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Abstract — Any autonomous system embedded in a dynamic aprlinformation to estimate or predict entity states” and the

changing environment must be able to create qualitative knovdata fusion problem “becomes that of achieving a consis-
edge and object structures representing aspects of its environmgsfi, comprehensive estimate and prediction of some rele-
on the fly from raw or preprocessed sensor data in order to regant portion of the world state”.

son qualitatively about the environment and to supply such stateThe gap between models, such as the JDL data fusion
information to other nodes in the distributed network in which it '

is embedded. These structures must be managed and madem%del, which describe a set of functions or processes which

cessible to deliberative and reactive functionalities whose sﬁﬁou!d l_)e Components_ Of‘f‘ deployed system.to the aqtual_ln-
cesful operation is dependent on being situationally aware of tféantiation of data fusion in a software architecture in this
changes in both the robotic agent’'s embedding and internal enitoader sense is very much an open and unsolved prob-
ronments. DyKnow is a knowledge processing middleware franlem. In fact, it is the belief of the authors that architectural
work which provides a set of functionalities for contextually creaframeworks which support data and information fusion in
ing, storing, accessing and processing such structures. The frarttéis broader sense have to be prototyped, tested, analyzed
work is implemented and has been deployed as part of a delip-terms of performance and iterated on, in order to eventu-

erative/reactive architecture for an autonomous unmanned aerigjly support all the complex functionalities proposed in the
vehicle. The architecture itself is distributed and uses real-timfy| gata fusion model

CORBA as a communications infrastructure. We describe the sys-

tem and show how it can be used to create more abstract entity anan this paper, we will describe an instantiation of parts of

state representations of the world which can then be used for siﬁHCh an architectural framework which we have designed,

ation awareness by an unmanned aerial vehicle (UAV) in achigtfiPlemented, and tested in a prototype deliberative/reactive

ing mission goals. We also show that the framework is a workig@ftware architecture er a deplqyed un_manned aerial vehi-
instantiation of many aspects of the JDL data fusion mbdel. ~ cle [4, 5]. The name given to this architectural framework

Keywords: Situation awareness, knowledge representation, Jlfﬁ’_h'Ch i\l,JprortS datr?\ fusion at many levels _Of ab_stractlon IS
data fusion model, cognitive robotics, sensor and symbol integidyKnow*. DyKnow is a knowledge processing middleware

tion, middleware framework used in our unmanned aerial vehicle (UAV) ar-

chitecture to support timely generation of state information
1 Introduction about entities in the environment in which the UAV is em-
In the past several years, attempts have been madeb?gded and entities internal to the UAV itself. The latter is

broaden the traditional definition of data fusion as state e@_portant for monitoring the execution of the autonomous

L . : . sgstem itself.

timation via aggregation of multiple sensor streams. Ther The DvK is platf ind d i th
is a perceived need to broaden the definition to include the € hy nr:)wfsystem LS paté)rm |ndgpen ent ollr:‘ft N
many additional processes used in all aspects of data éﬁa'sel that tte ramcewor can " € useb I'.n ma}tr1y 'f erent
information fusion identified in large scale distributed syéz-or?r_) EX SYS emﬁ. dons:zqgen Y, We Defleve : 'S 0 gcg)en-
tems. In this case, the nodes in such systems may not ofit mterfe;t :? the ?_tah usion 9°“|“m|“r?'ty at arge. hne
include sensors in the traditional sense, but also comp% ect or LyKnow which 1S particularly m_terestlng Is the
systems where data and information are fused at many éﬁ—Ct that it was designed and prototyped independently of

ferent levels of abstraction to meet the diverse situation a?él.y knowledge aboyj[ th? JDL data fusion model. The re-
sessment needs associated with different applications. quirements for specification were those necessary to reason

One of the more successful proposals for providing out world state at very high levels of abstraction and to be

framework and model for this broadened notion of data fé le to take advantage of artificial intelligence techniques

sion is the U.S. Joint Directors of Laboratories (JDL) data" qualitative siFuatio_n_ assessment and moniForing of the
fusion model [1] and its revisions [2, 3]. In [2] for exam-UAY and dynamic entities in its embedded environment. It

ple, data fusion is defined as “the process of combining gdiins out that the resulting prototype is a reasonable instan-

1This work is supported in part by the Wallenberg Foundation, 2“DyKnow” is pronounced as “Dino” in “Dinosaur” and stands
Sweden and an NFFPO3 research grant (COMPAS). for Dynamic Knowledge and Object Structure Processing



tiation of many of the JDL data fusion levels and provides Databases
insight into many of the details that are important in making
such architectures a reality. For example, such systems are @

not strictly hierarchical and often involve complex interac-  image
tions among the layers. This implies that it is not feasible \L | teskprocedures

to specify and implement each level separately. This per-

ceived weakness in the JDL model was in fact pointed oglt.i chronicie
H H H S 2//V recognition
by Christensen in a recent panel debate concerning the JpL DyKnow

model [6]. ® | ]
- - ~— execution
h;!:f%}::f /w monitoring

. streams
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1.1 Structure of the Paper

The paper is structured as follows. In section 2, an overview

of the important concepts used in the definition of the DyFig. 1: An instantiation of the DyKnow knowledge process-
Know framework is given. In section 3, we consider thing middleware used in the WITAS project.

DyKnow framework in the context of the revised JDL data

fusion model. In section 4, we describe a UAV scenario iparts of the architecture relative to the needs and constraints
volving vehicle identification and tracking, where DyKnowassociated with the tasks at hand.

has been used to advantage. In section 5, some work rem Figure 1 an example of a concrete instantiation of the
lated to the DyKnow framework is presented. In section GyKnow framework that we use in our experimental UAV

we conclude and summarize the work. architecture is shown. There are three virtual sensors, the
image processing subsystem, the camera platform and the
2 DyKnow helicopter platform. We have a geographical information

. ] ) ] system (GIS) which is a database that contain information
The main purpose of DyKnow is to provide generic anghqyt the geography, like road structures and buildings, of
well-structured software support for the processes involvggh region we are flying in. The services include the reactive
in ggnerating stgte and entity abstractions about the exterpal procedures which are components linking the deliber-
and internal environments of complex systems, such as @i#e services with the camera and helicopter controllers, a
experimental UAV system. Generation of state and entify onicle recognition engine for reasoning about scenarios,
descriptions is done at many levels of abstraction beginniggq atemporal logic progression engine for execution mon-

with low level quantitative sensor data. The result is oft§fyring and other tasks related to evaluating temporal logic
qualitative data structures which are grounded in the Wogymylas.

and can be interpreted as knowledge by the system. The

resulting structures are then used by various functionalitiﬁs2 0

) ; : ) : -2 ntolo

in the deliberative/reactive architecture for control, situa- gy

tion awareness and assessment, monitoring, and plannihgologically, we view the external and internal environ-

to achieve mission goals. ment of the agent as consisting of physical and non-physical
entities propertiesassociated with these entities, ared
2.1 Knowledge Processing Middleware lations between these entities. The properties and rela-

tions associated with entities will be calléehtures Fea-
Conceptually, DyKnow processes data streams generafigts may be static or dynamic. Due to the potentially dy-
from different sources in a distributed architecture. The$@mic nature of a feature, that is, its ability to change val-
streams may be viewed as representations of time-Sefi@s through time, duentis associated with each feature.
data and may start as continuous streams from sensorg\Qfyent is a function of time whose range is the feature’s
sequences of queries to databases. Eventually they ‘Mbe- Some examples of featuters would bevmcity of

contribute to definitions of more complex composite knowhp, gbject, theoad segmenof a vehicle, and thelistance
edge structures. Knowledge producing processes combi@yeertwo car objects.

such streams, by abstracting, filtering and approximating

as we move to higher levels o_f abstraction. _In this sensgqa Object Identifiers and Domains

the system supports conventional data fusion processes,

but also less conventional qualitative processing techniquias object identifierrefers to a specific entity and provides
common in the area of artificial intelligence. The resulting handle to it. Example entities are “the colored blob”, “the
streams are used by different reactive and deliberative sear being tracked” or “the entity observed by the camera”.
vices which may also produce new streams that can be furThe same entity in the world may have several different
ther processed. A knowledge producing process has diffetentifiers referring to it and a composite entity (consisting
ent quality of service properties, such as maximum dela, a set of entities) can be referred to with a single iden-
trade-off between data quality and delay, how to calculatifier. Three examples of this are shown in Figure 2. In
missing values and so on, which together define the semé#re first example we have two representations of the same
tics of the chunk of knowledge created for use. The sareatity, in this casélobl andblob2 which could be blobs
streams of data may be processed differently by differemttracted from two different pictures, that we may or may



not know refer to the same entity. In the second exampleThere are two types of fluent approximations, primitive
we haveblob3 andcarl which represents two different as-and computed fluent approximations. Primitive fluent ap-
pects of the same entity. An example of object identifiepgoximations acquire their values from an external source,
referring to a composite entity may occur when several obdch as a sensor or human input, while computed fluent ap-
ject identifiers refer to the same entity at different levels @roximations are functions of other fluent approximations.
abstraction, such as the car entity referred tachs2 and To do the actual computation a procedural element called a
the hood and wheel entities referred tolmod andwheel computational uniis used. The computational unit is bas-
cially a function taking a number of fluent approximations

Representation oot blob2 blob3  cart carz  hood wheel gs input and generating a new fluent approximation as out-
(DyKnow) O O OO O OO put. A picture of a general computed sample trace is shown
S P , *in Figure 3.

sample trace
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entities.

Fig. 2: Examples of relations between object identifiers and \ computational sample trace }

An agent will most often not know the exact relation be-
tween object identifiers, whether they refer to the same en-
tities or not, because they are generated for different rea{ sample trace
sons and often locally, but there are mechanisms for relating
them presented in Section 2.6. The basic constraints placed Fig. 3: A computed sample trace in DyKnow.
on object identifiers are that they are unique and only as-
signed to an entity once (single assignment). Since a fluent generator represents a total function from
An object domairis a collection of object identifiers re-time to value and the sample trace only represents a set of
ferring to entities with some common property, such as alhmples the fluent generator must be able to estimate the
red entities, colored blobs found in images or qualitativealue at any time-point whether or not a sample exist at that
structures such as the set of cars identified in a mission. fme-point. Since this estimation can be made in many dif-
object identifier may belong to more than one domain arérent ways, depending on how the samples are interpreted,
will always belong to the domain “top”. Object domainst is possible to create many different fluent generators from
permit multiple inheritance and have a taxonomic flavos single sample trace. And, from each of these fluent gen-
The domains an object identifier belongs to may changeators we can generate many different sample traces by
over time, since new information provides new knowledgsampling the fluent generator at different time-points. How
as to the status of the entity. This makes it possible to cregtiese transformations are done are described by declarative
domains such as “currently tracked entities” or “entities ipolicies. Thefluent policyspecifies a transformation from

regions of interest”. a sample trace to a fluent generator, andfthent stream
policy specifies a transformation from a fluent generator to
2.4 Approximating Fluents a sample trace. A policy may be viewed as the context in

which the observations in a sample trace are interpreted.
The fluents associated with features are the target of the répe resulting fluent approximation is the meaning of the
resentation in DyKnow. A feature has exactly one fluent fi®ature in that context. An overview of how approximated
the world which is its true value over time. The actual fluerfituents can be created from an existing sample trace approx-
will almost never be known due to uncertain and incompleteation is shown in Figure 4.
information. Instead we have to create approximations ofWe are primarily interested in distributed systems where
the fluent. Therefore, the primitive unit of knowledge is thtéhe sources of data often determine its quality and latency.
fluent approximation In DyKnow there are two represen-These and other characteristics such as access and update
tations for approximated fluents, tfi@ent generatorand constraints must be taken into account when generating and
thesample traceThe fluent generator is a procedure whichising fluent approximations associated with specific data
can compute an approximated value of the fluent for aspurces.Locationsare introduced as a means of indexing
time-point. The sample trace is a set of observations ofrdo data sources which generate fluent approximations as-
fluent or samples of an approximated fluent. Since a flaeciated with specific features. A feature may be associ-
ent may be approximated in many different ways each feated with several fluent approximations located in different
ture may have many approximated fluents associated witlaces in the architecture. By representing these different
it. The purpose of DyKnow is to describe and represeptaces with locations we make it possible to model and rea-
these fluent generators and sample traces in such a way twat about them. Different locations might give the approx-
they correspond to useful approximations of fluents in thenated fluents hosted different properties by only allowing
world. certain types of access to them. For instance, position of an



sample trace A concrete example is that we have streams of positions
given in pixel coordinates and streams of camera states de-
sample trace scribing the position and direction of the camera. In order

to find out what coordinate in the world a pixel position cor-
responds to we need to synchronize these two streams. If
we have a position at time-pointwe want to find a cam-

era state which is also valid at time-pointin the simplest
case there exist such a sample, but in a more general (and
realistic) case we have to either find the “best” camera state
sample trace in the stream or estimate what the camera state would be
at time-pointt from the observed samples. Three simple
strategies for estimating the sample & to take the clos-

est sample beforg the closest sample afteor the closest

sample trace

sample trace

sample trace

sample trace

fluent generator

en
policy

sample trace

fluent generator sample trace sample either before or aftér Close is here defined in the
valid time domain.
sample trace The problem of creating coherent states from data

streams is non-trivial and can be realized in many differ-
Fig. 4. An overview of how new approximated fluents casnt ways. In DyKnow the synchronization strategy is de-
be created from an existing sample trace approximation.scribed by a policy called thstate policy If the existing

pre-defined synchronization strategies are not adequate for
autonomous agent may be accessed directly from a deasepplication then a computational unit can be defined and
stream from a virtual sensor or from a discrete stream iruged as a general mechanism for extracting states.
database. This is useful when processing data since variouan eventis intended to represent some form of change
functionalities have different requirements on type, qualitgy state transition. Events can either be primitive, e.g. a
density of data, etc. Control modes have much differesample received from a sensor can be seen as an event, or
requirements on feature data than inferencing mechanisgeserated, e.g. the event of the approximated flfieatch-

do. ing a peak in its value. Generated events can either be ex-
tracted from fluent approximations or computed from other
2.5 States and Events events. In DyKnow it is possible to define primitive events

on approximated fluents, mainthange eventsuch as flu-
Two important concepts in many applications are states aggt approximatiori changed its value with more than 10%
events. In DyKnow atateis a composite feature which is asince the last change event, or the valud wis updated
coherent representation of a collection of features. A stgigut might not have been changed). Events are most often
synchronizes a set of fluent approximations for the compgsed as triggers or inputs to complex event recognition en-
nent features into a single fluent approximation for the stajgies such as the chronicle recognition engine used in our
as shown in Figure 5. The value of the new fluent approXiyAVv architecture.
mation, which actually is a vector of values, can be regardedpyKnow currently has support for two types of com-
as a single value for additional processing, i.e. a state whefged events. The first is the evaluation of linear temporal
all the components have values at the same time-points (ffgigic (LTL) formulas becoming true or false. The second
might be relaxed, so that all the values are within a certgigithe recognition of scenarios, called chronicles, composed
time-window depending on the properties of the state fegf temporally related events (expressed by a temporal con-
tures). The need for states is obvious if we consider th@taint network). The LTL formulas are evaluated on a state
we might have several sensors each providing a part of €feam containing all the features used by the LTL formula,
knowledge about an object, but whose fluent approximgg the state extraction mechanism mentioned above is a pre-
tions have different sample rates (implying samples at diequisite for the LTL formula evaluation. The chronicle
ferent time-points). recognition engine, on the other hand, takes events repre-
senting change in fluent approximations as input and pro-
duces other events representing the detection of scenarios as
output. These can be used recursively in higher level struc-
tures representing complex external activity such as vehicle
behavior. In summary, the data flow state extraction func-

sample trace tionality supported by DyKnow has to be flexibly support-
ive and adaptive to the different functionalities which will

sample trace

azjuoiysuAs

use the data.

sample trace

2.6 Objects, Classes and Identity

_ _ _ Grounding and anchoring internal representations of exter-
Fig. 5: A synchronized sample trace in DyKnow.  na entities in the world is one of the great open problems



in robotics. Consequently, middleware systems for knowl- A link type represents the potential that objects from two
edge processing must provide complex support for the mamasses might represent the same entity. The link specifi-
agement of representations and their relation to the exterpation contains three constraints, tetablish reestablish
entities they represent. andmaintain constraintsIf an establish constraint, defined
It is often the case that there are several object identifi@®8 objects from the linked-from class (a link is directed), is
referring to the same entity in the world. For example, $atisfied then a new instance of the linked-to class is cre-
vehicle is an object which can enter a tunnel. The objeated and a link instance is created between the objects. An
which leaves the tunnel may or may not be the same entigxample of this is given in Figure 6 if read from left to
One has to reason about both possibilities until addition@@ht. The establish constraint represents the conditions for
constraints resolve the ambiguity. assuming the existence of another, related, aspect of an en-
We require a mechanism for reasoning about the relatiify. For example, in our application we assume all vision
between object identifiers, including finding those obje@pjects are related to a world object, therefore a new world
identifiers which actually codesignate with the same entigpject is created if a vision object is not already linked to
in the world. When two object identifiers are hypothesize@ne. A reestablish constraint encodes when two existing
as referring to the same entity in the world, a link is creatédjects, one from each class, should be linked together. An
between them. The collection of object identifiers referringxample of this is given in Figure 7 if read from left to right.
to the same entity in the world and the links between the¥hen a link instance is created a maintain constraint, which
is called arpbject linkage structure is a relation between the two objects, is set up in order to
We have separated the object identity (i.e. what entity fRONitor the hypothesis that they are actually referring to the
the world an object identifier refers to) from the object staté@me entity in the world. If it is violated then the link in-
Classes provides a mechanism for specifying certain re;;_‘;ance is removed which is the case in Figure 7 if read from
tionships between the two, by regulate the minimum staight to left.
vides the mechanism for describing relations between ob- it objt  vehide obit vehice car
ject identifiers, i.e. to reason about the identity of object @ e 7 OO e T 07 O
identifiers. § U e —_— e
The object linkage structure makes it possible to model e Ay ol
each aspect of an entity as a class and then provide the con* | o o
ditions for when an instance of the class should be linked to
an instance of another class. For example, in the traffic do9- 6: An example of creating and deleting a linked object.
main we model the blobs extracted by the image processing
subsystems as separate object identifiers belonging to the

class VisionObject and objects in the world as object iden- obt vehice1 reestabiish ot vehicle |
tifiers belonging to the class WorldObject. We also provide o O L™ OO
a link type between these classes in order to describe the f - re
conditions for when a vision object should be hypothesized & - e 4

as being a certain world object. This simplifies the mod- ot | e

eling since each aspect can be modeled separately, it also
simplifies the classification, tracking and anchoring of thieig. 7: An example of reestablishing a link and violating its
objects. maintain constraint.

To describe a collection of object identifiers representing
an aspect of an object, @assis used. A class describes For a more detailed account of object linkage structures
what fluent approximations all instances should have aiftdDyKnow, see [7].
includes four constraints, theate add, codesignateand
maintain constraintsthat regulate the membership of the 7 |mplementation
class. If a create constraint is satisfied then a new object
identifier is created and made an instance of the class.Alf of the concepts described above are implemented in
the add constraint for an object identifier is satisfied the®++ using the TAO/ACE [8] CORBA implementation. The
it is considered an instance of the class and it is addBgKnow implementation provides two services. The do-
to the class domain. A codesignation constraint encodasin and object manager (DOM) and the dynamic object
when two objects of the class should be considered idenpository (DOR). The DOM manages object identifiers,
cal. The maintain constraint describes the conditions thtddmains, classes and objects. The DOR manages features,
always should be satisfied for all instances of a class. flfient approximations, states and events. To evaluate LTL
the maintain constraint is violated the object identifier is réermulas we use our own implementation of the progression
moved from the class. The maintain constraint represemlgorithm presented in [9]. Complex dynamic scenarios in-
the essential and invariant properties of a class. A covslving single or multiple entities are recognized online us-
straint can be any event, but it is usually an LTL formulang the C.R.S. chronicle recognition system from France
Constraints can only use the fluent approximations that arelecom which is based on the IxTeT chronicle recognition
required by a class in their definitions. system [10].



3 JDL Data Fusion Model in a data fusion application. DyKnow also provides support

for a number of special fusion problems, such as the fusion

]:rhetQDleat?j f:stmr(; rtno]fjell IS tne mogt Wlldelyde}dolpg;tgé several objects from a class into a single object of that
buntchlorL1Jastc> 'et S.r ata us]:?_n.b W?S. evigﬁe Dmt E ass or the fusion of objects from many different classes
y the U.S. Joint Directors of Laboratories (JDL) Data nto a single object of another class.

sion Group [1] with several recent revisions proposed [2, T
The data fusion model originally divided the data fusio .
problem into five different functional levels (but there arg"l Level 0 Data Fusion
currently some discussions regarding level 0 and level 4)n this level, fusion on the signal and sub-object level
The levels as presented in [2] are shown in Figure 8 aBHould be made. Since the object identifiers can refer to any
described below. entity, including sensors and entities which may be an ob-
ject on its own or not, we can represent and work on features
e Level 0- Sub-Object Data Assessmeestimation and gych as “signal from sensor S” and “property of blob found
prediction of signal- or object-observable states on tlpg, image processing system”. Fusion on this level would
bagis (_)f pixel/signal-level data association and charggs implemented by computational units. The purpose of
terization. the computational units is to reduce the noise and uncer-
+ Level 1- it Asessmenesimaon and precic- 211 1% 1 Wt PProatons 1 s o e v
tion of entity states on the basis of inferences from otﬁ?e sub-gb' P PP i
servations. J_ect features are used mostly at level 1 to create
coherent object states.
e Level 2- Situation Assessmergstimation and predic-
tion of entity states on the basis of inferred relation3.2 Level 1 Data Fusion

among entities. On this level, sub-object data should be fused into coherent

e Level 3 - Impact Assessmentestimation and pre- Object states. In DyKnow there are mainly two functionali-
diction of effects on situations of p|anned or esties USEd, State aggregation and the creation of ObjeCt link-
timated/predicted actions by the participants (e.@ge structures. A state collects a set of sub-object features
assessing susceptibilities and vulnerabilities to e@vhich could represent properties of an object) into a state

timated/predicted threat actions, given one's owghich can be used as a synchronized value similar to the
planned actions). value of a struct in C. Linkage structures are then used to

reason about the identity of objects and to classify existing
o Level 4 - Process Refinementidaptive data acquisi- objects.
tion and processing to support mission objectives. In the linkage structure two special cases of data fusion
are needed. The first is the fusion of codesignated ob-
jects, i.e. when two or more objects from the same class
are hypothesized as actually being the same entity, where
the knowledge related to each of these objects have to be
fused into a single object. There are two modes of doing
this fusion; it can either be done continuously, so that all

DATA FUSION DOMAIN

Level 0
Processing

Sub-Object

Level 1
Processing

Object

Level 2
Processing

Level 3
Processing

Situation Impact

the individual object instances still exist but their content

t t ‘ t is continually fused into a new object, or it can be as a
one-shot fusion where all knowledge at the moment of the

— codesignation is fused into a single new object and the old

‘ ‘ objects are deleted.

The second special case is the fusion of several different

Processg i objects from different classes into a single object. This is

process the case when an object is linked-to from more than one

object of different classes. For example, assume our robot
has both a sonar and a camera, each sensor provides sub-
object fluent approximations containing the sensor readings
Fig. 8: Revised JDL data fusion model from [2] related to entities in the world. If the entity sensed by the
sonar and the entity sensed by the camera are hypothesized
In this section we will go through each of the levels ands being the same entity, the position fluent approximation
describe how its functionalities can be implemented usimd the camera state and the position fluent approximation
the DyKnow middleware. By this we claim that the conef the sonar state must be merged into a single position flu-
cepts provided by DyKnow are suitable for implementingnt approximation, representing the combined knowledge
parts of the JDL data fusion model. Itis important to realizebout the entity. In DyKnow this would be done using a
that DyKnow does not solve the different fusion problemsomputational unit which takes two data streams as input,
involved, but rather provides a framework where differersts shown in Figure 9, one with camera positions and one
specialized fusion algorithms can be integrated and applieith sonar positions and using some algorithm to compute




a new fluent approximation, the combined position in th&ell as create new object identity hypotheses. For instance

world. The streams will be generated as long as the hjxe example given in [2] about the detection of a missing

pothesis that the three objects are the same is maintaine8A-6 unit in a battery can be handled by a create constraint
on the SA-6 class triggered by the detection of an incom-

camera position ‘r bosiiontleraer | combined position plete SA-6 battery. Given a computed event that is detected
ositionlierge when an incomplete battery is found, this event could be

sonar position used to trigger the creation of a new SA-6 instance. In

Fig. 9: An example of level 1 fusion of two level 0 fluenlIhis case a monitor could also be set up to make sure the
approximations. complete SA-6 battery is detected since all units have been
found. This monitoring would be handled by level 3 data

In DyKnow fluent approximations from level 1 mainlyfusion.
interact with level 2 by providing coherent object states for )
computing and detecting situations. Level 3 is also very ing-4 ~ Level 3 Data Fusion

portant since it is responsible for checking the hypotheticg this level, objects and situations should be used to assess
object linkage structures by continually checking the imthe impact on the current actions and plans of the agent. To
pact of new observations on the current hypotheses. Sing&ess the impact, different types of monitoring are done,
the computations on this level can be time consuming, tBthong others the execution monitoring of plans and behav-
interactions with level 4 are also important in order to maimors and the monitoring of object hypotheses_ To imp|ement
tain a steady update of the most important fluent approxese monitors the different event detection mechanisms
mations for the moment. can be used. Currently, we use LTL formulas to model the

. temporal aspects of execution and hypothesis validation.
3.3 Level 2 Data Fusion Level 3 interacts with both level 1 and level 2 since the
On this level, relations between objects fused together finen approximations produced on those levels are the ones
the previous levels should be detected as well as more camsed as input to impact assessment. The detection of vio-
plex situations being represented and recognized. The tions of monitored constraints will lead to changes at the
tection of events, both primitive and computed, are impolewer levels.
tant tools to model situations. Computed events can e.g. be
temporal logic formulas or chronicles describing tempor8.5 Level 4 Data Fusion
relations between ObJeCtS.' In t_h|s fashion different featu;gn the fourth and final level, process refinement is handled.
are fused together over time in order to extract more ap-

N X N DyKnow this usually corresponds to changing what flu-
stract situations that are features in themselves. Collectiols approximations and classes are currently being com-
of objects can also be aggregated into states in orderto s

: L wied. This is related to focus of attention problems where
chronize them to a coherent situation.

. . the most important fluent approximations should be com-
Properties, relations, states and events are all represente b bp

o . " uted while less important fluent approximations have to
by fluent approximations in DyKnow. Sets of entities b P i

longing to concepts such as “the set of all cars that h §/tand back in times of high loads. To support focus of at-

. tion, fluent approximation and class specifications can
been observed to make reckless overtakes in the Iastb§e dded and deleted at run-time.

minutes” can be described and maintained through the US@ nother tool used for refinement are the policies supplied

of domains described by classes. Classes function as clas; S : -~
sification procedures which add all object identifiers whic}l\{ﬁh fluent approximations, By changing the policies of the

X X . . ent approximations the load can be reduced. For exam-
satisfy the associated add constraint to the domain and k o pproximat u X

them as members as long as the maintain constraint for ?e’ If the current policy for a fluent approximation of the
o e '9 : osition given by the sonar sensor is to sample it 10 times a
object identifier is not violated. By belonging to a clas

. o 2 ...second and the latency on the higher level approximations
certain fluent approximations related to the object identifi d ency o g bpro

. . . (r)mputed from this is longer than 100ms then the sample
are guaranteed to exist and to have certain properties ei\té could be lowered to e.g. 5 times a second or some-

scribed by the maintain constraint. The maintain constranp] ng more appropriate until the load goes down again. It

(r:vlagsrzsents invariant properties of entities belonging to tli"sealso possible to setup filters to remove certain samples

or events. For example, instead of receiving all samples,

eal :
orWy receive a sample when the value has changed more

with all updates in the car states of those object identifietrﬁ(,:ln 10%. Changes in policies can be made dynamically

that have been detected as reckless vehicles. The str%ehrg can later be changed back to the original policy.

corresponds to anon-trivial set of dynamic knowledge com- Level 4 interacts with all the other levels since it controls

puted from sensors and continually being co_rrelated _to t f context within which those are being computed as well
current state of the world model as well as being monitore

: as controlling what is actually being computed.
by level 3 data fusion. g y g p

Apart from the input provided by fluent approximation .

at level 1, the interactions of level 2 are mainly with Ieve?1 Example Scenario

3 where fluent approximations representing complex sitBicture the following scenario. An autonomous unmanned
ations can be used to maintain object linkage structureseaasial vehicle (UAV), in our case a helicopter, is given a



mission to identify and track vehicles with a particular sigmain linked. This is an example where the world object has
nature in a region of a small city in order to monitor théeen reacquired, to use the anchoring terminology. Another
driving behavior of the vehicles. If the UAV finds vehiclegossibility to regain the tracking is when two world objects
with reckless behavior it should gather information aboatre hypothesized as being the same entity, but where only
these, such as what other vehicles they are overtaking ame is currently linked to a vision object. This happens if
where they are going in crossings. The signature is prfte codesignation constraint between the two world objects
vided in terms of color and size (and possibly 3D shape$.satisfied. In this case, they are merged into a single world
Assume that the UAV has a 3D model of the region in aabject to which the vision object is linked.
dition to information about building structures and the road Since links only represent hypotheses, they are always
system. These models can be provided or may have bgebject to becoming invalid given additional observations.
generated by the UAV itself. Additionally, assume the UAfherefore the UAV agent continually has to verify the va-
is equipped with a global positioning system (GPS) and ifdity of the links. This is done by associating maintenance
ertial navigation system (INS) for navigation purposes angnstraints with links. If the constraint is violated then the
that its main sensor is a camera on a pan/tilt mount. link is removed, but not the objects. A maintenance con-
One way for the UAV to achieve its task would be to initistraint could compare the behavior of the objects with the
ate a reactive task procedure (parent procedure) which caligmative and predicted behavior of these types of objects.
an image processing module with the vehicle signature aglze monitoring of hypotheses at level 3 in the data fusion
parameter. The image processing module will try to idemodel uses fluent approximations computed at all the lower
tify colored blobs in the region of the right size, shape arldvels.
color as a first step. The fluent approximations of each newThe next qualitative step in creating a linkage structure
blob, such as RGB values with uncertainty bounds, lengithis scenario would be to check if the world object is on
and width in pixels and position in the image, are assoar close to a road, as defined by a geographical information
ated with a vision object (i.e. an object identifier which isystem (GIS). In this case, it would be hypothesized that
an instance of the class VisionObject). The image procesise world object is an on-road object, i.e. an object mov-
ing system will then try to track these blobs. As long as thieg along roads. The maintenance constraint is that it is
blob is tracked the same vision object is updated. From thetually following the road system, otherwise it would be
perspective of the UAV, these objects are only cognized &m off-road object (which we ignore in this scenario). An
the extent that they are moving colored blobs of interest ang-road object could contain more abstract and qualitative
the fluent approximations should continue to be computéghtures such as position in a road segment which would
while tracking. allow the parent procedure to reason qualitatively about its
Now one can hypothesize, if the establish constraint pbsition in the world relative to the road, other vehicles on
the vision to world object link is satisfied, that the blob adhe road, and building structures in the vicinity of the road.
tually represents an object in the world by creating a repd this point, streams of data are being generated and com-
resentation of the blob in the world. New fluent approxiputed for many of the fluent approximations in the linked
mations, such as position in geographical coordinates, afgiect structures at many levels of abstraction as the heli-
associated with the new world object. The geographic coepter tracks the on-road objects. Most of the links and flu-
ordinates provide a common frame of reference where pat approximations in the example are shown in Figure 10.
sitions over time and from different objects can be conWe could go on and hypothesize what type of vehicle it is
pared. To represent that the two objects represents two lagsed on the size and driving behavior but we leave that out
pects of the same entity the vision object is linked to thef this example.
world object. Since the two objects are related, the flu- More specifically, the establish constraint for a link from
ent approximations of the world object will be computethe class WorldObiject to the class OnRoadObiject is repre-
from fluent approximations of the linked-from vision obsented as an LTL formula®Oj 19j0on_road(this), which
ject. When the vision object is linked to a world object thetates that in order for a world object to be hypothesized as
entity is cognized at a more qualitative level of abstractiobeing an on-road object the world object must be observed
yet its description in terms of its linkage structure contairen the road for at least 10 seconds. If this is true then a new
both cognitive and pre-cognitive information which must ben-road object is created and linked to from the world ob-
continuously managed and processed due to the interdegeot. The maintain constraint is represented as the LTL for-
dencies of the fluent approximations at various levels. Weula, -0 5—on_road(this), which states that a world
have now moved from level O to level 1 in the data fusioabject is not allowed to be observed off the road for more
model. than 5 seconds in a row. If the maintain condition is vio-
Each time a new vision object is created, it is testdéted then the link between the world and on-road objects is
against each existing world object to see if they could repemoved. These formulas provide one way of handling the
resent the same entity. If the world object passes the tagicertainty in the observations of the position of an object
i.e. the reestablish constraint of the link between vision afftla qualitative manner since it considers the position over
world objects is satisfied, then a link is created betweena interval instead of at a single time-point.
and the new vision object. In this case, the world object flu- Using on-road objects, we can define situations describ-
ent approximations would be updated using fluent apprarg different traffic behavior such as reckless driving, reck-
imations from the new vision object for as long as they réess overtakes, normal overtakes and turning left and right
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Fig. 10: The link instances and fluent approximations in one instance of the traffic monitoring scenario.

in crossings. All of these situations are described usitigne behavior of the system. If the latency goes over a cer-
chronicles, which are represented by temporal constraiain threshold the task procedure has the option of either
networks where events are represented with nodes and teemoving fluent approximations it deems as less important
poral constraints are attached to edges between nodes. dhehanging policies in such a way that the amount of data
chronicles can then be recognized online by a chronigheoduced is reduced. These are all examples of process re-
recognition engine. finement at level 4 of the data fusion model.

We can now define a class RecklessBehavior which has
the add constraint,
O (reckless_overtake(this)Vreckless_driving(this)), which 5 Related Work
is satisfied if an on-road object is observed doing a reckless
overtake or driving recklessly. A maintain constraint for
this class could bef|y 1500 (reckless_overtake(this) v The DyKnow framework is designed for a distributed, real-
reckless_driving(this)), which is violated if the object is time and embedded environment [11, 12] and is devel-
not observed doing any reckless driving within 30 minutegped on top of an existing middleware platform, real-time
(the time-unit is seconds in the formulas). By subscribirgORBA [13], using the real-time event channel [14] and
to all overtake, turn left, and turn right events related te notification [15] services.
an object in the RecklessBehavior domain using a set subpifferent aspects of the framework borrow and extend
Scription (WhICh subscribes to certain fluent approximatiorf@eas from a number of diverse research areas primar-
for all objects in a given domain), the system is able to pr@y related to real-time, active, temporal, and time-series
duce the required information and successfully carry out tgtabases [16, 17, 18], data stream management [19, 20],
mission. We are now maintaining fluent approximations ghd knowledge representation and reasoning [21].

'?Ve's 0, 1! and 2 i_n the data fusion mode_l, WhiCh aré Con-gne of the many differences between DyKnow and main-
tinually being monitored by fluent approximations at Ieve_J,tream database and data stream approaches is that we use
3. a data model based on the use of features and fluents which
All fluent approximations, classes, links, events aridtegrates well between quantitative and qualitative con-
chronicles are configured by a parent task procedure at gtauctions of knowledge structures. In addition, there is
beginning of the scenario. Thus if the situation changes theeater flexibility since the same data streams can be used
task procedure has the option of modifying the specificax many different ways to generate knowledge structures
tions associated with the task at hand. It is also possibléth different characteristics. This contextual generation is
to set up monitors checking current delays in computingpresented as policies which can be generated and used by
different fluent approximations in order to monitor the reakources which requireknowledge in different forms.



6 Conclusions

(8]

Object Computing, Inc. TAO Developer’'s Guide, Version
1.33 2003. See alstttp://www.cs.wustl.edu/

We have presented a knowledge processing middleware ~gchmidt/TAO html
framework which provides support for many of the func-
tionalities specified in the revised version of the JDL datég]
fusion model. DyKnow supports on-the-fly generation of
different aspects of an agent’s world state at different levels

of abstraction. Contextual generation of world state is abdd?

lutely essential in distributed contexts where contingencies
continually arise which often restrict the amount of time a

cisions. It is our belief that autonomous systems will have
to have the capability to determine where to access data,
how much data should be accessed and at what leveld’sf
abstraction it should be modeled. We have provided initial
evidence that such a system can be designed and depldy&H D. Schmidt and F. Kuhns. An overview of the real-time
and described a scenario where such functionality is useful.
DyKnow has also been designed with both generality anoh]
genericity in mind. It is relatively straightforward to add
additional functionality in terms of specialized algorithms
for data fusion and diverse deliberative services which ifts;

terface to the data fusion backbone in a seamless manner.

CORBA provides a communication infrastructure which
guarantees moderate amounts of scalability. The syst?rgl
has been tested in a number of complex scenarios involv-
ing our experimental UAV platform and has provided great
insight into what will be required for the realization of ad 17]
vanced distributed data fusion services. Observe that the
focus here is not on individual data fusion techniques but
the infrastructure which permits use of many different daf?g]
fusion techniques in a unified framework.
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