
Troubleshooting when Action
Costs are Dependent with

Application to a Truck Engine

Håkan WARNQUISTa, Mattias NYBERGb and Petter SÄBYa
a Service Methods Framework Development, Scania, SE-151 87 Södertälje, Sweden

b Department of Electrical Engineering, Linköping University, SE-581 83 Linköping, Sweden

Abstract. We propose a troubleshooting algorithm that can troubleshoot systems
with dependent action costs. When actions are performed they may change the way
the system is decomposed and affect the cost of future actions. We present a way
to model this by extending the traditional troubleshooting model with an additional
state that describes which parts of the system that are decomposed. The proposed
troubleshooting algorithm searches an AND/OR graph with the aim of finding the
repair plan that minimizes the expected cost of repair. We present the heuristics
needed to speed up the search and make it competitive with othertroubleshooting
algorithms. Finally, the performance of the algorithm is evaluated on a probabilistic
model of a fuel injection system of a truck. We show that the expected cost of repair
can be reduced when compared with an algorithm from previous literature.

Keywords. Fault Diagnosis, Decision Theoretic Troubleshooting

Introduction

In many troubleshooting algorithms, where the aim is to minimize the expected cost of
repair, action costs are assumed to be independent [1][2]. For complex systems such as
modern trucks it can be unrealistic to make this assumption.When troubleshooting a
truck, the mechanic sometimes must decompose large parts ofthe truck to find the faulty
component in need for repair, i.e. the cab needs to be tilted and components need to be
decomposed. This can be very time consuming. Depending on which actions that have
previously been performed, the cost of performing other actions may vary. For trucks
it is often the case that the vehicle has to be fully reassembled to test if everything is
functioning properly. If the wrong repair is made the vehicle has to be decomposed again.
Therefore, when mechanics repair trucks they sometimes repair more components than
necessary to avoid spending too much time decomposing and assembling the vehicle.

The problem of troubleshooting with dependent action costsis addressed in [3].
There, actions are grouped in clusters such that when an action is performed within
a cluster the other actions in the same cluster become cheaper. One limitation of this
method is that the clusters are not allowed to be nested. Instead, in this paper we pro-
pose to model the action costs to be dependent on which parts of the system that are
decomposed. This allows a more flexible description of the action costs. We propose a



troubleshooting algorithm that can troubleshoot systems with this type of dependent ac-
tion costs. In contrast to some other troubleshooting algorithms [1][2][4] it may choose
to repair more components than necessary before reassembling, if this can reduce the
total expected cost of repair. The algorithm is evaluated ona probabilistic model of the
fuel injection system of a truck. On this same model the performance of the algorithm
is compared with an implementation of the decision theoretic troubleshooting algorithm
proposed by Breese and Heckerman [1]. The result of the comparison shows that the here
proposed algorithm can reduce the expected cost of repair significantly. The algorithm is
based on an AND/OR search [5] which easily becomes computationally intractable, but
with the right heuristics the search can be made in reasonable time.

The outline of the paper is as follows. In Section 1 we describe the troubleshooting
model and how the dependent action costs are modeled. Section 2 describes the search
algorithm and the heuristics that are used. In Section 3 the performance of the algorithm
is evaluated on a model of the fuel injection system of a truck. Also, the performance of
the algorithm is compared with the algorithm proposed in [6]. Finally, we conclude in
Section 4.

1. The Troubleshooting Model

The troubleshooting model consists of two separated states, the decomposition state,
describing which parts of the system that are accessible, and thefault state, describing
which component that is faulty. The decomposition state is completely observable while
the fault state is not directly observable. In this section we describe the different states of
the model and the actions that can be performed.

1.1. Fault State and Belief State

The state describing which component of the modeled system that is faulty, is called
the fault state. This state is not directly observable, otherwise there would be no need
for troubleshooting. Instead, the probability of being in acertain fault state is estimated
from a probabilistic model of the system using the current information at hand, such
as observations and earlier performed actions, as done in [6] and [2]. The probability
distribution of the fault states represents our belief in which components are faulty. Such
a distribution is commonly called abelief state[5].

1.2. Actions

The fault state is changed by performing actions on the system. When an action is per-
formed a new belief state can be inferred from the previous belief state and from the
new information that may have been gained from the action. This type of inference is
also made in [6] and [2]. We distinguish between actions thatgain information,testing
actions, and actions that revokes faults,fault revoking actions. The testing actions and
the fault revoking actions correspond to thequestionsand therepair actionsin [2] re-
spectively. When a testing action is performed we retrieve a new belief state for every
possible outcome of the test. When a fault revoking action is performed a single new
belief state can be calculated simply by moving probabilitymass from fault states where
the revoked fault is faulty onto fault states where it is not.



For a given belief state not all actions are relevant. For example, if we are sure that
the batteries are working properly we do not need to considerfault revoking actions
such as "replace batteries" or testing actions such as "measure fluid level in batteries."
Relevant actions that we allow to be considered, are calledapplicable actions.

Definition 1 (Applicable Action). An actiona is anapplicable actionif after it is per-
formed, the resulting belief state,bafter, is different from the prior belief state,bbefore,
i.e. bafter 6= bbefore.

1.3. Modeling the Decomposition State

Consider a bicycle. Before the inner tube on the wheel of a bicycle can be changed,
the wheel has to be dismounted and the tire has to be taken off.The time required for
dismounting the wheel and removing the tire can be considered affecting the cost of the
action change inner tube. A dismounted wheel is not considered to be a fault, just a
normal step of the repair process, and the mechanic will always know if it is mounted or
not, so there is no need to represent this fact in the belief state.

To represent parts of the system that can be taken apart during a normal repair pro-
cess we introduce thedecomposition state. This state is fully observable. The parts of
the system that can be taken apart are calleddecomposable units. The notion of a de-
composition state was introduced in a series of master theses [7][8][9] with the aim of
troubleshooting trucks using theory from [1][6][2].

Definition 2 (Decomposition State). Thedecomposition stateδ = [d1, d1, . . .] is a vec-
tor, where each elementdi represents adecomposable unitof the system. Each element
is in one of the modesdecomposedor assembled.

Each action may require one or more of the decomposable unitsto be in a certain
mode. Further, decomposing a decomposable unit may requireother decomposable units
to be in the modedecomposed. This relation between the elements of a decomposition
state can be described by a directed acyclic graph, see Figure 1. Each node represents a
decomposable unit and requires its parents to be in the modedecomposed, before itself
can be decomposed. Before a node can be assembled, all its children have to be in the
modeassembled.

Changing the mode of a decomposable unit is associated with acertain cost. When
actions are performed, the cost of making the transition necessary to meet the require-
ments of the action is added to the cost of performing the action. Note that the transi-
tions in the decomposition state are not treated as actions themselves. A transition in the
decomposition state occur only when it is required by an action that is performed. This
makes the cost of performing an action dependent of previously performed actions.

Example. Consider a decomposition state where all decomposable units in Figure 1 are
assembled. The cost of an action that requiresd7 to be decomposed is increased with the
cost of decomposingd1, d2, d4, d5, andd7. Afterward we wish to perform an action that
requiresd1 to be assembled. The cost of this transition in the decomposition state is the
cost of assemblingd1, d4, andd7.



d

1


d

2


d

3


d

4


d

5


d

7


d

6


Figure 1. The relation between elements in the decomposition state. Each node,di, represents an individual
decomposable unit. The top layer represents the outer, easily reachable parts of the system and the lower levels
represent parts deeper down in the system.

2. The Search Algorithm

As in [1] the troubleshooting is incremental. At every step of the troubleshooting process,
based on the current information and on the system model, thebest action is calculated
with the aim of minimizing the expected cost of repair. The system is considered to be
repaired when the probability in the belief state for the fault free state is approximately
one.

In our algorithm the choice of action is calculated by searching through alternative
action plans as done in [10] and [11]. This is in contrast to [6] where the idea of deciding
which action to take by searching is abandoned in favor of directly choosing the action
that has the best relation between the probability of havinga certain fault, given the
information at hand, and the cost of performing the action. In this paper, as in [2], we will
call this relation theefficiencyof an action. When choosing actions based on efficiencies
the computational complexity is significantly lower compared to complete searching.
Even though, a complete AND/OR search is exponential in time, with heuristics that
limit the branching factor and search depth, the search can be performed in reasonable
time and still provide satisfactory results. With a preciseheuristic value, forward pruning
can be made with only a small loss in optimality.

2.1. The AND/OR Tree Representation

For each fault revoking action it is possible to calculate a single new belief state and for
each testing action it is possible to calculate the resulting belief state for each possible
outcome of the test. The relation between belief states, actions, and observations can be
described as an AND/OR tree [12]. It is a directed tree with nodes of two types: OR
nodes representing alternative ways of solving the problem, and AND nodes representing
problem decomposition into subproblems, all of which need to be solved [13].



OR
node


 
 Belief
state


 
 Decomposition

state


OR
node


 
 Belief
state


 
 Decomposition

state


AND
node


 
 Probab
ilities for

each outcome of

the previous test


OR
node


 
 Belief
state


 
 Decomposition

state


OR
node


 
 Belief
state


 
 Decomposition

stat
e


Testing action
Fault
revoking action


Test outcome
 Test outcome


Figure 2. OR nodes have one child for eachapplicable actiongiven the belief state of the node. AND nodes
have one child for every possible outcome of the corresponding testing action. The children of an AND node
are always OR nodes.

A fault revoking action defines the edge between two OR nodes and a testing action
defines the edge from an OR node to an AND node. The test outcomes define the edges
from an AND node to its children. Every OR node is labeled witha belief state and
a decomposition state and every AND node is labeled with the probabilities for each
outcome of the previous testing action. The root node of the AND/OR tree is always
an OR node containing the initial belief state and initial decomposition state. Figure 2
illustrates the structure of the AND/OR tree.

2.2. Minimal Expected Cost of Repair

The search algorithm finds the choice of actions that minimizes the expected cost of
repair. Letc(n,m) be the cost of performing the action on the edge between the ORnode
n and its childm. Included in this cost are the costs of making the necessary transitions
in the decomposition state. Letp(n,m) be the probability of the test outcome associated
with the childm of the AND noden. A goal node is an OR node where the system is
in a fault free state. When a goal node is reached all that needsto be done is to restore
the system to a fully assembled state. Letr(n) be the cost of restoring the decomposition
state of the goal noden to the fully assembled state. The minimal expected cost of repair
for a noden is calculated as



Cmin(n) =















r(n) if n is an goal node
min

m∈ch(n)

(

c(n,m) + Cmin(m)
)

if n is an OR node
∑

m∈ch(n)

p(n,m)Cmin(m) if n is an AND node
(1)

Wherech(n) is the set of all children ofn. Further details on how (1) is derived can be
found in [14].

The minimal expected cost of the entire tree isCmin of the root node. The goal for
the search algorithm is to find the choice of actions that satisfies (1).

2.3. Searching the Tree

The algorithm searches the AND/OR tree using a recursive depth first search strategy.
For every expanded node it maintains values for lower boundlb(n), upper boundub(n),
as well as a heuristic valueh(n).

The lower bound is calculated as the cost of repairing the system if one could make
a "perfect test" that gains full information of the underlying fault state. Since there are
no negative costs and since all faults must be repaired,lb(n) ≤ Cmin(n). This method
is calculating the lower bound is also used in [15].

The upper bound is the best solution found so far. The upper bound of a node is
inherited from its parent and is updated as the algorithm backtracks. For children of AND
nodes, the inherited upper bound corresponds to their shareof the parent’s upper bound,

ub(m) =

ub(n) −
∑

m′∈ch(n)

m′ 6=m

p(n,m′)lb(m′)

p(n,m)
(2)

wheren is the parent node ofm [14]. Nodes where the lower bound is greater than the
upper bound can be pruned.

When choosing which node to expand next, the children of an ANDnode are sorted
in a descending order according to the value of the probability p(n,m). The children of
an OR node are sorted in an ascending order according to theirheuristic valueh(n). If
the child is an OR node, this value is calculated as

h(n) = lb(n) + centropyH(n) (3)

whereH(n) is theentropy[16] of the belief state in noden andcentropy is a parameter
which can be thought of as the mean cost of reducing entropy. AND nodes do not contain
belief states so the heuristic value cannot be calculated inthe same way. Instead, the
heuristic value of an AND node is calculated by weighting theheuristic values of its
children, which are OR nodes, with their probability:

h(n) =
∑

m∈ch(n)

p(n,m)h(m) (4)

We wish that the heuristic value is an estimate of the minimalexpected cost of repair,
i.e. h(n) ≈ Cmin(n). Given a set of training data where the true minimal expectedcost



of repairCmin is known for every node, the parametercentropy is estimated using the
least square method in (3) whereCmin(n) is substituted forh(n).

So far the algorithm is guaranteed to find the optimal solution that satisfies (1), but
for complex problems finding this can be computationally intractable. If the heuristic
is accurate enough, the branching factor can be limited to allow forward pruning with
little loss in optimality. With an additional limit to the search depth, the algorithm can be
guaranteed to finish within reasonable time.

3. Performance of the Algorithm on the Fuel Injection SystemModel

A precondition for solving troubleshooting problems by searching is that the search al-
gorithm finds its solution adequately fast. In [8] an existing fuel injection system of a
truck is modeled as a Bayesian network [17]. The actions thatcan be performed on the
fuel injection system are strongly dependent on its decomposition state. We let the algo-
rithm find the optimal solution for troubleshooting the fuelinjection system starting from
randomly generated inputs. When using the heuristic based onentropy (3), the optimal
solution was found in average among the first two branches searched [14]. This allows
us to put a tight limit on the branching factor to make a deepersearch.

In [9], Breese and Heckerman’s decision theoretic troubleshooting algorithm [6] is
evaluated in a series of experiments on the fuel injection system model. In these exper-
iments, a Monte Carlo simulation of the complete repair process is made. The set up
consists of a simulated fuel injection system that has a predefined fault. When a testing
action is performed the resulting observation is generatedrandomly according to prob-
abilities from the probability model. The total cost of repair is the cost of all actions
performed until the system is verified to be free of faults. Ineach experiment a different
fault is predefined and the average of the total cost of repairis measured.

We repeated the same series of experiments under the same conditions using the
here proposed search algorithm. In average over all experiments, the cost of repair was
32% less. The greatest differences in costs are in cases where the faulty component is
hard to isolate and the risk of making the wrong repair is high. In these cases, when a
repair is made, several expensive transitions in the decomposition state have to be made
to verify if the repair is correct. Our algorithm avoids thisby repairing several faults
before returning to a fully assembled decomposition state whenever this is beneficial. A
more detailed analysis of these experiments can be found in [14].

4. Conclusions

When troubleshooting large mechanical systems such as trucks it is not always realistic
to assume that the cost of performing actions are independent of previously performed
actions. Therefore the troubleshooting model in [6] has been extended with the decom-
position state that describes which parts of the system thatare assembled or decomposed.
We proposed a new troubleshooting algorithm that finds the best action to perform by
searching an AND/OR tree using a heuristic based on entropy.In the experiments on the
fuel injection system, we showed that the expected cost of repair can be reduced sig-
nificantly when using the here proposed search algorithm compared to when using the
method proposed in [6].



Acknowledgments

We would like to thank Anders Florén, Hans Ivendal, Göran Johansson, Mats Karlsson,
Per Nyblom, Anna Pernestål, and Jan Sterner for many fruitful and interesting discus-
sions. We would also like to thank Katja Lotz, Jonatan Mossberg, and Helena Sundberg
for supplying us with data and algorithms needed for the experiments.

References

[1] J.S. Breese and D. Heckerman. Decision-theoretic troubleshooting: A framework for repair and experi-
ment. InProceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence, pages 124–132,
San Fransisco, 1996. Morgan Kaufmann.

[2] H. Langseth and F.V. Jensen. Decision theoretic troubleshooting of coherent systems.Reliability Engi-
neering and Systems Safety, 80(1):49–62, april 2002.

[3] Helge Langseth and Finn V. Jensen. Heuristics for two extensions of basic troubleshooting. InPro-
ceedings of the 7th Scandinavian Conference on Artificial Intelligence, SCAI’01, Frontiers in Artificial
Intelligence and Applciations, pages 80–89, 2001.

[4] D. Gillblad, A. Holst, and R. Steinert. Fault-tolerant incremental diagnosis with limited historical data.
Technical report, Swedish Institute of Computer Science, Kista, 2006.

[5] S. Russell and P. Norvig.Artificial Intelligence: A Modern Approach. Prentice Hall, Englewood Cliffs,
2003.

[6] D. Heckerman, J. Breese, and K. Rommelse. Decision-theoretic troubleshooting. InCommunications
of the ACM 38, pages 49–57, 1995.

[7] K. Lotz. Optimizing guided troubleshooting using interactive tests and bayesian networks with an ap-
plication to diesel engine diagnosis. Master’s thesis, Department of Mathematics, Royal Institute of
Technology, 2007.

[8] J. Mossberg. Bayesian modeling of a diesel injection system for optimal troubleshooting. Master’s
thesis, Department of Mathematics, Royal Institute of Technology, 2007.

[9] H. Sundberg. Decision-theoretic troubleshooting using bayesian networks - guided troubleshooting of
a diesel injection system. Master’s thesis, School of Computer Science and Communication, Royal
Institute of Technology, 2007.

[10] P. P. Faure, X. Olive, L. Travé-Massuyès, and H. Poulard. AGENDA: Automatic GENeration of DiAg-
nosis trees. InJournées Doctorales d’Automatique JDA’01, pages 203–214, 2001.

[11] Xavier Olive, Louise Trave-Massuyes, and Hervé Poulard. AO* variant methods for automatic gen-
eration of near-optimal diagnosis trees. In14th International Workshop on Principles of Diagnosis
(DX’03), pages 169–174, 2003.

[12] M. Ghalab, D. Nau, and P. Traverso.Automated Planning. Morgan Kaufmann, San Francisco, 2004.
[13] R. Dechter and R. Marinescu. And/or search spaces for graphical models.Artificial Intelligence 171,

pages 73–106, 2007.
[14] H. Warnquist and P. Säby. Conditional planning for troubleshooting and repair in a partially observable

environment. Master’s thesis, Department of Computer and Information Science, Linköping University,
2008. Not yet published as of submission date.

[15] Marta Vomlelová and Jiří Vomlel. Troubleshooting: Np-hardness and solution mehtods. InProceedings
of the Fifth Workshop on Uncertainty Processing, WUPES’2000, 2000.

[16] R.M. Gray.Entropy and Information Theory. Springer, New York, 1990.
[17] Finn V. Jensen.An Introduction to Bayesian Networks. Springer, 1996.


