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Coverage Search in 3D

Christian Dornhege1 and Alexander Kleiner2 and Andreas Kolling3

Abstract—Searching with a sensor for objects and to observe
parts of a known environment efficiently is a fundamental prob-
lem in many real-world robotic applications such as household
robots searching for objects, inspection robots searching for
leaking pipelines, and rescue robots searching for survivors
after a disaster. We consider the problem of identifying and
planning efficient view point sequences for covering complex
3d environments. We compare empirically several variants of
our algorithm that allow to trade-off schedule computation
against execution time. Our results demonstrate that, despite
the intractability of the overall problem, computing effective
solutions for coverage search in real 3d environments is feasible.

I. INTRODUCTION

Coverage search is a fundamental problem in many real-

world scenarios and robotic applications such as household

robots searching for objects in the house, area inspection

in dynamically changing environments, e.g., searching for

leaking pipelines or cracks in walls, and searching for sur-

vivors in debris after a disaster in Urban Search And Rescue

(USAR). Particularly in USAR, survivors can be entombed

within complex and heavily confined 3d structures. State-

of-the-art tests for autonomous rescue robots, such as those

proposed by NIST [1], are simulating such situations using

artificially generated rough terrain and victims hidden in crates

only accessible through confined openings. Figure 1(a) depicts

such a rescue arena, and the execution of a planned viewpoint

sequence in order to search the elevated area in the center of

the scene (b-f).

We consider the problem of 3d coverage search which

is concerned with computing a sequence of 3d views for a

searcher in order to cover a known 3d environment. The goal

is to find a sequence of views that can be visited in the shortest

time possible. It is assumed that the sensor has a specific field

of view such as the opening angle and detection distance of

an IR camera. This is similar to coverage planning, which

has applications in lawn mowing, automated farming, painting,

vacuum cleaning, and mine sweeping [2]. In coverage planning

the goal is to compute an optimal shortest motion strategy
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Fig. 1. Motivating example: Progressing search of the NIST rescue arena
by visiting planned viewpoint locations. Unexplored area (blue) is stepwise
covered (red) by sensors of the mobile platform. Arena photo shown in (a) is
courtesy of the Jacobs Robotics Group, Jacobs University Bremen.

in order to cover a 2d environment with a mobile robot [3].

Solutions to coverage planning often employ decompositions

of the free space in 2d. In contrast, our 3d problem relies

on sampling as decompositions of 3d spaces is too costly.

Note that our coverage problem is different from coverage

problems that deploy multiple sensors to continuously monitor

the same area for extend periods of time, such as in [4]. In

our case every part of the environment has to be seen at

most once. Other coverage-related problems often deal with

unknown or partially known environments, such as in [5;

6] in 2D, and attempt to improve the map or explore unknown

parts of the map. In our case the 3d map is already known and

we are foremost interested in computing and visiting a set of

useful views in the shortest time possible.

Coverage search also relates to other research fields that

require the computation of views, such as next best view

approaches for the art gallery problem and pursuit-evasion

problems. Traditional next best view (NBV) algorithms com-

pute a sequence of viewpoints until an entire scene or the



surface of an object has been observed by a sensor [7;

8]. These methods are, however, not suitable for coverage

search on mobile robots since they ignore the costs for

changing between different sensor poses [8]. Viewpoint cal-

culation is also addressed by the art gallery problem [9].

There the task is to find an optimal placement of guards on a

polygonal representation of 2d environments in that the entire

space is observed by the guards. Furthermore, pursuit-evasion

problems assume that the searched target is changing locations

dynamically [10]. The challenge is to compute trajectories for

the searchers (pursuers) in order to detect an evader moving

arbitrarily through the environment. Besides 2d environments,

2.5d environments represented by elevation maps have been

considered [10].

In contrast to previous work, our work on 3d coverage

search deals with realistic sensor models, the resulting com-

plexity of visibility in 3d, and time constraints of robots

navigating on rough terrain. With this we are generalizing and

improving our previous work on frontier-void based explo-

ration in 3d [11], which dealt specifically with searching for

victims. Whereas in [11] search was focused on frontier cells

combined with void structures detected in the scene, coverage

search has the general goal of covering any a priori specified

part of the 3d space with a specific sensor. More precisely, our

goal is to find the set of locations which can be visited within

the least amount of time and from which the entire search

space can be observed. We adapt our previous exploration

algorithm to generate not a single best view, but a set of

multiple high utility views and their observed volumes. These

volumes are partitioned into a discrete set of parts that has to

be covered by a view sequence with minimal cost. Obviously,

this is an intractable problem since it contains the set cover

problem [12] and the traveling salesman problem [13] as

subproblems. Therefore, we are considering several greedy

and anytime search-based variants of our core algorithm and

compare them with respect to plan computation time and plan

execution time.

II. FORMAL PROBLEM DESCRIPTION

In this section coverage search is formally described. We

first describe the model of the searcher and then the structure

of the search space. Then we formulate the search problem

based on these two definitions.

We consider a mobile robot platform, the searcher, equipped

with a 3d sensor in a bounded 3d environment E ⊂ R
3. The

3d sensor generates at each sensing cycle a view. A view is a

set of n 3d points {p1,p2, . . . ,pn} with pi = (xi, yi, zi)
T

representing detected obstacles within the sensor’s field of

view. We associate a view with the sensor state that generates

it, i.e. a sensor state x ∈ X ∼= R
3×RP3 [2], which can also be

written as a 6d pose (x, y, z, φ, θ, ψ)T . Here (x, y, z)T denotes

the translational part (position) and (φ, θ, ψ)T the rotational

part (orientation) as Euler angles. In general, the possible

sensor states, and hence the views that can be obtained,

depend on the collision-free configurations for the searcher

q ∈ Cfree ⊂ C. We make no assumptions regarding C and

Cfree other than that we have a function IK : X → {0, 1}
with IK(x) = 1 if there is a valid path in Cfree for the

searcher that puts the sensor into state x and 0 otherwise1.

This allows us to define the set of all reachable sensor states

Xreach := {x|IK(x) = 1,x ∈ X}. 2

We furthermore assume the existence of a cost function

cost : Cfree × Xreach → R
+ that returns the travel time

when moving the robot from one configuration to another

that places the sensor in a desired state. Note that for most

applications we can conflate Cfree and Xreach by mapping

exactly one searcher configuration onto each sensor state in

Xreach. This effectively ignores additional degrees of freedom

of the searcher, and with slight abuse of notation we can then

write cost(xi,xj). This is now simply the cost of moving from

one sensor state to another.

The goal of the search is to cover every point in a given

search set S ⊂ E . For every sensor state let the detection

set D(x) ⊂ S be the set of points in S visible from x. 3

The coverage problem is to visit a sequence x1,x2,x3, . . . of
sensor states until the entire search space S has been seen, i.e.,⋃m

i=1D(xi) = S . In addition, the total time needed to visit

all sensor states
∑m−1

i=1 cost(xi,xi+1) has to be minimized.

III. COMPUTING CANDIDATE VIEWS

A. Generating Candidate Views

We now describe how to find good sensor states from

Xreach by computing a utility function util : E → R
+ that

identifies good 3d poses, ignoring the orientation for now.

As we have already shown experimentally, in the context

of pursuit evasion problems [10], an efficient sampling-based

heuristic can significantly decrease the number of states that

have to be considered. In this spirit, we will compute util via
sampling and then later use it to identify 3d poses from which

a large part of S can be seen. These high-utility poses in E will
serve as a basis for the coverage search methods described in

Section IV.

The representation of E is given in form of an efficient hi-

erarchical 3d grid structure, known as OctoMap [15]. Therein

our 3d search region S is tessellated into equally sized

cubes. The minimum size of the cubes is typically chosen

according to the size of the target that is to be searched.

The implementation for OctoMap is based on an octree that

represents occupied areas in a hierarchical manner. Free space,

as well as unknown areas are implicitly encoded in the map.

We construct util in two steps, shown in Algorithm 1.

First, for every s ∈ S we sample kmax vectors starting

at s and going towards a random position in pos(Xreach),
sampled using getRandom(.). Here pos(.) returns the position

1To make this definition complete we further make the usual assumption
that either a starting configuration q0 for the searcher is given or that Cfree

is simply-connected.
2Reachable states can be precomputed for efficient access during the search

using capability maps [14].
3Note that there is a subtle formal difference between D(x) and a view at

x, i.e. D(x) is the entire 3d volume and a view a discretized subset of it and
in addition D(x) is restricted to S. Yet, in colloquial terms, we can think of
a detection set as a view.



of a state, simply ignoring its orientation. Second, for each

〈s, dir〉 ∈ V we compute, using the ray tracing function

getGridCells(s, dir, sr), the set of grid cells GC that are

visible from s in direction dir up to the sensor range limit

sr. Ray tracing is performed efficiently on the octomap. Then,

every cell in GC has its utility value incremented.

Algorithm 1 Construct util

1: procedure FINDGOODVIEWS(S)
2: V ← ∅
3: // Sample random vectors from S into pos(Xreach)
4: for all s ∈ S do

5: k ← kmax

6: while k 6= 0 do

7: x← getRandom(Xreach)
8: dir = normalize(pos(x)− s)
9: V ← V ∪ 〈s, dir〉
10: k ← k − 1
11: end while

12: end for

13: // Accumulate utilities in E
14: for all v = 〈s, dir〉 ∈ V do

15: GC ← getGridCells(s, dir, sr)
16: for all gc ∈ GC do

17: util(gc)← util(gc) + 1
18: end for

19: end for

20: end procedure

We now obtain our set of sampled sensor states X̃ , from

which large parts of S are visible, as follows. Grid cells

are sorted by util and in descending order turned into

sensor states by sampling valid sensor orientations, i.e. for

every (x, y, z)T ∈ pos(Xreach) we sample one orientation

(φ, θ, ψ)T so that x = (x, y, z, φ, θ, ψ) ∈ X. Then we

compute U(x) := |D(x)|, the actual utility of the sensor state,

computed by raytracing the sensors field of view. If U(x) ≥ ǫ,
then we add x to X̃ . Once N = |X̃|, for a given N , we stop

adding to X̃ .

To guarantee complete coverage of S one could continue

to extend util by sampling and incrementally adding more

views until S is covered, similar as in, e.g., the work by

Kleiner et al. [10]. However, this relies on the fact that every

part of S can be seen by some x ∈ Xreach – a property

required for the problem to be solvable that yet is violated

in many practical applications. There are no assumptions that

the environment data was recorded with the robot used for the

search and thus the environment E can cover arbitrary non-

reachable space. Determining that a part of the environment

cannot be seen from Xreach is not easily computable and thus

demanding S ⊂ E to be chosen in this way is not acceptable

for practical applications. Therefore we make the assumption

that the number of views chosen by the user does provide the

intended coverage.

B. Partition Induced by the Selected Views

Based on the sampled X̃ ⊂ Xreach, which should contain

a significantly smaller number of high-utility sensor states we

now seek to determine an even further smaller set that gives

us a sequence of sensor states {x1, . . . ,xm} ⊂ X̃ whose

detection sets cover all of S , i.e.
⋃m

i=1D(xi) = S . Rather
than computing

⋃m

i=1D(xi) for different sequences, which is

computationally expensive, we compute a minimal partition of

the search space S induced by the detection sets for a given

set of sensor states Q (in our case X̃).

Definition 1 Minimal partition of a set of sensor states

Given any Q ⊆ Xreach let P (Q) be a partition of S minimal

for Q defined as follows:

1) ∅ /∈ P (Q)
2)

⋃
A∈P (Q)A = S

3) ∀A,B ∈ P (Q) : A 6= B ⇒ A ∩B = ∅
4) ∀x ∈ Q, ∀A ∈ P (Q) : A ∩D(x) = A ∨A ∩D(x) = ∅
5) ∀A,B ∈ P (Q) : A 6= B ⇒ ∃x ∈ Q : A ∩ D(x) 6=
∅ ∧B ∩D(x) = ∅

Conditions 1) to 3) state that P (Q) is a partition. Condition
4) states that every part of P (Q) is either entirely in a detection
set or it does not intersect the detection set. Condition 5) states

that P (Q) is minimal. With slight abuse of notation we will

write P (x) ⊂ P (Q) for all parts of P (Q) s.t. P (x) ⊂ D(x).
4 Minimal partitions for Q can be computed iteratively, as

shown in Alg. 2. In colloquial terms, P(Q) is simply the Venn

diagram of the search space and all detection sets of Q, i.e.

of S, D(x1), . . . , D(x|Q|).

Algorithm 2 initializes P (Q) to the trivial partition of {S}.
For each x ∈ Q, we update P (Q) by splitting all parts in P (Q)
that violate condition 4. Note that we only test against P (x)
instead of all parts in P (Q) as required by condition 4. P (x) ⊆
P (Q) is maintained in addition to P (Q) and only contains

those parts that intersect with the detection set D(x). Thus
often P (x) ⊂ P (Q). We also maintain and update the inverse

mapping V iews(A) for each part A in P (Q) to efficiently

update P (x).

IV. COVERAGE SEARCH

We now utilize P (X̃), as well as the corresponding

mappings P (x) and V iews(A), to construct a sequence

{x1, . . . ,xm} ⊆ X̃ that covers S and has a short travel cost.

Since we now consider the sequence of sensor states, also

called sensor views, we define a new sequential utility function

Ui that reduces the original utility U by the number of points

in S that have been seen previously in the sequence:

Ui(x) := |D(x) \
⋃

j<i

D(xj)|

4Notice that
(

S \
⋃

x∈Q D(x)
)

∈ P(Q) is a part of the partition for all

Q that do not contain enough configurations to cover S. From the sensors
perspective this part is undetectable from the states in Q.



Algorithm 2 Minimal Partition for Q

1: P (Q)← {S}
2: V iews(S)← Q
3: for all x ∈ Q do

4: P (x)← P (Q)
5: end for

6: for all x ∈ Q do

7: for all A ∈ P (x) do
8: Ain ← A ∩D(x)
9: Aout ← A ∩ (S \D(x))
10: if Ain = ∅ ∨Aout = ∅ then
11: continue // Condition 4. holds.

12: end if

13: P (Q)← P (Q) \ {A} ∪ {Ain, Aout}
14: P (x)← P (x) \ {A} ∪ {Ain}
15: for all x′ ∈ V iews(A) \ {x} do
16: P (x′)← P (x′) \ {A} ∪ {Ain, Aout}
17: end for

18: V iews(Ain)← V iews(A)
19: V iews(Aout)← V iews(A) \ {x}
20: end for

21: end for

22: return P (Q)

A. Greedy-Solutions

First, we present a selection of greedy algorithms. All

greedy strategies compute the coverage sequence by incre-

mentally selecting x ∈ X̃ until all parts in P (X̃) are covered.

Let UC be the uncovered parts initialized as UC ← P (Q).
For every i = 1, . . . ,m we select a xi and update UC ←
UC \ P (xi). The algorithm terminates when UC = ∅.
1) Next Best View: As a base line, we use an incremental

next highest sequential utility algorithm. At every step i, this
strategy chooses a xi with maximum utility Ui(xi).
2) Cost-based Next Best View: The second alternative is to

be greedy with regard to cost in addition to utility, i.e. one

that chooses a xi that maximizes Ui(xi)/cost(xi−1,xi). The
idea is to prefer high utility views that are easily reachable.

The first view is chosen to be the one with maximum utility

U .

3) Greedy Cost: A similar strategy selects a xi that only

minimizes the cost from the last view cost(xi−1,xi). Again,
the first view is chosen be the one with maximum utility U .

B. Planning Solutions

Greedy algorithms provide simple and reasonably fast so-

lutions. However, those solutions are usually sub-optimal. We

formulate the problem of finding a coverage sequence for a

set of views X̃ as a classical planning problem in order to find

the optimal and hence lowest cost coverage sequence.

1) Complete Planning: We model the task in the commonly

used Planning Domain Definition Language (PDDL) [16]. The

definition consists of the objects involved in the problem,

logical predicates over the objects describing the state and

actions with preconditions and effects that determine how

the action changes the state. In addition the initial state as

well as a goal formula must be given. Such a task definition

models a search problem in a state space implicitly defined by

the predicates. Action preconditions are logical formulae over

those predicates that must be true for an action to be applicable

in a state. Action effects assign new values to predicates. A

problem is solved by finding a sequence of actions from the

initial state to any state fulfilling the goal formula.

In our domain, there are two types of objects:

(:types view view_part)

An object of type view is added for each view in X̃ and a

view_part is defined for each part in the partition. Next,

the planning state is given by the following logical predicates:

(searched ?xi - view)

describes that a view xi has already been visited and

(covered ?pj - view_part)

states that part pj has been covered in a state. searched and

covered are initially set to false for all views and parts,

respectively. The current view location of the robot is given

by

(at-view)- view

For each view xi and each part pj the predicate

(view-covers ?xi - view ?pj - view_part)

is set to true in the initial state, iff pj is in P (xi).

Only a single action is needed:

(:action search

:parameters (?v - view)

:duration (= ?duration [costSearch ?v])

:precondition

(not (searched ?v))

:effect

(and

(searched ?v)

(assign (at-view) ?v)

(forall (?_vp - view_part)

(when (view-covers ?v ?_vp)

(covered ?_vp)))

)

)

The precondition prohibits the planner from choosing the same

view twice. Accordingly searched is set in the effect. We

also assign at-view to the view reached by the search

action. The term [costSearch ?v] states that the cost

of the action is determined by an external function that is

integrated via a modular interface [17]. The module calls the

cost function defined in Sec. II. A detailed description of this

interface is available in our previous work [18]. The forall

statement defines a conditional effect that sets covered to

true for all view parts that are in P (x).
Finally, as the goal formula we specify:

(forall (?vp - view_part) (covered ?vp))



This requires each part to be covered and thus guarantees

that any plan found by a planner actually provides a coverage

plan. As we use the actual cost function to define the action

costs, a shortest plan found by the planner also constitutes a

minimum-cost coverage sequence. We use a variant of the

planner Temporal Fast Downward (TFD) [18] to solve all

planning tasks in this paper.

2) Set Cover/Traveling Salesman: As finding optimal so-

lutions to this problem might prove infeasible, we present a

sub-optimal decomposition of the problem by solving a set

cover and subsequent traveling salesman problem.

First, we find a minimal set of views that covers all parts of

the partition. This problem is the classical set cover problem.

Find a minimum cardinality subset QC ⊆ X̃ , where all parts

are covered, i.e.
⋃

xj∈QC
P (xj) =

⋃
xi∈X̃ P (xi).

The geometric nature of our data enables us to reduce

the problem. Many views cover a unique part of the search

space that is not covered by any other view and thus must

be included in any set cover solution. We call those views

necessary, and only determine the minimum set cover for the

remaining views. The set cover problem is solved by a simple

reformulation of the complete planning problem: Action costs

are set to 1, so that the cost of a plan is identical with the

number of views. These problems are solved quite fast (within

seconds in all our experiments) as they contain a considerably

smaller set of views and permutations do not need to be

considered.

We have now determined a minimum cardinality subset of

views that covers the search space. Thus the only remaining

problem is to find an optimal cost sequence visiting all views.

This is a Traveling Salesman Problem (TSP) without the

requirement to return to the first location. We already have

a PDDL formulation for the complete problem and can easily

apply this formulation to the Traveling Salesman Problem by

changing the goal formula to:

(forall (?v - view) (searched ?v))

This requires all views to be visited and thus an optimal cost

plan to this problem results in a minimum-cost path through

all views. The coverage information can be safely ignored as

that is guaranteed by the set cover.

There exist efficient solvers specifically designed for the

Traveling Salesman Problem and thus we alternatively investi-

gate applying the LKH solver [19], an efficient implementation

of the Lin-Kernighan heuristic to solve the TSP.

When we use the TFD planner the solve the TSP in the

decomposed formulation, we denote this as Set Cover/TSP

(TFD). If we use the LKH solver, Set Cover/TSP (LKH) is

given. TFD is always used to solve the set cover problem.

V. EVALUATION

We evaluated our algorithms on various different real-world

data sets. The first data set contains a 3d scan taken in our

lab with a range sensor in the local environment of the robot

that needs to be covered by a sensor with a smaller field

of view like an IR camera. Setting Lab 1 only considers

manipulator movements, while Lab 2 and all other experiments

include manipulation and navigation. The next two data sets

demonstrate larger indoor environments. One taken in building

78 at the university of Freiburg consisting of two rooms

separated by a door. The other data set is the NIST rescue

arena at Jacobs university in Bremen. The last data set is a

large scale outdoor model of the computer science campus

at the university of Freiburg. Octrees for the indoor data sets

are generated with 5 cm resolution, the outdoor data set uses

20 cm resolution. Examples of the data sets can be seen in

Figure 2. In all experiments the set of cells S to be examined

are vertical structures of the map thus aiming for a complete

coverage besides floors and ceilings. The utilized robot mode

comprises a ground robot with a 6-DOF manipulator and one

meter reach. The sensor model is a camera with 60 degrees

horizontal and 40 degrees vertical field of view. For the indoor

data sets a maximum range of five meters was used, the

outdoor data set was searched with a 35 meter maximum

range.

A. Efficient cost computation

The computation of an optimal sequence for visiting view-

point locations requires numerous computations of costs for

traveling between different locations on the map. We base our

travel cost planner on value iteration, a popular dynamic pro-

gramming algorithm frequently used for robot planning [20].

As shown by Figure 3 the planner takes as input a classified

elevation map in which important structural elements such as

stairs and ramps are discriminated. Value Iteration computes

then efficiently for each grid cell (ex, ey) on the elevation map

a cost estimate for reaching a goal cell (gx, gy). These costs are
composed of travel distance as well as costs for overcoming

different types of terrain indicated by the classification. The

Fig. 3. Computation of plan costs on classified elevation maps (map of
the arena shown by Figure 1). Showing the generated plan between two
locations (blue line), traversable (green) and non-traversable (red) terrain. The
classification represents structural elements such as stairs (magenta), ramps
(yellow), and random step fields (violet).

resulting value function is then used by an A∗ planner as the



(a) (b) (c)

(d) (e)

Fig. 2. This figure shows the data sets used for evaluation: The 3d scan in our lab (a), building 78 (b), the rescue arena (c) and the computer science campus
of Freiburg university (d). For a better visualization of the plan in the campus a top-down view is given (e). The plans (green) are generated with the Set
Cover/TSP (LKH) method. Occupied cells are displayed blue, covered cells red.

heuristic for finding shortest paths (and their costs) on the

map. Besides these travel costs between robot base poses

we also consider the cost to move the manipulator from one

view configuration to the next based on the maximum angular

displacement of any joint. The expected combined execution

time defines the cost between two sensor states.

B. Coverage Search

This experiment illustrates the full application of the cover-

age search algorithm. We are reporting computation times and

the costs of the best plans found by the algorithms on each of

the maps. As the candidate generation involves randomization,

we ran the algorithm ten times for each scenario and report

mean values with variance. The minimum utility ǫ to accept a

view as well as the number of views that need to be generated

was chosen with respect to the average expected utility that

depends on the sensor model and the environment. Therefore,

for the outdoor environment with a 35 meter sensor, this

minimum needs to be significantly higher than the one chosen

for an indoor environment with limited field of view. Table I

shows mainly computation times for the candidate generation

and the partitioning. We also give the reduction factor achieved

by the partition. This is computed as the ratio of covered

cells to parts in the partition. The motivation for this is that

without computing partitions, coverage computations would

be performed by considering individual cells instead of larger

chunks in partitions. The factor indicates the reduction of the

problem size due to the partitioning.

Based on the results of the candidate generation, we ran the

search algorithms presented in Section IV. Table II shows costs

(execution time) and measured runtime (solution computation

time) from these experiments. The TFD planner that was used

during the experiments supports both numerical values and

temporal actions. As we are only interested in numerical com-

putations without requiring concurrent actions, this feature has

been disabled during the experiments. All greedy algorithms

were run until a solution was found. The anytime planner was

set to stop after twice the time it took to find the first valid plan.

The LKH solver was executed with the default parameters

supplied by the software.

For the greedy variants, we observe that the base line

of incremental next best view performs worst. This is not

surprising as it doesn’t consider costs. From the other two

variants greedy-cost shows better performance, although it

does not consider utility. This is possible, because the utility is

implicitly contained in the selected views X̃ as the candidate

generation chooses good views.

For the search based variants, we generally see better results

at the cost of increased computation time. The results for

the small Lab scenario are similar. With increasing problem

size the decomposed variant becomes superior, especially

when using a specialized TSP solver. Although plan costs

computed for the NIST arena do not significantly differ,

needed computation times are shorter. The planner operates

on a grounded representation and thus the very large problems

become infeasible for the planning based variants. In those



Scenario Lab 1 Lab 2 Bldg. 78 Arena Campus

Candidate Views [s] 2.12 ± 0.20 3.01 ± 0.45 30.80 ± 2.47 78.96 ± 4.85 201.90 ± 10.09
Partition [s] 0.06 ± 0.01 0.04 ± 0.00 2.19 ± 0.27 5.48 ± 0.67 31.54 ± 2.83
Reduction Factor 127.23 ± 17.14 49.27 ± 12.48 16.48 ± 1.88 37.02 ± 4.58 71.57 ± 4.18

ǫ [dm3] 150 150 125 250 8000
N 15 15 100 142 280

TABLE I
THIS TABLE SHOWS COMPUTATION TIMES FOR THE CANDIDATE GENERATION. IN ADDITION THE REDUCTION ACHIEVED BY THE PARTITION IS GIVEN.

Scenario Lab 1 Lab 2 Bldg. 78 Arena Campus

Next Best View cost [s] 29.04 ± 5.55 66.45 ± 11.17 1266.34 ± 61.29 4178.80 ± 220.62 38831.17 ± 1788.91
time [s] 0.03 ± 0.00 0.11 ± 0.02 5.29 ± 0.57 12.68 ± 1.39 113.43 ± 8.07

Cost-Based Next Best View cost [s] 23.69 ± 3.27 52.09 ± 8.10 532.63 ± 24.73 1508.76 ± 190.85 8703.67 ± 519.57
time [s] 0.04 ± 0.00 0.13 ± 0.02 18.77 ± 1.43 72.78 ± 7.63 765.58 ± 88.94

Greedy-Cost cost [s] 24.48 ± 2.87 44.04 ± 6.55 337.88 ± 11.58 891.97 ± 93.01 4950.81 ± 261.66
time [s] 0.04 ± 0.01 0.12 ± 0.03 17.54 ± 1.12 70.25 ± 8.18 775.65 ± 54.19

Set Cover/TSP (TFD) cost [s] 16.33 ± 2.61 39.41 ± 4.38 331.92 ± 11.55 845.44 ± 98.74 -
time [s] 1.23 ± 0.27 1.18 ± 0.28 95.12 ± 5.03 407.88 ± 110.13 -

Set Cover/TSP (LKH) cost [s] 16.60 ± 2.43 38.39 ± 6.67 289.07 ± 7.16 870.73 ± 143.04 4056.73 ± 105.01
time [s] 0.63 ± 0.22 0.53 ± 0.05 46.22 ± 3.12 151.82 ± 11.78 1215.75 ± 145.80

Complete Planning cost [s] 22.07 ± 2.83 40.53 ± 5.23 333.06 ± 12.19 867.36 ± 95.30 -
time [s] 1.68 ± 0.24 2.93 ± 0.86 1141.26 ± 206.04 1722.82 ± 321.96 -

TABLE II
THIS TABLE SHOWS RESULTS FOR THE COVERAGE SEARCH ALGORITHMS. MISSING ENTRIES FOR THE PLANNING BASED SOLUTION ON CAMPUS ARE

DUE TO LIMITED MEMORY.

cases the system runs out of memory not in the search, but

already during the grounding phase of the planner. Although

in contrast to the decomposed approach the complete planning

formulation can provide the optimal solution, this is unlikely

to be reached within practical time limits. Instead, the more

complex formulation takes more time to search and thus, we

see higher runtimes.

C. Anytime Behavior and Optimal Solutions

This experiment is designed to show the impact of the

decomposition as a separate set cover and TSP in comparison

to the complete approach. We investigate, if the complete

formulation enables us to find better plans in real data and

how both approaches perform in an anytime setting.

We used the first run of the smallest map and execute

complete planning and Set Cover/TSP (TFD) until the state

space was completely explored. Using the TFD planner in

both instances allows us to find and prove optimal solutions.

Computing optimal solutions for the larger maps was not

feasible.

We computed time and cost for the first and best plan that

was found and also the time that the full run took until the best

solution was proven optimal. The best of the greedy algorithms

in this instance greedy cost is given as a reference. Table III

shows the results of this experiment.

The first solution is quickly found by all algorithms. For

the planning based algorithms this is also already better than

the greedy cost solution, although it also took longer to com-

pute. We can see that the best solution that the decomposed

approach returns is worse with 16.83 than the optimal solution

of the complete formulation with 15.78. This shows that we do

indeed loose the optimal solution by our decomposition. The

Algorithm first plan best plan full run

Greedy Cost cost [s] 22.22 22.22
time [s] 0.03 0.03

Set Cover/TSP (TFD) cost [s] 19.34 16.83
time [s] 0.15 7.76 100.09

Complete Planning cost [s] 20.79 15.78
time [s] 0.16 12722.88 33281.29

TABLE III
COMPARISON OF BEST RESULTS THAT THE ALGORITHMS ARE CAPABLE

OF. TIME AND COST UNTIL THE FIRST AND BEST PLAN ARE FOUND ARE

LISTED TOGETHER WITH THE TIME OF THE FULL RUN NEEDED BY THE

PLANNERS TO PROVE THE BEST PLAN TO BE OPTIMAL.

best plan found by Set Cover/TSP (TFD) is only 6.6% longer

than the optimal one, but is computed significantly faster. Our

data also shows that it takes for the complete formulation 4996

seconds to compute a plan that is better than the best plan of

the decomposition. The gross difference in computation time

can be explained by the fact that we have an NP-hard problem

and due to the set cover decomposition the TSP only contained

12 views instead of 15 for the complete formulation. Even only

considering permutations that is a factor of 15!/12! = 2730.
This means that in practice, the decomposed solution will

produce better results within reasonable time limits.

VI. CONCLUSIONS

We considered the problem of identifying and planning

efficient view sequences for covering complex environments

represented in 3d. For that purpose we compared several

variants of our algorithm empirically for finding a good trade-

off between schedule computation and execution time. Our

results indicate that despite the intractability of the problem,

efficient coverage in 3d is feasible.



Small size problems such as incremental vicinity explo-

ration by a robot were solved close to real-time and thus

can directly be deployed in real-world applications. For larger

problems, the greedy-cost variant provided solutions that were

competitive with the ones based on search. Although the

computation times for the greedy-cost variant were smaller,

advanced solutions are still the better choice since they result

in lower costs and thus lower execution times. Among the

optimization algorithms considered, the decomposition into a

separate set cover and traveling salesman problem turned out

to work very well, i.e., producing high-quality solutions in

a short amount of time. Using the set cover solution with a

specific TSP solver finally appears to be the superior method.

ACKNOWLEDGMENT

The Freiburg campus dataset was originally recorded by

Bastian Steder. Building 78 is courtesy of Jürgen Hess, Felix

Endres and Andreas Hertle. Both are available at http://

ais.informatik.uni-freiburg.de/projects/datasets/octomap/. The

rescue arena dataset was recorded by Dorit Borrmann, Jan
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