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Cyber-physical systems such as robots and intelligent transportation systems are
heavy producers and consumers of trajectory data. Making sense of this data
and putting it to good use is essential for such systems. When industrial robots,
intelligent vehicles and aerial drones are intended to co-exist, side-by-side, with
people in human-tailored environments safety is paramount. Safe operations re-
quire uncertainty-aware motion pattern recognition, incremental reasoning and
rapid decision-making to manage collision avoidance, monitor movement execu-
tion and detect abnormal motion. We investigate models and techniques that
can support and leverage the interplay between these various trajectory-based
capabilities to improve the state-of-the-art for intelligent autonomous systems.

Consider a vehicular traffic scenario where a vehicle enters a T-crossing. The
vehicle being a physical object traverses a continuous-time trajectory x : R → RD

as it makes a left turn. This trajectory is not directly observable by the vehicle
nor an external observer. The uncertainty of the trajectory state x(t) over time
points t is represented as a probability distribution over trajectories

p
(
x(·)

)
and observed states at t0, . . . , tK are samples from the marginal distribution

x̂≤tK = x̂t0 , . . . , x̂tK ∼ p
(
x(t0), . . . , x(tK)

)
.

Reconstructing x(t) from observations (both for interpolation and extrapolation)
without underestimating the uncertainty in x(t) is important for many safety
applications (e.g. safe collision avoidance, abnormality detection). Gaussian pro-
cess regression[4] is one class of methods well suited for this kind of inference.

Consider the case where a vehicle is observed to make the same kind of turn
multiple times, or where multiple vehicles are observed to make the same kind
of turn. The observations consists of a set of J sampled trajectory-observations

(one for each executed trajectory) X̂ =
{
x̂j
≤tjK

}J

j=1
. Given previous observations

X̂, the current time-point tK and observations x̂t0,...,tK we would like to:

1. Model the motion pattern spanned by X̂ as a distribution over trajectories
(e.g. for abnormality detection) without underestimating the uncertainty,

p(X(·)|X̂), (1)



2 M. Tiger et al.

whereX(τ) is a trajectory over time parametrization 0 ≤ τ ≤ 1, and a continuous-
time trajectory alignment model mapping state to τ (for comparing trajectories),

p(τ0, . . . , τK |x̂t0,...,tK , X̂). (2)

2. Classify x(t) according to categories c = 1, . . . , C of motion patterns (such as
left turn, aggressive left turn, right turn etc.) for every time-point t

p(c(·)|x̂t0,...,tK , {X̂c}Cc=1) (3)

3. Runtime-verify constraints over x(t) (e.g. is the current position precise enough?
Is an imminent collision unlikely? Are previously made predictions similar enough
with what happened? Are predictions unlikely to underestimate uncertainty?){

p(x(·)|x̂t0,...,tN )
}K
N=0

, tK |= constraint(x(t)) (4)

4. Motion planning and re-planning in real-time of reference trajectories x0(t)
which result in efficient and safely executed motion x(t), where safety can be

∀t p(x(t) ∈ Xfree(t)) ≥ pthreshold (5)

where Xfree(t) is the free space which is time dependent (dynamic obstacles).
In [5] we propose a model for (1) better suited for sets of trajectories than

previously proposed models, and techniques for online learning of this model.
Alignment of continuous-time trajectories is necessary for multi-trajectory anal-
ysis, for example [2]. In [9] we propose a motion pattern model (1.) extending
[5] with a temporal alignment part (2). We consider learning of and inference in
large-scale motion pattern structures as sequences[9] in a road network and as
directed graphs[7]. We propose a generative classifier (2.) in [9] for associating
sub-trajectories to respective motion pattern category (see also examples in [7]).
Interesting research directions are (a) intra-category clustering (e.g. differ-
ent velocity profiles of the same kind of left turn), (b) clustering of trajectories
to automatically learn categories (left turn, right turn, etc.), (c) infer motion
pattern graph structures (through clustering and motion pattern model learn-
ing of individual segments), (d) clustering and learning of motion patterns that
are similar across for example a large city (e.g. similar left turns in different
crossings) and are generalizable to new unseen regions/situations.

In robot safety it is important to integrate logical and probabilistic reasoning
for uncertainty-robust, rapid and anticipatory decision-making and awareness.
In [8] we investigate extensions to stream reasoning for incremental reasoning
over probabilistic state information and over predictions for runtime-verification
for safety in robotics (3.). This work is followed by [10] in which we propose and
formalize Probabilistic Signal Temporal Logic (ProbSTL) together with efficient
incremental reasoning algorithms with associated correctness proofs. We inves-
tigate reasoning over uncertain physical signals such as trajectories and prove
properties and guarantees of conclusions drawn based on sampled trajectories.
Interesting research directions are (a) learning safety constraints as Prob-
STL formulas, (b) integration with Machine learning (ML) for directed and
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effective learning based on distance to constraint violations, (c) controller syn-
thesis based on probabilistic constraints as opposed to regular STL constraints
and (d) integration into Big data and ML production systems for probabilistic
monitoring as opposed to the deterministic monitoring commonly in use today.

Lattice-based motion planning (LBMP) has been one of the most frequently
used planning techniques in real implementations for autonomous vehicles [3] and
conceptually it works by finding a sequence of translation-invariant compatible
trajectories from a set of available motions forming a plan from start state to goal
state. In [1] we extend LBMP into a general optimization-based receding-horizon
lattice-based motion planning framework with collision avoidance functionality
for both complex 3D environments and moving obstacles with real-time perfor-
mance (4.). In [6] (submitted) we model actual plan execution (1.) to improve
the collision predictions in the motion planner (4.) and to runtime-verify (3.)
that executions are not abnormal and that the models are not deteriorating.
Interesting research directions are (a) to learn a representative set of mo-
tion patterns of other agents, (b) to infer intent and likely current motion plan of
other agents, (c) to integrate (a) and (b) into the collision avoidance prediction
during planning and (d) to integrate 3. to runtime-verify operations and trigger
emergency-behaviors (or contingency functionality) in case of abnormalities.
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