgida et al. [12]). Description log-
ics are languages tailored for expressing knowledge about concepts (similar
to classes) and concept hierarchies. They are usually given a Tarski style
declarative semantics, which allows them to be viewed as sub-languages of
predicate logic. One starts with primitive concepts and roles, and can use
the language constructs (such as intersection, union and role quantification)
to define new concepts and roles. The main reasoning tasks are classification
and subsumption checking. Due to this, description logic hierarchies are very
dynamic and that it is possible to add new concepts or objects at runtime
that are automatically sorted into the correct place in the concept hierar-
chy. Some work has been done in combining description logics and reasoning
about action and change (see for example Artale and Franconi [6]).

The modeling methodology presented in this chapter has a very sim-
ple class hierarchy that is constructed at translation time and is thereafter
static. Classes have to be explicitly positioned in the hierarchy and classes
and objects cannot be constructed once the narrative has been translated.
Description logics do not represent class methods or explicit time, both of
which are essential in the work presented here.

The approach presented in this chapter bears more resemblance to object-
oriented programming languages such as Prolog++ [79], C++ or Java. In
these languages, a method is a sequence of code that is procedurally executed
when the method is invoked. In our approach, however, a method is a set
of rules that have to be satisfied whenever the method is invoked. The fact
that delays can be modeled in TAL means that methods can be invoked over
intervals of time and that complex processes can be modeled using methods.
It is also possible to invoke multiple methods concurrently.

An interesting approach to combining logic and object-orientation is
Amir’s object-oriented first-order logic [5], which allows a theory to be con-
structed as a graph of smaller theories. Each subtheory communicates with
the other via interface vocabularies. The algorithms for the object-oriented
first-order logic suggest that the added structure of object-orientation can be
used to significantly increase the speed of theorem proving.

The work by Morgenstern [78] illustrates how inheritance hierarchies can
be used to work with industrial sized applications. Well-formed formulas
are attached to nodes in an inheritance hierarchy and the system is applied

122

to business rules in the medical insurance domain. A special mechanism is
used to construct the maximally consistent subset of formulas for each node,
given its inheritance. Our inheritance in TAL is much simpler since multiple
inheritance is prohibited. Applicability of our methods is solely based on the
name of the method, not by using a sophisticated mechanisms such as in
Morgenstern’s work.

7.4 Conclusions

The need for a methodology for scenario description construction becomes
evident as soon as we leave the area of toy examples and begin to model
realistic dynamic domains. As the size and complexity of domains increase,
it becomes more and more difficult to read, modify and debug the domain
descriptions.

This chapter has presented a way to apply object-oriented modeling to
an already existing logic of action and change, TAL.

The advantage of the work presented here is that larger domains can be
modeled in a more systematic manner and that we can group rules together
in such a way that it is possible to locally change the representation in a
meaningful way. This leads to increased reusability and elaboration tolerance.

The main difference between our work and other approaches to combining
knowledge representation and object-orientation is due to the explicit time-
line in TAL. Methods can be called over time periods or instantaneously,
concurrently or with overlapping time intervals. Methods can relate to one
state only or describe processes that take many time-points to complete.

Our approach also allows representation of phenomena not usually mod-
eled in sequential object-oriented languages. It is for example straightforward
to sum the arguments of multiple method invocations taking place concur-
rently. An example of this would be to say that we allow any number of
objects to set their individual flow into a tank at the same time. The result-
ing net flow is the sum of the flows from each tank, that is, the sum of the
arguments of all invocations of set flow.

It should be emphasized that the ideas presented in this chapter do not
require any modification of the TAL-C language or semantics, only a restric-
tion on the use of the surface language. In this manner, we enforce more
structure on our narratives in order to attain modularity and reusability. It
is also likely that these techniques can be used to make theorem proving in
L(FL) more efficient, although this has not been the focus of our work.

123

The work by Amir on an object-oriented first-order logic [5] discussed in
the previous section supports this argument.

Finally the modularization also provides a nice interface for hybrid nar-
ratives in the sense that some of our objects do not necessarily have to be
encoded in our logic. For example, we can define a class for doing com-
plex mathematics as an outside source, implemented procedurally in another
object-oriented programming language. The interaction between the TAL
classes and the semantic attachments (the outside classes) would be handled
in a manner similar to remote method invocations (RMI) in Java [1].

124

Chapter 8

Using TAL for Control

There are several high-level cognitive tasks for which a logic of action and
change can be used such as prediction, postdiction or planning. The logic
can be used as a means of specifying and understanding the task, or as an
actual basis for implementation. In the previous chapters of this thesis we
have dealt with tasks involving a fixed set of actions, specified by the user.
The system is then used to determine the set of possible world developments
that are consistent with the execution of these actions and with additional
knowledge such as domain and dependency constraints — that is, the system
has focused on the prediction and postdiction tasks. In addition the focus
of the work has been on modeling with less of an emphasis on actual on-
line usage in robots or with controllers. Tasks such as on-line planning or
control would require our system to work in a different way. Partial narratives
would continually be constructed and reasoned about together with actual
observations. Given some observations of fluent values, the system has to
select appropriate actions to be invoked in a goal-directed manner.

The aim of this section is to study how TAL can be used to construct
entities that can actively influence the world model towards a goal state.
This way we can use TAL not only as a simulation tool but also to construct
components used in goal-directed agents. The role of the scenario constructor
changes from writing lists of exact commands to constructing entities able to
generate commands interactively.

In Sandewall’s Features and Fluents [90], the modeled system is viewed
as a game between ego and world. The ego and the world take turns. The
ego invokes actions and the world changes the values of fluents in response
to the actions.

We will follow this terminology and use the word ego to describe the

125

entity that chooses what methods to invoke. The observations and the de-
pendency laws describing the environment will be called the world model and
the layer between ego and world model will be called the ego-world interface.
Traditionally the ego-world interface consists of action descriptions.

8.1 Other Approaches

Research with logics of action and change often focuses on the properties
of actions and how they affect the modeled world. Few of them have been
extended as specification or implementation languages for practical problems.
One exception is GOLOG [58, 87].

GOLOG is a situation calculus-based! logic programming language for
defining complex actions using a repertoire of user-specified primitive actions.
By using macros it is possible to write robotic control specifications that
resemble a computer program that generates sequences of actions that lead
towards a specified goal state.

GOLOG provides the usual kinds of imperative programming language
control structures as well as three types of nondeterministic choice:

1. Sequence: ;3 Do action «, followed by action .

2. Test action: p? Test the truth value of p in the current situation.
3. While loops: while p do @ endWhile

4. Conditionals: if p then « else 3

5. Nondeterministic action choice: a|3 Do « or S.

6. Nondeterministic choice of action argument: (7z)o Nondeterministi-
cally pick a value for z, and for that value of z, do the action a.

7. Nondeterministic repetition: o* Do a a nondeterministic number of
times.

8. Procedures, including recursion.

The semantics of GOLOG programs is defined by macro-expansion using
a ternary relation Do, where Do(4,s,s’) is an abbreviation for a situation
calculus formula whose intuitive reading is that s’ is a terminating situation
of an execution of the complex action ¢ starting in situation s.

!We will assume that the reader is familiar with the situation calculus [57, 76, 74].

126

Do is defined inductively on the structure of its first argument as follows:

Primitive actions:

Do(a,s,s') = Poss(a,s) A s' = do(a, s)
Test actions:

Do(¢?,s,8') = @[s]As' =s
Sequence:

Do(61;02,5,5") = (3s*).(Do(d1,s,5*) A Do(ds, s*,s"))
Nondeterministic choice of two actions:

Do(61]02,5,8'") = Do(d1,s,5') V Do(da,s,5")
Nondeterministic choice of action arguments:

Do((mz)d(x),s,s') = (3z)Do(é(z), s, s')
Conditionals:

if p then a else 3 = (p?;a)|(—p?;5)
Similar (but more complicated) definitions are given for iteration and proce-
dures.

Several different flavors of GOLOG exist. The one described here is due to

Reiter [87]. A more detailed description can be found in Levesque et al. [58].
Further extensions of GOLOG is an active area of research.

8.2 General Framework

The approach developed in this chapter is inspired by GOLOG, but instead
of creating a new control language, we begin by providing a very general
framework for the ego-world interface, where the nature of the ego is left
unspecified. We then show some examples of how egos can be constructed
in TAL, using control structures that are similar to common programming
commands.

Traditionally the ego-world interface has consisted of action descriptions,
stating how the fluents that represent a domain are affected by the invocation
of a specific action.

We suggest a generalization taking advantage of the object-oriented ideas
proposed earlier in this thesis. All interaction between objects is handled via
method invocations, and since the world consists of objects all interaction
between ego and world model also has to take place through method calls.
This changes the focus away from the actions towards interaction between
objects. In our examples, the actions are only used for external intervention
in the world, such as initialization.

127

The world model consists of a number of TAL objects.

The ego-world interface consists of the methods provided by the world
that the ego can use to manipulate and interact with the world.

The ego is only allowed to interact with the world through the ego-world
interface, using function methods as sensors and procedure methods as actu-
ators. The exact nature of the ego may vary between different applications.
For example, it can consist of a list of action invocations, a TAL object, or an
external program interacting with TAL such as a theorem prover or model
generator.

Ego
world
interface

World model

\\Q/ j Object

Object

Figure 8.1: The ego—world interaction.

The modular separation between world model and ego makes it possible
to use different egos for different control aspects of a problem that one is
interested in solving. A world model can have one ego controlling one part
of the system and another ego for a different part. These egos should only
interact indirectly, via the world model.

Consider an example with a lift and people using the lift. There could be
one ego controlling the lift and one ego for each person in the model. Clearly
the lift ego uses a different part of the ego-world interface than the person
egos do.

128

Ego
world
interfaces | World model

: Object

Ego :

Object

Object

Figure 8.2: Multiple egos.

8.3 Control Objects in TAL

The development of TAL presented in this thesis has concentrated on the
world model rather than the ego. Here we propose a way of taking advantage
of the tools developed for the world model in the construction of sophisti-
cated egos. Again, we do not have to introduce any new constructs in the
logical language associated with TAL. We do modify the surface language
with macros and define their translations to the base logic.

In the following, assume the existence of an object-oriented world model
that describes how fluents relate to each other and an ego-world interface
describing the possible interactions between ego and world. There are then
several possible ways of constructing a system that plans how to progress
from a (possibly incomplete) initial state to a (possibly incomplete) goal
state. Clearly a complete search over all combinations of action invocations
is infeasible in all but the smallest cases, although conceptually, this is the
search space at hand.

The most natural suggestion is to add our representation to a planner
and let it compute a plan. Unfortunately most planners lack the expressivity
of RAC languages with for example incompletely specified states, nondeter-
minism, durations, delays and complex concurrency. Work with TALplanner
by Kvarnstrom, Doherty and Haslum [23, 53, 54, 24| investigates the use of
TAL for the development of domain dependent planning techniques.

Another possibility is to develop a control language like GOLOG, where
it is possible to encode knowledge of how to behave in order to reach the goal
state.

129

The approach studied in this chapter is inspired by the last suggestion,
but instead of developing a new control language like GOLOG, we use the
generalization proposed in Section 8.2 and provide examples showing how
egos can be written in TAL. We will also illustrate how some control con-
structs can be trivially represented with this approach while others are much
harder to model.

The advantage of constructing egos in TAL is that some of the more useful
representational concepts are acquired for free, such as nondeterminism, side-
effects and concurrency.

The general framework presented in this chapter allows great freedom
in deciding how to construct an ego. The most elementary type of ego is
simply one that uses a list of method calls and specifies the time-points at
which the methods should be called, similar to a TAL narrative. A slightly
more dynamic type of ego could be built using a list of case statements.
Such an ego can easily be implemented using dependency laws for each case,
with function methods in the precondition and procedure methods as effects
for each programming instantiation. These dependency laws can either be
totally concurrent, which means several procedure calls can be invoked by
the ego at the same time-point, or they could be prioritized, where only the
first applicable dependency law is triggered. A prioritized list of dependency
laws could be implemented in TAL as follows:

dep; [t]obji.query_too_high() — I([t]obji.decrease() A triggered = 1)

deps [t]triggered > 1 A [t]obj;.query_too_low() —
I([t]objy.increase() A triggered = 2)

deps [t]triggered > 2 A [tlobj;.query_too_fast() —
I([t]obj.accelerate() A triggered = 3)

If the first dependency law can be triggered, then triggered is set to 1. None
of the other dependency laws can be triggered, since they all have the re-
quirement that ¢riggered must be greater than 1 in the precondition. If the
precondition of the first dependency law is false but the second dependency
law can be triggered, then triggered is set to 2 and none of the following laws
can be applied, and so on.

If a more complex ego is desired, more abstract modeling tools are bene-
ficial. Classical programming constructs such as loops and if-then-else state-
ments greatly simplifies the construction of the controlling entity. In the
following subsection we will describe a number of programming language
constructs which can be used in the construction of specific ego programs.

130

8.4 Control Structures in TAL

To be able to build controllers in TAL, we need some of the common program-
ming language constructs. Below is an outline of how some such constructs
can be modeled in TAL.

8.4.1 For loops

Loops are used to do something repeatedly. In C++ for example, the state-
ment “for (x=1;x<4;x++) obj.func(x);” means that we first call the method
called func () in object obj with argument 1 then with 2 and finally with 3.
In TAL we can specify these kinds of loops both sequentially, as in C++, with
one call per time-point, or in parallel, where we call obj.func(1), obj.func(2)
and obj.func(3) at the same time. We will call the former a sequential loop
and the latter a parallel loop.

Sequential loops The following loop construction will start a loop when-
ever a trigger fluent becomes true. Starting the loop will make the fluent
varname increase its value at each time-point starting with value /b and con-
tinuing up to but not including the upper bound ub assuming loopname stays
true. Here loopname is a boolean fluent that is true if the loop is running.
Different loopnames are required to distinguish between different loops.
dep; [t]Cr(trigger) A —loopname — I([t 4+ 1]varname = b A loopname = T)
depsz [t]loopname A (varname > [b) A (varname < ub) A (varname = z) —

I([t + 1]varname =z + 1)
deps [t]Jvarname > ub — I([t]-loopname)
deps [t]loopname — I([t]obj.func(varname))

Parallel loops The following loop construction will make obj.func(z) true
for all [b < z < ub, whenever trigger is true.

dep; Vz.[t|trigger Az > b Az < ub— I([t|obj.func(z))

This type of loop is executed whenever trigger is true, while the sequential
loop is started whenever trigger becomes true and runs over an interval of
time.

8.4.2 While loops

Some aspects of the while-statement “while (condition) obj.func();”
can be modeled through an ordinary dependency law.

131

dep; [t1,t2]condition — I([t1,t2]obj.func())

This does not capture the whole complexity of while-statements. Our state-
ment is reactivated each time the condition is true. To avoid this we could
either introduce a fluent that represents that the while-statement is ended,
or we could use a program counter as we will describe in Section 8.4.4.

8.4.3 If then else

An “if (condition) objl.funci(); else obj2.func2();” statement is
simply translated to

dep; [t]condition — I([t]obj;.funci())
depz [t]—condition — I([tJobja.funca()).

Note that these dependency laws are always active as opposed to a normal
programming language, where we execute the check once and then move on
to the next line of code. Doing things sequentially is more difficult in TAL.

8.4.4 Sequence

Representing sequences is the area where TAL differs the most from ordinary
programming languages or control languages such as GOLOG.

One of the most basic assumptions in most programming languages is
that commands are executed sequentially: Unless the user explicitly creates
multiple threads of execution, the computer finishes executing one command
before moving on to the next. This construction suits a broad set of applica-
tions where one can read the program as a sort of story, an outline of what
will happen.

TAL, on the other hand, is inherently parallel instead of sequential. Thus,
whereas most programming languages must specify in some detail how par-
allel programs should be written, we will now specify in some detail how
TAL controllers can be written to handle three slightly different kinds of
sequentiality.

Sequences in the sense that one thing happens at time-point x, the next
at x 4+ c; and the next at 4+ ¢1 + c2 can of course be modeled very easily,
given that the constants c¢; and cy are known in advance. In fact, this type of
sequentiality can be modeled more easily than in an ordinary programming
languages, where explicit delays would be necessary in order to ensure that
the second command is executed c; units of time after the first command.

It would probably be more common to model a form of sequentiality where
one command A is executed at time x and the next command B is executed

132

whenever A is finished. This would be slightly more difficult, since A may
contain loops and similar constructs. Two cases can be considered.

It may be the case that A is intended to achieve some specific condition ¢
in the world, and that A is finished exactly when ¢ is achieved. In this
case, B can simply be triggered by ¢ becoming true — that is, by the condition
[t] Cr(9).

If this is not the case, or if the condition ¢ is too difficult to model or
cannot be modeled due to the nature of A, then one must most likely resort
to introducing additional “help fluents” to model true sequential behavior.
For example, it is possible to introduce an artificial “program counter” to
control the execution of sequential commands. This is one of the cases which
there is no truly natural way to model in TAL.

Below are three examples of these common constructs for sequentiality.

Example 8.4.1 (Known delay)
When turning the ignition key in the car, the start engine will rotate. After
a known interval of time, the car drives away.
dep; [t]car;.query_ignition_key() —
I([t + 1]car;.start_engine()) A I([t + 3]car;.drive()) O

Example 8.4.2 (Delay via world observations)

When turning the ignition key in the car, the start engine will rotate — that
is, we call the car’s start_engine method, which will eventually start the engine
for us. We can detect when this is done using the query_main_engine_running
method. When the engine is running, we can drive away.

dep; [t]car;.query_ignition_key() — I([t + 1]car;.start_engine())
dep2 [t]car;.query_main_engine_running() — I([t + 1]car;.drive())

This assumes that there are some rules in the car object that are triggered
by start_engine(car;) and eventually make query_main_engine_running(car;)
true. For example, the following rules might suffice:

deps [t]car;.start_engine() — I([t + c|car;.engine_running())
deps [t]car;.engine_running() — I([t]cari.query_main_engine_running()) O

Example 8.4.3 (Sequentiality using a Program Counter)

The following part of a program:
if (!driver;.carries(key;)) then driver;.get(keyi);
while (!car;.running()) driver;.turnkey(car;);
carj.drive();

could be translated into the following set of dependency laws:

133

dep; [t]pc = 1 A [t]-driver;.carries(key;) — I([t + 1]driver;.get(key;) A
pc=2)

dep2 [t]pc = 2 A [t]—cari.running() — I([t + 1]driver;.turnkey(car;))

deps [t]pc = 2 A Cy([t + 1]car;.running()) — I([t + 1]pc = 3)

deps [t]pc = 3 — I([t + 1l]car;.drive() A pc = 4)

This shows that sequentiality can be modeled by handcoding the fluent pc

that simulates a program counter. This is too cumbersome to be practical

for larger programs and indicates one of the weaknesses with this approach.
Macros can be constructed to hide this type of program counters, but this

does not remove the problem. O

8.5 Simulation and Planning

A world definition and an ego designed using the control structures discussed
above can easily be combined into a single £L(ND) narrative. Translating
this narrative into the base logic £(FL) results in a theory whose models
correspond to the possible world developments that could arise given this
world and ego and the initial conditions specified in the narrative. Non-
determinism or incomplete information about any part of the world or ego
may give rise to multiple models, each of which corresponds to one specific
development. A theorem prover can then be used to answer queries, or
a model generator such as VITAL can be used to find and visualize all the
world developments. In essence, the logic is used to simulate both the actions
that would be taken by a controller and the possible resulting reactions of
the world.

It is also straight-forward to automatically extract the information about
the decisions made by the ego and to view this as a plan to be executed by an
actual physical entity such as a robot. In the presence of non-determinism
and incomplete information about the world, this could result in a condi-
tional plan where the next action to be invoked by the robot is determined
by the actual outcome of its actions at the previous time step. As long as the
description of the world is correct and does not exclude developments that
could possibly take place, the robot will never end up in a world state not
described by the conditional plan. Naturally, the efficiency of this form of
planning depends on the efficiency of the theorem proving or model genera-
tion mechanism being used.

However, in some cases, it is natural to also specify a goal condition in
the form of a constraint on a final state, in addition to, or instead of, the
reactive controller of the kind discussed in this chapter. In the missionaries

134

and cannibals domain discussed in Section 9.4, for example, the goal is that
all missionaries and cannibals should end up at the opposite side of the river.
This goal is quite difficult to encode into a controller in such a way that any
legal world development will end in a state where the goal is achieved.

This kind of goal can be handled at a meta-logical level using standard
planning mechanisms, where one searches for a (possibly conditional) plan
that will definitely satisfy the state goal. Given certain restrictions, it is
also possible to generate plans for this kind of goal simply by stating (using
an observation statement) that the goal is satisfied at the final time-point.
This requires that all non-determinism and incomplete information in the
combined narrative (containing ego and world descriptions) corresponds to
choices that can be made by the ego or egos, such as whether to cross the
river at this time-point or not; claiming that the goal is definitely satisfied will
simply restrict the possible choices. The world, on the other hand, must be
completely described and deterministic. Otherwise, our claim that the goal
will definitely be satisfied might constrain the world itself, as demonstrated
in the following example.

Example 8.5.1 (World nondeterminism and planning)

Consider a narrative where the ego has a coin. The ego tosses the coin, and
the world determines whether the result is heads or tails. This is represented
as non-determinism in the world model. The goal is that the coin will land
heads up. If we try to find a plan by simply claiming that the goal will indeed
be achieved, there will be a single logical model where the ego tosses the coin
and the world has been constrained in such a way that the coin does land
heads up. The possible development where the coin lands tails up is not a
logical model, since it contradicts the state goal.

Note that if we want to simulate instead of plan, and that the coin landed
heads up is viewed as an actual observation rather than a goal, world nonde-
terminism is unproblematic, and this example would give the right models.

O

8.6 Larger Examples

The lift and road network scenarios in Chapter 9 exemplify how the ideas in
this section could work in practice.

The lift example shows how a nondeterministic ego can control a lift. The
lift controller’s ego-world interface consists of the functions query_level and
query_pressed and the procedures move_down, move_up and reset_button.

135

The road network example is more complex. We show how an ego
can inherit and extend the behavior of another ego class and how differ-
ent egos can be attached to different cars. The ego-world interface for
a car controlling ego consists of the functions query_place, query_position,
query _closest, query_connects, query_green_light and query_distance and the
procedures set_place, set_position and move_vehicle.

8.7 Conclusions

Using the proposed framework described in Section 8.2 and the TAL con-
structs described in Section 8.3 it is possible at least conceptually to design
a wide variety of control systems at a high level of abstraction. The main
advantages are the high level of modularity and elaboration tolerance and
the fact that we avoid the requirement of two separate languages for control
and world modeling, thereby gaining the full TAL expressivity in our control
objects.

136

Chapter 9

Examples

One of the main reasons for developing the object-oriented structuring tech-
niques for TAL in Chapter 7 was to be able to model more than just toy
domains. In this chapter, we take advantage of the tools developed in Chap-
ter 7 and describe three examples of more complex domains.

e The first example illustrates how a controller, specified in TAL, can be
used to govern the behavior of a simple lift.

e The second example shows how inheritance and overriding can be used
as powerful tools for elaboration tolerance in the missionaries and can-
nibals domain.

e The last and most complex example consists of a road network with
cars. This domain is based on the example described in the Logic
Modelling Workshop [88].

Each example begins with a brief general description followed by explanations
of the classes and their methods. Trivial selector or mutator functions will not
be described. A trivial mutator is a procedure method and has the following
form: !

dep; ClassMethod(PARTICLE, set_acceleration)
depa [t]—override(particle, set_acceleration, PARTICLE) A
particle.set_acceleration() = Integer —
I([t]acceleration(particle) = Integer)

!This procedure assumes that there can only be one influence on the particle at each
time-point. The same technique as used in Chapter 5 can be used to lift that requirement.

137

A trivial selector function is a function method and typically looks like the
following:

dep ClassMethod(PARTICLE, query_acceleration)
dep [t]—override(particle,query_acceleration, PARTICLE) —
I([t]particle.query_acceleration() = walue(t, acceleration(particle)))

9.1 Implementation and Tests

Section 9.3 presents the lift example and contains detailed explanations of
all non-trivial methods. The cannibal and road network example does not
explain the methods in detail, the interested reader can study the complete
listing in Appendices D, E and F. Those listings have been tested with
VITAL, a Java program that implements a significant fragment of TAL. All
tests have been run on a Sun Ultra 10 workstation. It should be noted
that VITAL does not take advantage of the object-oriented structure of the
scenario descriptions. Results by Amir [5] suggests that this could speed up
the time to find the solutions considerably.

9.2 Some Terminology

Summation over a number of elements is not part of the TAL logic. It is added
to VITAL as a semantic attachment? and is useful in a number of instances,
for example to avoid some types of conflicts resulting from concurrency.?

In method descriptions we will use expressions of the type

Z value(t, g.query_size())
{g | g€classA[t]g.query_position()=place}

to describe summation. In VITAL the same expression would be written as
follows:

$sum((group), [tjquery_position(group) = place, value(t, query_size(group)))

21t is also possible to introduce this type of addition by incorporating a minimal portion
of set theory into TAL as described in Section 5.6.2.

3See the modify_group method in the missionaries and cannibals example in Section 9.4.1
for an example of how summation is used to avoid concurrency conflicts.

138

9.3 Object-Oriented Modeling I:
The Lift Scenario

In this section, we present an example that illustrates how the ideas from
the previous chapter can be applied to control a simple lift. The controller
should move the lift in such a way that it serves all floors where a lift button
has been pressed. This scenario is inspired by a lift example in Levesque et
al. [58] with some additional extensions.

9.3.1 Overview of the Design

We have chosen to represent this problem with four classes. The first is the
root class:

e OBJECT. The superclass of all other classes. Contains no methods.

There are also two world classes. Their ego-world interfaces are described
later.

e BUTTON. Each floor has a button.
e LIFT. The actual lift.
Finally, there is an ego class:

e CONTROLLER. The entity that governs the behavior of the lift via the
LIFT’s interface.

The basic idea is that the CONTROLLER uses the ego-world interface of the
LIFT to serve all floors with pressed buttons. In this example we can press
the buttons with an action.

In the scenario described here, one lift, one controller and five buttons
will be constructed and initialized. Then we will press the button on floors
three and five, through two concurrent invocations of the PressButton action
at the initial time-point. The intended solution is that the controller directs
the elevator to move to either the third floor and then to the fifth, or first to
the fifth floor and then to the third floor.

Button

The BUTTON class extends OBJECT. There should be one BUTTON object per
floor. A BUTTON has two attributes: pressed (signaling that the button has
been pressed) and attached (the number of the floor the button is on).

139

The following methods are associated with button:

e attach_button(Integer) sets attached to Integer. This represents that
the button exists on floor number Integer.

query_attached() returns the value of attached.

press_button() sets pressed to true which represents that someone has
pressed the button.

reset_button() sets pressed to false.

e query_pressed() returns the value of pressed.

Lift

The LIFT should contain only the basic functionality of a lift which is that
you can make it move up or down. It is the task of another object, the
CONTROLLER, to call these methods at suitable time-points. The LIFT has
a currentfloor and a topfloor attribute. The currentfloor attribute contains
the number of the floor the lift is currently at, and topfloor is the number of
the highest floor the lift can go to. Possible conflicts with moving the lift up
and down at the same time are handled by preferring movement downwards.
The following methods are associated with LIFT:

e init_floor(Integer) sets currentfloor to Integer. This procedure should
only be used at time-point 0 to set up the scenario.

e query_floor() returns the floor the lift is on.

e set_top_floor(Integer) sets the limit on the number of floors the lift
serves.

e move_up() moves the lift one floor up if it is currently below the top
floor.

dep ClassMethod(LIFT, move_up)
dep [t]-override(lift, move_up, LIFT) A
lift. move_up() A
—lift.move_down() A
lift.query_floor() < top_floor(lift) —
I([t + 1] currentfloor(lift) = value(t, currentfloor(lift)) + 1)

140

e move_down() moves the lift one floor down if it is currently above floor 0.

dep ClassMethod(LIFT, move down)
dep [t|—override(lift, move_down, LIFT) A
lift.move_down() A
lift.query_floor() > 0 —
I([t + 1] currentfloor(lift) = value(t, currentfloor(lift)) — 1)

It is straightforward to observe that the combination of the two methods
move_up and move_down covers all possible cases of overlap of these two
procedures. If both procedures are called at the same time-point, the
preconditions of move_up will be false which means that only move_down
will be active.

Controller

The purpose of the controller is that via the BUTTON’s and LIFT’s interface it
attempts to serve all floors. The CONTROLLER has a goal_floor attribute that
represents the floor the controller is trying to move the lift to. The goal_floor
attribute is automatically updated when necessary. Given a goal_floor, the
controller moves the lift to that floor. The other attribute controlled_lift
refers to the lift the controller is controlling.

The following two methods are used at setup:

e set lift(LIFT) sets the lift the controller controls.
e query_controlled_lift() returns the lift the controller controls.
The constraint methods below control the lift via its interface functions:

e new_goal(). If the lift is at the goal_floor and at least one button has a
request, then nondeterministically choose a new goal floor.

dep ClassMethod(CONTROLLER, new_goal)
dep [t|—-override(controller,new_goal, CONTROLLER)A
lift = controlled_lift(controller)A
lift.query_floor() = goal_floor(controller)\
Jbutton|[t|button.query_pressed()] —
Jbutton|[t]button.query_pressed ()A
I([t + 1]goal_floor(controller) =
value(t, button.query_attached()))]

141

e goto_floor(). Make the elevator move towards the goal floor via the
move_up or move_down methods in the LIFT object.

dep ClassMethod(CONTROLLER, goto_floor)

dep [t]—override(controller, goto_floor, CONTROLLER)A
lift = controlled_lift(controller) A
lift.query_floor() < goal_floor(controller) —

I([t]lift.move_up())

dep [t]controlled_lift(controller) = liftA
lift.query_floor() > goal_floor(controller) —
I([t]lift. move_down())

e serve_floor(). If the controlled lift is at the goal floor, then remove the
request in the button at that floor via the buttons reset_button method.

dep ClassMethod(CONTROLLER, serve_floor)
dep [t]—override(controller,serve_floor, CONTROLLER)A
[t]value(t, controlled_lift(controller)).query_floor() =
goal_floor(controller)\
[t]button.query_attached() = goal_floor(controller) —
I([t]button.reset_button())

9.3.2 Elaborations

The clear separation between lift, button and controller and the object-
oriented modeling makes it trivial to elaborate on the previous design. If
it has to be changed to a 20 floor lift, it is only the LIFT class that needs
to be changed. If the choice of which floor to serve should be modified, all
that needs to be done is to let a new controller class extend the controller
and override the new_goal method. Modifications like these, but for another
scenario, are shown in Section 9.4.

9.3.3 Summary

This domain shows how that TAL can be used to construct egos that actively
work towards a goal. In this case the ego’s goal is to have served all floors
with pressed buttons.

142

9.4 Object-Oriented Modeling II:
The Missionaries and Cannibals Problem

The Missionaries and Cannibals Problem (MCP) is a good example for show-
ing how the object-oriented paradigm discussed in the Chapter 7 can support
the construction of elaboration tolerant scenarios.

The basic MCP reads: “Three missionaries and three cannibals come to
a river and find a boat that holds two. If the cannibals ever outnumber the
missionaries on either bank, the missionaries will be eaten. How shall they
cross in order to avoid anyone being eaten?” McCarthy [75] illustrates his
ideas regarding elaboration tolerance with 19 elaborations of this scenario.
Some of these elaborations have been implemented in the Causal Calculator?
by Lifschitz [65]. The idea behind Lifschitz’ approach is to associate each
rule with a number. Normally the rule applies, but if we state that the
number is abnormal, the rule is ignored. With this mechanism it is possible
to incrementally build a system without ever having to go back and change
an already existing rule.

Our approach is very similar to Lifschitz’ but we propose to take advan-
tage of the functionality developed in Chapter 7 for object-orientation. At
the heart it is the same idea, that is to let the rules have an extra precondi-
tion that normally is true, but which can be overridden if the user attempts
to create a new rule governing the same behavior. In our approach, the old
rules are automatically overridden if the scenario constructor creates a sub-
class that has a method with the same name. As we will see, this makes it
easy and natural to modify and extend the basic scenario.

9.4.1 Overview of the Design

The assumption when modeling the basic MCP is that we know it might
be extended at a later time-point but we do not know exactly what will be
modified.

For the basic scenario we need six classes:

e OBJECT is superclass to all other classes.
e BOAT extends OBJECT and is a class containing all boats.

e GROUP extends OBJECT and is the class of all groups of people

A system for query answering and satisfiability planning designed and implemented at
the University of Texas. http://www.cs.utexas.edu/users/tag/cc/

143

e CANGROUP extends GROUP and is the class of all groups of cannibals
e MISGROUP extends GROUP and is the class of all groups of missionaries

e PLACE extends OBJECT. We will use people_at(CLASS, place) as an
abbreviation for

Z value(t, g.query_size())
{g | gecLassA[t]g.query_position()=place}

throughout this chapter for determining how many people of a given
class CLASS that occupies position place.

The statement people_at(GROUP, onvera), for example, is the number
of people on the boat Vera and people_at(CANGROUP, left) represents
the number of cannibals on the left bank.

e BANK extends PLACE

The VITAL code for the basic scenario is found in Appendix E.2.1.

Object

Every OBJECT class is the superclass of all other classes. The OBJECT has
a position attribute, representing the location of the object. The position
attribute is influenced by the following methods:

e set_position(PLACE) Procedure. Sets the position of the object.

e query_position() Function. Returns the position of the object.

Boat

The BOAT class represents the boats that the groups use to cross the river.
It has one attribute, onboard, that refers to the location onboard the boat.
There are three methods in BOAT:

e query_onboard() Function. Returns the PLACE that is onboard the boat.

e move_boat() Constraint method. If there is anybody onboard, then it
will move the boat to another (nondeterministically chosen) BANK.

e boat_limit() Constraint method. Governs the limit of passengers on the
boat.

144

Group

The GROUP is the most complex class. It represents all groups of people. It
has one attribute, size.

e modify_group(GROUP2) Procedure. Setting group.modify_
group(GROUP3) to z represents that GROUP2 adds z persons to the
current group (group). Due to the fact that a GROUP can be modified
by several objects at the same time, we require modify_group to take
an extra argument that is the object that causes the modification of
size. The modify_group method computes the sum of all those
influences and changes the size accordingly.
dep ClassMethod(GrROUP, modify_group)
dep [t|—override(group, modify_group, GROUP) —

I([t + 1]size(group) =
value(t, size(group)) +

Z value(t, group.modify_group(g)))
{9 | gccrourz}

e query_size() Function. Returns the number of people in this group.

e move_persons() Constraint method. Nondeterministically move people
between GROUPs of the same type (missionaries or cannibals) that are
located in connected PLACEs. Note that GROUPs never move — people
move by changing the size of two groups.

dep ClassMethod(GROUP, move_persons)
dep [t]-override(group, move_persons, GROUP) A
group.query_type() = groups.query_type() A
[t + 1]group.query_pos().query_connection(group,.query_pos()) —
dInteger [—value(t, groups.query_size()) < Integer A
Integer < value(t, group.query_size()) A
I([t + 1] group.modify_group(group,, — Integer)) A
I([t + 1] group,.modify_group(group, Integer))]

Cannibals

CANGROUP extends GROUP and adds the following method:

e eat_constraint() Constraint method. Specifies that there cannot be more
cannibals than non-cannibals at any place, even if some of them are in
a boat.

145

Missionaries

MISGROUP extends GROUP but adds no new methods.

Place

The PLACE class has an internal variable connection that represents the other
PLACEs this PLACE is connected to.

e add_connection(PLACE3) Procedure. Makes this PLACE connected to
PLACEy

e remove_connection(PLACE3) Procedure. Removes the connection be-
tween this PLACE and PLACEs.

e query_connection(PLACE;) Function. Returns true if this PLACE is con-
nected to PLACEs.

Bank

BANK extends PLACE but adds no methods. It merely serves to limit the
places the boat can reach, that is, it can only reach BANKs.

General constraints

Due to the nature of our approach we have to add some constraints to limit
the search space. Both are due to the fact that we want to remove models
where everything stays the same from one time-point to the next. The first
constraint states that the size of at least one group has to change, and the
second one requires that there is at least one person on the boat except at
the first and last time-point.

The actual code is found in Section E.3.

9.4.2 Setting Up the Problem

In order to set up a problem instance, we first have to instantiate some
objects. The boat will be called vera, there will be two banks (left and
right), and there are groups of missionaries and cannibals in all three places.

obj left,right : BANK

obj onvera : PLACE

obj vera: BOAT

obj cleft,cvera,cright : CANGROUP
obj mleft,mvera,mright : MISGROUP

146

The following observation statements specify the attributes of these objects:

obs [0]vera.pos = left A vera.onboard = onvera

obs [0]cleft.pos = left A cleft.size = 3

obs [0]cvera.pos = onvera

obs [0]cright.pos = right

obs [0]Jmleft.pos = left A mleft.size = 3

obs [0]mvera.pos = onvera

obs [0jmright.pos = right

acc [0]group.size = 0 <> (group # mleft A group # cleft)

acc [0]place;.connect(places) <+ ((place; = left A place; = onvera) V

(place; = onvera A placey = left))
Finally, a goal is required. We know that the minimal plan length is 12:
obs [12]mright.size = 3 A cright.size = 3

9.4.3 Elaborations

We will now use the object-oriented model of the basic MCP domain defined
above to show how to model the 19 elaborations defined by McCarthy [75].
We provide timings for some of the elaborations that have been tested in the
research tool VITAL [55]. We will also provide some comparisons with the
10 elaborations implemented by Lifschitz [65] in the Causal Calculator [73].5

We concentrate on elaboration tolerance for the domain specification (the
class definitions). Although it would have been possible to model the problem
setup in Section 9.4.2 in a defeasible manner using similar techniques, we
instead make the assumption that one is generally interested in solving many
different problems in the same general domain and that the specific problem
instances (such as the number of missionaries and cannibals, the set of river
banks, and which banks are connected) are generated from scratch each time.
The problem instance definitions for the elaborations below are generally
trivial and will usually be omitted.

The original problem

The original problem is solved in 2 seconds by VITAL.

SVITAL was run on a 440 MHz UltraSparc machine; the Causal Calculator was run on
an unspecified machine. The timing results should not be taken too seriously. No work on
complexity have been done with respect to this.

147

The boat is a rowboat (elaboration 1)

The fact that the boat is a rowboat can be modeled by making vera an
instance of a new class ROWBOAT that extends BOAT without any additional
attributes or methods. The problem is still solved in 2 seconds.

People have hats (elaboration 2)

The missionaries and cannibals have hats, all different. These hats may be
exchanged among the missionaries and cannibals.

While missionaries and cannibals used to be interchangeable and could
be modeled as groups, they must now be seen as individuals. The following
classes and attributes are added:

dom HAT eztends OBJECT

dom PERSON eztends OBJECT

attr hat(PERSON) : HAT

attr contains(GROUP, PERSON) : boolean

The contains attribute is non-inert.
Nobody belongs to two groups, and everybody belongs to a group:

dep ClassMethod(PERSON, unique)
acc [t]—override(person, unique, PERSON) A
group .query_contains(person) A group,.query_contains(person) —
group, = group,
dep ClassMethod(PERSON, belongs)
acc [t]-override(person, belongs, PERSON) —
Jgroup.[t| contains(group, person)
Finally, we add another rule for modify_group: If group moves n of its people
to another group group,, then there should be exactly n individual PERSONSs
that used to belong to group but now belong to groups.
acc [t]—-override(group, modify_group, GROUP) A
[t 4+ 1]group.modify_group(group,, Integer) A Integer > 0 A

group # groups —
|{p | p € PERSON A [t]group.query_contains(p) A

[t + 1]groups.query_contains(p)}| = Integer

This problem is solved (without exchanging any hats) in 50 seconds.

148

Four missionaries and four cannibals (elaboration 3)

One cannibal and one missionary are added to the scenario description.

This is a change in the problem instance rather than in the domain, and
the instance description is changed accordingly. It is impossible to find a
plan for this and the inconsistency is detected in 31 seconds.

Boat can carry three (elaboration 4)

There are four missionaries and four cannibals, but the boat can carry three
people.

In the original MCP, the number of people onboard a BOAT was restricted
to two. Although it was obvious that it would be useful to be able to model
boats of varying capacities, we nonetheless chose to hardcode the capacity
in the original boat_limit method in order to test the elaboration tolerance
of the model. Thus, we now need to create a subclass that overrides the old
constraint. But this time, we will do it the right way:

dom SIZEBOAT eztends BOAT

attr capacity(SIZEBOAT): Integer

dep ClassMethod(SIZEBOAT, boat_limit)

acc [t]—override(sizeboat, boat_limit, SIZEBOAT) —
people_at(t, GROUP, value(t, sizeboat.query_onboard())) <
value(t, capacity(sizeboat))

A solution is found in 15 seconds (compared to 18 for Lifschitz).

One oar on each bank (elaboration 5)

There is one oar on each bank and there can never be more people than oars
in the boat. First we create a class OAR that extends OBJECT. Then we let
OARBOAT extend BOAT and add a constraint method ensuring that the sum
of people onboard an OARBOAT is less than or equal to the number of OARs:
dep ClassMethod(OARBOAT,oar_limit)
dep [t]—-override(oarboat,oar_limit, oarboat) A

oarboat.query_onboard() = place —

people_at(GROUP, place) < Z 1

{9 | gcoar,
[t]g.query_position ()=place}

149

We also add a rule that ensures that as many oars as possible are used. If
there is someone on the same side as a boat and an oar, the oar will be moved
into the boat.

dep ClassMethod(0OAR, oar_move)

dep [t]-override(oar, 0oar_move, OAR) A
boat.query_position() = place A
oar.query_position() = place A
group.query_position() = place A
group.query size() > 0 A
boat.query_onboard() = places —
I([t + 1]oar.set_position() = placey)

Not everybody can row (elaboration 6 and 7)

Only one missionary and one cannibal can row. This means that we have
three new entities to consider: rowing cannibals, rowing missionaries and a
boat that only moves if either of those are present.

Three new classes are created. The ROWCAN class extends CANGROUP
and ROWMIS extends MISGROUP. None of these add any methods. A new
class ROWBOAT is also created that extends BOAT and adds a row_limit
constraint:

dep ClassMethod(ROWBOAT, row_limit)

dep [t]-override(rowboat, row_limit, ROWBOAT) A
rowboat .query_position() # value(t + 1, rowboat.query_position()) A
rowboat .query_onboard() = place —
people_at(ROWCAN, place) + people_at(ROWMIS, place) > 0

This constraint method checks if the boat moves between time-points ¢ and
t+1 and if so, it checks that the number of rowing cannibals and missionaries
is greater than zero.

Elaboration 6: Only one cannibal and one missionary can row. This sce-
nario is solved in 28 seconds compared to Lifschitz’ 273 seconds.

Elaboration 7: No missionary can row. The only thing that needs to be
changed is the initialization. Contradiction is detected in 3 seconds.

150

A big cannibal (elaboration 8)

The biggest cannibal cannot fit into the boat with another person.

This can be done in the same way as above. First we construct a new
class of cannibals, BIGCANGROUP, that merely extends the CANGROUP class
without any extensions and then we extend the BOAT class to a new type of
boat, SIZEBOAT that has a size_limit, constraint.

dep ClassMethod(SIZEBOAT, size_limit)
dep [t]—-override(sizeboat,size_limit, SIZEBOAT) A

sizeboat.query_onboard() = place A

bigcangroup.query_position() = place A

bigcangroup.query_size() > 0 —

people_at(GROUP, place) < 1
If there is a BIGCANGROUP group on a boat, and the number of people in
that group is more than zero, then the total number of people must be zero
or one.

This problem is solved in 614 seconds (compared to Lifschitz’ 2149 and

9746 seconds)

Big Cannibal and Small Missionary (elaboration 9)

If the big cannibal is isolated with the smallest missionary, he can eat him.

First we construct the class of small missionaries SMALLMISGROUP, that
extends the MISGROUP class without any extensions. Then BIGCANGROUP
extends CANGROUP with the additional constraint that the small missionary
and big cannibal cannot be allowed to be alone in the same place:

dep ClassMethod(BIGCANGROUP, eat_small)

dep [t]-override(bigcangroup,eat_small, BIGCANGROUP) A
people_at(BIGCANGROUP, place) = 1 A
people_at(SMALLMISGROUP, place) = 1 —
people_at(GROUP, place) > 2

The problem takes 236 seconds to solve (compared to Lifschitz’ 22 seconds).

Jesus (elaboration 10)

One of the missionaries is Jesus Christ, who can walk on water. A new group
class is created:

dom JESUSGROUPeztendsMISGROUP

151

The move_persons method from Section 9.4.1 is then overridden with a vari-
ation where the condition

[t + 1]group.query_pos().query_connection(group,.query_pos())
is removed from the precondition, allowing Jesus to move between non-

connected places (that is, to cross the river without a boat).
This problem is solved with 6 steps in 4 seconds.

Conversion (elaboration 11)

If three missionaries are isolated with one cannibal, they will convert him.
Here we have to take advantage of TAL’s possibility to handle true concur-
rency developed in Chapter 5. Since several different objects can change the
value of the size of groups in parallel via modify_group, the constraint method
looks like the following

dom CONVMISGROUP eztends MISGROUP
dep ClassMethod(CONVMISGROUP, convert)
dep [t|-override(convmisgroup, convert, CONVMISGROUP)A
people_at(CONVMISGROUP, place) > 3A
people_at(CANGROUP, place) =1 —
I([t + 1]convmisgroup.modify_group(convmisgroup) = 1
convmisgroup.modify_group(cangroup) = —1)
Note that the actual conflicts that can arise, if for example a cannibal is
boarding a boat at the same time as he is converted, are automatically han-
dled by the modify_group method.
This problem is solved in 3 seconds. This cannot be compared to Lifschitz’
solution since it does not allow for this kind of concurrency.

Cannibals might steal the boat (elaboration 12)

Whenever a cannibal is alone in the boat, there is a 1/10 probability that he
will steal it. Although TAL has no support for probability reasoning, it is
possible to determine the probability that any particular boat will be stolen
using an attribute prob_not_stolen initialized to 1.0. Whenever a cannibal is
alone in a boat, the constraint method update_prob multiplies prob_not_stolen
by 0.9; the value of boat.prob_not_stolen at the final time-point of a model is
the probability of that particular plan succeeding.

152

obs Vboat.[0]boat.prob_not_stolen = 1.0
dep ClassMethod(BOAT, update_prob)
dep [t]-override(boat, update_prob, BOAT) A
boat.query_onboard() = place A
people_at(t, GROUP, place) = 1 A
people_at(t, CANGROUP, place) = 1 —
I([t + 1]boat.prob_not_stolen = 0.9 % value(t, boat.prob_not_stolen))

A plan is found in 6 seconds.

The Bridge (elaboration 13)

There is a bridge from the left bank to the right, which two people can cross
at the same time.

The only thing we have to do is to add a BRIDGE class that extends PLACE
and adds a constraint bridge_limit that no more than two people can be there
at the same time:

dep ClassMethod(BRIDGE, bridge_limit)
dep [t]—override(bridge, bridge_limit, BRIDGE) —

people_at(GROUP, bridge) < 2
The bridge has to be connected both to the left and right banks. Concurrency
falls out naturally, that is, people will walk over the bridge at the same time
as others use the boat, without any modifications. This scenario is solved in
22 seconds and requires 5 steps. Again Lifschitz does not allow the use of
the bridge and the boat concurrently so the solutions cannot be compared.

The boat leaks (elaboration 14)

The boat leaks and must be bailed concurrently with rowing. A simple way
to solve it is by just introducing an attribute bail that represent that the
boat is being bailed.
dep ClassMethod(BAILBOAT, bailing)
dep [t]-override(bailboat,bailing, BAILBOAT) —

group .query_position() = bailboat

group.query_size())) > 1 —

I([t]bail(group))

This takes the same time as the basic scenario, 2 seconds.

153

The boat can be damaged (elaboration 15)

The boat may suffer damage and have to be taken back to the left side for
repair. In this elaboration, the boat cannot move between banks instanta-
neously. We add a new bank onriver and a new class SLOWBOAT for boats
that spend time on the river before arriving at the destination.

dom SLOWBOAT eztends BOAT
obj onriver : BANK

The original move_boat method is overridden and split into two parts: (1) If
the boat is at a BANK and someone is on board, move to onriver, and (2)
if the boat has been on the river during crosstime time-points and there has
been no emergency during this interval, move to another bank. The second
part takes advantage of TAL’s ability to handle delays [18, 49].

First we need to state that if the boat is on a bank and there is someone
onboard, then it will move to the river (set_position(slowboat) = onriver).

dep ClassMethod(SLOWBOAT, move_boat)
dep [t]—override(slowboat, move_boat, SLOWBOAT) —
slowboat .query_onboard() = place; A
slowboat .query_position() = placea\
places # onriverA
people_at(GROUP, place;) > 0 —
I([t + 1]slowboat .set_position() = onriverA
place; .remove_connection() = placey)

Then we have to describe the normal behavior of a boat on the river:

dep [t]-override(slowboat, move_boat, SLOWBOAT)A
dep slowboat.query_onboard() = placeN
slowboat .query_position() # onriverA
(t,t + crosstime]slowboat.query_position()) = onriver|A
(t,t + crosstime]slowboat .query_emergency()) = L] —
dbank|[t]slowboat.query_position() # bankA
I([t + crosstime]slowboat .set_position() = bankA
place.add_connection() = bank)]

This can be interpreted to mean: If at time-point ¢ the boat is on a
bank, and the the boat moves out on the river during the crosstime following
emergency free time-points, then at time-point ¢ 4+ crosstime it will move to
a new bank.

154

Finally we should describe the emergency behavior

dep ClassMethod(SLOWBOAT, emergency_behavior)
dep [t]—override(slowboat,emergency_behavior, SLOWBOAT)A
slowboat .query_emergency()A
slowboat .query_onboard() = place —
I([t + 3]slowboat .set_position() = leftA
place.add_connection() = leftA
slowboat .set_emergency() = L)]

Naturally each boat has to have an attribute emergency and a selector and
mutator functions for it. The general constraints have to be modified to take
the state of the boat and the duration into consideration. If crosstime = 3
and the boat breaks at time 20, this problem is solved in 56 seconds.

The island (elaboration 16)

If an island in the river is added, the problem can be solved with four mis-
sionaries and four cannibals. Similar to elaboration 3, we only need to modify
the problem instance, the domain is unchanged. We just add another object
island of type BANK and change the initial size of the left bank group objects.

The complete problem is solved in 5582 seconds (compared to 1894 sec-
onds for Lifschitz’ partial solution where only three missionaries and three
cannibals end up on the right bank).

Cannibals are not hungry (elaboration 17)

If the strongest cannibal rows fast enough, the cannibals might not get hun-
gry. This is a very vaguely formulated constraint.

The only thing that has changed is the behavior of the cannibals. There-
fore we extend that class with a HUNGRYCANGROUP class with a new boolean
attribute hunger. The method that governs the eating behavior is called
eat_constraint, so if we override that with a new method

dep ClassMethod(HUNGRYCANGROUP, eat_constraint)

dep [t]—override(hungrycangroup,eat_constraint, HUNGRYCANGROUP)A
hungrycangroup .query_position() = placeA
hunger(hungrycangroup) A
c_land = people_at(CANGROUP, place)A\
c_boat = Z value(t, g.query_size())A

{g9,b | gECANGROUP,bEBOATA
[t]b.query_position ()=placeA
b.query_onboard()=g.query_position()}

155

m_land = people_at(MISGROUP, place) A
m_boat = Z value(t, g.query_size())A

{9, b | gEMISGROUP, bEBOATA
[t]b.query_position ()=placeA
b.query_onboard()=g.query_position ()}

m_boat + m_land > 0 —
m_boat + m_land > c_land + c_boat

This method is almost exactly the same as the eat_constraint in CANGROUP
but with the requirement that the attribute hunger has to be be true.

There should also be a new constraint method in HUNGRYCANGROUP
saying that they become hungry if the boat changes position and there are
no STRONGCANGROUP onboard.

dep ClassMethod(HUNGRYCANGROUP, hunger)
dep [t|—-override(hungrycangroup,hunger, HUNGRY CANGROUP)A
boat.query_onboard() = placea A
boat.query_position() = placeA
[t + 1]boat.query_position() # place/
people_at(STRONGCANGROUP, places) < 1 —
I([t + 1)hunger(hungrycangroup))
STRONGCANGROUP just extends HUNGRYCANGROUP without any additions.

Missionaries have food (elaboration 18)

The new class FOODCANGROUP extends HUNGRYCANGROUP with a food at-
tribute hungervalue and methods that use it:

dep ClassMethod(FOODCANGROUP, feed)
dep [t|—override(foodcangroup,feed, FOODCANGROUP)A
hungervalue(f oodcangroup) > OA
foodcangroup .query_size() > 0 —
I([t + 1)hungervalue(foodcangroup) =
Z value(t, o.feed(foodcangroup))+
{o | o € oBIECTS}
value(t, hungervalue(foodcangroup)) — 1)

We let the value of the hungervalue attribute in a cannibal be the value in
the previous time-point plus the sum of everybody that feeds the cannibals
minus one. This means that unless anyone feeds the cannibal its hungervalue
will decrease by one each time-point.

156

The hunger method also has to be overridden with:

dep ClassMethod(FOODCANGROUP, hunger)
dep [t]—override(foodcangroup, hunger, FOODCANGROUP) A
hungervalue(foodcangroup) < 0 — I([t + 1]hunger(foodcangroup))

dep ClassMethod(FOODCANGROUP, hunger)
dep [t]—-override(foodcangroup, hunger, FOODCANGROUP) A
hungervalue(foodcangroup) > 0 — I([t + 1]-hunger(foodcangroup))

A public query-function query_hunger is also needed.

dep ClassMethod(FOODCANGROUP, query_hunger)
dep [t]—override(foodcangroup, query_hunger, FOODCANGROUP) —
I([t]foodcangroup .query_hunger() = hungervalue(foodcangroup))

Finally we also want to extend the missionaries to be able to feed the canni-
bals. Here we cheat and let the cannibals have a global supply of food. Let
FOODMISGROUP extends MISGROUP and adds the constraint

dep ClassMethod(FOODMISGROUP, supplyfood)
dep [t]—override(foodmisgroup,supplyfood, FOODMISGROUP) A

[t]supply > 0O A

foodmisgroup .query_position() = place A

foodmisgroup .query size() > 0 A

foodcangroup .query_position() = place A

foodcangroup .query_size() > 0 A

value(t, foodcangroup .query_hunger()) >

value(t + 1, foodcangroup .query_hunger()) —

I([t + 1]foodmisgroup .feed(foodcangroup) = 2)

A problem with this is that the hunger is associated to the groups, not to
the individuals. This could probably be solved in the same manner as in
elaboration 2.

Two sets of people (elaboration 19)

There are two sets of missionaries and cannibals too far apart along the
river to interact. A new attribute connected(BANK,BANK) keeps track of
which banks are connected. Any BOAT moves nondeterministically between
all banks. The constraint method move_connected ensures that the origin
and destination are connected.

dep ClassMethod(BOAT, move_connected)
dep [t]—override(boat, move_connected, BOAT) —
boat.query_pos().query_connected(value(t + 1, boat.query_pos())

This problem is solved in 24 seconds.

157

9.4.4 Summary

This example shows how the object-oriented approach can be applied to a
well known scenario. The inheritance and overriding mechanism provides a
simple and familiar way to modify the structure without having to handle all
details by hand.

The speed of finding the solutions varies. Generally the time increases
with increased branching factors. To find the solution to this kind of problem
is a straightforward search problem so loop detection and similar modifica-
tions would probably speed up the search immensely. However, the topic of
this chapter is not the efficiency of the search, but the modularity and elab-
oration tolerance of the approach. It should be observed that even without
focusing on inference speedup, the system is often faster than the comparable
benchmark system developed by Lifschitz et al.

9.5 Object-Oriented Modeling III:
The Road Network

The following scenario is inspired by the Traffic World scenario as proposed
in the Logic Modelling Workshop [88]. The basic idea is to model cars in a
network of roads and crossings. Each car has a top speed and a position. The
road segments (the arcs in the graph representing the road-net) also have a
speed limit. The actual velocity of the car is the maximum velocity allowed
by the following three conditions:

e The speed limit of the road segment where it is driving
e Its own top speed

e The maximum speed where it does not overtake other cars and has a
distance of at least d to the car in front of it.

When a car arrives at a node (“intersection”) then it may continue on any
arc (“road segment”) that connects to that node, except the one it arrived
from.

9.5.1 Henschel and Thielscher’s Solution

The first model of this scenario was published by Henschel and Thielscher [46]
using the Fluent Calculus [100]. Their solution illustrates how the Fluent
Calculus can handle complex interactions between ramification, concurrent

158

actions and continuous change. The only modification to the original Traffic
World is that the outgoing cars from a node are located in a queue in a
virtual waiting area and portioned out in such a way that the safety distance
requirement is not violated on the arcs.

9.5.2 Overview of the Design

TAL currently uses discrete time so our solution naturally has to have the
same restriction, but if each time-step is 0.1 second and there is a speed limit
of 30 m/s we feel that this restriction is not too severe compared to the other
simplifications in the problem formulation itself. As opposed to Henschel and
Thielscher’s solution we do not need to use virtual waiting areas. If a node
is has heavy traffic, cars automatically will queue up on the in-bound arcs of
the node.

We have chosen to model this problem using both the object-oriented
methodology from Chapter 7 and the control approach from Chapter 8. The
classes in the basic scenario are the top class OBJECT, the world classes
GRAPH_ELEMENT, ARC, NODE and VEHICLE, and the ego class CONTROLLER.

Object
OBJECT contains no functionality and is only included for completeness.
Graph Element

GRAPH_ELEMENT extends OBJECT and is an intermediate class used for func-
tionality common to both arcs and nodes. The road network is represented
with a directed graph. In the current example we name the nodes with one
letter and the name of arcs are just concatenations of the start and goal nodes.
Since we are dealing with a static road network in this example, we create
the connections between arcs and nodes at initialization. The connections of
an element are queried with the following method:

e connect(GRAPH_ELEMENT;,GRAPH_ELEMENT) is true if the arc or node
GRAPH_ELEMENT; is connected to GRAPH_ELEMENT,.

Arc

ARC extends GRAPH_ELEMENT. The distances and speedlimits of the arcs are
set in the initialization phase, so the appropriate setters can be skipped.

e distance() returns the length of the arc.

e speedlimit() returns the maximal allowed speed on the arc.

159

Node

NODE extends GRAPH_ELEMENT. The NODESs represent crossings. To simplify
the VEHICLE class and for efficiency reasons the functionality of determining
which vehicle is closest to a node is implemented in this class.

query_closest_leaving() returns the distance to the closest vehicle on an
arc from the node. If the node is occupied by a vehicle, that vehicle is
returned.

query_closest_from() is similar to query_closest_leaving(), but does not
take vehicles in the node itself into consideration.

query_distance_leaving() returns the distance from the node to the ve-
hicle returned from query_closest_leaving(). If no vehicle is leaving then
the maximal integer is returned.

query_closest_approaching() returns the closest vehicle on an arc leading
into the node.

query_green_light() returns the vehicle on an approaching arc that has a
green light. Here we give green light to the closest approaching vehicle
but this function is expected to be overridden with more elaborate
decision methods later.

Vehicle

The VEHICLE class extends OBJECT and keeps track of which arc or node it
is in and how far on the arc it has traveled. It also takes care of updating the
position of the vehicle, taking into consideration its top speed. The attributes
are position, the distance the vehicle has traveled on an arc, and topspeed,
the vehicle’s maximal velocity.

set_place(GRAPH_ELEMENT) sets the location of the vehicle to the
GRAPH_ELEMENT arc or node.

query_place() returns the arc or node the vehicle occupies.

set_position(Integer) sets the distance the vehicle has traveled along its
arc.

query_position() returns the distance the vehicle has traveled along its
arc.

160

e move_vehicle(Integer) moves the vehicle forward Integer units. A vehicle
never moves more than its top speed. If it travels past the arc’s length,
then it is moved into the node.

e set_top_speed(Integer) sets the top speed.

e query closest returns the distance to the vehicle in front of the car. If
there is no car on its arc and all arcs leaving the next node then it
returns the maximal integer.

Controller

The goal of the CONTROLLER is to govern the behavior of its vehicle. The
basic controller only tries to drive 30 units per time point and nondetermin-
istically choose an exit from a node. The attribute of this class is controls
that refers to the vehicle this controller controls.

Modifications and extensions of this class follows in the next section.

e set_controls(VEHICLE) connects the controller to a VEHICLE
e query_controls() returns the VEHICLE the controller controls.

e proceed() forces the vehicle to proceed to a nondeterministically chosen
exit if it is in a node.

e drive() tells the vehicle to try to move 30 units forward.
This controller does not take other vehicles or the nodes query_green_light
function into consideration. It just forces the car to move.
9.5.3 Elaborations
Adding Cars, Nodes or Arcs.

Adding more cars, nodes or arcs is trivial. All that needs to be done is
to create an object of the correct class and initialize its position and other
values.

Drive controller

The controller provided in the basic scenario is far too simplified. The
DRIVECONTROLLER illustrates how straightforward it is to use and extend
the classes from the basic scenario. DRIVECONTROLLER is an elaboration of
CONTROLLER where the drive() method is overridden.

161

dep ClassMethod(DRIVECONTROLLER, drive)
dep [t]—override(drivecontroller ,drive, DRIVECONTROLLER) A
drivecontroller.query_controls() = vehicle A
vehicle.query_place() = arc A
min(value(t, arc.speedlimit()),
value(t, vehicle.query_closest()) — 30) = fizpoint A
arc.query_exit(node) A
(vehicle.query_position() < arc.query_length() — 30 V
node.query_green_light() = arc) —
I([t]vehicle.move_vehicle() = fizpoint)
This prohibits the vehicle from going closer than 30 units to another vehicle.
It also makes the vehicle stop before the crossings unless the vehicle has got
a green light.
This means that if two vehicles controlled by DRIVECONTROLLERS ap-
proach a crossing, one of them will have to stop to let the other pass before
continuing.

Deliberate cars

Henschel and Thielscher call the cars controlled by scenario actions deliberate
cars as opposed to the cars controlled by causal rules. We use the term action
controlled car for cars that are controlled by actions in the scenario and object
controlled car for cars that are driven by a controller object. There is no need
for us to use different classes to distinguish between these types of cars, the
only thing that differs is that there is a controller object associated with the
latter.

Timed light node

The class TIMEDLIGHTNODE represents a crossing with a timed traffic-light.
All the functionality from the ordinary NODE is kept except the function
query_green_light which is overridden with the following implementation:

dep ClassMethod(TIMEDLIGHTNODE, query_green_light)
dep [t]-override(timedlightnode, query_green_light, TIMEDLIGHTNODE) A
[t]timedlightnode.query_green_light() = boolean A
[t + 1]timedlightnode.query_green_light() # boolean —
I([t + 30]timedlightnode.query_green_light() = boolean)

It has to be initialized by switching color between time-point 0 and 1.

162

9.5.4 Summary

This scenario illustrates how an object-oriented approach greatly simplifies
a modular construction of larger scenarios. It also shows how an ego can be
constructed and then gradually extended with more complex behavior.

163

164

Chapter 10

Conclusions and Future Work

The work in this thesis has proposed a number of extensions to the logic TAL.
The methodology used has been to make as few modifications as possible to
the base logic and to take advantage of the distinction between surface and
base languages. Each of the additions has been made incrementally without
losing any of the original functionality.

Using this strategy we have studied a number of modeling problems that
have been considered to be difficult to solve by the RAC community. One
advantage of the methodology used is that the base logic is stable and well
understood and that it has already been proven to work for a wide class
of problems. It has been thoroughly tested on most benchmark examples
proposed by the RAC community, and we have been able to focus on widening
the range of applicability of the logic without relinquishing the ability to
handle the older set of problems or the functionality it implied. It has also
allowed us to develop stable research tools, with a code-base that remains
largely unchanged.

One of the red threads in the thesis has been to develop and demonstrate
techniques for increasing the modularity and efficiency of the representation.
The first step was to incorporate dependency laws, which allow parts of the
world model to be represented apart from action descriptions. The actions
become more succinct and concise as they only have to describe the precon-
ditions and direct effects, not the possible chains of side effects.

The next step towards modularization was to develop a toolkit of tech-
niques to handle the interaction conflicts that can arise from the use con-
currency. This not only allowed us to handle many types of delays, but also
provided the basis for developing an object-oriented methodology for nar-
rative construction that allowed us to construct narratives much larger and
complex than previously possible in TAL.

165

Each object has a clearly defined interface to the rest of the model. This
technique goes a long way towards guaranteeing modularity and elaboration
tolerance. It provides a straightforward basis to exchange, modify or extend
objects, as long as they use the correct interface to the rest of the model.

As a result, the TAL family of logic now has a modular and elaboration
tolerant solution to the triad of frame, qualification and ramification problems
for a large class of applications.

10.1 Future Work

The topic of this thesis has been to extend and develop TAL. The final result
has been shown to model problems orders of magnitude more complex than
was possible with PMON. The examples in the final chapter of the thesis
provide evidence that even much larger problems are within reach.

The TAL family of logics is set up to handle any time structure, but
this thesis has focused on discrete time. We have not felt the need to use
continuous time in the domains we have been working with since the time-
step granularity can be chosen freely. However, investigation into how a
continuous time structure can be combined with concurrency and delays is
an interesting area of future research.

The surface language of TAL is a macro language which is translated
into a second-order logical theory and then reduced to an equivalent first-
order logical theory. Information about the domain structure is lost in this
translation. With more efficient inference methods it might be possible to
take advantage of this structural knowledge and use it to heuristically guide
the inference method.

Regarding the work on object-orientation and control, the work presented
here is only a first iteration. We have shown how the basic control structures
can be modeled, and how controllers can easily be extended incrementally.
Using the GOLOG family of languages to solve the same type of problems
is an active area of research. It would therefore be very interesting to con-
tinue our work with a deeper analysis and comparison between our approach
and GOLOG. Another future area of research is to investigate the spectrum
between GOLOG-like “programs” that try and reach a goal and the more
restricted domain rules used to prune the search space in TLplan-influenced
planners [7], such as TALplanner.

All in all there are many different avenues of research available for the
continued development of TAL. The requirements of its application domains
will continue to govern the direction of the research required in the future.

166

Appendix A

TAL Without Dependency
Laws

In this appendix, we introduce TAL (Temporal Action Logic) without de-
pendency laws and static constraints. It consists of a many-sorted surface
language £(ND) (the language for action scenario descriptions), the many-
sorted first-order logic £(FL), and translation functions from £(ND) into
L(FL). As presented here, it is closer to what historically was called the
PMON logic [90, 19, 20]. Dependency laws and static constraints are added
in Chapter 4 and formally defined in Appendix B which results in the com-
plete TAL logic.

The first section defines the surface language £(ND), Section 2 defines the
base logic £L(FL). Section 3 describes the foundational axioms and Section 4
contains the translation function from £(ND) to £(FL) and the minimization
policy. Finally Section 5 provides some examples to illustrate the translation
process.

A.1 L(ND)

A.1.1 Sorts and Expressions

Definition A.1.1 (Value sorts)

There is a number of sorts V = {V1,... ,V,} for values (including agents and
various types of objects); one of these sorts can be the sort B = {true, false}.
For each value sort V;, there is a corresponding feature sort F; for features
having values in the value sort. There is also a number of feature symbols f;,
each feature associated with a sort V;, x -+ x V;, — Fj, where n > 0

167

is the arity; for each feature symbol, there is an associated value function
valuey; of sort T x V;, x -+ x Vi, — Vi (valuey,(7,w) will often be written
value(t, fi())). O

Definition A.1.2 (Temporal sort)

There is a temporal sort 7 associated with a number of constants 0, 1, 2, 3,
. and sy, ty, ..., a function + and three predicates =, < and <. The sort T

is assumed to be interpreted, but can be axiomatized in first-order logic as a

subset of Presburger arithmetics [61] (natural numbers with addition). O

Definition A.1.3 (Action sort)
There is a sort for actions A. There is a number of action symbols 4;, each
symbol associated with a sort V;, x --- x V; — A, where n > 0 is the arity.

O
Definition A.1.4 (elementary time-point expression)
An elementary time-point expression (ETE) is a temporal term. O
Definition A.1.5 (elementary value expression)
An elementary value expression (EVE) is a value term. O

Definition A.1.6 (elementary feature expression)
An elementary feature expression (EFE) is a term of sort F; for some i. O

(We will also allow feature symbols to take other EFEs as arguments; this is a
shorthand for using the value functions and will be removed in the translation

to L(FL).)

Definition A.1.7 (Fluents)
Let ¢ be a logic formula. Then, fluents(¢) is defined as follows:

e If ¢ is of the form Vo'[¢)], then fluents(¢) = U'}i'l fluents([vt — v;])
o If ¢ is of the form —1), then fluents(p) = fluents(v)).

o If ¢ is of the form 9 ® 7, where ® € {A,V,—, <>}, then fluents(¢) =
fluents(y) U fluents(y).

e If ¢ is of the form [7]fx(w1,... ,wm) = Q, then
fluents($) = fr(wi, ... ,wm)

e Otherwise fluents(¢) = 0. O

168

A.1.2 Formulas

Definition A.1.8 (Elementary fluent formula) .
An elementary fluent formula (EFIF) has the form f(w!,... ,win) = ¥,
where f is a feature symbol of sort V;, x --- xV; — Fi. If Vi = B, the

formula can also have the form f (wi‘, ... ,win), which is a shorthand notation
for f(wi',... ,wir) = true. O

Definition A.1.9 (Fluent formula)
A fluent formula (FIF) is an EFIF or a combination of FIFs formed with the
standard logical connectives and quantifiers. O

Definition A.1.10 (Fixed fluent formula)

Let 7,7' be ETEs, w,w' be EVEs and a be an FIF. Then [7] o, 7 =7/, 7 < 7/,
7 < 7" and w = ' are fized formulas (FF). The formula [7] « is called a fized
fluent formula (FFIF). O

Definition A.1.11 (Logic formula)
A logic formula (LF) is an FF or a combination of LFs formed with the
standard logical connectives and quantifiers. O

A.1.3 Reassignment

Definition A.1.12 (Elementary reassignment formula)
An elementary reassignment formula (ERF) is a formula of the form

(7, 7] f(W, ... ,wir) := {wk,... ,wE} or [1,7] f(W1,... ,win) :=
—{wk,... ,wk}, where f is a feature symbol of sort [, 7] Vi, x---x V;,, — Fi
and all w; are value constants or value variables. a

Definition A.1.13 (Restricted reassignment formula)
A restricted reassignment formula (RRF) is a conjunction of ERFs with the
same time interval. An RRF A,[7,7'] ¢; can be abbreviated [,7'] A, ¢. O

Definition A.1.14 (Reassignment formula)

A reassignment formula (RF) is of the form (\/,[7,7'] ¢; A 4;), where all ¢;
are RRFs with the same time interval, each EFE occurs in one disjunct iff it
occurs in all disjuncts, and each v; is a logic formula representing duration
constraints for the time interval. Constraints in 1 may only be placed on
the EFEs occurring in ¢;, and only during the time interval (7,7']. An RF
(V;[7,7'] ¢i) A9 can be abbreviated [r,7] (\/, ¢i) A .]

169

Definition A.1.15 (Conditional reassignment formula)

A conditional reassignment formula (CRF) is of the form [7] ¢(?) — [, 7] 6(D),
where 7 < 7/, ¢(?) is a fluent formula, and 6(7) is a reassignment formula.

a

A.1.4 Statements

Definition A.1.16 (Observation statement)
An observation statement (labeled obs) is a closed logic formula containing
no quantification over time. O

Definition A.1.17 (Action occurrence statement)
An action occurrence statement (labeled occ) is an expression of the form

[7,7'] A; or [1,7'] Ai(w',... ,win), where 7,7’ are ETEs containing no tem-
poral variables, and A4; is an action symbol of arity 0 or of sort V;, x---xV; —
A, respectively. O

Definition A.1.18 (Action law schema)

An action law schema (labeled acs) is an expression of the form [t,t'] 4; ~ A
or [t,t'] Ai(v},...,vin) ~ A, where t,t' are temporal variables, 4; is an
action symbol of arity 0 or of sort V;, x --- xV; — A, respectively, and A

is a conjunction of CRFs where t,t’ are the only free variables. O

An action law schema corresponds to an action occurrence statement iff they
refer to the same action symbol.

Definition A.1.19 (Schedule statement)

A schedule statement is a conjunction of CRF's. O
The result of an action occurrence statement [7,7’] Ay(wit, .. win) wrt its
corresponding action law schema [t,'] A;(vi',... ,v;0) ~ Ais Alt = 7][t' =
Pl o] oy o wip].

Definition A.1.20 (Action scenario description)
An action scenario description (or scenario description) consists of a finite
set of:

e Observation statements, prefixed with the label obs,
e Action law schemas, prefixed with the label acs,

e Action occurrence statements, prefixed with the label occ. O

170

Definition A.1.21 (Expanded action scenario description)

An expanded action scenario description consists of a finite set of observa-
tion statements and schedule statements. For each action scenario descrip-
tion, the corresponding expanded action scenario description is obtained by
replacing each action occurrence statement with its result with respect to its
corresponding action law schema and removing all action law schemas. O

A.2 The Base Logic L(FL)

The language £(FL) is a many-sorted first-order language with equality. We
use the standard logical connectives —, A, —, <> and V, and the standard
quantifiers V and 3 over temporal, value and fluent variables. We use the
sorts from L(ND). For each value sort V;, we use two predicates Holds; :
T x F; x dom(F;) and Occlude; : T x F; (the indices will usually be omitted).

A.3 Foundational Axioms

We will assume that the following axioms are always part of any translation
of action scenarios in £L(ND) into £L(FL). I'yya will denote the set of unique
names axioms for the action sort, each of the value sorts, and each of the
fluent sorts and I' 4., the set of domain closure axioms for the value sorts. In
addition, I',,; will denote the set of value axioms: For each feature symbol
fiin F of sort V;; X ..., xV; — Fg,

Vit. /\ (valuefi (t,w) =uw* & Holds(t,fi(w),wk))

Uevil X---Xvin, wkEVk

Let Tra =T'una Ul geg UT g

A.4 Translation Functions

EVEs w in £(ND) are translated using the Trangyg function:
If w = value(r, fr(w1,--. ,wn)), then Trangyg(w) = valuey, (1, Trangye(T, w1),
o s Trangye(T,wy)); otherwise Trangygp(w) = w.

Value expressions w in £(ND) are translated using the Tranyg function:
If w= fr(wi,...,wn), then Tranyg(t,w) = values, (7, Trangye(T,w1), ... ,
Trangyg(T,wy)); otherwise Tranyg(r,w) = Trangyp(w).

EFEs f in L(ND) are translated using the Trangpg function: If f =
fe(wi, ... ,wp), then Trangrp(t,w) = fr(Trangye(t,w1),- .. , Trangye(T,wy))-

171

Logic formulas in £(ND) are translated to £(FL) by applying the function
Tranyr, defined by the following rewrite rules:

a
8

[rlma = fr] o
[rfla®B = [rla®[r] B
[r]Vola] = Vo[[r] of
[7]3v]e] = Jo[[r] ¢]
w=w" £ Trangyg(w)= Trangye(w')

| |
o
o,

m
\/ Holds(t, Trangre(f), Trangve(w;))
j=1

[T]f = {(Ul,... awm}

Reassignment formulas in £(ND) are translated to £(FL) by applying the
following rewrite rules, where ¢ is a fresh temporal variable:

def

7,7 f=Q = Trangp([7'] f = O AVET <t <7 —
Occlude(t, Trangre(f))
(7,7 f:==Q & = Tranpp([r'] f = O AVET <t <7 —
Occlude(t, Trangre(f))

The Nochange aziom I'ycog is used as a filter, to remove models with change
that is not justified. I'ycg is the union of all I' y¢g,; such that for each F;:

nea; =Vt, f4v¢(~Occlude(t + 1, f*) —
Holds(t, f*,v') <> Holds(t + 1, f¢,v%))

Let T be an action scenario in £L(ND). Let I'ops and I's¢cp denote the
translations into £(FL) of the observations and the expanded action laws
from T, respectively. In addition let I'y,q denote the foundational axioms
which include the unique names axioms, I'yy 4 and the axioms for the time
structure. Let Trans(Y) be the translation of T into L£(FL). Then the
formula « is entailed by Trans(Y) iff

and Alnca ATos A CiTCSo(FSCD; Occlude) |= o

Since Occlude only occurs positively in I'sgp, we are guaranteed a reduction
to first-order logic. In practice we can use predicate completion instead of
circumscription.

172

A.5 Examples

Example A.5.1 (Yale Shooting Scenario, Hanks and McDermott [44])
This example shows the translation from surface language to L(FL) of the
Yale Shooting Problem.

obs; [0]alive A —loaded

occy [2,4] Load

occa [5,6] Fire
[t1,t2] Load ~ [t1,12] loaded := true
[

t1,t2] Fire ~ ([t1] loaded — [t1,t2] (loaded := false A alive := false)).

acsy

acsy
After expansion we get:

obs; [0]alive A —loaded
acs; [2,4]loaded := true
acsy [5] loaded — [5,6] (loaded := false A alive := false).

The corresponding set of labeled wifs in £(FL) is

obs; Holds(0, alive, true) A —Holds(0, loaded, true)
acs; Holds(4,loaded, true) A (Vt.2 < t < 4 — Occlude(t,loaded))
acsy Holds(5,loaded, true) —
[(Holds(6,loaded, false) A Holds(6, alive, false)) A
Occlude(6,loaded) A Occlude(6, alive)].

Circumscription of I'scp with Occlude minimized results in the following:

Vt, f.Occlude(t, f) <
[(2<t<4Af=loaded) V
(Holds(5,loaded,true) At =5 A (f = aliveV f = loaded))] O

The most important observations about TAL is that it permits scenarios with
nondeterministic actions, actions with duration, partial specification at any
state in the scenario, context dependency, and incomplete specification on
the timing and order of actions.

173

174

Appendix B

Modifications of TAL for
Dependency Laws

This appendix contains the definitions of dependency laws and the modified
minimization policy.
B.1 Dependency Laws

Definition B.1.1
A dependency law has the form

Vi, vly = ([r]e > [7]B)], (B.1)
where
e 7 and 7 are ETEs,
e 7 is a function of ¢; and is greater than or equal to ¢,

e 7' is a function of 7 and is greater than or equal to 7,

v, the precondition, is a LF that does not contain conditions on fluents
outside the time interval [7, '],

[T]a, the trigger, is a FFIF with no occurrences of value, and

[7']8, the postcondition, is a FFIF where all EFIFs are non-nested. 0O

175

If 7 < 7/, we call the dependency law a delayed dependency law.
Dependency laws will be labeled with the prefix dep in action scenario
descriptions in £(ND).
The formula Vi1, 7([7]a > [7']3) may be used as a dependency law as an
abbreviation of Vt1,v[true — ([t]la > [7']8)]. If 7 = 7 we may also write

[T](a > B).
The following macro-translation definition provides the proper translation
for the dependency law from L£(ND) into the logic L(F'L).

Definition B.1.2
Let

@ =Vt,vly = ([rla > [7]8)]
be a dependency law. Then,

Tran(®) = Vt1,v [Tranrr(y A [r]a — [7']8)] A (B.2)
Vi1, z,0[(Tranpp(0 < ti Ay AVE (' +1 =71 = [t']-a) A
Flon) z=f) -
fEfluents(B)
Occlude(T', 2)]. (B.3)

O

B.2 Minimization Policy

Static constraints are translated using Tranpp. Let I'4c¢c and 'pgp denote
the translations into £(FL) of the static constraints and the dependency laws
in an action scenario.

Let T be and action scenario in £(ND), and T'rans(Y) be its translation
into L(FL). Then the formula « is entailed by T'rans(Y) iff

and Alnca ANToss AT acc N CiTCSO(PSCD AT pEp; Occlude) IZ o
(B.4)

Note that the the Occlude predicate only occurs positively in a translation
of an action scenario. Consequently, we can show that the circumscription
above is reducible to a logically equivalent first-order formula.

176

Appendix C

Formal Specification of
TAL-C

In TAL-C we have chosen to change some of the notation from earlier ver-
sions of TAL, in order to make the language more consistent. Also, more
importantly, the changes allow us to generalize the form of the dependency
laws. Section C.1 contains the definition of the surface language used in TAL-
C. The base language £(FL) and a translation from the surface language to
L(FL) is provided in Section C.2. Finally Section C.3 contains an example
of the translation process.

C.1 The Language £L(ND) for TAL-C

Definition C.1.1 (Value sorts)

There are a number of sorts for values V; (including agents and various types
of objects). One of these sorts is the boolean sort B with the constants
{true, false}. Further, there are a number of sorts for features F;, each one
associated with a value domain dom(F;) = V; for some j. O

Definition C.1.2 (Action sort)
There is a sort for actions A. O

Definition C.1.3 (Temporal sort)

Finally, there is a temporal sort 7 associated with a number of constants
0,1,2,3,... and sj,t;,... and a function + and three predicates =, < and
<. T is assumed to be an interpreted sort, but can be axiomatized in first-

177

order logic as a subset of Presburger arithmetics [51] (natural numbers with
addition). O

Definition C.1.4 (Time-point expression and temporal formula)
A time-point expression is a temporal term. If 7, 7/ are time-point expres-
sions, then 7 = 7/, 7 < 7/ and 7 < 7' are temporal formulas. O

Definition C.1.5 (Value formula)
A wvalue formula is of the form w = w' where w and ' are value terms. O

Definition C.1.6 (Elementary fluent formula)

An elementary fluent formula has the form f(w)=v, where f is a feature
name of sort V; X ... x YV, — F; and W is a vector of value terms such that
each term w; is of sort V; and v is a term of sort dom(F;). It can also have
the form f(w) if dom(F;) = B, or f=v if f is a feature variable. O

Definition C.1.7 (Fluent formula)
A fluent formula is an elementary fluent formula or a combination of fluent
formulas formed with the standard logical connectives and quantifiers. O

Definition C.1.8 (Fixed fluent formula and becomes formula)
Let 7, 7' be time-point expressions and « a fluent formula. Then [r, '] and
[T]a are fized fluent formulas, and Cp([T]a) is a becomes formula. O

Definition C.1.9 (Reassignment, interval and occlusion formula)

Let 7,7' be time-point expressions and « a fluent formula. R((7,7']a) and
R([r]a) are reassignment formulas, I((1,7']c) and I([r]a) are interval for-
mulas, and X ((7,7']a) and X ([r]a) are occlusion formulas. O

Those formulas with one time-point expression are called instantaneous, and
those with two are called time spanning.

Definition C.1.10 (Occurrence formula)

An occurrence formula has the form [7, 7']®(w), where T and 7’ are elementary
time-point expressions, ® is an action name of sort V; X ... x V,, - A and
the value terms in @ are of matching sorts. O

Definition C.1.11 (Static formula)
A logical combination of quantifiers, temporal and value formulas, fixed fluent
formulas and /or becomes formulas is called a static formula. O

178

Definition C.1.12 (Change formula and balanced change formula)

A change formula is a formula that has the form, or is rewritable to the form,
Qa1 V---Vay,) where Q is a set of quantifiers, and each ¢; is a conjunction of
static, occlusion, reassignment and interval formulas. The change formula is
called balanced iff (a) whenever a feature f(w) appears inside a reassignment,
interval or occlusion formula in one of the «; conjuncts, then it must also
appear in all other «;’s inside a reassignment, interval or occlusion formula
with exactly the same temporal argument; and (b) any existentially quan-
tified variable v in the formula, whenever appearing inside a reassignment,
interval or occlusion formula, only does so in the position f(@) = v. O

Definition C.1.13 (Application formula)
An application formula is any of the following:

1. A balanced change formula.

2. A — A, where A is a static formula and A is a balanced change formula.
3. A conjunction of application formulas.

4. Vt[®], where @ is an application formula.

5. Vv[®], where & is an application formula. O

An action law (labeled acs) has the form [t,t'|®(a) — U where [t,t'|®(a) is an
occurrence formula, ¥ is an application formula in which the variables in @
may occur free. A dependency law (labeled dep) is an application formula. An
observation (labeled obs) is a static formula. An occurrence (labeled occ) is
an occurrence formula [, 7']®(w) where 7, 7/, W all are constants. A domain
formula (labeled dom) is a universally quantified conjunction of Per and
Dur statements and other domain-specific statements of choice, universally
quantified over time.

Finally, a scenario is a tuple (dom, law, dep, obs, occ) where each element
is a set of statements with the corresponding labeling.

C.2 Translation from £L(ND) to £L(FL)

L(FL) is a first-order language consisting of the predicates Holds; : T X
Fi x Dom(F;), Occlude; : T x F; (normally, the index 7 is omitted) and
Occurs : T x T x A, and all predicates relating to the value domains and
temporal domain from £(ND). There is an isomorphism of sorts and names
between £(ND) and L(FL).

179

Definition C.2.1

Tran is called the ezpansion transformation, and is defined as follows (the
obvious parts have been left out). All variables occurring only on the right-
hand side are assumed to be fresh variables.

Tran([7)f(w)) = Holds(t, f(),true) (C.1)

Tran([7]f(w)=v) = Holds(r, f(w),v) (C.2)

Tran([t]-a) = - Tran([7]c) (C.3)

Tran([t]aCB) = Tran([t]a) C Tran([7]B) (C.4)
where C € {A\,V,—, < }.

Tran([7]Qu[e]) = Qu[Tran([r]e))] where Q € {V,3}. (C.5)

Tran([t,7']a) = V[r <t <7 — Tran([t'|a)] (C.6)
Tran(Cr([r]e)) = V¥[r =t +1— Tran([t']|-a)] A (C.7)
Tran([7]a)

Tran(X ([7]f(@))) = Occlude(t, f()) (C.8)

Tran(X ([7]f(@)=v)) = Occlude(r, f()) (C.9)

Tran(X ([7]ma)) = Tran(X([7]e)) (C.10)

Tran(X([raCB)) = Tran(X([r]o)) A Tron(X([7]8) (C11)
where C € {A\,V,—, < }.

Tran(X ([T]Qu[a])) = VYv|[Tran(X([r]a))] where Q € {V,3}.(C.12)
Tran(X ((1,7'))) = V[r <t <7' = Tran(X([t']|e))] (C.13)
Tran(R((,7']a)) = Tran(X((s,t],a)) A Tran([7]a) (C.14)

Tran(R([T]a)) = Tran(X([7],a)) A Tran([T]c) (C.15)
Tran(I((1,7')a)) = Tran(X((r,7"]a)) A Tran([T + 1,7])

(C.16)

Tran(I([7]e)) = Tran(X([7],a)) A Tran(|7]c) (C.17)

Tran([r,7'|®(@)) = Occurs(r,r’,®w)) (C.18)

O

Notice the translation of the X operator, in particular lines (C.10-C.12),
which will always occlude all features referenced inside a reassignment or
interval formula.

The second-order circumscription of a number of predicates P = Py,... , P,
in the theory T'(P) is denoted Circso(T'(P);P) [60]. Intuitively, the for-
mula Circso(T(P); P) represents a (second-order) theory containing I'(P)
and where the extensions of the predicates P are minimal.

180

Definition C.2.2
Transformation of scenarios from £(ND) to L(FL):

1. Let dom, acs, dep, obs and occ be the sets of statements with labels
dom, acs, dep, obs and occ respectively, completed with universal quan-
tification for variables occurring freely.

2. Let Tgom = Tran(dom), Lecs = Tran(acs), Tgep = Tran(dep), Tops =
Tran(obs) and T'ycc = Tran(occ).

3. Let I be Circso((Tacs U Lgep)(Occlude); Occlude) U T gom,
UCircso(Tocc(Occurs); Occurs) UT gp UT £ UT prpq. T is the theory that
is used for proofs in TAL-C. O

The set I'; contains the equivalent of the TAL nochange axiom enhanced to
deal with durational features, plus two more axioms relating to Per and Dur.

Ty = U{ (C.19)

Vfi, t,v; [Dury(fi t,vi) —
(=Occlude;(t, fi) — (Holds;(t, fi,vi)))],

Vi, t,vi[Pery(fi,t) = (=Occlude;(t + 1, f;) —
(HOIdsi(t’fiav’i) < HOIds'L(t +]-a.fiavi)))]a

Vfi, t,vi,vi Duri(fi,t,vi) A Duri(fi,t,v) — v = v,

Vf,-,t[Pen(fi,t) D E|’Uz' Duri(f,-,t,vi)] }

Finally, the set I'f,q consists of foundational axioms for unique names for
actions, features and values, and constraints that a feature has exactly one
value at each time-point.

An important property of the circumscribed theory I' is that although
it is a second-order theory due to the second-order nature of circumscrip-
tion, it can be reduced to an equivalent first-order theory, and in a very
convenient form. The following is a principal account for this reduction;
for details, the proofs in [21] are directly applicable. Due to the definition
of action laws and dependency laws occlusion can only occur on the right-
hand side A of an implication I' — A. Furthermore, due the restrictions
on balanced change formulas and the definition of the Tran function, oc-
clusion only occurs positive in A, and if it occurs in a disjunction inside
A, then it occurs identically on both sides. Therefore, the Occlude; parts,
using the law of distributivity, can be separated from the rest of I', giving
A — (A; A%°) A AP and from there to A — A" A (A; A — A). Thus, it

181

can be shown that each expanded action law or dependency law is equivalent
to a formula A — AP A (A, Vi, fil A" — Occlude;(t, f;))).-

Now, there are two useful theorems by Lifschitz [63], the first stating that
if B does not contain P, then Circso(I'(P) A B; P) <> Circso(I'(P); P) A B,
and the second stating that if F(Z) does not contain P, then Circgo (VZF(Z) —
P(z); P) <> (VZF(z) +> P(x)). From these theorems and the equivalent form
above it follows that Circso((T'igw U Laep)(Occlude); Occlude) = (A Ay —
AR A (N, VE, Fil(Vg Aly) <> Occlude;(t, £:)]), which is first-order.

C.3 Example

In order to illustrate the translation function from the previous section, an
example scenario in TAL-C is transformed from £(ND) to £(FL).

Example C.3.1

This is a complete translation of a scenario with two actions to L(FL)
and minimization of the Occurs and Occlude predicates. The first action
LightFire(person, thing) expresses the fact that person is trying to light thing.
The second action PourWater(person, thing) means that person is pouring wa-
ter on thing. The first and second of the dependency laws describe the be-
havior of the burning feature (in addition to the first domain statement which
declares burning to be persistent), whereas the third describes the behavior
of the dry feature. The associated influences are fire-infl and wet-infl.

dom; Vit(Per(dry(z),t) A Per(burning(z),t) A
Dur(fire- infl(a, z), false, t) A Dur(wet-infl(a, z), false, t))
acs; [s,t]LightFire(a,z) — I((s,t]fire-infl(a,z))
acsy [s,t]PourWater(a, z) — I((s,t|wet-infl(a,x))
dep1 [s,s + 3](fire-infl(a, z) A dry(z) A wood(z)) —
R([s + 3]burning(z))

deps [s]—dry(z) — R([s]—-burning(z))

deps [s]wet-infl(a,z) — R([s]-dry(z))

obs; [0]dry(wood1) A —burning(wood1) A wood(wood1)
occy [2, 7|LightFire(bill, wood1)

ocCe [5, 6]PourWater (bob, wood1)

182

Translation to £L(ND) yields

Tiagw = {

Vs,t,a,z.0Occurs(s,t,LightFire(a,z)) —

Vi'[s < t' <t — Holds(t', fire-infl(a, z), true)] A

Vi'[s < t' <t — Occlude(t,fire-infl(a, z))],
Vs, t,a,z.Occurs(s,t, PourWater(a, z)) —

Vit'[s <t' <t — Holds(t', wet-infl(a, x), true)] A

VE'[s <t' <t — Occlude(t', wet-infl(a, z))],
Vs,a,z(Vt'[s <t' < s+ 3 — (Holds(t, fire-infl(a, z), true) A

Holds(t',dry(z), true) A Holds(t',wood(z), true))] —

Occlude(s + 3, burning(z)) A Holds(s + 3,burning(z), true)),

Vs,a,z.~Holds(s,dry(z),true) —

(Occlude(s, burning(z)) A = Holds(s, burning(z), true)),
Vs,a,z.Holds(s, wet-infl(a, z), true) —

(Occlude(s,dry(z)) A ~Holds(s,dry(z), true))}

Toce = {Occurs(2,7,LightFire(bill, woodl)),
Occurs(5, 6, PourWater(bob, woodl))}

Tops = {Holds(0,dry(woodl),true) A =Holds(0, burning(woodl), true) A
Holds(0, wood(wood1), true) }

Circumscribing Occurs in Iy and Occlude in I'jqq, UT gep yields the following
exact descriptions of the two predicates, which together with the original
theory and the additional components constitute I'. Notice that the Occlude
part specifies exactly the exceptions to the default rules for persistent and
durational features, as expressed in the two first axioms in I'y;.

Vs, t,e [Occurs(s,t,e) <
((s =2 At =7TAe = LightFire(bill,wood1)) V
(s =5At=06Ae=PourWater(bob,wood1)))]

183

vt', f (Occlude(t', f) +» 3s,t,a, z]

((s <t' <tA f=fire-infl(a,z) A Occurs(s,t,LightFire(a,z))) V
(s <t' <tAf=wet-infl(a,z) A Occurs(s,t,PourWater(a,z))) V
(' =s+3A f=burning(z) AVs'[s <s' <s+3—

Holds(t', fire-infl(a, x), true) A Holds(t',dry(z), true)]) V
(f = burning(z) A ~Holds(t',dry(z), true)) Vv
(f = dry(z) A Holds(t', wet-infl(a, z), true)))])

Below is the complete theory except I'y; and I'fpq:

Vit(Per(dry(z),t) A Per(burning(z),t) A
Dur(fire-infl(a, z), t, false) A Dur(wet-infl(a, z),t,false)) A (C.20)
Vs, t,a,z.Occurs(s,t, LightFire(a,z)) —

Vi'[s < t' <t — Holds(t', fire-infl(a, z), true)] A (C.21)
Vs, t,a,z.0Occurs(s,t, PourWater(a, z)) —
Vt'[s < t' <t — Holds(t', wet-infl(a, z), true)] A (C.22)

Vs, t,a,z(Vt'[s <t < s+ 3 — (Holds(t',fire-infl(a,), true) A
Holds(t',dry(z), true) A Holds(t', wood(z), true))] —

Holds(s + 3, burning(z), true)) A (C.23)
Vs,a,z.~Holds(s,dry(z), true) —

—Holds(s, burning(z), true) A (C.24)
Vs, a,z.Holds(s, wet-infl(a,), true) —

—Holds(s,dry(z), true) A (C.25)

Holds(0, dry(wood1), true) A

—Holds(0, burning(wood1), true) A (C.26)

Holds(0, wood(wood1), true)A

184

Vs, t,e [Occurs(s,t,e) < (C.27)
((s = 2 At =7 A e = LightFire(bill,wood1)) vV (C.28)
(s =5 At =6 Ae= PourWater(bob,woodl)))] A (C.29)
V', f (Occlude(t', f) <> s, t,a,z|
((s <t' <tAf=fire-infl(a,z) A

Occurs(s,t, LightFire(a, z))) V (C.30)
(s <t' <tAf=wet-infl(a,z) A
Occurs(s,t,PourWater(a,z))) V (C.31)

(' =s+3Af=burning(z) AVs'[s<s' <s+3—

Holds(t', fire-infl(a, z), true) A Holds(t',dry(z), true)]) v (C.32)
(f = burning(z) A ~Holds(t', dry(z), true)) Vv (C.33)
(f = dry(z) A Holds(t', wet-infl(a,), true)))]) (C.34)

An informal proof that the wood is not burning at time-point 7 can be con-
structed as follows. Due to C.29 and C.22 Holds(6, wet-infl, true) is true, C.33
makes sure this is legal with respect to I's;. The value of Holds(6,dry, true)
must be false due to C.25 and C.34, which means that Holds(6, burning, true)
is also false due to C.24 and C.33. The only way to influence the feature
burning to become true is via C.23, which states that the wood has to be dry
at 3 consecutive time-points in order to burn. Furthermore, the only way
that the wood can burn at time-point 7 is if it has been dry at time-points 5,
6 and 7. But we have proven that it is not dry at time-point 6, so the wood
cannot be burning at time-point 7. O

185

186

Appendix D

Complete Lift Scenario

This scenario was described in Section 9.3. It uses TAL-C syntax instead of
the shorthand notations presented in Chapter 7.

D.1 Scenario Setup

D.1.1 Value Sorts

boolean
classnames
objects
1lift
button
controller
functions

Integer

{ false, true}
{ objectscl, liftcl, buttoncl, controllercl }
{lifta, b0, b1, controllerl}
{lifta}
{b0,b1}
{ controllerl}
{ query_floorf, init_floorf, move_upf, move_downf,
press_buttonf, reset_buttonf, attach_buttonf,
query_attachedf, set_liftf, serve_floorf, goto_floorf,
new_goalf, query_pressedf, start_floorf}
{ FIXED POINT DOMAIN 'INTEGER’:
FrROM 0 TO 10 WITH 0 DECIMALS }

subclass(classnames, classnames) : boolean
override(objects, functions, classnames) : boolean

D.1.2 Action Statements

acs; [t1, t2) PressButton(button) ~~ I([t1] press_button(button))
acsy [t1, t2) ResetButton(button) ~» I([t1] reset_button(button))

187

acss [t, to] InitializeLift(lift, Integer) ~~ I([t1] init_floor(lift, Integer))
acsy [t to] AttachLift(controller, lift) ~ I([t1] set_lift(controller, lift))
acss [t t2] AttachButton(button, Integer) ~~

I([t2] attach_button(button, Integer))

D.1.3 Action Occurrences (initializing the problem)

occ; [0, 0] AttachLift(controllerl, lifta)
occy [0,0] AttachButton(b0, 3)

occs [0,0] AttachButton(bl, 5)

occy [0,0] PressButton(bl)

occs [0, 0] PressButton(b0)

occg [0, 0] InitializeLift(lifta, 0)

D.2 Classes

D.2.1 Definition of subclass

acc [OJsubclass(sub, super) <, {
(sub, super) = (buttoncl, objectcl)V
(sub, super) = (liftcl, objectcl)V
(sub, super) = (controllercl, objectcl) }

D.2.2 Button

attach_button(button, Integer) : boolean

attached(button) : Integer

press_button(button) : boolean

query_attached(button) : Integer

query_pressed(button) : boolean

pressed (button) : boolean

reset_button(button) : boolean

depi, Vi, classnames, button [[t] subclass(buttoncl, classnames) —
I([t] override(button, press_buttonf, classnames))]

depyp Vi, button [[t] —override(button, press_buttonf, buttoncl) A
[t] press_button(button) — I([t] pressed(button))]

deps, Vi, classnames, button [[t] subclass(buttoncl, classnames) —
I([t] override(button, reset_buttonf, classnames))]

188

depyy Vi, button [[t] —override(button, reset_buttonf, buttoncl) A
[t] reset_button(button) — I([t] —pressed(button))]

deps, Vi, classnames, button [[t] subclass(buttoncl, classnames) —
I([t] override(button,attach_buttonf, classnames))]

depsy Vi, button, Integer [[t] —override(button, attach_buttonf, buttoncl) A
[t] attach_button(button, Integer) — I([t] attached(button) =
Integer)]

depy, Vi, classnames, button [[t] subclass(buttoncl, classnames) —
I([t] override(button,query_attachedf, classnames))]

depyy Vi, button [[t] —override(button, query_attachedf, buttoncl) —
I([t] query_attached(button) = value(t, attached(button)))]

depsq Vi, classnames, button [[t] subclass(buttoncl, classnames) —
I([t] override(button,query_pressedf, classnames))]

depsy Vi, button [[t] —override(button, query_attachedf, buttoncl) —
I([t] query_pressed(button) = value(t, pressed(button)))]

depe, Vi, classnames, controller [[t] subclass(controllercl, classnames) —
I([t] override(controller,set_liftf, classnames))]

depgy Vi, controller, lift [[t] —override(controller, set_liftf, controllercl) A
[t] set_lift(controller, lift) — I([t] controlled_lift(controller) = lift)]

D.2.3 Lift

currentfloor(1ift) : Integer
top_floor(1ift) : Integer
init_floor(1ift, Integer) : boolean
move_down(1lift) : boolean
move_up(lift) : boolean
query_floor(1ift) : Integer
depi, Vi, classnames, lift [[t] subclass(liftcl, classnames) —
I([t] override(lift, query_ floorf, classnames))]
depiy Vi, lift [[{] —override(lift, query_floorf, liftcl) — I([t] query_floor(lift) =
value(t, currentfloor(lift)))]
depa, Vi, classnames, lift [[f] subclass(liftcl, classnames) —
I([t] override(lift,init_floorf, classnames))]
depyy Vi, lift, Integer [[t] —override(lift, query_floorf, liftcl) A
[¢] init_floor(lift, Integer) — I([t] currentfloor(lift) = Integer)]
deps, Vt, classnames, lift [[t] subclass(liftcl, classnames) —
I([t] override(lift, move_upf, classnames))]

189

depsy Vi, lift, Integer [[t] —override(lift, move_upf, liftcl) A [t] move_up(lift) A
[t] —move_down(lift) A [t] query_floor(lift) < top_floor(lift) —
I([t+1] currentfloor(lift) = value(t, currentfloor(lift)) + 1)]

depu, Vi, classnames, lift [[t] subclass(liftcl, classnames) —
I([t] override(lift, move_downf, classnames))]

depay Vi, lift, Integer [[{] —override(lift, move_downf, liftcl) A
[t] move_down(lift) A [t] query_floor(lift) > 0 — I([t+
1] currentfloor(lift) = walue(t, currentfloor(lift)) — 1)]

deps, Vi, classnames, lift [[t] subclass(liftcl, classnames) —

I([t] override(lift,set_top_floorf, classnames))]

depsy Vi, lift, Integer [[t] —override(lift, set_top_floorf, liftcl) A

[t] set_top_floor(lift, Integer) — I([t] top_floor(lift) = Integer)]

D.2.4 Controller

controlled_lift(controller) : 1ift

set_lift(controller,1ift) : boolean

goal_floor(controller) : Integer

depi, Vi, classnames, controller [[t] subclass(controllercl, classnames) —
I([t] override(controller,goto_floorf, classnames))]

depiy Vi, controller, lift [[f] —override(controller, goto_floorf, controllercl) A
[t] controlled_lift(controller) = lift A
[t] query_floor(lift) < goal_floor(controller) — I([t] move_up(lift))]

depi. Vt, controller, lift [[{] —override(controller, goto_floorf, controllercl) A
[t] controlled_lift(controller) = Lift A\
[t] query_floor(lift) > goal_floor(controller) — I([t] move_down(lift))]

depa, Vi, classnames, controller [[t] subclass(controllercl, classnames) —
I([t] override(controller,serve floorf, classnames))]

depay Vi, controller, button [t < maxocc A
[t] —override(controller,serve_floorf, controllercl) A
[t] query_floor(value(t, controlled_lift(controller))) =
goal_floor(controller) A [t| query_attached(button) =
goal_floor(controller) — I([t] reset_button(button))]

deps, Vi, classnames, controller [[t] subclass(controllercl, classnames) —
I([t] override(controller,new_goalf, classnames))]

190

depsy Vi, controller [[t] —override(controller, new_goalf, controllercl) A
[t] query_floor(lifta) = goal_floor(controller) A
Jbutton [[t] query_pressed(button)] —
Jbutton [[t] query_pressed(button) A I([t+
1] goal_floor(controller) = value(t, query_attached(button)))]]
depy, Vi, classnames, controller [[t] subclass(controllercl, classnames) —
I([t] override(controller,start_floorf, classnames))]
depyy Vcontroller, Integer [[0] —override(controller, start_floorf, controllercl) A
[0] query_floor(controlled_lift(controller)) = Integer —
[0] goal_floor(controller) = Integer]

191

192

Appendix E

Complete Basic Cannibals
and Missionaries Problem
Scenario Description

This is a complete listing of the basic cannibals and missionaries problem
as described in Section 9.4. This scenario and the elaborations will soon be
available at the VITAL home page [55].

E.1 Scenario Setup

E.1.1 Value Sorts

boolean { false, true}

classnames { objectcl, vehiclecl, boatcl, groupcl, cangroupcl,
misgroupcl, placecl}

object { cleft, cvera, cright, mleft, mvera, mright, vera, left,
right,onvera}

vehicle { vera}

boat {vera}

group { cleft, cvera, cright, mleft, mvera, mright}

cangroup { cleft, cvera, cright }

misgroup { mleft, mvera, mright}

place { left, right, onvera}

bank { left, right}

193

functions { query_positionf, set_positionf, try_eatf,
eat_constraintf, dief, eatf, query_sizef, move_boatf,
modify_groupf, query_onboardf, boat_limitf,
query_connectf, set_connectf, remove_connectf,
move_personsf}
integer { FIXED POINT DOMAIN ’INTEGER’:
FROM -7 TO 8 WITH 0 DECIMALS }

E.1.2 Feature Symbols

subclass(classnames, classnames) : boolean
override(object, functions, classnames) : boolean

E.1.3 Initial State Specification

obs; [0] position(vera) = left

obsy [0] position(onvera) = nil

obsz [0] position(right) = nil

obss [0] position(left) = nil

obs; [0] onboard(vera) = onvera

obsg [0] position(cleft) = left

obs; [0] position(cvera) = onvera

obsg [0] position(cright) = right

obsg [0] position(mleft) = left

obsig [0] position(mright) = right

obsy; [0] position(mvera) = onvera

obs;2 [0]connect(a,b) <> {(a,b) = (left,onvera) V (a,b) = (onvera, left)}
obs;3 [0]size(a) = b <> {(a,b) = (mleft,3) V (a,b) = (cleft, 3)}
obsy4 [0]size(a) = 0 <> {(a,b) # (mleft,3) A (a,b) # (cleft, 3)}

The maximal time-point is set to 12.
maxocc 12

This is a VITAL feature and has nothing to do with TAL. It restricts the
part of the timeline VITAL works with.

E.1.4 Goal

The goal is to have three cannibals and three missionaries on the left bank.

obs; [maxocc| query_size(mright) = 8 A query_size(cright) = 8

194

E.1.5 Definition of subclass

acc [0]subclass(sub, super) <> {

[0

(sub, super) = (boatcl, objectcl)V
(sub, super) = (placecl, objectcl)V
(sub, super) = (bankcl, objectcl)V
(sub, super) = (bankel, placecl)V

(sub, super) = (groupcl, objectcl)V
(sub, super) = (cangroupcl, groupcl)V
(sub, super) = (cangroupcl, objectcl)V
(sub, super) = (misgroupcl, groupcl)V
(sub, super) = (misgroupcl, objectcl)}

E.1.6 Definition of Related Groups

The cls feature is used by move_persons so that cannibals only is transfered
into other cannibal groups and vice versa.
obs [O]cls(a,b) <> {

(a,b) = (cleft, cvera)V

(a,b) = (cleft, cright)V
(a, by = (cvera,cleft)V
(a,b) = (cvera, cright)Vv
(a, by = (cright, cleft)V
(a,b) = (cright, cvera)V,
(a,b) = (mleft, mvera)V
(a,b) = (mleft, mright)V
(a,b) = (mvera, mleft)V
(a,b) = (mvera, mright)V
(a,b) = (mright, mleft)Vv
(a,b) = (mright, mvera)}

E.2 Classes

E.2.1 Object

set_position(object) : place
query_position(object) : place
position(object) : place

195

depiq Vi, classnames, object [t < maxocc A [t] subclass(objectcl, classnames) —
I([t] override(object, query_positionf, classnames))]

dep1p Vi, object [t < maxocc A [t] —override(object, query_positionf, objectcl) —
I([t] query_position(object) = value(t, position(object)))]

depeg Vi, classnames, object [t < maxocc A [t] subclass(objectcl, classnames) —
I([t] override(object, set_positionf, classnames))]

depqy Vi, object, place [t < maxocc A
[t] —override(object, set_positionf, objectcl) A
[t| —set_position(object) = nil —
I([t] position(object) = value(t,set_position(object)))]

E.2.2 Boat

query_onboard(boat) : place

onboard(boat) : place

depi, Vi, classnames, boat [t < maxocc A [t] subclass(boatcl, classnames) —
I([t] override(boat, query_onboardf, classnames))]

dep1p Vi, boat [t < maxocc A [t] —override(boat, query_onboardf, boatcl) —
I([t] query_onboard(boat) = value(t,onboard(boat)))]

depzg Vi, classnames, boat [t < maxocc A [t] subclass(boatcl, classnames) —
I([t] override(boat, move_boatf, classnames))]

depoy Vt, boat, place, places [t < maxocc — 1A
[t] —override(boat, move_boatf, boatcl) A query_onboard(boat) = place A
query_position(boat) = places A
$sum((group), [t] query_position(group) =
place, value(t, query_size(group))) > 0 —
Jbank [value(t, query_position(boat)) # bank A
I([t+1] set_position(boat) = bank A set_connect(place) = bank A
remove_connect(place) = places)]]

deps, Vt, classnames, boat [t < maxocc A [t] subclass(boatcl, classnames) —
I([t] override(boat, boat_limitf, classnames))]

accgp Vi, boat, place [t < maxocc A ([t] —override(boat, boat_limitf, boatcl) A
query_onboard(boat) = place — $sum({group),
[t] query_position(group) = place, value(t, query_size(group))) < 3)]

E.2.3 Group

cls(object,object) : boolean
modify_group(group, group) : integer

196

query_size(group) : integer

size(group) : integer

depiq Vi, classnames, group [t < maxocc A [t] subclass(groupcl, classnames) —
I([t] override(group, modify_groupf, classnames))]

depyy Vi, group, integer [t < maxocc A
[t] —override(group, modify_groupf, groupcl) —
I([t+ 1] size(group) = value(t, size(group)) +
$sum((groups), true, value(t, modify_group(group, groups)))

depag Vi, classnames, group [t < maxocc A [t] subclass(groupcl, classnames) —
I([t] override(group, query_sizef, classnames))]

depoy Vt, group, integer [[t] —override(group, query_sizef, groupcl) —
I([t] query_size(group) = size(group))]

depsg Vi, classnames, group [t < maxocc A [t] subclass(groupcl, classnames) —
I([t] override(group, move_personsf, classnames))]

depsy Vi, group, groups, integer , integers |
[t] —override(group, move_personsf, groupcl) A cls(group, groups) A
query_size(group) = integer; A query_size(groups) = integers A
[t + 1] query_connect(query_position(group), query_position(groups)) —
Jinteger [—integery < integer < integer; A
I([t+ 1] modify_group(group, group) = —integer A
modify_group(groups, group) = integer)]]

accy Vi, group [[t] size(group) > 0]

E.2.4 Cannibal

depiq Vi, classnames, cangroup [t < maxocc A
[t] subclass(cangroupcl, classnames) —
I([t] override(cangroup, eat_constraintf, classnames))]

197

accyy Vi, cangroup, place, integer; , integers, integers, integery |
[t] —override(cangroup, eat_constraintf, cangroupcl) A
query_position(cangroup) = place A
$sum((cangroups), [f] query_position(cangroups) =
place, value(t, query_size(cangroups))) = integer; A
$sum((boat, cangroups), [t] query_position(boat) = place A
query_onboard(boat) =
query_position(cangroups), value(t, query_size(cangroups))) = integers A
$sum((group), [t] query_position(group) =
place, value(t, query_size(group))) = integers A
$sum((boat, group), [t] query_position(boat) = place A
query_onboard(boat) =
query_position(group), value(t, query_size(group))) = integery —
integers + integery — integer; — integery # 0 — integers +
integers > 2 x (integer; + integery))]

E.2.5 Missionary

No code needed in the basic problem.

E.2.6 Place

set_connect(place) : place

remove_connect(place) : place

query_connect(place,place) : boolean

connect(place,place) : boolean

depiq Vi, classnames, place [t < maxocc A [t] subclass(placecl, classnames) —
I([t] override(place,query_connectf, classnames))]

depyp Vt, place, places [t < maxocc A
[t] —override(place,query_connectf, placecl) A
connect(place, placey) — I([t] query_connect(place, places))]

depag Vi, classnames, place [t < maxocc A [t] subclass(placecl, classnames) —
I([t] override(place,set_connectf, classnames))]

depoy Vi, place, places [t < maxocc A
[{] —override(place, set_connectf, placecl) A set_connect(place) = places A
placey # nil — I([t] connect(place, placez) A connect(places, place))]

depsq Vi, classnames, place [t < maxocc A [t] subclass(placecl, classnames) —
I([t] override(place,remove_connectf, classnames))]

198

depsyp Vt, place, places [t < maxocc A
[t] —override(place, remove_connectf, placecl) A
remove_connect(place) = places A
places # nil — I([t] —connect(place, places) N ~connect(places, place))]

E.2.7 Bank

No code needed in the basic problem.

E.3 General Constraints

These constraints force at least one group to change size each time-point
and that at least one group is in the boat.
acc; Vt[t < maxocc—1—
dgroup [[t] query_size(group) = —wvalue(t + 1, query_size(group))]]
acce Vt[0 < t At < maxocc-1 — $sum((group), [t|] query_position(group) =
onvera, value(t, query_size(group))) > 0]

199

200

Appendix F

Complete Road Network

Scenario

This scenario is provided directly as written in VITAL. An overview and
description is provided in Section 9.5.

F.1 Value Sorts

boolean
classnames

objects

vehicle
graph

node

arc
controller
drivecontr

{ false, true}

{ objectcl, vehiclecl, nodecl, arccl, controllercl,
drivecontrcl}

{ nil, ford, volvo, a, b, c,d, e, ab, ba, ac, ca, ad, da, cd, dc,
de, ed, be, eb, vcontroller, fcontroller }

{ nil, ford, volvo}
{nil,a,b,c,d,e,ab,ba,ac,ca, ad, da, cd, dc, de, ed,
be,eb}

{nil,a,b,c,d,e}

{nil,ab, ba, ac, ca, ad, da, cd, dc, de, ed, be, eb}

{ vcontroller, fcontroller}

{ vcontroller}

201

functions { query_placef, set_placef, query_positionf,
move_vehiclef, set_positionf, query_top_speedf,
query_closestf, query_closest_fromf,
query_closest_leavingf, query_closest_approachingf,
query_green_lightf, query_distance_leavingf,
query_controlsf, proceedf, drivef }

fixpoint { FIXED POINT DOMAIN ’FIXPOINT’:
FrOM -2 TO 1000 WITH 0 DECIMALS }

F.2 Feature Symbols

connect(graph, graph) : boolean
controls(controller) : vehicle
distance(arc) : fixpoint
freeahead(vehicle) : boolean
move_vehicle(vehicle) : fixpoint
override(objects, functions, classnames) : boolean
place(vehicle) : graph

position(vehicle) : fixpoint
query_closest(vehicle) : fixpoint
query_closest_approaching(node) : vehicle
query_closest_from(node) : vehicle
query_closest_leaving(node) : vehicle
query_controls(controller) : vehicle
query_distance_leaving(node) : fixpoint
query_green _light(node) : arc
query_place(vehicle) : graph
query_position(vehicle) : fixpoint
query_top_speed(vehicle) : fixpoint
set_place(vehicle) : graph
set_position(vehicle) : fixpoint
speedlimit(graph) : fixpoint
subclass(classnames, classnames) : boolean
topspeed(vehicle) : fixpoint

F.3 Original Scenario

Scenario Description F.1
obs; vardelta = 30

202

obss
obs;
obsy
obss
obsg
obsy;
obsg
obsg

obs;0 [0
obs11[0

[0
[0
[0
[0
[0
[0
[0
[0

position(volvo) = 460
place(volvo) = ab
topspeed(volvo) = 15
position(ford) = 466
place(ford) = eb
topspeed(ford) = 10
topspeed(nil) = 0

place(nil) = nil

position(nil) = 0
controls(vcontroller) = volvo

obs;2 [0] controls(fcontroller) = ford

obs;

//
/!

dep;
deps
//

dep3

depy

//

deps

depg

$init(0, subclass, false, {(vehiclecl, objectcl) = true,

(nodecl, objectcl) = true, (arccl, objectcl) = true,

(controllercl, objectcl) = true, (drivecontrcl, controllercl) = true)

soxkk kR KRR RK ontroller

Function: query_controls()

Vt, classnames, controller [t < maxocc A

[t] subclass(controllercl, classnames) — I(

[t] override(controller,query_controlsf, classnames))]

Vt, controller [[t] —override(controller, query_controlsf, controllercl) A
I([t] query_controls(controller) = value(t, controls(controller)))]
Constraint: proceed|()

Vt, classnames, controller [t < maxocc A

[t] subclass(controllercl, classnames) —

I([t] override(controller, proceedf, classnames))]

Vt, controller, vehicle [t < maxocc — 2 A

[t] —override(controller, proceedf, controllercl) A
query_controls(controller) = vehicle A node [[t] query_place(vehicle) =
node N $greater(value(t, query_closest(vehicle)), vardelta) A

Jarc [connect(node, arc)]] — Jarc, node |

[t] query_place(vehicle) = node A connect(node, arc) A

I([t+ 1] set_place(vehicle) = arc)]

Function: drive()

Vt, classnames, controller [t < maxocc A

[t] subclass(controllercl, classnames) —

I([t] override(controller,drivef, classnames))]

Vt, controller, vehicle [t < maxocc — 2 A

[t] —override(controller,drivef, controllercl) Aquery_controls(controller) =
vehicle — I([t] move_vehicle(vehicle) = vardelta)]

203

J] REEEREERREEEEEEE Controller elaboration: drivecontr
// Function: drive()
depy Vt, classnames, drivecontr [t < maxocc A
[t] subclass(drivecontrcl, classnames) —
I([t] override(drivecontr,drivef, classnames))]
depg Vt, drivecontr, vehicle, arc, node, fizpoint [t < maxocc — 2 A
[t] —override(drivecontr, drivef, drivecontrcl) A
query_controls(drivecontr) = vehicle A\ query_place(vehicle) =
arc A $min(value(t, speedlimit(arc)),
$minus(value(t, query_closest(vehicle)), vardelta)) = fizpoint A
[t| connect(arc, node) A
($less(query_position(vehicle), $minus(distance(arc), vardelta)) V
query_green_light(node) = arc) —
I([t] move_vehicle(vehicle) = fizpoint)]
/] eeRRcockok Node
// Function: query_closest_leaving()
depg Vt, classnames, node [t < maxocc A [t] subclass(nodecl, classnames) —
I([t] override(node, query_closest_leavingf, classnames))]
dep1g Vt, node [Jvehicle [[t] query_place(vehicle) = node] — Jvehicle |
[t] query_place(vehicle) = node A
I([t] query_closest_leaving(node) = vehicle)]]
dep11 Vt, node [-Jvehicle [[f] query_place(vehicle) = node] —
I([t] query_closest_leaving(node) = walue(t, query_closest_from(node)))]
// Function: query_closest_from()
dep1a Vt, classnames, node [t < maxocc A [t| subclass(nodecl, classnames) —
I([t] override(node, query_closest_fromf, classnames))]
depi3 Vt, node [Jvehicler, arcy [vehicley # nil A [t] connect(node, arcy) A
[t] query_place(vehicle;) = arc; A —Jvehicley, arca |
[t|] connect(node, arca) A [t] query_place(vehicles) = arcy A
[t] $greater(query_position(vehicle;), query_position(vehicles))]] —
Jvehicle;, arcy [vehicle; # nil A [t] connect(node, arci) A
[t] query_place(vehicle;) = arc; A —=Jvehicley, arcs |
[t| connect(node, arca) A [t] query_place(vehicles) = arcy A
[t] $greater(query_position(wvehicler), query_position(vehicle))] A
I([t] query_closest_from(node) = vehicle)]]
dep14 Vt, node [—3vehicle, arc [[t] connect(node, arc) A
[t] query_place(vehicle) = arc] — I([t] query_closest_from(node) = nil)]
// Function: query_ distance leaving()

204

depis Vt, classnames, node [t < maxocc A [t] subclass(nodecl, classnames) —
I([t] override(node, query_distance_leavingf, classnames))]
depig Vt, node [[t] query_closest_leaving(node) = nil —
I([t] query_distance_leaving(node) = 999)]
depi7 Vt, node, vehicle |
[t] query_closest_leaving(node) = wehicle A vehicle # nil —
I([t] query_distance_leaving(node) = value(t, query_position(vehicle)))]
// Function: query_closest_approaching|()
depig Vi, classnames, node [t < maxocc A [t] subclass(nodecl, classnames) —
I([t] override(node,query_closest_approachingf, classnames))]
depig Vt, node [Jvehicle [[t] query_place(vehicle) = node] — Jvehicle |
[t] query_place(vehicle) = node A
I([t] query_closest_approaching(node) = vehicle)]]
depag Vt, node [—3vehicle |
[t] query_place(vehicle) = node] A Jvehicle;, arcy [vehicle; # nil A
[t] connect(arci, node) A
[t] query_place(vehicle;) = arcy A —=TJvehicles, arcy |
[t] connect(arce, node) A [t] query_place(vehicles) = arca A
[t] $greater($minus(distance(arcy), query_position(vehicle)),
$minus(distance(arcy), query_position(vehicles)))]] —
Jvehicley, arcy [vehicle; # nil A [t] connect(arc, node) A
[t] query_place(vehicle;) = arcy A —Fvehicles, arcy |
[t] connect(arce, node) A [t| query_place(vehicley) = arcy A
[t] $greater($minus(distance(arcy), query_position(wvehicle;)),
$minus(distance(arcs), query_position(vehicles)))] A
I([t] query_closest_approaching(node) = vehicle)]]
depai Vt, node [~3vehicle [[t] query_place(vehicle) = node] A ~Jvehicle;, arcy [
[t] connect(arci, node) A [t] query_place(vehicle;) = arci] —
I([t] query_closest_approaching(node) = nil)]
// Function: query_green light()
depa2 Vi, classnames, node [t < maxocc A [t] subclass(nodecl, classnames) —
I([t] override(node, query_green_lightf, classnames))]
depas Vt, node [node # nil A [t] query_closest_approaching(node) = nil —
I([t] query_green_light(node) = nil)]
depaa Vt, node, vehicle, arc [node # nil A
[t] query_closest_approaching(node) = vehicle A vehicle # nil A
[t] query_place(vehicle) = arc — I([t] query_green_light(node) = arc)]
] HeeskkkRsocskRk Vehicle

// Function: query_place()

205

depes Vt, classnames, vehicle [t < maxocc A
[t] subclass(vehiclecl, classnames) —
I([t] override(vehicle,query_placef, classnames))]
depag Vi, vehicle [[f] —override(vehicle, query_placef, vehiclecl) A
I([t] query_place(vehicle) = value(t, place(vehicle)))]
// Procedure: set_place()
deper Vi, classnames, vehicle [t < maxocc A
[t] subclass(vehiclecl, classnames) —
I([t] override(vehicle,set_placef, classnames))]
depas Vt, vehicle, graph [[t] —override(vehicle, set_placef, vehiclecl) A
[t] set_place(vehicle) = graph A graph # nil —
I([t] place(vehicle) = graph)]
// Function: query_position()
depqg Vt, classnames, vehicle [t < maxocc A
[t] subclass(vehiclecl, classnames) —
I([t] override(vehicle, query_positionf, classnames))]
depsg Vt, vehicle [[{] —override(vehicle, query_positionf, vehiclecl) A
I([t] query_position(wvehicle) = value(t, position(wvehicle)))]
// Procedure: set_position()
deps1 Vi, classnames, vehicle [t < maxocc A
[t] subclass(vehiclecl, classnames) —
I([t] override(vehicle,set_positionf, classnames))]
depss Vt, vehicle, fizpoint [[t] —override(vehicle, set_positionf, vehiclecl) A
[t] set_position(vehicle) = fizpoint A $greater(fizpoint,-1) —
I([t] position(vehicle) = fizpoint)]
// Function: query_top_speed()
depss Vt, classnames, vehicle [t < maxocc A
[t] subclass(vehiclecl, classnames) —
I([t] override(vehicle, query_top_speedf, classnames))]
depsy Vt, vehicle [[{] —override(vehicle, query_top_speedf, vehiclecl) A
I([t] query_top_speed(wvehicle) = value(t, topspeed(vehicle)))]
// Procedure: move_vehicle()
depss Vi, classnames, vehicle [t < maxocc A
[t] subclass(vehiclecl, classnames) —
I([t] override(vehicle, move_vehiclef, classnames))]
depsg Vt, vehicle, fizpoint, , firpointy, firpoints, arc [vehicle # nil A
[t| —override(vehicle, move_vehiclef, vehiclecl) A
[t| move_vehicle(vehicle) = fizpoint; A $greater(fizpoint,, 0) A
[t] query_top_speed(wehicle) = fizpointa A

206

[t] query_place(vehicle) = arc A
[t] $plus(query_position(wehicle), $min(fizpointy, fizpoints)) = fizpoints A
[t] Sless(fizpoints,distance(arc)) —
I([t+ 1] set_position(vehicle) = fizxpoints)]
depsy Vt, vehicle, fizpoint, , fitpoints, arc, node [vehicle # nil A
[t] —override(vehicle, move_vehiclef, vehiclecl) A
[t] move_vehicle(vehicle) = fizpoint; A $greater(fizpoints, 0) A
[t] query_top_speed(wehicle) = fizxpointa N
[t] query_place(vehicle) = arc A [t] connect(arc, node) A
[t] $greaterequal($plus(query_position(vehicle),
$min(fizpoint, , fizpointy)), distance(arc)) —
I([t+ 1] set_position(vehicle) = 0 A set_place(vehicle) = node)]
// Function: query_closest()
depss Vt, classnames, vehicle [t < maxocc A
[t] subclass(vehiclecl, classnames) —
I([t] override(vehicle,query_closestf, classnames))]
depsg Vt, vehicle, arc, fizpoint [t < maxocc A vehicle # nil A
[t] —override(vehicle, query_closestf, vehiclecl) A
[t] query_place(vehicle) = arc A Jvehicley |
[t] query_place(vehicles) = arc A
[t] $less(query_position(vehicle), query_position(vehicles)) A —Jvehicles [
[t] query_place(vehicles) = arc A
[t] $less(query_position(vehicles), query_position(vehicles)) A
[t] $less(query_position(vehicle), query_position(vehicles))]] —
Jwehicles [[t] query_place(wehicles) = arc A
[t] $less(query_position(vehicle), query_position(vehicles)) A —Tvehicles |
[t] query_place(vehicles) = arc A
[t] $less(query_position(vehicles), query_position(vehiclez)) A
[t] $less(query_position(vehicle), query_position(vehicles))] A
I([t] query_closest(vehicle) =
value(t, $minus(query_position(vehicles), query_position(vehicle))) A
freeahead(vehicle) = false)]]
depag Vt, vehicle, arc, node [t < maxocc A vehicle # nil A
[t] —override(vehicle, query_closestf, vehiclecl) A
[t] query_place(vehicle) = arc Afreeahead(vehicle) A connect(arc, node) A
query_closest_leaving(node) = nil — I([t] query_closest(vehicle) = 999)]
depy; Vi, vehicle, arc, node, vehicles [t < maxocc A wvehicle # nil A
[t] —override(vehicle, query_closestf, vehiclecl) A
[t] query_place(vehicle) = arc A [t] freeahead(vehicle) A

207

[t] connect(arc, node) A
[t] query_closest_leaving(node) = vehicles N vehicles # nil —
I([t] query_closest(vehicle) =
value(t, Sminus($plus(query_position(vehicles), distance(arc)),
query_position(vehicle))))]
depaz Vt, vehicle, node, vehicles [t < maxocc A wvehicle # nil A
[t] —override(vehicle, query_closestf, vehiclecl) A
[t] query_place(vehicle) = node A [t] query_closest_from(node) = nil —
I([t] query_closest(vehicle) = 999)]
depas Vt, vehicle, node, vehicles [t < maxocc A vehicle # nil A
[t] —override(vehicle, query_closestf, vehiclecl) A
[t] query_place(vehicle) = node A
[t] query_closest_from(node) = vehicles A vehicles # nil —
I([t] query_closest(vehicle) = value(t,query_position(vehicley)))]

208

Bibliography

[1]
2]
3]

[4]

The Java homepage http://java.sun.com.
M. Abadi and L. Cardelli. A Theory of Objects. Springer Verlag, 1996.

J F. Allen. Towards a general theory of action and time. Artificial
Intelligence, 23(2):123-154, july 1984.

James F. Allen. Temporal reasoning and planning. In Allen, Kautz,
Pelavin, and Tenenberg, editors, Reasoning About Plans. Morgan Kauf-
mann, 1991. ISBN 1-55860-137-6.

E. Amir. Object-oriented first-order logic. Workshop on Nonmonotonic
Reasoning, Action and Change. IJCAT 99, Aug 1999.

A. Artale and E. Franconi. A temporal description logic for reasoning
about actions and plans. Journal of Artificial Intelligence Research,
Vol 9:463-506, 1998.

F. Bacchus and F. Kabanza. Using temporal logics to ex-
press search control knowledge for planning. Artificial Intelli-
gence, 116:123-191, 2000. Available at ftp://newlogos.uwaterloo.ca/
pub/bacchus/BKTIplan.ps.

A B. Baker. A simple solution to the Yale shooting problem. In
Ronald J Brachman, Hector J Levesque, and Raymond Reiter, edi-
tors, Proceedings of the Firstst International Conference on Principles
on Knowledge Representation and Reasoning (KR-89), pages 11-20,
Toronto, ON, Canada, May 1989. Morgan Kaufmann.

C. Baral and M. Gelfond. Representing concurrent actions in extended
logic programming. In Proceedings of the Thirteenth International
Joint Conference on Artificial Intelligence, pages 866871, Chambery,
France, 1993. Morgan Kaufmann.

209

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

K. Belleghem, M. Denecker, and D. Dupré. Representing ramifications
in an event-based language. Technical report CW 257, Department of
Computer Science, K.U. Leuven, 1997.

G. Booch. Object-Oriented Design with Applications. The Benjamin/
Cummings Publishing Company, Inc, 1991.

A. Borgida, R. Brachman, D. McGuinness, and L. Resnick. CLASSIC:
A structural data model for objects. In Proceedings of the 1989 ACM
SIGMOD International Conference on Management of Data, Portland
Oregon, May-June 1989.

S. Bornscheuer and M. Thielscher. Explicit and implicit indeterminism:
Reasoning about uncertain and contradictory specifications of dynamic
systems. Journal of Logic Programming. Special issue on reasoning
about action and change, 31(1-3):119-155, 1997.

R. Brachman, R. Fikes, and H. Levesque. KRYPTON: A functional
approach to knowledge representation. Computer, 16:67-73, 1983.

K. Clark. Negation as failure. Logic and Data Bases, pages 293-322,
1978.

J. de Kleer and J.S. Brown. A qualitative physics based on confluences.
Artificial Intelligence, 24:7-83, 1984.

M. Denecker, D. Dupré, and K. Belleghem. An inductive definition
approach to ramifications. Linkoping Electronic Articles in Com-
puter and Information Science, 3(007), 1998. Available at http://
www.ep.liu.se/ea/cis/1998/007/.

J. Doherty, P. Gustafsson. Delayed effects of actions = di-
rect effects + causal rules. Linkoping Electronic Articles in
Computer and Information Science, 1998. Available on WWW:
http://www.ep.liu.se/ea/cis/1998,/001.

P. Doherty. Notes on PMON circumscription. Techni-
cal report, Department of Computer and Information Sci-
ence, Linkoping University, 1994. Available on WWW:

http://www.ida.liu.se/labs/rkllab/people/patdo/.

P. Doherty. Reasoning about action and change using occlusion. In
Proceedings of the Eleventh European Conference on Artificial Intelli-
gence, pages 401-405. John Wiley & Sons, 1994.

210

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

P. Doherty. PMONT: A fluent logic for action and change.
Technical Report 96-33, Department of Computer and Informa-
tion Science, Link6ping University, 1996. Available on WWW:
http://www.ida.liu.se/ patdo.

P. Doherty, J. Gustafsson, L. Karlsson, and J. Kvarnstrém. TAL: Tem-
poral action logics language specification and tutorial. Linkoping Elec-

tronic Articles in Computer and Information Science, 1998. Available
at: http://www.ep.liu.se/ea/cis/1998/015/.

P. Doherty and J. Kvarnstrom. Tackling the qualification prob-
lem using fluent dependency constraints: Preliminary report. In
Proceedings of the Fifth International Workshop on Temporal Rep-
resentation and Reasoning (TIME’98), Sanibel Island, Florida,
USA, May 1998. IEEE Computer Society Press. Available at
ftp: //ftp.ida.liu.se/pub/labs/kplab/people/patdo/time98.ps.gz.

P. Doherty and J. Kvarnstrom. TALplanner: An empirical investiga-
tion of a temporal logic-based forward chaining planner. In C. Dixon
and M. Fisher, editors, Proceedings of the Sizth International Work-
shop on Temporal Representation and Reasoning (TIME’99), pages 47—
54, Orlando, Florida, USA, May 1999. IEEE Computer Society Press.
Available at ftp://ftp.ida.liu.se/pub/labs/kplab/people/patdo/time99-
final.ps.gz.

P. Doherty and W. Lukaszewicz. Circumscribing features and fluents.
In Proceedings of the 1st International Conference on Temporal Rea-
soning, pages 82-100. Springer, 1994.

P. Doherty, W. Lukaszewicz, and A. Szalas. Computing circumscription
revisited: A reduction algorithm. Journal of Automated Reasoning,
18:297-336, 1996.

P. Doherty and P. Peppas. A comparison between two approaches
to ramification: PMON(R) and ARy. In Proceedings of the eighth
Australian Joint Conference on Artificial Intelligence, pages 267274,
1995.

C. Elkan. Reasoning about actions in first-order logic. In Proceedings
of the Conference of the Canadian Society for Computational Studies
of Intelligence, Vancouver, Canada, 1992. Morgan Kaufmann.

211

[29]

[37]

[38]

[39]

[40]

J. Ferber and J. Miiller. Influences and reaction: a model of situated
multi-agent systems. In Mario Tokoro, editor, Proceedings of the Second
International Conference on Multi-Agent Systems, Kyoto, December
1996. AAAT Press.

R.E. Fikes and N.J. Nilsson. STRIPS: A new approach to the appli-
cation of theorem proving to problem solving. Artificial Intelligence,
2:189-208, 1971.

J.J. Finger. Ezploiting constraints in design synthesis. PhD thesis,
Department of Computer Science, Stanford University, 1987.

K.D. Forbus. Qualitative process theory. Artificial Intelligence, 24:85—
168, 1984.

D. Gabbay, I. Hodkinson, and M. Reynolds. Temporal Logic, Math-
ematical Foundations and Computational Aspects, volume 1. Oxford
University Press, 1994.

H. Geffner. Causality, constraints and the side effects of actions. In
Proceedings of the International Joint Conference on Artificial Intelli-
gence, Naogoya Japan, 1997.

M. Gelfond and V. Lifschitz. Representing action and change by logic
programs. Journal of Logic Programming, pages 17:301-322, 1993.

M. Gelfond, V. Lifschitz, and A. Rabinov. What are the limitations of
the situation calculus? In Working notes, AAAI Spring Symposium,
Series. Symposium: Logical Formalization of Commonsense Reasoning,
pages 59-69, Stanford California, 1991.

M. Georgeff. Actions, processes, and causality. In M. Georgeff and
Lansky A., editors, Reasoning about actions and plans: Proceedings of
the 1986 workshop. Morgan Kaufmann, 1987.

M.L. Ginsberg and D.E Smith. Reasoning about action I: A possible
worlds approach. Artificial Intelligence, 35:165-195, 1988.

M.L. Ginsberg and D.E Smith. Reasoning about action II: The quali-
fication problem. Artificial Intelligence, 35:311-342, 1988.

P. Grinwald. Causation, explanation and nonmonotonic temporal rea-
soning. Technical Report INS-R9701, Centrum voor Wiskunde en In-
formatica, January 1997.

212

[41]

[42]

[43]
[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

J. Gustafsson. Object-oriented reasoning about action and change.
In Proceedings of the Seventh Scandinavian Conference on Artificial
Intelligence, feb 2001.

J. Gustafsson and P. Doherty. Embracing occlusion in specifying the
indirect effects of actions. Proceedings of the international Conference
on principles of knowledge representation and reasoning, pages 87-98,
1996.

J. Gustafsson and J. Kvarnstrom. Breaking causal cycles. Unpublished.

S. Hanks and D. McDermott. Nonmonotonic logic and temporal pro-
jection. Artificial Intelligence, 83(3), 33:379-412, 1987.

G. Hendrix. Modeling simultaneous actions and continous processes.
Artificial Intelligence, 4:145-180, 1973.

A. Henschel and M. Thielscher. The LMW traffic world
in the fluent calculus. Linkoping University Electronic Press.
http://www.ida.liu.se/ext/epa/cis/Imw/001/tcover.html, 1999.

L. Karlsson and J. Gustafsson. Reasoning about actions in a multi-

agent environment. Linkoping University Electronic Press, 2(014),
1997. Available at http://www.ep.liu.se/ea/cis/1997/014.

L. Karlsson and J. Gustafsson. Reasoning about concurrent interaction.
Journal of Logic and Computation, 9(5):623-650, October 1999.

L. Karlsson, J. Gustafsson, and P. Doherty. Delayed effects of actions.
In Proceedings of the Thirteenth European Conference on Artificial In-
telligence, pages 542-546, Aug 1998.

G.N. Kartha and V. Lifschitz. Actions with indirect effects: Prelim-
inary report. International Conference on Knowledge Representation
and Reasoning, pages 341-350, 1994.

M. Koubarakis. Complexity results for first-order theories of temporal
constraints. In Principles of Knowledge Representation and Reasoning:
Proceedings of the Fourth International Conference, pages 379-390, San
Francisco, California, May 1994. Morgan Kaufmann.

J. Kvarnstrom and P. Doherty. Tackling the qualification problem using
fluent dependency constraints. Computational Intelligence, 16(2):169—
209, May 2000.

213

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

J. Kvarnstr6m and P. Doherty. TALplanner: A temporal logic based
forward chaining planner. Annals of Mathematics and Artificial Intel-
ligence, 2001. Accepted for publication.

J. Kvarnstrom, P. Doherty, and P. Haslum. Extending TALplan-
ner with concurrency and resources. In W. Horn, edi-
tor, Proceedings of the Fourteenth European Conference on Ar-
tificial Intelligence (ECAI-2000), pages 501-505, Berlin, Ger-
many, August 2000. TOS Press, The Netherlands. Available at
ftp://ftp.ida.liu.se/pub/labs/kplab/people/patdo /www-ecai.ps.gz.

J. Kvarnstrom and P. Doherty. VITAL. An on-line system for rea-
soning about action and change using TAL, 1997-2000. Available at
http:www.ida.liu.se/~jonkv/vital.html.

A. Lansky. A representation of parallel activity based on events, struc-
ture, and causality. In M. Georgeff and A. Lansky, editors, Reasoning
about Actions and Plans: Proceedings of the 1986 Workshop, pages
123-159, Los Altos, California, 1987. Morgan Kaufmann.

H. Levesque, F. Pirri, and R. Reiter. Foundations for the situation
calculus. FElectronic Transactions on Artificial Intelligence, 2:159-178,
1998. http://www.ep.liu.se/ej/etai/1998/005/.

H Levesque, R. Reiter, Y. Lesperance, F. Lin, and R. Scherl. Golog:
A logic programming language for dynamic domains. Journal of Logic
Programming 31:59- 84., 1997.

R. Li and L.M. Pereira. Temporal reasoning and abductive logic pro-
gramming. In Proceedings of the Twelfth European Conference on Ar-
tificial Intelligence, pages 13-17. John Wiley & Sons, 1996.

V. Lifschitz. Computing circumscription. In Proceedings of the Ninth
International Joint Conference on Artificial Intelligence, pages 121-
127, Los Angeles, California, 1985. Morgan Kaufmann.

V. Lifschitz. Pointwise circumscription. In M. Ginsberg, editor, Read-
ings in Non-monotonic Reasoning. Morgan Kauffmann, Los Altos, Cal-
ifornia, 1987.

V. Lifschitz. Frames in the space of situations. Artificial Intelligence,
46:365-376, 1990.

214

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

V. Lifschitz. Circumscription. In D. M. Gabbay, C. J. Hogger, and J. A.
Robinson, editors, Nonmonotonic Reasoning and Uncertain Reasoning,
volume 3 of Handbook of Artificial Intelligence and Logic Programming,
pages 179-193. Oxford University Press, 1994.

V. Lifschitz. On the logic of causal explanation. Artificial Intelligence,
96:451-465, 1997.

V. Lifschitz. Missionaries and cannibals in the causal calculator. In
”Principles of Knowledge Representation and Reasoning: Proceedings
of the Seventh International Conference (KR2000)”, pages 85-96, April
2000.

V. Lifschitz and A. Rabinov. Things that change by themselves. In
Proceedings of Eleventh International Joint Conference on Artificial
Intelligence, pages 864-867, Detroit, MI, 1989.

F. Lin. Embracing causality in specifying the indirect effects of actions.
Proceedings of Fourteenth International Joint Conference on Artificial
Intelligence, pages 1985-1991, 1995.

F. Lin. Embracing causality in specifying the indeterminate effects
of actions. In Proceedings of the Thirteenth National Conference on
Artificial Intelligence. AAAI Press, Menlo Park, California, 1996.

F. Lin and R. Reiter. State constraints revisited. Journal of Logic
and Computation, Special Issue on Actions and Processes, 4(5), pages
655-678, October 1994.

F. Lin and Y. Shoham. Provably correct theories of actions. Journal
of ACM, 42(2):293-320, 1995.

H. McCain, N. Turner. A causal theory of ramifications and qualifica-
tions. Proceedings of the International Joint Conference on Artificial
Intelligence, pages 1978-1984, 1995.

H. McCain, N. Turner. Causal theories of action and change. Proceed-
ings of the AAAI National Conference on Artificial Intelligence, pages
460-465, 1997.

N. McCain and the Texas Action Group. The causal calculator.
http://www.cs.utexas.edu/users/tag/cc/.

215

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[82]

[83]

[84]

J McCarthy. Situations, actions and causal laws. Technical report,
Stanford University, 1963.

J. McCarthy. Elaboration tolerance. In Common Sense 98, London,
Jan 1998.

J. McCarthy and P. Hayes. Some philosophical problems from the
standpoint of artificial intelligence. Machine Intelligence, 4:463-502,
1969.

D. McDermott. A temporal logic for reasoning about processes and
plans. Cognitive Sciences, 6:101-155, 1982.

L. Morgenstern. Inheritance comes of age: Applying nonmonotonic
techniques to problems in industry. Artificial Intelligence, 103:1-34,
1998.

C. Moss. Prolog++, The power of object-oriented and logic program-
ming. Addison-Wesley, 1994.

J. Pearl. Embracing causality in default reasoning. Artificial Intelli-
gence, 35:259-271, 1988.

J. Pearl. Causation, action and counterfactuals. Proceedings of the
Sixth Conference on Theoretical Aspects of Rationality and Knowledge,
pages 51-73, March 1996.

R. Pelavin. Planning with simultaneous actions and external events. In
Allen, Kautz, Pelavin, and Tenenberg, editors, Reasoning About Plans,
pages 127-212. Morgan Kaufmann, San Mateo, California, 1991.

J. Pinto. Temporal Reasoning in the Situation Calculus. PhD thesis,
Department of Computer Science, University of Toronto, January 1994.

J. Pinto. Concurrent actions and interacting effects. In Proceedings of
Knowledge Representation and Reasoning Conference, pages 292-303,
San Francisco, California, 1998.

R. Reiter. The frame problem in the situation calculus: A simple
solution (sometimes) and a completeness result for goal regression. In
V. Lifschitz, editor, Artificial Intelligence and Mathematical Theory
of Computation: Papers in Honor of John McCarthy, pages 359-360.
Academic Press, San Diego, California, 1991.

216

[86]

[87]

[88]

[89]

[90]
[91]

[92]

[93]

[94]

[95]

[96]
[97]

R. Reiter. Natural actions, concurrency and continuous time in the
situation calculus. In Principles of Knowledge Representation and Rea-
soning: Proceedings of the Fifth International Conference, pages 2-13.
Morgan Kaufmann, 1996.

R. Reiter. Sequential, temporal GOLOG. In Proceedings of the Sizth
International Conference on Principles on Knowledge Representation
and Reasoning (KR-98), pages 2-5, Trent, Italy, June 1998. Morgan
Kaufmann.

E. Sandewall. Logic modelling workshop: Communicating axiomatiza-
tions of actions and change. http://www.ida.liu.se/ext/etai/lmw.

E. Sandewall. Filter preferential entailment for the logic of action and
change. In Proceedings of the Eleventh International Joint Conference
on Artificial Intelligence, (IJCAI-89), pages 894-899. Morgan Kauf-
mann, 1989.

E. Sandewall. Features and Fluents, volume 1. Oxford Press, 1994.

E. Sandewall. Assessments of ramification methods that use static
domain constraints. Proceedings of the International Conference on
Principles of Knowledge Representation and Reasoning, 1996.

M. Shanahan. Representing continuous change in the situation cal-
culus. In Proceedings of the Ninth European Conference on Artificial
Intelligence, pages 598—603. John Wiley & Sons, 1990.

M. Shanahan. Solving the Frame Problem : A mathematical investiga-
tion of the common sense law of inertia. MIT Press, London, 1997.

M. Shanahan. The ramification problem in event calculus. In Pro-
ceedings of the 16th International Joint Conference on Artificial Intel-
ligence, pages 140-146, 1999.

Y. Shoham. Chronological ignorance: Time, nonmonotonicity, neces-
sity and causal theories. Proceedings of the Fifth National Conference
on Artificial Intelligence, pages 389393, 1986.

Y. Shoham. Reasoning about Change. MIT Press, London, 1987.

M. Thielscher. The logic of dynamic systems. In Proceedings of the
Fourteenth International Joint Conference on Artificial Intelligence,
pages 1956-1962, Montreal, Canada, Aug 1994. Morgan Kaufmann.

217

[98]

[99]

[100]

[101]

[102]

M. Thielscher. Computing Ramifications by Postprocessing. In C. S.
Mellish, editor, Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI), pages 1994-2000, Montreal, Canada,
August 1995. Morgan Kaufmann.

M. Thielscher. Ramification and causality. Artificial Intelligence,
89:317-364, 1997.

M. Thielscher. Introduction to the fluent calculus. Elec-
tronic Transactions on Artificial Intelligence, 3(014), 1998.
http://www.ep.liu.se/ea/cis/1998/014/.

M. Winslett. Reasoning about actions using a possible models ap-
proach. Proceedings of the AAAI National Conference on Artificial
Intelligence, pages 89-93, 1988.

C. Yi. Towards assessment of logics for concurrent actions. In Pro-
ceedings of FAPR’96: International Conference on Formal and Ap-
plied Practical Reasoning, pages 679—690, Bonn, Germany, June 1996.
Springer.

218

