
1

Probabilistic Roadmap Based Path Planning for an
Autonomous Unmanned Helicopter

Per Olof Pettersson and Patrick Doherty
Linköping University

Department of Computer and Information Science
581 83 Link̈oping, Sweden
{peope, patdo}@ida.liu.se

Abstract— The emerging area of intelligent unmanned aerial
vehicle (UAV) research has shown rapid development in recent
years and offers a great number of research challenges for arti-
ficial intelligence. For both military and civil applications, there
is a desire to develop more sophisticated UAV platforms where
the emphasis is placed on development of intelligent capabilities.
Imagine a mission scenario where a UAV is supplied with a 3D
model of a region containing buildings and road structures and
is instructed to fly to an arbitrary number of building structures
and collect video streams of each of the building’s respective
facades. In this article, we describe a fully operational UAV
platform which can achieve such missions autonomously. We
focus on the path planner integrated with the platform which can
generate collision free paths autonomously during such missions.
It is based on the use of probabilistic roadmaps. The path planner
has been tested together with the UAV platform in an urban
environment used for UAV experimentation.

I. I NTRODUCTION

The emerging area of intelligent unmanned aerial vehicle
(UAV) research has shown rapid development in recent years
and offers a great number of research challenges for artificial
intelligence. Much previous research has focused on low-
level control capability with the goal of developing controllers
which support the autonomous flight of UAVs from one way-
point to another at high altitudes. The most common type of
mission scenario involves placing sensor payloads in position
for data collection tasks where the data is eventually processed
off-line or in real-time by ground personnel. Use of UAVs and
mission tasks such as these have become increasingly more
important in recent conflict situations and are predicted to play
increasingly more important roles in any future conflicts.

Intelligent UAVs will play an equally important role in civil
applications. For both military and civil applications, there is a
desire to develop more sophisticated UAV platforms where the
emphasis is placed on development of intelligent capabilities.
Focus in research has moved from low-level control towards a
combination of low-level and decision-level control integrated
in sophisticated software architectures. These should also
integrate well with larger net-centric based C4I2 systems. Such
platforms are a prerequisite for supporting the capabilities
required for the increasingly more complex mission tasks on
the horizon and an ideal testbed for the development and
integration of AI technologies.

The WITAS1 Unmanned Aerial Vehicle Project [2] is a
long-term basic research project whose main objectives are

the development of an integrated hardware/software VTOL
(Vertical Take-Off and Landing) platform for fully autonomous
missions and its deployment in applications such as traffic
monitoring and surveillance, emergency services assistance,
photogrammetry and surveying.

Basic and applied research in the project covers a wide
range of topics which include the development of a distributed
architecture for autonomous unmanned aerial vehicles. In
addition to the software architecture, many AI technologies
have been developed such as path planners, task planners,
chronicle recognition and situational awareness techniques.
The architecture supports modular and distributed integration
of these and any additional functionalities added in the future.

An experimental version of the WITAS UAV hard-
ware/software platform has been developed and successfully
used in a VTOL system capable of achieving a number of
complex autonomous missions flown in a challengingurban
environment populated with building and road structures. In
one mission, our UAV autonomously tracked a moving vehicle
for up to 20 minutes. In another, several building structures in
the test area were arbitrarily chosen as survey targets and our
UAV autonomously generated collision free path plans to fly
to each and take photographs of each of the building’s facades.
This and similar missions have been successfully executed.

Figure 1 shows an aerial photo of our primary flight test area
located in Revinge, Sweden. An emergency services training
school is located in this area and consists of a collection of
buildings, roads and even makeshift car and train accidents.
This provides an ideal flight test area for experimenting with
traffic surveillance, photogrammetric and surveying scenarios,
in addition to scenarios involving emergency services. We
have also constructed an accurate 3D model for this area
which has proven invaluable in simulation tests and as a
visualization tool. Parts of the model are integrated in the on-
board geographic information system (GIS) and are used by
many of the services in the architecture including the path
planner which will be considered in detail in this paper.

In the remainder of the paper, we will concentrate on a
solution to path planning for our UAV based on the use of
probabilistic roadmaps. This path planning module is imple-
mented and used in the on-board system. Before providing

1. WITAS (pronouncedvee-tas) is an acronym for the Wallenberg In-
formation Technology and Autonomous Systems Laboratory at Linköping
University, Sweden.

141

2

Fig. 1. Aerial photo over Revinge, Sweden

details, the hardware and software platforms for the WITAS
UAV will be considered briefly in order to provide a context
for understanding how path planning is integrated with the
system.

II. T HE VTOL AND HARDWARE PLATFORM

The WITAS Project UAV platform we use is a slightly
modified Yamaha RMAX (figure 2). It has a total length of 3.6

Fig. 2. The WITAS RMAX Helicopter

m (incl. main rotor), a maximum take-off weight of 95 kg, and
is powered by a 21 hp two-stroke engine. Yamaha equipped the
radio controlled RMAX with an attitude sensor (YAS) and an
attitude control system (YACS). Figure 3 shows a high-level
schematic of the hardware platform that we have built and
integrated with the RMAX platform. The hardware platform
consists of three PC104 embedded computers (figure 3).2

III. T HE SOFTWARE PLATFORM

CORBA3 has been chosen as a basis for the design and
implementation of a loosely coupled distributed software
architecture for the WITAS aerial robotic system [3]. It is
believed that this is a good choice which enables us to man-
age the complexity of a deliberative/reactive (D/R) software
architecture with as much functionality as we require for our
applications. It also ensures clean and flexible interfacing to
the deliberative and control components in addition to the
hardware platform via the use of IDL (Interface Definition
Language).

RTLINUX

RTLINUX

TCP/IP

700Mhz PIII/256Mbram/500Mbflash

700Mhz PIII/256Mbram/500Mbflash

700Mhz PIII/256Mbram/256Mbflash

GPS

serial analog

magnetic
compass

pressure
sensor

temp.
sensors

camera
control

framegrabber
BT878

preprocessor

IPAPI

path
planner

task
planner

knowledge
repository

TP exec

chronicle
recognition

GIS

DOR

Other. . .

Helicopter Control

RMAX Helicopter
Platform

Yamaha
Attitude
Controller

roll

yaw

pitch

200Hz

50Hz

Camera Platform

Color CCD Camera/
PTU

mini-dv

Yamaha
Attitude
Sensors

200/66Hz

LINUX

RS232

sonar

Fig. 3. On-Board Hardware Schematic

In short, CORBA (Common Object Request Broker Ar-
chitecture) is middleware that establishes client/server rela-
tionships between objects or components. A component can
be a complex piece of software such as a path planner, or
something less complex such as a task procedure which is
used to interface to helicopter or camera control. Objects
or components can make requests to, and receive replies
from, other objects or components located locally in the same
process, in different processes, or on different processors on
the same or separate machines. In our case, we have three
on-board PC104s in addition to ground station computers.

Many of the functionalities which are part of the archi-
tecture can be viewed as CORBA objects or collections of
objects, where the communication infrastructure is provided
by CORBA facilities and other services such as real-time and
standard event channels. This architectural choice provides
us with an ideal development environment and versatile run-
time system with built-in scalability, modularity, software
relocatability on various hardware configurations, performance
(real-time event channels and schedulers), and support for
plug-and-play software modules.

Figure 4 depicts an (incomplete) high-level schematic of
some of the software components used in the architecture.

2. The primary flight control (PFC) system consists of a PIII (700MHz)
processor, a wireless modem (serial line RS232C) and the following sensors:
an integrated INS/DGPS (serial), a barometric altitude sensor (analog), a
sonar and infrared altimeter (analog), and a compass (serial). It is connected
to the YAS and YACS (serial), the image processing computer (serial)
and the deliberative computer (Ethernet). The image processing (IP) system
consists of a second PC104 embedded computer (PIII 700MHz), a color CCD
camera (S-VIDEO, serial interface for control) mounted on a pan/tilt unit
(serial), a video transmitter (composite video) and a recorder (miniDV). The
deliberative/reactive (D/R) system runs on a third PC104 embedded computer
(PIII 700MHz) which is connected to the PFC system with Ethernet using
CORBA event channels and standard CORBA method calls.

3. TAO/ACE [7] is currently being used.The Ace Orb is an open source
implementation of CORBA 2.6.

142

3

Each of these may be viewed as a CORBA server/client
providing or requesting services from each other and receiving
data and events through both real-time and standard event
channels. Each of these functionalities has been implemented
and all are being used and developed in our applications.
A great deal of effort has gone into the development of a

Geographical
Data

Repository

Knowledge
Repository

Dynamic
Object

Repository

Task Procedure Execution
Module (TPEM)

TP1 TPn

Prediction
Service

Chronicle
Recognition

Service

Path Planner
Service

Task Planner
Service

Helicopter
Controller

Physical
Camera

Controller

Image
Controller

IPAPI

IPAPI Runtime
Image Processing Module (IPM)

Qualitative
Signal Processing

Controller

Fig. 4. Some deliberative, reactive and control services

control system for the WITAS UAV which incorporates a
number of different control modes and includes a high-level
interface to the control system. This enables other parts of the
architecture to call the appropriate control modes dynamically
during the execution of a mission. The ability to switch modes
contingently is a fundamental functionality in the architecture
and can be programmed into the task procedures associated
with the reactive component in the architecture. We have
developed and tested the following autonomous flight control
modes:
• take-off (TO-Mode) and landing via visual navigation (L-Mode)
• hovering (H-Mode)
• dynamic path following (DPF-Mode)
• reactive flight modes for interception and tracking (RTF-Mode).

These modes and their combinations have been successfully
demonstrated in a number of missions at the Revinge flight test
area.

A. A Path Planning Mission Scenario

One application area we have focused on is surveying and
data collection. The WITAS UAV contains an on-board GIS
which includes a terrain model of the Revinge area accurate to
within decimeters in thex, y, z directions and equally accurate
models of building and road structures. A plan template
has been designed using a task procedure which can be
parameterized with an arbitrary number of building structure
identifiers from Revinge. When this task procedure is called, it
iterates through each of the building identifiers and generates
a set of camera positions (one fore each building facade) and
corresponding positions for the UAV to take photos of each
facade. The camera positions are computed using additional
functionality built into the GIS.

The UAV must then fly to each of these positions, hover
and yaw appropriately and take pictures of the facade before
moving onto the next. To fly to these positions the task
procedure calls the path planning service which generates a
collision free path passing all positions. The resulting 3D
path consists of a segmented trajectory, with the waypoints
corresponding to camera positions marked with an index. Each
of these segments is passed to functional units in the primary
flight controller which call an appropriate flight mode to follow
the trajectories. Progress is monitored by the calling task
procedure.

This is a complex scenario which must use deliberative (path
planner), reactive (task procedures) and control (trajectory
following, hovering modes) functionalities concurrently in an
integrated manner. In the next two sections, we show how
this problem has been solved efficiently using probabilistic
roadmaps as a basis for the path planner. We then consider
actual survey missions similar to the above that have been
executed successfully by our UAV.

IV. T HE PATH PLANNER

The path planner used for the helicopter is an adaptation
of the probabilistic roadmap (PRM) algorithm [5], to our
application domain. The problem of finding an optimal path
between two robot configurations in a high-dimensional con-
figuration space such as the helicopter’s is intractable. The
PRM algorithmhedgesthe intractability problem by sacrific-
ing completeness and optimality, while utilizing information
about the environment known in advance for improving the
runtime efficiency. The PRM-algorithm works in two phases,
one off-line and the other during runtime. The main processing
stages for our adaptation of the PRM algorithm are shown in
figure 5.

World Model OBB-tree construction

Roadmap generation

offline
online

Start, Goal-positions

A
∗-search

Runtime constraints

Smoothing &

Curve replacement

finished

path

OBB-tree

Linear roadmap

Linear path

Fig. 5. Generating a Flight Trajectory

In the offline phase, a roadmap graph is generated for the
area of interest (e.g.. Revinge). An example of this process is
shown in figure 6. Helicopter configurations4 are randomly
generated and checked for collisions with the model and

•

•

•

• •

(a) Adding random configura-
tions.

•

•

•

• •
ooooooooooo 11

11
11

1

((
((
((
(

lllllllllllllllleeeee

»»
»»
»»
»»

(b) Connect nodes if possible
(continuous lines), but not if a
connection would intersect obsta-
cles (dashed lines).

Fig. 6. Construction of the roadmap.

4. A helicopter configuration consists of three coordinates for position and
a vector describing the direction of flight. The orientation of the helicopter is
omitted and is handled independently by the control system.

143

4

the collision free configurations are added as nodes to the
graph (figure 6(a)). An attempt is then made to connect the
collision-free configurations using a local path planner that
takes the kinematic and dynamic constraints of the helicopter
into account. Each of the local paths generated also have to
be checked for collisions and edges are added between con-
figurations where the connection is collision free (figure 6(b)).
The collision checker, used to check whether a given curve or
line intersects any obstacle in the environment, is based on the
OBBTree-algorithm [4], that uses a tree of oriented bounding
boxes as its central component.

There are a number of choices that can be made for the local
path planner at this stage depending on how much or little
work is chosen to be done during run-time. In the first case,
which is more in keeping with the original PRM algorithm,
the roadmap is generated in the off-line phase with spline-
curves, taking nonholonomic constraints into account. Another
alternative, the one described in diagram 5, is to initially
ignore the nonholonomic constraints of the helicopter in the
off-line phase and add them as refinements to the plan in the
smoothing and curve replacement phase during run-time as
will be described below. In this case straight lines is used for
connecting the nodes. We have experimented with variations
of both of these approaches.

•

•ooooooooooo

•
11

11
11

1
•

((
((
((
(•

lllllllllllllllleeeee

»»
»»
»»
»»¬

¬

DD
DD

DD
D

oooo ?????????

''''''''

(a) To solve the planning prob-
lem, the start- and goal-points
are added to the graph.

•

•ooooooooooo

ooooooooooo

ooooooooooo

ooooooooooo

ooooooooooo
•
11

11
11

1
•

((
((
((
(•

lllllllllllllllleeeee

»»
»»
»»
»»¬

¬

DD
DD

DD
D

DD
DD

DD
D

DD
DD

DD
D

DD
DD

DD
D

DD
DD

DD
D

oooo ?????????

?????????

?????????

?????????

?????????

''''''''

(b) The resulting graph can
then be used for solving the
planning problem with stan-
dard graph-search algorithms.

Fig. 7. Online planning using the precompiled roadmap.

During the mission or run-time phase, the path planning
service is called with an initial and goal helicopter configura-
tion. An attempt is made to connect the two configurations to
the previously generated roadmap using the local path planner
which is illustrated in figure 7(a). If this is successful, an A∗

search is used on the graph to generate a multi-segmented
trajectory (figure 7(b)). Additional constraints may influence
which parts of the roadmap that are legally usable as will
be described below. The resulting path is smoothed and in
the case of a straight-line roadmap, the straight segments are
replaced with spline curves wherever possible, using the local
path planner.

A. Some Modifications to the Standard Probabilistic Roadmap
Algorithm

One of the most important modifications we have made
to the standard PRM algorithm is to delay some of the pro-
cessing of constraints normally done off-line in the roadmap
generation stage and instead do the processing during runtime

• •

¬ ¬
??

??
??

��
��

��

OOOOO ooooo

(a) Linear Path

• •.
. .

¬ ¬

OOOOO ooooo

(b) Primary Attempt of Path
Augmentation

• •

¬ ¬

(c) Secondary Attempt of Path
Augmentation

Fig. 8. Augmentation of linear paths to cubic paths required for smooth
flight.

when path plans are actually being generated. As long as
it is not too expensive (meaning slow) to process certain
types of constraints during runtime, this approach is of great
benefit since one can dynamically apply constraints rather
than building them into the roadmap in the off-line phase.
We consider two modifications to the PRM algorithm which
have been incorporated into our path planner.

1) Multi-level nonholonomic roadmap planning:The stan-
dard probabilistic roadmap algorithm is formulated for robots
where the dynamics plays a small role for the behavior of the
system. This assumption is more or less true for a helicopter
flying at low speed in a hovering mode. However, when the
speed is increased the helicopter is no longer able to negotiate
turns of too small radius, which imposes similar demands on
the planner as the nonholonomic constraints on car-like robots.

There are a number of proposals for dealing with nonholo-
nomic constraints in the probabilistic roadmap paradigm. One
approach taken in [8], is to first solve a relaxed problem
using only the holonomic constraints, and then refine the
solution by adding nonholonomic constraints one at a time.
For robots respecting certain topological properties (e.g. all
locally controllable robots as well as car-like robots), it is
always possible to upgrade the solution so as to take the
nonholonomic constraints into account as long as there exists
a non-zero margin between the solution to the relaxed problem
and the obstacles.

Inspired by this approach, the path planner for our UAV
initially generates a piecewise linear plan, which is later
refined to the preferable piecewise cubic curve required for
smooth high speed flight. This replacement is done by as-
sociating direction vectors to each node parallel to a line
between the two adjacent nodes (see figure 8(a)). The line-
segments are then replaced with cubic space curves where
that is possible without intersecting obstacles as shown in
figure 8(b). For segments where a collision occur, e.g., the

144

5

middle segment in figure 8(b), an attempt to is made to align
the two adjacent segments which is shown in figure 8(c). Only
if this replacement also fails, a sharp corner will remain in the
final path, where the helicopter will have to stop into hover. In
practice, this situation rarely occurs. The few cases where it
does occur is usually in cramped locations with many nearby
obstacles and it is not unreasonable for the helicopter to go into
hover when changing direction of flight in such environments.

This method of handling nonholonomic constraints gives
a drastic improvement for planning with local path planners
that have a limited ability to connect configurations. With an
earlier local planner that only allows connections if the target
waypoint is within 45◦ from the direction of flight, the multi-
level method has a success-rate of over 99 % in the test-flight
area using a roadmap with only 500 nodes. For the straight
forward method with cubic curves already in the roadmap,
a graph with more than 3000 nodes is needed to reach this
success-rate.

2) Delayed Constraint Handling:It can also be useful
to delay ordinary holonomic constraints, that are not known
during roadmap construction time, until the runtime phase.
Recompiling the roadmap at this stage is often not feasible
since it can take several minutes to do in larger environments.
However, for constraints that can be evaluated rapidly, it is
possible to check them during the graph search without a big
performance penalty. This is done by testing the constraints for
each outbound edge when expanding a node during the graph
search, and only add nodes for which the test is positive to
the search-queue. In this way the planner can make use of the
information that was built up during the roadmap construction
phase, even if new constraints are added at a later time.

Currently we have implemented runtime constraints pertain-
ing to maximum and minimum altitude, forbidden regions and
limits on ascent-/descent-rate, which are useful when setting
up UAV missions in the field. In fact, this extension to PRMs is
necessary in practical applications. Mission constraints rapidly
change and one can not afford to recompile the roadmap
to incorporate such constraints. This extension to the PRM-
algorithm grew out of a practical necessity as we experimented
with PRMs in the field and found the basic algorithm lacking
in this respect.

B. Local Path Planner and Helicopter Controller

The control mode that carries out the plan produced by
the path planner takes a cubic polynomial space curve pa-
rameterized from 0 to 1 as its input. The curve is derived
from the two end positions and the direction of flight through
these points. This leaves one degree of freedom at each end in
the magnitude of the derivative, which is currently set to the
distance between the two points and which generally produces
nice curves. In the future, the magnitude of this vector can be
used to adjust the curvature of the curve segment to suit the
requested flight speed.

Even if the trajectory following controller is able to fly
most well-behaved curves, there are a number of limits in the
physical platform and the current controller implementation
that makes different curve-forms more or less effective to

fly. The responsibility of staying inside these limits is shared
between the controller, the task procedure that calls the path
planner and the path planner, while most of the constraints are
handled by the controller.

The limitations include maximum acceleration which puts
a limit on how fast the helicopter can fly along a curve with a
certain radius as well as ascent rate. The descent rate is even
more limited due to aerodynamic effects. Limitations that stem
from the system architecture include a timeout limit which is
a safety feature in the controller that requires the next curve
segment to be ready some time in advance in order to be able
to stop in time if no next segment arrives.

Currently the path planner is only aware of the timeout
limitation on speed while the other speed limits are imposed
dynamically by the controller. Using A∗ search, the path
planner currently optimizes only on shortest distance but we
are planning to incorporate the limitations mentioned in a
flight time estimate so that the path planner can also optimize
on flight time. The trajectory-following control-mode used is
described in more detail in Conte [1] and the low-level control
architecture is described in Merz [6].

C. Collision Checker

Both during roadmap-construction and online path planning
queries, possible paths have to be tested for collision.

The collision checking algorithm used for the path planner
in the WITAS-project is based on the OBB-tree algorithm
presented in [4]. The OBBTree-algorithm constructs a tree of
bounding boxes around the obstacles in the environment by
including all polygons in the root-box and then recursively
dividing the polygons into smaller and smaller boxes. The
orientations of the bounding boxes are determined by doing a
principal component analysis on the vertices.

However, in addition to checking for overlap between two
stationary objects, the collision checker must also be able to
check that a full path between two helicopter configurations
does not collide with any obstacles.

Since the helicopter is quite small compared to the envi-
ronment, a simplifying assumption has been made where the
helicopter is regarded as point-object. The actual size of the
helicopter is instead added to a safety margin that is placed
around the obstacles in the 3D Revinge world model. If the
helicopter is regarded as a point-object, it suffices to check
if the cubic polynomial describing a flight path intersects an
OBB. This can be done by analytically solving the intersection
points for the cubic curve and the bounding planes of the OBB.

The 3D Revinge model we are using is large. It covers an
area of800×800 m2 and consists of roughly 140,000 polygons
of which 120,000 polygons represent ground terrain. The
remaining 20,000 polygons represent other types of obstacles,
mainly buildings and trees.

Since the majority of polygons in the model represent the
ground terrain and the majority of missions are not performed
very close to the ground, the depth of the OBB-tree for
terrain can be limited to 10. Using this cut-off-value, the
generation of the OBB-tree takes approximately200 seconds,
while collision-checking against a typical curve-segment of

145

6

40 m length takes22 milliseconds. In the case of take-off
and landing which obviously takes place near terrain, visual
navigation and GPS techniques are used for maneuvering close
to the ground.

V. THE M ISSION PLANNING PROCEDURE

The path planning module is used in the following manner
during missions. At any one time during flight, a number
of task procedures are running which call control and other
functionalities as needed. During missions over Revinge when
the UAV needs to fly from one point to another, the task
procedure in control will call the path planning module with
its current position and the position to which it wants to fly.
In addition, the task procedure may also provide additional
runtime constraints on the path such as minimum or maximum
altitude or forbidden flight areas.

The path planning module then attempts to resolve the
request by first connecting the start and end position to the
roadmap which is stored onboard and then applying theA∗

algorithm with an appropriate search policy such as shortest
distance. The run-time constraints are resolved by eliminating
nodes and edges that violate them during the search.

The resulting piecewise linear curve is then subjected to
a series of smoothing steps in order to reduce the jagginess
that is often the result of randomized path planning algorithms.
All these smoothing steps are done by applying the smoothing
operation on a certain segment or waypoint and then checking
if the resulting path is still collision-free.

The most important of these are the replacement of the
linear segments with cubic space curves that makes it possible
to join the segments with a continuous first derivative which
is required to fly through the waypoints at any greater speed.
In principal C2-continuity (continuous 2nd-order derivative)
could also be achieved but this would make all segments of the
curve (if we restrict ourself to cubic functions) interdependent
which would make the replacement more complicated and
demanding to apply.

Other smoothing operations that are applied are elimination
of waypoints which results in fewer and longer path segments,
and stepwise alignment of the waypoints to make the path
straighter.

VI. M ISSIONS

The path planner described in this paper is fully integrated
and part of our on-board software architecture. It is possible
to use the path planner in a fully autonomous manner or to
use it in combination with a ground operator for interactive
missions. Although, we focus on flight in Revinge, it is
straightforward to add and use 3D models from other regions
and take advantage of this technology. In this section, we
briefly describe some of the missions that have been flown
using the path planner functionality.

The first mission demonstrates the functionality of adding
runtime constraints when the helicopter is already in the air.
In this mission, the helicopter is asked to fly from the starting
point in the upper right of figure 9 down behind a house in
the middle of the picture. The plan (white) is displayed to the

operator, and after approval the helicopter flies over the house
to goal position (logged flight-path shown in black).

The operator might disapprove of the path above the house
for various reasons, and can in such cases abort the flight
and mark a no-fly-zone covering the building, as in figure 10.
The figure also shows the resulting plan under the additional
constraint, which can be flown by the helicopter after the
operator have accepted it. The no-fly-zone is handled by
excluding edges that violate this constraint during the graph
search.

Fig. 9. Autonomous flight between two points over building. Plan is shown
in white overlapping the black flight-path plotted from log-data.

Fig. 10. Same as figure 9 but with no-fly-zone (black rectangle).

The second mission involves starting at home base and
flying to two buildings in Revinge and photographing each
of its facades. For any given building structure in Revinge,
the on-board GIS has functionality to generate suitable camera
positions to fly to for photographing each facade. In figure 11,
the path generated by the path planning module (white) is
shown together with the actual plotted log-data from the real
flight (black).

VII. C ONCLUSIONS

In this paper, we described the use of the probabilistic
roadmap path planning paradigm for an unmanned aerial vehi-
cle application. During the development and experimental use
of our PRM path planning prototype, a number of limitations
to the standard PRM approach were identified.

146

7

Fig. 11. Autonomous survey mission to building1 and then building2
photographed from each side.

One of the most important issues that arose relates to how
one deals with nonholonomic constraints which arise in the
interaction between the path planner and the low-level flight
controller. In this particular case, the most problematic aspect
has been to respect the nonholonomic constraints required
to achieve smooth transitions between different trajectory
segments, while retaining an efficient planning procedure. We
have observed that it is useful to postpone the nonholonomic
constraints to the run-time stage in order to reduce the dimen-
sionality of graph generation during the off-line stage.

Another important issue that arose is in regard to the
efficiency tradeoff between what is done off-line and what is
done on-line. It appears that flexibility as regards adjustment
to contingent changes in the UAV environment during plan
execution time is traded off against efficient runtime planning
based on a PRM generated offline. Since many of our mission
scenarios would involve dealing with runtime contingencies
such as new no-fly zones or additional visibility constraints,
we have moved towards a lazy PRM philosophy, while still
retaining the advantages of preprocessing where that is possi-
ble.

Ideally, one would like a flexible and uniform means of
adding mission constraints both during the off-line and on-
line stage. The extent to which this is done may very well
be mission dependent and based on the preferences of ground
operators. The interaction between constraints that are known
in advance and run-time constraints and how both can be
incorporated in a planner is an issue that we are currently
pursuing.

VIII. A CKNOWLEDGMENTS

This work is funded in part by grants from the Wallenberg
Foundation and COMPAS NFFP nr-539.

REFERENCES

[1] G. Conte, S. Duranti, and T. Merz. Dynamic 3D path following for an
autonomous helicopter. InProc. of the 5th IFAC Symposium on Intelligent
Autonomous Vehicles, 2004.

[2] P. Doherty, G. Granlund, K. Kuchcinski, K. Nordberg, E. Sandewall,
E. Skarman, and J. Wiklund. The WITAS unmanned aerial vehicle
project. In Proceedings of the 14th European Conference on Artificial
Intelligence, pages 747–755, 2000.

[3] P. Doherty, P. Haslum, F. Heintz, T. Merz, P. Nyblom, T. Persson, and
B. Wingman. A distributed architecture for autonomous unmanned aerial
vehicle experimentation. Submitted 2004.

[4] S. Gottschalk, M.C. Lin, and D. Manocha. Obbtree: A hierarchical
structure for rapid interference detection. InProc. of the 23rd Int’l. Conf.
on Computer graphics and interactive techniques, pages 171–180, 1996.

[5] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars. Probabilistic
roadmaps for path planning in high dimensional configuration spaces.
IEEE Trans. on Robotics and Automation, 12(4):566–580, 1996.

[6] T. Merz. Building a system for autonomous aerial robotics research. In
Proc. of the 5th IFAC Symposium on Intelligent Autonomous Vehicles,
2004.

[7] Object Computing, Inc.TAO Developer’s Guide, Version 1.1a, 2000. See
alsohttp://www.cs.wustl.edu/˜schmidt/TAO.html .

[8] S. Sekhavat, J-P. Laumond P. Svestka, and M. H. Overmars. Multi-
level path planning for nonholonomic robots using semi-holonomic
subsystems.The int’l journal of robotics research, 17:840–857, 1996.

147

