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Abstract— The use of UAVs, in particular, micro VTOL
UAVs, is becoming prevalent in emergency rescue and security
applications, among others. In these applications, the platforms
are tightly coupled to the human users and these applications
require great flexibility in the interaction between the platforms
and such users. During operation, one continually switches
between manual, semi-autonomous and autonomous operation,
often re-parameterising, breaking in, pausing, and resuming
missions. One is in continual need of modifying existing elemen-
tary actions and behaviours such as FlyTo and TrackObject,
and seamlessly switching between such operations. This paper
proposes a flight command and setpoint abstraction layer that
serves as an interface between continuous control and higher
level elementary flight actions and behaviours. Introduction
of such a layer into an architecture offers a versatile and
flexible means of defining flight behaviours and dynamically
parameterising them in the field, in particular where human
users are involved. The system proposed is implemented in
prototype and the paper provides experimental validation of
the use and need for such abstractions in system architectures.

I. INTRODUCTION

Technological advances with Unmanned Aerial Vehicles
are now at a point where these systems are seeing increasing
use in many application areas, including that of emergency
rescue. With this increase in the use for complex applications
comes a need to be able to operate these systems in a flexible
and robust manner. Common modes of operation combine
manual control, using RC-control and joysticks, together
with semi-autonomous and autonomous modes. During a
particular mission all of these modes may in fact be used
in an interleaved manner, placing new constraints on how
control architectures should be embedded and interfaced
into larger system architectures to allow as much flexibility
and robustness as possible in the human operation of such
systems. Finding the optimal way to combine mission ab-
straction levels with elementary command and conventional
control levels is very much an open issue.

At a mission abstraction level, an operator might have
the high-level goal of scanning a region in search of salient
objects such as injured people. In order to scan a region, an
appropriate region and scan pattern in that region should be
delineated. Additionally, many other parameters associated
with the mission such as velocity or altitude must be de-
termined. Many of these constraints on missions in the field
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are highly context dependent. Rescuers need to adapt a basic
mission to contingencies at hand on-the-fly and in real-time.

Fig. 1: LinkQuad 4.2
quadrotor platform used
for experimental validation.

In current state-of-the-art,
one assumes a basic set of
well-defined elementary ac-
tions, or commands that can
be sequentialised either man-
ually, through operator inter-
faces, or less commonly as
the output of task and mo-
tion planners or their combi-
nation. For VTOLs (e.g. see
Figure 1), examples of such
elementary actions are Take-
Off, Hover, FlyTo, TrackTar-
get, Yaw, and Land. These elementary actions are often
hard-wired into the architecture and their parameterisation
occurs internally relative to the constraints associated with
the control system in a platform.

Such hard-wiring of elementary actions runs counter to
the operational needs of a rescuer in the field and makes it
difficult for high-level task planners to generate plans that
permit a wide variety of operational and safety constraints
to be specified for specific mission tasks. Ideally, one would
want to be able to contextualise not only mission tasks,
but the elementary actions themselves both for pre-flight
planning, but also during operation.

Some examples of what we have in mind would include
an operator being able to modify altitude relative to terrain,
either choosing a constant altitude or allow for flying relative
to terrain to maintain the same image resolution for a
sensor and maximise the chances of finding a salient object.
During the mission, an operator may want to suspend the
execution of a planned mission and take direct control of
the platform to fly interactively and investigate more closely
a salient point identified in a video feed before resuming the
scanning mission. After resuming, an operator may want to
modify heading behaviour to allow the platform to always
point towards a specific identified human on the ground. An
operator might want to continually intercede and change the
velocity of the platform relative to the complexity of the
search environment in addition to easily taking full velocity
control and command the platform using a joystick. Finally,
one would want to flexibly be able to apply safety constraints
at the mission and elementary action level. For instance, no
matter what elementary action is executed, the platform can
not fly outside a specified region, higher then a specified
altitude or closer to a human object than a specified safety
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Fig. 2: System overview with the main elements denoted by
the dashed lines: flight commands (a), setpoint generation
(b) and a control system scheme (c).

distance.
Operating UAVs requires low-level control systems which

provide all the required building blocks for controlling quan-
tities such as accelerations, rates, velocities, and positions.
Defining missions at that level is impractical. Instead, it is
natural to define them in terms of behaviours or elementary
actions. The above examples show, however, that the ability
to richly parametrise such behaviours and elementary actions
as well as the freedom to seamlessly switch between them is
needed. This of course has to be achieved without compro-
mising safety and therefore the ability to impose constraints
on these behaviours and elementary actions both statically
and dynamically is essential. Defining flight behaviours at
an appropriate level of abstraction is necessary not only to
take advantage of automated planning techniques but also
to provide an added degree of flexibility in the design and
specification of Human-Machine Interfaces. These require-
ments would facilitate more effective use and operation of
UAV platforms in emergency assistance scenarios.

The main idea of this paper is to add an additional level
of command abstraction between elementary actions and
conventional continuous control kernels. At this abstraction
level, elementary actions can be parametrised more richly
and defined in terms of sequences of flight commands which
in turn interface to the control kernel in a safe and robust
manner.

Our contribution in this regard is threefold. First, we pro-
pose the idea of configurable flight commands which govern
horizontal, vertical and heading control channels (Figure 2a).
A list of such parametrised commands, along with optional
external target value streams and house-keeping commands,
allows for specifying a wide range of flight behaviours, from
a simple takeoff or flyto to a complete mission from takeoff
to landing (see Section II). Second, we propose the use
of a setpoint generation step which, on the input side, is
configured using the flight commands and, on the output side,
allows for specifying constraints on accelerations, speeds and
positions being generated (Figure 2b). The purpose of this

module is to assure continuity and bounds of the setpoints for
the underlying control system. This is in contrast to the target
and externally provided parameters, which can change in an
arbitrary way. Additionally, it increases safety of operation
by, for example, making it impossible to command a UAV to
leave a designated operational area or to exceed a safe speed
in the context of a mission being executed. It also alleviates
the problems associated with traditional mode switching
as it assures continuity of setpoint signals for all possible
flight commands. Third, we present a lightweight control
system scheme based on cascaded PID controllers suitable
for executing flights from takeoff to landing (Figure 2c).
A description of the setpoint generation module and the
control system structure proposed in this work is presented
in Section III.

A. Related work

Flight capabilities and control schemes for UAVs have
been heavily researched allowing for flying a wide range
of manoeuvres – from waypoint following [1], through
takeoffs [2] and landings [3] to, for example, employing
machine learning to improve the flight performance over
time [4]. This has contributed to the success of UAVs in
emergency assistance scenarios such as wilderness search
and rescue [5] in addition to urban operations [6].

Software architectures for mobile robots have gravitated
toward the use of three-layered (3T) structures, where each
layer has specific temporal properties associated with laten-
cies in decision cycles. The first reactive layer, with the
shortest cycles (milliseconds), consist of a set of reactive
skills which map sensors directly onto actuators with mini-
mal internal state. The second sequencing layer, with a larger
decision cycle (seconds), is responsible for sequencing of
activities. The third layer, with the longest decision cycles
measured in seconds or even minutes, is the deliberative
layer, which is responsible for reasoning about mission goals
through the use of search-based techniques [7].

The traditional 3T structure has been extended in a number
of ways. For example, a four layer variant has been presented
in [8], and an architecture with a more hybrid flavour and
slightly different naming of the layers, deliberative, reactive
and control (HDRC3), has been proposed in [9]. A mission
management system based on a 3T architecture for a VTOL
UAV has been proposed in [10]. The paper presents the
overall structure of an architecture and proposes a super-
visory system that interacts with a sequence control system.
It, in turn, contains movement primitives. The model of the
transition between these primitives includes a slow down
state which brings the system into a stand by mode. Similar
facilities exist in the HDRC3 architecture, where a braking
mode brings a system into a hover state. This results in fly-
brake-hover-fly behaviour when switching between different
flight behaviours.

The work proposed in this paper, is situated as part of
the control and reactive layers of an architecture and has
a clear interface with the deliberative layer. The proposed
structure is fully compatible with existing high-level mission



planning systems such as the one presented in [11], but
also with most conventional control kernels. Not only can
the flight command abstraction be easily employed to define
elementary actions such as hover-at and fly-to, in addition
to more complex flight behaviours such as scan-region, but
it also provides an additional level of flexibility by making
it straightforward to mix fully autonomous operation with
semi-autonomous operation where operator interaction is
heavily involved.

Control of multi-rotor UAVs is challenging because of sys-
tem nonlinearities, fast dynamics, and cross couplings due to
the gyroscopic moments and underactuation. There has been
a substantial amount of research dealing with these control
issues but often in separation from the overall integration
into a full architecture such as the 3T architectures described
above, where this body of work would basically implement
the movement primitives.

A comprehensive survey of methods used for rotorcraft
control can be found in [12]. In summary, theses approaches
can be categorised into three major groups: learning-based
(e.g. reinforcement learning in [13]), model-based nonlinear
(e.g. Model Predictive Control (MPC) [14]) and linear.
There also exist approaches where different controllers are
used and mode switching between them is employed. For
example, these techniques have been applied to trajectory
generation and control in the context of precise aggressive
manoeuvres [15].

Despite that fact that linear controllers suffer from per-
formance degradation when operated outside their nominal
conditions, they are the most prevalent for deployed flight
controllers. In this category, PID controllers are used most
often. They are also arguably the least computationally
expensive making them suitable for microcontroller imple-
mentations. Additionally, from the perspective of the type
of mission scenarios we are interested in here, they are
adequate, as no aggressive manoeuvring is required.

II. FLIGHT COMMAND STRUCTURE

Flight commands are a central component of the proposed
method for interfacing with an underlying control system.
A flight command consists of three main components man-
aging the control channels, namely horizontal, vertical, and
heading, as well as a miscellaneous component dealing with
aspects such as an end condition of a command.

The choice of modes, parameters and modifiers has been
designed to achieve the required level of flexibility with
minimal complexity in implementation. The goal is to be able
to cover most of the typical VTOL UAV mission types and
behaviours used in emergency rescue. This takes into account
not only typical flight manoeuvres (e.g. fly-to, takeoff, land),
but also requirements and opportunities provided by use of
specific types of sensors (e.g. speed modification based on
altitude), and additionally, aspects of missions with several
cooperating UAVs (e.g. execution synchronisation).

A. Horizontal channel
The horizontal channel governs movement of a UAV on a

plane. Even though it could be further subdivided into lateral

and longitudinal channels, this would not add much to the
expressivity or range of manoeuvres which can be performed.
Additionally, such subdivision would make it more difficult
to assure that the channels are parametrised correctly (e.g.
handling coordinates in a world or body coordinate systems).

The following modes with parameters and modifiers (see
Figure 3a) are available for the horizontal control channel:

• Position (HPos): Fly to an absolute, relative or body relative 2D
position with the specified speed and have the specified end speed
upon arrival. Speed can be modified when used with appropriate
vertical or heading commands (see below).

• External position (HExtPos): Similar to Hpos but the parameters are
provided externally as a stream of values. Offset parameters allow to
specify a constant offset from a target position (e.g. 2m to the north
of the target).

• Keep distance: Fly at a distance away from an externally provided
target position.

• External velocity (HExtVel): Fly with the velocities provided from an
external source (e.g. a joystick).

• RC velocity (HRCVel): Fly with the velocities provided by the RC
transmitter of the backup pilot calculated on-board the platform.

• Do not use (HDNU): Do not use the horizontal flight channel i.e. the
setpoints governing this channel will remain constant.

Upon arriving at the desired position, the end flag (Hend)
is set and can be used to indicate the end of the current
command (see Subsection II-D.1). The end condition is
evaluated based on the position setpoints rather than the
actual values (e.g. GPS position). This results in the setpoints
arriving exactly at the the desired values (e.g. a waypoint).

The speed modifier flags (i.e. vertical and heading) allow
for influencing (or modulating) the speed of flight in relation
to other control channels. For example, using the heading
flag, it can be specified using one command that while
the heading is changing towards a target, the UAV should
not start flying to a specified waypoint (i.e. ”yaw before
flight” behaviour). Similarly, the vertical flag can be used
when, for example, flying with a constant distance to the
ground (measured with an appropriate AGL sensor). In case
of an abrupt measured altitude change, the flight in the plane
direction would be stopped until the new desired altitude
is achieved. Examples of using these flags in flights are
provided in Section IV.

B. Vertical channel

The following modes with parameters and modifiers (see
Figure 3b) are available for the vertical control channel:

• Position (VPos): Equivalent of HPos for the vertical channel i.e. fly to
a specified absolute or relative altitude with specified speed and have
end speed upon arrival.

• With horizontal (VWithHor): Extends the HPos to a 3D case, and results
in flying a straight line path to a waypoint specified including the
altitude.

• External position (VExtPos): Equivalent of HExtPos for altitude. Offset
allows to specify a constant vertical offset from a target (e.g. 2 m
above the target).

• External velocity (VExtVel): Fly with the vertical velocity provided
from an external source (e.g. a joystick).

• RC velocity (VRCVel): Fly with the vertical velocity provided by the
RC transmitter of the backup pilot calculated on-board the platform.

• Do not use (VDNU): Do not use this flight channel.

The channel has two additional flags: takeoff and allow
landing. These are used to indicate that the commands are
in fact takeoff or landing manoeuvres, respectively. The two
are described in more detail in sections III-C.1 and III-C.2.



Mode name Parameters Modifiers Output

Position (HPos)

north
east

absolute
relative
body relative end flag (Hend)Position (HPos)

speed vertical, heading
end flag (Hend)Position (HPos)

end speed -

end flag (Hend)

External position (HExtPos)
offset north 
offset east -

end flag (Hend)External position (HExtPos)
speed vertical, heading

end flag (Hend)

Keep distance (HKeepDist)
distance -

end flag (Hend)Keep distance (HKeepDist)
speed vertical, heading

end flag (Hend)

External velocity (HExtVel) - - end flag (Hend)
RC velocity (HRCVel) - - -
Do not use (HDNU) - - -

(a) Horizontal

Mode name Parameters Modifiers Output

Position (VPos)
altitude absolute

relative end flag (Vend)
speed modifier (Vsm)Position (VPos) speed heading
end flag (Vend)
speed modifier (Vsm)Position (VPos)

end speed -

end flag (Vend)
speed modifier (Vsm)

With horizontal 
(VWithHor) altitude - end flag (Vend)

External position 
(VExtPos)

offset altitude - end flag (Vend)
speed modifier (Vsm)

External position 
(VExtPos) speed heading

end flag (Vend)
speed modifier (Vsm)

External velocity 
(VExtVel) - - end flag (Vend)

RC velocity (VRCVel) - - -
Do not use (VDNU) - - -

(b) Vertical

Mode name Parameters Modifiers Output

Position (HdPos)
heading

absolute
relative
stop at heading

end flag (Hdend)
speed modifier (Hdsm)Position (HdPos)

rate heading

end flag (Hdend)
speed modifier (Hdsm)

In flight direction 
(HdFlightDir)

offset -
speed modifier (Hdsm)In flight direction 

(HdFlightDir) rate -
speed modifier (Hdsm)

External position 
(HdExtPos)

offset - end flag (Hdend)
speed modifier (Hdsm)

External position 
(HdExtPos) speed heading

end flag (Hdend)
speed modifier (Hdsm)

External velocity (HdExtVel) - - end flag (Hdend)
RC velocity (HdRCVel) - - -

Point (HdPoint)
north
east
offset
rate

- end flag (Hdend)

External point (HdExtPoint) offset - end flag (Hdend)
Do not use (HdDNU) - - -

(c) Heading
Fig. 3: Control channel modes with parameters and modifiers.

C. Heading channel

The following modes with parameters and modifiers (see
Figure 3c) are available for the heading control channel:

• Position (HdPos): Set the heading to a specified absolute or relative
value with the specified rate. If stop at heading is false, the yawing
will be carried out continually with the specified rate. The use sign
flag allows to force the rotation direction. If set to false, the rate sign
will be ignored and the closer rotation direction will be used.

• In flight direction (HdFlightDir): Set the heading to the offset value
relative to the flight direction (e.g. heading along the path when offset
is 0, or fly ”backwards” for offset of 180 degrees).

• External position (HdExtPos): Set the heading to a value provided
from an external source.

• External rate (HdExtVel): Yaw with the rate provided from an external
source (e.g. a joystick).

• RC rate (HdRCVel): Yaw with the rate provided by the RC transmitter
of the backup pilot calculated on board.

• Point (HdPoint): Set the heading to point towards a specified location
plus an offset.

• External Point (HdExtPoint): Similar to HdPoint but target location
point is provided externally.

• Do not use (HdDNU): Do not use this flight channel.

D. Miscellaneous

Beside the above described channel components of a flight
command, it also consists of the elements described below.

1) Command end condition: This allows for specifying
when the current command should be considered finished.
The end condition consists of a number of elements with
parameters summarised in the table in Figure 4. The three
elements are evaluated as a conjunction if more than one
type is used at a time.

Name ParametersParameters

Channel
horizontal (EH)

any (EAny)Channel vertical (EV) any (EAny)Channel
heading (EHd)

any (EAny)

User confirmation - (EUser)- (EUser)
Wait time (EWait)time (EWait)

Fig. 4: Flight command end
condition structure with pa-
rameters.

The first type of end
condition is related to the
three command channels.
Depending on their config-
uration, Hend, Vend, Hdend
flags are set to true when
appropriate. This happens,
for example, when a way-
point position is reached,
or the desired altitude or
heading are achieved. Then, these flags are evaluated if EH,
EV, EHd flags (respectively) of the end condition are specified
(or if any of the channel flags are true for EAny).

The second type of the end condition can be specified
to allow finishing a command only if an explicit user
confirmation is provided through an external signal (EUser).
The confirmation can be performed at any point of execution

of the current command. This user confirmation functionality
allows to specify a command (when HDNU, VDNU, HdDNU
modes are used) with an infinite wait requiring an input.
This facility can be used before a landing command of a
mission, so that an operator can explicitly confirm that the
landing location is safe and the manoeuvre can commence.
Similarly, it can be used to synchronise mission execution if
several UAV platforms take part in a mission.

The third type allows for specifying a timeout which
triggers ending of a command (EWait). If a flight command
consists only of a wait end condition it effectively becomes
a pause.

2) External data: A number of flight command modes
allow the system to be configured to accept external streams
of data influencing the flight behaviour. The purpose of
these modes is to allow more flexibility when it comes to
changing flight behaviour in a timely manner, for example,
in a closed loop control fashion. A typical use case is a
joystick commanding velocities to the platform. Only one
flight command is used in such a case along with a stream of
the desired velocities provided continuously and controlling
one or more channels (see examples in Section IV).

Beside the parameters required for the particular modes,
which are the same as for their non-external counterparts (c.f.
tables in Figure 3), other kinds of data are also sent with the
external data streams. For velocity commands, a validity time
of the data is included. After this time, if no new values
are received, the system sets the desired values to 0. This
prevents a platform from continuing to fly if communication
is lost with the entity providing the data.

3) Composing flight commands: The previous sections
introduced the concept of flight commands which can be
used to specify a particular flight behaviour. The commands
are put on a list or a queue. The list manipulation opera-
tors include uploading command configuration at a specific
index, starting and stopping execution. It is up to a user to
manipulate the command execution list as desired to achieve
the behaviours with the required level of sophistication.

From the perspective of a higher level interface, a be-
haviour can be composed of one or more flight commands.
For example, a takeoff, a landing or flying to a waypoint
can be implemented using a single flight command, while
a behaviour ”go home and land” can be composed of a
number of sequential commands. Furthermore, a sequence of



commands can implement a complete mission from takeoff
to landing including complex behaviours in-between.

More advanced flight command list manipulation pos-
sibilities will be further explored in future work, but the
current set of operators permits specifying and executing of
adequately complex autonomous missions.

III. SETPOINT GENERATION AND CONTROL

The interplay of the setpoint generation step with the
underlying control system plays a major role in the proposed
system. First, it allows for arbitrary and seamless change
or adjustment of commands being executed. For example,
during flying to a waypoint: it can be switched to another
waypoint; the speed of flight can be adjusted; an operator
can take full or partial control (e.g. adjust altitude, heading),
or it can directly transition into a landing etc. Second, it
assures that the generated setpoints are compatible with the
underling low-level control system and platform’s properties
as well as the requirements of a mission being executed.
Additionally, limits on the generated values are enforced at
all times contributing to the safety of execution.

In this section we describe how the flight commands
introduced in the previous section are used in the process of
calculating the control signals. Figure 5 presents an overview
of that process.

Desired 
parametersSetpoint 

generation
Control
 loops

ActuatorsFlight
command(s)

Target
parameters

applies to, for example, a stream of velocities provided through
a stream of external data (similarly for external position).
For these, the ending condition is provided along with the
external data streams. More information about these streams
is provided in Section III-D2.

The second type of the end condition can be specified to
allow finishing a command only if an explicit user confir-
mation is provided through an external signal (EUser). The
confirmation can be performed at any point of execution of the
current command. This user confirmation functionality allows
to specify a command (when HDNU, VDNU, HdDNU modes are
used) with an infinite wait requiring an input. This facility can
be used before a landing command of a mission, so that an
operator can explicitly confirm that the landing location is safe
and the manoeuvre can commence. Similarly, it can be used to
synchronise mission execution if several UAV platforms take
part in a mission.

The third type allows for specifying a timeout which triggers
ending of a command (EWait). Note that a flight command can
consist only of a wait end condition, effectively becoming a
pause.

The three elements of the end condition are evaluated as a
conjunction if more than one type is used at a time.

2) External data: Some of the flight commands allow the
system to be configured to accept external streams of data
influencing the flight behaviour. These are the external position
(ExtPos) and external velocity (ExtVel) applicable to all three
control channels, HKeepDist, and HdExtPoint. The purpose of
these modes is to allow more flexibility when it comes to
changing flight behaviour in a timely manner, for example,
in a closed loop control fashion. A typical use case is a
joystick commanding velocities to the platform. Only one
flight command is used in such a case along with a stream
of the wanted velocities provided continuously and controlling
one or more channels (see examples in Section V).

Beside the parameters required for the particular modes,
which are the same as for their non-external counterparts
(c.f. tables in Figures 3 to 5), other kinds of data are also
sent with the external data streams. For velocity commands, a
validity time of the data is provided. After this time, if no new
values are received, the system sets the wanted values to 0.
This prevents a platform from continuing to fly, potentially
indefinitely (within battery lifetime), if communication is lost
with the entity providing the data. In other words, the validity
time dictates the expected update rate of the external data.

As already mentioned, for the external data modes, the
ending condition flags are also part of the data streams. For
such flight commands, it is the provider of the data who is
responsible for the behaviour’s termination.

3) Composing flight commands: The previous sections in-
troduced the concept of flight commands which can be used
to specify a particular flight behaviour. The commands are put
on a list or a queue. The list manipulation operators include
uploading command configuration at a specific index, starting
and stopping execution. It is up to a user to manipulate the

command execution list as desired to achieve the behaviours
with the required level of sophistication.

From the perspective of a higher level interface, a behaviour
can be composed of one or more commands. For example, a
takeoff, a landing or flying to a waypoint can be implemented
using a single flight command, while a behaviour ”go home
and land” can be composed of a number of sequential com-
mands. Furthermore, a sequence of commands can implement
a complete mission from takeoff to landing including complex
behaviours in-between.

A more advanced flight command list manipulation possi-
bilities will be further explored in future work but the current
set of operators allows for specifying and executing complex
autonomous missions.

IV. SETPOINT GENERATION AND CONTROL

The interplay of the setpoint generation step with the
underlying control system plays a major role in the presented
system. First, it allows for arbitrary and seamless change or
adjustment of commands being executed. For example, during
flying to a waypoint: it can be switched to another waypoint;
the speed of flight can be adjusted; an operator can take
full or partial control (e.g. adjust altitude, heading), it can
directly transition into a landing etc. Second, it assures that
the generated setpoints are compatible with the underling low-
level control system and platform’s properties as well as the
requirements of a mission being executed. Additionally, limits
on the generated values are enforced at all times contributing
to the safety of execution.

In this section we describe how the flight commands in-
troduced in the previous section are used in the process of
calculating the control signals. Figure 7 presents an overview
of that process.

Desired 
parameters

Pd
Setpoint 

generation
Control
 loops

ActuatorsFlight
command(s)

Target
parameters

Pt

Fig. 7. An overview of the process of calculating control signals based on
flight commands.

The configuration of a flight command being executed
produces a set of target parameters in a general form of
Pt = [~pt  t speedt ratet]. Depending on a command con-
figuration the set of target parameters will be different. For
example, it could be a subset if any of the channels uses
DNU mode. Similarly, the speed can be given for 2D and
altitude case separately (HPos, VPos), or for 3D case at once
(HPos, VWithHor). For that reason, the following derivations will
present the 3D case as the other ones follow similar principle.
[MAKE CLEARER]

The role of the setpoint generation module is to produce
a trajectory of desired parameters for positions, velocities,
and accelerations: Pd = [~pd ~vd ~ad]. This is achieved using
the constant acceleration model and taking into account the
constraints in form of allowed maximum positions, velocities,
and accelerations Penv = [~penv ~venv ~aenv].

applies to, for example, a stream of velocities provided through
a stream of external data (similarly for external position).
For these, the ending condition is provided along with the
external data streams. More information about these streams
is provided in Section III-D2.

The second type of the end condition can be specified to
allow finishing a command only if an explicit user confir-
mation is provided through an external signal (EUser). The
confirmation can be performed at any point of execution of the
current command. This user confirmation functionality allows
to specify a command (when HDNU, VDNU, HdDNU modes are
used) with an infinite wait requiring an input. This facility can
be used before a landing command of a mission, so that an
operator can explicitly confirm that the landing location is safe
and the manoeuvre can commence. Similarly, it can be used to
synchronise mission execution if several UAV platforms take
part in a mission.

The third type allows for specifying a timeout which triggers
ending of a command (EWait). Note that a flight command can
consist only of a wait end condition, effectively becoming a
pause.

The three elements of the end condition are evaluated as a
conjunction if more than one type is used at a time.

2) External data: Some of the flight commands allow the
system to be configured to accept external streams of data
influencing the flight behaviour. These are the external position
(ExtPos) and external velocity (ExtVel) applicable to all three
control channels, HKeepDist, and HdExtPoint. The purpose of
these modes is to allow more flexibility when it comes to
changing flight behaviour in a timely manner, for example,
in a closed loop control fashion. A typical use case is a
joystick commanding velocities to the platform. Only one
flight command is used in such a case along with a stream
of the wanted velocities provided continuously and controlling
one or more channels (see examples in Section V).

Beside the parameters required for the particular modes,
which are the same as for their non-external counterparts
(c.f. tables in Figures 3 to 5), other kinds of data are also
sent with the external data streams. For velocity commands, a
validity time of the data is provided. After this time, if no new
values are received, the system sets the wanted values to 0.
This prevents a platform from continuing to fly, potentially
indefinitely (within battery lifetime), if communication is lost
with the entity providing the data. In other words, the validity
time dictates the expected update rate of the external data.

As already mentioned, for the external data modes, the
ending condition flags are also part of the data streams. For
such flight commands, it is the provider of the data who is
responsible for the behaviour’s termination.

3) Composing flight commands: The previous sections in-
troduced the concept of flight commands which can be used
to specify a particular flight behaviour. The commands are put
on a list or a queue. The list manipulation operators include
uploading command configuration at a specific index, starting
and stopping execution. It is up to a user to manipulate the

command execution list as desired to achieve the behaviours
with the required level of sophistication.

From the perspective of a higher level interface, a behaviour
can be composed of one or more commands. For example, a
takeoff, a landing or flying to a waypoint can be implemented
using a single flight command, while a behaviour ”go home
and land” can be composed of a number of sequential com-
mands. Furthermore, a sequence of commands can implement
a complete mission from takeoff to landing including complex
behaviours in-between.

A more advanced flight command list manipulation possi-
bilities will be further explored in future work but the current
set of operators allows for specifying and executing complex
autonomous missions.

IV. SETPOINT GENERATION AND CONTROL

The interplay of the setpoint generation step with the
underlying control system plays a major role in the presented
system. First, it allows for arbitrary and seamless change or
adjustment of commands being executed. For example, during
flying to a waypoint: it can be switched to another waypoint;
the speed of flight can be adjusted; an operator can take
full or partial control (e.g. adjust altitude, heading), it can
directly transition into a landing etc. Second, it assures that
the generated setpoints are compatible with the underling low-
level control system and platform’s properties as well as the
requirements of a mission being executed. Additionally, limits
on the generated values are enforced at all times contributing
to the safety of execution.

In this section we describe how the flight commands in-
troduced in the previous section are used in the process of
calculating the control signals. Figure 7 presents an overview
of that process.

Desired 
parameters

Pd
Setpoint 

generation
Control
 loops

ActuatorsFlight
command(s)

Target
parameters

Pt

Fig. 7. An overview of the process of calculating control signals based on
flight commands.

The configuration of a flight command being executed
produces a set of target parameters in a general form of
Pt = [~pt  t speedt ratet]. Depending on a command con-
figuration the set of target parameters will be different. For
example, it could be a subset if any of the channels uses
DNU mode. Similarly, the speed can be given for 2D and
altitude case separately (HPos, VPos), or for 3D case at once
(HPos, VWithHor). For that reason, the following derivations will
present the 3D case as the other ones follow similar principle.
[MAKE CLEARER]

The role of the setpoint generation module is to produce
a trajectory of desired parameters for positions, velocities,
and accelerations: Pd = [~pd ~vd ~ad]. This is achieved using
the constant acceleration model and taking into account the
constraints in form of allowed maximum positions, velocities,
and accelerations Penv = [~penv ~venv ~aenv].Fig. 5: An overview of the process of calculating control

signals based on flight commands.

The configuration of a flight command being ex-
ecuted produces a set of target parameters Pt =
[~pt, ψt, speed, speedend]. Depending on the used modes of
the three channels, the set of target parameters varies. Sim-
ilarly, the speed can be given for 2D and altitude channels
separately (HPos, VPos), or as one parameter for 3D case
(HPos, VWithHor). Just as the specific set of parameters, their
values can have arbitrary, non-continuos, values. The role
of the setpoint generation module is to produce trajectories
of desired parameters for positions, velocities, and accelera-
tions: Pd = [~pd, ~vd,~ad] based on Pt. This is achieved using
the constant acceleration model and taking into account the
constraints in form of allowed maximum values Penv =
[~penv, ~venv,~aenv].

A. Setpoint generation

Given the current desired position setpoints as well as the
a new target, the direction vector is calculated ~dir = ~pt−~pd.
Next, the desired velocity vector is calculated based on the
wanted speed:

~vd = d̂ir · speed =
~dir

‖ ~dir ‖
· speed (1)

If needed, it is then scaled to not exceed maximum allowed
speeds given by ~venv .

At this point ~vd contains velocities for the three axes
compatible with the velocity envelope. The values might have
to be further modified to take into account the distance to
the desired position (distd) as well the limit imposed by the
position envelope (distenv):

distd =‖ pd − pt ‖ (2)
distenv =‖ penv − pt ‖ (3)

Given distances to limits, desired velocity vd and the end
velocity vend (calculated using Equation 1 for speedend) the
following equations (constant acceleration model) are used
to limit the velocity to guarantee pd to stay within bounds:

vmax =
√
v2end + 2 · distt · a (4)

venv =
√

2 · distenv · a (5)
vd = min(vd, vmax, venv) (6)

and the final value of the position is updated according to:

pd = pd + vd · t (7)

The limits in position i.e. the allowed flight volume, is
handled in a way such that going from inside to outside
the volume is forbidden, but the opposite is allowed. Only
flight within the volume or towards it is allowed.

B. Low level control

• Use: Set the yaw to a specified absolute or relative value
with the specified rate (stop at heading flag true). If
stop at heading flag is set to false, the yawing should
continue with the specified rate. use sign flag allows to
force the rotation direction. If set to false, the closed
rotation direction will be used.

• In flight direction: Set the yaw to the offset value
relative to the flight direction (e.g. along the path when
offset is 0).

• External position: Set the yaw to a value provided from
an external source.

• External rate: Yaw with the rate provided from an
external source, for example, a joystick of an operator.

• RC rate: Yaw with the rate provided by the RC trans-
mitter of the backup pilot.

• Point: Set the yaw to the offset value relative to the
specified world position.

• External Point: Similar to Point but target provided
externally.

• Do not use: Do not use the heading flight channel.

D. Miscellaneous

1) Command end condition: Flight command end con-
dition consists of a number of elements with parameters
summarised in the table in Figure 5.

Name ParametersParameters

Channel

horizontal (EH)

any (EAny)Channel vertical (EV) any (EAny)Channel

heading (EHd)

any (EAny)

User confirmation - (EUser)- (EUser)

Wait time (EWait)time (EWait)

Fig. 5. Flight command end condition structure with parameters.

The end conditions description. Handling end conditions
for externally provided end conditions. Maybe a short algo-
rithm snipped on how the end conditions are evaluated. Not
on wait itself. User confirmation - used, for example, before
landing to give an operator time to check safety.

2) List/queue manipulation: Upload, sequencing, abort-
ing, pausing, repeating facilities. Single commands vs be-
haviours (several commands for e.g. go home behaviour).

III. SETPOINT GENERATION AND CONTROL

The basic idea is that there exists a pose (x,y,z,head and
first derivatives) which is manipulated according to the the
command configuration (virtual hover point). The pose is
manipulated according to the constant acceleration model as
presented in figure 6. It generates the setpoints within an
envelope compatible with the control system and platform
properties. The envelope is defined by max accel/deccel and
max velocities. Additionally, max position can be defined -
volume within which the flight is allowed - safety.
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t

v2 = v2
0 + 2a(r � r0)

r = r0 + vt � at2
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Where: r0 is the initial position, r is the final position, v0 is
the initial velocity, v is the final velocity, a is the acceleration
and t is the time interval.

Similarly for rotations:

✓ = ✓0 + !t � ↵t2

2

where ↵ is the constant angular acceleration, ! is the
angular velocity, !0 is the initial angular velocity, ✓0 is the
angle turned through (angular displacement), ✓0 is the initial
angle, and t is the time taken to rotate from the initial state
to the final state.

Given the desired position posd, desired velocity vd

and end velocity vend as well as the envelope limits, the
following set of equation is used to limit the velocity staying
within bounds:

postarget = postarget + vd · t (1)
distend = posd � postarget (2)
distenv = posmaxenv � postarget (3)

vmax =
q

v2
end + 2 · distend · Acc (4)

venv =
p

2 · distenv · Acc (5)
(6)

Finally, the target velocity is taken as:

vtarget = min(vd, vmax, venv) (7)

The volume is handled in a way such that going from in-
side to outside is forbidden but the opposite is allowed. Only
flight within the volume or towards is allowed. Description
of the models with equations/limits.

The pose with derivatives constitute setpoints for the
underlying position/velocity control functions. Here we use
PID controllers with the configuration presented in figure 7.

Figure description: The roll and pitch are controlled us-
ing cascades. Extra d-terms for improved velocity tracking.
Altitude and heading are simpler as the dynamics of this
channels are slower.
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zdżdz̈d
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xyzẋẏżẍÿz̈
xẋyẏżẍÿz̈
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xyzẋẏżẍÿz̈
xẋyẏżẍÿz̈
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1

Brief Article

The Author

November 26, 2015

State vector:
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Fig. 6: PID controllers’ structure: lateral and longitudinal (a),
altitude (b) and heading (c).

This section describes the proposed control system struc-
ture. It is based on classical proportional-integral-derivative
(PID) controllers organised in cascades. The desired pose,
obtained using the process described in the previous sec-
tions, consists in the position with its derivatives [~pd, ~vd,~ad].
These constitute setpoints for the PID controllers with the
configuration presented in Figure 6. The position controller
uses PI loops for x, y as well as PID loops for velocities ẋ, ẏ.
The attitude pitch and roll angles (θ, φ) are then controlled
using PI loops on angles followed by PI loops on rates (θ̇, φ̇).
The altitude control is achieved using PI loops on position
and PD on vertical velocity. Heading uses PI configuration
on the value of ψ and P on the rate ψ̇.

Signals U1...4 control longitudinal, lateral, vertical and
heading control channels, respectively. They are mixed to
produce the platform’s motor speed controller inputs.
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Command/
segment #
(endpoints)

Horizontal
north, east, speed

Vertical
altitude, speed

Heading
heading, rate

End 
condition Flags

0
(p0-p1)

DNU Pos
2m, 0.5m/s

DNU EV Takeoff

1
(p1-p2)

Pos
1.5m, 1.5m, 0.5m/s

Pos
1.7m, 0.5m/s

Pos
0deg, 20deg/s

EH, EV, EHd -

2
(p2-p3)

ExtPos
1.5m, -1.5m, 0.5m/s

Pos
2.5m, 0.5m/s 

Pos
45deg, 20deg/s

EH, EV, EHd HVSM

3
(p3-p4)

Pos
-1.5m, -1.5m, 0.5m/s

WithHor
1.7

ToPoint
1.5m, 1.5m

EH, EV HHdSM

4
(p4-p5)

Pos
-1.5m, 1.5m, 0.3m/s

Pos
2.5m, 0.3m/s

ExtVel EH, EV -

5
(p5-p6)

Pos
1.5m, 1.5m, 0.5m/s

ExtVel FlightDir
0deg

EH -

6
(p6-p7)

ExtVel ExtVel ExtVel EV
Allow 
landing

(c) Configuration of flight commands.

Fig. 7: Experiment 1: flight through points p0 to p7.

It is important to note that the underlying control system
can have a different configuration or use a completely
different control approach. For example, a more complex
structure could be required depending on a specific platform
configuration. But as long as the control system is capable
of producing the control signals, based on the desired pose
derived as described in the previous section, it can be used
with the proposed flight command concept.

C. Takeoff and landing

1) Takeoff: The takeoff manoeuvre is configured using a
flight command but has a number of additional properties.
If a vertical command has the takeoff flag set, first a check
is performed whether the system is ready for a takeoff. It
includes a check whether the platform is in the air.1If that is
the case, the throttle is increased with a constant rate up to
a point when the UAV almost lifts off of the ground. At that
point a flight to a specified altitude with the specified speed
is performed.

2) Landing: The landing manoeuvre flight command is
configured using the allow landing vertical channel flag. This
flag overrides the lower altitude limit of the flight volume,
and enables the landing detection check which is used to
finish the flight command. Typically the manoeuvre includes
a vertical flight command to a negative altitude, but it can
also be performed using ExtVel, RcVel, ExtPos commands.
Touch-down is detected when the throttle command achieves
a very low predefined level (e.g. 15% of the throttle stick)
for a specified period of time (typically for 2 seconds).

IV. EXAMPLES AND EXPERIMENTAL VALIDATION

The VTOL platform used in the experiments presented
in this section is a LinkQuad 4.2 (Figure 1) system devel-
oped in-house. Due to its compact design (80 cm tip-to-
tip), the platform is suitable for both indoor and outdoor
use. The LinkQuad is equipped with an in-house designed
flight control board configured to use two ARM-Cortex
microcontrollers running at 72MHz that implement the core

1If the commanded throttle value is above an experimentally determined
threshold value. It is obtained once and repeated if a considerable change
takeoff weight occurs.

flight functionalities. The inner and outer control loops
are calculated at 500Hz and 50Hz, respectively. The other
functionalities described in this paper are scheduled at a
10Hz rate.

The experimental flights presented in this paper have been
performed in a motion capture equipped arena using ten T10
and six T40-S cameras from Vicon. The flight volume is
approximately 10 × 10 × 5 meters. The state provided by
this system (position, velocities and heading angle) has been
used instead of a state estimator based on the onboard GPS,
IMU, compass and a pressure altimeter used for outdoor
experimentation. The state is sent to the onboard system
using a wireless RS-232 serial connection at 10-25 Hz to
closely replicate outdoor operation. Other than replacing the
state-estimation, the rest of the system operates in the same
manner for both indoor and outdoor environments.

The remainder of this section provides examples of defin-
ing flight commands as well as results of experimental flights
showing the use of the proposed system. First, an example
mission from takeoff to landing, configured using 7 flight
commands executed in sequence, is presented. This show-
cases the flexibility in achieving different flight behaviours
using the proposed method. Second, results of example
flights, where an active command is seamlessly switched
to another one, are presented. This example showcases the
freedom to switch flight commands at any time to achieve
mission break-ins. The experiments are structured to show-
case some of the flight manoeuvres outlined in the emergency
rescue mission scenario described in Section I.

The following parameters of the setpoint generation mod-
ule were used: ±3.5m position (minimum -1.5m position in
the east direction in Experiment 2), ±1m velocity, ±0.5m/s2

acceleration for the horizontal channel; 1.0–3.5m altitude,
-0.5m/s descent and 1.0m/s ascent speeds, ±0.5m/s2 ac-
celeration for the vertical channel; ±45deg/s yaw speed,
±45deg/s2 rate change for the heading channel.

1) Experiment 1: Command sequence: Figures 7a and 7b
present position and heading setpoints, as well as actual
position and heading, during a flight through 8 points. Details
of the command configuration for all segments of the flight
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Fig. 8: Experiment 1: heading control during segments 3 and 4 (left and middle), altitude control during segment 5 (right).

are presented in Figure 7c.
The mission starts at an arbitrary position p0 with a takeoff

manoeuvre configured using Command 0. Only the vertical
channel is used with a flight to 2m altitude at 0.5m/s vertical
velocity. The takeoff flag is set to true as described in
Section III-C.1. The command ends when the vertical finish
channel flag Vend becomes true.

Command 1 uses the horizontal channel to move the
platform to position p2 (1.5m, 1.5m) at 0.5m/s speed. The
vertical channel independently brings the UAV to an altitude
of 1.7m at 0.5m/s vertical speed. The heading is set to a
constant 0 degrees. The command finishes when all three
control channel flags, Hend, Vend, Hdend, become true.

Command 2 uses an externally provided position mode
HExtPos (1.5m, -1.5m) and absolute altitude of 2.5m. Here,
the vertical speed modifier Vsm is used so that the horizontal
movement starts only when the desired altitude is close to be
achieved. The heading is set to a constant 45deg throughout
this segment of flight.

Command 3 is configured to achieve a straight line flight
to position p4 (-1.5m, -1.5m, 1.7m) at 0.5m velocity. This is
achieved through combining HPos with VWithHor modes. The
heading is set throughout the flight to be pointing towards
position p2. Figure 8a shows a detailed plot of the heading
during this segment of the flight. The ideal heading to the
point is computed based on the current and the target points.
The jagged heading rate setpoint is a result of numerical
inaccuracies, delays in the data being provided to the system,
and different execution rates of the control functions. The
heading rate in the plot is taken from a gyroscope. The
command finishes when Hend and Vend flags become true.

Command 4 used between points p4 and p5 is similar
to Command 2, but the heading is controlled externally
by providing desired heading rates by the operator using a
joystick. Figure 8b presents a detailed plot of the heading
and rate during this segment of flight. It can be observed
that the desired heading rate is limited by the maximum rate
of change allowed in this flight.

Command 5 uses the horizontal channel to bring the
platform to position p6. The vertical channel is commanded
by the operator providing arbitrary desired vertical velocity.
Figure 8c shows a detailed plots for this segment of flight. It
can be observed that the desired vertical velocity is limited by
the maximum allowed value during this flight. The heading
channel uses HdFlightDir mode which makes the heading
towards point p6 during the flight.

Finally, in Command 6, the operator is given full velocity
control over the platform. The UAV is commanded using
a joystick towards an arbitrary landing position. The allow
landing flag is used and the operator performs a landing
manoeuvre by commanding negative vertical velocity.

Figure 7b presents position, altitude and heading setpoints,
as well as the actual values logged onboard the UAV during
the mission. The maximum absolute control error measured
for the horizontal channel was: 28.5cm with root-mean-
square (RMS) of 12.5cm. For the vertical channel (excluding
takeoff) the values used were: 12.5cm and 3.6cm, respec-
tively. Similarly, for the heading the values used were: 8.8deg
and 2.8deg. Even though the PID loops of the control system
were tuned manually, the performance is satisfactory. The
maximum horizontal control error during the mission was
approx. 35% of the platform’s tip-to-tip diameter. Similarly,
for the vertical channel the value is approx. 50% of the
UAV’s height.

The experiments are intended to demonstrate the ver-
satility and flexibility of the flight command concept. By
appropriately choosing and configuring the modes, it is pos-
sible to achieve richly configurable flight behaviours required
for emergency assistance missions. Takeoff behaviour maps
directly to flight Command 0. Flying to a waypoint can be
performed in a number of ways: Fly to a 3D waypoint, with
a specific heading (Command 1); Fly to a 3D waypoint
in a straight line, set heading towards a moving position
(Command 3); Fly, and set heading, to a 2D waypoint,
altitude controlled externally, for example, relative to the
ground (Command 5). Scanning an area (flying a sequence
of waypoints) translates into several sequential commands
(e.g. Command 3 repeated with the appropriate position
parameters). Command 6 is an example of direct operator
interaction (including a landing, in this case).

2) Experiment 2: Command switching: This experiment
demonstrates the performance of the system when a com-
mand is executed while another one is in progress. This
seamless switching of flight behaviours, at any time during
execution, is essential in emergency assistance missions
which are very dynamic in nature. This system property
provides additional flexibility as the user does not have to
deal with control mode switching or wait for the platform to
be brought to a specific control state. Figure 9 presents three
example flights.

First, a nominal flight from p0 to p1 using the HPos mode,
with coordinates (-1.5m, 0m) and (1.5m, 0m), respectively,
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is presented Figure 9a. Second flight (Fig. 9b) starts as the
the first one, but at point p2, a new command is executed.
It uses the HPos mode, to bring the UAV to point p3 with
coordinates (0m, -1.5m) followed by a flight to the original
destination p1. The third flight, presented in Figure 9c, again
starts as the first one, but at position p3, a command which
uses HExtVel mode is executed. At this point the operator
directly commands desired velocities using a joystick. Note
that the platform never goes beyond -1.5m position in the
east direction, as this is the envelope limit set for this flight.
When the operator decides, at point p6, the original flight to
point p1 resumes.

This experiment demonstrates how a mission break-in is
performed. This is possible due to the use of the setpoint
generation module, described in Section III-A, between
the flight commands and the underlying control system. It
permits the execution of a command at arbitrary moments
during a mission (e.g. commands at points p2 and p5 in
the presented experiment), as well as resuming mission
execution (as at points p3 or p6). This functionality allows
for implementing break-in behaviours, pausing and resuming
missions, or even completely changing a mission being
executed, without finishing or even stopping the previous
one. This kind of functionality is essential in emergency
assistance type missions where quick adaptation to a dynamic
change in conditions is a requirement. This capability, for
example, allows the operator to suspend a scanning mission
to closely investigate a salient point and seamlessly continue
the flight afterwards.

V. CONCLUSION

This paper has presented a method for dynamic and
contextual definition of flight behaviours for VTOL UAVs
and their real-time re-parameterisation in the operational
field. This is achieved by incorporating an additional layer
of system abstraction between the elementary flight actions
that flight behaviours are composed of and a continuous
control kernel. The abstraction layer uses the concept of
flight commands that parameterise three control channels.
Through this abstraction layer, elementary actions and flight
behaviours can be specified and parametrised flexibly in
terms of sequences of flight commands controlling horizon-
tal, vertical and heading channels. These flight commands

in turn interface with the control kernel in a safe and robust
manner through the use of a setpoint generation module. The
proposed method has been fully implemented and tested in
prototype. Examples have been presented as to how higher-
level behaviours are translated into flight commands for a
VTOL UAV to achieve a new level of flexibility that is
required in the context of emergency assistance missions
where humans are in the loop and dynamic interaction
between human and platform is common. The system and
ideas have also been experimentally validated. For future
work, our interest lies in integrating task and path planners
into the system where the output of these planners would be
operators implemented as sequences of flight commands.
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