
  

  

Mapping Disaster Areas Jointly: RFID-

Coordinated SLAM by Humans and Robots 

  

  

Alexander Kleiner, C. Dornhege and D. Sun 

  

  

Post Print 

  

  

  

  

N.B.: When citing this work, cite the original article. 

  

  

  

©2007 IEEE. Personal use of this material is permitted. However, permission to 

reprint/republish this material for advertising or promotional purposes or for creating new 

collective works for resale or redistribution to servers or lists, or to reuse any copyrighted 

component of this work in other works must be obtained from the IEEE. 

Alexander Kleiner, C. Dornhege and D. Sun, Mapping Disaster Areas Jointly: RFID-

Coordinated SLAM by Humans and Robots, 2007, IEEE Int. Workshop on Safety, Security 

and Rescue Robotics (SSRR), 1-6. 

http://dx.doi.org/10.1109/SSRR.2007.4381263 

  

Postprint available at: Linköping University Electronic Press 

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-72542 
 

http://dx.doi.org/10.1109/SSRR.2007.4381263
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-72542


Mapping disaster areas jointly: RFID-Coordinated
SLAM by Humans and Robots

Alexander Kleiner, Christian Dornhege and Sun Dali
Institut für Informatik
University of Freiburg

79110 Freiburg, Germany
{kleiner,dornhege,sun}@informatik.uni-freiburg.de

Abstract —We consider the problem of jointly performing
SLAM by humans and robots in Urban Search And Rescue
(USAR) scenarios. In this context, SLAM is a challenging task.
First, places are hardly re-observable by vision techniques since
visibility might be affected by smoke and fire. Second, loop-
closure is cumbersome due to the fact that firefighters will
intentionally try to avoid performing loops when facing the
reality of emergency response, e.g. while they are searching
for victims. Furthermore, there might be places that are only
accessible to robots, making it necessary to integrate humans
and robots into one team for mapping the area after a disaster.

In this paper, we introduce a method for jointly correcting
individual trajectories of humans and robots by utilizing RFID
technology for data association. Hereby the poses of humans
and robots are tracked by PDR (Pedestrian Dead Reckoning)
and slippage sensitive odometry, respectively.

We conducted extensive experiments with a team of humans
and robots within a semi-outdoor environment. Results from
these experiments show that the introduced method allows to
improve single trajectories based on the joint graph, even if
they do not contain any loop.

Keywords: SLAM, USAR, PDR, RFID

I. INTRODUCTION

Pedestrian navigation and localization is a growing field
motivated from the context of Location Based Services
(LBS) [15], navigation for the Blind [13], and emergency
responder tracking [18]. Particularly in the field of emer-
gency response, the efficiency of rescue teams, e.g. when
performing the search for victims after a disaster, depends
on their ability to coordinate and thus to be informed
about their locations. Given the locations of rescue teams
during emergency response, one could efficiently assign
unexplored regions, either in a centralized [10] or decen-
tralized way. However, to be aware of locations during
exploration within collapsed buildings is a challenging
task. In urban environments GNSS (Global Navigation
Satellite System) positioning is affected by the multipath
propagation problem [7]. Buildings in the vicinity of the
receiver reflect GNSS signals, resulting in secondary path
propagations with longer propagation time, causing erro-
neous position estimates. Furthermore, the ability to re-
observe landmarks might be affected by limited visibility
due to smoke and fire.

One solution to this problem is to equip firefighters with
assistance systems, such as wearable devices [10], [18], per-

forming Simultaneous Localization And Mapping (SLAM)
without cognitive load, e.g. without requiring interactions
by the user. SLAM methods work with the principle of
map improvement through loop-closure, i.e. to improve
the map globally each time places have been re-observed.
However, when facing the reality of emergency response,
firefighters will intentionally try to avoid performing loops,
e.g. while they are searching for victims. Furthermore,
there might be places that are only accessible by robots,
making it necessary to integrate humans and robots into
one team for mapping the area after a disaster. In this

(a) (b)

Fig. 1. Experimental setup: (a) The test person (the third author)
with Xsens MTi IMU for walking detection. (b) the Zerg robot with
over-constrained wheel odometry and Xsens MTx for pose tracking.
Furthermore, a Holux GPS device has been utilized for obtaining
ground truth data.

paper, we introduce a solution to this problem based on
information sharing between pedestrians and robots by
RFID technology. Hereby the pose of each pedestrian is
automatically tracked by a PDR (Pedestrian Dead Reck-
oning) method, which recognizes human footsteps analyt-
ically from acceleration patterns. Robot poses are tracked
from wheel odometry and IMU data only. For this purpose,
we developed a slippage-sensitive odometry that reduces
odometry errors on slippery ground, as for example, if the
robot navigates on grass. Humans and Robots estimate
the distances between RFID tags by pose tracking and
communicate them to a central station. The central station
successively builds a joint graph from these estimates and



corrects the joint network of all trajectories by minimiz-
ing the Mahalanobis distance [16], while utilizing RFID
transponders for data association [11]. RFID technology
offers many advantages within harsh environments: First,
they can be operational up to temperatures of 450 ◦C [5].
Second, their size can be below a half millimeter, e.g. the
µ-Chip from Hitachi, making it possible to deploy them in
masses within disaster areas, for example distributed by
UAVs or UGVs [12].

Borenstein et al. introduced a method for improving the
odometry on differential-drive robots [2]. A method for
odometry improvement and optimization of motor control
algorithms on 4WD robots has been introduced by Ojeda
et al [19]. They applied “Expert Rules” in order to infer
the occurrence of wheel slip. PDR methods have been
extensively studied in the past. Human motion has been
tracked by vision sensors [21], as well as based on the
analysis of acceleration patterns [14], [8]. Furthermore,
infrastructure-based localization has been studied, e.g.
based on WLAN [6], and super-distributed RFID tag
infrastructures [1], and also specifically in the context of
emergency response [9], [18]. However, these methods are
mainly designed from a single agent perspective, i.e. they
do not exploit the potential advantage of data sharing.

Early work on SLAM was mainly based on the Ex-
tended Kalman Filter (EKF) [4]. Lu an Milios introduced
a method for globally optimizing robot trajectories by
building a constraint graph from LRF and odometry
observations [16]. Whereas these methods typically rely
on a high density of landmarks and require loops on
single trajectories, RFID-SLAM is tailored for very sparse
landmark distributions with reliable data association, and
without requiring loops from single agents.

We conducted extensive experiments with a team of
humans and robots within a semi-outdoor environment.
Results from these experiments show that the introduced
method allows to improve single trajectories based on the
joint graph, even if they do not contain any loop.

The remainder of this paper is structured as follows.
In Section II we introduce the utilized methods for robot
and pedestrian pose tracking, respectively. In Section III
the approach for centrally optimizing single agent trajec-
tories is described. Finally, we provide results from robot
experiments in Section IV and conclude in Section V.

II. Pose Tracking

We denote the two-dimensional pose of pedestrians
and robots with the vector l = (x, y, θ)T . In order to
represent uncertainties, the pose is modeled by a Gaussian
distribution N (µl,Σl), where µl is the mean and Σl a
3 × 3 covariance matrix [17]. Both pedestrian and robot
motion is measured by odometry consisting of the traveled
distance d and angle α, likewise modeled by a Gaussian
distribution N(u, Σu), where u = (d, α) and Σu is a 2× 2
covariance matrix expressing odometry errors. The pose

at time t can be updated from input ut as follows:

lt = F (lt−1, ut) =

 xt−1 + cos(θt−1)dt

yt−1 + sin(θt−1)dt

θt−1 + αt

 , (1)

Σlt = ∇FlΣlt−1∇FT
l +∇FuΣu∇FT

u , (2)

where Σu =
(

dσ2
d 0

0 ασ2
α

)
(3)

and ∇Fl and ∇Fu are partial matrices of the Jacobian
matrix ∇Flu. In the following we will describe the com-
putation of input ut from human and robot motion,
respectively.

Dead reckoning information from human walking is
acquired after a method that has been introduced by
Ladetto et al. [14] 1. Human walking generates a vertical
acceleration with a maximum value if a foot is placed on
the ground. By detecting these maxima in the vertical
acceleration curve it is possible to detect and count the
occurrence of footsteps. The direction estimate is coupled
with an IMU (Inertial Measurement Unit), yielding the
walking direction θ. Finally, we utilize Equation 1 for dead
reckoning, yielding the pose estimate (x̂, ŷ, θ̂)T with covari-
ance matrix Σ, from the successive integration of estimated
distances d̂ and orientations θ̂ with variance σ2

d̂
and σ2

θ̂
,

respectively. For our experiments we utilized the MTi IMU
from Xsens, which combines a tri-axial accelerometer and
a tri-axial gyroscope with a tri-axial magnetometer. Due to
the simultaneous integration of gyro and compass data, the
device provides a drift-free orientation vector that is stable
towards minor perturbations caused by external magnetic
sources. Based on an empirical evaluation, we modeled
pose tracking uncertainty with σ2

d̂
= (0.05m/m)2d, and

σ2
θ̂

= (15◦)2.
Dead reckoning on robots is usually error-prone due to

wheel slippage, particularly within outdoor scenarios that
are accompanied with different kinds of grounds. If the
robot operates on slippery ground, as for example grass,
or if it is likely that the robot gets stuck on obstacles,
odometry errors are dependent on the particular situation.
Therefore, we designed the Zerg robot (see Figure 1(b))
with an over-constrained odometry for the detection of
slippage of the wheels by utilizing four shaft-encoders, one
for each wheel. From these four encoders, we recorded data
while the robot was driving on varying ground, and labeled
the data sets with the classes C = (slippage, normal).
This data was taken to learn a decision tree [20] with the
inputs I = (∆vLeft,∆vRight,∆vFront,∆vRear), represent-
ing the velocity differences of the four wheels, respectively.

Given the detection of slippage, the traveled distance
d is computed from the minimum wheel velocity, e.g.
vt = min (vLeftFront, vRightFront, vLeftRear, vRightRear),
and the robot’s pose is updated according to Equation 1
with σ2

dslip
, within covariance matrix Σu, in order to

increase uncertainty in translation. Note that the rotation

1We utilized an implementation from Michael Dippold [3]



update needs not to be modified since the traveled angle
α is measured by the IMU which is not affected by wheel
slippage.
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Fig. 2. Conventional odometry compared to slippage sensitive
odometry during the event of slippage (between 10 and 20 meters): In
contrast to conventional odometry, improved odometry reduces the
position error and provides valid covariance bounds during slippage.

The values for σ2
d and σ2

dslip
have been determined

experimentally within our laboratory. In this structured
indoor environment it was possible to obtain ground truth
by applying scan matching, a method that incrementally
matches readings from a Laser Range Finder (LRF) for
obtaining highly accurate pose displacements of the robot.
During extensive runs that contained slippage events, the
true traveled distance, determined by scan matching, and
the distance estimated by the odometry has been recorded.
The data set has been labeled by the slippage detection
and then utilized for computing the Root Mean Square
(RMS) error for determining the variances σ2

d and σ2
dslip

.
We finally determined σd = 0.816 cm

m and σdslip
= 24.72 cm

m .
As shown in Figure 2, the improved odometry reduces the
error significantly while maintaining appropriate covari-
ance bounds.

III. RFID-SLAM

RFID-SLAM is a procedure for correcting odometry
trajectories from multiple robots and humans by utilizing
RFIDs for data association. For the sake of simplicity,
we denote robots and humans as “field agents”, which
communicate their observations to a central station. More
specifically, the agents estimate distances between RFID
locations by the pose tracking methods described in Sec-
tion II, and communicate these estimates back to the
station, which centrally combines and corrects all trajecto-
ries. Furthermore, it is assumed that RFID detections are
within a range of < 1 m, allowing to cover corridors and
doorways, while providing sufficient positioning accuracy.

Each time an RFID has been observed, a message is
generated that contains the ID of the previously visited

RFID i and currently visited RFID j, as well as an
estimate of the local displacement between both RFIDs.
The noisy measurement of the local displacement between
two nodes is denoted by d̂ij = dij + ∆dij . It is assumed
that the error ∆dij is normally distributed and thus can
be modeled by a Gaussian distribution with zero mean and
3× 3 covariance matrix Σij . The local displacement d̂ij is
defined by the vector (∆x̂ij ,∆ŷij ,∆θ̂ij)T , whereas ∆x̂ij

and ∆ŷij denote the relative spacial displacement, and θ̂ij

the relative orientation change. Our goal is to compute a
globally consistent map, i.e. to determine the true loca-
tions of the RFIDs from all observations communicated to
the station.

We denote the true pose vectors of n+1 RFID nodes by
l0, l1, . . . , ln, and the function calculating the true displace-
ment (∆xij ,∆yij ,∆θij)T between a pair of nodes (li, lj) is
denoted as measurement function dij . The central station
incrementally builds a global graph from all displacement
estimates communicated by the field agents through uti-
lizing the unique ID of RFIDs for data association. The
constructed graph G = (V,E) consists of vertices V and
edges E, where each vertex represents an RFID tag, and
each edge (Vi, Vj) ∈ E represents an estimate d̂ij with
covariance matrix Σij between two RFID tags associated
with vertices Vi and Vj , respectively. The subgraphs from
all field agents are unified in the following way: On the
one hand, if the same vertex has been observed twice, a
loop has been detected in the graph. A detected loop is
modeled by a pseudo edge between the same RFID node
with distance d̂ii set to (0, 0,∆θ)T , whereas ∆θ denotes
the angle difference between the two pose estimates of the
RFID. Furthermore, under the assumption that RFIDs are
detected at 95% probability if they are within maximal
reading range dM , we model the according covariance
matrix by:

Σii =

22d2
M 0 0

0 22d2
M 0

0 0 σ2
θ

 , (4)

whereas σ2
θ is the linearized variance of the angle, and

22d2
M the variance of the normal distribution over the

interval [−2dM ; 2dM ]. On the other hand, if two or more
field agents observe the same edge, i.e. their trajectory
overlaps between two or more neighboring RFIDs, both
observations are merged by an Extended Kalman Filter
(EKF).

Finally, the constructed graph, and thus the underlying
map represented by RFID locations is globally corrected
by minimizing the Mahalanobis distance [16]. Here, the
goal is to find the true locations of the lij given the set of
measurements d̂ij and covariance matrices Σij . This can
be achieved after the maximum likelihood concept by the
following minimization:

l = arg min
l

∑
i,j

(
dij − d̂ij

)T

Σ−1
ij

(
dij − d̂ij

)
, (5)



where l denotes the concatenation of poses l0, l1, . . . , ln.
Since measurements are taken relatively, it is assumed
without loss of generality that l0 = 0 and l1, · · · , ln are
relative to l0. Moreover, the graph is considered as fully
connected, and if there does not exist a measurement
between two nodes, the inverse covariance matrix Σ−1

ij is
set to zero. In order to solve the optimization problem
analytically, Equation 5 can be transformed into matrix
form [16]. Note that due to the angle θ Equation 5 has to
be linearized . The network of RFIDs can be optimized in
O

(
n3

)
, whereas n denotes the number of RFIDs.

We utilized two different RFID antennas for humans and
robots. The antenna of the robot was mounted in parallel
to the ground, allowing to detect RFIDs lying beneath
the robot, whereas the antenna of the human was carried
manually. We used Ario RFID chips from Tagsys with
a size of 1.4 × 1.4 cm, 2048 Bit RAM, and a response
frequency of 13.56 MHz. For the reading and writing of
these tags, we employed a Medio S002 reader, likewise from
Tagsys, which is able to detect RFIDs within a range of
approximately 30 cm with both antenna types. Hence, the
covariance matrix in Equation 4 has been modeled with
dM = 30 cm.

IV. EXPERIMENTAL RESULTS

We conducted extensive experiments with a team of
humans and robots. During these experiments, ground
truth data has been obtained with a GPSlim236 GPS
receiver from Holux, which is equipped with Sirf Star
III technology. The receiver is able to receive Differential
GPS (DGPS) data from the EGNOS 2 system, yielding
a horizontal position accuracy < 2.2 meters and vertical
position accuracy < 5 meters at 95 % of the time.

A. Pose tracking under heavy slippage
The slippage detection method has been extensively

evaluated on the Zerg robot. During this experiment,
the robot performed different maneuvers, such as moving
straight, turning, and accelerating while driving first on
normal and then on slippery ground. Afterwards, each
situation has been manually labeled with one of the
six classes slip-straight, slip-turn, slip-accelerate, noslip-
straight, noslip-turn, and noslip-accelerate. Table I summa-
rizes the results of the classification, where bold numbers
indicate the correct classification, i.e. true-positives. As can
be seen, the method is able to reliably detect slippage even
while the robot is accelerating or performing turns.

B. Multi-Human Experiment
The multi-human experiment has been carried out on

the campus of the University of Freiburg, which includes
many accessible buildings entered by the test person. We
measured that some of these buildings contain magnetic
fields disturbing the angle estimate of the PDR method,

2EGNOS stands for European Geostationary Navigation Overlay
Service.

hhhhhhhhhhhhhTrue situation

Classification
Slip No Slip

Straight
No Slip 10 (0.5%) 2051 (99.5%)

Slip 2363 (90.1%) 236 (8.9%)

Turn
No Slip 28 (0.9%) 3226 (99.1&)

Slip 2684 (96.4%) 102 (3.6%)

(De-)Acceleration
No Slip 75 (14.9%) 426 (85.1%)

Slip 126 (98.5%) 2 (1.5%)

TABLE I

Classification accuracy of the slippage detection.

as for example, metal stairs or metal doors. Figure 3
provides an overview of the area, which was generated
by GoogleEarth. During this experiment, the test person
traveled six trajectories with different starting and ending
locations, while performing pose tracking with the PDR
method previously described and while distributing and
re-observing around 20 RFIDs (see Figure 3). In order

Fig. 3. Result from the multi-human experiment: Each line indicates
the pose tracking of the trajectory of a single pedestrian. Black lines
and squares show the corrected graph of RFIDs.

to visualize the PDR trajectories, we used the starting
locations taken from the ground truth data and projected
each PDR trajectory with respect to its starting location
on the map. In Figure 3 each trajectory is shown with a
different color. As can be seen, position accuracy decreases
with increasing length of the traveled trajectory. Note that
most of the trajectories do not include loops by themselves,
making their single correction impossible.

All trajectories have been collected and merged into a
joint graph for applying the centralized method described
in Section III. The corrected edges between RFIDs are
shown by the black lines in Figure 3, as well as the
corrected locations of the RFIDs (small squares). Fur-
thermore, we computed the average Cartesian error with
respect to ground truth. Figure 4 depicts these errors
according to each pedestrian. It shows the uncorrected
trajectory, the single trajectory corrected on its own, and
the trajectory corrected from the joined graph. As can be



seen, the correction based on the joined graph yields better
results than the single corrections since the joining of single
routes yields additional loops that support the correction.
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Fig. 4. Result from the multi-human experiment: the average
Cartesian error of each pedestrian’s route.

C. Human-Robot Experiment

In another experiment we jointly corrected the odom-
etry trajectories from a human and robot exploring the
same area while detecting RFIDs. During this experiment,
pedestrian and robot performed pose tracking with the
PDR method and slippage sensitive odometry described in
Section II, while the robot navigated at an average velocity
of 1.58 m/s. For an area of approximately 90,000 m2, only
10 RFIDs have been used, which is a comparably low
amount of features considering the trajectory length of
2.5 km. Note that we already showed in former work that
the RFID density does not significantly affect the cor-
rection of RFID-SLAM [11]. Table II depicts the average

Cart. Err. [m] XTE Err. [m] ATE Err. [m]

Rob. Odo. 147.10± 36.85 139.59± 35.99 46.11± 20.69
Ped. Odo. 56.63± 24.38 44.22± 24.52 32.31± 15.82
Ped. Corr. 14.27± 12.7 8.40± 11.67 10.68± 10.84
Rob. Corr. 9.37± 9.90 5.57± 9.55 6.52± 9.23
Both Corr.. 5.64± 4.77 2.50± 4.23 4.33± 4.50

TABLE II

Avg. pos. errors of odometry, single, and joint correction.

Cartesian error, the average cross-track error (XTE), and
average along-track error (ATE) of the original robot
odometry (Rob. Odo.), the original pedestrian odometry
(Ped. Odo.), their single corrected trajectories (Ped. Corr,
Rob Corr.), and the jointly corrected trajectory (Both
Corr.). As can be seen, the simultaneous correction of both
trajectories improved the accuracy significantly. Figure 5
(a) shows the both odometry trajectories compared to
ground truth (blue line), and Figure 5 (b) shows the

corrected RFID graph (green line). Note that the small
squares indicate RFID observations. Figure 6 depicts the
covariance bounds of the robot trajectory before and after
the global correction, showing the successful reduction of
pose uncertainties by the optimization. Note that for the
sake of readability, Figure 6 only shows the first loop of
the performed trajectory.

(a)

(b)

Fig. 5. Result from correcting trajectories from robot odometry (or-
ange line) and pedestrian odometry (red line) jointly: The corrected
RFID graph (green line) lies close to ground truth (blue line). Small
squares indicate RFID observations.

V. CONCLUSIONS AND FUTURE WORKS

We introduced a novel method for jointly correcting
trajectories of human and robot teams by utilizing the ad-
vantage of RFID technology for data association. Thereby,
pose tracking has been carried out by sensors that are
applicable within harsh environments. In contrast to vision
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and laser scan matching based approaches, robot tracking
was simply based on slippage sensitive wheel odometry
and IMU data, and human tracking on a light-weight IMU
sensor. Nevertheless, both systems produced acceptable
estimates that have been successively corrected.

The introduced method allows to apply SLAM without
requiring pedestrians and robots to perform loops while
executing their primary task. Due to the joining of routes
via RFID connection points, loops automatically emerge.
This is a necessary requirement if applying SLAM within
USAR situations. In such situations, emergency respon-
ders have time-critical goals that have to be accomplished
within a short amount of time, hence intentionally try to
avoid to visit places repeatedly. The result shows clearly
that sharing information between single agents, i.e. hu-
mans and robots, allows to correct their individual paths
globally.

In future work, we will investigate the approach within
purely indoor environments and focus on correcting three-
dimensional trajectories, e.g. within multi-storey build-
ings. Furthermore, we will evaluate RFID technology op-
erating in the UHF frequency domain, allowing reading
and writing within distances of meters, and to extend our

approach accordingly.
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