
Link�oping Electronic Articles in
Computer and Information Science

Vol. 2(1997): nr 16

Link�oping University Electronic Press
Link�oping, Sweden

http://www.ep.liu.se/ea/cis/1997/016/

Tackling the Quali�cation Problem using

Fluent Dependency Constraints:

Preliminary Report

Patrick Doherty

Department of Computer
and Information Science
Link�oping University
S-58183 Link�oping, Sweden
patdo@ida.liu.se

Jonas Kvarnstr�om

Department of Computer
and Information Science
Link�oping University
S-58183 Link�oping, Sweden
jonkv@ida.liu.se

This work has been submitted for publication elsewhere, and if accepted, the current
copyright may be transferred and the present version may be superseded by a revised
one. The WWW page at the URL provided below will contain up-to-date information
about the current version and copyright status of the article. Additional copyright
information is found on the next page of this document.

Published on December 19, 1997 by
Link�oping University Electronic Press

581 83 Link�oping, Sweden

Link�oping Electronic Articles in

Computer and Information Science

ISSN 1401-9841
Series editor: Erik Sandewall

c
1997 Patrick Doherty
Jonas Kvarnstr�om

Typeset by the author using LATEX
Formatted using �etendu style

Recommended citation:

<Author>. <Title>. Link�oping Electronic Articles in
Computer and Information Science, Vol. 2(1997): nr 16.
http://www.ep.liu.se/ea/cis/1997/016/. December 19, 1997.

This URL will also contain a link to the author's home page.

The publishers will keep this article on-line on the Internet
(or its possible replacement network in the future)

for a period of 25 years from the date of publication,
barring exceptional circumstances as described separately.

The on-line availability of the article implies
a permanent permission for anyone to read the article on-line,

to print out single copies of it, and to use it unchanged
for any non-commercial research and educational purpose,

including making copies for classroom use.
This permission can not be revoked by subsequent

transfers of copyright. All other uses of the article are
conditional on the consent of the copyright owner.

The publication of the article on the date stated above
included also the production of a limited number of copies

on paper, which were archived in Swedish university libraries
like all other written works published in Sweden.

The publisher has taken technical and administrative measures
to assure that the on-line version of the article will be
permanently accessible using the URL stated above,

unchanged, and permanently equal to the archived printed copies
at least until the expiration of the publication period.

For additional information about the Link�oping University
Electronic Press and its procedures for publication and for

assurance of document integrity, please refer to
its WWW home page: http://www.ep.liu.se/

or by conventional mail to the address stated above.

Abstract

Recently, a great deal of progress has been made using nonmonotonic temporal

logics to formalize reasoning about action and change. In particular, much focus

has been placed on the proper representation of non-deterministic actions and the

indirect e�ects of actions. One popular approach to representing the indirect e�ects

of actions has been via the use of causal rules which in a more general sense can be

viewed as
uent dependency constraints. Although
uent dependency constraints

have been used primarily under a loose causal interpretation, we show that when in-

terpreted in a broader sense they provide a
exible means for dealing with a number

of other representational problems such as the quali�cation problem and the rami�-

cation constraints as quali�cation constraints problem, in addition to the standard

rami�cation problem. More importantly, the use of
uent dependency constraints

for di�erent purposes does not involve additions to the base nonmonotonic tempo-

ral logic, TAL, used here, but simply the addition of several macro operators to

an action language used to represent action scenarios or narratives. The payo� is

that TAL has already been shown to o�er a robust approach to representing action

scenarios which permit incomplete speci�cations of both state and the timing of

actions, non-deterministic actions, actions with duration, concurrent actions, use of

both boolean and non-boolean
uents, and solutions to the frame and rami�cation

problems for a wide class of action scenarios. In addition, all circumscribed action

scenarios in these classes and the more general class involving quali�cation consid-

ered in this paper can be shown to be reducible to the �rst-order case. Finally, a

restricted entailment method for this new class of scenarios is fully implemented.

In the paper, we present a challenge example which incorporates all these features,

propose a distinction between weak and strong quali�cation with a representation of

both, and provide a visualization of the preferred entailments using a research tool

VITAL for querying and visualizing action scenarios.

At the time of publication of this report, a similar shorter version lacking Appendices

3-6 had been submitted to TIME'98, The Fifth International Workshop on Temporal

Representation and Reasoning. This version also contains some minor corrections in

addition to comments added in Appendix 1. A longer paper is planned.

TIME'98 submission date: December 8, 1997.

1

1 Introduction

In this paper, we provide a challenge in the form of a complex action scenario description, the
Russian Airplane Hijack Scenario (RAH) which requires robust solutions to the frame, rami�cation
and quali�cation problems. We say robust because the scenario requires the representation of
concurrent actions, incomplete speci�cation of states, rami�cation with chaining, the use of non-
boolean
uents, �ne-grained dependencies among objects in di�erent
uent value domains, actions
with duration, rami�cation constraints as quali�cations to actions, two types of quali�cation, weak
and strong, and the use of explicit time, in addition to other features. Although some of these
features have been reported in previous work, the approach to quali�cation is new, the use of a
research tool VITAL [8], which provides an implementation and visualization of action scenarios
is new, and the action scenario, to our knowledge, is one of the more challenging and complex
scenarios proposed as a test example. We will use Temporal Action Logic (TAL) to reason about
action scenarios.

Temporal Action Logics (TAL) have their origin in the Features and Fluents framework proposed
by Sandewall [11], where both a variety of logics of preferential entailment for reasoning about
action and change and a framework for assessing the correctness of these and future logics were
proposed. One of the de�nitions of preferential entailment, PMON, was proposed by Sandewall
and assessed correct for the K-IA class of action scenarios, a broad class of scenarios which dealt
with nondeterministic actions, incomplete speci�cation of state and the timing of actions, and
observations at arbitrary states in a scenario. PMON solved the frame problem for the K-IA class.
Later, Doherty [1, 2] translated and generalized PMON into an order-sorted �rst-order logic with
a circumscription axiom capturing the PMON de�nition of preferential entailment.

Recently, a number of additional extensions and generalizations have been added to the original
PMON and the logics generated belong to what we call the TAL family. Although the logics
belong to the TAL family, each is essentially an incremental addition to the base logic PMON.
TAL-RC, proposed by Gustafsson and Doherty [6], provides a solution to the rami�cation problem
for a broad, but as yet unassessed class of action scenarios. The main idea is the addition of a
specialization of
uent dependency constraints which we called causal constraints. The solution
was based on the insight that the Occlude predicate used to solve the frame problem for PMON
was all that was needed to de�ne causal rules which turn out to be very similar to action e�ect
axioms. The solution is also extremely �ne-grained in the sense that one can easily encode depen-
dencies between individual objects in the domain, work with both boolean and non-boolean
uents
and represent both Markovian and non-Markovian dependencies [5]. TAL-C, recently proposed by
Gustafsson and Karlsson [7], uses
uent dependency constraints as a basis for representing concur-
rent actions. A number of phenomena related to action concurrency such as interference between
one action's e�ects and another's execution, bounds on concurrency and con
icting, synergistic,
and cumulative e�ects of concurrent actions are studied.

In this paper, we will consider two problems: the quali�cation problem and the rami�cation con-
straints as quali�cation constraints problem [4, 9]. We call the logic used, TAL-Q, and note that
it is an incremental extension of TAL-C, just as TAL-C is an incremental extension of TAL-RC. In
fact, the logical language and minimization policy is roughly the same for TAL-RC, TAL-C, and
TAL-Q. The novelty of the solution to these problems is in the combined use of
uent dependency
constraints and an additional idea introduced in TAL-C, durational
uents. The advantage of leav-
ing the logic and minimization policy intact is that the new class of action scenarios representable
in TAL-Q subsumes previous classes and any circumscribed scenario in TAL-Q is provably and
automatically reducible to a compact �rst-order theory e�ciently implemented in a research tool
called VITAL [8]. VITAL is an on-line tool which permits both the visualization and querying of
action scenarios.

The paper is structured as follows. In Section 2, we brie
y describe TAL-Q. We then provide a
brief description of the surface language for action scenarios and their translation into an order-

2

sorted �rst-order language with a circumscription axiom. In Section 3, we describe a complex
action scenario, the Russian Airplane Hijack Scenario (RAH), and provide a formal description in
Appendix 1 which will be used throughout the paper. In Section 4, we consider weak and strong
quali�cation and provide a preliminary proposal for representing both types in TAL-Q. Appendix
1 contains the RAH action scenario in the language L(SD) (described below) and Appendix 2-6
contain visualizations of the preferred entailments of the RAH scenario and various extensions
to it. The visualizations have been generated automatically from the VITAL tool. Due to page
limitations, we have to be very brief with our description of action scenario translation macros
and the underlying logic, referring the reader to the following sources ([11, 1, 2, 6, 7, 8]).

2 TAL-Q: Temporal Action Logic with Quali�cation

In this section, we introduce TAL-Q which will be used as a basis for a preliminary proposal for
dealing with quali�cation of actions. The basic approach we use for reasoning about action and
change is as follows. First, represent an action scenario in the surface language L(SD) which is a
high-level language for representing observations, action types and action occurrences, dependency
constraints, domain constraints, and timing constraints about actions and their duration.1 Second,
translate L(SD) into the base language L(FL) which is an order-sorted �rst-order language with
four predicates Occlude(t; f), Holds(t; f; v), Per(f), and Dur(f; v), where t,f , and v are variables
for timepoint,
uent, and value expressions, respectively. Holds expresses what value a
uent has
at each timepoint. Occlude expresses that a
uent at a timepoint is allowed to change value at
that timepoint. Each
uent has to be characterized as either a durational
uent, Dur(f; v), with
default value v, or a persistent
uent Per(f), but not both. The idea is that unless a durational

uent is occluded at a timepoint, it will retain its default value, while a persistent
uent at t + 1
retains whatever value it has at t unless it is occluded.

A linear discrete time structure is used in TAL-Q. The minimization policy is based on the use of
�ltered preferential entailment [10] where action occurrences (occ-) and dependency constraints
(dep-) are circumscribed with Occlude minimized and Holds �xed. The result is then �ltered with
two nochange axioms, the observations, and some foundational axioms such as unique names and
temporal structure axioms.

Let �obs, �occ, �dep, and �acc denote the translations into L(FL) of the observation, occurrence,
dependency and domain constraints in an action scenario, respectively. In addition, let �fnd

denote the foundational axioms which include axioms for the time structure, unique names and
the Dur=Per speci�cation of
uents. The nochange axioms in �ncg are

8t; f; v[Per(f) ! (:Occlude(t + 1; f) ! (Holds(t; f; v) $ Holds(t + 1; f; v)))];

which states that persistent
uents that are not occluded at time t + 1 retain their value from t,
and

8t; f; v[Dur(f; v) ! (:Occlude(t; f) ! Holds(t; f; v))];

which states that durational
uents have a default value of v, but when occluded can take on
arbitrary values. Since each
uent is either durational or persistent, inertia of
uent values or
default behavior is dependent on the extension of Occlude which is minimized relative to �dep and
�occ.

If � is an action scenario in L(SD), then Trans(�) is its translation into L(FL) which includes all
of the sets of formulas �x.

The following de�nition of preferential entailment applies:

1Appendix 1 lists the RAH action scenario in language L(SD) which is described informally in Section 3.

3

De�nition 1 The formula � is entailed by Trans(�) i�

�fnd ^ �acc ^ �obs ^ �ncg ^ Circso(�occ ^ �dep;Occlude) j= �

Since there are only positive occurrences of the Occlude predicate in the circumscription context,
Circso(��) is reducible to a logically equivalent �rst-order formula.

The translation from L(SD) to L(FL) is straightforward and the reader is referred to [3, 7] for
details concerning translation and the logic used. We simply translate one of each type of statement
in the scenario in Appendix 1 to provide some understanding, but �rst we discuss the macro
operators CT , R, I , and X .

The CT operator stands for becomes true. For example, its use in dependency constraint cc3,
CT ([t] loc(airplane) =̂ loc3), would be translated as follows:

Holds(t; loc(airplane); loc3) ^ 8u[t = u + 1 ! :Holds(u; loc(airplane); loc3)]

Translations of the next operators are shown after they are discussed. The R operator stands for

uent reassignment and where an interval is used, occludes the
uent in the interval and gives it
a new value at the last timepoint. For example the action occurrence occ3 uses the R operator
as follows: R([4] loc(dimiter) =̂ o�ce). Here, because of the use of a single timepoint, it is only
changing at 4.

The I operator stands for exceptional assignment and is often used in combination with durational

uents. It states that a
uent will have a particular value which holds throughout the interval or
at the timepoint. For example, the dependency constraint cc1 contains the following:

I([t] 8airplane[:poss board(person; airplane)]);

which states that the default value for the durational
uent poss board does not apply and the

uent is false at t.

The X operator stands for occlude assignment. Its purpose is simply to allow a
uent's value
to vary at a timepoint or interval. For example, the dependency constraint cc2 contains the
following:

X([t] 8airplane[:poss board(person; airplane)]);

which states that poss board may be true or false at t.

The observation statement obs2, the action occurrence statement occ3 which uses the R
operator, the dependency statement cc1 which uses the I operator and the dependency
statement cc2 which uses the X operator are translated into L(FL) as follows:
obs2 Holds(0; loc(erik); home2) ^ Holds(0; loc(comb2); home2) ^ :Holds(0; drunk(erik); true)
occ3 Holds(2; loc(dimiter); home3) ! Holds(4; loc(dimiter); o�ce) ^Occlude(4; loc(dimiter))
cc1 8t; person[Holds(t; inpocket(person; gun); true) !

8airplane[:Holds(t; poss board(person; airplane); true) ^
Occlude(t; poss board(person; airplane))]]

cc2 8t; person[Holds(t; drunk(person); true) ! Occlude(t; poss board(person; airplane))]

3 The Russian Airplane Hijack Scenario

In this section, we will use the methodology of representative examples as a means of considering
and proposing a preliminary solution to the quali�cation and rami�cation as quali�cation prob-
lems. The proposal, while conveyed via a speci�c action scenario, can easily be presented in a
more generic, but less intuitive manner. We leave that for a longer paper. We will use a new

4

action scenario, the Russian Airplane Hijack scenario, as a representative example.2 The scenario
is described informally below and the formal action scenario can be found in Appendix 1.

A Russian businessman, Vladimir, travels a lot and is concerned about both his hair and safety. Consequently,

when traveling, he places both a comb and a gun in his pocket. A Bulgarian businessman, Dimiter, is less concerned

about his hair, but when traveling by air, has a tendency to drink large amounts of vodka before boarding a
ight

to subdue his fear of
ying. A Swedish businessman, Erik, travels a lot, likes combing his hair, but is generally

law abiding. Now, one rami�cation of putting an object in your pocket is that it will follow with you as you travel

from location to location. Generally, when boarding a plane, the only preconditions are that you are at the gate

and you have a ticket. One possible quali�cation to the boarding action is if you arrive at the gate in a su�ciently

inebriated condition, as will be the case for Dimiter. A rami�cation that may in some cases play a dual role as a

quali�cation to the boarding action is if you try to board a plane with a gun in your pocket, which may be the case

for Vladimir. Now, Vladimir, Erik and Dimiter, start from home, stop by the o�ce, go to the airport, and try to

board
ight SAS609 to Stockholm. Both Erik and Vladimir put combs in their pockets at home, Vladimir picks

up a gun at the o�ce, while Dimiter is already drunk at home. Who will successfully board the plane? What are

their �nal locations? What is in their pockets after attempting to board the plane and after the plane has arrived

at its destination?

If the scenario is encoded properly and our intuitions about the frame, rami�cation and quali�-
cation problems are correct then we should be able to entail the following from the scenario in
Appendix 1:

1. Erik will board the plane with comb2 in his pocket and eventually board the plane success-
fully ending up at his destination.

2. Vladimir will get as far as the airport with a gun and comb1 in his pocket. He will be unable
to board the plane.

3. Dimiter will get as far as the airport and may or may not have boarded the plane. He may
or may not have comb3 in his pocket. A weaker form of quali�cation (use of the X operator)
is used here. For example, if he is observed to be on the plane then he successfully slipped
by security and there is no inconsistency. If he is observed not to be on the plane, then the
action failed and there is also no inconsistency.

4. An indirect e�ect of
ying is that the person ends up at the same location as the airplane.
In addition, because items in pockets follow the person, a transitive e�ect results where the
items in the pocket are at the same location as the plane. Consequently, erik and comb2 end
up at run609b, the �nal destination of
ight sas609.

In fact, we do entail this and more. The facts true in all preferred models for this scenario can be
viewed in Appendix 2.3

4 Representing the Quali�cation Problem in TAL-Q

In comparison with the frame and rami�cation problems, the quali�cation problem is still one
of the least understood and with few satisfactory solutions. This is most probably due to the
fact that there are many di�erent types of quali�cation problem, or reasons for qualifying an
action description. The main problem is that in general, it is computationally, ontologically and
epistemologically unfeasible to represent complete speci�cations of all the preconditions to actions
which would include all possible quali�cations. In this section, we will propose a default-based

2This scenario is an elaboration and concretization of a sketch for a scenario proposed by Vladimir Lifschitz in
recent on-line discussions in the European Transactions on Arti�cial Intelligence (ETAI/ENAI).

3red and green stand for false and true values for boolean
uents, gray stands for true or false, while black after
gray stands for \do not know the value, but will take the value gray" ends up being. \�2�" means 2 possible values.
They are not shown in the diagram due to lack of space. The diagram is automatically generated using the VITAL
tool. You should have a colored copy of Appendix 2.

5

solution within the TAL-Q framework that has a number of novelties. We can express both strong
and weak forms of quali�cation, the representation is e�cient, and one can model rami�cation
constraints as quali�cations in a number of ways. We consider both forms of quali�cation using
the RAH scenario from Appendix 1 to describe the approach.

Boarding an airplane might have a number of di�erent quali�cations, for example, being drunk
or carrying a gun in your pocket. In other contexts, these facts may be perfectly natural. The
di�culty, especially when such facts are inferred indirectly as rami�cations, is in providing a

exible enough representation to allow the facts to play dual roles as either rami�cations, or
rami�cations that may qualify an action. One rami�cation of traveling or boarding a plane, is
that everything in my pocket travels with me, including guns and combs. So if I have a gun in
my pocket before boarding a plane, one rami�cation of the boarding action is that the gun is on
the plane. Now, one could argue that having a gun in my pocket plays the role of a quali�cation
to the boarding action and the action should fail. On the other hand, it is perfectly possible that
one could slip by with a gun if it is made of a special type of plastic. So, how do we know that
an action has been quali�ed? Well, after the action is executed, we may observe the results of the
action's e�ects. For example, if vladimir is observed to be on the plane even though he has a gun,
then he has slipped by and the action was possible after all. If we observe that he isn't on the
plane, then possession of the gun actually quali�ed the action. This weaker form of quali�cation
which we call weak quali�cation can also be represented.

Let's start with strong quali�cation. A quali�ed action contains a
uent enabling the action in its
precondition with the same number of arguments as its associated action type. For example, the
boarding action contains a
uent poss board(person; airplane):

acs4 [t1; t2] board(person; airplane) ! [t1] poss board(person; airplane)^loc(person) =̂ airport!
R([t2] loc(person) =̂ value(t2; loc(airplane)) ^ onplane(airplane; person))

Note that the
uent poss board is a durational
uent Dur(poss board) with default value true
which means it can only take on another value (false) at a timepoint if it is occluded at that
timepoint for some reason. Such reasons are described as dependency constraints:

cc1 8t[8person[[t] inpocket(person; gun) ! I([t] 8airplane[:poss board(person; airplane)])]]

This dependency constraint together with the assertion that poss board is durational implies that
as long as a person has a gun in his pocket, poss board will be false for that person on all airplanes.
So far, this is similar to a standard default solution to the quali�cation problem, not unlike other
solutions, but with some subtle di�erences. For example, it permits more control of the enabling
precondition, even allowing it to change during the execution of an action. Strong quali�cation has
its uses, but is not fully adequate for other types of quali�cation. A visualization of the preferred
entailments for the scenario which is listed in Appendix 1, is provided in Appendix 2.4

Instead of the above, let's consider the use of a weak quali�cation. Using the current example,
the idea here is that inpocket(person, gun) should not be an absolute quali�cation, it should
make it less likely that the person can successfully board the plane, but that would depend on
additional information derived from other domain and dependency constraints. We �rst relax the
previous dependency cc1 by replacing it with cc1.1 where the I operator is replaced with the X
operator.

cc1.1 8t[8person[[t] inpocket(person; gun) ! X([t] 8airplane[:poss board(person; airplane)])]]

This change would generate two preferred models for people with guns. In one, they successfully
board the plane with a gun, in the other they do not. In the RAH scenario, this would then be
the case for vladimir, but erik's and dimiter's situation would remain unchanged. We can not infer
poss board(vladimir; sas609) or its negation from timepoint 7 to in�nity, where 7 is the end of the
action where vladimir places a gun in his pocket. In the case with cc1, we could infer the negation

4Note that the scenario in Appendix 1 shows the use of strong quali�cation (guns) for vladimir and weak
quali�cation (drunk) for dimiter described next.

6

from 7 to in�nity. A visualization of the preferred entailments for the scenario which is listed in
Appendix 1, but with cc1 replaced with cc1.1, is provided in Appendix 3.

Now one of the advantages of this approach is its naturalness. Given a scenario, we can check
whether action occurrences are successful or not by adding observations to the scenario after the
action occurrence. Adding obs5 [13] onplane(sas609; vladimir) to the scenario would allow us to
infer that he did in fact board the plane and poss board(vladimir; sas609) was in fact true. He
would then end up at his destination. A visualization of the preferred entailments for the scenario
which is listed in Appendix 1, but with cc1 replaced with cc1.1 and with obs5 added, is provided
in Appendix 4. If instead we added obs6 [13] :onplane(sas609; vladimir), then we could infer that
he was unable to board the plane and he did not end up at his destination. A visualization of the
preferred entailments for the scenario which is listed in Appendix 1, but with cc1 replaced with
cc1.1 and with obs6 added, is provided in Appendix 5.

We are now very close to one solution to the problem of rami�cations as quali�cation constraints.
Observations are similar to domain constraints with the exception that observations generally
assert facts about one timepoint while domain constraints (acc) assert facts generally true about
one or more timepoints. Now the idea is simply that domain constraints, or other dependency
constraints for that matter, when used in rami�cation chains may implicitly qualify actions. For
example, let's extend our scenario (using cc1.1) with the domain constraint that it is absolutely
forbidden for guns to be on planes,

acc3 8t[8airplane[[t] :(loc(gun) =̂ loc(airplane))]]:

The location of the gun is a rami�cation of traveling from place to place. We have not changed
cc1.1, but in combination with the constraints we can infer from the scenario that vladimir was
unable to board the plane, not simply due to the fact that he had a gun in his pocket, but due
to that and some additional domain constraints of a more generic nature that sometimes function
as rami�cation constraints and in this case as quali�cation constraints. A visualization of the
preferred entailments for the scenario which is listed in Appendix 1, but with cc1 replaced with
cc1.1 and acc3 added, is provided in Appendix 6.

In conclusion, there is currently some basic understanding of the quali�cation problem, but we
believe the techniques proposed here provide a reasonable basis for dealing with more sophisticated
types of quali�cation than those found in the literature. We also demonstrated how our research
tool VITAL [8] can be used to generate the six appendices describing the RAH scenario and
visualization of preferred entailments.

Acknowledgments

This research is supported in part by the Knut and Alice Wallenberg Foundation, the Swedish
Research Council for Engineering Sciences and the ECSEL graduate studies program.

References

[1] P. Doherty. Reasoning about Action and Change Using Occlusion. In: Proceedings of the 11th
European Conference on Arti�cial Intelligence, 1994, 401-405.

[2] P. Doherty, W. Lukaszewicz. Circumscribing Features and Fluents. In: Proceedings of the
1st International Conference on Temporal Logic, Lecture Notes on Arti�cial Intelligence, vol.
827, Springer-Verlag, 1994, 82-100.

7

[3] P. Doherty. PMON+: A Fluent Logic for Action and Change, Formal Speci�cation, Version
1.0. Department of Computer and Information Science, Link�oping University. Technical report
LITH-IDA-96-33. 1996. http://www.ida.liu.se/publications/techrep/96/tr96.html

[4] M. Ginsburg, D. E. Smith. Reasoning about Action II: the Quali�cation Problem, Arti�cial
Intelligence J., 35, 1988, 311-342.

[5] E Giunchiglia and V. Lifschitz. Dependent
uents. In Proc. of the 14th Int'l Conf. on Arti�cial
Intelligence, 1995.

[6] J. Gustafsson, P. Doherty. Embracing Occlusion in Specifying the Indirect E�ects of Actions.
In: Proceedings of the 5th International Conference on Principles of Knowledge Representa-
tion and Reasoning, Morgan Kaufmann Publishers, San Francisko, 1996, 87-98.

[7] J. Gustafsson, L. Karlsson. Reasoning about Actions in a Multi-agent Environ-
ment. Link�oping Electronic Articles in Computer and Information Science, 1997.
http://www.ep.liu.se/ea/cis/1997/014. Also submitted for journal publication.

[8] J. Kvarnstr�om, P. Doherty. VITAL: A Research Tool for Visualizing and Querying Action
Scenarios in TAL. http://anton.ida.liu.se/vital/vital.html.

[9] F. Lin, R. Reiter. State Constraints Revisited, Journal of Logic and Computation, special
issue on actions and processes, 4, 1994, 655-678.

[10] E. Sandewall. Filter Preferential Entailment for the Logic of Action and Change. In: Proc. of
the 11th Int'l Joint Conf. on Arti�cial Intelligence, (IJCAI-89), Morgan Kaufmann Publish-
ers, 1989.

[11] E. Sandewall. Features and Fluents. A Systematic Approach to the Representation of Knowl-
edge about Dynamical Systems. Volume 1. Oxford University Press, 1994.

8

Appendix1

DOMAIN SPECIFICATION

domain thing = {gun, comb1, comb2, comb3, vladimir, dimiter, erik, sas609}

domain location = {home1, home2, home3, office, airport, run609, run609b, air}

domain runway = location [run609, run609b]

domain airplane = thing [sas609]

domain person = thing [vladimir - erik]

domain pthing = thing [gun, comb1 - comb3]

domain pocket = {pocket1, pocket2, pocket3}

feature loc(thing): location showname

feature inpocket(person,pthing): boolean

durational poss_board = true

feature poss_board(person,airplane): boolean

feature drunk(person): boolean

feature onplane(airplane,person): boolean

action put(person, pthing, pocket)

action travel(person, location, location)

action fly(airplane, runway, runway)

action board(person, airplane)

THE NARRATIVE: OBSERVATIONS, ACTION OCCURRENCES AND TIMING

obs1 [0] loc(vladimir) =̂ home1 ^ loc(gun) =̂ o�ce ^ loc(comb1) =̂ home1 ^ :drunk(vladimir)
obs2 [0] loc(erik) =̂ home2 ^ loc(comb2) =̂ home2 ^ :drunk(erik)
obs3 [0] loc(dimiter) =̂ home3 ^ loc(comb3) =̂ home3 ^ drunk(dimiter)
obs4 [0] loc(sas609) =̂ run609
occ1 [1; 2] put(vladimir; comb1; pocket1)
occ2 [1; 2] put(erik; comb2; pocket2)
occ3 [2; 4] travel(dimiter; home3; o�ce)
occ4 [3; 5] travel(vladimir; home1; o�ce)
occ5 [4; 6] travel(erik; home2; o�ce)
occ6 [6; 7] put(vladimir; gun; pocket1)
occ7 [5; 7] travel(dimiter; o�ce; airport)
occ8 [7; 9] travel(erik; o�ce; airport)
occ9 [8; 10] travel(vladimir; o�ce; airport)
occ10 [9; 10] board(dimiter; sas609)
occ11 [10; 11] board(vladimir; sas609)
occ12 [11; 12] board(erik; sas609)
occ13 [13; 16]
y(sas609; run609; run609b)

ACTION TYPES

acs1 [t1; t2]
y(airplane; runway1; runway2) ! [t1] loc(airplane) =̂ runway1!
I((t1; t2) loc(airplane) =̂ air) ^ R([t2] loc(airplane) =̂ runway2)

acs2 [t1; t2] put(person; pthing; pocket) ! [t1] loc(person) =̂ loc(pthing) !
R((t1; t2] inpocket(person; pthing))

acs3 [t1; t2] travel(person; loc1; loc2) ! [t1] loc(person) =̂ loc1! R([t2] loc(person) =̂ loc2)
acs4 [t1; t2] board(person; airplane) ! [t1] poss board(person; airplane) ^

loc(person) =̂ airport! R([t2] loc(person) =̂ value(t2; loc(airplane)) ^
onplane(airplane; person))

DOMAIN CONSTRAINTS

//A pthing cannot be in two pockets at the same time.
acc1 8t[8pthing1[8person1[8person2[:(person1 = person2) ^

[t] inpocket(person1; pthing1) ! [t] :inpocket(person2; pthing1)]]]]

9

//A person cannot be on board two airplanes at the same time.
acc2 8t[8person1[8airplane1[8airplane2[:(airplane1 = airplane2) ^

[t] onplane(airplane1; person1) ! [t] :onplane(airplane2; person1)]]]]

DEPENDENCY CONSTRAINTS

//A person who has a gun cannot board any airplane.
cc1 8t[8person[[t] inpocket(person; gun) ! I([t] 8airplane[:poss board(person; airplane)])]]

//A person who is drunk may not be able to board an airplane.
cc2 8t[8person[[t] drunk(person) ! X([t] 8airplane[:poss board(person; airplane)])]]

//When an airplane moves, persons on board the airplane also move.
cc3 8t[8airplane[8person[8loc3[[t] onplane(airplane; person) ^

CT ([t] loc(airplane) =̂ loc3) ! R([t] loc(person) =̂ value(t; loc(airplane)))]]]]
//When persons move, things in their pockets also move.

cc4 8t[8person[8pthing[8loc3[[t] inpocket(person; pthing) ^
CT ([t] loc(person) =̂ loc3) ! R([t] loc(pthing) =̂ value(t; loc(person)))]]]]

10

Appendix2
0

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
.

.
.

d
ru

n
k

(d
im

it
e

r)
:

V
a

lu
e

d
ru

n
k

(e
ri

k
):

V
a

lu
e

d
ru

n
k

(v
la

d
im

ir
):

V
a

lu
e

in
p

o
c

k
e

t(
d

im
it

e
r,

 c
o

m
b

1
):

V
a

lu
e

in
p

o
c

k
e

t(
d

im
it

e
r,

 c
o

m
b

2
):

V
a

lu
e

in
p

o
c

k
e

t(
d

im
it

e
r,

 c
o

m
b

3
):

V
a

lu
e

in
p

o
c

k
e

t(
d

im
it

e
r,

 g
u

n
):

V
a

lu
e

in
p

o
c

k
e

t(
e

ri
k

,
c

o
m

b
1

):
V

a
lu

e

in
p

o
c

k
e

t(
e

ri
k

,
c

o
m

b
2

):
V

a
lu

e

in
p

o
c

k
e

t(
e

ri
k

,
c

o
m

b
3

):
V

a
lu

e

in
p

o
c

k
e

t(
e

ri
k

,
g

u
n

):
V

a
lu

e

in
p

o
c

k
e

t(
v

la
d

im
ir

,
c

o
m

b
1

):
V

a
lu

e

in
p

o
c

k
e

t(
v

la
d

im
ir

,
c

o
m

b
2

):
V

a
lu

e

in
p

o
c

k
e

t(
v

la
d

im
ir

,
c

o
m

b
3

):
V

a
lu

e

in
p

o
c

k
e

t(
v

la
d

im
ir

,
g

u
n

):
V

a
lu

e

lo
c

(c
o

m
b

1
):

V
a

lu
e

ho
m

e1
ho

m
e1

ho
m

e1
ho

m
e1

ho
m

e1
o

ff
ic

e
o

ff
ic

e
o

ff
ic

e
o

ff
ic

e
o

ff
ic

e
a

ir
p

o
rt

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt

lo
c

(c
o

m
b

2
):

V
a

lu
e

ho
m

e2
ho

m
e2

ho
m

e2
ho

m
e2

ho
m

e2
ho

m
e2

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt
ru

n
6

0
9

ru
n

6
0

9
a

ir
a

ir
ru

n
6

0
9

b
ru

n
6

0
9

b

lo
c

(c
o

m
b

3
):

V
a

lu
e

ho
m

e3
ho

m
e3

ho
m

e3
ho

m
e3

*
2

*
*

2
*

*
2

*
*

2
*

*
2

*
*

2
*

*
3

*
*

3
*

*
3

*
*

3
*

*
3

*
*

3
*

*
3

*
*

3
*

lo
c

(d
im

it
e

r)
:

V
a

lu
e

ho
m

e3
ho

m
e3

ho
m

e3
ho

m
e3

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt
*

2
*

*
2

*
*

2
*

*
2

*
*

2
*

*
2

*
*

2
*

*
2

*

lo
c

(e
ri

k
):

V
a

lu
e

ho
m

e2
ho

m
e2

ho
m

e2
ho

m
e2

ho
m

e2
ho

m
e2

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt
ru

n
6

0
9

ru
n

6
0

9
a

ir
a

ir
ru

n
6

0
9

b
ru

n
6

0
9

b

lo
c

(g
u

n
):

V
a

lu
e

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt
a

ir
p

o
rt

lo
c

(s
a

s
6

0
9

):
V

a
lu

e
ru

n
6

0
9

ru
n

6
0

9
ru

n
6

0
9

ru
n

6
0

9
ru

n
6

0
9

ru
n

6
0

9
ru

n
6

0
9

ru
n

6
0

9
ru

n
6

0
9

ru
n

6
0

9
ru

n
6

0
9

ru
n

6
0

9
ru

n
6

0
9

ru
n

6
0

9
a

ir
a

ir
ru

n
6

0
9

b
ru

n
6

0
9

b

lo
c

(v
la

d
im

ir
):

V
a

lu
e

ho
m

e1
ho

m
e1

ho
m

e1
ho

m
e1

ho
m

e1
o

ff
ic

e
o

ff
ic

e
o

ff
ic

e
o

ff
ic

e
o

ff
ic

e
a

ir
p

o
rt

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt

o
n

p
la

n
e

(s
a

s
6

0
9

,
d

im
it

e
r)

:
V

a
lu

e

o
n

p
la

n
e

(s
a

s
6

0
9

,
e

ri
k

):
V

a
lu

e

o
n

p
la

n
e

(s
a

s
6

0
9

,
v

la
d

im
ir

):
V

a
lu

e

p
o

s
s

_
b

o
a

rd
(d

im
it

e
r,

 s
a

s
6

0
9

):
V

a
lu

e

p
o

s
s

_
b

o
a

rd
(e

ri
k

,
s

a
s

6
0

9
):

V
a

lu
e

p
o

s
s

_
b

o
a

rd
(v

la
d

im
ir

,
s

a
s

6
0

9
):

V
a

lu
e

p
u

t(
v

la
d

im
ir

,c
o

m
b

1
,p

o
c

k
e

t1
)

p
u

t(
e

ri
k

,c
o

m
b

2
,p

o
c

k
e

t2
)

tr
a

v
e

l(
d

im
it

e
r,

h
o

m
e

3
,o

ff
ic

e
)

tr
a

v
e

l(
v

la
d

im
ir

,h
o

m
e

1
,o

ff
ic

e
)

tr
a

v
e

l(
e

ri
k

,h
o

m
e

2
,o

ff
ic

e
)

p
u

t(
v

la
d

im
ir

,g
u

n
,p

o
c

k
e

t1
)

tr
a

v
e

l(
d

im
it

e
r,

o
ff

ic
e

,a
ir

p
o

rt
)

tr
a

v
e

l(
e

ri
k

,o
ff

ic
e

,a
ir

p
o

rt
)

tr
a

v
e

l(
v

la
d

im
ir

,o
ff

ic
e

,a
ir

p
o

rt
)

b
o

a
rd

(d
im

it
e

r,
s

a
s

6
0

9
)

b
o

a
rd

(v
la

d
im

ir
,s

a
s

6
0

9
)

b
o

a
rd

(e
ri

k
,s

a
s

6
0

9
)

fl
y

(s
a

s
6

0
9

,r
u

n
6

0
9

,r
u

n
6

0
9

b
)

11

Appendix3
0

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
.

.
.

d
ru

n
k

(d
im

it
e

r)
:

V
a

lu
e

d
ru

n
k

(e
ri

k
):

V
a

lu
e

d
ru

n
k

(v
la

d
im

ir
):

V
a

lu
e

in
p

o
c

k
e

t(
d

im
it

e
r,

 c
o

m
b

1
):

V
a

lu
e

in
p

o
c

k
e

t(
d

im
it

e
r,

 c
o

m
b

2
):

V
a

lu
e

in
p

o
c

k
e

t(
d

im
it

e
r,

 c
o

m
b

3
):

V
a

lu
e

in
p

o
c

k
e

t(
d

im
it

e
r,

 g
u

n
):

V
a

lu
e

in
p

o
c

k
e

t(
e

ri
k

,
c

o
m

b
1

):
V

a
lu

e

in
p

o
c

k
e

t(
e

ri
k

,
c

o
m

b
2

):
V

a
lu

e

in
p

o
c

k
e

t(
e

ri
k

,
c

o
m

b
3

):
V

a
lu

e

in
p

o
c

k
e

t(
e

ri
k

,
g

u
n

):
V

a
lu

e

in
p

o
c

k
e

t(
v

la
d

im
ir

,
c

o
m

b
1

):
V

a
lu

e

in
p

o
c

k
e

t(
v

la
d

im
ir

,
c

o
m

b
2

):
V

a
lu

e

in
p

o
c

k
e

t(
v

la
d

im
ir

,
c

o
m

b
3

):
V

a
lu

e

in
p

o
c

k
e

t(
v

la
d

im
ir

,
g

u
n

):
V

a
lu

e

lo
c

(c
o

m
b

1
):

V
a

lu
e

ho
m

e1
ho

m
e1

ho
m

e1
ho

m
e1

ho
m

e1
o

ff
ic

e
o

ff
ic

e
o

ff
ic

e
o

ff
ic

e
o

ff
ic

e
a

ir
p

o
rt

*
2

*
*

2
*

*
2

*
*

2
*

*
2

*
*

2
*

*
2

*

lo
c

(c
o

m
b

2
):

V
a

lu
e

ho
m

e2
ho

m
e2

ho
m

e2
ho

m
e2

ho
m

e2
ho

m
e2

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt
ru

n
6

0
9

ru
n

6
0

9
a

ir
a

ir
ru

n
6

0
9

b
ru

n
6

0
9

b

lo
c

(c
o

m
b

3
):

V
a

lu
e

ho
m

e3
ho

m
e3

ho
m

e3
ho

m
e3

*
2

*
*

2
*

*
2

*
*

2
*

*
2

*
*

2
*

*
3

*
*

3
*

*
3

*
*

3
*

*
3

*
*

3
*

*
3

*
*

3
*

lo
c

(d
im

it
e

r)
:

V
a

lu
e

ho
m

e3
ho

m
e3

ho
m

e3
ho

m
e3

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt
*

2
*

*
2

*
*

2
*

*
2

*
*

2
*

*
2

*
*

2
*

*
2

*

lo
c

(e
ri

k
):

V
a

lu
e

ho
m

e2
ho

m
e2

ho
m

e2
ho

m
e2

ho
m

e2
ho

m
e2

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt
ru

n
6

0
9

ru
n

6
0

9
a

ir
a

ir
ru

n
6

0
9

b
ru

n
6

0
9

b

lo
c

(g
u

n
):

V
a

lu
e

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

a
ir

p
o

rt
*

2
*

*
2

*
*

2
*

*
2

*
*

2
*

*
2

*
*

2
*

lo
c

(s
a

s
6

0
9

):
V

a
lu

e
ru

n
6

0
9

ru
n

6
0

9
ru

n
6

0
9

ru
n

6
0

9
ru

n
6

0
9

ru
n

6
0

9
ru

n
6

0
9

ru
n

6
0

9
ru

n
6

0
9

ru
n

6
0

9
ru

n
6

0
9

ru
n

6
0

9
ru

n
6

0
9

ru
n

6
0

9
a

ir
a

ir
ru

n
6

0
9

b
ru

n
6

0
9

b

lo
c

(v
la

d
im

ir
):

V
a

lu
e

ho
m

e1
ho

m
e1

ho
m

e1
ho

m
e1

ho
m

e1
o

ff
ic

e
o

ff
ic

e
o

ff
ic

e
o

ff
ic

e
o

ff
ic

e
a

ir
p

o
rt

*
2

*
*

2
*

*
2

*
*

2
*

*
2

*
*

2
*

*
2

*

o
n

p
la

n
e

(s
a

s
6

0
9

,
d

im
it

e
r)

:
V

a
lu

e

o
n

p
la

n
e

(s
a

s
6

0
9

,
e

ri
k

):
V

a
lu

e

o
n

p
la

n
e

(s
a

s
6

0
9

,
v

la
d

im
ir

):
V

a
lu

e

p
o

s
s

_
b

o
a

rd
(d

im
it

e
r,

 s
a

s
6

0
9

):
V

a
lu

e

p
o

s
s

_
b

o
a

rd
(e

ri
k

,
s

a
s

6
0

9
):

V
a

lu
e

p
o

s
s

_
b

o
a

rd
(v

la
d

im
ir

,
s

a
s

6
0

9
):

V
a

lu
e

p
u

t(
v

la
d

im
ir

,c
o

m
b

1
,p

o
c

k
e

t1
)

p
u

t(
e

ri
k

,c
o

m
b

2
,p

o
c

k
e

t2
)

tr
a

v
e

l(
d

im
it

e
r,

h
o

m
e

3
,o

ff
ic

e
)

tr
a

v
e

l(
v

la
d

im
ir

,h
o

m
e

1
,o

ff
ic

e
)

tr
a

v
e

l(
e

ri
k

,h
o

m
e

2
,o

ff
ic

e
)

p
u

t(
v

la
d

im
ir

,g
u

n
,p

o
c

k
e

t1
)

tr
a

v
e

l(
d

im
it

e
r,

o
ff

ic
e

,a
ir

p
o

rt
)

tr
a

v
e

l(
e

ri
k

,o
ff

ic
e

,a
ir

p
o

rt
)

tr
a

v
e

l(
v

la
d

im
ir

,o
ff

ic
e

,a
ir

p
o

rt
)

b
o

a
rd

(d
im

it
e

r,
s

a
s

6
0

9
)

b
o

a
rd

(v
la

d
im

ir
,s

a
s

6
0

9
)

b
o

a
rd

(e
ri

k
,s

a
s

6
0

9
)

fl
y

(s
a

s
6

0
9

,r
u

n
6

0
9

,r
u

n
6

0
9

b
)

12

Appendix4
0

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
.

.
.

d
ru

n
k

(d
im

it
e

r)
:

V
a

lu
e

d
ru

n
k

(e
ri

k
):

V
a

lu
e

d
ru

n
k

(v
la

d
im

ir
):

V
a

lu
e

in
p

o
c

k
e

t(
d

im
it

e
r,

 c
o

m
b

1
):

V
a

lu
e

in
p

o
c

k
e

t(
d

im
it

e
r,

 c
o

m
b

2
):

V
a

lu
e

in
p

o
c

k
e

t(
d

im
it

e
r,

 c
o

m
b

3
):

V
a

lu
e

in
p

o
c

k
e

t(
d

im
it

e
r,

 g
u

n
):

V
a

lu
e

in
p

o
c

k
e

t(
e

ri
k

,
c

o
m

b
1

):
V

a
lu

e

in
p

o
c

k
e

t(
e

ri
k

,
c

o
m

b
2

):
V

a
lu

e

in
p

o
c

k
e

t(
e

ri
k

,
c

o
m

b
3

):
V

a
lu

e

in
p

o
c

k
e

t(
e

ri
k

,
g

u
n

):
V

a
lu

e

in
p

o
c

k
e

t(
v

la
d

im
ir

,
c

o
m

b
1

):
V

a
lu

e

in
p

o
c

k
e

t(
v

la
d

im
ir

,
c

o
m

b
2

):
V

a
lu

e

in
p

o
c

k
e

t(
v

la
d

im
ir

,
c

o
m

b
3

):
V

a
lu

e

in
p

o
c

k
e

t(
v

la
d

im
ir

,
g

u
n

):
V

a
lu

e

lo
c

(c
o

m
b

1
):

V
a

lu
e

ho
m

e1
ho

m
e1

ho
m

e1
ho

m
e1

ho
m

e1
o

ff
ic

e
o

ff
ic

e
o

ff
ic

e
o

ff
ic

e
o

ff
ic

e
a

ir
p

o
rt

ru
n

6
0

9
ru

n
6

0
9

ru
n

6
0

9
a

ir
a

ir
ru

n
6

0
9

b
ru

n
6

0
9

b

lo
c

(c
o

m
b

2
):

V
a

lu
e

ho
m

e2
ho

m
e2

ho
m

e2
ho

m
e2

ho
m

e2
ho

m
e2

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt
ru

n
6

0
9

ru
n

6
0

9
a

ir
a

ir
ru

n
6

0
9

b
ru

n
6

0
9

b

lo
c

(c
o

m
b

3
):

V
a

lu
e

ho
m

e3
ho

m
e3

ho
m

e3
ho

m
e3

*
2

*
*

2
*

*
2

*
*

2
*

*
2

*
*

2
*

*
3

*
*

3
*

*
3

*
*

3
*

*
3

*
*

3
*

*
3

*
*

3
*

lo
c

(d
im

it
e

r)
:

V
a

lu
e

ho
m

e3
ho

m
e3

ho
m

e3
ho

m
e3

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt
*

2
*

*
2

*
*

2
*

*
2

*
*

2
*

*
2

*
*

2
*

*
2

*

lo
c

(e
ri

k
):

V
a

lu
e

ho
m

e2
ho

m
e2

ho
m

e2
ho

m
e2

ho
m

e2
ho

m
e2

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt
ru

n
6

0
9

ru
n

6
0

9
a

ir
a

ir
ru

n
6

0
9

b
ru

n
6

0
9

b

lo
c

(g
u

n
):

V
a

lu
e

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

a
ir

p
o

rt
ru

n
6

0
9

ru
n

6
0

9
ru

n
6

0
9

a
ir

a
ir

ru
n

6
0

9
b

ru
n

6
0

9
b

lo
c

(s
a

s
6

0
9

):
V

a
lu

e
ru

n
6

0
9

ru
n

6
0

9
ru

n
6

0
9

ru
n

6
0

9
ru

n
6

0
9

ru
n

6
0

9
ru

n
6

0
9

ru
n

6
0

9
ru

n
6

0
9

ru
n

6
0

9
ru

n
6

0
9

ru
n

6
0

9
ru

n
6

0
9

ru
n

6
0

9
a

ir
a

ir
ru

n
6

0
9

b
ru

n
6

0
9

b

lo
c

(v
la

d
im

ir
):

V
a

lu
e

ho
m

e1
ho

m
e1

ho
m

e1
ho

m
e1

ho
m

e1
o

ff
ic

e
o

ff
ic

e
o

ff
ic

e
o

ff
ic

e
o

ff
ic

e
a

ir
p

o
rt

ru
n

6
0

9
ru

n
6

0
9

ru
n

6
0

9
a

ir
a

ir
ru

n
6

0
9

b
ru

n
6

0
9

b

o
n

p
la

n
e

(s
a

s
6

0
9

,
d

im
it

e
r)

:
V

a
lu

e

o
n

p
la

n
e

(s
a

s
6

0
9

,
e

ri
k

):
V

a
lu

e

o
n

p
la

n
e

(s
a

s
6

0
9

,
v

la
d

im
ir

):
V

a
lu

e

p
o

s
s

_
b

o
a

rd
(d

im
it

e
r,

 s
a

s
6

0
9

):
V

a
lu

e

p
o

s
s

_
b

o
a

rd
(e

ri
k

,
s

a
s

6
0

9
):

V
a

lu
e

p
o

s
s

_
b

o
a

rd
(v

la
d

im
ir

,
s

a
s

6
0

9
):

V
a

lu
e

p
u

t(
v

la
d

im
ir

,c
o

m
b

1
,p

o
c

k
e

t1
)

p
u

t(
e

ri
k

,c
o

m
b

2
,p

o
c

k
e

t2
)

tr
a

v
e

l(
d

im
it

e
r,

h
o

m
e

3
,o

ff
ic

e
)

tr
a

v
e

l(
v

la
d

im
ir

,h
o

m
e

1
,o

ff
ic

e
)

tr
a

v
e

l(
e

ri
k

,h
o

m
e

2
,o

ff
ic

e
)

p
u

t(
v

la
d

im
ir

,g
u

n
,p

o
c

k
e

t1
)

tr
a

v
e

l(
d

im
it

e
r,

o
ff

ic
e

,a
ir

p
o

rt
)

tr
a

v
e

l(
e

ri
k

,o
ff

ic
e

,a
ir

p
o

rt
)

tr
a

v
e

l(
v

la
d

im
ir

,o
ff

ic
e

,a
ir

p
o

rt
)

b
o

a
rd

(d
im

it
e

r,
s

a
s

6
0

9
)

b
o

a
rd

(v
la

d
im

ir
,s

a
s

6
0

9
)

b
o

a
rd

(e
ri

k
,s

a
s

6
0

9
)

fl
y

(s
a

s
6

0
9

,r
u

n
6

0
9

,r
u

n
6

0
9

b
)

13

Appendix5
0

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
.

.
.

d
ru

n
k

(d
im

it
e

r)
:

V
a

lu
e

d
ru

n
k

(e
ri

k
):

V
a

lu
e

d
ru

n
k

(v
la

d
im

ir
):

V
a

lu
e

in
p

o
c

k
e

t(
d

im
it

e
r,

 c
o

m
b

1
):

V
a

lu
e

in
p

o
c

k
e

t(
d

im
it

e
r,

 c
o

m
b

2
):

V
a

lu
e

in
p

o
c

k
e

t(
d

im
it

e
r,

 c
o

m
b

3
):

V
a

lu
e

in
p

o
c

k
e

t(
d

im
it

e
r,

 g
u

n
):

V
a

lu
e

in
p

o
c

k
e

t(
e

ri
k

,
c

o
m

b
1

):
V

a
lu

e

in
p

o
c

k
e

t(
e

ri
k

,
c

o
m

b
2

):
V

a
lu

e

in
p

o
c

k
e

t(
e

ri
k

,
c

o
m

b
3

):
V

a
lu

e

in
p

o
c

k
e

t(
e

ri
k

,
g

u
n

):
V

a
lu

e

in
p

o
c

k
e

t(
v

la
d

im
ir

,
c

o
m

b
1

):
V

a
lu

e

in
p

o
c

k
e

t(
v

la
d

im
ir

,
c

o
m

b
2

):
V

a
lu

e

in
p

o
c

k
e

t(
v

la
d

im
ir

,
c

o
m

b
3

):
V

a
lu

e

in
p

o
c

k
e

t(
v

la
d

im
ir

,
g

u
n

):
V

a
lu

e

lo
c

(c
o

m
b

1
):

V
a

lu
e

ho
m

e1
ho

m
e1

ho
m

e1
ho

m
e1

ho
m

e1
o

ff
ic

e
o

ff
ic

e
o

ff
ic

e
o

ff
ic

e
o

ff
ic

e
a

ir
p

o
rt

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt

lo
c

(c
o

m
b

2
):

V
a

lu
e

ho
m

e2
ho

m
e2

ho
m

e2
ho

m
e2

ho
m

e2
ho

m
e2

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt
ru

n
6

0
9

ru
n

6
0

9
a

ir
a

ir
ru

n
6

0
9

b
ru

n
6

0
9

b

lo
c

(c
o

m
b

3
):

V
a

lu
e

ho
m

e3
ho

m
e3

ho
m

e3
ho

m
e3

*
2

*
*

2
*

*
2

*
*

2
*

*
2

*
*

2
*

*
3

*
*

3
*

*
3

*
*

3
*

*
3

*
*

3
*

*
3

*
*

3
*

lo
c

(d
im

it
e

r)
:

V
a

lu
e

ho
m

e3
ho

m
e3

ho
m

e3
ho

m
e3

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt
*

2
*

*
2

*
*

2
*

*
2

*
*

2
*

*
2

*
*

2
*

*
2

*

lo
c

(e
ri

k
):

V
a

lu
e

ho
m

e2
ho

m
e2

ho
m

e2
ho

m
e2

ho
m

e2
ho

m
e2

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt
ru

n
6

0
9

ru
n

6
0

9
a

ir
a

ir
ru

n
6

0
9

b
ru

n
6

0
9

b

lo
c

(g
u

n
):

V
a

lu
e

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt
a

ir
p

o
rt

lo
c

(s
a

s
6

0
9

):
V

a
lu

e
ru

n
6

0
9

ru
n

6
0

9
ru

n
6

0
9

ru
n

6
0

9
ru

n
6

0
9

ru
n

6
0

9
ru

n
6

0
9

ru
n

6
0

9
ru

n
6

0
9

ru
n

6
0

9
ru

n
6

0
9

ru
n

6
0

9
ru

n
6

0
9

ru
n

6
0

9
a

ir
a

ir
ru

n
6

0
9

b
ru

n
6

0
9

b

lo
c

(v
la

d
im

ir
):

V
a

lu
e

ho
m

e1
ho

m
e1

ho
m

e1
ho

m
e1

ho
m

e1
o

ff
ic

e
o

ff
ic

e
o

ff
ic

e
o

ff
ic

e
o

ff
ic

e
a

ir
p

o
rt

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt

o
n

p
la

n
e

(s
a

s
6

0
9

,
d

im
it

e
r)

:
V

a
lu

e

o
n

p
la

n
e

(s
a

s
6

0
9

,
e

ri
k

):
V

a
lu

e

o
n

p
la

n
e

(s
a

s
6

0
9

,
v

la
d

im
ir

):
V

a
lu

e

p
o

s
s

_
b

o
a

rd
(d

im
it

e
r,

 s
a

s
6

0
9

):
V

a
lu

e

p
o

s
s

_
b

o
a

rd
(e

ri
k

,
s

a
s

6
0

9
):

V
a

lu
e

p
o

s
s

_
b

o
a

rd
(v

la
d

im
ir

,
s

a
s

6
0

9
):

V
a

lu
e

p
u

t(
v

la
d

im
ir

,c
o

m
b

1
,p

o
c

k
e

t1
)

p
u

t(
e

ri
k

,c
o

m
b

2
,p

o
c

k
e

t2
)

tr
a

v
e

l(
d

im
it

e
r,

h
o

m
e

3
,o

ff
ic

e
)

tr
a

v
e

l(
v

la
d

im
ir

,h
o

m
e

1
,o

ff
ic

e
)

tr
a

v
e

l(
e

ri
k

,h
o

m
e

2
,o

ff
ic

e
)

p
u

t(
v

la
d

im
ir

,g
u

n
,p

o
c

k
e

t1
)

tr
a

v
e

l(
d

im
it

e
r,

o
ff

ic
e

,a
ir

p
o

rt
)

tr
a

v
e

l(
e

ri
k

,o
ff

ic
e

,a
ir

p
o

rt
)

tr
a

v
e

l(
v

la
d

im
ir

,o
ff

ic
e

,a
ir

p
o

rt
)

b
o

a
rd

(d
im

it
e

r,
s

a
s

6
0

9
)

b
o

a
rd

(v
la

d
im

ir
,s

a
s

6
0

9
)

b
o

a
rd

(e
ri

k
,s

a
s

6
0

9
)

fl
y

(s
a

s
6

0
9

,r
u

n
6

0
9

,r
u

n
6

0
9

b
)

14

Appendix6
0

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
.

.
.

d
ru

n
k

(d
im

it
e

r)
:

V
a

lu
e

d
ru

n
k

(e
ri

k
):

V
a

lu
e

d
ru

n
k

(v
la

d
im

ir
):

V
a

lu
e

in
p

o
c

k
e

t(
d

im
it

e
r,

 c
o

m
b

1
):

V
a

lu
e

in
p

o
c

k
e

t(
d

im
it

e
r,

 c
o

m
b

2
):

V
a

lu
e

in
p

o
c

k
e

t(
d

im
it

e
r,

 c
o

m
b

3
):

V
a

lu
e

in
p

o
c

k
e

t(
d

im
it

e
r,

 g
u

n
):

V
a

lu
e

in
p

o
c

k
e

t(
e

ri
k

,
c

o
m

b
1

):
V

a
lu

e

in
p

o
c

k
e

t(
e

ri
k

,
c

o
m

b
2

):
V

a
lu

e

in
p

o
c

k
e

t(
e

ri
k

,
c

o
m

b
3

):
V

a
lu

e

in
p

o
c

k
e

t(
e

ri
k

,
g

u
n

):
V

a
lu

e

in
p

o
c

k
e

t(
v

la
d

im
ir

,
c

o
m

b
1

):
V

a
lu

e

in
p

o
c

k
e

t(
v

la
d

im
ir

,
c

o
m

b
2

):
V

a
lu

e

in
p

o
c

k
e

t(
v

la
d

im
ir

,
c

o
m

b
3

):
V

a
lu

e

in
p

o
c

k
e

t(
v

la
d

im
ir

,
g

u
n

):
V

a
lu

e

lo
c

(c
o

m
b

1
):

V
a

lu
e

ho
m

e1
ho

m
e1

ho
m

e1
ho

m
e1

ho
m

e1
o

ff
ic

e
o

ff
ic

e
o

ff
ic

e
o

ff
ic

e
o

ff
ic

e
a

ir
p

o
rt

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt

lo
c

(c
o

m
b

2
):

V
a

lu
e

ho
m

e2
ho

m
e2

ho
m

e2
ho

m
e2

ho
m

e2
ho

m
e2

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt
ru

n
6

0
9

ru
n

6
0

9
a

ir
a

ir
ru

n
6

0
9

b
ru

n
6

0
9

b

lo
c

(c
o

m
b

3
):

V
a

lu
e

ho
m

e3
ho

m
e3

ho
m

e3
ho

m
e3

*
2

*
*

2
*

*
2

*
*

2
*

*
2

*
*

2
*

*
3

*
*

3
*

*
3

*
*

3
*

*
3

*
*

3
*

*
3

*
*

3
*

lo
c

(d
im

it
e

r)
:

V
a

lu
e

ho
m

e3
ho

m
e3

ho
m

e3
ho

m
e3

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt
*

2
*

*
2

*
*

2
*

*
2

*
*

2
*

*
2

*
*

2
*

*
2

*

lo
c

(e
ri

k
):

V
a

lu
e

ho
m

e2
ho

m
e2

ho
m

e2
ho

m
e2

ho
m

e2
ho

m
e2

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt
ru

n
6

0
9

ru
n

6
0

9
a

ir
a

ir
ru

n
6

0
9

b
ru

n
6

0
9

b

lo
c

(g
u

n
):

V
a

lu
e

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt
a

ir
p

o
rt

lo
c

(s
a

s
6

0
9

):
V

a
lu

e
ru

n
6

0
9

ru
n

6
0

9
ru

n
6

0
9

ru
n

6
0

9
ru

n
6

0
9

ru
n

6
0

9
ru

n
6

0
9

ru
n

6
0

9
ru

n
6

0
9

ru
n

6
0

9
ru

n
6

0
9

ru
n

6
0

9
ru

n
6

0
9

ru
n

6
0

9
a

ir
a

ir
ru

n
6

0
9

b
ru

n
6

0
9

b

lo
c

(v
la

d
im

ir
):

V
a

lu
e

ho
m

e1
ho

m
e1

ho
m

e1
ho

m
e1

ho
m

e1
o

ff
ic

e
o

ff
ic

e
o

ff
ic

e
o

ff
ic

e
o

ff
ic

e
a

ir
p

o
rt

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt

o
n

p
la

n
e

(s
a

s
6

0
9

,
d

im
it

e
r)

:
V

a
lu

e

o
n

p
la

n
e

(s
a

s
6

0
9

,
e

ri
k

):
V

a
lu

e

o
n

p
la

n
e

(s
a

s
6

0
9

,
v

la
d

im
ir

):
V

a
lu

e

p
o

s
s

_
b

o
a

rd
(d

im
it

e
r,

 s
a

s
6

0
9

):
V

a
lu

e

p
o

s
s

_
b

o
a

rd
(e

ri
k

,
s

a
s

6
0

9
):

V
a

lu
e

p
o

s
s

_
b

o
a

rd
(v

la
d

im
ir

,
s

a
s

6
0

9
):

V
a

lu
e

p
u

t(
v

la
d

im
ir

,c
o

m
b

1
,p

o
c

k
e

t1
)

p
u

t(
e

ri
k

,c
o

m
b

2
,p

o
c

k
e

t2
)

tr
a

v
e

l(
d

im
it

e
r,

h
o

m
e

3
,o

ff
ic

e
)

tr
a

v
e

l(
v

la
d

im
ir

,h
o

m
e

1
,o

ff
ic

e
)

tr
a

v
e

l(
e

ri
k

,h
o

m
e

2
,o

ff
ic

e
)

p
u

t(
v

la
d

im
ir

,g
u

n
,p

o
c

k
e

t1
)

tr
a

v
e

l(
d

im
it

e
r,

o
ff

ic
e

,a
ir

p
o

rt
)

tr
a

v
e

l(
e

ri
k

,o
ff

ic
e

,a
ir

p
o

rt
)

tr
a

v
e

l(
v

la
d

im
ir

,o
ff

ic
e

,a
ir

p
o

rt
)

b
o

a
rd

(d
im

it
e

r,
s

a
s

6
0

9
)

b
o

a
rd

(v
la

d
im

ir
,s

a
s

6
0

9
)

b
o

a
rd

(e
ri

k
,s

a
s

6
0

9
)

fl
y

(s
a

s
6

0
9

,r
u

n
6

0
9

,r
u

n
6

0
9

b
)

