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Abstract — Safe teleoperation during critical missions, such as
urban search and rescue and bomb disposal, requires careful velocity
control when different types of terrain are found in the scenario. This
can particularly be challenging when mission time is limited and the
operator’s field of view affected.

This paper presents a method for online adapting robot velocities
according to the terrain classification from vision and laser readings.
The classifier adapts itself to illumination variations, and can be
improved online given feedback from the operator.

Keywords: Terrain Classification, HRI, Self-supervised Lear-
ning, SVM

I. INTRODUCTION

Teleoperation during critical missions, such as urban search
and rescue and bomb disposal, requires careful velocity con-
trol when overcoming different types of terrain. However,
operators are typically working under high pressure and are
confronted with a limited field of view making the safe
navigation of the robot a challenging task. One solution to this
problem is to support teleoperation with automatic velocity
control based on the classification of the terrain.

A variety of approaches based on different sensors for
terrain classification tasks have been introduced in the past.
Most existing work focuses on segmenting a traversable sur-
face from a geometric or non-geometric hazard rather than
specifying the terrain types. For laser based approaches as
described in [1], geometric obstacles like trunks or rocks are
separated from traversable area by using a rule-based classifier.
Traversable terrain can be detected by using vision-based ap-
proaches utilizing color or texture features, as proposed in [2]
and [3]. In [4] and [5] authors proposed terrain classification
methods based on the sensing of vibration. The visual infor-
mation of wheel sinkage is introduced in [6] to classify terrains
under the robot. Despite the efficiency and good experimental
results in [5] and [6], the wheels have to have contact with
the surface in order to make vibration measurements, which
can be in some cases too late for speed adjustments. To
overcome the problems of individual sensors, researchers have
combined different sensors for better classification results. In
[7] prediction results of the same terrain patches from laser

and vision are combined for better performance than the single
methods applied on their own. In [8] authors uses classification
results from laser sensors as input for the self-supervised
learning of the vision model to find the road. Although this
approach has proven to be successful and robust to terrain and
illumination changes during the Darpa Grand Challenge 2005,
their proposal does not specify terrain types and is mainly
tailored for desert terrain. Vibration and vision sensing are
combined in [9] and [10]. The system in [10] provides a more
accurate prediction than using vibration measurements alone.
However, it lacks robustness against illumination variation
since the trained SVM cannot be adjusted online and it only
classifies surfaces the robot has already traversed. In [9] visual
appearance is learned based on vibration sensing and is used
to identify the distant terrain and the vision models can be
updated on-line. However, the adaption of this approach is
not as efficient as in [8], and only three different terrain types
are classified. Because the on-line learning is achieved by
repeatedly training a support vector machine (SVM) whose
training set size is limited to 400 samples and the training
procedure for SVM is time consuming, the system cannot
adapted to changes in real-time. To overcome the limitations of

Fig. 1: Terrain types that are detected by the presented system:
1. Grass. 2. Asphalt. 3. Gravel. 4. Pavement. 5. Indoor Floor.

most existing approaches, and to achieve the level of accuracy
and fast adaption in real world tasks, a self-supervised learning



approach based on multiple sensors is presented in this paper.
The self-supervised learning is achieved by combining vision
and vibration sensing. Local vibration sensors are applied to
identify terrain classes. A visual model is trained based on
the color information extracted from the ground patch the
robot traverses. The vision model classifies the relevant pixels
in the images, and provides prediction results on the surface
in front of the robot. A normalization method is applied for
the vision classifier to reduce the variance from illumination
changes. In some cases, different terrains may have a similar
appearance that is difficult for the vision classifier to separate.
To overcome this limitation and to make the system more
robust to lighting conditions, a laser-based classifier is utilized
additionally. By fusing the results from vision and laser
classifiers, the accuracy of the classification is improved as
compared to using each classifier individually. Experiments
were carried out to demonstrate the system’s capability by
distinguishing five different types of terrain (Grass, Asphalt,
Gravel, Pavement, Indoor Floor), as shown in Figure 1.

The presented results show that the system is able to
perform online self-supervised learning and to predict the
terrain in front of it. Consequently, the system determines
the appropriate speed for different types of terrain. To deal
with misclassification, human-robot interaction is applied to
adjust the system’s velocity settings by providing feedback
via a joypad. This adjustment is then learned by the system
to update its internal model.

The remainder of the paper is structured as follows: The
vibration-based classifier, the vision-based classifier, and the
laser-based classifier are described in Section II, Section
III, and Section IV, respectively. Section V describes the
approach of combining these classifiers. Section VI pres-
ents how a human operator provides feedback for updating
the classifiers, and improving the classification results. The
performance of our proposals is demonstrated in Section VII.
Conclusions and future works are discussed in Section VIII.

II. VIBRATION-BASED CLASSIFIER

In this section a supervised vibration-based classifier using
a support vector machine (SVM) is presented. It is inspired
from the method introduced in [5]. Vibrations on the robot
can be measured by accelerations along three perpendicular
directions: front-back (X-Axes), left-right (Y-Axes), and up-
down (Z-Axes). The measured data is segmented into groups
with a size of 100 samples, and features are extracted from
each group. For each axes, 8 features are defined (as in [5])
extracted and normalized to the interval [-1, +1]. Unlike [5], in
which the robot is steered with a constant velocity, our system
adapts velocities to ensure the safety of the robot. Additionally
a feature Vt is added into feature vectors where Vt is the
average translation velocity for each group’s measurements.
So each feature vector contains 25 features. These features
are labeled by hand and an one-against-all multi-class support
vector machine (SVM) is learned offline. SVM is a machine
learning technique that constructs a hyperplane to separate two
classes and maximize the margin between the closest point

Fig. 2: 10-Fold Cross Validation Results detecting the state
of the robot from measured accelerations. X (front-back), Y
(left-right), Z (up-down) illustrate the detection accuracy on
different axes.

from each class to it. In the case of non-separable data, a
soft margin is used which allows for a small training error.
The training problem becomes a trade-off between a large
margin and a small error penalty. The penalty of an error
is assigned by a parameter C which is chosen by the user.
A larger C corresponds to a higher penalty to errors. A non-
linear hyperplane is constructed by using kernel functions to
map data into a higher dimensional space in which data can
be separated linearly. In our case a Radial Basis Function
K(x1, x2) = exp(−�x1 − x2�2/2σ2) is used as kernel
function and the parameters of error penalty C and RBF width
σ are tuned by grid search. The trained SVM is tested by 10-
fold cross validation and the result is shown in Figure 2.

For the prediction the acceleration data is collected by the
robot and feature vectors are extracted and normalized in the
same way as in the training phase. Then the SVM is applied
to online classify each feature vector into a corresponding
terrain type. The SVM classifier is implemented by using the
LIBSVM [11]. The result for this classifier is used to label
the training data for the vision-based classifier presented in
the next section.

III. VISION-BASED CLASSIFIER

(a) Original Image (b) Normalized Image

Fig. 3: Image normalization and sky detection: The red line in
(b) indicates the detected horizon line. The pixels above this
line are all considered as irrelevant points to our task.



We used a forward looking monocular camera mounted on
the robot for image capture. In each captured image, pixels
from sky and shadows are irrelevant to our task. Hence, to
save computation time, these pixels are removed beforehand
by using a horizon finding algorithm as introduced in [12]. In
Figure 3(b), the pixels above the horizon line are considered
as sky and are eliminated.

In order to reduce the illumination variation and increase the
contrast of the image, the brightness distribution of an image
is equalized. Because the color balance should be kept during
the equalization process, we first convert the image from RGB
space to YCbCr space and then apply equalization only on the
Y channel. Figure 3 shows the equalization result.

For associating image pixels with the current state of the
robot, the robot’s pose is projected onto images from the
past. The current position of the robot in previous images
can be estimated by the projection computed from the camera
parameters resulting from calibration [13] and the 3D pose
of the robot. By this, image patches that are traversed by the
robot are extracted and marked as training set. These areas are
then labeled by the result from the vibration-based classifier
described in the previous section.

After the training area is extracted from the image, a color
based model is trained to predict the types of terrain in front
of the robot. For training and prediction we improve the
approach proposed in [8] in which Gaussian Mixture Models
(GMMs) are applied to extract the traversable surface from the
images. Robustness is achieved by combining laser and vision
to proceed self-supervised learning. In contrary to the method
described in [8] we use multiple GMMs to model the terrain
type in front of the robot.

Each type of terrain is modeled by a GMM in RGB space.
The five different types of terrains are represented by five
GMMs. Given the training area of the image and its label, each
GMM can be trained by a self-supervised learning approach
proposed in [8]. The K-Means clustering method is used to
update each Gaussian in the GMM, which makes the system
more robust to lighting and color changes. Each Gaussian is
modeled by its average value, its covariance matrix, and its
mass (number of pixels in the Gaussian).

After the learning step, each terrain type is represented by a
GMM containing several Gaussians. We can score each related
pixel in the image by using the Mahalanobis distance between
the pixel and each GMM. The distance for each GMM is
represented by the minimal distance between the pixel and
each gaussian of the GMM. The matching score for pixel pi
and one gaussian mj in each GMM is defined as

s(pi,mj) =
1

dist(pi,mj)
∗mass(mj)

where dist(pi,mj) is the Mahalanobis distance from pixel pi
to Gaussian mj and mass(mj) is the normalized mass for
Gaussian j and mass(mj) ∈ [0, 1]. The matching score of
pixel pi and a particular GMM Mk is defined as

S(pi,Mk) = max
j∈[1,n]

s(pi,mj)

where n is the number of Gaussians in Mk. The classification
of a pixel in the image is found by:

argmax
k

S(pi,Mk), k ∈ [1,m]

where m is the number of GMMs and class label k is assigned
to pixel pi. The classification result is shown in Figure 4.
The left image is the latest frame taken from the camera.
The middle one is the classification result for the vision
classifier. The green region represents the grass and the blue
one represents the road. The right side is the picture from a
previous frame and the red trapezium indicates the current
position of the robot. The pixels inside the trapezium are
extracted as training data for the vision classifier and are
labeled by the current classification result of the vibration
classifier.

Fig. 4: Vision-based classification result for grass and asphalt.

IV. LASER-BASED CLASSIFIER

In an urban environment, specific types of terrains can
have very similar color appearance, as shown in Figure 1.
It is difficult for a color based classifier to separate these
terrains. When the robot drives onto a new type of terrain,
the difference is detected by the vibration based classifier
triggering an update of the vision-based model. However, this
direct update can be too late and thus the unchanged velocity
could cause to damage the robot. For example, the vision
model could misclassify the gravel as asphalt because of their
color similarity. As a result, the robot would drive on to gravel
in a relatively high speed. To cope with this failure and to
increase the classification accuracy, we incorporate a laser-
based classifier into the system.

The laser scan lines are accumulated over time and only
the height information of these laser points is used. The
height data is split into small segments where each segment
represents the robot’s translation in half a second. Features
are extracted from these segments and later used for learning
and prediction. For each height segmentation, we define a two
dimensional matrix H = hij , i ∈ [1, N ] and j ∈ [1,M ] where
N is the number of laser points in a single laser scan line
and M is the number of scan lines in the segmentation. Also
we define a vector V which is converted from all hij into
a one dimensional vector. The features are extracted as the
following:

1) The average height value of H . µ =
n�

i=1

m�
j=1

hij

mn .

2) The maximum value for all hij .
3) The minimum value for all hij .



(a) grass (b) asphalt (c) gravel

(d) pavement (e) indoor

Fig. 5: Laser shapes of different terrain. A tracked robot is used so that even on flat surfaces, such as indoor floor, the LRF
can shake significantly as shown by (e).

4) The standard deviation of V . The coarser a surface, the
higher value of the standard deviation is.

5) The sum of the square value of H , sum =
n�

i=1

m�
j=1

hij
2.

For a coarse surface this value is higher than a smooth
surface even if the average heights are similar.

6) The sum of the standard deviation
n�
1
σi where σi

denotes the standard deviation of the height data from
the i

th laser scan line.
7)

m�
1
σj where σj denotes the standard deviation of the

height data from the j
th point of all laser scan lines.

8) The number of times that data in V traverses over the
mean of V . This provides the main frequency of the
signal.

Those 8 features extracted from gathered raw data are labeled
by hand and used for training. Like the vibration based
classifier the data is normalized and trained with a SVM. After
the training phase, the 10-fold cross validation accuracy of
the classifier reached 84.71%. Finally, we use this SVM for
prediction. The same features are extracted from raw laser data
as input to the SVM for predicting the terrain types in front
of the robot.

V. COMBINATION OF VISION-BASED AND LASER-BASED
CLASSIFIER

As shown in Figure 5, the results (shapes) of laser scan for
grass and asphalt are quite similar whereas the results (colors)
of the vision-based classifier are significantly different. Hence,
a combination of both classifiers can produce a more reliable
prediction result.

Here a naive Bayes classifier is applied to fuse both clas-
sifiers. It combines the naive Bayes probability model with a
decision rule. One common rule is to pick the hypothesis that
is most likely, which is known as the maximum a posteriori
or MAP decision rule. The classifier is defined as follows:

classify(v, l) = argmax
ci∈C

P (ci | v, l) (1)

where C is the set of terrain types. v and l are the classification
results from the vision and laser based classifier, respectively.
With Bayes rule applied to P (ci | v, l), the following equation
is derived:

P (ci | v, l) =
P (v, l | ci)P (ci)

P (v, l)
(2)

Vision and laser classifiers are two approaches using different
sensors and different models. As a result, assume that v is



conditionally independent from l. With this assumption, we
formulate:

P (v, l | c) = P (v | c)P (l | c)

and
P (v, l) = P (v)P (l)

Hence, equation (1) can be written as:

argmax
ci∈C

P (ci | v, l) = argmax
ci∈C

P (v | ci)P (l | ci)P (ci)

P (v)P (l)
(3)

= argmax
ci∈C

P (v | ci)P (l | ci)P (ci) (4)

Note that we can drop P (v)P (l) since this term is constant
and independent from the hypothesis. The likelihood and prior
can be estimated based on the frequencies in the training data.
Each group of data consists of the triple: G(ground truth), Rv

(prediction result from the vision classifier) and Rl (prediction
result from the laser classifier).

P (v | ci) =
φv,ci

φci

(5)

P (l | ci) =
φl,ci

φci

(6)

P (ci) =
φci
n�

i=1
φci

(7)

where φv,ci denotes the number of training samples whose
ground truth is ci and vision label is v. φci denotes the number
of training samples whose ground truth is ci. In (7) n is the
total number of terrain types. We could also assume a uniform
distribution for the prior P (ci) which means the probability
of the robot traversing on any kind of terrain is the same.
Given the label of terrain in front of the robot, the driving
velocity that ensures safe and fast driving can be decided. The
advantage of the naive Bayes classifier is that it can provide
the probability distribution of all hypotheses, making it simple
to update the classifier online by changing the probabilities of
prior and likelihood. This mechanism allows it to a human
operator to update the classifiers when a misclassification
occurs.

VI. HUMAN INTERACTION

The classification results can assist human teleoperation by
changing the driving style automatically. Whenever misclassi-
fication is observed by the operator, feedback can be provided
for updating the classifier. When the robot drives with a wrong
velocity due to misclassification of the terrain, the operator
can use the joystick to overwrite the autonomous velocity
control for enforcing the appropriate setting. The robot will
update both the vision classifier and Bayes classifier based
on the feedback. Online updating the vibration and laser-
based classifiers is omitted since they are independent from
environmental changes. The model update takes place by the
following steps:

TABLE I: Confusion Matrices for 4 Classifiers

Actual Terrain Label
Vibration Classifier Grass Asphalt Gravel Pavement Indoor
Grass 98.31% 0.35% 0.0% 0.0% 0.0%
Asphalt 0.42% 77.38% 0.37% 0.5% 6.40%
Gravel 0.0% 1.93% 93.66% 11.0% 0.67%
Pavement 0.42% 3.10% 5.97% 88.50% 1.35%
Indoor 0.85% 17.24% 0.0% 0.0% 91.58%

Actual Terrain Label
Vision Classifier Grass Asphalt Gravel Pavement Indoor
Grass 97.42% 3.99% 0.0% 0.0% 0.0%
Asphalt 0.95% 82.02% 5.16% 27.09% 8.82%
Gravel 0.95% 1.24% 89.25% 2.03% 0.0%
Pavement 0.19% 5.03% 5.59% 70.88% 0.0%
Indoor 0.49% 7.72% 0.0% 0.0% 91.18%

Actual Terrain Label
Laser Classifier Grass Asphalt Gravel Pavement Indoor
Grass 80.47% 2.10% 8.43% 0.0% 0.0%
Asphalt 4.65% 90.51% 1.4% 13.52% 2.23%
Gravel 10.93% 0.98% 89.12% 0.47% 1.21%
Pavement 3.95% 4.98% 1.05% 86.01% 0.81%
Indoor 0.0% 1.43% 0.0% 0.0% 95.75%

Actual Terrain Label
Bayes Classifier Grass Asphalt Gravel Pavement Indoor
Grass 97.16% 0.0% 1.76% 0.0% 0.73%
Asphalt 0.53% 95.75% 0.2% 4.26% 1.71%
Gravel 1.78% 0.63% 98.04% 2.20% 0.0%
Pavement 0.18% 3.62% 0.0% 93.54% 0.0%
Indoor 0.35% 0.0% 0.0% 0.0% 97.56%

1) The operator passes feedback to the robot by overwriting
the automatically selected velocities with the joypad.
The velocity and terrain relationships are pre-defined. So
each terrain type has a corresponding velocity. When the
robot misclassifies the terrain, it determines the correct
label by selecting the terrain with the highest probability
that has a higher or slower velocity associated than the
current velocity.

2) The vision model is updated by replacing the Gaussians
with minimum confidence in the GMML by newly
generated Gaussians extracted from the current cluste-
ring of the image. Unlike the training phase for the
vision classifier, in which the training data is labeled by
the prediction result of the vibration classifier, the data
labeled by the human is more reliable. Consequently,
higher confidence values are assigned to the newly added
Gaussians.

3) Given the correct label L, the Bayes classifier is updated
by changing the prior and likelihood calculated in (5),
(6), and (7). Given the current vision class label vi and
laser class label lj , the update can be accomplished
by adding new triples (L, vi, lj) for training the Bayes
Classifier. The triples are added until the prediction
result of the Bayes classifier is L.

The updated models are used to classify the terrain in front
of the robot and the corresponding velocity is set according
to the classification result.

VII. EXPERIMENT RESULTS

Experiments were performed using the Matilda platform
from Mesa Robotics (see Figure 6) driven at a maximal



Fig. 6: Matilda Robot with a calibrated camera and a tilted
LRF mounted on its head. The Xsens is mounted inside the
Matilda which cannot be seen in this picture.

translation velocity of 0.5 m/s, The robot was equipped with
a Xsens MTi sensor (100 Hz) to measure the 3D acceleration,
a monocular forward looking camera, and a 2D Hokuyo
UTM30 laser (40 Hz) which is pointed forward along the
driving direction inclined as shown in Figure 6. The robot was
manually controlled with a wireless joypad. Driving velocities
are chosen automatically based on the terrain prediction. The
training data has been gathered by steering the robot manually
through the environment. The translational and rotational ve-
locities were automatically selected by the presented method.
The vibration and laser classifier has been trained with 1014
acceleration segmentations and 1472 laser segmentations. The
bayes classifier was trained on 1779 samples. The experiment
has been conducted by driving the robot over all five different
terrain types for about 30 minutes. The confusion matrices of
the results from the three raw data classifiers and the Bayes
classifier are shown in Table I. As can be seen from Table I,
that the laser model misclassifies grass and asphalt, but the
significant color difference makes it easy for the vision model
to separate them. The combined Bayes classifier provides
better result than using each single classifier. The driving
velocities during the test phase are indicated in Figure 7.

VIII. CONCLUSION

In this paper we presented a system that can assist human
operators to drive the robot in an urban environment. The
system can adjust the driving velocity to keep the balance bet-
ween fast navigation and the safety of the robot. We implement
the approach with self-supervised learning which can classify
5 different types of terrain in an urban environment. Multiple
sensors are used and 4 classifiers are built and combined to
provide the final classification result, which is robust towards
changing illumination and more accurate than using any single
classifier alone.

There are some points left for future research. Five different
types of terrain are defined in this paper. The system can
be significantly improved by detecting more types of hazards
found in outdoor terrain. For example, the detection of curbs
or debris that can slowly be overcome by tracked platforms.

(a) Experiment 1

(b) Experiment 2

Fig. 7: Automatic velocity adjustments during the experiment.
Each color on the trajectory denotes a different velocity setting
chosen by the system.

Furthermore, the texture character of terrains can be conside-
red for the vision based classifier.
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