
Book Title
Book Editors
IOS Press, 2003

1

Dynamic Abstraction for Hierarchical
Problem Solving and Execution in
Stochastic Dynamic Environments

Per Nyblom
Department of Computer and Information Science, Linköping university, Sweden,

email: perny@ida.liu.se

1. Introduction

Most of today’s autonomous problem solving agents perform their task with the help of
problem domain specifications that keep their abstractions fixed. Those abstractions are
often selected by human users.

We think that the approach with fixed-abstraction domain specifications is very in-
flexible because it does not allow the agent to focus its limited computational resources
on what may be most relevant at the moment. We would like to build agents that dy-
namically find suitable abstractions depending on relevance for their current task and
situation. This idea of dynamic abstraction has recently been considered an important
research problem within the area of hierarchical reinforcement learning [1].

2. Algorithm

We have developed an algorithm that is designed to use techniques for dynamic abstrac-
tion targeted at adaptive problem generation. It operates in a hierachical manner and in-
terleaves problem solving and execution. The algorithm is a template and needs to be
augmented with domain-specific dynamic abstraction methods, solution techniques and
subproblem generation. The algorithm uses a dynamic hierarchy of solutions which is
called a Hierarchical Solution Node (HSN) structure where each node represents an ab-
straction level with a corresponding problem model. A HSN structure is somewhat sim-
ilar to the task graph used in the MAXQ value function decomposition [2]. Replanning
and modifications to the problem model abstraction are performed continuously depend-
ing on whether the current abstractions are considered invalid or not, which makes the
HSN structure change dynamically. State changes may trigger creation of new subtasks.
This results in a new problem model abstraction and replanning for that particular task.

3. Problem Domain and Implementation

We have implemented the algorithm for a domain inspired by our unmanned aerial vehi-
cle (UAV) research [3], where we show how dynamic abstraction can be done in practice.



2

The domain consists of a freely moving agent in a continuous 2D environment without
obstacles. The agent’s task is to maximize its total reward which is increased by clas-
sifying moving targets and to finish at so called finish areas. The reward is decreased
when the agent comes too close to any of the moving dangers in the environment. The
movement of the targets and dangers is stochastic and they can either be contrained to
move on a road network or operate freely.

A simple fixed abstraction scheme will eventually fail in this domain due to the curse
of dimensionality when the number of objects increases. We have therefore developed a
method to find suitable abstractions dynamically.

The problem model abstractions are in this case the possible discretizations of the
different features in the domain such as the position features of the dangers and targets.
The discretizations are limited by a maximum state space size. A utility measure for dis-
cretizations, based on the features’ expected relevances in the current situation, are used
to state the abstraction selection as an optimization problem. For example, the relevance
for a danger’s position feature depends on its distance from the agent and its ability to
inflict negative reward. Each feature’s utility increases with the number of discrete val-
ues it can take in the final discretization. The total utility, which is the measure that is
maximized, is the sum of all the features’ utility functions.

The optimization problem is solved by hillclimbing in our current implementation
and results in a specification of how many states that each feature should get in the final
discretization. The state space is then divided by k-means clustering together with the
agent’s internal simulation model of the environment.

The same simulation model is used to solve the problem that is defined by the dis-
cretization with the DynaQ [4] model-based reinforcement learning algorithm.

When a problem is solved on the selected abstraction level, subtasking is performed
by creating a new subproblem that corresponds to the first step in the solution.

Replanning is performed either when the abstraction is considered too old or when
the relevances of the features in the current state differs too much from the ones used in
the abstraction.

Experiments with our implementation indicate that the abstractions must be replaced
frequently for good results in this particular domain. It might therefore be more effi-
cient to use a forward search method instead of reinforcement learning for solving the
problems.

References

[1] A. G. Barto and S. Mahadevan, ‘Recent advances in hierarchical reinforcement learning.’,
Discrete Event Dynamic Systems, 13(4), 341–379, (2003).

[2] T. Dietterich, ‘Hierarchical reinforcement learning with the MAXQ value function decompo-
sition’, in Proceedings of the 15th International Conference on Machine Learning, (1998).

[3] P. Doherty, ‘Advanced research with autonomous unmanned aerial vehicles’, Proceedings on
the 9th International Conference on Principles of Knowledge Representation and Reasoning,
(2004).

[4] R. S. Sutton, ‘Integrated architectures for learning, planning, and reacting based on approx-
imating dynamic programming’, in Proceedings of the Seventh International Conference on
Machine Learning, pp. 216–224, (1990).


