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Abstract. Building complex systems such as autonomous robots usually require
the integration of a wide variety of components including high-level reasoning
functionalities. One important challenge is integrating the information in a sys-
tem by setting up the data flow between the components. This paper extends our
earlier work on semantic matching with support for adaptive on-demand semantic
information integration based on ontology-based introspection. We take two im-
portant standpoints. First, we consider streams of information, to handle the fact
that information often becomes continually and incrementally available. Second,
we explicitly represent the semantics of the components and the information that
can be provided by them in an ontology. Based on the ontology our custom-made
stream configuration planner automatically sets up the stream processing needed to
generate the streams of information requested. Furthermore, subscribers are noti-
fied when properties of a stream changes, which allows them to adapt accordingly.
Since the ontology represents both the systems information about the world and
its internal stream processing many other powerful forms of introspection are also
made possible. The proposed semantic matching functionality is part of the Dy-
Know stream reasoning framework and has been integrated in the Robot Operating
System (ROS).
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1. Introduction

Building complex systems such as autonomous robots usually requires the integration of
a wide variety of components including high-level reasoning functionalities. This inte-
gration is usually done ad-hoc for each particular system. A large part of the integration
effort is to make sure that each component has the information it needs in the form it
needs it and when it needs it by setting up the data flow between components. Since most
of this information becomes incrementally available at run-time it is natural to model the
flow of information as a set of streams. As the number of sensors and other sources of
streams increases there is a growing need for incremental reasoning over streams to draw
relevant conclusions and react to new situations with minimal delays. We call such rea-
soning stream reasoning. Reasoning over incrementally available information is needed
to support situation awareness, execution monitoring, and planning.

In this paper we extend earlier work on semantic matching [8] where we introduced
support for generating indirectly-available streams. The extension focuses on ontology-
based introspection for supporting adaptive on-demand semantic information integration.
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Figure 1. (a) High-level overview of our approach. The stream space shows streams as arrows produced by
computational units (C) and sources (S). (b) The Protégé-generated concept graph of the application indepen-
dent DyKnow Ontology for Stream Space Modeling.

The basis for our approach is an ontology which represents the relevant concepts in the
application domain, the stream processing capabilities of the system and the information
currently generated by the system in terms of the application-dependent concepts. Rele-
vant concepts are for example objects, sorts and features which the system wants to rea-
son about. Semantic matching uses the ontology to generate a specification of the stream
processing needed to generate the requested streams of information. It is for example
possible to request the speed of a particular object, which requires generating a stream
of GPS-coordinates of that object which are then filtered in order to generate a stream
containing the estimated speed of the object. An overview of the approach is shown in
Figure 1a. The semantic matching is done by the Semantics Manager (see Section 4) and
the stream processing is done by the Stream Processing Engine (see Section 3).

The proposed semantic matching functionality is integrated with the DyKnow
stream reasoning framework [7,9,10] which is integrated in the Robot Operating Sys-
tem (ROS) [15]. We have for example used DyKnow for metric temporal logic (MTL)
reasoning [11] over streams. DyKnow is closely related to Data Stream Management
Systems (DSMS) and Complex Event Processing (CEP) [5]. The approach is general
and could be used with other stream processing systems.

The remainder of this paper is organized as follows. Section 2 starts off by putting
the presented ideas in the context of similar and related efforts. In Section 3, we give an
introduction to the underlying stream processing framework. This is a prelude to Sec-
tion 4, which describes the details of our approach, where we also highlight function-
ality of interest made possible as the result of semantic matching. Experimental results
on the scalability of our approach are presented in Section 5. The paper concludes with
Section 6 by providing a discussion of the introduced concepts and future work.



2. Related Work

Our approach is in line with recent work on semantic modeling of sensors [6,16] and
work on semantic annotation of observations for the Semantic Sensor Web [3,18,2],
where ontologies are used to help model streaming information. An interesting approach
is a publish/subscribe model for a sensor network based on a different type of semantic
matching by Bröring et al [3]. The matching is done by creating an ontology for each
sensor based on its characteristics and an ontology for the requested service. If the sensor
and service ontologies align, then the sensor provides relevant data for the service. This
is a complex approach which requires significant semantic modeling and reasoning to
match sensors to services. Our approach is more direct and avoids most of the overhead.
Our approach also bears some similarity to the work by [20] as both use stream-based
reasoning and are inspired by semantic web services. One major difference is that we
represent the domain using an ontology while they use a logic-based markup language
that supports ‘is-a’ statements.

The work by Tang and Parker [19] on ASyMTRe is an example of a system geared
towards the automatic self-configuration of robot resources in order to execute a certain
task. Similar work was performed by Lundh, Karlsson and Saffiotti [12] related to the
Ecology of Physically Embedded Intelligent Systems [17], also called the PEIS-ecology.
A major difference between the work by Lundh et al. and the work on semantic infor-
mation integration with DyKnow is that the descriptions of transformations are done se-
mantically with the help of an ontology. Further, DyKnow makes use of streams of incre-
mentally available information rather than shared tuples. Configuration planning further
shares some similarities with efforts in the area of knowledge-based planning, where the
focus is not on the actions to be performed but on the internal knowledge state.

The OWL-S [13] and SSN [4] ontologies are closely related to the application fo-
cus of this paper. OWL-S is an upper ontology for services in which services can be
described by service profiles. Being an upper ontology, it restricts itself to abstract rep-
resentations, leaving more concrete extensions to users of the upper ontology. Similarly,
the SSN ontology takes a sensor-centric approach. Our ontology differs by representing
both the transformations (services) and streams through population of the ontology with
individuals, and complements the aforementioned ontologies.

3. Stream Processing with DyKnow

Stream processing is the basis for our approach to semantic information integration. It is
used for generating streams by for example importing, synchronizing and transforming
streams. A stream is a named sequence of incrementally-available time-stamped sam-
ples each containing a set of (optionally named) values. Streams are generated by stream
processing engines based on declarative specifications.

3.1. Representing Information Flows

Streams are regarded as fundamental entities in DyKnow. For any given system, we call
the set of active streams the stream space S ⊆ S∗, where S∗ is the set of all possible
streams; the stream universe. A sample is represented as a tuple 〈ta, tv,~v〉, where ta rep-



resents the time the sample became available, tv represents the time for which the sam-
ple is valid, and ~v represents a vector of values. The execution of a stream processing
system is described by a series of stream space transitions St0 ⇒ St1 ⇒ ··· ⇒ Stn . Here
St represents a stream space at time t such that every sample in every stream in S has an
available time ta ≤ t.

Transformations in this context are stream-generating functions that take streams as
arguments. They are associated with an identifying label and a specification determining
the instantiation procedure. This abstracts away the implementation of transformations
from the stream processing functionality. Transformations are associated with an imple-
mentation and a collection of parameters. This means that for a given implementation
there might exist multiple transformations, each using different parameters for the imple-
mentation. When a transformation is instantiated, the instance is called a computational
unit. This instantiation is performed by the stream processing engine. A computational
unit is associated with a number of input and output streams. It is able to replace in-
put and output streams at will. A computational unit with zero input streams is called
a source. An example of a source is a sensor interface that takes raw sensor data and
streams this data. Conversely, computational units with zero outputs are called sinks. Dy-
Know’s stream processing engine as shown in Figure 1a is responsible for manipulating
the stream space based on declarative specifications.

3.2. Configurations in DyKnow

A configuration represents the state of the stream processing system in terms of computa-
tional units and the streams connecting them. The configuration can be updated through
the use of declarative configuration specifications, which are provided using XML. An
example of such a specification is shown in Listing 1.

The shown specification can be executed by the stream processing engine, which
instantiates the declared computational units and connects them according to the speci-
fication. In the example shown here, we make use of an XML-based specification tree,
where the children of every tree node represent the inputs for that computational unit.
The spec:cu tag is used to indicate a computational unit, which may be a source tak-
ing no input streams. A computational unit produces at most one stream, and this output
stream can thus be used as input stream for other computational units. Here only one
computational unit explicitly defines the output stream name as result. When no explicit
name is given, DyKnow assigns a unique name for internal bookkeeping. Note that every
spec:cu tag has a type. This type represents the transformation used to instantiate the
computational unit, which is then given a unique name by DyKnow. As long as a transfor-
mation label is associated with an implementation and parameter settings, the stream pro-
cessing engine is able to use this information to do the instantiation. Since DyKnow has
been implemented in ROS, currently only Nodelet-based implementations are supported.

The result of the stream declaration is that the stream processing engine instantiates
the necessary transformations and automatically sets up the necessary subscriptions for
the result stream to be produced. Additionally, it uses its own /status stream to inform
subscribers when it instantiates a transformation or starts a new stream, along with the
specification used. This makes it possible for other components or even computational
units to respond to changes to the stream space. This is illustrated in Figure 1a, where
the /status stream reports to the semantics manager.



Listing 1: Configuration specification format

1 <?xml version="1.0" encoding="UTF-8"?>
2 <spec:specification

3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
4 xsi:schemaLocation="http://www.dyknow.eu/ontology#Specification

http://www.dyknow.eu/config.xsd"

5 xmlns:spec="http://www.dyknow.eu/ontology#Specification">
6 <spec:insertions>

7 <spec:cu name="result" type="project2Dto3D">
8 <spec:cu type="fusionRGBIR">
9 <spec:cu type="rgbCam" />

10 <spec:cu type="irCam" />
11 </spec:cu>

12 <spec:cu type="GPSto3D">
13 <spec:cu type="gps" />
14 </spec:cu>

15 </spec:cu>

16 </spec:insertions>

17 <spec:removals>

18 <!-- Removals based on names of transformations and CUs -->

19 </spec:removals>

20 </spec:specification>

4. Semantic Information Integration

Semantic information integration in the context of this paper is about allowing a com-
ponent to specify what information it needs relative to an ontology. This ontology de-
scribes the semantics of the information provided by a system. Our approach allows the
system to reason about its own information and what is required to generate particular
information. It takes away the need for a programmer or a computational unit to know
exactly which streams contain what information, what information is currently being
produced by the system, or which combination of transformations generates a specific
kind of information. This greatly simplifies the architecture of components connected
by streams to one where only the desired information needs to be described at a higher
level of abstraction, and wherein the underlying system adapts automatically to provide
this information. This is achieved through the use of ontologies and a technique called
semantic matching. Both are maintained in our framework by the semantics manager.

4.1. Ontology for Configuration Modeling

Ontologies are used to describe concepts and relations between concepts. The Web On-
tology Language (OWL) [14] was designed to describe such ontologies, and is closely
related to Description Logic (DL). In efforts to further the Semantic Web [1], many on-
tologies have been created. However, to the best of our knowledge no ontology exists to
describe the concepts related to streams and stream transformations. As such, we devel-
oped our own ontology to serve as a data model for our stream reasoning framework.



To describe the stream space, we developed the DyKnow Ontology for Stream Space
Modeling1. Figure 1b shows the corresponding concept graph. We use the prefix ‘dy-
know:’ to refer to concepts in this ontology. The goal was to specify the general concepts
related to streams. Some of these terms have been discussed in the previous section, and
are formalized in the ontology. For example, by using an ontology we can also indicate
that every stream has at least one sample, and that a computational unit is an instance of
a transformation and has some input and output streams. This makes it possible to model
and reason about sets of streams and changes. For example, we can assign an individual
(object) to the dyknow:Stream concept to represent an existing stream. Similarly, we
can model the computational units and their input and output streams. By using a DL
reasoner, we can then infer (through the inverse property between dyknow:hasInput
and dyknow:isInput) which computational units a stream acts as input and output for.
Therefore, by populating the ontology with information on the stream space, it can serve
as a structured semantic model of the stream space that can be queried.

The second group of concepts of interest are dyknow:Annotation and dyknow: Spec-
ification. A specification describes how something is constructed. As such, the func-
tional dyknow:hasSpecification object property can be used to assign one specification
to for example a stream or a transformation. The dyknow:Annotation concept is used to
annotate transformations in the ontology. This is useful when considering the third and
final group of concepts.

DyKnow considers entities in the world to be classified as sorts, which represent
alike groups of objects. For instance, a sort can be UAV, for which uav2 might be an ob-
ject. Features are used to describe object properties or relations between objects. There-
fore dyknow:Sort and dyknow:Feature are also part of this ontology, which allows us
to specify hierarchical structures over sorts and features, e.g. Car v Vehicle (i.e. Car
less general than Vehicle). An individual in the ontology is regarded as an object of the
concepts (sorts) it is an individual of. By supporting sorts, features and objects in the
ontology, other individuals such as streams, transformations and computational units can
be annotated via the use of dyknow:Annotation. Note that dyknow:Annotation indi-
viduals are not the same as OWL annotations, which are treated as comments that are
disregarded by DL reasoners.

4.2. Maintaining the Correspondence Between System and Ontology

The ontology presented in the previous section can be used as a knowledge base (KB)
for stream reasoning frameworks in general. Note that the KB treats streams and trans-
formations over streams as entities to which one can assign properties of interest. This
approach is different from but related to for example semantic (or RDF) streams, which
can be used to represent a changing part of an ontology or statements on ontology in-
stances: Rather than representing the data contained within streams, we chose to repre-
sent the streams themselves as entities. From a stream reasoning framework perspective,
this allows us to keep a model of the active and potential streams and transformations.

Figure 1a showed a high-level outline of our approach. The semantics manager is
primarily tasked with recording changes that take place in the system, such as new com-
putational units being instantiated or existing computational units changing their sub-
scriptions to streams. It performs this task by listening to the status streams of compu-

1http://www.dyknow.eu/ontology



tational units, which they use to notify subscribers when their individual configurations
change. Given a configuration specification, the stream processing engine instantiates
new computational units and provides information on the names of the streams to sub-
scribe to or produce. The ability to instantiate new computational units is not limited to
the stream processing engine, but it serves as the first computational unit in the system.
As such, the semantics manager can presume its existence and listen to its status stream
to capture the instantiation of any new computational units.

In addition to capturing the system configuration and modeling this in the ontology,
the semantics manager is able to model additional information. In our conceptualisa-
tion, computational units are instances of transformations, which in turn represent the
combination of implementations and parameters. For example, a people tracker imple-
mentation may need a number of parameter assignments in order to work properly on a
specific UAV type. There may be a number of such combinations consisting of a specific
implementation and a number of parameter assignments. Every such combination is rep-
resented as a singular labelled transformation. A transformation can have multiple com-
putational unit instances, which are combinations of transformations with specific input
and output streams. Transformations thus do not exist themselves as entities in the sys-
tem state, but the ontology is able to describe them and relate them to computational unit
instances. Similarly, it is possible to annotate entities with additional information. For
example, in the stream reasoning context, it is useful to annotate transformations with
the features in takes and produces. We make use of this to perform semantic matching.

By providing an interface to the model of the system state (or configuration), com-
putational units themselves can request changes to be made to the ontology. This can
be useful when properties change and have to be updated accordingly, such as may be
the case when describing the semantics of a stream using annotations in cases where the
type of content for that stream changes.

4.3. Semantic Matching Approach

Semantic matching in the context presented here is the task of providing a stream spec-
ification given a desired feature. Such a specification may use existing streams and com-
putational units, or it may use its knowledge of transformations to reconfigure the system
in such a way that it produces a stream with the desired feature. The focus is on desired
features because we are interested in reasoning over temporal logic formulas in MTL,
where the feature symbols need to be grounded in streams in order for them to have
meaning. The semantic matching procedure is another powerful form of introspection
using the ontology, and is performed by the semantics manager.

By providing semantic annotations for transformations, we can specify which fea-
tures a transformation produces or requires. The semantics manager’s services make it
possible to provide these semantic annotations during run-time, both by a human opera-
tor or a computational unit. Consider the following example transformations, where the
name of the transformation is followed by the input and output stream annotations:

• gps : /0⇒GPS[self]
• imu : /0⇒ IMU[self]
• rgbCam : /0⇒ RGB[self]
• irCam : /0⇒ IR[self]
• attitude : IMU[Thing]⇒ Attitude[Thing]



• GPSto3D : GPS[Thing]⇒GeoLocation[Thing]
• humanDetector : RGB[RMAX], IR[RMAX]⇒ PixelLocation[Human]
• humanCoordinates : PixelLocation[Human],GeoLocation[RMAX],

Attitude[RMAX]⇒GeoLocation[Human]

In this example, the source transformations are marked as having no input fea-
tures (represented by the empty set). RGB and IR represent colour and infrared camera
streams. An RMAX is a type of rotary UAV, and self is assumed to be of sort RMAX. We
also represent a human detector, which in the 2D version produces pixel location infor-
mation from the camera data. This can then be combined with the state of an RMAX to
produce an estimation of the 3D position of a detected human. Note that the detectors are
specific to the RMAX sort because they depend on certain parameters that are specific to
the UAV platform used.

If we are interested in a stream of GeoLocation features for the Human sort, we
can generate a specification that produces such a stream if we make use of the above
transformation annotations. While the example can provide one specification, in some
cases we may have multiple possible alternative specifications for generating the de-
sired feature information. This could happen when there already exists a computational
unit producing the desired feature information, or even just part of the information
needed in order to generate the desired feature information. Additionally, there might
simply be multiple ways of generating the same feature information. For example, as-
sume we add a transformation that uses both the GPS and IMU to determine location:
IMUGPSto3D : GPS[Thing], IMU[Thing]⇒GeoLocation[Thing]. Now there are two
ways of getting GeoLocation information. To avoid duplicate subtrees, we use a tree
datastructure, in which every node represents a transformation or computational unit in-
stance and edges correspond to features. A node’s children are collections of nodes that
produce the same feature. The transformation tree is produced for some desired feature,
which then yields a set of valid subtrees each of which produces the desired feature. A
subtree is valid iff none of its leaf nodes require any input features, i.e. computational
unit instances or source transformations. By adding the constraint that features may only
occur once along every path in the tree, we prevent cycles.

Once a transformation tree has been generated, it contains all possible ways of gen-
erating the desired feature. A stream specification can be generated by traversing the tree
and picking a single transformation for every set of applicable transformations. In doing
so, subtrees can be removed based on some strategy. For example, depth-first search can
be used to quickly find a solution, or one can optimise for minimum cost or maximum
quality using existing search techniques.

5. Experimental Results

To evaluate semantic matching, we consider its scalability by generating collections of
transformations that can be organised into a binary tree. The features follow a prefix
naming notation: The transformation producing the desired feature F1 is the root of this
tree, and its children are F11 and F12 (i.e. F11,F12 ⇒ F1), followed by their respective
children F111, F112 for F11 and F121, F122 for F12, etc. Experiments are generated based on
a depth value d, yielding full binary trees consisting of n = 2d−1 nodes. This means that



(a) (b)

Figure 2. (a) Semantic matching processing times. (b) Semantic matching processing times per node.

for every successive value of d, the number of transformations that need to be considered
given a desired feature grows exponentially.

Figure 2a shows the average processing times over 20 runs for semantic matching to
generate an XML specification given desired feature F1, relative to the number of trans-
formation nodes. The experiments were run using an Intel Core i7-5500U processor with
8GB of RAM. As the depth increases, there is an exponential increase in total processing
time. This is due to the exponential growth of transformations to be considered. Figure
2b shows the processing time per transformation node compared to the total number of
nodes. For every node added, it needs to be considered for a potential desired feature
match at every other node, resulting in a per-node slowdown that increases linearly as
expected.

The number of nodes required for generating a particular desired feature depends
heavily on the granularity of the transformations involved: If transformations generate
high-level information, few transformations are required to generate a high-level feature.
In contrast, if the transformations generate low-level information with many interme-
diate levels of abstraction, generating a high-level feature may require more nodes. As
such, a careful balance must be struck between the granularity of transformations and
the computational resources available to the system. This in turn affects the expressivity
of semantic annotations and thus the ontology. It is further important to point out that
we make use of a binary tree in these experiments, which assumes all transformations
take two input streams. There is no restriction on the input streams for transformations;
depending on the implementation they may require more or fewer such streams, and this
varies by transformation. This shows that the performance of semantic matching further
relies on the properties of the transformations it handles.

6. Conclusions and Future Work

We have presented an approach to ontology-based introspection supporting stream rea-
soning. Introspection is used to configure the stream processing system and adapt it to
changing circumstances. The presented semantic matching approach based on introspec-
tion makes it possible to specify information of interest, which is then provided automat-
ically. This functionality makes it possible to provide high-level descriptions, for exam-
ple in the evaluation of spatio-temporal formulas over streams, without having to worry
about individual streams or transformations. The high-level descriptions make use of an
ontology, which provides a data model and a common language. Our DyKnow ontology



for stream space modeling has been designed to be implementation-independent, and
can therefore be used in other stream-based frameworks. Since the ontology represents
both the systems information about the world and its internal stream processing many
other powerful forms of introspection are also made possible.
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