Troubleshooting when Action
Costs are Dependent with
Application to a Truck Engine

Hakan WARNQUIST, Mattias NYBERG and Petter SABY
@ Service Methods Framework Development, Scania, SE-150@38lje, Sweden
b Department of Electrical Engineering, Linképing UnivéysiSE-581 83 Linkoping, Sweden

Abstract. We propose a troubleshooting algorithm that can troubleskgstems

with dependent action costs. When actions are performed thggheege the way
the system is decomposed and affect the cost of future actidé@present a way
to model this by extending the traditional troubleshootingigiavith an additional

state that describes which parts of the system that are dexsmudpThe proposed
troubleshooting algorithm searches an AND/OR graph wighaim of finding the

repair plan that minimizes the expected cost of repair. Weepitethe heuristics
needed to speed up the search and make it competitive with tottudleshooting

algorithms. Finally, the performance of the algorithm is eatéd on a probabilistic
model of a fuel injection system of a truck. We show that theeexgd cost of repair
can be reduced when compared with an algorithm from previtarature.

Keywords. Fault Diagnosis, Decision Theoretic Troubleshooting

Introduction

In many troubleshooting algorithms, where the aim is to miré the expected cost of
repair, action costs are assumed to be independent [1j2lcdmplex systems such as
modern trucks it can be unrealistic to make this assumptidinen troubleshooting a
truck, the mechanic sometimes must decompose large pdtts tfick to find the faulty
component in need for repair, i.e. the cab needs to be tiltdlccamponents need to be
decomposed. This can be very time consuming. Depending achwvaletions that have
previously been performed, the cost of performing otheioastmay vary. For trucks
it is often the case that the vehicle has to be fully reassedntd test if everything is
functioning properly. If the wrong repair is made the vehichs to be decomposed again.
Therefore, when mechanics repair trucks they sometimesrrere components than
necessary to avoid spending too much time decomposing aethating the vehicle.
The problem of troubleshooting with dependent action castsddressed in [3].
There, actions are grouped in clusters such that when aonaistiperformed within
a cluster the other actions in the same cluster become ahé&ape limitation of this
method is that the clusters are not allowed to be nestedddstn this paper we pro-
pose to model the action costs to be dependent on which plattie system that are
decomposed. This allows a more flexible description of th®acosts. We propose a

troubleshooting algorithm that can troubleshoot systeiitts this type of dependent ac-
tion costs. In contrast to some other troubleshooting alyos [1][2][4] it may choose
to repair more components than necessary before reassgmiblihis can reduce the
total expected cost of repair. The algorithm is evaluated pnobabilistic model of the
fuel injection system of a truck. On this same model the parémce of the algorithm
is compared with an implementation of the decision theotetiubleshooting algorithm
proposed by Breese and Heckerman [1]. The result of the casopeshows that the here
proposed algorithm can reduce the expected cost of regaifisantly. The algorithm is
based on an AND/OR search [5] which easily becomes computdly intractable, but
with the right heuristics the search can be made in reasertiaié.

The outline of the paper is as follows. In Section 1 we desditile troubleshooting
model and how the dependent action costs are modeled. B&ctiescribes the search
algorithm and the heuristics that are used. In Section 3¢hpnance of the algorithm
is evaluated on a model of the fuel injection system of a tréd&o, the performance of
the algorithm is compared with the algorithm proposed in [Bhally, we conclude in
Section 4.

1. The Troubleshooting Model

The troubleshooting model consists of two separated stdteslecomposition state
describing which parts of the system that are accessibtethafault state describing
which component that is faulty. The decomposition stat®mpetely observable while
the fault state is not directly observable. In this secti@dgscribe the different states of
the model and the actions that can be performed.

1.1. Fault State and Belief State

The state describing which component of the modeled sysbamnid faulty, is called
the fault state This state is not directly observable, otherwise therelvbe no need
for troubleshooting. Instead, the probability of being iceatain fault state is estimated
from a probabilistic model of the system using the currefdrmation at hand, such
as observations and earlier performed actions, as dond enf6[2]. The probability
distribution of the fault states represents our belief incliltomponents are faulty. Such
a distribution is commonly calledlzelief statg5].

1.2. Actions

The fault state is changed by performing actions on the sysiéhen an action is per-
formed a new belief state can be inferred from the previoliefogtate and from the
new information that may have been gained from the actiois #ipe of inference is
also made in [6] and [2]. We distinguish between actions ¢la@t information testing
actions and actions that revokes faulfault revoking actionsThe testing actions and
the fault revoking actions correspond to tipeestionsand therepair actionsin [2] re-
spectively. When a testing action is performed we retrieve\a belief state for every
possible outcome of the test. When a fault revoking actioreifopmed a single new
belief state can be calculated simply by moving probabitigss from fault states where
the revoked fault is faulty onto fault states where it is not.

For a given belief state not all actions are relevant. Fompte, if we are sure that
the batteries are working properly we do not need to condaldt revoking actions
such as "replace batteries" or testing actions such as Uredsid level in batteries.”
Relevant actions that we allow to be considered, are caligticable actions

Definition 1 (Applicable Action) An actiona is anapplicable actionif after it is per-
formed, the resulting belief statk, s, is different from the prior belief staté,. ¢ore,
i.e. bafter 7& bbefore-

1.3. Modeling the Decomposition State

Consider a bicycle. Before the inner tube on the wheel of sckéccan be changed,
the wheel has to be dismounted and the tire has to be takemhaftime required for
dismounting the wheel and removing the tire can be congidaffecting the cost of the
action change inner tubeA dismounted wheel is not considered to be a fault, just a
normal step of the repair process, and the mechanic willywaow if it is mounted or
not, so there is no need to represent this fact in the behés st

To represent parts of the system that can be taken apargdurormal repair pro-
cess we introduce théecomposition statéThis state is fully observable. The parts of
the system that can be taken apart are callecomposable unit§he notion of a de-
composition state was introduced in a series of master $HH8][9] with the aim of
troubleshooting trucks using theory from [1][6][2].

Definition 2 (Decomposition State)The decomposition staté = [d;, ds, . ..] is a vec-
tor, where each elemednf represents decomposable unif the system. Each element
is in one of the modedecomposedr assembled

Each action may require one or more of the decomposable tanlis in a certain
mode. Further, decomposing a decomposable unit may reofhiee decomposable units
to be in the modelecomposedrhis relation between the elements of a decomposition
state can be described by a directed acyclic graph, seeeFlgiitach node represents a
decomposable unit and requires its parents to be in the medemposegdbefore itself
can be decomposed. Before a node can be assembled, allldientiave to be in the
modeassembled

Changing the mode of a decomposable unit is associated withtain cost. When
actions are performed, the cost of making the transitiores&ary to meet the require-
ments of the action is added to the cost of performing theactiote that the transi-
tions in the decomposition state are not treated as acti@msgelves. A transition in the
decomposition state occur only when it is required by aroadtat is performed. This
makes the cost of performing an action dependent of prelyigesformed actions.

Example. Consider a decomposition state where all decomposable inrffigure 1 are
assembled. The cost of an action that require® be decomposed is increased with the
cost of decomposind, ds, d4, ds, andd;. Afterward we wish to perform an action that
requiresd; to be assembled. The cost of this transition in the decortipnsitate is the
cost of assemblingy, d4, anddy.

Figure 1. The relation between elements in the decomposition statd i@ae,d;, represents an individual
decomposable unit. The top layer represents the outery eaathable parts of the system and the lower levels
represent parts deeper down in the system.

2. The Search Algorithm

As in [1] the troubleshooting is incremental. At every stéthe troubleshooting process,
based on the current information and on the system modehesteaction is calculated
with the aim of minimizing the expected cost of repair. Thetsyn is considered to be
repaired when the probability in the belief state for thdtffree state is approximately
one.

In our algorithm the choice of action is calculated by semglthrough alternative
action plans as done in [10] and [11]. This is in contrast {amfBere the idea of deciding
which action to take by searching is abandoned in favor afatliy choosing the action
that has the best relation between the probability of hagngertain fault, given the
information at hand, and the cost of performing the actioihis paper, as in [2], we will
call this relation theefficiencyof an action. When choosing actions based on efficiencies
the computational complexity is significantly lower comgrrto complete searching.
Even though, a complete AND/OR search is exponential in,tiwith heuristics that
limit the branching factor and search depth, the search egrelformed in reasonable
time and still provide satisfactory results. With a prediseristic value, forward pruning
can be made with only a small loss in optimality.

2.1. The AND/OR Tree Representation

For each fault revoking action it is possible to calculaténgle new belief state and for
each testing action it is possible to calculate the requbiglief state for each possible
outcome of the test. The relation between belief statemresstand observations can be
described as an AND/OR tree [12]. It is a directed tree witda®oof two types: OR
nodes representing alternative ways of solving the propdert AND nodes representing
problem decomposition into subproblems, all of which neelle solved [13].

OR node

Belief state
Decomposition
state

Fault revoking action Testing action

OR node AND node

Probabilities for
each outcome of
the previous test

Belief state
Decomposition
state

Test outcome Test outcome

OR node

OR node

Belief state
Decomposition
state

Belief state
Decomposition
state

Figure 2. OR nodes have one child for eaapplicable actiorgiven the belief state of the node. AND nodes
have one child for every possible outcome of the correspagnigisting action. The children of an AND node
are always OR nodes.

A fault revoking action defines the edge between two OR nodédsdesting action
defines the edge from an OR node to an AND node. The test outcdefime the edges
from an AND node to its children. Every OR node is labeled vétbelief state and
a decomposition state and every AND node is labeled with theabilities for each
outcome of the previous testing action. The root node of thDOR tree is always
an OR node containing the initial belief state and initiat@@position state. Figure 2
illustrates the structure of the AND/OR tree.

2.2. Minimal Expected Cost of Repair

The search algorithm finds the choice of actions that miresiithe expected cost of
repair. Letc(n, m) be the cost of performing the action on the edge between theddR

n and its childm. Included in this cost are the costs of making the neceseamgitions

in the decomposition state. Lgtn, m) be the probability of the test outcome associated
with the childm of the AND noden. A goal node is an OR node where the system is
in a fault free state. When a goal node is reached all that neduks done is to restore
the system to a fully assembled state. Lgt) be the cost of restoring the decomposition
state of the goal node to the fully assembled state. The minimal expected costpaire
for a noden is calculated as

r(n) if n is an goal node

Conin (1) — mgg}(ln) (c(n,m) + Cin(m)) if nis an OR node "

> p(n,m)Crin(m) if nis an AND node
mé&ch(n)

Wherech(n) is the set of all children of. Further details on how (1) is derived can be
found in [14].

The minimal expected cost of the entire tre€fs;,, of the root node. The goal for
the search algorithm is to find the choice of actions thasBes (1).

2.3. Searching the Tree

The algorithm searches the AND/OR tree using a recursivéhdapt search strategy.
For every expanded node it maintains values for lower bdufid, upper boundib(n),
as well as a heuristic valugn).

The lower bound is calculated as the cost of repairing theesy# one could make
a "perfect test" that gains full information of the undenlyifault state. Since there are
no negative costs and since all faults must be repaltéd) < C,,;,(n). This method
is calculating the lower bound is also used in [15].

The upper bound is the best solution found so far. The uppendof a node is
inherited from its parent and is updated as the algorithrktibacks. For children of AND
nodes, the inherited upper bound corresponds to their sififhhe parent’s upper bound,

ub(n) — > p(n,m')lb(m’)
m’ Ech(n)
ub(m) = ;(n oy @)

wheren is the parent node of: [14]. Nodes where the lower bound is greater than the
upper bound can be pruned.
When choosing which node to expand next, the children of an ANde are sorted
in a descending order according to the value of the proltabi(iz, m). The children of
an OR node are sorted in an ascending order according tohtheiistic valueh(n). If
the child is an OR node, this value is calculated as

h(n) = 1b(n) + centropyH (n) (3)

whereH (n) is theentropy[16] of the belief state in node andce,+ropy IS @ parameter
which can be thought of as the mean cost of reducing entrdgi2 Aodes do not contain
belief states so the heuristic value cannot be calculatedeérsame way. Instead, the
heuristic value of an AND node is calculated by weighting ltteeiristic values of its
children, which are OR nodes, with their probability:

h(n) =Y p(n,m)h(m) (4)

me&ch(n)

We wish that the heuristic value is an estimate of the minempkcted cost of repair,
i.e. h(n) = Cpin(n). Given a set of training data where the true minimal expectet

of repair C;,, is known for every node, the parametgr,.p, is estimated using the
least square method in (3) whefk,;,,(n) is substituted foh(n).

So far the algorithm is guaranteed to find the optimal sotutiat satisfies (1), but
for complex problems finding this can be computationallyadotable. If the heuristic
is accurate enough, the branching factor can be limitedleovdbrward pruning with
little loss in optimality. With an additional limit to the aech depth, the algorithm can be
guaranteed to finish within reasonable time.

3. Performance of the Algorithm on the Fuel Injection SystemModel

A precondition for solving troubleshooting problems byrsbing is that the search al-
gorithm finds its solution adequately fast. In [8] an exigtimel injection system of a
truck is modeled as a Bayesian network [17]. The actionsdaiatbe performed on the
fuel injection system are strongly dependent on its decaitipa state. We let the algo-
rithm find the optimal solution for troubleshooting the fugection system starting from
randomly generated inputs. When using the heuristic baseshwapy (3), the optimal

solution was found in average among the first two branchestsed [14]. This allows

us to put a tight limit on the branching factor to make a desparch.

In [9], Breese and Heckerman'’s decision theoretic trodtaeting algorithm [6] is
evaluated in a series of experiments on the fuel injectictesy model. In these exper-
iments, a Monte Carlo simulation of the complete repair psscis made. The set up
consists of a simulated fuel injection system that has agfireed fault. When a testing
action is performed the resulting observation is generegtadomly according to prob-
abilities from the probability model. The total cost of répa the cost of all actions
performed until the system is verified to be free of faultsedith experiment a different
fault is predefined and the average of the total cost of répaieasured.

We repeated the same series of experiments under the samiéia@musing the
here proposed search algorithm. In average over all expetsnthe cost of repair was
32% less. The greatest differences in costs are in case® whefaulty component is
hard to isolate and the risk of making the wrong repair is highhese cases, when a
repair is made, several expensive transitions in the deositiqgn state have to be made
to verify if the repair is correct. Our algorithm avoids thig repairing several faults
before returning to a fully assembled decomposition stdtengver this is beneficial. A
more detailed analysis of these experiments can be fouridn [

4. Conclusions

When troubleshooting large mechanical systems such asstiuisknot always realistic
to assume that the cost of performing actions are indepémdgmeviously performed
actions. Therefore the troubleshooting model in [6] haseeended with the decom-
position state that describes which parts of the systenmatieaissembled or decomposed.
We proposed a new troubleshooting algorithm that finds ttst &etion to perform by
searching an AND/OR tree using a heuristic based on enthoplye experiments on the
fuel injection system, we showed that the expected costpdirecan be reduced sig-
nificantly when using the here proposed search algorithmpeoed to when using the
method proposed in [6].

Acknowledgments

We would like to thank Anders Florén, Hans Ivendal, Goéraradsison, Mats Karlsson,
Per Nyblom, Anna Pernestal, and Jan Sterner for many ftuitfd interesting discus-
sions. We would also like to thank Katja Lotz, Jonatan Mosgjp&nd Helena Sundberg
for supplying us with data and algorithms needed for the expmnts.

References

(1]

[2]
[3]

[4]
[5]
[6]
[71

(8]
[9]

[10]
[11]
(12]
(23]

(14]

(15]

[16]
(17]

J.S. Breese and D. Heckerman. Decision-theoretic tesitaoting: A framework for repair and experi-
ment. InProceedings of the Twelfth Conference on Uncertainty iifididl Intelligence pages 124-132,
San Fransisco, 1996. Morgan Kaufmann.

H. Langseth and F.V. Jensen. Decision theoretic traltmeting of coherent systemBeliability Engi-
neering and Systems Safe#((1):49—-62, april 2002.

Helge Langseth and Finn V. Jensen. Heuristics for twemsibns of basic troubleshooting. Rro-
ceedings of the 7th Scandinavian Conference on Atrtificiglligence, SCAI'01, Frontiers in Atrtificial
Intelligence and Applciationgages 80—-89, 2001.

D. Gillblad, A. Holst, and R. Steinert. Fault-tolerancremental diagnosis with limited historical data.
Technical report, Swedish Institute of Computer Sciencst&i2006.

S. Russell and P. NorvigArtificial Intelligence: A Modern ApproachPrentice Hall, Englewood Cliffs,
2003.

D. Heckerman, J. Breese, and K. Rommelse. Decision-thedretibleshooting. IlCommunications
of the ACM 38pages 49-57, 1995.

K. Lotz. Optimizing guided troubleshooting using intetige tests and bayesian networks with an ap-
plication to diesel engine diagnosis. Master’s thesis, db@pent of Mathematics, Royal Institute of
Technology, 2007.

J. Mossberg. Bayesian modeling of a diesel injectionesystor optimal troubleshooting. Master’s
thesis, Department of Mathematics, Royal Institute of Tetdgy 2007.

H. Sundberg. Decision-theoretic troubleshooting gddayesian networks - guided troubleshooting of
a diesel injection system. Master’s thesis, School of Commpsitéence and Communication, Royal
Institute of Technology, 2007.

P. P. Faure, X. Olive, L. Travé-Massuyes, and H. Poul&@ENDA: Automatic GENeration of DiAg-
nosis trees. Idournées Doctorales d’Automatique JDA Qihges 203-214, 2001.

Xavier Olive, Louise Trave-Massuyes, and Hervé PallafO* variant methods for automatic gen-
eration of near-optimal diagnosis trees. 14th International Workshop on Principles of Diagnosis
(DX'03), pages 169-174, 2003.

M. Ghalab, D. Nau, and P. Traversdutomated PlanningMorgan Kaufmann, San Francisco, 2004.
R. Dechter and R. Marinescu. And/or search spaces fighgcal models Artificial Intelligence 171
pages 73-106, 2007.

H. Warnquist and P. Saby. Conditional planning for bleshooting and repair in a partially observable
environment. Master’s thesis, Department of Computer andrirdtion Science, Linkdping University,
2008. Not yet published as of submission date.

Marta Vomlelova and di Vomlel. Troubleshooting: Np-hardness and solution mehtdnlProceedings
of the Fifth Workshop on Uncertainty Processing, WUPESXRQ000.

R.M. Gray. Entropy and Information TheonSpringer, New York, 1990.

Finn V. JensenAn Introduction to Bayesian NetworkSpringer, 1996.

