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Abstract—It is generally hard to predict the exact duration of
an action. Uncertainty in durations is often modeled in temporal
planning by the use of upper bounds on durations, with the
assumption that if an action happens to be executed more quickly,
the plan will still succeed. However, this assumption is often
false: If we finish cooking too early, the dinner will be cold
before everyone is ready to eat. Simple Temporal Problems
with Uncertainty (STPUs) allow us to model such situations. An
STPU-based planner must verify that the plans it generates are
executable, captured by the property of dynamic controllability.
The EfficientIDC (EIDC) algorithm can do this incrementally
during planning, with an amortized complexity per step of O(n3)
but a worst-case complexity per step of O(n4). In this paper we
show that the worst-case run-time of EIDC does occur, leading to
repeated reprocessing of nodes in the STPU while verifying the
dynamic controllability property. We present a new version of
the algorithm, EIDC2, which through optimal ordering of nodes
avoids the need for reprocessing. This gives EIDC2 a strictly lower
worst-case run-time, making it the fastest known algorithm for
incrementally verifying dynamic controllability of STPUs.

I. INTRODUCTION AND BACKGROUND

When planning for multiple agents, for example a joint
UAV rescue operation, generating concurrent plans is usually
essential. This requires a temporal formalism allowing the
planner to reason about the possible times at which plan events
will occur during execution. A variety of such formalisms
exist in the literature. For example, Simple Temporal Problems
(STPs [1]) allow us to define a set of events related by binary
temporal constraints. The beginning and end of each action can
then be modeled as an event, and the interval of possible dura-
tions for each action can be modeled as a constraint related to
the action’s start and end event: dur = end−start∈ [min,max].

However, an STP solution is defined as any assignment of
timepoints to events that satisfies the associated constraints.
When an action has a duration dur∈ [min,max], it is sufficient
that the remaining constraints can be satisfied for some dura-
tion within this interval. This corresponds to the case where
the planner can freely choose action durations within given
bounds, which is generally unrealistic. For example, nature can
affect action durations: Timings of UAV flights and interactions
with ground objects will be affected by weather and wind.

A formalism allowing us to model durations that we cannot
directly control is STPs with Uncertainty (STPUs) [2]. This
formalism introduces contingent constraints, where the time
between two events is assumed to be assigned by nature. In
essence, if an action is specified to have a contingent duration

d ∈ [t1, t2], the other constraints must be satisfiable for every
duration that nature might assign within the given interval.

In general, STPUs cannot be expected to have static solu-
tions where actions are scheduled at static times in advance.
Instead we need dynamic solutions with a mechanism for
taking into account the observed times of uncontrollable events
(the observed durations of actions). If such a dynamic solution
can be found, the STPU is dynamically controllable (DC)
and the plan it represents can be executed regardless of the
outcomes of the contingent constraints.

Planning with STPUs. Many automated planners begin with
an empty plan and then incrementally add one new action at
a time using some search mechanism such as forward search
or partial-order planning. The initial empty plan is trivially
dynamically controllable. If we add an action to a DC plan,
the result may or may not be DC. On the other hand, the DC
property is monotonic in the sense that if we add an action or
a new constraint to a non-DC plan, the result is guaranteed not
to be dynamically controllable. Thus, if the planner generates
a non-DC plan at some point during search, extending the plan
is pointless. In this situation the search tree can be pruned.

The earlier this opportunity for pruning can be detected, the
better. Ideally, the planner should determine after each indi-
vidual action is added whether the plan remains DC. Dynamic
controllability will then be verified a large number of times
during the planning process, necessitating a fast verification
algorithm. For most of the published algorithms, this would
require (re-)testing the entire plan in each step [3]–[6]. This
takes non-trivial time, and one can benefit greatly from using
an incremental algorithm instead. The fastest known such
algorithm at the moment is the EfficientIDC (EIDC) algorithm
[7]. The EIDC algorithm has a worst-case run-time in O(n4)
and an amortized run-time in O(n3).

In this paper we show that the worst-case run-time of EIDC
can occur: There are cases where the number of steps required
after the addition of a single action is proportional to n4. The
higher complexity when processing such STNUs is caused by
EIDC having to reprocess nodes repeatedly since it processes
them in a non-optimal order. We create a new version of EIDC,
EIDC2, which overcomes these problems by determining a
better order in which nodes can be processed. This gives
EIDC2 a worst-case run-time in O(n3) without amortization.

II. DEFINITIONS

We now define the fundamental concepts used in this paper.
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Definition 1: A simple temporal problem (STP) [1] con-
sists of a number of real variables x1, . . . ,xn and constraints
Ti j = [ai j,bi j], i 6= j limiting the distance ai j ≤ x j − xi ≤ bi j
between the variables. �

Definition 2: A simple temporal problem with uncertainty
(STPU) [2] consists of a number of real variables x1, . . . ,xn,
divided into two disjoint sets of controlled timepoints R and
contingent timepoints C. An STPU also contains a number
of requirement constraints Ri j = [ai j,bi j] limiting the distance
ai j ≤ x j − xi ≤ bi j, and a number of contingent constraints
Ci j = [ci j,di j] limiting the distance ci j ≤ x j− xi ≤ di j. For the
constraints Ci j we require x j ∈C and 0 < ci j < di j < ∞. �

We will work with STPs and STPUs in graph form, with
timepoints represented as nodes and constraints as labeled
edges. They are then referred to as Simple Temporal Networks
(STNs) and STNs with Uncertainty (STNUs), respectively. An
example is shown in Figure 1. In this example, a man wants to
cook for his wife. He does not want her to wait too long after
she returns home, nor does he want the food to wait too long.
These two requirements are captured by a single requirement
constraint, whereas the uncontrollable (but bounded) durations
of shopping, driving home and cooking are captured by the
contingent constraints. The question is whether this can be
guaranteed regardless of the outcomes of the uncontrollable
durations, assuming that these are observable.

Definition 3: A dynamic execution strategy [3] is a
strategy for assigning timepoints to controllable events during
execution, given that at each timepoint, it is known which con-
tingent events have already occurred. The strategy must ensure
that all requirement constraints will be respected regardless of
the outcomes for the contingent timepoints.

An STNU is dynamically controllable (DC) [3] if there
exists a dynamic execution strategy for executing it. �

In Figure 1 a dynamic execution strategy is to start cooking
10 time units after receiving a call that the wife starts driving
home. This guarantees that cooking is done within the required
time, since she will arrive at home 35 to 40 time units after
starting to drive and the dinner will be ready within 35 to
40 time units after she started driving. Note that there exists
no valid static execution strategy where it is determined in
advance when cooking should start.

Any STN can be represented as an equivalent distance
graph [1]. Each constraint [u,v] on an edge AB in an STN is
represented as two corresponding edges in its distance graph:
AB with weight v and BA with weight −u. The weight of
an edge XY then always represents an upper bound on the

temporal distance from its source to its target: time(Y )−
time(X) ≤ weight(XY ). Computing the all-pairs-shortest-path
(APSP) distances in the distance graph yields a minimal
representation containing the tightest distance constraints that
are implicit in the STN [1]. This directly corresponds to the
tightest interval constraints [u′,v′] implicit in the STN. If there
is a negative cycle in the distance graph, then no assignment
of timepoints to variables satisfies the STN: It is inconsistent.

Similarly, an STNU always has an equivalent extended
distance graph (EDG) [6]. The example graphs in this paper
are all STNUs in EDG form with the exception of Figure 1.

Definition 4: An extended distance graph (EDG) is a
directed multi-graph with weighted edges of five kinds: pos-
itive requirement, negative requirement, positive contingent,
negative contingent and conditional. �

Requirement edges and contingent edges in an STNU are
translated into pairs of edges of the corresponding type in a
manner similar to what was described for STNs. A conditional
edge [6] is never present in the initial EDG corresponding to
an STNU, but can be derived from other constraints through
calculations discussed in the following sections.

Definition 5: A conditional edge CA annotated < B,−w >
encodes a conditional constraint: C must execute either after
B or at least w time units after A. The node B is called
the conditioning node of the constraint/edge. The edge is
conditioned on the node B. �

III. DC VERIFICATION TECHNIQUES

Morris, Muscettola and Vidal [3] were the first to present
a way of efficiently (see [8]) verifying if an STNU is dynami-
cally controllable. Their algorithm made use of STNU-specific
tightening rules, also called derivation rules. Each rule could
be applied to a triangle of nodes and if certain conditions
were met, new previously implicit constraints were derived
and added explicitly to the STNU. They showed that if these
derivation rules were applied to an STNU until quiescence (no
rule application can generate new conclusions), all constraints
needed for DC verification would be derived. The original
algorithm made intermediate checks while adding constraints
to make sure that conditions required for DC were still valid.

The derivation rules of Morris et al. provides a common
ancestor theory for all non-TGA-based (see related work)
DC verification algorithms. The original semantics were later
revised [9] and the derivations refined [6]. However, the idea
of deriving constraints from triangles of nodes is still valid.

Incremental dynamic controllability verification verifies the
state of an STNU as DC or non-DC given a list of incremental
changes. The list could contain addition of new nodes/edges
or tightenings of already existing constraints. For simplicity,
in the rest of this paper we will assume that only one change
is made to the STNU before calling an incremental algorithm.

IV. FASTIDC

The FastIDC algorithm [10] was the original incremental
DC verification algorithm. It introduced structure to derivations
using so called focus edges. Instead of treating a triangle as
an entity for derivation it focused on what could be derived
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from a single edge. Figure 2 shows FastIDC’s derivation rules.
Since an edge is responsible for the derivation of another edge,
derivations by FastIDC can be seen as forming chains.

The original version of FastIDC was not correct. Some
additions had to be made to capture all cases where the STNU
were non-DC. We will use the modified, corrected version [11].

As this algorithm is correct it will be used as our basis
for proving correctness of EIDC2. We will not give the
details of FastIDC here. For correctness it does not matter
in which order the derivations are applied. Only the fact
that they are applied until quiescence is reached and that the
algorithm detects negative cycles and squeezes. A squeeze [3]
is when tighter bounds are imposed on an existing contingent
constraint. If this happens, then there are cases where not all
potential outcomes of uncontrollable durations are permitted,
and the corresponding STNU is not DC. Similarly an STNU
containing a negative cycle cannot be DC since a negative
cycle corresponds to an impossible-to-satisfy constraint.

V. THE ORIGINAL EfficientIDC ALGORITHM

FastIDC may derive edges between the same nodes several
times, which is problematic for its performance. Even though
this may be prevented to a certain degree [7], it remains a
problem to efficiently handle derivations in regions containing
many unordered nodes, i.e. nodes that are mostly connected
by positive requirement edges.

To overcome these problems a new algorithm was pro-
posed [7]: The Efficient Incremental Dynamic Controllability
checking algorithm (Algorithm 1, EfficientIDC or EIDC for
short). EIDC uses focus nodes instead of focus edges to gain

efficiency. It is based on the same derivations as FastIDC
(Figure 2) but applies them in a different way. When EIDC
updates an edge in the EFG, the target of the edge, and the
source in some cases, are added to a list of focus nodes to be
processed. When EIDC processes a focus node n, it applies
all derivation rules that have an incoming edge to n as focus
edge. This guarantees that no tightenings are missed [7].

The use of focus nodes allows EIDC, with the help of a
modified version of Dijkstra’s algorithm, to efficiently process
parts of an EDG in a way that avoids certain forms of repetitive
intermediate edge tightenings that are performed by FastIDC.
The key to understanding this is that derivation rules essentially
calculate a certain form of shortest distances in an EDG. For
example, rule D4 states that if edge AB is tightened and there is
an edge BC, the edge AC may have to be tightened to indicate
the length of the shortest path between A and C. Shortest path
algorithms cannot be applied indiscriminately, since there are
complex interactions between the different kinds of edges, but
can still be applied to subsets of an EDG in important cases.

We will now briefly discuss how EIDC works, both to
provide a basis for the analysis showing why the algorithm
can sometimes require Ω(n4) time and to prepare for EIDC2.

Additional Data Structures. EIDC makes use of two addi-
tional separate data structures for efficiency.

The Cycle Checking Graph (CCGraph) has the same nodes
as the EDG and has one unlabeled edge for every negative edge
in the EDG. This is used to efficiently detect negative cycles
using an incremental topological ordering algorithm [11].

The Dijkstra Distance Graph (DDG) is used to execute
the modified version of Dijkstra’s single source shortest path
algorithm [7]. It contains the following information:

1) The positive requirement edges of the EDG, but
placed in the opposite direction.

2) The negative contingent edges of the EDG, with
weights replaced by their absolute values.

Updates to the DDG are trivial and are omitted for readability.

The EfficientIDC algorithm. As shown in Algorithm 1,
EIDC has four parameters. In the first call, the extended
distance graph G will contain two nodes and a single edge;
in subsequent calls it consists of the output of the previous
call to EIDC where exactly one edge has been added or
tightened, and one node may have been added. The DDG
D and CCGraph C are the Dijkstra Distance Graph and the
Cycle Checking Graphs as explained above. These both persist
through subsequent calls to the algorithm. Finally, the edge e
is the newly added or tightened edge.

First the target of e is put in todo. If e is a negative
requirement edge with no corresponding edge in the CCGraph
C, it essentially introduces a new forced temporal ordering
between two nodes. A corresponding edge is then added to the
CCGraph C. If this causes a negative cycle, G is inconsistent
and consequently not DC. Else, the source of e is added
to todo: Processing this node may result in new edges into
Target(e), and for efficiency this should preferably be done as
early as possible (more on this later).

Iteration. As long as there are nodes in todo, a node to



Algorithm 1 The EfficientIDC Algorithm
function
EFFICIENTIDC(EDG G, DDG D, CCGraph C, edge e)

todo←{Target(e)}
if e is negative and e /∈C then

add e to C
if negative cycle detected then

return false
end if
todo← todo∪{Source(e)}

end if
while todo 6= /0 do

current← pop some n from todo where
∀e ∈ Incoming(C,n) : Source(e) /∈ todo

PROCESSCOND(G,D,current)
PROCESSNEGREQ(G,D,current)
PROCESSPOSREQ(G,current)
for each edge e added to G in this iteration do

if Target(e) 6= current then
todo← todo∪{Target(e)}

end if
if e is a negative req. edge and e /∈C then

add e to C
if negative cycle detected then

return false
end if
todo ← todo ∪{Target(e),Source(e)}

end if
end for
if G is squeezed then return false
end if

end while
return true

end function

process, current, is selected and removed from the set. In-
coming negative edges e to the chosen node current must not
originate in a node also marked as todo: Otherwise, Source(e)
should be processed first, since this has the potential of adding
new incoming edges to current. There is always a todo node
satisfying this criterion, or there would be a cycle of negative
edges that would have been detected.

The incoming edges to the selected node are processed in
three steps with the help of three helper-functions, shown in
Algorithm 2. For a given node N, PROCESSCOND() generates
all of the conditional edges with destination N, while also
possibly generating some requirement edges (positive or nega-
tive) with destination N. PROCESSNEGREQ() generates all of
the negative requirement edges with destination N, while also
possibly generating some positive requirement edges. Finally,
PROCESSPOSREQ() uses the positive requirement edges with
destination N to generate additional edges with other destina-
tions. In this way, the helper functions, when executed in the
given order, effectively generate all edges with destination N.

We will describe the functions in reverse order to allow the
introduction of EIDC concepts gradually.

Incoming positive requirement edges are processed using
PROCESSPOSREQ(). This simply applies rules D1, D4-D5

Algorithm 2 Helper Functions
function PROCESSCOND(G,D,current)

allcond← IncomingCond(current,G)
condnodes←{n ∈ G | n is the conditioning node of

some e ∈ allcond}
for each c ∈ condnodes do

edges←{e ∈ allcond | conditioning node of e is c}
minw← |min{weight(e) : e ∈ edges)}|
add minw to the weight of all e ∈ edges
for e ∈ edges do

add e to D with reversed direction
end for
Dijkstra(current, D, minw)
for all nodes n reached by Dijkstra do

newW ← Dist(current,n)−minw
e← cond. edge (n→ current), weight newW
if e is a tightening then

add e to G
apply D8 and D9 to e

end if
end for
Revert all changes to D

end for
return

end function
function PROCESSNEGREQ(G,D,current)

edges← IncomingNegReq(current,G)
minw← |min{weight(e) : e ∈ edges)}|
add minw to the weight of all e ∈ edges
for e ∈ edges do

add e to D with reversed direction
end for
Dijkstra(current, D, minw)
for all nodes n reached by Dijkstra do

newW ← Dist(n)−minw
e← req. edge (n→ current) of weight newW
if e is a tightening then

add e to G
end if

end for
Revert all changes to D
return

end function
function PROCESSPOSREQ(G,current)

for each e ∈ IncomingPosReq(current,G) do
apply derivations D1, D4-D5 with e as focus edge
if e is conditional edge then

apply derivations D8-D9 with e as focus edge
end if

end for
return

end function

and D8-D9 to these edges, which are exactly those rules that
FastIDC could apply with such edges as focus.

Incoming negative requirement edges are processed using
PROCESSNEGREQ(). This function is equivalent to applying
rules D6 and D7, which are exactly those rules FastIDC could
apply with a negative requirement edge as focus. However, the



function does this for a larger part of the graph in a single step.

Rule D7 combines a sequence of a positive requirement
edge CB (weight y) and a negative requirement edge BA
(weight −u) and generates an edge CA of weight y−u, unless
an edge of lower weight is already present. This is essentially
one step in a shortest path calculation, which in FastIDC can
“spread out” from node A = current in a large number of
iterations that incrementally generate shorter and shorter paths
to the same nodes. (D6 will be considered later.)

Since A = current (the target of the focus edge), we are
calculating the shortest paths to a certain target (current). This
can also be achieved by calculating the shortest path from a
certain source in a graph containing all relevant edges with
reversed directions. For D7 the relevant edges are the positive
requirement edges, which are always present in reversed form
in the DDG, and the negative requirement edges leading to
current, which are added in reversed form to the DDG by
PROCESSNEGREQ().

A DDG constructed in this way would contain negative
edges, requiring the use of an algorithm such as Bellman-
Ford to generate shortest paths. However, all negative edges
in the DDG originate in current, and there are no negative
cycles. Therefore every shortest path from current must contain
exactly one negative edge. We can therefore calculate shortest
paths using Dijkstra’s algorithm by determining the lowest
negative edge weight minw, adding the absolute value of this to
all negative edges, calculating shortest paths, and subtracting
this from the final path costs. This will in a single call to
Dijkstra derive a final set of shortest distances that FastIDC
might have had to perform a large number of iterations to
converge towards. It is this part of EIDC that allows efficient
derivation over regions of unordered nodes.

Also, rule D7 is only triggered by negative requirement
edges, and can therefore only trigger another instance of itself
for as long as it generates new negative edges. We therefore
do not have to generate paths of weight greater than zero. In
the DDG where minw has been added to every path weight,
we can stop searching when reaching a path length of minw.

Rule D6 is handled in a similar manner, with minor
differences. First, D6 combines a negative requirement focus
edge BA of weight −u with a negative contingent edge BC
of weight −x to yield a new edge. These negative contingent
edges already point “away” from the current node A = current
and do not have to be reversed. However, their signs are
inversed in the weight calculation in D6: The weight of the new
edge should be x− u, not the weight sum −x− u. Therefore
the signs are also inverted in the DDG, as stated earlier.

After running Dijkstra’s algorithm, we know it is possible
to derive a non-negative requirement edge to every node
that was reached. We iterate over those nodes, determine the
appropriate weight for each edge, and adds the edge if a tighter
or equivalent edge did not already exist. Finally, the temporary
changes to D made by this procedure are rolled back.

Note that any new incoming negative edge that is added to
the EDG by PROCESSNEGREQ() is automatically processed
by this same call to PROCESSNEGREQ() and therefore does
not require further processing.

Incoming conditional edges are processed in a similar way in

PROCESSCOND(). This function is equivalent to applying rules
D2, D3, D8 and D9, which are exactly those rules FastIDC
could apply with a conditional edge as focus (while D1/D5
also involve conditional edges, they have requirement edges as
focus). However, as above, the function does this for a larger
part of the graph in a single step.

PROCESSCOND() processes edges for the same condi-
tioning node together, but edges for different conditioning
nodes separately. This is possible because edges with differ-
ent conditioning nodes are “independent”: When the relevant
derivation rules (D2, D3, D8, D9) are applied to an edge with
conditioning node n, the result is either a requirement edge or
a conditional edge with the same conditioning node n.

Thus, for every conditioning node c used by the incom-
ing conditional edges, PROCESSCOND() first finds all edges
allcond that are conditioned on c and have current as target.
These are the edges that could be the focus of rules D2/D3.
Here, D2 directly corresponds to D6 in PROCESSNEGREQ()
above, and D3 directly corresponds to D7: Weight calculations
are identical, the only difference being that both the focus edge
and the tightened edge are conditional edges, not requirement
edges. This difference is reflected in the fact that we consider
incoming conditional edges and create new conditional edges.

Rules D8 and D9 applied once for each new conditional
edge derived by Dijkstra. Derivation through D8 may add a
further edge to G.

After processing incoming edges, EIDC checks all new edges
that were derived by the helper functions. Edges that do not
have current as a target need to be processed, so their targets
are added to todo. If there is a negative requirement edge that
is not already in the CCGraph, this edge represents a new
forced ordering between two nodes. It must be added to the
CCGraph, which is then checked for negative cycles. If a new
edge is added to the CCGraph both the source and the target
of the edge must be added to todo for efficiency as mentioned
before. Finally, EIDC checks whether some edge in the EDG
is squeezed at which point the STNU is known to be not DC.

See [7] for an extensive example processed by EIDC.

VI. ANALYSIS OF EIDC’S WORST-CASE SCENARIO

In this section we prove that EIDC’s worst-case complexity
of O(n4) is not an overestimate: Scenarios in which EIDC
has to reprocess Ω(n) nodes do exist. We will only show a
small subset of an STNU in which EIDC reprocesses one
node. Figure 3 shows the starting situation where the EDG
is DC and there is no more possible derivation to be found by
EIDC. For simplicity we have only included the edges leading
to reprocessing. The X , Y and Z nodes are special and will
be discussed later. The other nodes are named alphabetically
in the order they are processed by EIDC, starting with a.
For the remainder of this example all edges we consider are
requirement edges. A dashed pattern is used for negative edges
whereas the positive edges have a continuous stroke. We use a
bold font for nodes that are in todo and a gray font for nodes
that are processed. We note that Y has many incoming positive
requirement edges from some other part of the EDG.

Each external modification (each new or tightened edge
resulting in a call to EIDC) will be called an increment. Table I
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TABLE I. EDGES DERIVED IN THE EXAMPLE.

Step Chosen node Added edges todo
0 {a}
1 a b→ c, b→ e {b,c,e}
2 b d→ c, d→ e, f → c, f → e {c,e,d}
3 c f → X , d→ X {e,d,X}
4 X no new edge added {e,d}
5 d Y → e {e}
6 e f → Z, Y → Z {Z}
7 Z f → X , Y → X {X ,Y}

shows what happens when EIDC processes the increment
created by adding the b→ a edge of weight 100. Initially,
a is the only node in todo. In iteration 1, a must be chosen as
current and processed, resulting in two new edges b→ c and
b→ e, and three nodes in todo. In iteration 2, b is the only
node that can be chosen, because both c and e have negative
incoming edges from b which is in todo. Processing b results
in four new edges but still three nodes in todo, and so on.

Figure 4 shows the situation in step 4, when X is chosen
for processing. The choice is in line with what the algorithm
might do since it has no information about which choice is
better. Figure 5 shows where we stop the example. At this
point we see that X will again be added to todo. This is a
problem leading to reprocessing and it is not the only one. As
we can see we did process X before Y , so even if we did not get
X in todo now, it will end up there again when Y is eventually
processed. The first time X was processed all positive edges
targeting Y were missed. In conclusion, the example shows
multiple ways in which X will be chosen for reprocessing. A
larger scenario may contain sections that are similar to the one
in the example. Each of these will then lead to the reprocessing
of one node. Since there are only 9 nodes in the example there
is room for Ω(n) parallel subgraphs of similar size, all leading
to the reprocessing of X . In the worst case X is the target of
conditional edges conditioned on Ω(n) different uncontrollable
nodes. This means that processing X takes Ω(n3) time [7] for
each reprocessing giving a total of time Ω(n4) to process this
increment. Therefore, the worst case stated in the analysis of
EIDC complexity [7] is attained.

VII. EFFICIENTIDC2

We will now propose a set of changes to EIDC to ensure
that no nodes will have to be reprocessed within a given
increment. The key behind the modification is a new way
of choosing current nodes, where under certain circumstances
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Fig. 4. The EDG at the time X is chosen for processing.
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Fig. 5. Final part of the example.

additional nodes are available as candidates because of their
potential to generate new incoming edges to the nodes that we
already know need to be processed. Listing 3 shows the new
algorithm, EfficientIDC2 (EIDC2 for short).

In contrast to EIDC, all nodes are added to unprocessed
at the start since they may all need to be processed at some
point. Note that since no nodes need to be reprocessed, no
nodes re-enter unprocessed at a later stage. Only nodes that
have modified incoming positive/negative edges or outgoing
negative edges can be involved in the derivation of new edges.
The algorithm puts all such nodes in the active set to keep
track of nodes that must be processed at some point.

Therefore, when popping nodes from unprocessed, prece-
dence is given to nodes in active. At some point the algorithm
may reach a point where all nodes in active have been
processed. Then the intersection between the sets is empty
and the algorithm will halt. This happens at the point where
EIDC would stop since no more nodes need to be processed,
i.e. the todo set of EIDC became empty. In the next section
we continue to look at the difference between the algorithms.

A. Comparison of Processed Nodes

As we have seen, EIDC processes only nodes that can
lead to derivation of new edges (these are the active nodes
of EIDC2). EIDC2 also processes these nodes, but to make
sure that the nodes are processed in the correct order, EIDC2
will process any node that is executed after (as determined
by following negative edges) any of the active nodes. This
means that whereas EIDC2 avoids reprocessing it may in some



Algorithm 3 The EfficientIDC2 Algorithm
function
EFFICIENTIDC2(EDG G, DDG D, CCGraph C, edge e)

unprocessed←{nodes ∈ G}
active←{Target(e)}
if e is negative then

active← active∪{Source(e)}
if e /∈C then

add e to C
if negative cycle detected then

return false
end if

end if
end if

while unprocessed∩active 6= /0 do
current ← pop some n from unprocessed where

∀e ∈ Incoming(C,n) : Source(e) /∈ unprocessed,
prioritizing popping nodes also in active

PROCESSCOND(G,D,current)
PROCESSNEGREQ(G,D,current)
PROCESSPOSREQ(G,current)
for each edge e added to G in this iteration do

active← active∪{Target(e)}
if e is negative then

active← active∪{Source(e)}
if e is a requirement edge and e /∈C then

add e to C
if negative cycle detected then

return false
end if

end if
end if

end for
if G is squeezed then

return false
end if

end while
return true

end function

cases process more distinct nodes in total. In an STNU that is
built incrementally where most constraints are added towards
the end of the STNU, few nodes beside those needed by the
increment will be processed to ensure optimal ordering.

B. Correctness

There has only been a sketched proof of correctness for
EIDC. We will supply a more detailed proof here for EIDC2,
not relying on the sketch for EIDC. This proof goes directly to
the source, i.e. the derivations done by the corrected version of
FastIDC [11]. A proof of correctness for the corrected version
of FastIDC exists [8]. We divide this section into two parts:
soundness followed by completeness. If the algorithm does
not derive unsound constraints, and it derives all constraints
needed for DC verification while also performing the same
tests to detect non-DC properties, it is correct.

Soundness of EIDC2. The only edges generated by EIDC2
are generated by the sound derivation rules used by FastIDC

and EIDC. Thus, EIDC2 is sound.

Completeness of EIDC2. Since FastIDC is complete, it
suffices to show that whenever FastIDC derives a constraint,
EIDC2 derives the same constraint.

We prove completeness in several steps and lemmas. In the
following we will compare derivations of FastIDC and EIDC2.
We assume that the algorithms have produced identical EDGs
up until the current increment. Note that it does not matter for
completeness in what order FastIDC applies its derivations, as
long as they are applied whenever they can be, completeness
follows. FastIDC may overwrite derived edges with tighter
derivations at a later stage. We are only interested in the edges
of the final EDG produced when running FastIDC.

We start with some notation: We will call the final EDG
of FastIDC F and the final EDG of EIDC2 E. Corresponding
nodes in the two EDGs will have the same name. To improve
readability we will represent an edge from a to b by (a,b).

after(X) = {nodes n| there is a path of negative edges from
n to X in F}.

The definition means that after(X) contains all the nodes
that should be ordered after X when the increment is fully
processed. Therefore it is not known to EIDC2.

incomingZ(n) = {edges e ∈ Z|Target(e) = n}.

This denotes all edges in the graph Z with n as their target.
We say that incomingE(n) ≈ incomingF(n) if the node n has
the same corresponding incoming edges with the same weights
in both graphs, i.e. e′ = (a,n) ∈ incomingF(n)⇔ e = (a,n) ∈
incomingE(n) and ∀e∈ incomingE(n) : weight(e) =weight(e′).

We say that a node n is complete iff the following holds:

1) The node n has already been processed by EIDC2.
2) In the iteration where n was chosen and processed

by EIDC2, when PROCESSPOSREQ() is about to be
called, incomingE(n)≈ incomingF(n).

The second condition states that all incoming edges to n that
are supposed to be derived by EIDC in this entire increment
were either (a) present when n was chosen for processing or
(b) added as a result of PROCESSCOND() or PROCESSNEG-
REQ() in the same iteration. Consequently these edges could
be completely processed through PROCESSPOSREQ() in that
iteration. Thus, EIDC2 will find all incoming edges to n that
can be derived by FastIDC derivations.

A node X is ready iff every node n ∈ after(X) is complete.

Suppose some node X is unprocessed and ready. Then ∀e∈
Incoming(C,X) : Source(e) /∈ unprocessed, so X is a candidate
for processing by EIDC2.

Lemma 1: Consider an iteration of EIDC2 where a node X
that is ready is chosen and popped from unprocessed. Then X
will be complete after this iteration.

A consequence is that after X is processed, all nodes
ordered before it will be one step closer to becoming ready.

Proof: We will examine incoming edges to X in F and
show that by the time EIDC2 calls PROCESSPOSREQ(), each
such edge must have a corresponding edge in E with identical



weight. We will prove this by considering all such edges in F
from the perspective of their type and the derivation rule used
to derive them.

Conditional edges in F derived by D1: Suppose edge e′ =
(A,X) in F was derived by D1, where X is the node we are
currently processing. In Figure 2 this means that X corresponds
to C in rule D1. We want to show that a corresponding edge
e = (A,X) in E is derived by EIDC2.

Since the rule was applicable in F , there was a contingent
edge of weight −x from a node B to X (and consequently
B ∈ after(X)). A contingent edge is always added externally
and never by derivations. It must have been present in F
before the increment where rule D1 was applied, and since
we are considering an equivalent series of calls to FastIDC
and EIDC2, it must also have been present in E before the
corresponding increment started. A similar argument applies
to the edge of weight y from X to B.

There was also a positive requirement edge from A to B in
F with weight v, or the rule would not have been applicable.
We know X is ready and B ∈ after(X), and therefore B is
complete. By the definition of complete, the corresponding
edge from A to B existed before PROCESSPOSREQ() was
executed for B. Then all preconditions for applying rule D1
in E were satisfied in that increment, and the edge e = (A,X)
was derived by PROCESSPOSREQ() at that time.

The same edge still exists before the call to PROCESSPOS-
REQ() when processing X .

Conditional edges in F derived by D2–D3 and D5: A condi-
tional edge in F cannot have been added “externally” (between
calls to FastIDC) but must have been added by a derivation
rule. Rule D1, which we have already considered, can create a
conditional edge to a node X where no such edge previously
existed. Apart from this rule, only rules D2–D3 and D5 can
create conditional edges to a node X , and in this case there
must already exist a conditional edge to node X before the rule
is applied. Therefore any chain of derivations of conditional
edges must start with an application of rule D1.

The derived edges in such a chain always point towards
the same target node (the source of the contingent constraint)
whereas the source of the derived edges moves “backwards”
along a positive edge. For example, suppose we apply rule D3
in Figure 2 with A = X . This requires an existing conditional
edge (C,X) and generates a new conditional edge (D,X),
where both edges have the same target X but the source
changes from C to D “backwards” along a positive edge of
weight v. In D3 and D5 the new weight is directly affected by
the weight of that positive edge, while in D2 the weight of the
negative edge is used.

Figure 6 shows an example of such a chain of deriva-
tions. The topmost graph is the starting state from which
the bold edges in the lower graph, labeled with derivation
rules, are added by derivations: First D1 :< A,−55 >, then
D3 :< A,−45 >, then D2 :< A,−39 >, then D3 :< A,−29 >.
We can see that the helper function PROCESSCOND() derives
all edges in such a derivation chain, making sure only to derive
along shortest paths since the derived edges along these paths
are the tightest possible.
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Consider what happens when X is processed by EIDC2.
Since each of the involved positive edges (and any involved
contingent edge) targets a node that is in after(X), and since
X is ready, they are all present by the time X become
current and PROCESSCOND() is called. Therefore all the edges
corresponding to derivations in F by derivation rules D2–
D3 and D5 will be derived by EIDC2 before the call to
PROCESSPOSREQ() as is required by the lemma.

Requirement edges in F derived by D4 and D6–D9:
Requirement edges can be derived by derivation rules D4,
D6–D9. Rules D8 and D9 cannot be the cause of deriving
edges that are part of F but not E since we already saw
that any conditional edge must be in both graphs and D8-
D9 are applied directly to these by both algorithms. If we
look at the remaining rules, D4 and D6-D7, these exactly
match the rules D2-D3 and D5 edge-for-edge with the only
difference being the type of edge, conditional vs. requirement.
Because of this these rules are handled by EIDC2 inside
PROCESSNEGREQ() similarly to how the previous rules are
handled inside PROCESSCOND().

So we see that all edges targeting X in F must have
corresponding edges targeting X in E. Hence, incomingE(X)≈
incomingF(X). We also recognize that this equality is satisfied
while processing X before PROCESSPOSREQ() since this
helper function was not required by the proof of the lemma.
Therefore all requirements in the lemma are satisfied.

We now continue with the next part of the completeness
proof. In the following we will view derivation rules D8-D9 as
part of the application which generated the conditional edge
they operate on. This allow us to present a lemma on a general
property of derivation:

Lemma 2: A new incoming edge to a node C can only
be created if its EDG contains a positive edge (A,B) and a
negative edge (B,C). The created edge (by derivations in F
and helper functions in E) then becomes (A,C).

Proof: This is obvious upon inspection of the derivation



rules in Figure 2. Notice that the type of the edges does not
matter, only the sign of their weights.

For the next lemma we first define the depth of a node
as the number of edges in the longest path to it which
consists of only negative edges. The kind of edge (conditional,
requirement or contingent) does not matter. The depth of a
node is well-defined since there are no negative cycles present
(detection is handled by the CCGraph). We will have reason to
use depth both in E and F and will use the graph designation
as subscript to separate these depths.

Lemma 3: When a node, X is chosen for processing by
EIDC2, it has received its final depth in E, depthE(X).

Proof: Suppose a node X is chosen by EIDC2 when it has
depthE(X) = k. The only way depthE(X) can change during
or after processing is if X receives a new incoming negative
edge. By lemma 2 this requires a node A with a negative edge
(A,X). Due to how nodes are chosen in the algorithm, A must
already have been processed before X was chosen. Then the
new incoming edge would already have been created through
PROCESSPOSREQ() and so cannot affect the depth after X was
chosen for processing.

It is possible to infer from the reasoning in the proof
that the execution order between nodes (as entailed by neg-
ative edges) is never found by calls to PROCESSCOND()
nor PROCESSNEGREQ() but only by the PROCESSPOSREQ()
helper function. The former calls however are important since
they make sure that derivations only follow shortest paths.
Therefore, both phases of derivation are needed.

We now define the set containing all nodes that have
negative edges targeting X .

IncNegSrcZ(X)= {nodes n|∃e=(n,X)∈ Z which is negative}.
Lemma 4: For every node X that is selected for processing

by EIDC2 the following holds:

1) X is ready (every node n ∈ after(X) is complete)
2) depthE(X) = depthF(X)
3) IncNegSrcE(X) = IncNegSrcF(X)

Proof: Induction over the depth of the nodes in the graph.

Basis: Any node X that has depthE(X) = 0 and is chosen
for processing is ready. This follows since depthE(X) = 0
means that there is no incoming negative edge to X . Thus there
were no incoming edge at the start of the increment. The same
is then true for X in F (assuming that E and F were identical
at the start of the increment). By lemma 2 this means that
there cannot be an incoming negative edge to X in F . By the
definition we then have after(X) = {nodes n | there is a path
of negative edges from n to X in F} = /0. Hence every node
in after(X) is complete, making X ready.

Furthermore we have depthF(X) = depthE(X) = 0 (since X
had no incoming negative edges in any of the graphs). This
means that we also have IncNegSrcE(X) = IncNegSrcF(X).
Thus the corresponding nodes have the same negative incom-
ing edges, so the theorem holds for every node X with depth 0.

Induction assumption: The theorem holds for all nodes
with depthE < k.

Induction step: Suppose a node X with depthE(X) = k is

TABLE II. EDGES DERIVED IN THE EXAMPLE.

Step Proc. unprocessed active Added edges
1 - {a-f,X-Z} {a} b→ a
2 a {b-f,X-Z} {a-c,e} b→ c, b→ e
3 b {c-f,X-Z} {a-e} d→ c, d→ e, f → c, f → e
4 c {d-f,X-Z} {a-e,X} f → X , d→ X
5 d {e-f,X-Z} {a-e,X} Y → e
6 e {f,X-Z} {a-e,X,Z} f → Z, Y → Z
7 Z {f,X-Y} {a-e,X-Z} f → X (second edge)
8 Y {f,X} {a-e,X-Z} . . .→ X
9 X {f} {a-e,X-Z} . . .

chosen for processing. All n ∈ IncNegSrcE(X) must then have
depthE(n)< k, since otherwise depthE(X)> k. Given how the
algorithm chooses nodes, we know that all n∈ IncNegSrcE(X)
have already been processed and (by lemma 3) have received
their final depths. By the induction hypothesis they were ready
when processed and hence for each node n, p ∈ after(n)⇒ p
is complete. By Lemma 1 the nodes themselves are now
complete. Therefore any ordering derived through the nodes
in IncNegSrcE(X) has been done by PROCESSPOSREQ().
Therefore we have IncNegSrcE(X) = IncNegSrcF(X). Then
all nodes in after(X) are complete and hence X is ready.

By induction the theorem holds for nodes with any depth
and hence for every node selected for processing.

Theorem 1: The EIDC2 algorithm is correct.

Proof: First, EIDC2 is sound. It is also complete since
by lemma 4 all nodes chosen for processing are ready and by
lemma 1 become complete after processing. This means that all
nodes in E have the same incoming edges as the corresponding
nodes in F . This also guarantees that all nodes that need to
be processed become active (and are processed). Therefore all
corresponding edges match between the graphs. Since EIDC2
also performs all the tests (exactly the ones done by FastIDC,
which is correct) needed to correctly verify the DC state of
the STNU, we conclude that it is correct.

C. Complexity

As the previous section shows nodes are chosen in the
optimal order, i.e. there is no need to process a node more
than once. Therefore, there will be O(n) outer iterations. We
can divide the work done in inner iterations into two parts.
One which deals with conditional edges and one which deals
with requirement edges. The part which deals with requirement
edges is shown [7] to have a complexity in O(n2) in each
iteration. The part which deals with conditional edges is shown
to have an accumulated complexity in O(n3) over all outer
iterations. So in total, the execution of the EIDC2 algorithm
for a modified STNU will have a complexity in O(n3).

VIII. WORST-CASE EXAMPLE REVISITED

To see how much difference the strategy used by EIDC2
makes we will revisit the worst-case example of EIDC. In the
figures we will use nodes with dashed background to capture
that they are in active, and as before bold font to show they
are in unprocessed and gray color for the processed nodes.
Table II shows the way the algorithm handles the scenario.
The scenario starts as in Figure 3, but in step 5 EIDC2 is
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Fig. 7. Scenario where X was chosen by EIDC.
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Fig. 8. Final situation in the example, where X is chosen by EIDC2.

faced with the situation in Figure 7. Here X is in unprocessed,
but it cannot be chosen for processing since Z is after X and
also in unprocessed. By waiting until Z is processed, X is
protected against processing before any node whose relation to
X is determined by interaction with Z, in this case Y . Figure 8
shows the final situation when X is chosen for processing.

IX. RELATED AND FUTURE WORK

Recently several papers [12], [13] have examined the use
of Timed Game Automata (TGA) for both verification and
execution of STNUs. These solutions work on a smaller scale
and do not exploit the inherent structure of STNUs as distance
graphs. Therefore they are more useful in networks that are
small in size but involve choice and resources which cannot
be handled by pure STNU algorithms.

Future work includes investigating how to execute the
resulting EDG, perhaps through use of recent work [14].

During the review of this paper Morris [15] presented a new
O(n3) algorithm for full DC verification. The algorithm has the
following properties: (1) It uses FastIDC derivations (called
“plus-minus”). (2) It calculates distances in reverse direction
(cf. DDG graph). (3) It uses a distance-limited version of
Dijkstra over positive edges. (4) Derivation continues only after
all incoming negative edges are processed (through recursion).
(5) Non-DC is detected as cycles consisting of only negative
edges (cf. CCGraph). Although Morris uses a different notation
[5] and labeled graphs which allow derivations in any order
(EIDC2 does Cond/NegReq/PosReq), we are convinced that
the algorithms in fact are equivalent. Had we not focused on
the incremental usage this might have been the conclusion of

this paper. From the work of Morris we conclude that EIDC2
handles full DC verification by starting from an unprocessed
EDG where all nodes are added to active. It remains future
work to rigorously compare the algorithms and investigate their
relative performance in practice.

X. CONCLUSION

We have presented EIDC2, an improvement over the previ-
ously fastest algorithm (EIDC) for incremental DC verification
of STNUs. Whereas EIDC had a worst-case of Ω(n4) for
one increment (shown in this paper), EIDC2 lowers this to
O(n3). This is possible since EIDC2 uses a different ordering
technique that allows the processing of incoming positive
requirement edges to a node to be used for determining the
optimal processing order between nodes. EIDC2 also makes
use of the processing techniques put forward by EIDC to avoid
repeatedly discovering tighter and tighter edges.

A consequence of the O(n3) DC verification is that any
system that today relies on consistency checks for STNs may at
no increase in worst case run-time extend their representation
to model uncontrollable durations.
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