
An Experimental Platform for

Approximate Databases

Martin Magnusson, Patrick Doherty, Andrzej Sza las

Department of Computer and Information Science

SE-581 83 Linköping, Sweden

email: {marma,patdo,andsz}@ida.liu.se

March 31, 2005

Abstract

We have implemented an experimental platform for approximate knowl-
edge databases based on a semantics inspired by rough sets called the
Rough Knowledge Database (rkdb). The implementation is based upon
the use of a standard sql database to store logical facts, augmented with
several query interface layers implemented in Java through which exten-
sional and intensional approximate logical formula queries, approximate
fixpoint formula queries, and local closed world queries can be evaluated.
Designing the database, entering data, and querying can all be accom-
plished in an accessible way through the Graphical Database Design user
interface.

1 Introduction

A standard deductive database (see, e.g., [1]) can store ground atomic formulas
to represent factual knowledge and use, for example, Horn-clause logic formulas
as deductive rules to infer additional facts. Such databases often make assump-
tions, such as the assumption that the stored knowledge is precise or complete,
that render them less suitable for a context in which these assumptions can
not be made. The concept of approximate databases, discussed in a number of
publications referenced throughout this paper and summarized in book form in
[3], relaxes some of these assumptions and might be applicable where standard
techniques are not. In order to be able to investigate whether this is the case,
we have implemented an approximate database, called the Rough Knowledge
Database, that serves as an experimental platform.

This presentation is structured as follows. Section 2 introduces and moti-
vates the concepts that are used in Section 3, which describes the rkdb system
architecture and its different parts together with a detailed example. We con-
tinue with a fancy screen shot of the user interface in Section 4 before finally
concluding in Section 5.

1

2 Preliminaries

Assume we want to reason about the weather and we want to decide what to
wear on our way to work. We might want to express knowledge such as “if it’s
cold and windy wear the winter coat” and “if it’s raining bring the umbrella,
and whenever you choose to bring the umbrella the sky should at least be
overcast”. It is clear that relations such as “windy” are better described as
approximate than exact, and that relations such as “cold” don’t really have
a precise definition at all. Furthermore, the knowledge we wrote down about
umbrellas doesn’t completely specify when to bring the umbrella and when to
leave it at home. Instead it provides sufficient conditions, raining, and necessary
conditions, overcast, that only partially define the concept.

2.1 Approximate Relations

To naturally express knowledge such as that described above, we introduce the
approximate relation as a basic element of our database, contrasting it with the
crisp relations and formulas used in a regular deductive database. The idea of
approximate relations started out from the idea of rough sets, where instead of
partitioning objects into those that are in the set and those that are outside
the set, one has a third group of objects that might be in the set, called the
boundary part. This semantics was then generalized to create a semantics of
approximate databases. We also extend the logical language used for writing
formulas with the following expressions:

Any approximate relation R has

• a positive part, denoted by R+, containing objects known to satisfy the
relation,

• a negative part, denoted by R−, containing objects known not to satisfy
the relation,

• a boundary part, denoted by R±, containing objects that are neither known
to satisfy the relation nor known not to,

• a positive-boundary part, denoted by R⊕, containing objects in the positive
or boundary part,

• a negative-boundary part, denoted by R	, containing objects in the nega-
tive or boundary part.

Queries to an approximate database are approximate formulas, i.e. logical
formulas in which all references to relations are approximate. A query formula
will usually contain free variables, in which case the result of the query is a
list of substitutions for the free variables that satisfies the formula. When a
query formula does not contain free variables, the query result is true, false or
unknown.

2.2 Open World Assumption

Suppose we decided to bring the umbrella on our way to work, if we could just
remember where we put it. We are wondering if it might not be in the hallway

2

closet, but we don’t know. If we were trying to represent the situation using
a regular deductive database we would be forced to decide whether to have a
fact In(Umbrella, Closet) in the database or not. Considering that we don’t
know if it’s in there, adding the fact that it is seems erroneous. Choosing the
latter alternative, we query the database asking if the umbrella is in fact in the
closet. Most databases would now use the well-known closed world assumption

to conclude that since there is no evidence of the umbrella being in the closet,
it must not be, which is clearly not a well-founded conclusion in this scenario.

Using the approximate database we choose not to add any facts regarding
the whereabouts of the umbrella, but this time when querying about its location
we will find that it is unknown. This is the open world assumption (which makes
no assumptions at all really). Since it’s unknown if the umbrella is in the closet,
we decide to look, but there is no sign of the umbrella. We can’t be entirely
sure it’s not in there since it might be hidden inside something else, or lie in
a dark corner where it’s impossible to see, but we would still like to conclude,
assuming we looked thoroughly, that it’s not there so that we can get on with the
searching elsewhere. If the umbrella is nowhere else to be found, we might want
to go back and remove our previous assumption that we searched the closet
thoroughly enough, and find that without the assumption it is still unknown if
the umbrella is in the closet. This method of reasoning is a form of local closed

world reasoning supported by the approximate database as will be detailed in
Section 3.4.

3 The Rough Knowledge Database

It is important to facilitate experimentation to provide a better feel for the utility
and applicability of the ideas and techniques behind approximate databases, and
such experience will likely only come from a real system. We have consequently
spent some considerable effort on an actual implementation called the Rough
Knowledge Database (rkdb). Grounded in a standard sql database, several
extension layers each provide an extended query language building upon the
layer below. Figure 1 displays an architectural overview of the system that
is described in more detail below, starting from the bottom abstraction layer,
moving upwards.

3.1 SQL Database

Even though the database can be said to form the basis of the system it can eas-
ily be replaced, choosing from a long list of sql databases such as PostgreSQL

or Microsoft Access. Whatever database chosen will use regular, crisp, data-
base relations to store approximate relations, but need not know the details of
the representation. Deciding the exact format is the concern of the next ab-
straction layer, which still leaves the sql database the task of optimizing and
executing sql queries passed down from layers above. Note that for some appli-
cations a standard sql database might not be the most efficient means of storing
and retrieving data. In a robotic system secondary memory footprint may need
to be minimized or a high frequency of low complexity queries might call for an
implementation where data is stored in primary memory, in which case such an
implementation can be plugged into the system, bypassing the sql interface.

3

� � �
� � � � � � � �

	
 � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � �

� � � � � � ! " # $ % � � � & # ' ($ �)

* $! + , � � & - . $ � �) /
0 & ! 1 " # � & 2 � 3 4) /
5 � 6 � % � � ! (3 " ' ($ �)

, � � & + 7 � � ! 8 $ 9 (4 # : $; (3 $ 6 /
� � � � � � ! " # $ % � � � & # ' ($ �)

* ' <

Figure 1: An overview of the rkdb architecture.

3.2 Extensional Database

The Extensional Database layer (edb) provides a mapping from approximate
relations to a specific representation scheme based on regular database relations.
In particular, the positive (R+) and negative (R−) parts of relations are stored
explicitly in tables while the boundary, positive boundary, and negative bound-
ary are only stored implicitly but can still be generated through more complex
queries to the database. When all relation arguments are assumed to have finite
domains, all parts of relations consist of a finite number of tuples, and the divi-
sion between explicit and implicit storage becomes a potential implementation
choice point to which the best answer will depend on the final application. We
believe it wise, in the general case, to save space by storing known information
explicitly and unknown information implicitly since we are likely to know just
a little and be ignorant of a great deal more.

As mentioned previously, logic is consistently used as the query language
in all parts of the rkdb. Both the fact that the logical query language may
refer explicitly to the boundary parts that are not explicitly stored and the fact
that any, arbitrarily complex, logical formula may be used as a query contribute
to the necessity of some kind of evaluation mechanism. To meet this need we
have developed a query compilation mechanism that will recursively transform
any logical formula query into a, sometimes very elaborate, sql query, the
only exception being fixpoint formulas, which need to be iteratively evaluated
until a fixpoint is reached before the result can be returned. By delaying the
actual evaluation of any part of the query until it reaches the sql database we
can benefit from the potential performance increase resulting from sql query
optimization techniques employed by our particular database of choice.

4

3.3 Intensional Database

The Intensional Database layer (idb) uses stored rules to infer additional in-
formation from the facts in the edb. The intensional rules are approximate
implications with a single literal head, but differ from Horn-clause type rules in
that the head literals can contain negations. To deduce new facts the rules are
translated into approximate formula fixpoint queries that must then be checked
for consistency since both new positive and new negative information might be
produced.

Performing the necessary inferences for a specific query is the task of the
inference mechanism, which currently uses the naive method of repeatedly ap-
plying all idb-rules until no new facts can be inferred, evaluating the query in
this new context, and finally withdrawing the generated facts to restore the
original database state. This method can clearly be improved upon using the
rich set of techniques developed for efficiently evaluating intensional database
queries (see, e.g., Chapter 13 of [1]).

3.4 Contextually Closed Query Database

The Contextually Closed Query database layer (ccq) provides the functional-
ity that renders locally closed world reasoning feasible. This is accomplished
through the use of circumscription in the context of a closure policy provided
by the user, exemplified below.

3.4.1 Circumscription

A contextually closed query consists of a logical formula query together with a
crisp logical theory, describing the relations in the query, and a closure policy
defining what relations are affected by the closure in one of the following ways:

• A relation may be fixed, in which case it will not be modified by the
closure.

• A relation may be minimized, in which case tuples may be moved from the
boundary part into the negative part of the relation in order to minimize
its extension.

• A relation may be varied, in which case tuples may be moved from the
boundary part into either the positive or negative part as an effect of the
minimization of other relations.

3.4.2 A Surveillance Mission

Consider a scenario involving an unmanned autonomous helicopter that makes
use of contextually closed queries during a surveillance mission. A black car has
been reported stolen and the task of the robotic helicopter is to locate the car
by investigating areas in which the car is suspected to be located. To represent
this scenario we make use of the relations In(x, y), Color(x, z), SuspectIn(y),
and Investigate(x, y) to express that car x is in region y, the color of car x is
z, the stolen car is suspected to be in region y, and the helicopter should search
for car x in region y respectively. Using these relations we construct a crisp
logical theory (1) expressing the behaviour we wish the helicopter to exhibit.

5

All black cars that are in a suspect region should be investigated. Although,
if the car is known to have some color other than black it is not necessary to
look for it in any region. Finally, when we know a car is not in a region, there
is no point going there looking for it.

∀x, y.[In(x, y) ∧ SuspectIn(y) ∧ Color(x, Black) → Investigate(x, y)]∧
∀x, y, z.[Color(x, z) ∧ z 6= Black → ¬Investigate(x, y)]∧
∀x, y.[¬In(x, y) → ¬Investigate(x, y)]

(1)

Additionally an approximate intensional rule is added to the idb expressing
the fact that if we know the region a car is in, it can not simultaneously be in
some other region.

∀x, y1, y2.[In+(x, y1) ∧ y1 6= y2 → In−(x, y2)] (2)

Continuing the example, we construct a specific scenario by adding facts to
the approximate knowledge base. Given three cars, C1, C2 and C3, three regions,
R1, R2 and R3, and two colors, Black and Red, we add the facts expressed in
(3). A black car C1 is known to be in region R1, the car C2 is red but we do
not know in which region it is, and nothing is known about the third car C3.
Furthermore, the stolen car is believed to be located somewhere in region R1 or
R2.

In+(C1, R1)∧
Color+(C1, Black) ∧ Color+(C2, Red)∧
SuspectIn+(R1) ∧ SuspectIn+(R2)

(3)

The knowledge base does not contain any information about which cars and
what regions are interesting for the autonomous helicopter given its mission, but
it is now possible to locally close the world model during a database query by
specifying a closure policy of minimization and variation of relations in order to
obtain new information about these relations. Determining which relations to
vary, which relations to minimize and which to leave unchanged in the general
case is a very interesting research topic, but for our example scenario we choose
to minimize the number of suspected regions, in order to avoid searching regions
that we have no specific reason to believe the stolen car to be in, while varying
what cars and regions the helicopter should investigate to obtain information
about possible actions to take. Consequently we construct the policy of mini-
mizing SuspectIn while varying Investigate and fixing the remaining relations
In and Color.

Using predicate circumscription to apply the closure policy to the logical
theory T , as in [2], we will generate a second-order circumscription axiom and
try to reduce it to an equivalent first-order formula T ′ using the dls* algorithm
described in Section 3.4.3. If the reduction is successful it is possible to extract
syntactic definitions of the new minimized and varied relations by constructing
a second-order formula for each, existentially quantifying the relation R in front
of the circumscribed theory T ′ containing it.

∃R.[T ′(R)] (4)

6

By creating a formula such as (4) for each relation we can constructively
find the syntactic characterizations through application of dls* and use them
to query the knowledge base. Returning to the helicopter scenario we obtain
syntactic definitions for SuspectIn and Investigate as shown in (5).

SuspectIn : SuspectIn+(y)
¬SuspectIn : SuspectIn	(y)
Investigate : Investigate+(x, y)∨

In+(x, y) ∧ SuspectIn+(y) ∧ Color+(x, Black)
¬Investigate : Investigate−(x, y) ∨ In−(x, y)∨

∃z.[Color+(x, z) ∧ z 6= Black]

(5)

Observe that the definitions contain unbound variables, and presenting them
to the knowledge base as queries will produce exactly the tuples satisfying the
new relation definitions. To evaluate a complex query containing the minimized
or varied relations it suffices to replace those occurrences with their syntactic
definitions and passing the query to the intensional database layer. Evaluating
the definitions in our examples produces the tuples seen in (6), including new
tuples produced by the idb rule.

In(x, y) : 〈C1, R1〉
¬In(x, y) : 〈C1, R2〉, 〈C1, R3〉

SuspectIn(y) : 〈R1〉, 〈R2〉
¬SuspectIn(y) : 〈R3〉

Investigate(x, y) : 〈C1, R1〉
¬Investigate(x, y) : 〈C1, R2〉, 〈C1, R3〉, 〈C2, R1〉,

〈C2, R2〉, 〈C2, R3〉

(6)

Although the idb rule excluded the possibility of C1 being anywhere else
than in R1, it remains unknown which regions the other cars are in. Minimizing
SuspectIn writes R3 off the list of suspected regions since there is no reason to
believe otherwise, while varying Investigate prompts the helicopter to search
for C1 in region R1 since we know it is a black car located in a region which we
suspect the stolen car to be in. In addition, the helicopter robot concludes that
it is not necessary to look for C1 anywhere else, using the idb rule and the part
of the theory stating that it should not investigate a region, looking for a car it
knows is not there. Car C2 can be in any of the regions but there is no point
looking for it as it has the color Red, different from Black. Finally, it remains
unknown, even after applying the closure policy, if searching for the car C3 in
any of the regions is necessary.

Now, assume the robotic helicopter takes action, flying over region R1 look-
ing for C1, and that it finds the car but it is not the stolen car we are looking
for. It updates the knowledge base by removing R1 from the list of suspected
regions and adding the fact that it did not find C3, expressed by In−(C3,R1).
Using the same syntactic definitions of relations, we reevaluate the queries in
light of these new facts.

7

In(x, y) : 〈C1, R1〉
¬In(x, y) : 〈C1, R2〉, 〈C1, R3〉, 〈C3, R1〉

SuspectIn(y) : 〈R2〉
¬SuspectIn(y) : 〈R1〉, 〈R3〉

Investigate(x, y) :
¬Investigate(x, y) : 〈C1, R2〉, 〈C1, R3〉, 〈C2, R1〉,

〈C2, R2〉, 〈C2, R3〉, 〈C3, R1〉

(7)

The In tuples in (7) changed to incorporate the fact that C3 has not yet
been found, and the R1 tuple in the SuspectIn relation has moved to reflect
the fact that no stolen car was found there, but the varied Investigate relation
has changed too. The helicopter has already searched region R1 for C1, and
it concludes that it is no longer necessary to investigate whether C3 is in R1,
but it is still unknown if the helicopter should look for C3 in one of the other
regions.

Notice that without changing the definitions, the query results have changed
to reflect the new knowledge situation. This will stay true until we modify the
closure policy or the logical theory describing the mission, in which case the
definitions must be recalculated. As long as the policy and theory stay the
same, we can cache the calculated definitions, improving efficiency.

In its current state of uncertainty, the autonomous helicopter might either
explain the two remaining possibilities to a mission operator, asking for new
information or advice on which action to take, or continue on itself, e.g. by
systematically searching for C3, first in region R2 and then in R3. Assuming
the latter alternative, and that the stolen car is in fact located in one of the
regions, the helicopter will find it and successfully complete the mission.

3.4.3 DLS*

Utilizing a fixpoint generalization of an equivalence between second-order logic
formulas of a certain form and first-order formula counterparts, generated through
a specific syntactic transformation, the dls* algorithm can reduce any second-
order formula from the class of semi-Horn formulas into an equivalent first-order
formula in polynomial time [4]. Other formulas might also be reduced and al-
though there is no guarantee in the general case (indeed there could not be since
the problem is not computable), dls* can provide a completeness proof for a
well defined subclass of first-order logic.

An earlier implementation in a constraint logic programming language is
available online at [6], but we chose to re-implement the algorithm in Java to
add some extensions and make the algorithm an integrated part of the rkdb.
This new version will also be made available online after a testing phase.

3.4.4 Simplification

Forcing a logical theory through the DLS* algorithm after first circumscribing
it can have undesirable effects on its complexity. Although encouraging results
in [5] show that, at least in the semi-Horn case, the size of the syntactic char-
acterizations of varied and minimized relations are linear in relation to the size
of the ccq query, in practice there is often both a need and opportunity for
simplifications. A number of equivalence-preserving simplifications are applied

8

Figure 2: A screen shot of the Graphical Database Design user interface.

to each contextually closed query, e.g. taking advantage of the unique names
assumption in the rkdb.

3.5 Logic Parser

A parser for database input was generated using the JavaCC parser generator.
Our syntax supports the representation of approximate formulas in addition
to regular first-order and fixpoint formulas, but also knowledge base-specific
constructs such as relation definitions, extensional facts, intensional rules, and
logical theories together with closure policies, making it possible to specify entire
use scenarios in a single text file. This latter functionality is complementary to
the use of the rkdb as a service in a larger system, in which case one would
make direct use of the rkdb interface to gain access to methods for, among
other things, adding and retracting facts or rules.

4 Graphical Database Design

Even if not a necessary functional part of a system, a graphical user interface can
often encourage and simplify experimentation. Considering that we are building
an experimental platform for a collection of new deductive database techniques
not yet extensively explored, such qualities seem beneficial. This is the idea
behind the Graphical Database Design tool, shown in Figure 2, for the rkdb

that provides an environment where knowledge bases, complete with relation
definitions, facts, rules, and theories, can be created, changed, or destroyed.

9

The interface builds upon a window system, where each relation, theory, policy,
or query, has its own window. The windows can then be connected to link a
query with a policy and a theory.

5 Conclusions

We have created the foundation of an experimental environment in which the
ideas and techniques in [3] can be investigated and explored. The system called
the Rough Knowledge Database is implemented in Java and consists of a layered
architecture based on a plug-in sql database. The rkdb may be used either as
a service through an interface, or stand-alone through file input or a graphical
user interface, the Graphical Database Design tool. It is our hope that this
implementation will be of considerable support to anyone wishing to explore
the use of approximate databases for knowledge representation.

Acknowledgements

This work is partially funded by the Wallenberg Foundation under the WITAS
UAV Project and the NFFP03-539 COMPAS Project.

References

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.
Addison-Wesley, 1995.

[2] Patrick Doherty, Jaros lav Kachniarz, and Andrzej Sza las. Using contex-
tually closed queries for local closed-world reasoning in rough knowledge
databases. In Sankar K. Pal, Lech Polkowski, and Anrzej Skowron, editors,
Rough-Neuro Computing: Techniques for Computing with Words, Cognitive
Technologies, pages 219–250. Springer–Verlag, 2003.

[3] Patrick Doherty, Witold Lukaszewicz, Andrzej Skowron, and Andrzej Sza las.
Knowledge Engineering: A Rough Set Approach. Studies in Fuziness and Soft
Computing. Springer Physica Verlag, 2005. To appear.

[4] Patrick Doherty, Witold Lukaszewicz, and Andrzej Sza las. General do-
main circumscription and its effective reductions. Fundamenta Informaticae,
36(1):23–55, 1998.

[5] Patrick Doherty, Witold Lukaszewicz, and Andrzej Sza las. Declarative
PTIME queries for relational databases using quantifier elimination. Journal

of Logic and Computation, 9(5):739–761, 1999.

[6] Joakim Gustafsson. The DLS algorithm, 1996.
http://www.ida.liu.se/labs/kplab/projects/dls/.

10

