
The Design of Sweden’s First 5-year
Computer Science and Software Engineering Program

Fredrik Heintz
Dept. of Computer and Information Science

Linköping University
fredrik.heintz@liu.se

Inger Erlander Klein
Dept. of Electrical Engineering

Linköping University
inger.klein@liu.se

ABSTRACT
In 2013 Linköping University started the first 5-year engineering
program in Computer Science and Software Engineering in Swe-
den. The goals of the program are to provide a holistic perspective
on modern large scale software development, to provide a deep and
broad understanding of computer science and computational think-
ing, and encourage innovation and entrepreneurship. The student
response has been very good with more than 600 applicants to the
30 slots, of which more than 130 had this program as their first
choice among all programs in Sweden. In this paper we present
the goals, the design principles, and the resulting program. The
ACM/IEEE CS Curricula has been used to make sure that the pro-
gram provides a solid foundation in Computer Science. Three ped-
agogical ideas that we have used are (1) project courses to integrate
theory and practice as well as provide experience with the most
common form of working in industry; (2) courses that cover mul-
tiple programming paradigms and languages as well as multiple
software development methodologies so that the students are pre-
pared to take on the continual changes we know will come; and
(3) a special course in engineering professionalism with groups of
students from the first three years together reflecting on topics re-
lated to being a professional engineer. The paper concludes with
a discussion about some important aspects such as computational
thinking and the relation to the ACM/IEEE CS Curricula.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education

1. INTRODUCTION
We live in a changing world. Our society becomes more and

more dependent on computers and software. The pace of change
is steadily increasing, with technology as one important driving
factor. To manage the pace and the complexity when develop-
ing sophisticated large-scale software intensive systems we need
software engineers with the appropriate knowledge, skills and atti-
tudes. To meet this challenge Linköping University has developed
Sweden’s first 5-year Master of Science in Engineering program in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE’14, March 3–8, 2014, Atlanta, GA, USA.
Copyright 2014 ACM 978-1-4503-2605-6/14/03 ...$15.00.
http://dx.doi.org/10.1145/2538862.2538925.

Computer Science and Software Engineering (in Swedish Civilin-
genjör Mjukvaruteknik).

In this paper we describe the vision, goals, and design of the
program. Effort has been put in to formulate goals and principles
that can be used by other similar programs as well, even though the
circumstances and realization may significantly differ. This should
also make the presentation more interesting to a larger audience.
We then discuss some important aspects such as computational
thinking and the relation to the ACM/IEEE CS Curricula, which
is also used to compare related programs in Sweden.

One reason for writing this paper is to invite discussion and con-
structive criticism around the question on how to design a modern
computer science and software engineering program for the chang-
ing world we live in. We therefore encourage you to contact us if
you have questions or comments.

2. ENGINEERING EDUCATION IN SWEDEN

2.1 5-year Master of Science in Engineering
programs

The Swedish Master of Science in Engineering (Civilingenjör)
programs are professional degrees consisting of 5 years of stud-
ies. Normally the students are awarded both a Civilingenjör de-
gree, a Bachelor of Science in Engineering degree, and a Mas-
ter of Science in Engineering degree. There are a number of na-
tional requirements these programs must fulfil including engineer-
ing skills such as the ability to conceive, design, implement and
operate systems, but also other aspects for example communica-
tion skills, team work, and aspects regarding social sciences such
as the role technology has in society considering both ethical and
cultural aspects. The entrance requirement is a high school degree
with math level E, physics level B, and chemistry level A. In Aus-
tria, Finland, and Greece, as well as previously in Germany, the
corresponding degree is called Diploma Engineer. All engineering
programs share a common core of problem solving, mathematics
and natural sciences.

2.2 Computer Related Programs at Linköping
University

Linköping Institute of Technology, which is part of Linköping
University, currently has five programs related to computing be-
sides the new program. There are two 5-year Master of Science in
Engineering programs, Computer Science and Engineering (Civilin-
genjör Datateknik) and Information Technology (Civilingenjör In-
formationsteknologi), one 3-year Bachelor of Science in Engineer-
ing program in Computer Engineering (Högskoleingenjör Datateknik),
one 3-year Bachelor of Science program called Innovative Pro-
gramming (Innovativ programmering), and one 2-year Master of

Science program in Computer Science. Here we focus on the 5-
year engineering programs. The 5-year engineering program in
Computer Science and Engineering covers hardware, software and
the interplay, while Information Technology focuses on infrastruc-
ture needed to transmitt, structure and present information.

2.3 Related Programs in Sweden
The other institutes of technology in Sweden such as The Royal

Institute of Technology (KTH) and Chalmers also have related 5-
year Master of Science in Engineering programs. Most of them
are closer to computer engineering than to computer science. The
programs that are the closest are the 5-year Master of Science in
Engineering programs in Computer Science and Engineering at
KTH and in Information Technology at Chalmers. Even though
the programs have similarities there are important differences. For
example, the IT program at Chalmers focuses more on Software
Engineering than on Computer Science and mainly learn a single
programming language (Java) rather than give a broad foundation
of many different languages.

In 2011 a study was conducted that compared 10 of the Swedish
5-year Master of Science in Engineering programs in Computer
Science relative to the ACM CS Curricula 2008 [4]. One conclu-
sion from the study is that there is a very wide variate of programs,
ranging from hardware oriented to software oriented, from theo-
retical to more applied, and from general engineering programs to
more focused computer science programs. The new Computer Sci-
ence and Software Engineering program is software oriented, both
theoretical and applied, and more focused on computer science than
on general engineering even though it has significant computer and
electrical engineering content. In Section 5 the new program is
compared to these 10 programs.

3. VISION AND GOALS
The vision for the program is to educate the best software engi-

neers in the world. The program should provide the best possible
qualification for an exciting, successful and meaningful career in
the very broad field of computer science and software engineering.
Graduates from the program will take on leading roles in the soft-
ware industry, be driving forces in the further development of com-
puter science and software engineering, and start new companies
based on innovative ideas and an entrepreneurial spirit.

The program should provide the necessary knowledge, skills and
attitudes to be able to develop every type of software intensive sys-
tem, be able to program in every programming language, be able
to use every programming methodology, and more importantly be
able to choose the appropriate language and methodology for a
particular situation. The program should prepare the students for
a professional career as software engineers where soft skills such
as communication, personal leadership and working together with
others in cross-functional teams are essential.

The concrete goals for the program are to:

1. provide a solid foundation in computer science and mathe-
matics;

2. provide an understanding of and experience with computa-
tional thinking;

3. provide a holistic understanding of modern software devel-
opment;

4. provide an understanding of and experience with several dif-
ferent programming languages and paradigms as well as in-
dustrial software development methodologies;

5. provide an understanding of and experience with important
application areas such as modern large scale distributed and
embedded systems, mobile and social applications, data driven
decision-making, and AI and robotics;

6. leverage project courses with relevant subject content that in-
tegrates and applies theory;

7. encourage entrepreneurship and innovation; and
8. emphasize global challenges, sustainable development and a

global world.

By achieving these goals the program will live up to its vision.

4. DESIGN
From the first idea of starting a new program to the first stu-

dents arrived it has only been 2 years. The real design process
started in January 2011 and it has taken approximately 18 months
to reach a stable version of the first three years of the program. It
has involved a group of teachers from Computer Science, Electrical
Engineering and Mathematics as well as student representatives.
There were some requirements on the process such as minimiz-
ing the number of completely new courses. The main challenges
were to select what should be included in the mandatory first three
years while making room for project courses; to find a good bal-
ance between computer science, computer engineering, electrical
engineering, software engineering and mathematics especially con-
sidering that this is Master of Science in Engineering program; and
to find the right order of the courses so that the prerequisites are
satisfied and the courses result in a clear progression through the
program. We are very happy with the end result, even though we
had to make some compromises.

Many engineering programs take a bottom-up approach to their
subject. They start with mathematics and foundational courses the
first three years and then study applications and specializations the
last two years. A major problem with this approach is that students
do not see the full picture until at the very end of their studies.
There is clear indications that a significant share of the students that
drop out do it because they lack this overview. Another fact is that
students develop and mature a lot during their studies. This means
that most of them are not able to fully understand and grasp the
material the first time. The new program should therefore provide
three iterations through the broad and deep areas of Computer Sci-
ence and Software Engineering. By having three iterations, each
basically covering the whole discipline, at different levels of de-
tail, we believe that the students understanding will greatly increase
while we also should reduce the number of students dropping out
due to a lack of overview.

The first semester is the first iteration which gives a broad overview
of the whole field and the whole education. The second iteration is
the following 5 semesters which gives a solid foundation in com-
puter science, software engineering and the relevant parts of electri-
cal engineering. It is concluded with a bachelor project where the
students clearly demonstrate their knowledge, skills and attitudes
developed during the first two iterations. The third iteration is the
Master profile the last two years where the students deepen their
knowledge in important areas of computer science and software
engineering based on interest and aptitude. Linköping University
is a large university which means that we can provide a very large
selection of advanced courses taught by active researchers based
on current research. The third iteration and the whole education
program is concluded with a full semester Master’s Thesis where
the student is required to demonstrate that he or she satisfies all
the requirements for a Master of Science in Computer Science and
Software Engineering degree.

Figure 1: An overview of the program. Light gray boxes are computer science courses and software engineering courses, medium
gray boxes are engineering courses, and dark gray boxes are math courses.

Figure 1 gives an overview of the program. Light gray boxes
are computer science courses and software engineering courses,
medium gray boxes are engineering courses, and dark gray boxes
are math courses. Each year is divided into two semesters, one
fall semester and one spring semester. Each semester is divided
into two periods. Each semester consists of 30 ECTS credits called
“hp”. Since each semester is 20 weeks, 1.5hp roughly corresponds
to one week of work. Courses are normally 6hp and given within
a single period. The acronyms in parentheses refer to knowledge
areas in the ACM/IEEE Computer Science Curricula 2013 [5]. The
subjects mentioned for the two spring project courses describe their
content in some more detail. The sum of the credits for the parts is
equal to the total amount of credits for the course.

4.1 Design Principles
The design is based on the following general principles:

1. There should be a clear progression through the program,
both with regard to the main subjects Computer Science and
Software Engineering and with regard to how the work is be-
ing done and what is required from the students. The students
should be continuously challenged to improve and develop.

2. The first three years should consist of mandatory courses to
provide a common foundation while the last two years should
provide the students with the largest possible freedom to de-
velop their own interests and specializations.

3. There should normally be three courses in parallel, one of
these should be a math or theory course and another should
be a programming course. This should stimulate both those
who are mainly programming oriented and those that are
more math oriented. It also improves the work load balance.

4. Each semester the first two years should focus on a single
programming language to provide focus and avoid confu-

sion. The students should learn multiple different program-
ming languages and paradigms with a clear emphasis on the
concepts and principles which will allow them to quickly un-
derstand and learn any programming language. The set of
languages should include at least Python, C/C++ and Java.
The set of paradigms should include at least functional, im-
perative and object oriented programming.

5. Each semester should have a project course characterized by
a larger and relatively open-ended assignment that the stu-
dents should do, either individually or in groups. Projects
are very important to integrate and apply theoretical concepts
and techniques while developing software systems. A project
course may also cover new theory.

6. The project courses should use different software develop-
ment methodologies to provide experience and understand-
ing of a wide variety of industrial methodologies. At the
same time it is very important that the choice of methodol-
ogy is relevant for the project, otherwise the students will not
realize the benefits but rather feel that it is something artifi-
cially added. As with programming languages, it is essential
to teach the concepts and principles behind the methodolo-
gies and to make the students reflect over how the choice of
methodology affects the outcome of a project.

7. Mathematics should be an essential and integrated part of the
program. It is important to emphasize the strong connections
between math and computer science since this provides a
foundation for computational thinking. The first year should
focus on discrete math and logic which are directly relevant
for computer science. The second year should include the
continuous math needed mainly for the electrical engineering
courses. The third year should include applied math courses,
which directly uses the continuous math, where probability

theory and statistics are essential for both computer science
and electrical engineering.

8. During the first three years the students should have projects
related to the application areas stated in the goals, i.e. mobile
and social applications, modern large scale distributed and
embedded systems, and AI and data driven decision-making
to provide a broad understanding of these important domains.

9. Topics such as testing, usability and security are essential to
modern software development and should be a natural part
of most software courses, especially the project courses.

10. The program should give a basic understanding of computer
architecture, electrical engineering and control theory, which
provides the basic understanding of the very interesting inter-
play between the outside world and computers through sen-
sors and actuators. This is especially important since this is
a Master of Science in Engineering program.

4.2 Year 1
The first semester consists of two math courses, discrete math

and logic, three computer science courses, perspectives on com-
puter technology, computer systems and programming, and func-
tional and imperative programming in Python, and the engineer-
ing professionalism course. The perspectives course provides a
broad overview of computer science and related areas. The two
programming courses introduces the Unix computer systems used
and programming in Python. The functional and imperative pro-
gramming paradigms are both covered with a special emphasis on
solving problems both iteratively and recursively. Recursion, proof
by induction and their relations are central concepts. The first pro-
gramming course also requires the students to try out programming
in shell script, Prolog, Haskell and SQL. The purpose is to give
a feeling for different languages and different programming styles
early on. In the second period, the students do their first project in
the perspectives course. The purpose of the project is to do some-
thing exciting and to have something to show at the end of the first
semester. The projects are quite large, groups of three students
each supposed to spend 130 hours on the project, and open-ended.
There are projects on programming Lego Mindstorm robots, Nao
humanoid robots, web-based map applications using the Google
Maps API, programming automated XPilot players, and writing
programs to play capture the flag strategy game. The main goal
of this project is to make the students realize that they are capa-
ble of developing a significant piece of software while at the same
time realizing that they have much more to learn. An important
side benefit is that the students have something concrete to show at
the end of the first semester. Being able to describe to friends and
family what they are doing is important both for the students and
for recruiting new students to the program.

Last, but not least, the course on Professionalism for Engineers
which covers all the first three years. This is an “integrating” course
with groups of students from all the first three years. The inspira-
tion to the course comes from a similar course at KTH and is a
course with many functions [3]. There are two main purposes of
the course. First, to integrate both students from the first three years
and the program as a whole. Second, to teach the students about
engineering professionalism which is a very important subject that
includes soft skills, ethics, personal leadership, and team work. A
novel and very exciting improvement to the course, compared to the
courses at KTH, is that it uses the dialog seminar method for reflex-
ion and learning from experience [2]. The method is developed by
researchers at KTH and Combitech AB, a consultant company with
connections to SAAB. Combitech is also involved in developing

the course and training the teachers in the methodology. We be-
lieve that the reception by the students of the course will be greatly
improved by developing the course together with industry that re-
ally knows what is essential for being a professional engineer.

After the first semester the students should have a good general
understanding of computer science, programming and the formal
foundations of discrete math and logic.

The second semester consists of a theory course, a computer en-
gineering course, a programming course and the first large project
course. The course on formal languages and automata theory gives
an introduction to theoretical computer science and continues the
math track. The course on computer hardware and architecture
gives an introduction to computer engineering including the basics
of digital circuits, the main components of a computer and some
assembler programming. The course on Object Oriented Program-
ming and Java adds a new programming paradigm to the imperative
and functional paradigms introduced in the first semester. Finally,
and maybe most importantly, the project course on Mobile and
Social Applications introduces an important application area and
more systematic ways of developing software. The focus in this
project course is the individual developer designing usable mobile
applications with a social component. Special emphasis is placed
on considering privacy related issues. The software engineering
principles introduced includes design prototyping, unit testing, and
code reviews.

4.3 Year 2
The third semester consists of a course on theory of software

engineering, a large course on data structures, algorithms and pro-
gramming paradigms using C++, a course in linear algebra and an
introductory course in calculus. This semester concludes the foun-
dational programming courses. The programming paradigm part is
especially important for this, as it puts all the programming con-
cepts and languages learned into perspective. It should also show
the students that the same concept or principle can be realized in
many different ways and that designing a programming language
basically means making a set of deliberate choices. After this the
students should be competent programmers.

The choice of having the software engineering theory course af-
ter the first project course is a deliberate decision. The reason is that
we want the students to have experience with software engineering
before learning the theory. This way, the students are mentally pre-
pared for the content and have maybe already encountered several
of the issues that software engineering handles.

The fourth semester covers single and multi-variable calculus
and computer systems. So far, the focus has been on individual
computers or devices. This semester the concept of a computer
system is studied in great detail and from many different perspec-
tives. The foundation is a computer which can be connected in
a network of computers. The concept of an operating system con-
trolling the basic functions of a computer and the concept of a com-
puter network are essential. Starting from this core, extensions to
multi-core computers, parallel computers and embedded comput-
ers are naturally made. Another important step is to view a set of
networked computers as a single distributed system and design and
implement programs for these. From a software engineering per-
spective concepts such as fault tolerance, scalability, security and
testing of distributed systems are central.

4.4 Year 3
The third year covers AI and databases which are two very im-

portant areas of computer science, probability theory and statis-
tics which are essential for empirical aspects of engineering, and

physics and mechanics which provide a basic understanding of the
physical world. This knowledge is extended and put to very good
use in the electrical engineering and control theory courses where
the students learn the fundamentals of electric circuits, signals and
systems including measuring, modeling and controlling them. The
fifth semester project course is focused on AI and data-driven de-
cision making. The goal is to develop a system with an AI compo-
nent. The project applies many of the math courses since machine
learning and data mining is based on linear algebra and statistics.

The Bachelor Project corresponds to half the work done in the
sixth semester. This is a large programming project where students
work in teams of 6–8 students for an external customer. The goal
of the project is to develop a program or a system for the external
customer in the most appropriate way that satisfies the customer’s
requirements and expectations. This means that the students have
to decide which software development methodology is appropriate
and then follow it. They also have to deal with issues such as cus-
tomers changing their minds and coworkers leaving (which is sim-
ulated by swapping people between groups). Each student should
write a Bachelor thesis based on his or her work.

When all the courses the first three years, including the Bachelor
project, are finished the student is awarded a Bachelor of Science
in Computer Science and Software Engineering degree. This opens
up possibilities to change universities and study somewhere else for
the Master’s degree. From our experience very few students choose
this option, most complete the full five years at the same university.

4.5 Year 4-5
The last two years of the program corresponds to a Master’s Pro-

gram and consists almost exclusively of elective courses. To get
a Master’s degree a student needs to take 90hp (three semesters
worth of) courses on the advanced level including the 30hp Mas-
ter’s Thesis. To guide students there are a number of master profiles
consisting of selected courses from which a student has to take at
least 36hp of which at least 30hp on the advanced level.

Two new master profiles will be developed for this program:
Software Engineering and AI and Data-Driven Decision-Making.
There are also existing master profiles from the Computer Science
and Computer Engineering program such as Programming and Al-
gorithms (the main computer science profile), Game Programming,
Safe and Secure Systems and International Software Engineering
(which gives a double degree with Harbin Institute of Technology).

The master profile in Software Engineering deepens and broad-
ens the knowledge and skills of the students in this area. At least
two important new courses will be developed. The first, a large
scale software engineering course based on an open-source project
is essential to give students experience of working on really large
software projects together with many other people. Important skills
practiced are to take an existing software system and learn to un-
derstand it. To be able to take existing legacy code and make solid
extensions and improvements is a skill in great demand. Our in-
dustry representatives have been very clear that this is an important
skill and something that many software engineers are not very good
at, since they have mostly developed small programs from scratch.
The second course is on software entrepreneurship. The software
industry is very exciting and interesting from a commercial per-
spective. This is probably the industry where the step from an idea
to a commercial product is the smallest. A brand new company
can easily get global distribution of their products either through
the Internet or an app store. The software industry is an extremely
expansive and innovative industry where new inventions are made
daily and where the right idea at the right time can result in a billion
dollar company within a year (such as Instagram).

The master profile in AI and Data-Driven Decision-Making fo-
cuses on the very exciting area of artificial intelligence, machine
learning, and data-driven decision making which is becoming more
important for all types of software. This profile is based on the very
strong research in the related areas at Linköping University.

5. DISCUSSION

5.1 Computational Thinking
The general skill of computational thinking is central to the pro-

gram. This includes recursive decomposition of problems into smaller
and more manageable parts; finding and generalizing patterns by
for example systematically solving small cases; and using simula-
tion to either approximate solutions or generate and test hypothe-
ses. These problem solving strategies use concepts from both com-
puter science and mathematics and often rely on programming.

An important challenge is to tie the programming and the math-
ematics courses together. In the programming courses the teachers
try to show the connections explicitly, for example by pointing out
the relations between inductive proofs and recursive computations
and to use functions studied in the math courses as programming
examples (the most classical example being the factorial). This
shows the benefits of mathematics for programming. Our current
challenge is to show the benefits of programming in mathematics.
To this end, we are currently exploring how computational think-
ing can be used in the discrete math course, which is the first math
course for these students. As part of this we have conducted a sur-
vey to get data about the attitude towards mathematics and pro-
gramming and the view on the interplay between mathematics and
programming. Preliminary data shows that the students have a very
positive attitude towards mathematics and an extremely positive at-
titude towards programming. It also shows that the students realize
that there is an important connection between the subjects, but that
they do not have the skills to actually combine mathematics and
programming yet. To show the students the importance and useful-
ness of the interplay as well as teach them some basic skills we have
extended the normal homework assignments with advice on how to
use programming as a tool to explore the mathematical problems as
well as to find candidate solutions, which they then need to prove
are correct. If our activities are successful, the students should be
much better at using mathematics as a tool when programming and
programming as a tool when solving mathematical problems.

5.2 The ACM/IEEE CS Curricula
The ACM/IEEE CS Curricula [5] is a very important and impres-

sive document clearly describing the knowledge that every com-
puter scientist should have. Our view is that they have done a very
good job in capturing the required content. We have therefore used
the curricula as a guide and as a measuring stick for making sure
that we cover all the relevant aspects of computer science. In the
overview of the program, Figure 1, we have classified the content
of each course relative to the ACM CS Curricula 2013. When we
look into the details of the knowledge areas we clearly see that we
cover most of the content of all the knowledge areas.

As stated earlier, Karlfeldt compares 10 Swedish computer sci-
ence related Master of Science in Engineering programs relative to
the ACM CS Curricula 2008 [4]. Figure 2 shows the computer sci-
ence content in the new program (blue) for each knowledge area in
the curricula compared to the average content in the 10 programs
studied by Karlfeldt. It is very important to notice that the data in
the figure only shows the obligatory courses during the first three
years. This means that the courses studied during the last two years

Figure 2: A comparison among Swedish CS related programs based on ACM CS Curricula 2008 based on Figure 1 in [4].

are not shown. Percentages is used instead of actual number of
credits due to the different number of obligatory credits.

Two important conclusions can be drawn from Figure 2, first that
the new program satisfies the ACM CS Curricula 2008 during the
first three years and second that the new program has significantly
more computer science content compared to the other programs as
it has more than the average share of each knowledge area. There
are programs with more content in specific areas, but not the same
broad coverage of the whole computer science discipline.

5.3 Engineering Aspects
To be able to specify and verify the goals in a structured and sys-

tematic way, all engineering education at Linköping university is
based on the CDIO concept (Conceive, Design, Implement, Oper-
ate) [1]. This is a concept for developing, executing, evaluating and
engineering education including among other things a basic docu-
ment – the CDIO syllabus – specifying expected knowledge and
skills that a student is expected to have. All engineering educations
at Linköping university uses a variety of the CDIO syllabus called
the LiTH syllabus. The document has four main headlines:

1. Knowledge and reasoning in mathematics, natural sciences
and engineering;

2. Personal and professional skills and attributes;
3. Interpersonal skills: teamwork and communication;
4. Conceiving, designing, implementing, and operating systems

in the enterprise and social context.

There is a mapping between the LiTH syllabus and the national
requirement for a 5-year engineering degree, which means that the
national requirements are satisfied if the LiTH syllabus is satisfied.

The syllabus covers technical subjects but also personal, profes-
sional and interpersonal skills. These skills are part of the project
courses, and is the main focus in the new course Professionalism
for Engineers described in section 4.2.

6. CONCLUSIONS
In this paper we have described the vision, goals and design of

the first 5-year engineering program in Computer Science and Soft-
ware Engineering in Sweden. The goals are providing a holistic
perspective on modern large scale software development, providing
a deep and broad understanding of computer science and computa-
tional thinking, and encouraging innovation and entrepreneurship.

Designing a new 5-year program in Computer Science and Soft-
ware Engineering is an exciting, challenging and very rewarding
endeavor. We believe that we have managed to make the appropri-
ate trade-offs when selecting and ordering the content of the pro-
gram to achieve its goals. The student response has also been very
good with more than 600 applicants to the 30 slots, of which more
than 130 had this program as their first choice among all programs
in Sweden. We are now working hard at making sure that the pro-
gram really lives up to its vision and provides the best possible
software engineering education in the world.

7. REFERENCES
[1] The CDIO initiative, http://www.cdio.org.
[2] B. Goranzon, R. Ennals, and M. Hammeron. Dialogue, skill

and tacit knowledge. Wiley. com, 2006.
[3] V. Kann. En programsammanhållande kurs med många

funktioner (in swedish). In Proc. 3:e utvecklingskonferensen,
pages 153–156, 2011.

[4] J. Karlfeldt. Den svenska dataingenjören – en jämförande
studie av 10 svenska civilingenjörsutbildningar inom det
datavetenskapliga området. Master’s thesis, KTH, 2012.

[5] M. Sahami, S. Roach, et al. Computer Science Curricula 2013
– Final Report Pre-release Version 0.9, Oct. 2013.

