
Computational Thinking for All – An Experience Report on
Scaling up Teaching Computational Thinking to All Students in

a Major City in Sweden
Fredrik Heintz

Linköping University, Sweden
fredrik.heintz@liu.se

Linda Mannila
Linköping University, Sweden

linda.mannila@liu.se

CCS CONCEPTS
• Social and professional topics→ Computing education; K-
12 education; Computational thinking;

KEYWORDS
K-9 education, teacher professional development, digital compe-
tence, programming, computational thinking

ACM Reference Format:
Fredrik Heintz and Linda Mannila. 2018. Computational Thinking for All
– An Experience Report on Scaling up Teaching Computational Thinking
to All Students in a Major City in Sweden. In SIGCSE ’18: SIGCSE ’18: The
49th ACM Technical Symposium on Computer Science Education, February
21–24, 2018, Baltimore , MD, USA. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3159450.3159586

1 INTRODUCTION
The increased exposure to technology raises a need for under-
standing how the digital world works, in the same manner as
we get to know the physical world. Consequently, during recent
years, we have witnessed an active discussion surrounding the
role of programming and computer science (CS) for everyone (see
e.g. [6, 9, 13]). As a result, an increasing number of countries have
introduced or are in the process of introducing CS in their school
curriculum. For instance in Europe, the majority of countries (17 out
of 21) taking part in a survey conducted by the European Schoolnet
in 2015 reported doing so [1]. The way in which this is accomplished
varies. Some countries focus on K-12 as a whole, whereas others
primarily address either K-9 or grades 10-12. Some countries have
introduced CS as a subject of its own (e.g. Computing in England
[3]) while others have decided to integrate it with other subjects,
by for instance making programming an interdisciplinary element
throughout the curriculum (e.g. Finland [5]). The role of CS and in-
formation technology in school curricula has – in general – varied
over the years, placing focus on different areas, ranging from using
technology as a tool to learning how the computer works and how
to use it to create programs. This has also been the case in Sweden.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE ’18, February 21–24, 2018, Baltimore , MD, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5103-4/18/02. . . $15.00
https://doi.org/10.1145/3159450.3159586

Introducing new content in curricula affects many teachers.
When the content is new, such as programming and digital com-
petence, most of the teachers affected have no prior experience
in teaching the content. Consequently there is a large need for
professional development and training initiatives. In this paper we
present our experience from a three year long project, aiming at
training Swedish teachers (grades 1-9) in teaching programming
and computational thinking.

Although the Swedish government decided on including pro-
gramming in the curriculum as late as in March 2017, the discussion
on this had already been vivid since around 2014. To those involved
it was more a question of when this would happen, rather than if.
As a result, many projects focusing on programming and digital
competence at primary and lower secondary school, were initi-
ated already several years ago. For instance, Sweden’s innovation
agency Vinnova funded several such projects already in 2014. One of
these projects was “A model for computational thinking in Swedish
primary school”, which received renewed funding under the new
project name “Computational thinking for all” in 2016. Both are
lead by the authors of this paper.

The first project aimed at introducing programming and com-
putational thinking to a small group of teachers, who then were
to implement the ideas and plans created in their own classroom.
The later project, built on the previous one, now involving a larger
group of teachers, who were not only to implement the ideas in
their own classroom, but also to spread it to other teachers at their
schools.

Both projects took place in Sweden’s fifth largest city, Linköping,
as a collaborative effort between the Computer Science Department
at Linköping University and LinköpingMunicipality. The university
was responsible for the project and all the project activities, while
the municipality took care of the administration at the city level
and the contact with the teachers.

The rest of the paper is structured as follows. We start in Section
2 with a background on digital competence, programming and
computational thinking in Swedish education. In Section 3, we
present the first part of our project, the pilot study. In Section 4, the
second and larger part of the project is presented. In Section 5, we
discuss the lessons learned from the projects and in Section 6, we
draw conclusions and give some recommendations for the future.

2 DIGITAL COMPETENCE IN SWEDISH K-9
EDUCATION

The role of computer science and IT in Swedish schools has varied
throughout the years [10]. In fall 2015, the Swedish government
gave the National Agency for Education (Skolverket) the task of

https://doi.org/10.1145/3159450.3159586
https://doi.org/10.1145/3159450.3159586
https://doi.org/10.1145/3159450.3159586

preparing a proposal for K-12 education on how to better address
the competences required in a digitalized society. In June 2016,
Skolverket submitted a proposal putting a much stronger emphasis
on digital competence and introducing both digital competence and
programming as interdisciplinary traits. It also provides explicit
formulations in subjects such as mathematics (programming, al-
gorithmic thinking, and problem solving), technology (controlling
physical artifacts) and social sciences (fostering aware and criti-
cal citizens in a digital society). In March 2017, the government
accepted the proposal, which has to be implemented by fall 2018
at the latest. In October 2017, the government also decided on a
National IT Strategy which was significantly weaker than the one
Skolverket proposed in June 2016.

The Swedish school debate has in recent years circled around
poor PISA results, difficulties in providing all children and youth
with equal opportunities, and about modernizing the curriculum in
order to meet future job market requirements. As "programmer"
is the most common job in the capital Stockholm, and the need
for software professionals is estimated to increase heavily both in
Sweden and internationally, some have argued that the education
system should teach programming in order to prepare young people
for these jobs. Others, the authors of this paper included, believe
that school should offer all students general preparation for any
kind of work, and have therefore argued for digital competence as
part of all-round-learning, including computational thinking as a
set of general problem solving skill useful for all in the spirit of
Jeannette Wing [14].

In 2012, the Swedish government established the Digitalization
Committee (Digitaliseringskommissionen) with the task of provid-
ing guidelines for the future of work related to digitalization in
Sweden. One of the committee’s reports [4] highlights the need for
the school system to put larger focus on digital competence. The
report explicitly points out the need for including programming in
the curriculum as part of existing subjects. As a result of the dis-
cussion around schools, programming and CS as part of all-round
learning, persons representing school, universities and industry
engaged in voluntary initiatives to help overcome the lack of CS
in Swedish basic education. Teacherhack (http://teacherhack.com)
is a non-profit organization aiming at inspiring “teachers to hack
the current curriculum (Lgr 11) to include the essential skills that
students need in a digital world”. The Teacherhack website provides
reviews of all subjects in Lgr 11 with practical advice on how the
current texts can be interpreted in order to allow for a more active
inclusion of content and practices related to CS, programming and
the Internet, as well as security and integrity issues.

Extracurricular activities such as CoderDojos, code camps, after-
school clubs and makerspace activities are organized to give chil-
dren and youth access to informal learning opportunities. Teachers
throughout the country are experimenting and sharing experiences
from introducing programming in different subjects, ranging from
languages to handicraft and music. Heintz et. al. [8] present an
overview of ongoing activities related to CS and computational
thinking in Sweden, highlighting several projects that show how
one can introduce CS already within the current curriculum.

In September 2015, the Swedish government gave the National
Agency for Education (Skolverket) the task of presenting a national
IT strategy for the Swedish school system. As one part of this work,

Skolverket was to update the curricula for primary (K-9) and upper
secondary education (grades 10-12). The government explicitly
stated that the curriculum should 1) strengthen students’ digital
competence and 2) introduce programming at K-9 level.

In March 2017, the Swedish government accepted Skolverket’s
proposal. The revised curriculum will be mandatory starting in fall
2018, but schools have the option to introduce it already in fall 2017.

The revision introduces a new general section on digital compe-
tence. Skolverket acknowledges that the meaning of digital compe-
tence changes over time due to changes in society, technology and
available services [11]. Skolverket’s definition is based on the set of
key competences developed by the European commission [12] and
the work by the Digitalization Committee [4]. In the Swedish cur-
riculum, digital competence includes four aspects: 1) understanding
how digitalization affects individuals and society, 2) understand-
ing and knowing how to use digital tools and media, 3) critical
and responsible usage of digital tools and resources, and 4) being
able to solve problems and implement ideas in practice. In a sup-
plemental material [11], Skolverket stresses that helping students
develop their digital competence is a cross-curricular responsibility
and aspects of digital competence should hence be covered in all
subjects. Programming is considered part of this definition. The
supplemental material clarifies that focus is not on coding skills,
but on programming as a pedagogical tool and a problem solving
process including many phases. Programming should also be seen
in a wider context, including “creation, controlling and regulating,
simulations and democratic dimensions" [11, p.10, freely translated].
Skolverket emphasizes the importance of seeing programming in
this wider perspective both as a basis for teaching and as part of all
four aspects of digital competence.

For a more detailed overview see [7].

3 THE PILOT STUDY
The first project was a pilot study in the spring of 2015. It involved
10 teachers in different subjects and from different schools, who
had been selected by the municipality. Their background varied,
from those that had been working with Bebras (http://bebras.org)
and Hour of Code (http://code.org) to those that had absolutely no
previous experience. The study took place during one semester and
included three 3 hour workshops. The goal was for each teacher
to carry out at least three activities with their students. In the end
more than 300 students from more than 14 classes from grade 1 to
grade 9 participated in computational thinking activities as part of
the pilot study.

The first workshop was a lecture style introduction to compu-
tational thinking, which gave a motivation to why it is important,
an introduction to what it is, concrete examples of computational
thinking in different subjects, both with and without computers,
and an introduction to programming using ScratchJr/Pyonkee. To
introduce computational thinking, tasks from the international Be-
bras challenge were used. To introduce programming without a
computer, material from CS Unplugged [2] was used. To introduce
programming we used Hour of Code and ScratchJr/Pyonkee. The
fact that these resources were easily available simplified our work
notably.

http://teacherhack.com
http://bebras.org
http://code.org

The second workshop was a workshop style discussion around
how to introduce computational thinking in the participating teach-
ers’ particular subjects. The teachers were divided into groups based
on their subject. There were three groups: Swedish/language teach-
ers, math teachers, and science/technology teachers. Each group
was given the explicit task to come up with at least two activities
related to computational thinking that they could carry out in their
classes in the comingmonth: one unplugged activity and one involv-
ing a tablet or a computer. After the group discussions, the whole
group discussed the suggested activities together. The workshop
ended with each teacher having to commit to doing one unplugged
activity, one Hour of Code session, and one programming activity
using a digital device (tablets were more common than computers)
before the third and final workshop.

At the third workshop the teachers presented what they had
done in their classes and we discussed their experience and lessons
learned. The teachers also filled out an evaluation form for each
activity they had completed. In total we received information about
17 activities. One example of an activity that a teacher developed
introduced a treasure hunt covering angles and fractions in math-
ematics. The students were given a grid map of the school yard
and a sequence of instructions on the form “walk 1 3/4 squares
forward”, “turn 270 degrees to the right”, etc. They then had to
calculate where the treasure was hidden before actually executing
the program to see if they could find the treasure. This is a good
example of combining developing computational thinking skills
with outdoor activities.

The final review of the pilot study revealed four major lessons
learned:

(1) The teachers were in general positive and felt that the train-
ing made it possible for them to adapt the material provided
and run an activity as part of their own teaching. Never-
theless, they only did this once and as far as we know the
teachers did not continue to develop more activities after
the pilot study was over.

(2) The teachers reported that other students than the usual
suspects did best on the activities. Students that were usually
quiet and low key were more excited and engaged in the
activities than normally.

(3) According to teacher’s experience, Scratch and ScratchJr
worked well at lower grade levels, while students in grade
7-9 were not motivated by the cute graphics and cartoons.
One teacher used Code Combat (http://codecombat.com/)
instead together with grade 9 students, which he reported
worked well.

(4) The students were in general positive towards the activities
and engaged in them.

The conclusions from the pilot study are that it was definitely
possible to get teachers to introduce computational thinking in
their teaching with a limited amount of professional development,
as long as it was directly connected to their subject. However, it
did not seem to get a lasting effect. This seems to be a general
observation, it is relatively easy to do one or a few activities, but it
is much harder to make it part of the standard practice and integrate
it into everyday teaching.

4 CT FOR ALL
As the conclusions from the pilot study were positive, while it was
clear that this only affected a small number of students, the continu-
ation project focused on addressing the question on scaling up. The
basic question is: Now that we know how to get individual teachers
to start including computational thinking in their classes, how can
we scale this up in both the number of teachers/students and also
in the regularity/longevity of the activities. The general plan for
the project was to provide professional competence development
to at least one teacher at each school and to build up a central
support function within the municipal administration to support
the teachers. The goal of the project was that 80% of all students in
the municipality should have at least one activity per month related
to computational thinking.

4.1 Organization
The municipality has 50 schools and about 14000 students in com-
prehensive education (grade 1-9) organized in 5 school districts. Due
to the hierarchical organization, the communication from the cen-
tral municipal administration is always through the school district,
which can decide whether to forward information to the princi-
pals, or not. Each principal decides whether information should be
forwarded to the teachers and, if so, whom to inform. All commu-
nication from the project to the teachers were taken care of by the
project’s municipality representative, who is also a teacher.

The original plan was to build an organization with one teacher
from each school and a support group within the central admin-
istration consisting of one representative from each of the school
districts and one representative from the central education develop-
ment office (who would also be responsible for the whole project).
We as the university representatives were outside the organiza-
tion as our role was to bootstrap the change. Our responsibility
was to provide teacher training, expert advice and to study the
introduction of computational thinking in the schools.

Even though the central municipal administration has been very
supportive and positive we have not managed to form a central
support group and the representative from the municipality has
been replaced three times during the project period of three years.
Based on this experience, the school organization appears to be
rather volatile with people constantly changing positions, but it
could also be a coincidence that the municipality was in a shift of
staff.

Luckily, we have managed to get representatives from more than
40 out of the 50 schools, which means that we actually reach at
least 80% of the schools. Initially we got about 30 teachers in the
spring of 2016, which was increased to about 70 teachers from the
fall of 2016 after the head of education had sent out a request to
all the schools. The group was mostly unchanged during fall 2016
and spring 2017, but the engagement and activity of these teachers
varied substantially. Normally about 40 of the teachers showed up
to the workshops. Finding suitable workshop times and getting
teachers to commit is both hard and important.

4.2 Workshops and Activities
The workshops have been the backbone of the project. We have
arranged three half-day workshops per semester at the university,

http://codecombat.com/

resulting in total 12 workshops during 2016 and 2017. Each work-
shop has had a theme and a program including both information
or new material from us and discussions to activate the teachers.
We have also given the teachers assignments to do between the
workshops.

In addition to the workshops we have also encouraged partici-
pation in events such as Bebras and Hour of Code. We have also
developed a handbook with computational thinking activities and
an introductory material for teaching computational thinking. This
material is freely available in Swedish as it is designed for Swedish
teachers.

Workshop Program.

(1) Introduction to computational thinking, overview of the
proposed new curriculum, introduction to Bebras, Hour of
Code, and Scratch Jr. Discussion: What support do you need
to implement the new curriculum?

(2) Assessment of computational thinking skills. Discussion:
How to assess digital competence and programming in the
new curriculum?

(3) Introduction to our handbook on computational thinking.
Discussion:Now that you have learned the basics, how should
you proceed? This was the first workshopwith the full group,
so we had a parallel session for the new teachers, where we
summarized the content of the first two workshops to bring
them up to speed.

(4) Bebras and models for introducing programming and com-
putational thinking in K-9. Hands on programming exercises
for those that were new to programming and a seminar on
the computer science behind Scratch for the more experi-
enced.

(5) The results from Bebras and introduction to Hour of Code.
Programming in Python for those with programming experi-
ence and a hands on introduction to Hour of Code for those
that were new to programming.

(6) Presentation of the introductory material for computational
thinking. Discussion: Experiences from trying out Bebras and
Hour of Code, how can these resources be used in teaching?

(7) Presentation of how others have worked with the new cur-
riculum. Workshop on Micro:bit (http://microbit.org) and
Swift Playgrounds (http://apple.com/swift/playground). Dis-
cussion: What do you think of the introductory material to
computational thinking and how does it work in your class?

(8) From block programming to textual programming and pro-
gramming and algorithms in mathematics. Discussion: How
will you introduce programming in your teaching this fall?

(9) Progression and more on algorithms in mathematics. Discus-
sion: What should students know after grade 3, grade 6 and
grade 9? (The Swedish curriculum lacks details, so it is up to
teachers to interpret the curriculum.)

(10) Spreading to other teachers at the same school. Discussion:
How to spread the workshop contents and lessons learned
to other teachers, get all teachers involved in order to have
continuity at school level (instead of the level of digital com-
petence teaching at a given school being dependent on a
single teacher personally driving the change)?

(11) Lessons learned and moving forward. Discussion: How will
you continue the work now that you have to work more
independently?

4.3 Intro to Computational Thinking Package
To provide the teachers with a joint basic material on how to in-
troduce computational thinking, we put together a small resource
package. The material defines the main computational thinking
concepts, provides examples of concrete activities and exercises that
the teacher can use in his or her classroom, and presents a model
for how to assess the attitude and maturity of the computational
thinking of the students.

The material covers five concepts:
(1) step by step instructions (or how the computer works);
(2) detecting and finding patterns;
(3) breaking down a problem into smaller parts;
(4) abstraction and representation; and
(5) algorithms and programming.

The progression basically follows these concepts, so teachers start
with the first and work through them one by one.

The material also considers seven attitudes:
(1) dealing with complexity;
(2) dealing with ambiguity and open problems;
(3) adapting solutions to new situations;
(4) evaluating own and others solutions;
(5) experimenting and troubleshooting;
(6) grit; and
(7) communication and collaboration.

The learning objectives of the material, when used in teaching, is
for students to:

• know that a computer does things step-by-step;
• have experience working with different types of problems
where he/she has benefited from or has developed concepts
and attitudes related to computational thinking;

• recognize computational thinking as a problem solving pro-
cess together with computers that are based on a set of
concepts and attitudes; and

• be able to assess his/her own level of computational thinking.
The material consists of a set of slides presenting the concepts and
attitudes, in addition to two matrices. The first matrix defines the
concepts. In addition, concrete activities and examples related to
math, technology and other subjects are provided for each con-
cept. The activities are either Bebras tasks or activities from our
handbook on computational thinking activities. Most activities can
be carried out without a computer. The second matrix provides
an assessment tool where each attitude progresses through three
stages based on work by Phil Bagge, Mark Dorling, and Thomas
Stephens (http://code-it.co.uk/attitudes). Each step is in the form
of a concrete question for the student to answer.

4.4 Impact
Measuring the number of students that have participated in the
project is challenging. The most specific figure we have is the num-
ber of students that participated in the Bebras contest. In the 2016

http://microbit.org
http://apple.com/swift/playground
http://code-it.co.uk/attitudes

contest 3756 students from 47 different schools in Linköping partic-
ipated. This corresponds to close to 30% of the students in grades
2-9, which is three times as many as the year before when the
corresponding number was 1277 students. The Linköping students
represented more than 40% of all students that participated in Be-
bras in grade 2-9 at a national level in Sweden. This shows that
the project has had a large impact. Unexpectedly, the number of
students that participated in Bebras in 2017 fell to 2209 students
from 30 different schools. The comments we got indicates that the
Bebras tasks are very popular but that the schools do not like to
participate in the contest itself. In addition to Bebras, many stu-
dents participated in the Hour of Code, but for that activity we lack
concrete statistics.

The informal impact is very high as almost all schools in Linköping
participate in the project and we have been invited to present the
work to all school leaders in the municipality. It is very likely that
this effort will be the main effort by the municipality to introduce
the new curriculum.

5 LESSONS LEARNED
The project has provided many lessons learned.

As mentioned above, the project was organized around a mu-
nicipality representative taking care of all direct contact with the
teachers. This was challenging from two perspectives. First, teach-
ers changing jobs or tasks at their work place led to the municipality
representative changing several times throughout the project. This
makes it difficult to have continuity in the project even if the rep-
resentatives have all been very good and active. Second, having
one person in charge of all teacher contacts complicated our com-
munication with the teachers, as everything had to go through
the middleman. One important lesson learned is hence to have an
active coordinator at the municipality level, both for teachers who
need somebody they can easily contact and for us as the university.
Another, but closely related, observation is that it can be rather
difficult to get communication across in large organizations.

Another lesson learned is related to teacher activity and the role
played by school leadership. Regardless of the current and highly
relevant topic of digitalization in schools, teachers were not able to
prioritize the project. There is a need for a clear vision at the lead-
ership level and resources that make it possible for teachers to not
only take part in a limited number of workshops, but also to learn
more and experiment on their own and together with colleagues. It
is quite surprising to us that even if the new curriculum is decided
and our program is available for free for the teachers the interest
from school leaders is quite low (this could be a consequence of
the difficulty of communication as we have no direct contact with
school leaders either).

While introducing the basics of programming and algorithms can
be considered rather easy, moving beyond unplugged programming,
apps, Hour of Code and simple block based programming is not
as straightforward. Questions such as what to use after Scratch or
how to integrate programming in mathematics and other subjects
in grades 7-9, are not as easy to answer. The suggestions made by
us often were seemed as too advanced and hard. One lesson learned
is hence that progression is important in many respects and that
there is a need for teacher centric research in order to learn more

about suitable ways to integrate programming at different grade
levels. In Sweden, comprehensive school is organized in three main
stages: K-3, grades 4-6 and grades 7-9, and it is between these stages
that students shift schools and teachers. It is therefore crucial to
have a joint progression, to make it easier for teachers at different
levels both in order to know what to expect from students when
they transition to their stage and to know what minimal level they
have to reach before moving on to the following stage.

The question "what to do now that we know Scratch" is also not
a straightforward one. Does it imply that the person knows how
to use the tool Scratch or actually how to program in Scratch? For
most teachers, the question seems to imply the former. They have
used the tool quite extensively and feel that they know how to use
it, therefore they believe they know how to program. This claim is
based on our experience with assuming that the teachers actually
had learned to program. For those teachers, who felt that they
needed to learn more advanced topics, we tried to introduce text-
based programming in a more university style manner. The first
attempt was to take Scratch as the starting point, go through the
different blocks and constructs and explain the computer science
behind them. This turned out to be too complex. The second attempt
was to take a subset of the introductory lecture in our university
Python course, explaining the basics of programming in Python,
and then do a hands on exercise writing a function which computes
the maximum of two numbers. This went much better than the first
attempt, but it was still clear that the step from block programming
to text-based programming is quite big. The step was made even
bigger by the fact that many schools in the region have opted for
tablets, and teachers had to do all the programming on an iPad.
From this we draw two conclusions. First, going from block-based
programing to text-based programming is hard. Second, teachers
who express that they are ready to move from Scratch probably do
not need another tool or programming language, but rather more
experience in developing interesting tasks and problems, where
students can use Scratch, or some other block-based environment,
as a tool solve the task or implement an idea.

The teachers participating in our projects had quite heteroge-
neous backgrounds, as some did not have any prior experience in
programming, while others had already done quite a lot, both on
their own and together with their students. This did not cause any
problems during the workshops, as the participants were divided
into groups with different program based on their background.
However, making all activities suitable to everyone, regardless of
subject taught and prior background, requires significant resources.

Most teachers in the project have done activities with their class
and many have done activities with other classes at their school,
but it is much harder to spread it to other teachers at their school.
Some of the reasons expressed by the teachers are:

• lack of time;
• lack of mandate, they only have the mandate to participate
in these activities not to take their own initiatives at their
schools;

• lack of school leadership, in some cases they didn’t even
have a principal as a new was under recruitment; and

• lack of a clear idea on how to introduce programming and
digital competence in a sustainable manner.

6 CONCLUSION
In this paper we have described our experience from introducing
programming and computational thinking at a large-scale in a
Swedish city. The goal was to reach at least 80% of all the schools and
at least 80% of all the students. The plan was to provide professional
training to the participating teachers the first semester, support
them in carrying out a series of activities during the second semester
and then support them to spread their knowledge to their colleagues
during the third semester. The goal turned out to be too optimistic.
First, it took longer to recruit teachers to the project so we had
to restart the professional training the second semester. Second,
getting the teachers to activate their colleagues requires both the
mandate and the support from their local school leaders, which was
outside of our control. Third, large organizations are constantly
changing both in terms of directives and in terms of people, so
finding a stable backbone is quite hard.

The main conclusions of the project are:
• it is possible to provide good teacher training with relatively
modest efforts;

• it is possible to get these teachers to carry out activities in
their own classrooms and usually also in other classes;

• the teachers are usually good at adapting the material we
present and turn it into their own lessons; and

• it is much harder to get the teachers to do their own lo-
cal teacher training and to get more local teachers at their
schools to adopt the new material as it requires an explicit
mandate from the local school leaders.

An observation that might be important is that it seems that the
teachers who learn Scratch (or other similar languages), learn it as a
tool not as a realization of common programming concepts. When
they have learned the tool, they feel that they know programming,
but when you start discussing the programming concepts or show
how to do the same thing in another language, such as Python, they
do not really follow. Scratch in all its greatness also seems to lure
people into believing that they know more than they do, which is
something we have to be aware of and try to mitigate.

If we were to carry out the project again, the most important
thing we would do differently would be to explicitly get the com-
mitment of the principals and the school leaders at the highest level.
Having their explicit support would greatly empower the teachers
to get more done at their schools and feel that they have a clear
mandate and resources needed to inspire to change.

Overall we are satisfied with the project as we have gained
valuable and important insights, and we know for a fact that we
have reached more than 80% of the schools and at least 30% of all
the students in city, probably significantly more.

7 ACKNOWLEDGMENTS
This work is partially supported by Vinnova. We would also like
to thank Linköping municipality and all the teachers that have
contributed to the project.

REFERENCES
[1] Anja Balanskat and Katja Engelhardt. 2015. Computing our future. Computer pro-

gramming and coding. Priorities, school curricula and initiatives across Europe.
(2015).

[2] Tim Bell, Ian H. Witten, and Mike Fellows. 2015. CS Unplugged – An enrichment
and extension programme for primary-aged students.

[3] Department for Education. 2013. National Curriculum
in England: Computing programmes of study. (2013).
https://www.gov.uk/government/publications/national-curriculum-in-england-
computing-programmes-of-study.

[4] Digitaliseringskommissionen. 2014. En digital agenda i människans tjänst : en
ljusnande framtid kan bli vår : delbetänkande. Technical Report SOU 2014:13.

[5] Finnish National Board of Education. 2014. Perusopetuksen opetussuunnitelman
perusteet 2014. (2014).

[6] Fredrik Heintz, Linda Mannila, and Tommy Färnqvist. 2016. A Review of Models
for Introducing Computational Thinking, Computer Science and Computing in
K-12 Education. In Proc. IEEE Frontiers in Education Conference (FIE).

[7] Fredrik Heintz, Linda Mannila, Lars-Åke Nordén, Peter Parnes, and Björn Regnell.
2017. Introducing Programming and Digital Competence in Swedish KâĂŞ9
Education. In Proc. ISSEP.

[8] Fredrik Heintz, Linda Mannila, Karin Nygårds, Peter Parnes, and Björn Regnell.
2015. Computing at School in Sweden – Experiences from Introducing Computer
Science within Existing Subjects. In Proc. ISSEP.

[9] Informatics Europe and ACM Europe. 2015. Informatics in Education: Europe
Cannot Afford to Miss the Boat. (2015). Report of the joint Informatics Europe
and ACM Europe Working Group on Informatics Education.

[10] Lennart Rolandsson and Inga-Britt Skogh. 2014. Programming in school: Look
back to move forward. Trans. Comput. Educ. 2, 14 (2014), 12:1–12:25.

[11] Skolverket. 2017. Få syn på digitaliseringen på grundskolnivå. (June 2017).
[12] Stephanie Carretero Gomez and Riina Vuorikari and Yves Punie. 2017. DigComp

2.1: The Digital Competence Framework for Citizens with eight proficiency levels
and examples of use. (2017).

[13] White House. 2016. Computer Science for All. (2016).
https://www.whitehouse.gov/blog/2016/01/30/computer-science-all.

[14] JeanetteWing. 2006. Computational thinking. Commun. ACM 49, 3 (2006), 33–35.

	1 Introduction
	2 Digital Competence in Swedish K-9 Education
	3 The Pilot Study
	4 CT for all
	4.1 Organization
	4.2 Workshops and Activities
	4.3 Intro to Computational Thinking Package
	4.4 Impact

	5 Lessons learned
	6 Conclusion
	7 Acknowledgments
	References

