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abstract

The autonomy of an artificial agent (e.g. a robot) will certainly depend
on its ability to perform “intelligent” tasks, such as learning, planning, and
reasoning about its own actions and their effects on the enviroment, for
example predicting the consequences of its own behaviour. To be able to
perform these (and many more) tasks, the agent will have to represent its
knowledge about the world.

The research field “Logics of Action Change” is concerned with the mod-
elling of agents and dynamical, changing environments with logics.

In this thesis we study two aspects of automation of logics of action and
change. The first aspect, regression, is used to “reason backwards”, i.e. to
start with the last time point in a description of a course of events, and
moving backwards through these events, taking the effects of all actions
into consideration. We discuss the consequences for regression of introduc-
ing nondeterministic actions, and provide the logic PMON with pre- and
postdiction procedures. We employ the classical computer science tool, the
weakest liberal precondition operator (wlp) for this, and show that logical
entailment of PMON is equivalent to wlp computations.

The second aspect is computational complexity of logics of action and
change, which has virtually been neglected by the research community. We
present a new and expressive logic, capable of expressing continuous time,
nondeterministic actions, concurrency, and memory of actions. We show
that satisfiability of a theory in this logic is NP-complete. Furthermore, we
identify a tractable subset of the logic, and provide a sound, complete, and
polynomial algorithm for satisfiability of the subset.
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Chapter 1

Introduction

One of the major goals of Artificial Intelligence (AI) has, since the emergence
of the field in the late 50s, been to construct agents (e.g. robots) that
are able to observe and act in dynamically changing environments. The
autonomy of such a device will certainly depend on its ability to perform
“intelligent” tasks, such as learning, planning, and reasoning about itself
and the environment, and, for example, to predict the consequences of its
actions.

In this thesis we are interested in logical representations of the dynamic
behaviour of agents interacting with an environment. This is studied in the
area Logics of Action and Change, which is a subarea of Reasoning about
Action and Change (RAC). In particular we are concerned with how such
logics can be implemented in efficient ways.

The first work on “logical” Al was probably generated by John Mc-
Carthy [1958]. He presented the idea of a program, the ADVICE TAKER,
that would manipulate sentences in formal languages. It is clear that he
aimed at a learning system, a system that would be able to get smarter and
smarter to be able to perform more and more complex tasks in the real world.
However, McCarthy bumped into a major problem: How do we represent
the knowledge gained in the system?

Since then an abundance of philosophies, formalisms, and systems has
been developed in relation to this question. Many of them can be proved
to have the same expressivity (e.g. Turing equivalence), while they actually
make the users look at the world they want to model in different ways.

In this chapter we will present philosophical frameworks for knowledge
representations, and pose a number of questions that are relevant for rep-
resentation designers. We will also discuss the research methodologies em-
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Figure 1.1: Relations between agents and the environment.

ployed by researchers working with logics of action and change.

1.1 Knowledge Representation

Figure 1.1 shows a generic view of multiple agents sensing and interact-
ing with an environment. The figure could equally well explain agent-
environment relations for a mobile robot as for a “softbot”, that is, a software
agent acting in a computer system.

The agents get information about the currents status of the environment
through their sensors, for example, visual information through cameras, or
by reading some output from an operating system. The sensor information is
then processed by the agent that decides what to do next. The agent realizes
its decision by performing some action in the environment, for example by
moving forward or by compressing a file. In this thesis, we are interested
in logical models of Figure 1.1. However, there are a number of feasible
ways of how such a system can be modelled, and it is important to make
the purpose of the model clear. We distinguish between the following three
levels of representation (see Figure 1.2):

1. Representation of the whole system with agents, the environment, and
interactions between the agents and the evironment.

— 8 —
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Figure 1.2: The three levels of representation.

2. Representations of one agent and its interactions with other agents and
the environment.

3. Representations implemented in and used by one agent for decision
making.

Israel [1994] focuses on two broad functions that logics (not representations
in general) can have in representations:

e as a source of languages and logics for artificial reasoners;

e as a source of analytical tools and techniques, such as providing the un-
derlying mathematical and conceptual framework within which much
AT research is done.

Israel’s second function is not applicable to the last level of representation,
other than in a datatype perspective. Otherwise, the levels and the roles
are orthogonal. It could, for example, be of interest to implement a system
that reasons about the complete system in Figure 1.1, even though it is more
common to see such representations used for analytical purposes.

_9_




1 Introduction

The RAC community has to a high degree been interested in using logics
as in the second function, and it is clear that Israel thinks that the second
function motivates the use of logics more than the first.

1.1.1 Three Criteria of Adequacy

In their seminal paper [1969], McCarthy and Hayes introduced the following
three criteria of adequacy for representations of the world:

e Metaphysical Adequacy — for representations whose form is consis-
tent with the aspect of the world we are interested in.

e Epistemological Adequacy — for representations that can be prac-
tically used by a person or a machine to express the facts one actually
has about the aspect of the world.

e Heuristical Adequacy — for representations whose language is ca-
pable of expressing the reasoning processes actually gone through in
solving a problem.

McCarthy and Hayes are aiming at representations that are intended to be
used in agents for real-world applications. Thus, it is the second or third level
of representation and Israel’s first function that primarily interests them.

Heuristical adequacy is not discussed in any detail in McCarthy and
Hayes’ paper (they admit that this concept is “tentatively proposed”), and
the concept might appear somewhat confusing. A plausible explanation
could be that McCarthy and Hayes describe “layered” representations, i.e.
representations in which it is possible to reason about, and change, reasoning
mechanisms on lower layers. For humans, it is not strange to be able to make
a plan and then discuss the process of making the plan, and so on. We will,
however, not use this criterion further in this thesis.

1.1.2 Five Roles of a Knowledge Representation

Another conceptual framework for knowledge representation, was presented
by Davis et al. [1993] where five distinct roles of a particular representation
are identified. Thus, a knowledge representation can be seen as a

e a surrogate, a substitute for the thing itself, enabling an entity to
determine consequences by thinking rather than acting,
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e a set of ontological commitments, an answer to the question: In
what terms should I think about the world?

e a fragmentary theory of intelligent reasoning, expressed in terms
of three components:

1. the representation’s fundamental conception of intelligent reason-
ing,
2. the set of inferences! allowed® by the representation,

3. the set of inferences intended® by the representation,
e a3 medium for pragmatically efficient computation, and

e a3 medium of human expression, a language in which we can say
things about the world.

It is obvious that that every knowledge representation is a surrogate for
something else. This view leads to at least two questions. First, we must ask
what it is a surrogate for, and what the conceptual correspondences between
the reality and the representation are. The second question is how close the
surrogate is to the real thing. Obviously a representation is inaccurate,
but in what way, and how much? Note that the surrogate view can serve
equally well for abstract, philosophical objects, like causality or beliefs, as
for concrete objects like chairs and ventilation ducts. It is important to
note that depending on the level of representation we are interested in, we
have different views on the surrogacy of the representation. For the first
level, where we we represent the entire system, we might focus more on the
interaction between the agents than on the internal representation of a single
agent. This means that we need an accurate and fine-grained representation
of the environment (where the interactions take place). If, on the other
hand, we would be on the second level, we would be more interested in the
accuracy of representation of the particular agent we are interested in.

In selecting any representation we are in the same act unavoidably mak-
ing a set of decisions about how and what to see in the world. That is,
selecting a representation means making a set of ontological commitments.

'The word “inference” is here used in a generic sense, i.e. it is the way in which a
representation may yield new expressions from old. We are not confined to deductive
inference.

%In their paper, the term sanctioned is used.

3In their paper, the term recommended is used.
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The commitments may accumulate in layers since, if we start with a KR for
describing some basic notion of the world we make a commitment, and if
we then represent composition of the basic notions, we might make a new
commitment, but on a higher level. It is desirable that our commitments
are metaphysically adequate. For example, a rule-based Knowledge Repre-
sentation (KR) and semantic networks share a number of features and can
be combined, but they force a user to emphasize and filter away different
aspects of reality.

The third role concerns the inferences that can and should be made from
a representation. The three components implicitly define what it means to
reason intelligently, what can be inferred, and what ought to be inferred,
from the representation.

Since the ultimate goal of any work in KR is to implement the represen-
tations and use them in systems, it of great interest to study computational
properties of the representations.

The final role deals with how comfortable humans are in using a partic-
ular representation for expressing things about the world. This is important
if we have to instruct our machines (and other people) about the world, or
if we want to use the representation to analyze aspects of the world.

1.1.3 A Comparison and Discussion of the Three Frame-
works

It is beyond the scope of this thesis to completely relate the three frameworks
to each other. However, a number of points can be made.

The frameworks can be viewed as providing a number of highly relevant
questions that any representation designer should answer. In Chapters 2
and 3, we will use these questions to analyze the some approaches to RAC.

1. What will T use the representation for? Analysis or implementation?
Both?

2. What level of representation do I require for the chosen use? Agent,
environment, and other agents? Agent and its interaction with the
environment? The internal state of the agent?

3. What aspect of the world am I interested in?

4. What structure or part of the salient aspect do I want to emphasize,
and what can I filter out, that is, what ontological commitments am I
making?
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5. Are my ontological commitments consistent with the real world?
6. How close to the real world is my representation of it?

7. Does the representation come with a mechanism to draw non-trivial
conclusions about a represented fragment of the world? Does it yield
“intelligent” conclusions?

8. Are the computational properties of the inference mechanism pragmat-
ically useful?

9. Who will use the representation, a person or a machine?

10. Is it possible for the user to express facts about the salient aspect easily
in the formalism?

Question (1) comes from Israel’s framework, questions (5) and (10) from
McCarthy and Hayes, and questions (4), (6), (7), (8), and (10) from Davis
et al.

The questions above create a basis for an analysis from which further
investigations have to be made. For example, question (3) is likely to have
to be more specific, especially if the aspect is broad and/or philosophical.
If we want to model causality, we need to specify what we mean by the
concept, otherwise it is impossible to assess how close the representation is
to what we are after.

1.2 Logics of Action and Change

The results presented in this thesis are concerned with one particular branch
of Knowledge Representation: Reasoning about Action and Change, or
more specifically “Logics of Action and Change”. Typically, this area is
described as “formal studies in representations of dynamical systems” or
“modeling of common sense notions of action and change” (see for instance
[Sandewall and Shoham, 1994]). Clearly, RAC is central to KR; it would not
suffice to only have a representation of the statics of the world in an agent,
the dynamics have to be present, too.

Before we examine particular logical approaches to RAC in Chapters 2
and 3, we can — from the viewpoint of the questions above — ask what the
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choice of logic does in terms of possible aspects of the world, ontological
commitments, reasoning mechanisms, and so on?4

e Logics have been thoroughly studied historically, and provide a natural
medium of expression.

e Logics do not make heavy ontological commitments for static repre-
sentations of the world. For example, first-order logic assumes that
we view the world in terms of objects and relations between objects.
However, though this does not change for attempts to describe the
dynamics of the world, in this case we will have to be somewhat more
precise, as we will see below.

e Logics provide a good mechanism for intelligent reasoning: Logical
Consequence. As discussed by McDermott [1987], this is not the only
way to perform intelligent reasoning, but we claim that it is a good
place to start.

e First-order logic is hard to compute with; it is only semi-decidable. To
achieve pragmatically efficient computational mechanisms we will have
to rely on subsets, approximations, or heuristics. This also implies that
logics generally are highly expressive computationally. For example,
first-order logic is Turing equivalent.

1.2.1 The Frame Problem

John McCarthy’s role in logical AI cannot be overestimated. The research
track that he founded in [McCarthy, 1958], and which he and Pat Hayes
developed in [McCarthy and Hayes, 1969], has had many followers. Their
ultimate goal, however, to make intelligent programs, has been somewhat
shadowed by one of the hardest problems in AI — The Frame Problem.

There have been a number of interpretations and definitions of the Frame
Problem since it was introduced by McCarthy and Hayes [1969]. We do not
intend to get involved in the debate, and since we are only interested in a
subproblem of the general problem (the persistence problem), we hope that
the following definition of the frame problem is uncontroversial:

How do we represent aspects of the world that change, and as-
pects that do not change in a succinct manner?

“We will, for now, use a generic notion of logic. A logic is a formal system with well-
defined syntax and semantics.
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It is fairly easy to describe a static scenario in any formalism. For example,
I could describe my office in geometric terms (“A photo with dimensions
1 x 40 x 60 hangs on the northern wall with coordinates ...”) or in qual-
itative terms (“The computer is on top of the desk, which is to the right
of ...”). If I were to move the coffee cup 2 cm to the left on my desk, the
resulting room in the world would be equally easy to describe. But it would
be very inefficient to exhaustively describe the complete room every time
something in changed. I would like to represent the change, and assume
that everything else remained unchanged (persisted). Basically, solutions to
the Frame Problem are ways of fulfilling that assumption.

In the framework of Davis et al., it is clear that the two goals of RAC —
to make intelligent programs, and to solve the Frame Problem — emphasize
different roles of representations.

In the formulation above, the Frame Problem can be related to the role of
finding pragmatically efficient computational mechanisms for the represen-
tations (since we, for example, do not want to fill our computers’ memories
with axioms saying what does not change when an action is executed), and
to the role of good medium for human expression (somehow, humans are
able to make good abstractions).

The goal of writing intelligent programs shares the emphasis on pragmat-
ically efficient computation and focuses on this, but also emphasizes good
surrogacy and good fragmentary theories of intelligent reasoning.

1.2.2 The Logics in this Thesis

In Chapters 3 and 5 we present two logics for action and change. Both
of them can (and, perhaps, should) be used for descriptions on the second
level of representation; that is, we are interested in the representation and
reasoning processes of a single agent, and we are not concerned with a fine-
grained description of the environment.

Both logics are based on narratives, i.e, partial specifications of an ini-
tial and other states of the system, combined with descriptions of actions,
in terms of their preconditions, effects, and timing. An example (which is
formalized in two different formalisms in Chapter 2 and 3 respectively) is
the Pin Dropping Scenario:
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OBS1 At time point O the pin is held over the board, and it
is not on a black or a white square.

ACT If the pin is dropped between time points s and ¢ then,
if the pin is held over the board at s, it will be
on a white or a black square, or both, at ¢f and it will
not be held over the board any longer at t.

SCD  The pin is dropped between time points 3 and 5

OBS2 At time point 6 the pin is on a white but not on a
black square.

An alternative to narrative-based formalisms is presented in Sections 2.1.1
and 2.1.2.

For the logics in Chapters 3 and 5 we assume that the agent of interest
is the only agent in the environment, and that it has complete knowledge
about when events occur and what effects the events have on the environ-
ment (action omniscience). Moreover, we assume that nothing changes in
the environment unless the agent has performed some action (action-based
inertia). The version of PMON in Chapter 3 represents the flow of time
with natural numbers (0, 1,...), while in Chapter 5 time is continuous. For
PMON we also restrict the scenarios so that actions cannot overlap in time.

1.3 Topics of this Thesis

This thesis consist of two themes with one issue in common: computational
theories for logics of action and change.

1.3.1 Regression, Nondeterminism, and Computational Mech-
anisms for PMON

One of the most popular reasoning mechanisms in Reasoning about Action
and Change is regression, where the basic idea is to move backwards through
a course of events, taking the effects of all occurring actions into considera-
tion, to achieve a description of the entire scenario at the initial time point.
Its popularity comes from the intuitive appeal of the mechanism, and the
fact that complexity is reduced by removing the temporal component (by
projection, in the mathematical sense of the word).

In Chapter 4 we define a classical computer science tool, Dijkstra’s weak-
est liberal precondition operator for PMON (which is properly introduced in
Chapter 3). We analyze the consequences for regression when nondeterminis-
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tic actions are allowed, and show that we must distinguish between sufficient
and necessary conditions before an action is executed for the action to end
up in a fixed state. This distinction is then used to define a prediction and
a postdiction procedure for PMON.

1.3.2 Computational Complexity

An interesting question that has almost been ignored® by the Logics of Ac-
tion and Change community is if it possible to find provably efficient com-
putational mechanisms for RAC (as opposed to pragmatically efficient com-
putations). Many interesting RAC problems are (at least) NP-hard, and
tractable subproblems that are easily extracted tend to lack expressiveness.
This has led a large part of the RAC community to rely on heuristics and
incomplete systems to solve the problems (see for example [Ginsberg, 1996]
for a discussion). It is clear that very expressive logical formalisms provide
difficult obstacles when it comes to efficient implementation.

We feel, however, that the tractability boundary for sound and complete
reasoning about action has not yet been satisfactorily investigated. We show
this in Chapter 5 by introducing a nontrivial subset of a logic with semantics
closely related to the trajectory semantics of Sandewall [1994], for which
satisfiability is tractable. The logic relies solely on the two above-mentioned
assumptions of action omniscience and explicit action-based change.

Our logic can handle examples involving not only nondeterminism, but
continuous time, concurrency and memory of actions as well, thus providing
a conceptual extension of Sandewall’s framework.

1.4 Organization

The thesis is organized as follows:
In Chapter 2 we present the details of related work. More specifically,
we discuss research by Fangzen Lin [1996], and Witold Lukaszewicz and

Ewa Madaliniska-Bugaj [1995].

Chapter 3 presents the version of PMON used in this thesis.

®An exception is Paolo Liberatore’s The Complezity of the Language A which is cur-
rently being reviewed. It is available at http://www.ep.liu.se/ea/cis/1997/006/.
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In Chapter 4 we adapt wilp for PMON, we show that PMON entailment
and wilp computations coincide, and we show that it is possible to fit both
sufficient and necessary conditions before an action for a statement to hold
after the execution of the action into a framework of wlp. Furthermore, pre-
and postdiction procedures for PMON are presented. A larger part of the
results have been published in [Bjireland and Karlsson, 1997].

Chapter 5 includes and extends [Drakengren and Bjareland, 1997]. A new
logic of action and change is introduced, in which continuous time, nondeter-
ministic actions, concurrent actions, and memory of actions are expressible.
We show that satisfiability of the logic is NP-complete. A tractable subset,
based on results from Temporal Constraint Reasoning, is identified.

In Chapter 6 the thesis is summarized and some possible future directions
are discussed.



Chapter 2

Related Work

In this chapter we will provide a detailed presentation of two approaches
closely related to our approach presented in Chapter 4. The approaches are

e Situation Calculus approaches, with emphasis on Reiter’s [1991] and
Lin’s [1996] work, and

e The approach of Lukaszewicz and Madalinska-Bugaj [1995], where Di-
jkstra’s semantics of programming languages is used.

There are other approaches to RAC than the ones presented here (for exam-
ple the Event Calculus [Kowalski and Sergot, 1986] and Thielscher’s Logic of
Dynamic Systems [Thielscher, 1995]). However, since they are not of imme-
diate interest to the results presented in Chapters 4 and 5, we have omitted
a presentation of them.

2.1 Situation Calculus Approaches

The situation calculus (SitCalc) is arguably the most wide spread formalism
for reasoning about action and change today. Its present form was origi-
nally suggested by McCarthy and Hayes [1969], and has been widely studied
ever since (see [Sandewall and Shoham, 1994] for an overview). The most
sophisticated and developed flavour of SitCalc studied today is, probably,
the “Herbrand! flavour” where situations are considered to be sequences of
actions. Reiter [1991] combined the theories of Pednault [1986] and Schubert
[1990] by introducing a suitable closure assumption so that his theory solved

! A term used by Sandewall and Shoham [1994]
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the frame problem for a larger class of scenarios than before. Reiter also
adapted a reasoning mechanism, Goal Regression, which was introduced by
Waldinger [1977] and further developed by Pednault [1986], to his theory.

There exists a number of extension of the situation calculus (or the
related formalism A) for handling nondeterministic actions (for example
[Giunchiglia et al., 1997, Baral, 1995]), but Lin [1996] is the only one pro-
viding a regression operator for the logic.

In this section we will present Reiter’s work, and Lin’s extension to it.

2.1.1 Reiter

SitCalc (in this version) is a many-sorted second-order language with equal-
ity. We assume the following vocabulary:

e Infinitely many variables of every sort.

e Function symbols of sort situations. There are two function symbols of
this sort: The constant Sy denoting the initial situation, and the binary
function symbol do, which takes arguments of sort actions and situa-
tions, respectively. The term do(a, s) denotes the situation resulting
from executing the action a in situation s.

e Finitely many function symbols of sort actions.

e Infinitely many function symbols of sort other that actions and situa-
tions. These symbols will be referred to as fluents.

e Predicate symbols:

— A binary predicate Poss taking arguments of sorts actions and
situations, respectively. Poss(a,s) denotes that it is possible to
execute action g in situation s.

— A binary predicate h taking arguments of sorts fluents and situa-
tions, respectively. h(f,s) denotes that the fluent f is true (holds)
in situation s.

e The usual logical connectives, quantifiers, and punctuations.

For a fluent R we let R(s) mean exactly the same thing as h(R,s), for
readability.

For readability we will only consider fluents and actions with arity O.
The theory can easily be generalized. The basic idea of Reiter’s approach is
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that the user provide axioms that state the circumstances under which it is
possible to execute actions (Action Precondition Axioms), and axioms that
state the circumstances when the value of a fluent may change (General
Positive/Negative Effect Axioms). Then, under the assumption that the
effect axioms completely describe all ways a fluent may change value, it is
possible to generate successor state azioms, which characterizes the possible
changes of fluent values.

The predicate Poss(a,s) denotes that it is possible to execute action a
in situation s, and it is defined as follows?:

Action Precondition Axioms (APA)
For each action a
Poss(a,s) = Uu(s),

where ¥,(s) is a formula describing the condition under which it is possible
to execute action a in situation s.

For the fluents we state one axiom for circumstances when an action
may change its value to T and one for F. Formally, with each fluent, R, we
associate two general effects axioms:

General Positive Effect Axiom for Fluent R (PEAR)
Poss(a,s) Avj(a,s) = h(R,do(a, s)).

General Negative Effect Axiom for Fluent R (NEAR)
Poss(a,s) Nvg(a,s) = —h(R,do(a,s)).

The formula v%(a,s) (yz(a,s)) characterize the conditions and actions a
that make fluent R true (false) in situation do(a, s).

Next, we assume that PEAr and NEAg completely characterizes the
conditions under which action a can lead to R becoming true (or false) in
the successor state. This assumption can be formalized as follows:

’In this and the following section, we assume that all free variables are universally
quantified
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Explanation Closure Axioms (ECA)
Poss(a,s) AN h(R,s) N —=h(R,do(a,s)) = vg(a,s),

Poss(a,s) A —h(R,s) A h(R,do(a, s)) = v (a,s).

These axioms state that if R changes value from T to F while executing
action a, the formula v, (a,s) has to be true, and analogously for when R
changes from F to T.

Reiter shows that with the set of the above-mentioned axioms for all
fluents R, ' = YUPEARr UNEAR UECA we can deduce the following axiom:

Successor State Axiom for Fluent R (SSAg)
Poss(a,s) = [k(R,do(a,s)) = vg(a,s) V (h(R,s) A ~vg(a,5))],

as long as the formula v7(a, s) A v (a,s) A Poss(a, s) is not entailed by T,
that is, as long as all  for every fluent are mutually exclusive. In fact, under
this condition the effect axioms and explanation closure axioms for R are
logically equivalent to the successor state axiom.

Successor state axioms play a crucial role in the construction of regression
operators. For a specific fluent R, the corresponding successor state axioms
specifies exactly what has to hold before an action a is executed, for R to
be true (false) after the execution of a.

By substituting fluents in the goal with the right-hand side of the bi-
conditional in the successor state axioms, the nesting of the do function can
be reduced until there is finally a formula only mentioning the situation Sy,
on which a classical atemporal theorem prover can be used. Since Reiter’s
approach cannot handle nondeterministic actions, we will now turn our at-
tention to Lin’s extension to it.

2.1.2 Lin

As an extension to Reiter’s SitCalc flavour, Lin introduces a predicate Caused
which “assigns” truth values to fluents, and a sort, truth values, consisting
of constant symbols T and F. The formula Caused(p, v, s) denotes that the
fluent p is made to have the truth value v in situation s. There are two
axioms for Caused:
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Caused(p,T,s) — h(p,s)
Caused(p,F,s) — —h(p, s)

In the minimization policy, the extension of Caused is minimized and a
nochange premise is added to the theory. To illustrate his approach Lin
uses the dropping-a-pin-on-a-checkerboard example: There are three flu-
ents, white (to denote that the pin is partially or completely within a white
square), black, and holding (to denote that the pin is not on the checker-
board). There are two actions, drop (the pin is dropped onto the checker-
board) and pickup. In this thesis we will only consider the drop action
(which is the only one with nondeterministic effects), which is formalized as
follows:

Vs.Poss(drop, s) —
[Caused(white, true, do(drop, s)) A
Caused(black, true,do(drop, s))| V
[Caused(white, false,do(drop, s)) A
Caused(black, true, do(drop, s))| V
[Caused(white, true, do(drop, s)) A
Caused(black, false,do(drop, s))]. (2.1)

The Poss predicate is defined, with an action precondition axiom, as

Vs.Poss(drop, s) =
h(holding, s) A —=h(white, s) A —h(black, s)

A problem with this is that the effects of the action have to be explicitly
enumerated in the action definition. The number of disjuncts will grow
exponentially in the number of fluents, and may become problematic in
implementations.

To be able to use goal regression, Lin has to generate successor state
axioms. However, this cannot be done in a straightforward way for nonde-
terministic scenarios. The reason for this is that there are no constraints
before a nondeterministic action in a biconditional relation on what holds
after the action has taken effect. Lin deals with this by introducing an
“oracle” predicate, Case(n, a, s), which is true iff the nth disjunct of action

3Constructs that “know” in advance what the effect of nondeterministic actions will
be.
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a has an effect (is true) in situation s. Consequently, the drop action is
defined as follows:

Vs.Poss(drop, s) A Case(1,drop, s) —
Caused(white, true, do(drop, s)) A
Caused(black, true, do(drop, s)),

Vs.Poss(drop, s) A Case(2,drop, s) —
Caused(white, false,do(drop, s)) A
Caused(black, true, do(drop, s)),

Vs.Poss(drop, s) A\ Case(3,drop, s) —
Caused(white, true, do(drop, s)) A
Caused(black, false,do(drop, s)),

Lin shows that the new theory is a conservative extension of the previous
circumscribed one.

Since the actions now are deterministic, it is possible to generate succes-
sor state axioms, for example for white:

Va, s.Poss(a, s) — [h(white,do(a, s)) =
a = drop A (Case(1,drop, s) V Case(3,drop, s))]

To capture that exactly one of the Case statements is true, Lin adds the
axiom

Vs.Case(l,drop, s) ® Case(2,drop, s) ® Case(3,drop, s),

where @ denotes exclusive disjunction®.

Discussion

Unfortunately, this approach is not as general as it may seem. In fact,
goal regression is not possible unless we restrict the problem by disallowing
the effects of nondeterministic action to be conditional, that is, The Poss
predicate makes it possible to express qualifications for the action to be
invoked, but it is not possible to express that an invoked action has different
effects depending on the the situation it was invoked in.

Tt is necessary to add more axioms, which Lin does, but they are of no immediate
interest to the discussions in this thesis.
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The key here to Lin’s “oracle” approach is that a previously nondetermin-
istic action is transformed into a deterministic action, where nondeterminism
is simulated by the oracles. This means that he transforms a theory with
nondeterministic actions to an equivalent theory with deterministic actions
and an incompletely specified initial state. Interestingly, Sandewall predicted
a similar equivalence when he stated that “{Occluded features and oracles
are different in a number of ways] but still it should be no surprise that they
are interchangable” ([Sandewall, 1994], page 255). The concept “Occlusion”
will be properly introduced in Chapter 4.

Lin suggests that the oracles could be viewed as probabilities of certain
effects to take place. However, since he does not develop this idea, the
introduction of oracles is not completely convincing, at least not from a
knowledge representation point of view. In Chapter 4 we will show how
regression can be defined for nondeterministic theories without the use of
oracles, but with Occlusion.

2.1.3 Situation Calculus as a Knowledge Representation

In Section 1.1.3 we posed a number of questions that could be asked about a
knowledge representation. Here, we will analyze SitCalc from that perspec-
tive.

The effort that Lin puts into finding successor state axioms for SitCalc
with nondeterministic actions implies that that he is not only interested
in a theoretical tool, but also in the possibility of implementing the logic
with the regression operator as the primary reasoning mechanism. Yet, it is
clear that it is nondeterminism that is the aspect he sets out to study. The
ontological commitments set by SitCalc are primarily of interest for their way
of representing the flow of time — as a branching time structure. A situation
is a sequence of actions, which means that every finite sequence of actions
is possible. This implies that it is possible to view the temporal structure
as a tree, where the initial situation Sy is the root and the sequences are
the branches. This temporal structure enables hypothetical reasoning on
the object level, since two different branches denote two different possible
courses of events which can be compared on the object level. Lin and Reiter
[1997] argue that their version of SitCalc is consistent with the dynamics of
database update, and that it is very close to how the database community
views relational databases.
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2.2 The approach of Lukaszewicz and Madalinska-
Bugaj

An approach similar to our work described in Chapter 4 is that of Lukaszewicz
and Madalinska-Bugaj [1995] who apply Dijkstra’s semantics for program-
ming languages to formalize reasoning about action and change. They de-
fine a small programming language with an assignment command, sequential
composition command, alternative command, and skip command, and define
the semantics of the commands in terms of the weakest liberal precondition,
wlp, and strongest postcondition, sp, such that for a command S and a de-
scription of a set of states «, wip(S, ) describes a set of states such that if
the command is executed in any of them, the effect of S will be one of the
states described by a. For sp, we have that sp(S, ) describes a set of states
such that if S is executed in any of the states described by «, the effects
will belong to sp(S,«). The “descriptions” of states mentioned are simply
formulae in propositional logic. We present the approach in more detail to
facilitate a comparison to our approach, presented in Chapter 4. The pro-
gramming language consists of a skip command, an assignment command,
a sequential composition command, and an alternative command. The se-
mantics of the commands are defined as follows:

o skip:
wlp(skip,a) = sp(S,a) = a,

that is, skip denotes the empty command, the command with no ef-
fects.

o Assignment: Let a be a propositional formula. Then aff < V] denotes
the simultaneous substitution of all occurences of the symbol f for
V € {T,F}® in the formula a. The effect of the assignment command,
x:=V, should be that z is true in all states after the command has
been executed, if V = T, else false.

wlp(z:=V,a) = afz «+ V],
and for sp:

__ _J zA(afr < T]Valz«F]) LKV=T
SP("E'_V’O‘)_{ ~z A(ofz « T]Vafz « F]) IV =F

®The symbols T and F henceforth denote the truth values True and False, respectively.
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that is, « should have a value according to V after the execution of the
command, but only in states in which « is true regardless of the value
of z in them.

e Sequential composition: For two commands S; and Sy, we let Si;So
denote that the commands are executed in sequence, with Sy first.

wlp(S1; Sz, &) = wip(S1, wlp(S2, @),
sp(S1; S2,a) = sp(S2, sp(S1, @)).
o Alternative: This command is of the form
if By = S1[]...[|Bn — Si fi,

where By, ..., B, are boolean expressions (guards) and Si,...,S, are
any commands. The semantics of this command (henceforth referred
to as IF) is given by

n
wlp(IF, a) = /\[Bz D wlp(S;, a)],
i=1
n
sp(IF, o) = \/ [sp(Si, B; A\ a)],
i=1
where D denotes logical implication. Thus, if none of the guards is
true the execution aborts, else one of the expressions B; — S; with
true B;, is randomly selected and S; is executed.

Lukaszewicz and Madalinska-Bugaj are mostly interested in a particular class
of computations, namely initially a and finally B under control of S, that
is, computations S that start in one of the states described by « and end
in one of the states described by (. Typically, the problems they want to
model consist of given (partial) descriptions of the initial and final states,
and a given sequence of commands (actions). The reasoning tasks might
then be prediction (to prove that something holds after the sequence has
been executed) or postdiction (to prove that something holds before the
sequence), or that something holds somewhere in the middle of the sequence.
Here, we will only briefly explain how the reasoning is performed.

For a “pure” prediction problem, where a statement ¢ is to be proven
to hold after a command S, given an initial constraint «, they check if
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sp(S,a) = ¢, where = denotes classical deductive inference in propositional
logic. Thus, prediction is handled by progression.

For pure postdiction, where a statement ¢ is to be proven to hold before a
command S, given an final constraint 3, they check if —wip(S, —3) = ¢. The
use of negations here will be carefully investigated in Chapter 4. Postdiction
is handled by regression.

For the third case, where S = Si;...;5, and ¢ is to be proven to hold
after Sy but before Si1, for 1 < k < n, with initial constraint o and final
constraint 3, they check if sp(Si;...; Sk, @) A =wlp(Sk+1;-- -39, 708) E ¢
This case is handled by progression and regression.

2.2.1 Knowledge Representation Issues

The work by Lukaszewicz and Madaliriska-Bugaj focuses strongly on the-
oretical aspects of KR, and especiallly the possibilities of using Dijkstra’s
semantics for RAC purposes. The ontological commitments are the same as
for any imperative programming language, thus its consistency with the real
world cannot be questioned. Since the semantics of the language is given by
wlp and sp, and the proposed reasoning mechanisms also are wlp and sp,
it is hard to comment on how much of a theory of intelligent reasoning the
formalism is. The intended inferences are hard-wired in the semantics, via
wlp and spb.

SIn chapter 5 we present a formalism where the intended conclusions are hard-wired in
the semantics.



Chapter 3

Preliminaries

Sandewall [1994] proposed a systematic approach to RAC that includes a
framework in which it is possible to assess the range of applicability of exist-
ing and new logics of action and change. As part of the framework, several
logics are introduced and assessed correct for particular classes of action sce-
nario descriptions. The most general class covered by the framework, I-IA
and one of its associated entailment methods, PMON, permits scenarios with
nondeterministic actions, actions with duration, partial specification at any
state in the scenario, context dependency, and incomplete specification of the
timing and order of actions. Doherty and Lukaszewicz [1994] showed how the
entailment methods assessed in Sandewall’s framework could be described
by circumscription policies, and Doherty [1994] gave a first-order formula-
tion of PMON which uses a second-order circumscription axiom, showing
that the second-order formula always could be reduced to first-order. In
[Gustafsson and Doherty, 1996] PMON was extended to deal with certain
types of ramification.

In [Karlsson, 1997] fundamental notions from PMON were used to extend
SitCalc to facilitate planning with nondeterministic actions and incomplete
information.

Kvarnstrom and Doherty [1997] have developed a visualization tool,
VTAL, for PMON, which is currently used for research purposes.

Our version of PMON is propositional, and we allow nondeterministic
action, actions with duration, and arbitrary observations not inside action-
duration intervals. We will also require actions to be totally ordered; actions
are not allowed to overlap. Furthermore, we view actions as “encapsulated”,
that is, that we are not interested in what goes on during the execution of
an action. The interested reader should consult [Doherty, 1997] for details
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of the full flavoured logics.

3.1 PMON

We will use the language £ which is a many-sorted first-order language. For
the purpose of this thesis we assume two sorts: A sort 7 for time and a sort
F for propositional fluents. The sort 7 will be the set of natural numbers.

The language includes two predicate symbols H' and Occlude, both of
type T x F. The numerals 0,1,2,... and the symbols s and t, possibly
subscripted, denote natural numbers, i.e. constants of type T (time points).

PMON is based on action scenario descriptions (scenarios), which are
narratives consisting of three components: OBS, a set of observations stating
the values of fluents at particular time points, ACT, a set of action laws,
and SCD, a set of schedule statements that state which and when (in time)
actions occur in the scenario.

Example 3.1.1 A scenario where the pin was initially held over the checker-
board, then dropped and finally observed to be on a white square (and not
on a black one) is formalized as

oBsl H(0,over_board) A —H (0, white) A —=H (0, black)
ACT [s,t|Drop = H(s,over_board) — [s,t]y

scD  [3,5|Drop

0BS2 H(6,white) A ~H(6,black),

where [s, t]y is the formula

—H(t,over_board) A (H (t,white) V H(t,black)) A
Vt'.s <t' <t — Occlude(t', holding) A
Occlude(t', white) A Occlude(t', black), (3.1)

The first observation OBS1 states that at time point 0 the pin is held over
the board, and is not on a black or a white square. The sole action of the
scenario Drop states that it is executed between time points s and ¢ and
then, if the pin is over the board at time point s, it will no longer be over
the board and it will be on a black or a white squre at time point t. At every
time point between (not including) s and ¢ the fluents over_board, white,
and black are Occluded, which means that they are allowed to change their

Not to be confused with h which is the corresponding situation calculus predicate.
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value during that interval. Formally, this means that they are excluded from
the minimization-of-change policy. This will be discussed in detail below.
The schedule statement SCD states that the action Drop will be executed
between time points 3 and 5. The schedule statements of a scenario are used
to instantiate temporal variables of the action laws. The instantiated action
law (action instance) for Drop in Example 3.1.1 will be

H(3,over_board) —
—H (5, over_board) A (H(5,white) V H(5,black)) A
Occlude(4, over_board) A Occlude(5, over_board)
Occlude(4,white) A Occlude(5, white)
Occlude(4, black) A Occlude(5, black),

where we have expanded the universal quantification over the temporal vari-
able.O

The way nondeterministic actions are formalized in PMON certainly
deals with the problem of compact and intuitive representation, discussed in
Section 2.1.2.

In Section 2.1.2 we saw that in Lin’s formalism h(holding, s) is a qual-
ification of the action drop. To illustrate conditions for the action to have
effects (context dependency), we introduce over_board, that denotes that
Drop only has effects if the pin is dropped onto the board. Such conditions
can be modelled in SitCalc, but not in Lin’s framework, at least not when
regression is to be used.

H formulae and Observations

Boolean combinations of H literals (i.e. possibly negated atomic formulae),
where every literal mentions the same time point, are called H formulae. An
H formula, §, where every literal only mentions time point s, will be written
[s]d. An observation is an H formulae.

Action Laws

A reassignment is a statement [s,t]f:=b, where f € F and b is a truth
value symbol (T for true, and F for false). The statement [s,t]f:=T is
an abbreviation of H(t,f) AVt.s < t <t — Occlude(t, f), and [s, t|f :=F
expands to ~H (t, f) AVt.s <t <t — Occlude(t, f). These formulae will be
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called ezpanded reassignments. A reassignment formula [s, t]a, is a boolean
combination of reassignments, all mentioning the same temporal constants
s and t. Expanded reassignment formulae are constructed from expanded
reassignments.

An action law is a statement

[s,t]A =
A, [s]precond — [s, t]postcond?],

where A is an action designator (the name of the action), s and ¢ are variables
(temporal variables) over the natural numbers, each precond{l is either a
conjunction of H literals only mentioning the temporal variable s, or the
symbol T, such that the preconditions precondiA are mutually exclusive,
and every postcondf‘ is a reassignment formula. Intuitively, ACT contains
rules for expanding schedule statements into action axioms, in which the
temporal variables are instantiated.

An action is said to be deterministic iff none of its postconditions include
disjunctions. An action is admissible if no precondition or postcondition is
a contradiction. We will call the conjuncts of an action law branches.

Definition 3.1.2 (Effect Formulae)
Every expanded reassignment formula can be written as

[t]y A (Vis <t <t —0),

where 1) is an H formula, and 6 a conjunction of positive Occlude literals.
The 9 part of an expanded reassignment formula will be called an effect
formula.O

Schedule Statements

A schedule statement is a statement, [s,t]A, such that s and t are natural
numbers, s < t, and A is an action designator for which there exists an
action law in ACT.

No Change Premises

The occlusion of fluents that are reassigned captures the intuition of possible
change, but we also need a syntactic component that captures the intuition
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that a fluent cannot change value unless it is occluded. This is taken care of
by the no change premise, NCH, formulated as

Vf,t.=Occlude(t + 1, f) — (H(t, f) = H(t + 1, f)).

Action Scenario Description

An action scenario description (scenario) is a triple (OBS, ACT, SCD), where
OBS is a set of observations, ACT a set of action laws, and SCD a set of
schedule statements such that the actions are totally ordered. Furthermore,
let sSCD(ACT) denote a set of formulae such that for every schedule statement
in SCD we instantiate the temporal variables of the corresponding action law
(in AcT) with the two time points in the schedule statement. We will call
such formulae action instances.

PMON Circumscription Policy

To minimize change, the action instances are circumscribed (by second-order
circumscription as shown in [Doherty and Lukaszewicz, 1994, Doherty, 1994]),
i.e. by minimizing the Occlude predicate, and then by filtering with the ob-
servations and nochange premises. For a scenario description T = (0BS, ACT, SCD)
we have

PMON(Y) =
Circso(scp(AcT)(Occlude); (Occlude)) U
{NcH}UOBSUT,

where Clircgo denotes the second-order circumscription operator, and I is
the set of unique names axioms. Doherty [1994] shows that this second-
order theory can always be reduced to a first-order theory that provides a
completion (or, definition) of the Occlude predicate. For Example 3.1.1 the
completion will be the following:

Vt, f.Occlude(t, ) =
H (3, over_board) A
((t =4 A f =over_board) V (t =5 A f = over_board) V
(t =4 AN f =white) V (t =5 A f = white) V
(t=4ANf =black) VvV (t =5 A f = black)) (3.2)
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A classical model for a circumscribed scenario will be called an intended
model. A scenario is consistent if it has an intended model, otherwise it is
inconsistent.

Let M~ be the class of intended models for a PMON scenario, T. For
t € T, we let My(t) denote the set of propositional interpretations for the
fluents in YT at time point ¢, in the obvious way. A member s of M~y(t) is
called a state.

We say that a scenario YT entails a statement [t]p, and writes T |~ [t], iff
PMON(Y) F [t]p, where - denotes classical deductive inference. Further-
more, a schedule statement [s,t]A is said to entail a statement [t]p, written
[s,t]A |~ [t]e, iff (0, ACT,[s, t]A) |~ [t]e.

The completion of Occlude has a useful ramification: It conditionalizes
the branches of the actions in the scenario, i.e. when the completion axiom
is added to the theory, it is no longer possible for a precondition to be false
while its postconditions are true. For Example 3.1.1 we see that the definition
of Occlude (formula 3.2) ensures that the precondition of the action Drop,
H (3, 0ver_board), must be true for Occlude(t, f) to be true, for any ¢t and f.
This behavior is similar to the behavior of if-then statements in programming
languages, and makes it possible to use Dijkstra’s wlp formula transformer.

3.2 Knowledge Representation Issues

PMON originated as a theoretical construction in [Sandewall, 1994], and has
been analysed and extended as such in a number of papers ([Doherty, 1994],
[Doherty and Lukaszewicz, 1994], [Gustafsson and Doherty, 1996],
[Karlsson, 1997]). However, much work is currently being undertaken to
implement PMON in pragmatically efficient ways (the results in Chapter 4
are steps in this direction). The primary ontological commitment imposed
by PMON is the notion of a scenario, where we have to explicitly model
action occurences. However, as argued in [Ghallab and Laruelle, 1994], the
possibility of being able to explicitly model time and to reason with time
points and intervals is crucial for automatic control applications.
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Regression

In this chapter we explore two tracks of interest: the development of a
computational mechanism for reasoning with PMON, and the relationship
of PMON to imperative programming languages. For the first track we
define a regression operator which is the key to the results in the second
track.

Basically, regression is the technique of generating a state description, «,
of what holds before some action, A4, is executed, given some state descrip-
tion, 8, presumably holding after A is executed. Also, we want « to contain
all possible states such that, if A is executed in any of them the result will
belong to 8. Without this last constraint, the empty set would always be a
sound regression result.

In Section 2.1.1 we showed how Reiter [1991] generates a biconditional
relationship between the states holding before and after (that is o and (3
as above) the execution of an action for deterministic actions. It is easy to
see that such a relation does not hold generally if we allow nondeterministic
actions. Take, for example, the action of flipping a coin, which either results
in tails or —tails, but not both. If we observe that tails holds after flipping,
what are the sufficient conditions before the actions, so that we are guaran-
teed that tails will be true? Well, there are no such conditions, since the
result of the action is nondeterministic and not dependent on the state in
which the action was invoked. On the other hand, what states would make it
possible for the action to have the effect tails? The answer is “all of them”,
since no state would prohibit the possibility.

This distinction between sufficient and necessary conditions will be for-
malized below using a classical computer science approach, the weakest lib-
eral precondition operator, wip.
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In Proposition 4.1.10 we establish that wlp computations are equivalent
to PMON entailment.

4.1 Wip

We will introduce Dijkstra’s semantics for programming languages (see for
example [Dijkstra, 1976, Dijkstra and Scholten, 1990, Gries, 1981]), but in
the setting of PMON. We also present theorems which connect the states
before and after the execution of actions. Originally, the theory was devel-
oped to provide semantics for small programming languages with a higher
ordered function. This function was a predicate transformer that, given a
command, S, in the language and a machine state, s;, returned a set, W, of
machine states such that all states in which S could be executed and termi-
nate in s;, if it at all terminated, belonged to W. This predicate transformer
was called the weakest liberal precondition, wlp. For the purpose of program-
ming languages, a stronger variant of wip, namely the weakest precondition
operator wp, was developed' as well. It was defined only for terminating
actions. Since all the actions used here are terminating (we do not have any
indefinite loops), wp and wip coincide. For historical reasons, we will call
the operator wip.

Let ¢ be an atomic H formula, f a fluent and V € {T,F}. We write
[s]le[f < V] to denote that all H statements? mentioning the fluent f are
simultaneously replaced by V', and where the time argument of the H state-
ments is changed to s ([s] will be called the time mark of the formula). As a
consequence, [s]p[] denotes the replacement of all time arguments in ¢ with
s. The notation [s]p[f1 < Vi,..., fn < V4] denotes the simultaneous sub-
stitution of the H formulae for the truth values. We will let formulae with
nested time marks, such as [s|[t]a A [t']3, be equivalent to formulae where
all internal time marks are removed, that is, only the outmost time mark
will remain. So,

[sl[tla A[t']8 = [sla A B

Since the operations below are syntactical, we will have to assume that the
effect formulae (see Definition 3.1.2) 1 are extended with a conjunction of
H(t,f) v -H(t,f) for every occluded fluent not already mentioned in 3.

Tn the literature wlip is generally defined in terms of wp.
2 Not the possible negation in front of them.
$Semantically, this has no effect, since we are adding tautologies to the formula.
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These effect formulae will be called extended effect formulae. For example,
the action of flipping a coin could be formalized as follows:

[s,t]Flip = Vt'.s <t' <t — Occlude(t, tails),

where the the effect formula is T. The same action with an extended effect
formula appears as follows:

[s,t]Flip =
(H(t,tails) V —~H(t, tails)) A
Vt'.s <t' <t — Occlude(t', tails)
Definition 4.1.1 (Weakest liberal precondition, wip)

Let ¢ be an H formula. We define wlp inductively over extended effect
formulae of the action [s,t]A, so that, for all fluents f € F

wip(H(t, f),¢) € [slolf « T (4.1)
wip(~H(t, f),¢) < [slolf « F] (4.2)
wip(a A B,0) < [slwip(B, [tlwlp(a, ) (4.3)
wip(aV B,¢) € [slwlp(a, ¢) A wip(,¢) (4.4)

Furthermore, let [s, t]A be a schedule statement for which the corresponding
law has n branches. Then

wip([s, t]4, [t]p) &

[s](AP_[precond? — wip(postcond?, ¢)))
A

(A1 [-precond]’] — [s]e[]) (4.5)

The second conjunct encodes that if none of the preconditions was true then
o had to be true at the beginning of the action. We define the conjugate of
wlp, wlp*, as wip*(S, a) = ~wlp(S, —~«).0

Note that wlp is applied to the possible effects of an action in (4.1) — (4.4),
and is generalized to complete action instances in (4.5).

Definition (4.3) is based on a sequential underlying computational model.
If we implement wilp, we will have to perform the reassignments in some
order, and here we choose to first apply a and then (. Since we have assumed
that the actions are admissible, the order does not matter.
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Definition (4.4) handles nondeterminism. It guarantees that no matter
which of a or (3 is executed, we will end up in a state satisfying ¢. The only
states that can guarantee this are those that can start in o and 8 and end
in .

For (4.5) we can note that wip should generate every state, o, such that
if a precondition is true in o, wlp applied to the corresponding postcondition
and some ¢ should be true in ¢ too. This excludes every action branch that
would not terminate in a state satisfying . The second conjunct of (4.5)
makes wlp work exhaustively, that is if none of the preconditions are true
then ¢ is true, before the action.

The conjugate wip*([s,t]A,[t]y) should, analogously to wip, be inter-
preted as: “The set of all states at s such that the execution of A in any of
them does not end in a state at t satisfying —¢.”

4.1.1 Example 3.1.1 Revisited

We illustrate wlp by computing the weakest liberal precondition for white
or black to hold after the Drop action. The scenario is formalized as follows:

oBsl H(0,over_board) A —H (0, white) A —=H (0, black)
ACT [s,t]|Drop = H(s,over_board) — [s,t]y

scp  [3,5|Drop

0BS2 H(6,white) N ~H(6,black),

where [s,t]y is the formula
—H(t,over_board) A (H (t,white) V H(t,black)) A
Vt'.s <t' <t — Occlude(t', holding) A
Occlude(t', white) A Occlude(t', black),

We are only interested in the Drop action, which is instantiated as follows:

H(3, over_board) —
—H (5, over_board) A (H (5, white) V H(5, black)) A
Occlude(4, over_board) A Occlude(5, over_board)
Occlude(4, white) A Occlude(5, white)
Occlude(4, black) A Occlude(5, black).
The effect formula is in this case =H (5, over_board) \(H (5, white)V H (5, black)),

and since all occluded fluents already occur in the effect formula v, the ex-
tended effect formula coincides with .
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It should be clear that the only way in which we can be guaranteed that
white or black is true after Drop is if over_board, or white or black, was
true before the action.

wlp([3, 5] Drop, H(5, white) V H(5,black)) =
(H (3, over_board) —
[3|wlp(—H (5, over_board) A (H (5, white) V H(5,black)),
H (5, white) V H(5,black))) A
(—H (3, over_board) —
H (3, white) V H(3,black)) (4.6)

Now, we focus on the right-hand side of the first implication:

[3|wlp(—H (5, over_board) A (H (5, white) V H(5, black)),
H(5,white) V H(5,black))) =
[Blwlp(H (5, white) V H(5,black),
[5lwlp(—H (5, over_board), H (5, white) V H(5,black))) =
[Blwip(H (5, white) V H(5,black),
H(5,white) V H(5,black)) =
[3](wlp(H (5, white), H (5, white) V H(5,black)) A
wip(H (5, black), H (5, white) V H(5,black))) =
(T V H(3,black)) A (H(5,white) VT) =
T
We computed wip([3, 5]y, H(5, white) V H(5,black)), and the first conjunct
of [3, 5], [3,b]over_board :=F, did not not have any effect on H (5, white) V

H(5,black). When wlp was applied to the three disjuncts of [3, 5]y they were
all computed to T. Thus,

wip([3, 5]y, H(5, white) V H(5,black)) = T,
and (4.6) will be equivalent to

(H (3, 0ver_board) — T) A
—H (3, over_board) — H(3,white) V H(3,black))

—H (3, over_board) — H(3,white) V H(3,black),

which is what we wanted.
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4.1.2 Weakness Theorem and Logical Properties of wip

The correctness of wip is in Dijkstra’s original setting quite obvious. But
since the semantics of PMON is defined independently of wlp, we will have
to prove that our version actually is weakest. This fact will imply most of
the forthcoming results. We start with some helpful lemmas.

Lemma 4.1.2 Let s be a state and « a formula over some vocabulary. Let
f be a member of that vocabulary. Define s’ = s/f to be the state that
maps all fluents to the same truth value as s, except for f where s'(f) = T
regardless of what the value of s(f) is. Analogously we define s/—f.

If s does not satisfy a[f < T] (a[f « F]), then s/f (s/—f) does not satisfy
a.
Proof: Structural induction over .0

Lemma 4.1.2 can easily be generalized to handle multiple substitutions of
the form alf; < Vq,...,f, + V,].

Lemma 4.1.3

wip([s, t]4, [t A ¢') = wip([s, t] 4, [t]p) A wip([s, t]4, [t]¢),

that is, wlp distributes over conjunction in the second argument.
Proof: Structural induction over the definition of wip.O

Now we prove the weakness theorem. The basic idea is to prove that there
can be no weaker formula than the result of the wlp computation that is
true before the execution of the action, if the scenario should be consistent.
Thus, we show that for an arbitrary formula o which is true before action
A, the formula o must imply the result of the wip computation. We will use
contraposition of the implication for all of the cases.

Theorem 4.1.4 Let [s,t]A be an admissible action and [t]¢ an H formula.
If ([s]o, law, [s, t]A) |~ [t]p then [s]o — wip([s,t]A,[t]p), for any H formula
[s]a.

Proof: We assume that [s,t]4 U {[s]a} |~ [t]y, and prove the theorem with
structural induction over actions. We also assume that the extended effect
formulae ¢ are on CNF. First, we can note that if « = F, the theorem holds
trivially, so we assume that « is consistent.
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L ¢ = H(t, f).
We know that wip([s,t]A, [t]e) = [s]¢[f < T] and we assume that
[s]o A —p[f < T] is consistent. Thus, there is state, s, which satisfies
o but not ¢[f < T]. By Lemma 4.1.2 we know that the values in
s cannot be flipped by psi so that the resulting state may satisfy .
Thus, s cannot be an initial state, and the result follows.

2. ¢ = ~H(t, f).

This case is proven analogously to the case above.

3. =01V ...V By, where §; is an H literal.

wlp([s, t]A4, [t]p) = [s] A\ix; wip(Bi, ¢), by definition. We assume that
[s]lo A Viz; ~wlp(Bs, ) is consistent. This implies that there exists a
state s that satisfies o and, for at least one i, does not satisfy wip(5;, ).
Now, set V; = T if §; = H(t, f;), else V; = F. Then wip(B;,¢) =
[s]¢[fi < Vi]. Since s does not satisfy ¢[f; < V;], the flipped version
does not satisfy ¢ (according to Lemma 4.1.2). If the execution of A
is invoked in s, it does not matter how the value of f; is changed, the
execution will not terminate in a state satisfying ¢, and we have a
contradiction.

4. ¥ = a1 A ...\ ay, where o is a disjunction of H literals.
By definition wip([s, t]4, [t]p) = wip(ay, ... wlp(ai,p)...). Let s be
state satisfying o A ~wip(ay, ... wip(an,p)...). fa; =B V...V ﬂ,ii,
where ﬂ;- is an H literal, we know that wip(ay,p) = /\f;l %.» Which
means that

kn
wip(an—1, wlp(om, 9) = [\ wip(an_1, wip(B,, ¢)),

i=1
by Lemma 4.1.3.
By induction we get a conjunction of nested wlp terms, where the
first argument is an H formula. If we let all the H formulas in the
conjuncts have effect on ¢, the result will be a conjunction of formulas
of the form ¢[f5! < Vﬂ‘;‘,l, S Vﬂ";”], that is every combination
of disjuncts in the a; will take effect in some conjunct. We know that
s does not satisfy one of these conjuncts, which implies that it cannot
be an initial state.

5. A = N\j—[[s]precond; — [s,t|postcond;].
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wlp([s, t]4, [t]p) =
(A, [precond? — wip(postconds, p)])
A
(Aizs[-precondf] — [sle[])
Again, we examine a state s satisfying [s]o A —wip([s, t] A, [t]¢), where
—wlp([s,t]A, [t]y) is equivalent to
(VP [precond? A ~wlp(postcond?, ¢)))
V
(Ai=i[-precond] A —[s]el))
It easy to verify that s cannot be an initial state.

d

We have proved that wlp in fact provides the weakest precondition. Now we
will establish relationships between PMON entailment and wip, and inves-
tigate when successor state axioms can be generated.

For all the theorems below we assume that the actions are admissible.

Proposition 4.1.5 [s,t]A ~ wip([s, t]A4, [t]e) — [t]e.
Proof (sketch): Follows from Theorem 4.1.4.0

Corollary 4.1.6 [s,t]A |~ [t]e — wip*([s, t] 4, [t]p).
Proof: Contraposition of the implication yields a formula which holds ac-
cording to proposition 4.1.5.0

Proposition 4.1.7 wip(S, p) = wip*(S, ) for deterministic actions.
Proof: The cases correspond to the definition of wip.

1.
wip(f =V, p) =
plf « V] =
~plf < V] =
~wlp(f ==V, ~p) =
wlp*(f = V7 <P)7
where V € {T,F}.
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2. Let S= fi1:=ViA...A fr,:=V,. Since S is consistent we know that if
fi = fj, then V; = V;, for 1 <4,5 < n. We can, therefore, safely say

’l.Ulp(S, 50) = So[fl — V17 IRRE fn < Vn]7
which brings us back to case 1.

3. Let [s,t]A be a deterministic action. By definition we know that

wip([s, t]A4, [t]p) =
[s]((Af=1 [precondf — wip(postcond, ¢)]))
A
(NP1 [-precond?] — )

and for the conjugate, that

wlp*([s, t]Av [t]so) =
—l’wlp([S,t]A, [t]ﬁSO) =

=([s](Aizy [precondiA — wlp(postcondz-A, )]
A
((Afr[-precondf]) — —p))) =

[s](VP_[precond? A ~wlip(postcond?, —¢)]
V
((Af=1[-precondf]) A )

We know that postcondf‘ is a consistent conjunction of reassignments
which implies (by case (2)) that

ﬁwlp(postcondiA, —p) = wlp(postcondiA, ©).
The result follows from the fact that either exactly one of the precon-

ditions is true, or none of them is.
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|

Proposition 4.1.8 Let [s,t]A be a deterministic action. Then

[s, t]14 )~ wip([s, t]4, [tlp) = [t]e,

for arbitrary formulae (.
Proof: Follows immediately from propositions 4.1.5, 4.1.7, and corollary
4.1.6.0

Proposition 4.1.7 provide means for an elegant and straightforward definition
of successor state axioms in PMON.

Definition 4.1.9 (PMON Successor State Axioms)

Let scD = {[s1,t1]A1,...,[Sn,tn]An} be a set of schedule statements in a
deterministic PMON scenario description. For each fluent, f, the PMON
Successor State Aziom is defined as

Vt. /n\ t=t; = (H(t,f) = wip([s;, t:]Ai, H(ts,f)))
i=1

|

However, this does not solve the problem of regression for nondeterminis-
tic actions. Now we prove that PMON entailment and wilp computations
coincide.

Proposition 4.1.10 Let [s, t]A be an admissible, possibly nondeterministic
action, and [t]p an H formula. Then

[s,t]Ap[tlp iff  wip([s,t]4,[tlp) =T

Proof: <) Follows immediately from Proposition 4.1.5.

=) If wip([s,t]A,[t]p) # T held, wlp would not yield the weakest pre-
condition which contradicts Theorem 4.1.4. O

Proposition 4.1.10 says that wlp is sound and complete with respect to
PMON entailment.
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4.2 Regression-based Pre- and Postdiction Proce-
dures

Using our definition fo wlp we can now construct regression procedures for
pre- and postdiction in PMON. One single procedure for both pre- and post-
diction does not exist, and we will argue that wlp is applicable for prediction,
while wip* should be used for postdiction. The way in which observations
are handled also differs between the two.

By prediction we mean that, given a scenario, T, we want to know if
a formula, ¢, holds after the actions of the scenario have been executed.
For postdiction we want to know if ¢ holds at the initial time point of the
scenario. Without loss of generality, we only consider the cases where no
observations occur after the query for prediction and before the query for
postdiction. We can assume that such observations occur at the same time
point as the query, due to the inertia assumption.

Algorithm 4.2.1 (Prediction)

Input is a formula, [t]¢, a scenario, Y, and a time point s, such that no
observation, or starting point of an action, in T occurs at a time point < s.
Output is a tuple (3, d) such that Y |~ [0]3 A J — [t]e holds. B A describes
all initial states such that if the action sequence is started in either of them,
the sequence terminates in a state satisfying .

1. 7:=t and a:=¢.
2. Repeat the following steps until a tuple is returned.
(a) If 7 = s then return (o, [s]d) if such initial observation d exists,
else return (o, T) .

(b) If there is an observation [7]d in T, then a:= (6 A ).
(c) If there is an schedule statement [t,7]A in T, then a := wip([t, 7] 4, [T])
and 7:=t, else 7:=7— 1 and a:=[7 — 1]¢]].
a
If T is deterministic, then T |~[0]3 = [t]¢ holds for any (3,d) returned by

the algorithm.
Correctness follows from proposition 4.1.5.

Example 4.2.2 We illustrate algorithm 4.2.1 with the scenario in Example
3.1.1 slightly changed: We do not include 0Bs2. Our goal is to prove that
H (6, white) is a consequent of the scenario.
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Input: p = H(6,white), T = the changed scenario, and s = 0.
First Iteration: 7 = 6 and o = H (6, white).
Second Iteration: 7 =5 and o = H(5, white).

Third Iteration: The schedule statement [3,7]|Drop is found, and
wlp([3,5])Drop, Holds(5, white)) is computed. After the iteration 7 =
3 and a = ~H (3, over_board) A\ H(3,white).

Sixth Iteration: 7 = 0 and o = —H(0, over_board) A H(0, white).

In the sixth iteration the observation at time point 0 is considered, so

(H(0,0ver_board) N =H(0,white) A ~H (0, black),
—H (0, over_board) A H(0,white))

is returned by the algorithm.O

The algorithm returns a tuple {«, d), where « is the regression result and § is
the initial observation. The conjunction of the regression result and the ini-
tial observation, @ Ad produce, in Example 4.2.2, a contradiction, which tells
us that the goal, H(6,white), is not a consequence of the scenario, since there
are no initial states allowed by the initial observation that would terminate
the sequence of actions in a state satisfying the query. If the conjunction
is consistent and the implication § — « is a tautology, the goal is a conse-
quent, since this means that every state described by the initial observation
will terminate the sequence of actions in a state satisfying the query. The
third case, when the conjunction is consistent and the implication is neither
a contradiction nor a tautology, implies that the conjunction is a condition
at the initial time point for the scenario to entail the goal. This is of inter-
est from a planning perspective since the algorithm generates the conditions
under which a certain plan may succeed. This was recently examined in
[Lukaszewicz and Madaliriska-Bugaj, 1997]. Now, we summarize the possi-
ble interpretations of the returned tuple of the algorithm:

Let T be a scenario, ¢ a query, and («, §) the result returned from Algorithm
4.2.1, then

if & A § is inconsistent, T £ ¢,

if @ A § is consistent, and
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— if § = « is a tautology, T |~ ¢

— if § — « is not a tautology, o A § describes all initial states that
would terminate T in a state satisfying .

For Example 4.2.2 we have
a = H(0,over_board) A —=H (0, white) A —=H(0, black),

and
0 = —H(0, over_board) A H(0,white).

In this case we can note that a A ¢ is inconsistent, which implies that T [ ¢.
This does not imply that Y |~ 4, due to the nondeterministic actions.

For the postdiction case, we start by taking the last observation and
regress back to the initial time point. We are now interested in regression
results that are implied by the conditions after the action is performed, since
the observations are parts of the axiomatization. We will therefore make use
of corollary 4.1.6 for this algorithm.

Algorithm 4.2.3 (Postdiction)

Input is a formula, [0]¢, a consistent action scenario description, T, and a
time point s, where an observation, [s]|d, occurs, and no observation occurs
at any time point > s . Output is a formula 8 such that every initial state
that is consistent with the scenario, and no other state, is a model of 3.

1. 7:=s and a:=T.
2. Repeat the following steps until a formula is returned.

(a) If there is an observation [7]d in Y, then a:=(J A ).

(b) If 7 = 0 then return a.

(c) Ifthere is a schedule statement [t, 7]A in T, then o := wip*([t, 7] A4, [T]c)
and 7:=t, else 7:=7 — 1 and a:=[7 — 1]¢]].

d

When a formula 3 has been generated we can choose if we want to prove that
the scenario is consistent with the initial states ¢ by proving that ¢ — 3
holds. If we want to prove that Y |~ [0]p, we prove that 8 — ¢ holds.
Correctness follows from corollary 4.1.6.

To illustrate algorithm 4.2.3, we again look at example 3.1.1. This time we
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remove OBS1, and input 0Bs2, H(6,white) A—~H (6, black), to the algorithm.
Without going into details, we can note that

wlp*([3,5]|Drop, H(5, white) A ~H (5, black)) =
—H (3, over_board) N\ H(3,white) A =H (3, black),

which coincide with our intuition.

The intuition behind the difference of how observations are handled by
the algorithms is that for prediction we want observations to verify the com-
putation results, that is to describe state sets that are subsets of the regres-
sion result, and for postdiction, the observation should filter out all states
not consistent with it.

4.3 Planning in PMON

Haslum [1997] investigates planning in PMON with wlp. He provides a
sound and complete planning algorithm with an implementation for lin-
ear planning, and number of planning heuristics for non-linear planning.
Not surprisingly, it turns out that the planning problem, given the version
of PMON used in this thesis, is PSPACE-hard. More interestingly, if we
allow nested actions (that is implications inside postconditions) we have
EXPSPACE-completeness. We conjecture that even the formalism in this
thesis provide EXPSPACE-completeness for the planning problem, but we
have no such proof yet.



Chapter 5

Tractability

The lack of complexity results for reasoning about action and change will
now be remedied. We will develop an expressive logic that is more suited for
the analysis than for example PMON or SitCalc. Thus, the results in this
chapter include not only the complexity results, but also the logic, in which
we address continuous time, concurrency, and memory of actions. The con-
struction, and intuitiveness, of the proposed logic rest on two assumptions:

1. Actions always succeed. This is the action omniscience assumption.

2. Feature values change if and only if an action explicitly changes them.
This is the inertia assumption.

We argue that for scenarios where these two assumptions hold, the frame
problem is solved.

To facilitate the reading of the somewhat technical material, we begin
with an informal overview of the results of the chapter.

5.1 Overview

In Section 5.2 we develop a temporal logic, A, which is syntactically related
to the propositional temporal logic TPTL [Alur and Henzinger, 1994], but
without the tense modal operators (the dynamic behaviors will be handled
by action expressions).

The temporal domain is the set of real numbers and temporal expressions
are based on relations =, <, <, > and > between linear polynomials with
rational coeflicients over a set of temporal variables. The semantics of this
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temporal logic is standard. It can be viewed as propositional interpretations
(states) on a time line.

The formalism for reasoning about action is narrative based, which means
that scenario descriptions (similar to those of PMON) are used to model the
real world. Scenario descriptions consist of formulae in the temporal logic
(observations) and action expressions which are constructs that state that
certain changes in values of the features (propositions, fluents) may occur.
We write action expressions as m = [a]e Infl, where 7 is the precondition for
the action, € the effects, a a temporal expression denoting when the effects
are taking place, and Infl is the set of all features that are influenced by the
action. The influenced features are not subject to the assumption of inertia,
i.e. we allow them, and only them, to change during the execution of the
action.

It turns out that deciding satisfiability is NP-complete, both for the
temporal logic and the scenario descriptions. Interestingly, the problem is
NP-complete for scenario descriptions that only include Horn clause obser-
vations, unconditional and unary action expressions (this terminology will
be explained later), and no stated disjunctive relations between temporal
expressions.

To extract a tractable subset from our formalism we rely on a recent
result in temporal constraint reasoning by Jonsson and Backstrém in [1996]
(also discovered independently by Koubarakis [1996]). They have identi-
fied a large tractable class of temporal constraint reasoning, using Horn
Disjunctive Linear Relations (Horn DLRs) which are relations between lin-
ear polynomials with rational coefficients. We make use of their result by
restricting formulae in our scenario descriptions to be Horn and then by en-
coding scenario descriptions into Horn DLRs. For the temporal logic this
is fairly straightforward. For the scenario descriptions, it turns out that we
have to put some constraints on the temporal relations and actions in the
scenario descriptions.

We will use the following two examples: Jump into a Lake with a Hat
[Giunchiglia and Lifschitz, 1995] and Soup Bowl Lifting [Gelfond et al., 1991].
Below we informally describe the examples.

Example 5.1.1 (Jump into a Lake with a Hat, JLH)

If you jump into the lake you will get wet. If you have been in the water
at some time point it is unclear if you still have your hat on. This is an
example of nondeterminism and of memory of actions. O

Example 5.1.2 (Soup Bowl Lifting, SBL)
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If we lift either side of a soup bowl at some time points, the content will be
spilled, unless we lift both sides at the same time point. This is an example
of concurrency. O

The first example stated above can be handled by the tractable subset of
our formalism, while the other cannot.

5.2 Scenario Descriptions

We introduce a semantics that is a simpler variant of Sandewall’s Features
and Fluents Framework [Sandewall, 1994], in that the effects of an action can
only occur at one and the same time point for a given action, and we use
only propositional values of features (similar to the work of Doherty [1994])
However, in some respects this formalism is more flexible than Sandewall’s:
we use a continuous time domain, we allow concurrently executing actions,
and effects of actions can depend on other states in the history than the state
at the starting time point of the action (this implies memory of actions,
in Sandewall’s [1994] terminology). One example of a formalism having
memory is that of Gustafsson and Doherty [1996].

Initially, a basic temporal logic is defined. The computational properties
of this logic will be exploited by the scenario description logic, i.e. ultimately
(in Section 5.3) the scenario descriptions will be transformed into formulae
of the basic temporal logic.

5.2.1 Syntax

We begin by defining the basic temporal logic.
We assume that we have a set 7 of time point variables intended to take
real values, and a set F of features intended to take propositional values.

Definition 5.2.1 A signature is a tuple o = (T, F), where T is a finite set
of time point variables and F is a finite set of propositional features. A time
point expression is a linear polynomial over 7" with rational coefficients. We
denote the set of time point expressions over 7 by 7*. O

We could, for example, use the signature (7,F), where T = {c1,c2} and
F = {hat_on,dry,on_land}, to represent JLH. Then ¢; would be the time
point when the person jumped into the lake, and ¢y the time point when the
status of the hat is examined, with the assumption ¢; < cs.
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Definition 5.2.2 Let ¢ = (T,F) be a signature, let o, € T*, f € F,
Re{=<,<,2,>}, @ € {A,V,—, 4}, and define the scenario description
language A over o by

Au=T|F|f|aRB|-A| A ®As | [o]A.

A formula of the form aRp is a linear relation, and one that does not contain
any connectives (any of the constructs A,V,—, <>, and []) is atomic. If y
is atomic and a € T*, then the formulae v, [a]y, =, [a]—~y and —[a]y are
literals. (A formula [a]y expresses that at time «, «y is true.) A literal [ is
negative iff it contains — and its corresponding atomic formula v is not of
the form aRf for R € {<,<,>,>}. A literal that is not negative is positive.
Disjunctions of literals are clauses. A formula v € A is in conjunctive normal
form, CNF, iff it is a conjunction of clauses. A formula v is Horn iff it is
a clause with at most one positive literal. A set I' of formulae is Horn iff
every v € I' is Horn. Syntactical identity between formulae is written =,
and when ambiguity is to be avoided, we denote formulae v € A by "y™.

Let v be a formula. A feature f € F occurs free in + iff it does not occur
within the scope of a @] expression in y. o € T* binds f in v if a formula
[a]¢ occurs as a subformula of 7y, and f is free in ¢. If no feature occurs free
in 7y, 7y is closed. If v does not contain any occurrence of [«] for any o € T*,
then ~y is propositional. O

For JHL we make some observations: [0lhat_on A dry A on_land that denotes
that, initially, the hat is on, the person is dry and not in the water, and
c; > 0 Acy < cy. Note that both the observations are Horn.

Using A, we can thus express propositions being true at time points, and
express relations between time points. Next we define the extension of the
basic temporal logic by introducing action expressions, i.e. constructs that
enable modelling of change. This extension will be referred to as A’

Definition 5.2.3 Let o = (T, F) be a signature. An action expression over
o is a tuple A = (a, 7, Infl,e), @ € T*, 7 a closed formula in A, Infl C F,
and € a propositional formula, where all features occurring in € are in Infl.
« is the result time point of A, m is the precondition of A, Infl is the set
of influenced features of A, and € is the effects of A. A is unconditional iff
n =T, and unary iff |Infl| = 1.

For convenience, we write action expressions as m = [a]e Infl; for ex-
ample we have [3]loaded = [4]—alive{alive} that the denotes that if a gun is
loaded at time point 3, then a turkey will not be alive at time point 4, for
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an action shoot. If 7 = T, we remove it and the = symbol, and if e = T, we
remove it. An example is an unconditional loading action [2]loaded{loaded },
and the action of spinning the chamber of a gun [3]{loaded }.

An observation over o is a closed formula in A. O

It might be of interest to note that we do not confine the actions to be
“Markovian”, i.e. to depend only on the state in which they are performed.
They may depend on multiple states in the past, or even on states in the
future (even if it is quite unlikely that that would occur in a real-world
scenario). Next, we combine the concepts defined so far into one.

Definition 5.2.4 A scenario description is a tuple T = (o, SCD, OBS), where
o = (T,F) is a signature, SCD (the schedule) is a finite set of action expres-
sions over o, and OBS is a finite set of observations over o. The size of a
scenario description is defined as the sum of lengths of all formulae in SCD
and oBS. O

Now, we formalise the examples from Section 5.1.

Example 5.2.5 (JLH)
The intended conclusion of the following scenario is that the person is wet
at time c;, and we do not know if the hat is on at time point cs, occurring
after the person jumps.

0BSl [O]hat_on A dry A on_land

scpl  [eq]—on_land{on_land}

scp2  [cq1]—onland = [c1]-~dry{dry}

scD3  [c1]—on_land = [cz]{hat_on}

O0BS4 ¢1 >0Ace>cq |

Example 5.2.6 (SBL)
We have two actions: one for lifting the left side of the soup bowl and one
for lifting the right side. If the actions are not executed simultaneously, the
tablecloth will no longer be dry. The intended conclusion here, is ¢c; = c;.
0oBsl [0]dry
scpl  [cq]leftup{leftup}
sCcD2  [c1]—rightup = [c1]~dry{dry}
[
[
[

scD3  [ca]rightup{rightup}

scpd  [co]-leftup = [ea]-dry{dry}
0BS2 [co]dry

OBS3 c2 >0Ac; >0 d
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5.2.2 Semantics

For the presentation of the semantics we proceed in a similar way to the
presentation of the syntax. We begin by defining the semantics of the basic
temporal logic.

Definition 5.2.7 Let o = (T, F) be a signature. A state over o is a function
from F to the set {T,F} of truth values. A history over o is a function h
from R to the set of states. A waluation ¢ is a function from 7 to R. It is
extended in a natural way (as a homomorphism from 7* to R), giving for
instance ¢(3t +4.3) = 34(t) + 4.3. A development, or interpretation, over o
is a tuple (h, ) where h is a history and ¢ is a valuation. O

We will now define the notion of model for closed formulae in I" in a classical
way.

Definition 5.2.8 Let v € A, and let D = (h,¢) be a development. Define
the truth value of v in D for a time point ¢ € R, denoted D(+,t), as follows
(here we overload T and F to denote both formulae and truth values). As-
sume f €F, Re {:7§a<72a>}a avﬁ € T*7 7)5 € Aa ® e {/\7\/7_>a<_>}a
and 7 € {T,F}. Now define

D(r,t)=71

D(f,t) = h(t)(f)

D(aRpB,t) = ¢(a)R$(B)
D(_"Ya t) = _'D(’Yv t)

D(y @ 6,t) = D(v,t) ® D(4,t)
D(laly,t) = D(v, ¢()).

Two formulae v, and 7, are equivalent iff D(+;,t) = D(v2,t) for all D and
t. A set I' C A of formulae is satisfiable iff there exists a development D and
a time point ¢t € R such that D(v,t) is true for every v € I'. A development
D is a model of a set I' C A of closed formulae iff D(v,t) is true for every
teRandyel'. O

Fact 5.2.9 For v € A and a € T*, —[a]y is equivalent to [@]—y. For a
closed formula v, D(v,t) = D(y,t') for any t,t' € R and development D. O

Thus, if 7y is closed, we can write D(v) instead of D(v,t).

Now we define the semantics of the action expressions based on models
for the basic temporal logic. Inertia (the frame problem) is handled by
identifying all time points where a feature f can possibly change its value.
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Then during every interval where no such change time point exists, f has to
have the same value throughout the interval.

Definition 5.2.10 Let D = (h, ¢) be a development. An action expression
A = {a, 7, Infl c) has effects in D iff D(w) = T, that is, whenever the pre-
conditions of A are true in the model. Let f € F, and define Chg(D, scp, f,t)
to be true for a time point ¢t € R iff f € Infl for some action expression
A = (a,m,Infl €) € scD that has effects in D, with ¢(a) = ¢t. Note that
Chg(D,scp, f,t) can only be true for a finite number of time points for
fixed scD and f. Now we have defined the time points where the fluents can
change value.

Let T = (o, SCD, OBS) be a scenario description. An intended model of T
is a development D = (h, ¢) where

e D is a model of OBS

e For each A = (a, 7, Infl,€) € SCD that has effects in D, D(e, ¢(a)) =
T

e For each f € F and s,t € R where s < t such that for no t' € (s,t)
(open interval), Chg(D,scp, f,t') holds, we have h(t')(f) = h(s)(f)
for every t' € (s,t). Intuitively, this definition insures that no change
in the value of a feature occurs in an interval if no action explicitly
changes it.

Denote by Mod(Y) the set of all intended models for a scenario description
T.

A formula v € A is entailed by a scenario description T, denoted Y |= 1+,
iff 7 is true in all intended models of Y. Y is satisfiable iff Mod(Y) # (. O

Fact 5.2.11 If T = (0,sCD,0BS) is a scenario description and v € A a
formula, then T |= v iff (0, SCD, 0BS U {—}) is unsatisfiable. O

We comment on how this is used in our two examples:

e For JHL we can note that every intended model D = (h,¢) has the
following properties:

1. h(¢(0))(hat-on) = T, h(4(0))(dry) = T, and h(4(0))(on_land) =
T, due to oBsl.

2. ¢(c1) > ¢(0) and @(c2) > ¢(c1), due to OBS4.
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3. Since all actions have effect we can note, for instance, that D(dry, ¢(c1)) =
F, since scD1 sets dry to F.

4. Since D is an intended model of JHL, we know that all three
actions have effects in D. Thus, the following Chg extensions are
true:

— Chg(D,scp,on_land, $(cy1)) due to scpl,
— Chg(D,scp,dry, ¢(c1)) due to scD2, and
— Chg(D,scp, hat_on, ¢(cz2)) due to SCD2.

Intuitively, all features are allowed to change iff they are influ-
enced by an action.

Property (3) ensures that if we add the observation [c;|dry the scenario
would be unsatisfiable. So JHL entails [c1]-dry. On the other hand, if
instead we added [ca]hat_on or [c3]—hat_on to the scenario, we would
not get unsatisfiability, since sCD3 split the set of models into those
where [ca]hat_on is true, and those where it is not. Thus neither of the
expressions are logical consequences of the scenario.

e For SBL, adding ¢y # c; as an observation will make the scenario
unsatisfiable.

5.3 Complexity Results

5.3.1 Basic Results

It is no surprise that deciding satisfiability for the basic temporal logic is
NP-hard. Proofs of NP-completeness, on the other hand, depend on the
tractability results.

Proposition 5.3.1 Deciding satisfiability of a set I' C A is NP-hard.
Proof: Propositional logic is a subset of A. O

Corollary 5.3.2 Deciding whether a scenario description is satisfiable is
NP-hard. O

That these problems are in NP, and thus are NP-complete, is proved in

Theorem 5.3.9 and Theorem 5.3.10.
Interestingly, we can strengthen the result considerably.
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Theorem 5.3.3 Deciding whether a scenario description is satisfiable is
NP-hard, even if action expressions are unconditional and unary, only Horn
observations are allowed, and no disjunctive relations between time points
may be stated.

Proof: Reduction from 3SAT. Let C; = [;1VI;2VI;3 be the clauses of a 3CNF
formula ¢, and v the set of propositional symbols used in ¢. We construct
a scenario description Y satisfying the required restrictions as follows. Set
F=vU{plpev}, T={st}U {tp|p € v},

SCD = {<t7 T, {p}a _'p> |p S ’U} U {<t7 T, {pl}ap,>|p € ’U},

oBs = {t> s} U{[s]p,[s]-p'lp € v}U
{C(la) Vv C(li2) v C(li3)},
where C(p) = —[tp]p and C(=p) = ~[tp]p.

We shall use intended models D as models for ¢, interpreting D(t, < t)
as the truth value of p, and so show that Y is satisfiable iff ¢ is satisfiable.
First note the facts that in any D € Mod(Y), D(—[tplp’) = D([tp]p), and
that D([t,]p) = D(tp < t).
=) Suppose D € Mod(Y), and consider a clause C; = l;; V [z V ;3 in ¢.
By the construction of 0BS, one of C(l;1), C(l;2) or C(l;3) has to be true in
D, say | = l;;. If Il = p, then C(I) = —[tp]p'; thus D([ty]p) is true, and so
is D(t, < t). If | = —p, then C(I) = —[tp]p; thus D([ty]p) is false, and so is
D(t, < t).
<) Suppose ¢ has a propositional model M, and consider a clause C; =
l;1 V12 V13 in ¢. Construct an intended model D of Y by letting features
have values as forced by the scenario, ¢ having the value 0 and s the value
—1, and for each p € v, if p is true in M, then set ¢, = —1, and otherwise
tp = 1. It is clear that the expression C(l;1) V C(li2) V C(l;3) is true in D. The
result follows, since it is clear that the reduction is polynomial. O

We now present the key to tractability, which is a linear-programming ap-
proach to temporal constraint reasoning, by Jonsson and Béckstrom [1996].

Definition 5.3.4 Let o and (8 be linear polynomials with rational coeffi-
cients over some set X of variables. Then a disjunctive linear relation, DLR,
is a disjunction of one or more expressions of the form o = 8, a # 3, a < 3,
a < 3. A DLR is Horn iff it contains at most one disjunct with the relation
=, <or <.

An assigment m of variables in X to real numbers is a model of a set T’
of DLRs iff all formulae in I' are true when taking the values of variables in
the DLRs. A set of DLRs is satisfiable iff it has a model. O
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The following result is the main result of Jonsson and Béckstrom [1996].

Proposition 5.3.5 Deciding satisfiability of a set of Horn DLRs is polyno-
mial. O

Now we restrict the scenario description language and the form of actions.
Furthermore, a structural restriction on scenario descriptions, verifiable in
polynomial time, is imposed. We shall define an encoding function that takes
a Horn scenario description T and returns a set I' of Horn DLRs such that
I is satisfiable iff T is satisfiable.

5.3.2 Satisfiability of Horn Formulae is Tractable

First, we code Horn formulae as Horn DLRs.

Definition 5.3.6 Let [ be a closed literal, and assume the existence of fresh,
unique time point variables ¢¢ for each f € 7 and o € T*. Then C (1) is
defined as follows, assuming R € {=,<,<,>,>} and f € F.

[n]aRB) = C(aRp)
—[ady) = C([o] )

(
C(F) =70 #0"
C(aRB) = "aRpB™
C(na=8)="a#p
C~a < f)="a> "
Clma<f)=Ta>f
C(~a>f) =a< "
Clma>f)=Ta<f
C(
C(
C(

[a]f) =Tt} =07
C(lo]~f) ="tF #07
The last two parts are the key to the transformation.
Let v € A be a closed Horn formula, and let 4’ be obtained from ~ by sim-
plifying away occurrences of T and F. Now ' =/, ;. Then define C(v) to
be the DLR 6 = \/; C(l;). Note that ¢ is always a Horn DLR.

Let I' C A be a set of closed Horn formulae, and T the set of all time
point expressions occurring in I'. Then C(T') is defined by

CI) ={Cy)lyeT}u
{C(=lelf VB #aVIBINIf € Fa,B €T}



5.3 Complezity Results

The second set is called the correspondence equations. Note that the argu-
ment of C in a correspondence equation is equivalent to [a]f AS = o — [5]f.
a

The following result is crucial.

Theorem 5.3.7 Let I' C A be a set of closed Horn formulae. Then I is
satisfiable iff C'(I") is satisfiable.

Proof: Let T be the set of time point expressions occurring in I'.

=) Let D = (h, ¢) be a model of I'. We shall construct a model m of C(T).
First set m(t) = ¢(t) for all t € 7. Now all temporal relations from I' are
satisfied in m, since they are directly transferred. For each f € F and a € T,
if h(¢(a))(f) is true, then set m(t§) = 0, otherwise set m(t%) = 1. It is clear
that the correspondence equations are satisfied by this definition, and so are
the remaining elements of C(T).

<) Let m be a model of C(T'), Construct an interpretation D = (h, ¢) as
follows. First set ¢(t) = m(t) for all t € 7. It is enough to determine h
for values ¢(a), @ € T, since we have no restrictions on other values. Set
h(#())(f) to be true iff m(t}) = 0. That h is well defined follows directly
from the correspondence equations which hold in m. O

Corollary 5.3.8 Deciding satisfiability of sets of closed Horn formulae is
polynomial.

Proof: It is clear that the transformation C is polynomial. The result
follows from Proposition 5.3.5. O

Now we have the results for the proofs of membership in NP for the satis-
fiability problems of A and of scenario descriptions. Proofs (and auxillary
definitions) of the following two theorems can be found in Appendix A.

Theorem 5.3.9 Deciding satisfiability of a set I' C A is NP-complete. O

Theorem 5.3.10 Deciding whether a scenario description is satisfiable is
NP-complete. O

5.3.3 Tractable Scenario Descriptions

Using Corollary 5.3.8, we see that if we can code scenario descriptions into
sets of Horn formulae, we will have a polynomial algorithm for reasoning
with scenario descriptions. In order to obtain such a result, we need to
restrict what scenario descriptions are allowed.
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The strategy can briefly be described as follows: we identify all obser-
vation time points which bind a feature value and all time points where
an action expression can possibly change a feature value. Then we connect
bound literals with biconditionals between time points where the literal value
should not change. For example, if some action expression changes the value
of the feature f at time point «, there exists a v € 0BS which binds f at a
time point 3, a < B, and no changes of the value of f occurs between o and
B, then [a]f < [B]f should be added to the theory. This formula can be
rewritten in Horn form. The example represents one of the six cases (case
3). The other cases are similar.

There are basically two restrictions: First we will have to represent action
expressions as Horn formulae (restricted action expressions). Second, the
scenario descriptions must be ordered, for example, we could not remove the
restriction a < § in the example above.

Definition 5.3.11 Let T = (o,SCD,0BS) be a scenario description. For
each f € F, define

E¢ = {a|(a, 7, Infl,e) € SCD A f € Infl}

and
Cr = {a]a binds f iny Ay € O},

for O = oBs U {n|(c¢/, 7, Infl,€) € SCD}.
Ey is ordered iff for o, 8 € Ey, exactly one of a < 3, a = 8 and a > (3 is
consistent with! oBs. For o, 3 € E;, E; ordered, we define the following.

e a <y B iff < B is consistent with oBS, and for every v € Ey,
a < v < (3 is inconsistent with OBS,

e —oo0 <y « iff for no 8 € Ey, B < « is consistent with OBS, and
e a <y oo iff for no B € Ef, a < (3 is consistent with 0Bs.
Let o € Ef, 8 € T*, and define the following.

e a <y B iff a < B is consistent with OBS, a > (3 is inconsistent with
0BS, and for every v € E¢, a <y < (8 is inconsistent with 0OBS,

o —oco0 Ky @ iff for every o € Ey o < (3 is inconsistent with OBs.

! A formula v is consistent with a set I' iff T U {7} is satisfiable.
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If for all f € F, E; is ordered, and for all w € Cf, a <y w for some
a € Ef U{—oo}, then T is ordered. The last condition says that for each
observation of a feature f, there is a unique change of f which sets its value,
or it precedes all changes of f. O

For the JLH and SBL examples we have the following:
e For JLH we have

Ehat_on = {02}7 Chat_on = {0}
Edry = {cl}v Cd?"y = {0}
Eon_land = {Cl}, Con_land = {07 cl}

We can easily verify that JLH is ordered.

e For SBL we have

Edry = {Cl,CQ}, Cdry = {0,(:2}
Eleftup = {Cl}, Cleftup = {02}
Erightup = {02}7 Crightup = {cl}

SBL is not ordered since Egyy is not.

The orderedness of T will be required for us to be able to connect feature
statements at different time points by biconditionals, which are required to
get a Horn theory. If an action changes the value of a feature, f, at time point
¢ and we have an observation at time point ¢+1, e.g. [c+1]f, and no actions
have effects between ¢ and ¢ + 1 we can add the formulas [c¢ + 1]f V —[c]|f
and [c]f V —[c+1]f to the theory. Without the total ordering this would be
impossible. This is the reason why the SBL example does not belong to the
tractable class.

Proposition 5.3.12 Testing if a scenario description Y is ordered is poly-
nomial, if OBS is Horn.

Proof: For the orderedness of Ey, check for each feature that all pairs of
result time points satisfy the condition. Since 0BS is Horn, Corollary 5.3.8
guarantees that this can be done in polynomial time. The check for < is
polynomial in the same way. O

Definition 5.3.13 Let A = (o, m, Infl,€) be an action expression. Then A
is restricted iff either of the following holds:
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e 7 is T and € is a conjunction of propositional Horn formulae

e 7 is a disjunction of negative literals, and € is either T, or a conjunction
of negative literals.

An ordered scenario description T = (o, SCD, OBS) is restricted iff every ac-
tion expression in SCD is restricted and OBS is Horn. A restricted scenario de-
scription is normal iff it is ordered, and for every action expression A € SCD,
either of the following holds:

e 7 is T and € is a propositional Horn formula
e 7 is a negative literal and ¢ is either T or a negative literal.

a

Both the examples previously stated (Example 5.2.5 and Example 5.2.6) are
restricted, which is easy to verify.
The following result will make the forthcoming proofs easier.

Proposition 5.3.14 Let T be a restricted scenario description. Then we
can in polynomial time construct an equivalent normal scenario description
.
Proof: We note that a restricted action expression A = (,w,Infl €) €
scD where m = \/; —l; is equivalent to replacing it by one action expres-
sion (a,—l;,Infl €) for each disjunct in 7. Similarly, a restricted action
expression A = (o, 7, Infl, \; ¢;) can be split into action expressions A4; by
A; = (a, 7, Infl, ¢;) (or even easier if e = T), and we obtain the same set of
intended models. The transformation is clearly polynomial.

Orderedness is preserved, since we do not change the order in which
features are changed. O

Thus, we can assume that our restricted scenario descriptions are normal.
Next, we define the function ® which transforms scenario descriptions into
sets of Horn formulae.

Definition 5.3.15 First let A = (o, 7, Infl,€) be a normal action expres-
sion. There are three cases for ®:

e If # = T and € = V,;l; propositional Horn, then define ®(4) =
{V;lall;}
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e If 7= -l and e = T, then define ®(A4) =0

e If 7 = =l and € = —m, then define ®(A4) = {l V [a]-m}.

The restriction to normal action expressions should be clear; it implies that
®(A) is Horn. For a set S of action expressions, define ®(S) = Jcs B(4).

Let T = (o0,sCD,0BS) be a restricted scenario description with o =
(T,F), and without loss of generality, assume that each feature in F occurs
in SCD or OBS. Also let b be a fresh time point variable (b standing for
“beginning”), and for each f € F, add a new feature f'. A few construc-
tion steps (basically corresponding to the possible relations between time
points in Ey and Cy) are necessary. We provide the intuitions behind the
constructions as we present them.

1.

I'y =0BsU®(scp) U {b < ala € E; UCy, f € F}.
The observations, the transformed action expressions, and an initial
time point are added.

. Ty = {=[alf VB, [e]f V -[b)f|f € F,a € Cp,—00 < al.

No action expression influences f before o where it is bound by an
observation; therefore f should have the same value at b as at a. Note
that the members of I'y are equivalent to [a]f <> [b]f.

3= {_'[a]f \ [ﬂ]fv [a]f v ﬁ[ﬂ].ﬂf ceF,ac Efvﬁ € Cf,Ol < ﬁ}

f is influenced at a and bound by an observation at a later time point
B. No actions have effects between « and [3; therefore f should have
the same value at 3 as it had at a.

. Ty ={=[a]f' vV [blf,[alf' vV -blf|f € F,a € Ef,—c0 <5 a}.

This case resembles case 2, with the difference that f is influenced at a.
Therefore, we introduce a new feature symbol f' which has the same
value at a as f has at b. The new symbols will be treated properly
below, in case 6.

- Ts = {-[af vV [B]f;[alf vV -[BIf'|f € Fo, B € Ef,o <5 B}

This relates to case 3, as case 4 relates to case 2.
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6. Since E; is ordered, we can form equivalence classes T]?‘ of time points
for o € Ey by

Tf = {B € Ef|la = j is consistent with OBs}.
For each o € Ey, define
P$ = {n|(B,7,Infl,e) € SCD A f € Infl A B € TF}.
Now set
I's =
{(\V/PEv=ladf vIalf,\/ PEV =lalf' V[a]fla € By}

First note that this set is equivalent to the set

{=VPf = (lolf < [adf)la € Ey}.

Here we ensure that when actions do not have effects, f will have the
same value as it had the last time it was changed. This value is held
by the feature f'.

Now set ®(T) = U, I';. It is clear that the transformation performed by ®
is polynomial. O

We look at the transformation of JLH. First we can note that the scenario is
normal. For readability, we write the members of the sets as biconditionals
and implications instead of as pairs of disjunctions. The application of ® to
the actions has the following results:

®(scpl) = {[c1]-on_land}
®(scp2) = {—[c1]onland — [c1]~dry}
®(scp3) =0

This gives us

I'y =
{[0]hat_on A dry A on_land,c1 > 0Acy > ci1} U
{[e1]—on_land, —[c1]onland — [c1]-dry} U
{b <0,b<cy,b< 02}
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In I'; we ensure that the feature values at time point b is the same as they are
at the earliest time point (i.e. time point 0 for all features) in the scenario.

Iy =
{[0]hat_on <> [blhat_on} U
{[0)dry & [Bldry} U
{[0]on_land <> [blon_land}

In '3 we connect feature values at time points where actions have effect
with time points where the feature values are bound by observations, and
no actions have effects between the time points. Since no such time points
exist for any feature except for on_land where the time points are ¢; and ¢y,
we get a set consisting of one tautology.

I3 =
{[c1]on_land < [c1]on_land}

InT'y we prepare for inertia. We connect feature values at b with the first time
points where features may be affected by actions, so that if the preconditions
of the actions are false, the feature values at b persist throughout the action.

ry =
{[ea]hat_on’ < [blhat_on} U
{[e1]dry’ < [Bldry} U
{[c1]on_land' < [blon_land}
Since for all features f in JLH E; are singleton sets, I's is empty.

For I's we note that there will only be three sets 7}"‘ and three sets Pf
since all three sets Ey are singleton. Thus we get

Phat-on = {[€1]-on land}
Pary = {lc1]-on_land}
,P;rlz_land = {T}

We can now compute [s.
I'g =

{
{

=[e1]—on_land — ([ca)hat_on + [co)hat_on')} U
=[e1]mon_land — ([e1]dry < [c1]dry’)}
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It is clear that an encoding to Horn DLRs can be performed from this trans-
formation. The following two theorems validate such an encoding.
The proof of the following theorem can be found in Appendix A.

Theorem 5.3.16 Let T be a restricted scenario description, and set
I'=C(®(7)).
Then T is satisfiable iff I' is satisfiable. O

Theorem 5.3.17 Deciding satisfiability (and entailment) for restricted sce-
nario descriptions is polynomial. O

5.4 Discussion

In this chapter our concern has been computational complexity for reasoning
about action. It is important to note that although we have provided poly-
nomial algorithms for the reasoning tasks, these can hardly be considered
efficient. The important results, however, are that there ezrist polynomial
algorithms; the next obvious step is to also make them fast. For efficient
implementation, there is one direction we are particularly interested in in-
vestigating: since the technique used for achieving tractability can be de-
scribed as an encoding of our logic as temporal constraints for which there
is a tractable algorithm for determining satisfiability, it should be possible
to do something similar for other tractable temporal algebras, for example
those identified in the papers by Drakengren and Jonsson [1996, 1997]. Also,
an algorithm for a purely qualitative scenario description language (i.e. not
involving metric time) would probably have a faster satisfiability-checker.

We have shown that satisfiability of scenario descriptions is NP-complete
within our formalism. We feel that it would be a mistake to interpret this
negatively. On the contrary, one could argue (in lines with [Gottlob, 1996])
that this would imply that many approximations, powerful heuristics and
non-trivial tractable subsets of problems for reasoning about action remain
to be found. Our work is a step on the way in this endeavour.
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Chapter 6

Conclusions and Future
Work

The two themes of this thesis have automation of logical reasoning about
action and change in common. We have taken a careful look at regression, a
technique we used for projecting a logic with explicit time to an atemporal
logic. We have presented a computational strategy for prediction and post-
diction for a subset of PMON. The strategy is based on Dijkstra’s weakest
liberal precondition operator. We have shown that wlp and its conjugate
wlp* have different properties for nondeterministic scenarios and that the
former is applicable for prediction, and the latter for postdiction. For de-
terministic scenarios, the two operators coincide, thus providing a formal
foundation for generating successor state axioms.

The second theme has been computational complexity of logics of action
and change. We have presented a temporal logic and an extension for rea-
soning about action from which tractable subsets have been extracted. This
has been done with an encoding of the logic to Horn DLRs. The formalism
is narrative-based with continuous time, and the world is modelled using
scenario descriptions consisting of action expressions and observations. It
is possible to model nondeterminism, concurrency and memory of actions.
Time is represented by linear polynomials with rational coeflicients over real-
valued variables.



6 Conclusions and Future Work

6.1 Future Work

For both themes in this thesis there are a number of open questions and
tracks that we would like to investigate.

For regression we, for example, we would like to extend the regression
procedures to handle non-propositional fluents, partially-ordered scenarios,
and continuous time. This does not seem to be too hard. To extend the re-
gression procedures to handle PMON(RC) ([Gustafsson and Doherty, 1996])
seems, on the other hand, to be quite a challenge, since it would involve de-
veloping regression for non-Markovian transitions.

For the complexity theme we would like to see whether other restrictions
of the formalism may produce new classes of tractable scenarios. But, the
track we are most interested in is to find the limits of the NP-complete class
of problems. For example, is it possible to express causal constraints and
still have NP-completeness?
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Appendix A

Proofs of theorems

Here we present the more space-consuming proofs and necessary definitions
of theorems in Chapter 5.

Definition A.0.1 ()

Let I' C A. Then we define -I' = {—y|y € T'}, feat(T") to be the set of all
features occurring in I', linrel(I") to be the set of all linear relations (which
are atomic formulae) occurring in I', and ¢time(I") to be the set of all time
point expressions occurring in I'. O

Theorem 5.3.9 Deciding satisfiability of a set I' C A is NP-complete.
Proof (sketch): By Proposition 5.3.1, it remains to prove that the problem
is in NP.

Let I' C A be a set of formulae. A few auxiliary definitions will be needed
for the proof.

Let F = feat(T"), L = linrel(T"), T = time(T'), let t be a fresh time point
variable, set

AT ={[a]fle e TU{t}AfEF}UL,

and

A =ATU-A".
We say that a set W C A’ is a syntactic A-interpretation iff for any ¢ € AT,
exactly one of ¢ and —¢ is a member of W.

Next, we define a way to evaluate a formula v € A in a syntactic A-
interpretation, following Definition 5.2.8. Let v € A. We define the truth
value of v in W for o’ € T*, denoted W (v, '), as follows. Assume f € F,
Re{=<,<2,>hL a,B€T", 7,0 €A, and ® € {A\,V, =, &}

e W(T,o/)=T



A Proofs of theorems

o W

(
(f,e) = ("l']f 7 e W)
W(aRpB,a') = ("aRF" € W)
(=
(

=

—~y,d') = =W(y,a)
OW’y@éa) W(y,a') ® W(4,a)

e W(laly,d) =W(v,a)

It is clear that W (v, ') is always defined for v € A. Thus we can say that
a syntactic A-interpretation W is a syntactic A-model of a set T" of formulae
iff W is satisfiable, and for all v € ', W (,t) is true.

If we can prove that whenever I' is satisfiable, then there exists a syntactic
A-model W of T', and vice versa, then NP-membership will follow, since

e the size of W is polynomial in the size of I

e it can be checked in polynomial time whether W is a syntactic A-
interpretation or not

e W(v,d') can easily be computed in polynomial time

e by Corollary 5.3.8, checking satisfiability of a set of closed Horn formu-
lae is polynomial, and thus checking satisfiability of W is polynomial.

=) Suppose that I' is satisfiable, i.e. that for some ¢t € R, I(y,t) = T for
all v € I". Construct a syntactic A-interpretation W from I = (h, ¢) by first
setting I' = (h, '), where ¢'(s) = ¢(s) for all s € T — {t}, and ¢'(t) =
and then defining
W ={§ e A'|l'(6) =T}.
It remains to check that W is satisfiable, and that W (~,t) = T for all v € T.
W is trivially satisfiable, since by construction I’ is a model of W. We
prove by induction on 7 that W(y,a') = I(y,¢'(¢/)) for all v € A and
o' € T U{t}; thus W(y,t) =T for all y € T.
First, the basis cases: If v+ = T or v = F, the result is immediate. If
= f for f € F, then
W(% ) =
= W(f,d)
= ([d]f ew)
r'([o]f)
= I(f,4'(d)).



Ify=aRp for o, € T* and R € {=,<,<,>,>}, then

W(y,d') =
= W(aRp,a')
— (TaRB e W)
— I'(0RB,¢(o)

Now, the induction: If v = -4, then

W(y,a') =

= W(-4,d)

= =W(4,a)

—-I(4,¢'(c’)) induction
— I(-6.¢(a).

If y =61 ® 62 for & € {A,V,—, <}, then

W(y,d) =
= W(d & dr,d)
= W(él,a’) @W(52,a')
= I(61,¢'())) ® I(d2,¢' (') induction
= I(6 ® 02,9’ ().

If v = [a]d, then

W(vy,a') =
= W(le]s, o)
W (4, )
= I(6,¢' () induction
— I(od5, /(o).

<) Suppose that W is a syntactic A-model of T', i.e. that W is a satisfiable
syntactic A-interpretation, and W(y,t) = T for all v € I". Let I = (h, ¢)
be a model of W (note that W contains only closed formulae). We need to
show that I(v,¢(t)) = T for all v € I'. By induction we prove the stronger
result that I(vy,¢(c')) = W(y,d') for all y € A and o/ € T U {t}.

First, the basis cases: If v+ = T or v = F, the result is immediate. If
v = f for f € F, then

I(v, ¢(')) =

f¢(a'))
[']7)
[]f7 e W)
W(f,d).

1(
= I(
G
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Ify=aRpB for o, € T* and R € {=,<,<,>,>}, then

I(y, (")) =
= I(aRB,¢(d))
= (aRBeW)
= W(aRg,d).

Now, the induction: If v = -4, then

If y =61 ® 63 for & € {A\,V,—, <>}, then

I(y,¢(a")) =

= I(6 ® 02, 9(a"))

= I(01,¢(c")) @ I(d2,9(c))
W(él,a’) 8% W(éz,a’)
= W( & dz,).

If v = [a]d, then

Thus the result follows. O

Theorem 5.3.10 Deciding whether a scenario description is satisfiable
is NP-complete.
Proof (sketch): By Corollary 5.3.2, it remains to prove that the problem
is in NP.

Let T = (o,sCD, 0BS) be a scenario description. A few auxiliary defini-
tions will be needed for the proof.

Define the set A of formulae by

A =0BsSU {7 — [a]e"|(a,m,Infl,€) € SCD},



let T = time(A), F = feat(A), L = linrel(A), and define
A" ={aRB|la,B €T AR € {=,<,>}},

AT ={[a]fle e TAf € F}ULUA',

and
A =ATU-A"T.
We say that a set W C A’ is a syntactic scenario interpretation iff for any
¢ € AT, exactly one of ¢ and —¢ is a member of W.
By employing exactly the same method as in Theorem 5.3.9, we can
define the truth value in W of a formula v € A U A’ denoted W(y) (no

temporal parameter is needed, since all formulae in A U A’ are closed).
Exactly as in Theorem 5.3.9, W satisfies the following:

e If T is a model of A U A/, and we set
W ={§ € A'|I(§) =T},
then W is a syntactic A-model of A U A’, and I is a model of W.

e If W is a syntactic A-model of A U A’ which is satisfiable by an inter-
pretation I, then I is a model of A U A,

Two more auxiliary definitions are needed, for W being a syntactic scenario
interpretation.

First, let a, 8 € W. Then we say that a precedes 8 in W, written o <1 3,
ifa<pfeW,andforno 3 €T,a< ' € W and ' < 8 €W holds. If for
no o, o <3, we write —oo <1 3, and if for no B, a <1 B, we write a <1 co.

Second, W is a syntactic scenario model of the scenario description Y iff
the following holds:

e W is a syntactic A-model of A

e For each f € F and «, 8 € T such that a <18 in W, if there is no action
expression (3, m, Infl,e) € SCD with f € Infl for some 7, Infl and e,
then [a]|f € W iff [B]f e W.

Now, the following remains in order to prove the result of the theorem:

e If T is satisfiable, then there exists a syntactic scenario model W for
T
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e If there exists a syntactic scenario model W for T, then T is satisfiable.
This suffices for proving NP-membership, due to the following:
e The size of W is polynomial in T

e Whether W is a syntactic A-model of AU A’ or not can be checked in
polynomial time by the same argument as in Theorem 5.3.9

e Checking the second condition of the definition of syntactic scenario
model is polynomial, since we can start by sorting elements of 7' by the
order imposed on T' by W (« comes before 3 iff @ < 8 € W), and then
proceed with the simple checks of SCD, which is obviously polynomial.

=) Suppose that T is satisfiable with an intended model D = (h, ¢). Now
D is a clearly a model of A, and we can set

W = {5 € A'|D(5) = T}.

Clearly W is a syntactic A-model of A. It remains to check the second
condition in the definition of syntactic scenario model. Take f € F and
a, B € T satisfying the required conditions, and suppose there is no action
expression (3,7, Infl, e) € sCD such that f € Infl. By the definition of T’
and our assumption, we cannot have Chg(D,scD, f,t') to be true for any t'
with D(a) < t' < D(8). Since there are only finitely many points where Chg
is true, we can choose a time point ¢ > D(3) such that for no s € [D(g),t"),
Chg(D,scp, f, s) is true. Now, the definition of intended model yields that
[a]f is true iff [3]f in D, and by the definition of W, that [a]f € W iff
[B]f e W.
<) Suppose that W is a syntactic scenario model for T, which is satisfied
by a model I = (h,¢). We construct an intended model D = (h’, ¢} from
I as follows. For each feature f € F do the following. First for each o
such that —oco <« in W, set A'(t)(f) = h(éd(a))(f) for every t < ¢(a).
Then for each o, with a < 3 in W, set h'(t)(f) = h(p(a))(f) for every
t such that ¢(a) < t < ¢(B). Finally, for each a such that o < oo, set
R(t)(f) = h(éd(a))(f) for every t > ¢(a). It is clear that A’ is defined for
every f and t¢. It remains to verify that D is an intended model for Y.
Since W is a syntactic scenario model for Y, it is also a syntactic A-model
of A. By the fact that I is a model of W, and since D and I agree on the
values of all time point expressions in T, D is also a model of W, and by
what we know about syntactic A-interpretations, D is a model of A. Thus,



what is left to verify is the second condition in the definition of intended
model.

For this purpose, let f be a feature and s,t € R with s < ¢, such
that for no t' € (s,t), Chg(D,scD, f,t') holds. We want to prove that
' (") (f) = h'(s)(f) for every t' € (s,t). Suppose to the contrary that for
some t' with s < ' < t, B'(¢')(f) # h'(s)(f). It is easy to see that by the
construction of D from I, this cannot hold, and we have a contradiction.
Thus D is an intended model of T. O

Theorem 5.3.16 Let T be a restricted scenario description, and set I' =
C(®(Y)). Then T is satisfiable iff I" is satisfiable.

Proof (sketch): We start by defining a set I'' which is satisfiable iff I is,
by first defining sets I'; for ¢ € {1,...,6}, giving I'' = |J; ;< i

1. I =0y

2. Ty = {[a]f © [b]f|f € F,a € Cp,—00 <5 a}

3. I3 = {[a]f < [BIfIf € F,a € Ef, B € Cp,a <5 B}

4. Ty = {[a]f' < [bf|f € F,a € Bf,—c0 < a}

5. Ty = {[ef < [BIf'|f € F,,8 € Ep,x <y B}

6. T6 = {=(Vim) = ([elf < [a]f)|IT & {m} = P}, € Ey}.

It is easy to see that each I} is satisfiable iff the corresponding I'; is.
=) Suppose T is satisfiable by an intended model D = (h,¢). We first
construct a new interpretation D' = (h', ¢') as follows.

e Define ¢' by setting ¢'(s) = ¢(s) for all s € T — {b}, and ¢'(b) =
min{¢(a)|la € T} — 1.

e For each feature f, set h'(¢)(f) = h(t)(f).

e For each feature f, introduce a new feature f’, and define h'(¢)(f') so
that the formulae in I} and 'y are all true. It is clear that this is
possible, since these are essentially definitions.

We want to prove that D’ is a model of I". This is done by checking that for
every ¢ € {1,...,6}, D' is a model of I';.
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. For I'}, all formulae in OBs are true in D', by definition. Furthermore,
all formulae in ®(scp) will be true, since these code exactly the condi-
tions required by an intended model, in terms of actions. Furthermore,
we have set ¢'(b) to be strictly smaller than the value of every time
point expression used, so everything in the last part of I’} will be true
in D',

5 says that for each observation or action precondition involving a
feature f that is not preceded by any effect on the feature f, the value
will be the same as the value at b. Since the value of b in D’ is less
than every time point expression used, this amounts to strict inertia
in each f at all time points before the first change in f. This is clearly
satisfied in D', since it inherits this property from the intended model
D.

. I says that for any feature f, observations and action precondition
involving f coming directly after changes of f with no change in be-
tween, f should retain its value from the change. This is the same as
inertia, which is clearly satisfied in any intended model and is inherited
from D.

. I} is satisfied by construction.
t is satisfied by construction.

& says that if none of the actions which can cause a change in f at «
has its precondition true, then f and f’ coincide at o € E¢. Since by
the definitions of the f’ formulae, if § € Ef, then f’ is always forced
to have the value at 8 that f had just before it changed at 3, which
just amounts to inertia, which holds for f by construction.

<) Suppose I' is satisfiable by a model I = (h, ¢). We construct an intended
model D = (h', ¢) of T from I as follows. Start by removing all features f' for
features f. Then for each feature f, do the following. First, for each o € Ey
such that —co < a, set h'(t)(f) = h(4(b))(f) for each ¢ such that t < ¢(c).
Then for each o, 3 € Ef such that o <5 3, set h'(t)(f) = h(¢())(f) for
each ¢ such that ¢(a) < t < ¢(B). Finally, for each o € Ey such that
a <5 oo, set h'(t)(f) = h(¢p(a))(f) for each t > ¢(). It is clear that h' is
defined for every ¢ and f, and that by construction, for each f and o € Ey,
h(p(a))(f) = W' (p())(f). It remains to verify that D is an intended model



First note that D is still a model of I} UT% UTY%, since the truth of all
these formulae are preserved by the transformation from I to D. Thus, D
is a model of OBS, since all values used to evaluate the truth of formulae in
0Bs are identical in I and D, due to D being a model of I’y and I'}.

For the second condition of the definition of intended model, note that
the set

A = {r — [a]e|{a, 7, Infl, €) € SCD}

is satisfiable iff ®(scD) is, by construction, and that this is equivalent to the
second condition being satisfied. Thus, since I is a model of ®(scp), I is
also a model of A. It remains to check that D is also a model of A. Exactly
as for the previous condition, the truth values of the @ component will not
change from I to D. Furthermore, by construction, D will have the same
values as I on the [a]e expressions, since values of features f at time points
a € Ey are the same in D and I. Thus D is also a model of A.

Now the proof for the third condition. Suppose that for a feature f
and time points s,t € R with s < ¢, we have that for no t' € (s,t),
Chg(D,scp, f,t') holds, but h'(t')(f) # h'(s)(f) for some t' € (s,t). Now,
it has to hold that t' = ¢(a') for some o/ € Ef, by the construction of D.

First suppose —oo < . By the construction of D, h/(s)(f) = h'(¢(b))(f),

and h'(¢(b))(f) = h(¢(b))(f), and thus k'(s)(f) = h(4(b))(f). Since I is a
model of T, h(¢(a")(f') = h(s)(f); so by assumption, A(¢(a!))(f') #
h'(¢(a))(f), and by the construction of D, h(¢(a'))(f") # h(d(a'))(f)- I is
a model of I'y; thus =/ ’P]‘?' must be false in I, and so 7 is true in I for some
(o/,7,Infl,€) € scD with f € Infl. But this means that Chg(D,scp, f,t'),
a contradiction.

Then suppose o <7 o for some o € Ey. It will suffice to find a contra-
diction for s = ¢(a), so we make that assumption. Now, by the construction
of D, H(¢())(f) = h((e))(f), and thus k'(s)(f) = h(¢())(f). Since I
is a model of Tk, h(o('))(f') = K'(s)(f); so by assumption, h(¢(a'))(f') #
h'(¢(c/))(f), and by the construction of D, h(¢(a))(f") # h(d(a'))(f)- I is
a model of I'y; thus =\/ ’P}" must be false in I, and so 7 is true in I for some
(o/,7,Infl,€) € scD with f € Infl. But this means that Chg(D,scp, f,t'),
a contradiction. The result follows. O



