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Abstract— In this paper we consider a problem of scanning
an outdoor area with a team of heterogeneous Unmanned Air
Vehicles (UAVs) equipped with different sensors (e.g. LIDARs).
Depending on the availability of the UAV platforms and the
mission requirements there is a need to either minimise the
total mission time or to maximise certain properties of the
scan output, such as the point cloud density. The key challenge
is to divide the scanning task among UAVs while taking into
account the differences in capabilities between platforms and
sensors. Additionally, the system should be able to ensure that
constraints such as limit on the flight time are not violated.
We present an approach that uses an optimisation technique
to find a solution by dividing the area between platforms,
generating efficient scan trajectories and selecting flight and
scanning parameters, such as velocity and flight altitude. This
method has been extensively tested on a large set of randomly
generated scanning missions covering a wide range of realistic
scenarios as well as in real flights.

I. INTRODUCTION

Unmanned Air Vehicles (UAVs) are becoming a platform
of choice in many real world applications thanks to recent
advances in both sensor technology and hardware platform
development. Off-the-shelf UAV platforms available today
are capable of carrying sufficient payloads and offer reason-
able flight times. They are becoming a solution of choice
in search and rescue operations covering large operational
areas (several km2) such as rescue operations after a tsunami
or searching for lost persons in a mountain environment,
such as described in the SHERPA project [13]. A common
mission in such scenarios involves gathering information
(e.g. building a 3D model) in a rescue region that will be
used for planning and executing future actions taken by
rescuers. In many rescue scenarios the exploration needs to
be performed in a short time, as victims survival chances
drop significantly a few hours after injury. Additionally, the
areas involved are large thus using a team of UAVs instead of
a single platform is beneficial to fulfil the mission goal more
efficiently. Larger teams can be created when heterogeneous
platforms are available to the rescuers decreasing the mission
times even further.

In this paper we consider the exploration problem using
a team of heterogeneous UAVs. The team (e.g. Figure 1)
is delegated [2] with a task of gathering sensor data over a
specified region. Using multiple platforms to explore an area
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Fig. 1: The RMAX (left) and the LinkQuad (right) platforms.

of the environment require to coordinate the work of each
agent including optimal partitioning of the region (relative to
sensor capabilities of each UAV) and generation of optimal
scan trajectories.

The problem of exploration with a team of homogeneous
agents can be solved using the frontier cell approach [3]. The
world is represented as a grid with three values, unexplored,
free space or obstacle. Heuristics have been developed to
spread the team of robots to go and visit unexplored cells.
The frontier cell approach has been extended to handle
heterogeneous agents as well using integer programming to
represent constraints between platforms [5], for instance if
a UAV needs assistance from a ground robot to improve its
localisation. The main benefit of the frontier cell approach is
the ability to handle obstacles, however it requires constant
synchronisation between platforms to keep the map up-to-
date. A clear drawback is its scalability i.e. grid based
approaches do not scale well for large areas. In outdoor
environments which are considered in this paper, UAVs are
expected to cover large areas and will fly over obstacles
without the need to keep knowledge of the obstacles during
exploration thus the frontier based approach is not the best
choice.

Guaranteed search [15] is a type of exploration with
multiple UAVs in which it is assumed that the searched object
is trying to evade detection. Algorithms for guaranteed search
assume that the object is actively trying to avoid detection.
Those algorithms offer the guarantee to find the object by
positioning UAVs to protect areas that have already been
explored. Both 2D [15] and 3D [11], [10] flavours of the
algorithms have been proposed. These algorithms require
large number of platforms to work effectively thus making it
very cost ineffective in the context of scenarios considered
here (e.g. mountain rescue). In such scenarios we assume
that victims want to be found or that the objects in the
environment are static and therefore we do not have to detect
whether victims are moving to areas which have already been



explored.
Another solution to the exploration problem is to divide

the area and to assign each UAV to explore a subarea. In
[8], Hert introduces an algorithm to decompose a polygon
into a set of subpolygons. The surface of each subpolygon
can be controlled to give larger area to more capable UAVs.
This decomposition algorithm is used for exploration by a
homogeneous team of UAVs in [14].

In [9], Huang suggests that a good trajectory for scanning
a polygonal area follows a lawn mower pattern (Figure 2). In
general scanning in straight lines yields a more uniform point
density, which improves quality. The lawn mower pattern
also allows the number of turns to be minimised for certain
types of polygons, which is generally both faster and more
convenient regardless of the type of aircraft being used.
Huang also proposes an algorithm to generate a trajectory
for convex polygons.

In this paper we propose a new trajectory generation
algorithm which works directly on non-convex polygons,
unlike [9] which requires splitting the polygonal area. With
heterogeneous agents, one of the challenges is that the
different platforms have different capabilities, they might
be able to fly at different speeds, cover different surfaces
on the ground and will need to scan areas of different
sizes. We propose an extension of [14] to handle a team
of heterogeneous UAVs using an optimisation technique to
select the best parameters for the polygon decomposition
and for the flight parameters. Our optimisation technique
is able to find a set of parameters that satisfy the mission
requirements given by the operator, for instance to minimise
total mission time or maximise the quality of the scan
output. Additionally, the proposed algorithm can also take
into account constraints, such as maximum flight time.

In the first part of this paper, we present the flight
and sensor parameters used to model the scenario when
using UAVs equipped with LIDAR sensors. In Section III,
we present how the scan area is divided among the team
of UAVs. Scanning trajectory generation is described in
Section IV. In Section V, we present a heuristic and two
optimisation algorithms used to select the parameters. Finally
in Section VI we show results on how a mission is generated
and a statistical analysis over a large number of randomly
generated missions.

II. PARAMETERS FOR SCANNING WITH A LIDAR SENSOR

The size of the area that can be scanned in a particular
amount of time depends on the flight envelope of the aircraft
performing the mission, as well as various parameters related
to the sensors being used. This in turn affects both the
optimal partitioning of a region and the way in which scan
patterns should be generated. In this paper, we considered
the use of LIDAR sensor, but very similar parameters can
be used for other sensor types, such as cameras.

For many of the scan types we are interested in here, such
as LIDAR scans, flying in straight lines yields more uniform
results. It is also important to reduce the number of turns
[9], as this reduces the amount of time the platform spends

turning instead of actively scanning a previously unscanned
part of the region, especially when flying with fixed-wing
aircraft.

Typical parameters related to scan missions with a LIDAR
sensor mounted downwards onboard a UAV are illustrated
in Figure 2. Those include sensor parameters which can
be set directly depending on the LIDAR manufacturer. For
example, in the case of the LIDAR sensor used on our
RMAX platforms: Max Range (Rmax), FOV, β and f. Where,
the Rmax is the cut-off range for a single ray originating in
the LIDAR sensor. Distance measurements higher than this
value are discarded due to insufficient precision and the risk
of misdetection. The FOV is the angular field of view of the
scanner. The β is the angular resolution and f is the scanning
frequency of the sensor, which corresponds to the number of
complete scan lines per second. The Ground line in Figure 2
can be said to represent a single such scan line, consisting
of a number of samples.

In addition to the sensor parameters discussed above, both
coverage and scan quality depend on UAVs velocity (v) and
its flight altitude relative to the ground (h).

Several additional parameters of a LIDAR scan can be
derived which cannot be set or configured directly, but they
indirectly affect the range of permissible values for the true
parameters discussed above. Those will be used in the pro-
posed optimisation algorithm and include distance between
flight lines (d) and average point density (avDensity).

The parameter d specifies the distance between two flight
lines as illustrated in Figure 2:

d = sw · (1− ov); sw = 2 ·
√
R2

max + h2 (1)

where, the swath (sw) is the theoretical “width” of each scan
line. The swath is also equal to the width of each strip of
LIDAR or image data being collected. This provides an upper
bound on the permitted distance between flight lines in the
final flight trajectory and altitude. The distance d must not
exceed the swath, but can be lower in order to ensure some
overlap ov between two consecutive scan strips.

The parameter avDensity is the average density of mea-
surements on the ground, measured in points per m2. This
represents the level of detail of the point cloud generated
by the scan mission. The value depends on the sensor
configuration, flight velocity v and flight ground altitude h:

avDensity =
eFov · f
β · d · v

; eFov = 2 · arctan( d

2 · h
) (2)

Fig. 2: Parameters for a 2D LIDAR sensor mounted downwards



Fig. 3: Examples of scan strip generation along the longest edge
of a polygon P.

where, the effective field of view (eFov ) is directly related to
the swath and the ground altitude h.

In some cases, these parameters are calculated under the
assumption that the ground is flat. This is a necessary
approximation for the case where we do not yet know
the elevation of the ground that we are scanning. True
values may therefore differ somewhat from the theoretical
calculations. This can be taken into account by strengthening
requirements, for example by reduction of the maximum
permitted ground sample distance before calculating the
required parameters.

III. PARTITIONING A SCAN REGION

The Polygon Area Decomposition algorithm [8] is a state-
of-the-art algorithm for partitioning a polygon to a fixed set
of regions. Each subpolygon (partition) is anchored to a site,
a specific location that corresponds to the starting position of
a participating UAV. The algorithm was developed with the
intention to be used for partitioning a work area between
different robots and has been used successfully for UAV
scanning missions [14]. The input to the algorithm consists
of the following parameters:

• A polygon P corresponding to the mission region se-
lected by the rescuer. The polygon does not necessarily
have to be convex.

• A set of weights ui, each representing the proportion
of the mission region assigned to participant i.

• The site Si for each UAV, which anchors the subpolygon
Pi on the polygon P .

IV. TRAJECTORY GENERATION AND TIME ESTIMATION

The trajectory generator is a recursive algorithm which
calculates a flight line along the longest side of the remaining
region to be scanned in each iteration. For rectangles, this
turns into a lawn mower pattern which yields the best results
in our scenarios.

A polygon P is defined in terms of a sequence of vertices
〈P0...Pn−1〉 ∈ (R2)n. Figure 3 shows two examples, both
of which have n = 5 vertices. We introduce the following
notation:

• k denotes k mod n. Thus, assuming n = 5, we have
Pn+1 = P1.

• Li is the infinite line going through the points Pi and
Pi+1.

(a)
(b)

(c) (d)

Fig. 4: Waypoint generation process depending on where the line
L′i intersects with the polygon P .

• di = dist(Pi, Pi+1) is the linear distance between Pi

and Pi+1. For example, d4 is the linear distance between
P4 and P5 = P0.

The trajectory generation algorithm
generate − trajectory(P) returns a list of flight line
coordinates by executing the following steps:
Step 1: Select the scan direction to be parallel to a longest
segment Ls of the polygon P , so that ∀i.di ≤ ds. Selecting
new direction in every iteration minimises the number of
turns.
Step 2:Derive the outer boundary of the scan line L′s. Let
~us be a vector perpendicular to Ls, pointing toward the
interior of the polygon P , as illustrated in Figure 3. The L′s
is the translation of Ls in the direction ~us by the distance d
(see Equation (1)). The Ls and L′s provide two of the edges
for the non-overlapping part of a scan strip.

Let the line LW be the translation of Ls in the direction
~us by the distance d

2 . This line is positioned in the middle of
the swath and a finite segment of the line will be followed
by the UAV while scanning.
Step 3: Find the next two waypoints Wj and Wj+1 which
represent the start and end of the flight line that is being
generated.

Given a convex polygon, there are two possible cases.
CASE I: Suppose the line L′s intersects P in two points, as
is the case for L′4 in both polygons in Figure 3. We will
call these points P ′s and P ′

s+1
(specifically, P ′3 and P ′4 in

Figure 3).
We can find Wj+1 by considering the “leftmost” point

of Ps+1, P ′
s+1

and any vertices that may intervene between
these two points on the polygon (see Figure 4a, 4b and 4c).
A similar situation applies at P ′s, the other end of L′s. We
therefore introduce the following notation in order to gather
all such points and vertexes at both ends of the scan strip:
• P ′s→s+1 is defined as a set containing P ′s, P ′

s+1
, and

all vertices located between these two points on the
polygon in the direction of increasing vertex indexes.
For example, in the first polygon in Figure 3, P ′s→s+1 =
P ′3→4 = {P ′3, P3, P4, P

′
4}. Similarly, in the second

polygon, P ′s→s+1 = P ′3→4 = {P ′3, P2, P3, P4, P
′
4}.

• For each point p̂ ∈ P ′s→s+1 (where the hat indicates that



the point may or may not be a vertex), we define W (p̂)
as its orthogonal projection onto the infinite flight line
LW . The first polygon in Figure 3 uses W5 =W (P ′5) to
illustrate the orthogonal projection of P ′5 onto LW . The
second polygon instead uses W5 =W (P5) to illustrate
the orthogonal projection of P5 onto LW .

• W = {W (p̂) | p̂ ∈ P ′s→s+1} contains the orthogonal
projections of all points in Ps→s+1 onto the infinite
potential flight line LW .

The two waypoints Wj and Wj+1 are selected in W so
that they are maximally distant from each other: ∀A,B ∈
W × W, dist(Wj ,Wj+1) ≥ dist(A,B). This results in
a new flight line [Wj ,Wj+1] for the aircraft in question.
When the flight line is flown, a strip corresponding to the
rectangle of width d highlighted in blue in each figure will
be effectively covered. The rectangle of width d should now
be removed from the polygon P , resulting in a new polygon
P ′ representing the region that remains to be covered.
P ′ is created by removing all the vertices in Ps→s+1,

replacing them with P ′s and P ′
s+1

. The first polygon in
Figure 3 is then defined as 〈P0, P1, P2, P

′
3, P

′
4〉, while the

second polygon is defined as 〈P0, P1, P
′
3, P

′
4〉, having fewer

vertices than before.
The generate-trajectory algorithm is then called for the

new polygon (unless it is empty).
CASE II: Suppose that the line L′s has no intersection with
the polygon P , which indicates that the remaining part of the
polygon will be completely covered after generating this last
scan strip (see Figure 4d). In this case,W = {W (p̂) | p̂ ∈ P}
contains the orthogonal projections of all the vertexes from
the polygon P onto the infinite potential flight line LW . The
last two waypoints Wj and Wj+1 are selected in W so that
they are maximally distant from each other: ∀A,B ∈ W ×
W, dist(Wj ,Wj+1) ≥ dist(A,B).

This also applies when L′s intersects the polygon in
exactly one point: It corresponds to the case where the
“topmost” vertex in Figure 4d is reached, but does not extend
beyond, L′s.
This generates a set of flight lines
{(W0,W1), ...(Wm−1,Wm)}, which the aircraft can
cover in any order. Typically, a helicopter would follow
them in the order they are defined, but for a fixed wing it
might be better to skip a flight line and then come back to
it later in order to accommodate a need for a larger turning
radius.

The flying time t(W0, . . . ,Wm) can be estimated as-
suming a constant acceleration and deceleration model and
constant yawing rate.

V. PARAMETERS SELECTION

The challenging part of generating high-quality results
using the proposed algorithm is setting the weights ui and
the sites Si, as the choice of those parameters will affect the
mission time and the density of the generated point clouds.
If the platforms had homogeneous capabilities it would be
possible to split the area equally (EQ) between platforms.

A. Heuristic

A straightforward approach is to use a heuristic (HEURI)
that allocates larger regions to faster platforms and to plat-
forms with a larger swath. For each platform the altitude
must also be selected within the platform’s safety limits. For
a fixed desired point density average and a fixed sensor, the
altitude will directly define the platform’s velocity according
to Equation (2). The weights are then selected as follows:

ui = α · vi · sw (3)

Here α is a normalization factor ensuring that
n∑

i=1

ui = 1.

Finally, the site Si for each participant i can be selected as
a point on the border of the original scanning region that
minimises the distance to the current location of the UAV:
Si ∈ P and ∀P ∈ P , dist(UAV i, Si) ≤ dist(UAV i, P ).

B. Optimisation algorithm - Covariance Matrix Adaptation
Evolution Strategy

The heuristic approach described above is approximate
and does not offer a guarantee to find an optimal solution. It
also does not take into account constraints such as the flight
endurance of a platform, or if the platform is only available
for a limited amount of time due to other commitments. A
better approach would be to use an optimisation technique
to estimate the area weights, which would allow us to take
constraints into account and to optimise an objective.

Covariance Matrix Adaptation Evolution Strategy (CMA-
ES) [7] is an evolutionary optimisation technique that has
grown in popularity in recent years. It has been successfully
applied to many problems where the gradient of the cost
function could not be computed directly and where numer-
ical computation would be expensive. CMA-ES spreads the
search of the parameters, so that problems with local minima
can be avoided. The strategy can estimate the correlation
between parameters and detect when the parameters are
independent.

CMA-ES can be used to search for a parameter x among
a set of possible parameters χ ⊆ Rn minimising the value
of the cost function f : χ −→ R,x 7→ f(x) without any
specific knowledge or restrictions on the function itself. For
example, f can be non-convex, multimodal, non-smooth,
discontinuous, noisy, or ill-conditioned.

The cost functions f(X ) considered in our scenarios
represent either the mission total time or the point density
average (PDA). Both functions are not known to be contin-
uous or derivable and their evaluation is done by running
the actual partitioning and trajectory generation algorithms.
Additionally, solutions should satisfy given constraints (e.g.
maximum velocity) and since some of those are non-linear,
the general form for the constrained minimisation problem
is used:

minimise
X

f(X )

subject to gi(X ) = ci, i = 0, . . . , n

hj(X ) ≤ dj , j = 0, . . . ,m.



A penalty function used to solve the constraint optimisa-
tion problem is defined as:

π(X ) =
n∑

i=0

|gi(X )− ci|+
m∑
j=0

max(0, hj(X )− dj) (4)

The constraint problem is a regular optimisation problem:

minimise
X

f(X ) + (πc · π(X ))2

We assume n UAVs, where UAV k ∈ {1, . . . , n} is located
at position x0k. For each platform four parameter values need
to be found by the optimisation procedure:
• uk ∈ R is the percentage of the mission area that should

be allocated to this platform.
• sk ∈ R2 is the starting point of the platform (repre-

sented as curvilinear coordinates along the polygon).
• hk ∈ R is the scanning altitude.
• vk ∈ R is the UAV flight velocity.

The parameter space is χ = R4n, where each member of
X is a tuple 〈u1, ..., un, s1, ..., sn, h1, ..., hn, v1, ..., vn〉. The
objective function is a function from χ to R. Minimising this
function entails finding a single combination of percentages,
starting points, scanning altitudes and flight velocities for
all involved UAVs that optimises a specific aspect of the
mission.
Optimising for time with a fixed PDA (OTIME)

To minimise the scanning time given a fixed PDA, assume
the following functions and constants as given:
• PDA is the desired point density average.
• tmax

k is the maximum flight time for platform k.
• vmin

k is the minimum velocity for platform k. This is
mainly necessary for fixed-wing aircraft.

• vmax
k is the maximum velocity for platform k.

• vk(PDA, hk) is the velocity at which platform k
achieves the given PDA at the given scanning altitude.
The selected velocity must not exceed this, but may be
lower. This ensures that specifying a low PDA does
not result in a commanded velocity that is greater than
the maximum permitted, simply because a sufficient
number of points could have been captured even at a
very high speed. Instead, specifying a very low PDA
results in data being captured at a greater density than
required.

• tk(x) is the time required for platform k to fly the scan
trajectory it is assigned when the partitioning algorithm
and scan pattern generator are applied to the parameters
specified in x (which includes the selected velocity of
platform k). This function is assumed to include the
time required to fly from the current location of the
UAV to the beginning of the scan pattern.

• hmin
k and hmax

k are the maximum altitude for platform
k and the maximum altitude is constrained by the sensor
parameters: hmax

k < Rmax
k

The optimisation problem to be solved is the following,
where x = 〈u1, ..., un, s1, ..., sn, h1, ..., hn, v1, ..., vn〉:

MAX
Velocity

MAX
Acceleration

MAX
Yaw Rate

RMAX 5.0m/s 1.2m/s2 40◦/s
LinkQuad 2.0m/s 1.0m/s2 20◦/s

MAX
Fly time

MIN
Altitude

MAX
Altitude

RMAX 45min = 2700s 30m 50m
LinkQuad 15min = 900s 5m 30m

TABLE I: Platform parameters

MAX
Range Frequency Angular

Resolution
SICK LM-511 80m 50Hz 0.5◦

Hokuyo UTM-30LX 30m 40Hz 0.25◦

TABLE II: LIDAR sensor parameters for each platform

minimise
x∈X

n
max
k=1

(tk(x))

subject to tk(x) ≤ tmax
k , k = 1, . . . , n

vmin
k ≤ vk ≤ vmax

k , k = 1, . . . , n

vk ≤ vk(PDA, hk) k = 1, . . . , n

hmin
k ≤ hk ≤ hmax

k , k = 1, . . . , n

OTIME can be initialised with an equal parameter selec-
tion (OTIME-EQ) or using the heuristic (OTIME-HEURI).
Optimising for PDA with constrained time (OPDA)

To maximise the achieved PDA given a specific time limit
assume the following functions and constants are given, in
addition to the ones specified above:
• τmax is the time limit for the entire mission.
• PDAk(x) is the point density average that platform k

can achieve given the specified parameters.
The optimisation problem to be solved is the following,
where x = 〈u1, ..., un, s1, ..., sn, h1, ..., hn, v1, ..., vn〉:

maximise
x∈X

n
min
k=1

(PDA(x))

subject to vmin
k ≤ vk ≤ vmax

k , k = 1, . . . , n

tk(x) ≤ τmax, k = 1, . . . , n

tk(x) ≤ tmax
k , k = 1, . . . , n.

OPDA can be initialised with an equal parameter selection
(OPDA-EQ) or using the heuristic (OPDA-HEURI).

VI. RESULTS

Two types of platforms are used for the experimental
evaluation, a RMAX helicopter and a LinkQuad quadcopter
(Figure 1). Table I presents each platform characteristics.
The RMAX helicopter is equipped with a SICK LM-511
LIDAR sensor and the LinkQuad with a Hokuyo UTM-
30LX, whose characteristics are given in Table II.

In our experiments, the cost functions f(X ) used in the
optimisation typically have values below 10000. We there-
fore selected πc = 10000002, which strongly discourages the
optimisation from violating the constraints.



Fig. 5: The scanning mission results: equal areas (EQ, left),
heuristic (HEURI, right). The red lines represent the subdivision.
The coloured polylines represent the trajectory of each UAVs. The
coloured rectangles correspond to the area scanned on the ground
for each scanline.

(a) After 5 iterations (b) After 10 iterations

(c) After 100 iterations (d) After 1000 iterations

Fig. 6: Result of OTIME at different iterations

First, an example scenario with in-depth analysis of the
proposed algorithms is presented. Then, statistical analysis
of results for 700 random experiment runs is described.

A. In-depth analysis of an example experiment

In this example two RMAX helicopters and two LinkQuad
quadcopters (LQ) are used. One of the RMAX helicopters
starts the mission 2km away from the scan area, the second
RMAX is near the middle, and the two quadcopters are at
its origin.

Results of partitioning and trajectory generation when
using EQ or HEURI are shown in Figure 5. Figure 6 and
Figure 7 depicts different stages of the optimisation for
OTIME (PDA set at 60) and for OPDA (33min time limit)
respectively.

Table III shows the percentage of area assigned for each
UAV as well as the expected execution time and the resulting
PDA. For the equal area division (III-a), the mission is

(a) After 5 iterations (b) After 10 iterations

(c) After 100 iterations (d) After 1000 iterations

Fig. 7: Result of OPDA at different iterations

not feasible due to flight time limits of a small LinkQuad
platform (41 and 46 minutes required). Using heuristic
approach (III-b) flight times for each UAV are reduced and
feasible but only a fixed PDA of 60 is achieved. More
optimal solutions are found when using OTIME and OPDA
optimisations (III-c, III-d). For OTIME, the mission will
be finished within 21 minutes with PDA of 60 and more
than 110 for RMAX and LinkQuad platforms respectively.
Optimising for PDA, results in a mission of up to 33
minutes duration and higher PDA per platform. Taking into
account practical considerations of mission execution (e.g.
flight time) the two latter cases OTIME, OPDA are the most
optimal. The choice between the two depends on the set
priority, for example on other tasks the UAVs are involved
in.

B. Massive random experiment

This section describes aggregated results for a large num-
ber of experiments. Statistical analysis for 700 randomly
generated missions is presented. Missions are generated as
follows. A random number of points (between 3 and 20) P
is choosen between −300m and 300m, the scanning area
is taken as the convex hull of P . Up to 3 RMAX and 3
LinkQuad platforms can be selected to be part of the team.
The probability to be near the origin of the world, which
is assumed to be their home base is set to 50%. RMAX
helicopters have a 40% probability to be within 300m of
the origin and 10% to be within 900m. LinkQuad platforms
have 50% probability to be within 300m of the origin. This is
to model typical usage of different types of UAV platforms,
i.e. smaller LinkQuads are more likely to carry out missions
close to their base while RMAX helicopters can also execute
long range missions.



platform area time PDA velocity (m/s) altitude (m)
RMAX 0 25% 10min 39.1 2.5 35
RMAX 1 25% 22min 39.1 2.5 35

LinkQuad 0 25% 46min 255.6 1.0 17
LinkQuad 1 25% 41min 255.6 1.0 17

(a) Results using equal areas
platform area time PDA velocity (m/s) altitude (m)
RMAX 0 22.54% 12min 60.0 1.7 35.0
RMAX 1 22.54% 29min 60.0 1.7 35.0

LinkQuad 0 27.46% 10min 60.0 4.115 17.0
LinkQuad 1 27.46% 11min 60.0 4.115 17.0

(b) Results using the heuristic
platform area time PDA velocity (m/s) altitude (m)
RMAX 0 49.77% 21min 60.0 1.939 20.04
RMAX 1 18.88% 21min 60.0 1.939 20.0

LinkQuad 0 15.30% 15min 117.6 2.0 19.83
LinkQuad 1 16.04% 14min 152.6 2.0 5.205

(c) Results of OTIME with PDA = 60
platform area time PDA velocity (m/s) altitude (m)
RMAX 0 45.21% 33min 88.3 1.316 20.28
RMAX 1 24.16% 33min 88.34 1.316 20.1

LinkQuad 0 15.27% 15min 124.0 1.998 17.08
LinkQuad 1 15.36% 15min 144.6 1.998 8.116

(d) Results of OPDA with a maximum time set to 33min

TABLE III: Area subdivision, flight time and PDA for the different
parameter selection

There are two configuration parameters for the optimi-
sation problem: the number of function evaluations and
the initial solution. The optimisation algorithm is initialised
with either EQ or HEURI and stopped after 10000 function
evaluations to study the evolution of the cost function.

The average time to compute the scan division and gen-
erate the trajectory for each UAV is 39ms, using a single
thread program implemented in Python running on a 8-core
Intel Xeon at 3.70Hz.

The ratio for the cost function is defined as:

ρi =
f ibest − f

i0
best

fnbest − f
i0
best

(5)

where f ibest is the best cost function at iteration i, i0 is the
first iteration where a solution that satisfied the constraints
is found and n is the last iteration (in this paper n = 1000).
ρi is a normalised representation of the quality of a solution
at iteration i.

We define the cost benefit function for OTIME as:

f ib = f ibest +Ni ∗ 0.039 (6)

where f ibest is the best value for a cost function achieved at
time i (which corresponds to the mission time in seconds)
and Ni is the number of function evaluations that were
needed to reach iteration i. This function allows to evaluate
the benefit of running further iterations compared to the
computational cost. The minimum value for this function
indicates the optimal number of iterations: for less iterations,
it is beneficial to keep running the optimisation to get even
better results, for more iterations, the cost of computing
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Fig. 8: The evolution of ρi and f i
b for each iteration.

a better set of parameters is higher than the reduction in
mission time.

The average evolution of ρi for OTIME and OPDA and
the average of f ib for OTIME over all generated missions is
shown in Figure 8. In the worst case for OPDA, it took 437
iterations to get a result that satisfies the constraints and for
OTIME up to 693.

Figure 9 shows the gain in mission time for OTIME and
in PDA for OPDA compared to using EQ or HEURI. When
the gain is negative it is due to EQ and HEURI providing a
solution that violates the constraints.

83% of the solutions provided by EQ and 46% by HEURI
resulted in violation of the flight time constraint. While for
25% of the missions OTIME and OPDA could not find any
solution that respected the constraints. In most cases, it is
because the team of UAVs was too small to cover the area.

VII. DISCUSSION

As expected, the selection of the parameters using an
optimisation process gives better results than a heuristic
approach or an equal partition, as shown in Table III and
Figure 9. More importantly the results show the optimisation
process is capable of respecting constraints, such as flight
time limits.

Results from the cost benefit function presented in Fig-
ure 8 show that for OTIME the average optimal number
of iterations is between 69 and 126 (which corresponds to
690-1260 function evaluations). There is no good metric to
evaluate when a good result has been achieved in case of
OPDA. Nevertheless, after 200 iterations the improvement
seems small. In the worst case 500 iterations were needed
in order to find a solution satisfying the constraints.

While our algorithm is not capable of telling if the problem
has a solution that satisfies the constraint, a system would
notify the rescuer that the optimisation is taking too long. The
penalty function can be used to specify which constraints are
causing the most problems, then the rescuer can modify the
mission specification to relax some of the constraints.

Figure 8 and Figure 9 show that there is very little dif-
ference if the optimisation problems are initialised with EQ
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Fig. 9: Gain in time and PDA per problem.

or HEURI. This is due to the CMA-ES algorithm selecting
random solutions within the boundary and exploring the
space of possible solutions before converging toward the
best.

VIII. CONCLUSION

In this paper we have presented a solution to the partition-
ing of a scanning area between the members of a team of
heterogeneous UAVs. We have shown how to formulate the
optimisation problem to suit the need of an operator, whether
the mission should to be performed as quickly as possible or
resulting in the highest point density within a time limit. The
algorithms presented in this paper have been implemented in
simulation, integrated in our delegation system and used with
real platforms [6].

The main focus of the future work will be put on im-
proving computation time in order to speed up the con-
vergence toward the optimal values. Since the CMA-ES
algorithm needs to evaluate the objective function multiple
times before it can compute an update to the parameters,
parallel programming techniques can be used. In our current
approach, a linear bound is set on the parameters, but
for non-linear constraints, a penalty function is added to
the objective function. This leads to slower convergence,
as the optimisation algorithm attempts to use parameters
that are outside of the boundary. Variant of the CMA-ES
algorithms, such as [4], [1], [12], have been proposed to
handle constraints more efficiently, which should improve
the convergence properties of the algorithm.

Our current approach does not take into account that
scanning areas overlap which could lead to UAVs flying
around the same positions at the same time. In the future,
the algorithms can be extended to use a path planner and
integrate this information in the computation of the total
flight time.
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