
Planning as Heuristic Search
for Incremental Fault Diagnosis and Repair

Håkan Warnquist∗ and Jonas Kvarnström and Patrick Doherty
Dept. of Computer and Information Science

Linköping University
SE-581 83 Linköping, Sweden

{g-hakwa, jonkv, patdo}@ida.liu.se

Abstract
In this paper we study the problem of incremental fault diag-
nosis and repair of mechatronic systems where the task is to
choose actions such that the expected cost of repair is mini-
mal. This is done by interleaving acting with the generation
of partial conditional plans used to decide the next action. A
diagnostic model based on Bayesian Networks is used to up-
date the current belief state after each action. The planner
uses a simplified version of this model to update predicted
belief states. We have tested the approach in the domain
of troubleshooting heavy vehicles. Experiments show that
a simplified model for planning improves performance when
troubleshooting with limited time.

1 Introduction
Modern mechatronic systems are complex products integrat-
ing electronics, mechanics and software. Due to their intri-
cate architecture and functionality they are often difficult for
a technician to troubleshoot. Efficient computer aided trou-
bleshooting that optimizes the expected cost of repair may
yield large cost savings for the industry.

A good example is the troubleshooting of vehicles. When
a vehicle enters the workshop the mechanic has only par-
tial information of the vehicle’s true state, but given the in-
formation available a probability distribution over possible
faults can be inferred. The mechanic may choose to per-
form actions to acquire more information or to repair sus-
pected components. With a model describing the probabilis-
tic dependencies between observations and faults as well as
the costs, effects and preconditions of the actions, the trou-
bleshooting problem can be viewed as a probabilistic plan-
ning problem with incomplete information.

For non-trivial problem instances, we generally cannot af-
ford to compute complete conditional troubleshooting plans
with minimal expected costs. However, the mechanic only
requires information about the next action to perform. We
take advantage of this fact and use a heuristic anytime algo-
rithm that incrementally decreases expected cost of the plan,
but can be interrupted at any time, yielding an initial action
to perform. By interleaving planning and acting, and taking
into consideration new information gained by each action,
the search space can be incrementally constrained and high
quality decisions can be made at every step.

We propose to use different models of the domain when
we plan and when we act. A precise model of the domain
is used to update the belief of the current world state given

∗Affiliated with Scania CV AB.
Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

observations and actions that the mechanic has performed.
When we plan, a filtered version of the precise model is used
where strong probabilistic dependencies close to 0 or 1 are
made deterministic. With the filtered model, planning is still
probabilistic and contingent, but the expansion of new states
in a search graph is faster. This allows the planner to provide
more support for each decision when the domain is large and
there is little time for computation.

As a motivating example we have studied the domain of
troubleshooting heavy trucks. This is a highly relevant in-
dustrial domain where any improvement in troubleshooting
performance may lead to significant savings in terms of time
and money, both for workshops and for haulage contractors.
In this domain, we also show how the search space can be
reduced by on-demand generation of composite actions, al-
lowing the planner to focus on observation and repair actions
that affect our beliefs about faulty components as opposed
to actions that prepare the vehicle for observations and re-
pairs. To evaluate the effects of filtering the model, we have
implemented an incremental troubleshooter using conven-
tional planning techniques. Preliminary empirical experi-
ments show that our filtered model improves the quality of
decisions made and that it is robust against small errors in
the parameters.

The outline of this paper is as follows. We begin by de-
scribing the heavy vehicles domain in Section 2 Then in
Section 3 we will go through the architecture of our trou-
bleshooting system. In Sections 4 and 5 we describe the
modeling of the domain and how the model used for plan-
ning is created. In Section 6 we describe the planner and the
heuristics used for the empirical evaluation in Section 7 We
end by mentioning some related work in Section 8 before
the conclusion in Section 9

2 Troubleshooting Heavy Vehicles
Heavy vehicles are representative mechatronic systems
composed of many components and interacting subsystems.
Modern vehicles are often required by law to be equipped
with an on-board diagnostics system (OBD) (U.S Environ-
mental Protection Agency 2009). The task of the OBD is to
generate alarms when faults are suspected. These alarms are
often created when an observed sensor value differs from
the expected where the thresholds are designed so that the
risk of false alarms is low. The OBD is not always powerful
enough to specify exactly the faulty components, but if any
component is faulty at least one alarm will trigger.

In the workshop, the mechanic has access to further obser-
vations of varying specificity. Some observations are symp-
toms that may be caused by several components while others

are direct inspections of component statuses. The depen-
dency between a component and an observation is not deter-
ministic. For example, when a control valve breaks, it may
or may not cause bad braking performance. On the other
hand, observations have low variance: If we have already
observed bad braking performance, and we check the brak-
ing performance again without repairing any of its possible
causes (such as the control valve), we expect to observe the
same result.

To reach some parts of the vehicle, one must first disas-
semble other parts. The level of disassembly is the config-
uration state of the vehicle. Each action can only be per-
formed in certain configuration states corresponding to con-
straints on the parts of the vehicle that must be assembled or
disassembled. Actions the mechanic may choose from are
observations, repairs and changes to the configuration. Re-
pairing a component means that the component is replaced.
It is possible but unlikely that a repair fails. When the me-
chanic is finished troubleshooting, the vehicle must be taken
on a test drive to verify that it functions properly and that
the OBD triggers no more alarms. During the test drive the
mechanic may make other observations such as listening for
noise or feeling how the vehicle behaves.

3 Architecture of the Troubleshooting System
The troubleshooting system shown in Figure 1 consists of
five parts: Two diagnostic engines (D1 and D2), an observer
(O), an action proposer (AP) and a planner (P). Using dif-
ferent models, the task of the diagnostic engines is to infer
a new belief state, i.e. a probability distribution over com-
ponent statuses, given the outcome of an action. The action
proposer and the observer are the interfaces to the user. The
action proposer recommends actions to the user and the ob-
server maintains the current belief state and configuration of
the system we troubleshoot given the outcomes of the ac-
tions that have been performed by the user. When updating
the belief state, D1 uses the precise model of the system
while D2 uses a simplified model instead. The planner uses
this diagnostic engine to predict resulting belief states and
their likelihoods given the possible outcomes of future ac-
tions.

O D1

D2PAP

Get action
Get current

belief state

Get current

observations

Update

belief state

Update

belief state
Get plan

Figure 1: The troubleshooting system.
Troubleshooting starts by the user querying the action

proposer to recommend an action. The action proposer then
instantiates the planner to start planning from the current be-
lief state given by the observer. When the user times out or
the planner has found an optimal plan, the current best plan
is returned to the action proposer which extracts the first ac-
tion in the plan and recommends it to the user. After the user
has performed the action, the outcome of that action is fed
back to the observer which updates the next state using D1.
The troubleshooting session terminates when the user veri-
fies that the system functions properly by performing a suc-
cessful function control. In the heavy vehicles domain a suc-

cessful function control is a test drive of the vehicle where
no alarms from the OBD are triggered. If the performed ac-
tion is not a function control or if the function control fails,
the action proposer initiates the planner again with the new
state.

4 Modeling of the Domain
In this section we will describe the full model and how it is
used to infer new belief states. The model has two parts: A
diagnostic model and an action model.

4.1 Diagnostic Model
The diagnostic model describes the relation between the ve-
hicle’s components and the observations that can be made.
We define components to be subsystems of the vehicle that
can be replaced or repaired. Each component i ∈ [1, N] is
represented by a variable Ci that can take on the values non-
faulty NF or faulty F . Each possible observation j ∈ [1,M]
is represented by an observation variableOj that can take on
the values non-indicating NI or indicating I .

We use a Bayesian Network (BN) to model the probabilis-
tic dependencies between component and observation vari-
ables (see for example Jensen, 2001). A BN is a directed
acyclic graph where variables are represented by nodes and
dependencies are represented by directed edges. In the
heavy vehicles domain, the BN has two layers of nodes,
where the topmost layer consists of component variables
and the bottom layer of observation variables. All edges
are directed from component variables to observation vari-
ables. Each variable has a Conditional Probability Table
(CPT) containing parameters describing the probability that
a variable X takes on a specific value given the values of its
parents pa(X) in the BN, P (X|pa(X)). For example,

P (bad braking=I |ctrl valve=NF , pump=NF) = 0.01
P (bad braking=I |ctrl valve=NF , pump=F) = 0.9
P (bad braking=I |ctrl valve=F , pump=NF) = 0.6
P (bad braking=I |ctrl valve=F , pump=F) = 0.96

The parameters in the CPT:s are assigned using expert
knowledge, manufacturer’s specifications and statistical
data. To reduce the number of parameters needed to be set,
all CPT:s are of the type noisy-or (Jensen 2001) unless spe-
cial dynamics need to be expressed. The noisy-or CPT only
needs the conditional probabilities for each single fault case
and assumes positive interaction between multiple faults.

4.2 Making Inference in the Diagnostic Model
The diagnostic engine uses the diagnostic model to compute
a belief state given an ordered set of evidence. Each piece
of evidence is indexed by its temporal order and it can either
be that a specific component is repaired or that a variable in
the BN is observed to have a specific value. The belief state
bt at time t is a probability distribution over component sta-
tuses given all accumulated evidence e1:t where each ele-
ment bt(c) ∈ bt is

bt(c) = P (ct|e1:t) (1)

and ct = (c1, . . . , cN) is an assignment of all component
statuses at time t.

Unless a repair is made at time t, it is assumed that the
component statuses remain unchanged from time t− 1, i.e.

P (ct|e1:t−1) = P (ct−1|e1:t−1) = P (c|e1:t−1) (2)

When the evidence at time t is an observation, et = {Oti=
o}, the belief state is updated according to Bayes’ rule.

bt(c) =
P (Oti=o|c, e1:t−1)bt−1(c)

ρe1:t

(3)

where ρe1:t is a normalization constant designating the like-
lihood of the observation et given e1:t−1.

A repair of a component Ci has to be treated differently
from just observing that Ci = NF since the repair causes
the component to be non-faulty. Using the notation from
(Pearl 2000) we denote the evidence that a repair is made at
time t as et = do(Cti=NF), and the belief state is updated
by moving probability mass from a state where Ci = F to
one where Ci = NF ,

bt(c) =
{
ϕi(bt−1(c) + bt−1(c′)) if ci = F
(1− ϕi)(bt−1(c) + bt−1(c′)) if ci = NF (4)

where c′ = (c′1, . . . , c
′
N), c′j = cj for j 6= i, and c′i = F

and ϕi is the probability that the repair fails and the action
instead causes the component to be faulty. Each probability
ϕi i ∈ [1, N] is known à priori and can be regarded as the
probability that the replacement component is faulty from
the factory.

For the heavy vehicle domain, we model the observations
with no variance. If there is previous evidence for Oi and no
repair has been made to any of the parents of Oi in the BN
at a later time, this repeated observation will give the same
result, i.e. if
∃et′@et′′ ∈ e1:t−1, 0 ≤ t′ < t′′ ≤ t− 1,

et′ = {Ot
′

i =o′}, et′′ = do(Ct
′′

j =NF), Cj ∈ pa(Oi) (5)

then
P (Oti=o|c, e1:t−1) =

{
1 if o′ = o
0 if o′ = ¬o (6)

otherwise the conditional probability of making the obser-
vation is looked up in its CPT:

P (Oti=o|ct, e1:t−1) = P (Oi=o|c) (7)

4.3 Configuration State
The degree of disassembly of the system is described by the
configuration state which is completely observable. Each
disassemblable part of the system is represented by a config-
uration variable that can be in one of the modes assembled
or disassembled . These variables relate to each other ac-
cording to a directed acyclic graph describing how the dis-
assemblable parts are attached to each other. For a configu-
ration variable K to be assembled all its children also needs
to be assembled and for K to be disassembled all its par-
ents must be disassembled . An example of this graph for a
hydraulic braking system is shown in Figure 2. For example
if we want to remove the propeller shaft K7 the oil in the
retarder K1 and the oil in the gearbox K4 must be drained.

4.4 Action Model
Each action is modeled with a cost, a set of precondi-
tions, and an ordered set of effects. The cost is a con-
stant corresponding to the amount of time required to per-
form the action and the amount of resources consumed.
The preconditions are conjunctions of expressions of the
type K = k where K is a configuration variable and
k ∈ {assembled , disassembled}. To perform an action, all
its preconditions must be true. The effects can be to repair

K0

Cab

{closed,

tilted}

K1

Ret. oil

{filled,

drained}

K2

Noise shield

{fit,

removed}

K3

Frame supp.

{removed,

fit}

K4

Gearbox oil

{filled,

drained}

K5

Coolant

{filled,

drained}

K6

Prop. valve

{fit,

removed}

K7

Prop. shaft

{fit,

removed}

K8

Ret. oil cool.

{fit,

removed}

K9

Ret. housing

{fit,

removed}

Figure 2: Graph showing dependencies between configura-
tion variables of an auxiliary braking system.

a component, do(C=NF), to observe the value of an ob-
servation variable, observe(O), or to change the mode of a
configuration variable, do(K=k). The effects are ordered
since it makes a difference if an observation is made before
a repair or after. Each action that has effects that change the
mode of configuration variables has preconditions that are
consistent with the constraints defined by the configuration
graph.

5 Simplifying the Model
The observer’s diagnostic engine, D1 in Figure 1, updates
the belief state as described in Section 4.2 using the com-
plete model. We argue that better decisions can be made in
limited time if the planner uses a simplified model that ig-
nores model features with small probabilities. The model
used by the planner’s diagnostic engine D2 is obtained by
applying a filtering function fε with the filtering parameter
ε to the parameters p of the current belief state, the CPT:s in
the BN, and the probabilities of failed repairs:

fε(p) =

0 if p ≤ ε.
p if ε < p < 1− ε.
1 if p ≥ 1− ε.

(8)

Since the probability mass in the belief state must be equal
to 1, it is normalized after filtering. In the belief state we
only have to enumerate the probabilities of faults and com-
binations of faults with a probability greater than zero. After
filtering, the belief state that the planner is initiated with has
a maximum size of 1/ε. Also, when a belief state bt is up-
dated after an observationOt+1

i =o each entry bt+1(c) where
P (Oi=o|c) = 0 can be removed. Because the time required
to update a belief state is dependent of its size, a large ε
speeds up planning. However, the parameter ε must be cho-
sen carefully since an ε too large may cause the planner to
make suboptimal choices because of lost information.

In the heavy vehicle domain the values of all observation
variables from the OBD are observed by the test drive ac-
tion. The planner can avoid treating all possible outcomes
of these observations by clustering them into a single obser-
vation variable that indicates when there exists a faulty com-

ponent. The action with the effect observing this variable is
the function control.

6 The Planner
The task of the planner is to find a troubleshooting strategy,
a conditional plan of actions that, if executed to the end, puts
the system into a state where all configuration variables are
in the mode assembled and the last observation is a function
control with a non-indicating outcome. Any troubleshooting
strategy π can be seen as a mapping π(s) from system states
to actions. The system state st at a given moment t con-
tains sufficient information to describe our knowledge of the
system, i.e. the configuration state, the belief state, and the
accumulated evidence: st = 〈kt,bt, e1:t〉. A troubleshoot-
ing strategy π only has actions for non-goal system states
that are reachable with π from the initial system state that
marks the start point of the conditional plan.

The expected cost of repair of a troubleshooting strategy
π given an initial system state s, ECR(π, s), is the expected
cost of executing π to the end from s:

ECR(π, s) =


0 if s is a goal state.
cost(π(s)) +∑
e∈Eπ(s)

P (e|s)ECR(π, se) otherwise.

(9)
where cost(π(s)) is the cost of performing the action π(s),
Eπ(s) is the set of possible outcomes of π(s), P (e|s) is the
likelihood of having the outcome e in s, and se is the result-
ing system state when π(s) has the outcome e. The value of
cost(π(s)) is taken from the action model and P (e|s) and
se are retrieved by querying D2.

An optimal troubleshooting strategy π∗ is a plan where
the expected cost of repair is minimal. For every reachable
system state s its expected cost of repair is ECR∗(s) where

ECR∗(s) =


0 if s is a goal state.

min
a∈As

(
cost(a) +∑

e∈Ea
P (e|s)ECR∗(se)

) otherwise.

(10)
where As is the set of actions applicable in s. An action a
is applicable in system state s if all its preconditions are ful-
filled and if applying it yields a new belief state b′ different
from the previous belief state b.

6.1 Composite Actions
Actions are only applicable if they lead to a new belief state,
which generally implies gaining new information about the
actual state of a vehicle. However, due to the nature of
the configuration state space, any configuration state can be
reached from any other state – in particular, it must always
be possible to reassemble the entire vehicle, after which any
other configuration state can be reached by disassembling
suitable components. Consequently, allowing the use of ar-
bitrary applicable configuration actions leads to a consider-
ably larger search space.

To avoid this problem, we construct a search space using
composite actions. In any given system state 〈k,b, e〉, an
applicable composite action consists of exactly one action a
with observe or repair effects that changes the belief state
b to a new belief state b′ 6= b, prefixed by the sequence
of configuration actions required to ensure that all precondi-
tions of a are satisfied. Since the configuration state space
is reachable, such a sequence can always be found. Thus,

composite actions can easily be constructed on demand dur-
ing search.

6.2 Search Algorithm
The collection of all possible troubleshooting strategies gen-
erates an AND/OR graph with alternating layers of OR
nodes and AND nodes. Each OR node, including the root, is
labeled with a system state and has one AND child for every
action applicable in this state. Each AND node, in turn, is
labeled with the action that generated the node and has one
OR child for every possible outcome of that action. Using
the simplified diagnostic engine D2 to expand nodes in a for-
ward search of this graph leads to higher performance and a
smaller branching factor.

Suitable algorithms that can find optimal solutions in
AND/OR graphs include AO* variants such as LAO*
(Hansen and Zilberstein 2001) and algorithms based on dy-
namic programming such as RTDP (Barto, Bradtke, and
Singh 1995) and LDFS (Bonet 2006). All of these algo-
rithms have good anytime properties and can provide sub-
optimal partial solutions when searching with limited time.
Because of the limited time, the decision theoretic approach,
where leaf nodes are evaluated by some utility function after
an n-step lookahead search, is also suitable for this problem.

If the filtering parameter is chosen such that ε ≥ ϕi for
all components Ci and repeated observations gain no new
information, the search graph is acyclic when only applica-
ble actions are considered. In the experiments, we therefore
use the classic version of AO* for acyclic AND/OR graphs
as it is described in (Nilsson 1980). LAO* handles cyclic
graphs, but has a more complex cost revision phase. An ad-
missible lower bound heuristic function is used to guide the
search. In the expansion phase, the unexpanded OR node
that can be reached with the highest probability given the
current solution is selected for expansion. When timed out,
no more nodes are expanded. Instead each encountered un-
expanded nodes is considered solved and its cost is set to an
upper bound value of the true cost.

6.3 Heuristic Functions
We use an admissible lower bound heuristic function lb
where the problem that is described by a system state s =
〈k,b, e〉 is relaxed by dividing it into |b| deterministic prob-
lems where the true component statuses c are known. Each
of these deterministic problems can easily be solved opti-
mally with a short sequential plan repairing all faulty com-
ponents and ends with a function control. The cost of this
plan cost(π(c,k)), is weighted by the probability b(c) of
the given component status c to form the lower bound value,

lb(s) =
∑
c∈b

b(c)cost(π(c,k)) (11)

The upper bound heuristic function ub that we use when
timed out is based on work by (Heckerman, Breese, and
Rommelse 1995) and (Langseth and Jensen 2002), but has
been significantly extended to provide support for multi-
ple faults as well as configuration states. This heuristic,
which requires the existence of a function control action,
is an upper bound given that repair actions in the simpli-
fied model always succeed. The value of this heuristic is the
expected cost of repair using a specific troubleshooting strat-
egy, which inspects components in order of descending ratio
between their marginalized probability of being faulty and
the cost of inspecting them in the current system state. In
other words, components that are likely to be faulty and/or

k
i-1

k
i

o
i

r
i

k'
i

k
i

k
i

done

NI

I

NI

I

o
i+1

Figure 3: The fixed troubleshooting strategy of the upper
bound.

cheap to inspect are treated first. After each repair, a func-
tion control is made. If the function control indicates that
further components need repair, the system is taken to the
same configuration state as after the last inspection and the
process is repeated. Each step in this process proceeds as
illustrated in Figure 3 beginning in a system state s with
the configuration state ki−1, where oi is a composite action
that inspects component i and thereby changes the config-
uration state from ki−1 to ki and ri is a composite action
that repairs component i and performs a function control
and thereby changes the configuration state from ki to k′i.
To avoid branching, each step must end in a unique configu-
ration state. Therefore, ki is a composite action that changes
the configuration state back from k′i to ki. If a component
i cannot be inspected, oi is instead a composite action that
repairs the component and performs a function control and
ri is an empty action.

The costs of the actions are calculated recursively given
the configuration states, but the probability that they have
to be performed can be taken directly from the belief state
of the current system state. Thus, the expected cost of this
troubleshooting strategy is

ub(s) =
N∑
i=1

(
poi · cost(oi)+ pri · cost(ri)+ pki · cost(ki)

)
(12)

where N is the number of components with marginalized
probability greater than zero and

poi = P
(N∨
j=i

Cj = F
∣∣∣b) (13)

pri = P
(
Ci = F

∣∣b) (14)

pki = P

(
Ci = F ∧

(N∨
j=i+1

Cj = F
)∣∣∣∣b) (15)

where b is the belief state of s.

7 Empirical evaluation
We have made a series of empirical experiments to study
how the use of a simplified model affects the performance
during troubleshooting. Given a specific limit on the amount
of time allowed for planning, performance is measured as
the average cost of repairing the system when the user fol-
lows the recommendations given by the action proposer. The
models used in the empirical evaluation are smaller than
what a model of an entire heavy vehicle would be. For
smaller models we expect that the effect of the use of a sim-
plified model is greater when the time allowed for planning
is short. Therefore we have restricted it to 5 seconds only.

7.1 Experimental Setup
In the experiments, three different types of models are used:
A true model M∗ representing the true system, a full model
Mσ used by D1 which is a distorted version of the true model
with distortion parameter σ, and a simplified modelMε used

by D2 which is simplified as described in Section 5 using
filtering parameter ε. The model Mσ is created by adding
noise to the parameters in the Bayesian network ofM∗ using
the log-odds normal distribution as described in (Kipersztok
and Wang 2001), i.e. a noise ω ∼ N(0, σ) is added to each
parameter p in the BN of M∗ such that the same parameter
p′ in the BN of Mσ becomes

p′ =
1

1 + (p−1 − 1) · 10−ω
(16)

Figure 4 shows the distribution of the distorted parameter p′
for different values of σ when p = 0.2. When σ grows large
the parameters of the BN may receive values far from their
original ones. For example when σ = 1.0 and p = 0.2, there
is a 10% chance that the new parameter p′ becomes greater
than 0.8.

For each experiment a belief state b∗ is calculated us-
ing M∗ given a set of initial evidence. The following steps
are then iterated 20 times. First an assignment of compo-
nent statuses c∗ is drawn randomly from the distribution b∗
which will be considered as the true state of the system. Sec-
ondly the model Mσ is generated randomly and Mε is cre-
ated from Mσ . Then, until the goal criterion is fulfilled, the
action proposer starts recommending actions where the plan-
ner is allowed 5 seconds to plan. The outcomes of the rec-
ommended actions are drawn randomly in accordance with
M∗ and c∗ and whenever a repair is made c∗ is updated.
After each iteration the costs of all performed actions are
summed.

0

0,02

0,04

0,06

0,08

0,1

0,12

0 0,2 0,4 0,6 0,8 1

0.1
0.5
1.0

Figure 4: The log-odds normal distribution with mean 0.2
and σ = 0.1, 0.5 and 1.0

7.2 Models
For the experiments we have used three different models in
the heavy vehicles domain with varying difficulty. One of
the models is of a real hydraulic braking system of a truck
called the retarder. More information on the retarder and
how it was modeled can be found in (Pernestål, Warnquist,
and Nyberg 2009). This model, M1, has 22 components, 43
observation variables and 10 configuration variables. The
cost of actions that repair components varies from 10 to
2200, from filling up with new oil to replacing the electronic
control unit. Actions with observe effects cost between 40
and 125 and changes of the configuration state cost between
3 and 332. The observation variables have different speci-
ficity and sensitivity. The specificity is the probability that
the variable is non-indicating when none of its parents in
the BN are faulty and the sensitivity is the probability that it
is indicating when at least one of its parents is faulty. The
specificity varies from 0.8–1.0 and the sensitivity from 0.7–
0.99.

The other two models, M2 and M3, are synthetic models
with similar properties as M1. M2 is a small model with

only 5 components, 7 observation variables, and 4 configu-
ration variables. This model is small enough to allow us to
compute optimal and complete conditional plans. M3 is a
large model with 50 components, 52 observation variables,
and 20 configuration variables. We have created this model
to allow us to test the performance of troubleshooting in a
larger and more difficult domain. In this model the observa-
tion variables belonging to the OBD are made less informa-
tive than in M1 and the probability of failed repairs is 0.001.
For M1 and M2 this probability is zero.

7.3 Results
In the first experiment we have studied the effect on the av-
erage cost of repair when the filtering parameter ε is varied
in the range [0, 0.2]. In this experiment σ = 0 and thereby
Mσ = M∗. For the model M2 we have also computed the
optimal expected cost of repair when ε = 0 and the time
allowed for planning is unlimited. The results are shown in
Figure 5.

As expected, filtering has no significant effect on the ex-
pected cost of repair M2, which is sufficiently small that the
negative effects of ignoring some probabilities tend to be of
the same magnitude as the positive effects of being able to
explore a larger part of the AND/OR tree. For the larger
models M1 and M3, though, we can identify an interval of
filtering parameters in which the average cost of repair is
considerably reduced compared to the unfiltered case. As
ε rises above approximately 0.1, the average cost of repair
again begins to rise, as an excessive number of possibilities
are removed from the search space.

In the second experiment we have studied the sensitivity
to modeling errors in the diagnostic model. We have used
ε = 0.0001 and 0.01 and varied the distortion parameter σ
in the range [0,1].

Performance does not deteriorate noticeably when the dis-
tortion is less than 0.2, but as σ increases above 0.5, the
average cost of repair increases significantly, especially for
the larger model M3. This is again an expected result, as a
distortion factor of 0.5 or greater may result in probabilities
very different from the true probabilities in M∗, as seen in
Figure 4.

8 Related Work
Since the troubleshooting problem permits planning and act-
ing to be interleaved, general probabilistic planners such as
POND (Bryce and Kambhampati 2006) and mGPT (Bonet
2005) that generate complete plans are not suitable when
computation time is limited. However, their underlying
search algorithms, LAO* and LDFS respectively, can just
like AO* be used to create partial plans in anytime. These
also have the benefit of being able to find solutions in cyclic
search graphs.

Another strategy of solving complex probabilistic plan-
ning problems is to use replanning as in (Yoon, Fern, and Gi-
van 2007). A fast classical planner is used to find a plan that
leads to the goal in a deterministic relaxation of the prob-
lem. Whenever an unexpected contingency is encountered
the plan is revised and in the absence of dead ends the goal
is guaranteed to be reached. In this domain, finding any ac-
tion that takes us closer to the goal is not a problem because
the upper bound heuristic already implies a conditional plan
that reaches the goal.

In previous work addressing the troubleshooting prob-
lem directly, e.g. (de Kleer and Williams 1992), (Sun and
Weld 1993), (Heckerman, Breese, and Rommelse 1995),
(Langseth and Jensen 2002), the common approach when

time is heavily limited is to do a look-ahead search to decide
the next action. A look-ahead search is effective in making
a decision quickly, but any additional computation time is
not used. When instead using an anytime algorithm as in
this work the available computation time is used more effi-
ciently.

Another approach to speeding up planning for large do-
mains is to reduce the size of the belief state space by re-
stricting it to a set of belief points. This is often done when
solving POMDPs, e.g. (Pineau, Gordon, and Thrun 2003).
For the troubleshooting problem as it is described here we
always have an initial belief state generated from discrete
observations. Therefore the reachable belief state space is
not continuous and this type of approximation has less ef-
fect. The approximations done to the planning model in this
work are done to reduce the size of each belief state instead.

1000

1300

1600

1900

2200

2500

0 0,0001 0,001 0,005 0,01 0,02 0,05 0,1 0,2

(a) Results in model M1

1000

1200

1400

1600

1800

2000

0 0,0001 0,001 0,005 0,01 0,02 0,05 0,1 0,2

(b) Results in model M2

1000

2000

3000

4000

5000

6000

0 0,0001 0,001 0,005 0,01 0,02 0,05 0,1 0,2

(c) Results in model M3

Figure 5: Average cost of repair for different values of ε.
The dotted line is the optimal expected cost of repair for
M2.

9 Conclusion
We have studied the problem of troubleshooting mecha-
tronic systems which is a highly relevant problem for the
industry and an interesting application of planning. In this
problem, planning and acting is interleaved and the time
available for computation is limited. We propose that per-
formance can be improved for large problem instances by
using a simplified model for belief state prediction during
planning. The suggested methodology has been applied to
the representative domain of troubleshooting for heavy vehi-
cles. Empirical experiments indicate that by simplifying the
model used for planning the performance of troubleshoot-
ing is improved when the problem instance is large. This
has the potential to lead to significant cost savings when
troubleshooting with limited time. When modeling a real
mechatronic system one cannot be certain that all parame-

1000

1300

1600

1900

2200

2500

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

(a) Results in model M1

1000

1200

1400

1600

1800

2000

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

(b) Results in model M2

2000

4000

6000

8000

10000

12000

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

(c) Results in model M3

Figure 6: Average cost of repair for different values of σ.
The dotted line is when ε = 10−4 and the solid line is when
ε = 0.01.

ters in the model are correct. The experiments also show
how the performance of the troubleshooting is affected by
errors in the parameters of the diagnostic model.

Acknowledgments
This work is supported in part by Scania CV AB, the
Vinnova program Vehicle Information and Communica-
tion Technology V-ICT, the Center for Industrial Infor-
mation Technology CENIIT, the Swedish Research Coun-
cil Linnaeus Center CADICS, and the Swedish Founda-
tion for Strategic Research (SSF) Strategic Research Center
MOVIII.

References
Barto, A. G.; Bradtke, S. J.; and Singh, S. P. 1995. Learn-
ing to act using real-time dynamic programming. Artificial
Intelligence 72(1-2):81–138.
Bonet, B. 2005. mGPT: A probabilistic planner based on
heuristic search. Journal of Artificial Intelligence Research
24:933–944.
Bonet, B. 2006. Learning Depth-First Search: A Unified
Approach to Heuristic Search in Deterministic and Non-
Deterministic Settings, and its application to MDPs. In
Proceedings of ICAPS’06.
Bryce, D., and Kambhampati, S. 2006. Sequential Monte
Carlo in probabilistic planning reachability heuristics. In
Proceedings of ICAPS’06.
de Kleer, J., and Williams, B. C. 1992. Diagnosis with
Behavioral Modes. In Readings in Model-based Diagnosis.
San Francisco, CA: Morgan Kaufmann Publishers Inc.
Hansen, E. A., and Zilberstein, S. 2001. LAO* : A heuris-
tic search algorithm that finds solutions with loops. Artifi-
cial Intelligence 129(1-2):35–62.
Heckerman, D.; Breese, J. S.; and Rommelse, K. 1995.
Decision-theoretic troubleshooting. Communications of
the ACM 38(3):49–57.
Jensen, F. V. 2001. Bayesian Networks. New York, NY:
Springer-Verlag.
Kipersztok, O., and Wang, H. 2001. Another Look at Sen-
sitivity of Bayesian Networks to Imprecise Probabilities. In
Proceedings of the 5th International Workshop on Artificial
Intelligence and Statistics.
Langseth, H., and Jensen, F. V. 2002. Decision theoretic
troubleshooting of coherent systems. Reliability Engineer-
ing & System Safety 80(1):49–62.
Nilsson, N. J. 1980. Principles of Artificial Intelligence.
San Francisco, CA: Morgan Kaufmann.
Pearl, J. 2000. Causality. Cambridge University Press.
Pernestål, A.; Warnquist, H.; and Nyberg, M. 2009. Model-
ing and Troubleshooting with Interventions Applied to an
Auxiliary Truck Braking System. In Proceedings of 2nd
IFAC workshop on Dependable Control of Discrete Sys-
tems.
Pineau, J.; Gordon, G.; and Thrun, S. 2003. Point-based
value iteration: An anytime algorithm for POMDPs. In
Proceedings of IJCAI’03.
Sun, Y., and Weld, D. S. 1993. A framework for model-
based repair. In Proceedings of AAAI-93.
U.S Environmental Protection Agency. 2009. On-Board
Diagnostics (OBD). www.epa.gov/obd.
Yoon, S. W.; Fern, A.; and Givan, R. 2007. Ff-replan: A
baseline for probabilistic planning. In ICAPS, 352–.

